From 3bce99621b2ef71dd23b33532422a3e746a1ea22 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Mirko=20M=C3=A4licke?= Date: Fri, 25 Nov 2022 13:39:23 +0100 Subject: [PATCH] add tutorial --- index.html | 15262 +++++++++++++++++++++++++++++++++++++++++++++++ tutorial.ipynb | 540 ++ 2 files changed, 15802 insertions(+) create mode 100644 index.html create mode 100644 tutorial.ipynb diff --git a/index.html b/index.html new file mode 100644 index 0000000..1478b52 --- /dev/null +++ b/index.html @@ -0,0 +1,15262 @@ + + + + + +tutorial + + + + + + + + + + + + + + + + + + + + + +
+ +
+ + + + +
+
+ +
+ + +
+ + + + +
+ + + + +
+
+ +
+ + +
+ + + + +
+ + + + +
+
+ +
+
+ +
+ + +
+ + + + +
+
+ +
+ + + + +
+ + + + + + + + + diff --git a/tutorial.ipynb b/tutorial.ipynb new file mode 100644 index 0000000..bd6f968 --- /dev/null +++ b/tutorial.ipynb @@ -0,0 +1,540 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Moving window dispersion functions\n", + "\n", + "\n", + "This tool is a generic moving window - dispersion function / variogram calculation tool,\n", + "implemented as a gernalized version of Mälicke et al. (2020).\n", + "\n", + "> Mälicke, M., Hassler, S. K., Blume, T., Weiler, M., & Zehe, E. (2020). Soil moisture: variable in space but redundant in time. Hydrology and Earth System Sciences, 24(5), 2633-2653." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: The requested image's platform (linux/amd64) does not match the detected host platform (linux/arm64/v8) and no specific platform was requested\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'convert-input': convert-input: Convert input data FROM ghcr.io/vforwater/tbr_moving_dispersion:main VERSION: 1.0,\n", + " 'moving-window': moving-window: Moving window variograms FROM ghcr.io/vforwater/tbr_moving_dispersion:main VERSION: 1.0}\n" + ] + } + ], + "source": [ + "from toolbox_runner import list_tools\n", + "from pprint import pprint\n", + "\n", + "tools = list_tools(prefix=\"ghcr.io/vforwater/tbr_\", as_dict=True)\n", + "pprint(tools)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Input Data\n", + "\n", + "Load some input data from the aforementioned publication" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xyd
053693.83775998752.205367pos_32
153693.83775998752.205367pos_33
253693.83775998752.205367pos_34
353691.34295298749.025185pos_35
453665.55000098779.541089pos_90
\n", + "
" + ], + "text/plain": [ + " x y d\n", + "0 53693.837759 98752.205367 pos_32\n", + "1 53693.837759 98752.205367 pos_33\n", + "2 53693.837759 98752.205367 pos_34\n", + "3 53691.342952 98749.025185 pos_35\n", + "4 53665.550000 98779.541089 pos_90" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "positions = pd.read_csv('in/tutorial_pos.csv')\n", + "positions.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pos_33pos_91pos_94pos_150pos_153pos_209pos_271pos_274pos_386pos_389...pos_945pos_994pos_997pos_1000pos_1062pos_1124pos_1127pos_1189pos_1192pos_1248
