diff --git a/docs/source/index.rst b/docs/source/index.rst
index f93a377..17e51f3 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -29,3 +29,4 @@ You can find the source code in our `GitHub repository `_ (e.g, `embedding` and `tfidf`) while others are implemented originally for bdikit (e.g., `gpt`).
+To see how to use these methods, please refer to the documentation of :py:func:`~bdikit.api.match_values()` in the :py:mod:`~bdikit.api` module.
+
+.. ``bdikit module `.
+
+
+
+.. list-table:: bdikit methods
+ :header-rows: 1
+
+ * - Method
+ - Class
+ - Description
+ * - ``gpt``
+ - :class:`~bdikit.mapping_algorithms.value_mapping.algorithms.GPTValueMatcher`
+ - | Leverages a large language model (GPT-4) to identify and select the most accurate value matches.
+
+.. list-table:: Methods from other libraries
+ :header-rows: 1
+
+ * - Method
+ - Class
+ - Description
+ * - ``tfidf``
+ - :class:`~bdikit.mapping_algorithms.value_mapping.algorithms.TFIDFValueMatcher`
+ - | Employs a character-based n-gram TF-IDF approach to approximate edit distance by capturing the frequency and contextual importance of n-gram patterns within strings. This method leverages the Term Frequency-Inverse Document Frequency (TF-IDF) weighting to quantify the similarity between strings based on their shared n-gram features.
+ * - ``edit_distance``
+ - :class:`~bdikit.mapping_algorithms.value_mapping.algorithms.EditDistanceValueMatcher`
+ - | Uses the edit distance between lists of strings using a customizable scorer that supports various distance and similarity metrics.
+ * - ``embedding``
+ - :class:`~bdikit.mapping_algorithms.value_mapping.algorithms.EmbeddingValueMatcher`
+ - | A value-matching algorithm that leverages the cosine similarity of value embeddings for precise comparisons. By default, it utilizes the `bert-base-multilingual-cased` model to generate contextualized embeddings, enabling effective multilingual matching..
+ * - ``fasttext``
+ - :class:`~bdikit.mapping_algorithms.value_mapping.algorithms.FastTextValueMatcher`
+ - | This method uses the cosine similarity of FastText embeddings to accurately compare and align values, capturing both semantic and subword-level similarities..