00.2505280.2702150.1943720.2422600.2318160.2328610.3180450.2291180.1803090.239628...0.3763850.222115NaN0.221941NaNNaNNaNNaNNaNNaN
10.2445560.2705730.1944830.2423510.2327880.2318400.3132420.2282130.1793540.242799...0.5320000.217823NaN0.218455NaNNaNNaNNaNNaNNaN
20.2401280.2674620.1926460.2402010.2308470.228955NaNNaN0.1776250.238312...0.5170970.215962NaN0.215372NaNNaNNaNNaNNaNNaN
30.2383370.2660070.1914510.2392290.2298300.227538NaNNaN0.1764720.237788...0.2052880.214785NaN0.213372NaNNaNNaNNaNNaNNaN
40.2362780.2646180.1904650.2381180.2289790.225990NaNNaN0.1751600.236997...0.1924510.212799NaN0.211497NaNNaNNaNNaNNaNNaN
\n", + "

5 rows × 57 columns

\n", + "
" + ], + "text/plain": [ + " pos_33 pos_91 pos_94 pos_150 pos_153 pos_209 pos_271 \\\n", + "0 0.250528 0.270215 0.194372 0.242260 0.231816 0.232861 0.318045 \n", + "1 0.244556 0.270573 0.194483 0.242351 0.232788 0.231840 0.313242 \n", + "2 0.240128 0.267462 0.192646 0.240201 0.230847 0.228955 NaN \n", + "3 0.238337 0.266007 0.191451 0.239229 0.229830 0.227538 NaN \n", + "4 0.236278 0.264618 0.190465 0.238118 0.228979 0.225990 NaN \n", + "\n", + " pos_274 pos_386 pos_389 ... pos_945 pos_994 pos_997 pos_1000 \\\n", + "0 0.229118 0.180309 0.239628 ... 0.376385 0.222115 NaN 0.221941 \n", + "1 0.228213 0.179354 0.242799 ... 0.532000 0.217823 NaN 0.218455 \n", + "2 NaN 0.177625 0.238312 ... 0.517097 0.215962 NaN 0.215372 \n", + "3 NaN 0.176472 0.237788 ... 0.205288 0.214785 NaN 0.213372 \n", + "4 NaN 0.175160 0.236997 ... 0.192451 0.212799 NaN 0.211497 \n", + "\n", + " pos_1062 pos_1124 pos_1127 pos_1189 pos_1192 pos_1248 \n", + "0 NaN NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN NaN NaN \n", + "\n", + "[5 rows x 57 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = pd.read_csv('in/data.csv')\n", + "data.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Convert the input data\n", + "\n", + "The actual moving window tool operates just on ordered array data. The ordering can originate from a time series but it doesn't have to. \n", + "For convenience, there is a conversion tool included, that can take a CSV of positions and a CSV of data ordered in columns.\n", + "It will align the column names with the first, non-coordinate column in the positions. If there is no such column, the same order as in the columns is assumed, therefore it is recommended to align the data yourself." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "converter = tools.get('convert-input')\n", + "step = converter.run(result_path='./test', positions=positions, data=data)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['STDERR.log', 'STDOUT.log', 'data.dat', 'positions.dat']" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "step.outputs" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(57, 1461)\n", + "(57, 2)\n" + ] + } + ], + "source": [ + "# get out the aligned data and positions\n", + "datarray = step.get('data.dat')\n", + "posarray = step.get('positions.dat')\n", + "\n", + "print(datarray.shape)\n", + "print(posarray.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, there are 57 locations and the shapes are matching now. This is the format the actual tool needs." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Moving Window\n", + "\n", + "Run a 30-step moving window and calculate a variogram with some fixed parameters on each step. We can reuse some parameters from the Mälicke et al. (2020) publication" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "window = tools.get('moving-window')\n", + "\n", + "# set the variogram\n", + "variogram = dict(n_lags=5, model=\"exponential\", maxlag=\"median\", estimator=\"cressie\")\n", + "\n", + "# run\n", + "step = window.run(result_path=\"./test\", positions=posarray, data=datarray, variogram=variogram, window_size=30)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['STDERR.log', 'STDOUT.log', 'data.dat', 'empirical_variograms.dat', 'empirical_variograms.json', 'positions.dat', 'variogram_parameters.dat']\n" + ] + } + ], + "source": [ + "print(step.outputs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The output contains two different representations: the empirical variograms as `.dat` with only the experimental value, or as `.json` which also includes the bins for each window.\n", + "\n", + "The `variogram_parameters.dat` contain a series of variogram parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAGhCAYAAADCwthhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtHklEQVR4nOydeZgU1dn279579mFmmBmGHVxYRRxcUAlGDYhRY6JRY4ImLpGXJASJiaJJvsQ3r8bEGOKKC8ZEYySJ0agxCJqIGhEFwQUQRHaYYZhh9q23+v44dapObd219TZzftc1V/Vyqrq6p7vqrvt5zvN4BEEQwOFwOBwOh8PJON5s7wCHw+FwOBzOYIULMQ6Hw+FwOJwswYUYh8PhcDgcTpbgQozD4XA4HA4nS3AhxuFwOBwOh5MluBDjcDgcDofDyRJciHE4HA6Hw+FkCS7EOBwOh8PhcLIEF2IcDofD4XA4WYILMQ6Hw+FwOJwswYUYh8PhcDicvOfBBx/E2LFjEQ6HUV9fjzfffDPp+LVr16K+vh7hcBjjxo3D8uXLFc9v2bIFl1xyCcaMGQOPx4Nly5bpbufgwYP4xje+gcrKShQWFuLEE0/Exo0bTe83F2IcDofD4XDympUrV2Lx4sW47bbbsGnTJsyaNQvz5s3Dvn37dMfv3r0b559/PmbNmoVNmzbh1ltvxaJFi/Dss89KY3p6ejBu3Dj88pe/RG1tre52WltbccYZZyAQCOBf//oXtm7dit/85jcoLy83ve+egdr0OxaLYdOmTaipqYHXy/Umh8PhcDj5QCKRwOHDhzF9+nT4/X5T65x66qk46aST8NBDD0mPTZw4ERdffDHuvPNOzfibb74ZL7zwArZt2yY9tmDBAnzwwQdYt26dZvyYMWOwePFiLF68WPH4Lbfcgv/+978p3bdkmHuHecimTZtwyimnZHs3OBwOh8Ph2ODf//436uvrpfuhUAihUEgzLhKJYOPGjbjlllsUj8+ZMwdvv/227rbXrVuHOXPmKB6bO3cuVqxYgWg0ikAgYGofX3jhBcydOxdf/epXsXbtWgwfPhwLFy7E9ddfb2p9YAALsZqaGgDAu+++i2HDhmV5bzgcDofD4ZihoaEBp5xyCs4++2zF4//v//0//OxnP9OMb25uRjwel877lJqaGjQ2Nuq+RmNjo+74WCyG5uZm07ph165deOihh7BkyRLceuutePfdd7Fo0SKEQiFcddVVprYxYIUYDUcOGzYMI0aMyPLecDgcDofDscLWrVsxfPhw6b6eG8bi8XgU9wVB0DyWarze48lIJBKYMWMG7rjjDgDA9OnTsWXLFjz00EOmhRhPnuJwOBwOh5NzlJSUoLS0VPozEmJVVVXw+Xwa96upqUnjelFqa2t1x/v9flRWVprex2HDhmHSpEmKxyZOnGg4SUAPLsQ4HA6Hw+HkLcFgEPX19VizZo3i8TVr1uD000/XXWfmzJma8atXr8aMGTNM54cBwBlnnIHt27crHtuxYwdGjx5tehtciHE4HA6Hw8lrlixZgsceewyPP/44tm3bhhtvvBH79u3DggULAABLly5VhAoXLFiAvXv3YsmSJdi2bRsef/xxrFixAjfddJM0JhKJYPPmzdi8eTMikQgOHjyIzZs3Y+fOndKYG2+8Ee+88w7uuOMO7Ny5E08//TQeeeQRfOc73zG/88IAZf/+/QIAYf/+/dneFQ6Hw+FwOCaxe/5+4IEHhNGjRwvBYFA46aSThLVr10rPXX311cLs2bMV419//XVh+vTpQjAYFMaMGSM89NBDiud3794tAND8qbfz4osvClOmTBFCoZAwYcIE4ZFHHrG03wO2jtiBAwcwcuRI7N+/nyfrczgcDoeTJwy28zcPTXI4HA6Hw+FkCS7EOBwOh8PhcLIEF2IcDofD4XA4WYILMQ6Hw+FwOJwswYUYh8PhcDgcTpbgQozD4XA4HA4nS3AhxuFwOBwOh5MlBmzTb07meGdXC1ZvOQyvB7ikfgQmDit1b+OJBPDuI8DIU4DhJ7m3XQ6Hw+FwcgAuxDiOufnZD7G3pQcAsLWhA09ff5p7G//oL8Cqm8ntn7W7t10Oh8PhcHIAHprkOKatJyrdbmjvc3fjDR+6uz0AOLAB+N00YNuL7m+bw+FwOBwLcCHGcUwklpBuN3f2u7vxRDT1GKs8dg7Qugf4+7fd3zaHw+FwOBbgoUmOYyJxWYh19sdQ/79r4Pd54Pd6EfB5cOLIcvz28hPh8XisbzyeBiFGScQcb+I/25vw4geHSCtYi1QUBbH4C8ehOMR/hhwOhzNY4WcAjiPiCQHxBFEhVcUhNHf1o6U7ohizp6UH3z/3OIytKrL+Ag7EUjSeQDSegAceFAR92gEh55MKfvqPj7H/aK/t9ScMK8Wl9elvatsXjaOjj4jakM+HssJA2l9zoJJICOiLxVEY5IdPDofjHH4k4Tgiyrhhq2/8HFp7IojFBUTjCcQSAm54cgMOd/SjtSeCsbAjxOK29uujA+244pF16I6Q9b8yfTjuufxEQGCsq0ChrW2zNHcS0fndzx+DsgLz4ualDw/hgwPtaO5yOZSrw4HWHpy37E109cui9vYvTcZVM8ek/bUHGvGEgAvuewvbGjpwwQnDcP+V+T+T9y/v7ccnjZ341hljMLLC+W+Cw+FYgwsxjiP6mfywopAPFUXFiuerS8JEiKlcMtPYzBF7a2ezJMIAYNWWRvxGEODp75AHBQrs7ZNIfyyO3ih5jetnjbPkMjW09+GDA+2KiQ7p4sMD7QoRBgAb9rRyIWaD5q5+bGsg36E3P23O8t44p7U7gh89SybEJAQBP7tocpb3iMMZfHAhxnEEm6gf9GnnfpSL4uQ3q3fgqXf2ap4/eWwFFp51jPELpMgR29fSg6M9WpG35RApdXH1zNH4w7q96InEsbelB2O8LfIgwZ7bRmnvJfvm8QAlYWs/Jeqe0W2kE/oa506sxueOG4qf/mOLwsnkDF7ohQQA9ESc50xyOBzrcCHGcQQ9oQd9Xt1k/HFVRXjz02ZsbejA1gbt+v/ZfgQBrxeFIZ0cLgCzWjoxSrz9p/VKIbdhTyue23Qw6f4dU12M8sIA2nqiOOvu1/Hxt6sgeXaRnqTrAsCDr+/Eb1bvkPLg9CgNB+D1WpuIQAXqn9/dhz+/u8/SuskoCvrw8PwZOPPYKukxKsRKCwIIiGI5Grcxu4Az4GC/BQL/SnA4WYELsTyjPxbHC5sPoaMv9dVreUEAF51YJ5180wF1xIJ+/de4ae7xOGn0EIVzRnn4jV3Y2dSF/3t5m+H2HwscxShRo9323MeG44aXa8OMVcVBnDupBh19Mfz6le0AgJYjjbIQi3Ybbo/yypbDSUUYAJx5TFXS5/WoHz0E4YAXfVF3nanuSBz3vvYpth/ulB77704SQisvCDJCjDtidmDFijAAlMtAeA+5yJ7mbhQEfejsiyLo82FUpTb3LhpPYHdzN7weYFxVseWLOc7AgQuxPONvGw8kFSRqEoKAr84Ymbb9oaUrjIRYSTiAL504XPe5MVVFeOK/exBLGIuC4l2CdNk+Z1IN1KZbcSiAW+ZNwNCSkOE2vvP5Y/DsxgPY1dyNaCcTmjThiMV621GAPtx71Zk4aVS55nmPx4MhNmYgThlehk0/meNqOOjNT5uxeOVmvLvnKN7dc1TzfGVxEAEf+QC5EOMAKmGZvd3IW4509kOAgOqSsPTY0r9/pHG5//dLkzFflZN5zRPvSXmGV5w8Er+85IS07y8nN+FCLM/49HAXAGBCbQmOry1JOm5rQwd++o8tuGvVJ0m36fF48D+zx+OaM8fqPv/Ym7vw3p6jiCeIsIsnBCQEAbG4ICWB6+WHpeLkMRU4eUxF0jF77/YA5C3jkatmWH4NCs3hinczQiwRJTloPgMhFe3DP7u+BoSBLWV7UFlsLPbsUBD06ZfVsMkFJwzDtsYONOp0NygJ+/HVGSOwYU8rACDGQ5McFdwcs8aKt3bjf1/aCgBY8oXjsOicY5FICPjLhv2asR8caMd81WMfHmhXPM8ZvHAhlmG2HurAbc9/hC4ToUU96En266eO0lxhsWzcexSXPLQOvdG4IiHXiL9s2K8rxFq6+vGLfxqHDinDhzibgWhEta8j9SATFItCLNHTqnwi0g0UlOuv1C4fUEuDud+Ewu/zYum8iUnH0NBkhDtithAGmG+kdMTcf2+CIOD/vbAFnzTIofKywgDu+PLUpC52PrB5f5vmdmdfTDeVQT0pRxAEdDMzmdt1JhxxBg9ciGWYlz9qwKZ9bY63c8KI8qTP14+uwLu3noPWFOURtja048aVHxiKtU5RMIb8XvzsosnweTzwej3weQGf1wufxwOf14NTxiZ3tuxS0N+SepAJaPX6A4cOgpUqy9d8hK5Qte46Q3p24VrV+vkOD026x0CQZArxlYY3tKu5G39cp50tHYsn8PtvneL+C2YQNr8uId5u69UXVGoh1h8jdRaNnucMLiyfXd544w38+te/xsaNG9HQ0IDnnnsOF198sWLMtm3bcPPNN2Pt2rVIJBKYPHky/vKXv2DUKDL/rb+/HzfddBP+/Oc/o7e3F+eccw4efPBBjBghVxhvbW3FokWL8MILLwAALrroItx3330oLy+3/25zAPqDPW9yLa46fbStbVSXhHFMdXHqcaVhVJeGk46h+Vk9EX0hRgVaSTiAr50ySndMWulrc2UzVWJYsbutCWCigSvXbcduQd91O9ZzANeKF+3FFstT5Co8WZ/Dku4csV7xuFIuumBP/HcP3t1zFP/ZfgSxeAL+NE4kSjfs50U1lVFdwA6V0OpW1fXrjsQRjSfSOrGKk7tYPrt0d3dj2rRp+Na3voVLLrlE8/xnn32GM888E9deey1+/vOfo6ysDNu2bUM4LAuCxYsX48UXX8QzzzyDyspK/OAHP8AFF1yAjRs3wucjZ8krr7wSBw4cwKpVqwAA3/72tzF//ny8+OKLdt9rTkB/vHXlBTh9vPXZdm5D27T0GggxKtAKXcxlMo2LfSb/56zxKA77MXlbAmB01+XTKtBYOEZ3nereOCBGZQMDZEYTPdDzHDEOkH5XjxZ8LisI4Pypw3DmsVU44WerAQA90ThK81l46MygbTUIMaodr+5+clwN+r3SjPKO3qjreaic/MCyEJs3bx7mzZtn+Pxtt92G888/H7/61a+kx8aNGyfdbm9vx4oVK/Dkk0/i3HPPBQA89dRTGDlyJF599VXMnTsX27Ztw6pVq/DOO+/g1FNPBQA8+uijmDlzJrZv347jjz/e6m5zDKACqycSgyAImlpgfaIjVhDIghDranJtUyOGFJL8qf0RhRBbMHMYMNqgmniDLMQGCjQ0yXPE7KFIaB8AWpYNr6WjlEV/TBQcouAqCfnh9RAHqTcSR2k4f3ueJhSfHVke7tBOlAG0Dhid5FQaDqCtJ4JYQuC1/QYxrl6OJBIJ/POf/8Rxxx2HuXPnorq6Gqeeeiqef/55aczGjRsRjUYxZ84c6bG6ujpMmTIFb7/9NgBg3bp1KCsrk0QYAJx22mkoKyuTxqjp7+9HR0eH9NfZ2ak7LlfQqX2aFeisvYSgf3Kmjpibs/tM09WovO/GiaJXlayfrJaYwH4eA+MgyUOTHJZ060p1nUGPx5PShc8X2MMRFWUNOjOWAXIcZYVunyhQwwEv/01y3BViTU1N6Orqwi9/+Uucd955WL16Nb785S/jK1/5CtauXQsAaGxsRDAYxJAhQxTr1tTUoLGxURpTXa1NoK6urpbGqLnzzjtRVlYm/U2aNMnNt+YauTZFvJBxuh57czdWvKX8e0ash5OV0GSfKnfLFSEm1tcqEL9/SWuJKWIPzl87B+ChyezT0tWPle/tw9ZD7swIdoKQ5q+4XsHnsHjMMTObO5dhJzpQIUYdsSLV8TKWELDs1U/l++LvL+jz8gk0HHdnTSbExO8vfelLuPHGGwEAJ554It5++20sX74cs2fPNlxXHRbTa5ejFzqjLF26FEuWLJHuHzx4MGfFWC7h93lRFPShOxKXqs/rkZXQZL9aiMXh6NohEQf6xHo9ZSOIOxZNIsSSFJrNV6TQpE6nA05q3NAqt7+0Ff/YfAgeD7Dz/86HL6v5h4LOLfeIMC3QKAViKRj1BKF4QsDu5i4EfF6Mqig0PNbnCkpHjCxpLlhtWRifHVG67b977VOcM7EaJ4wol0RXwOdN2nZs075WBHxeTBleloZ3wMkVXBViVVVV8Pv9GgE0ceJEvPXWWwCA2tpaRCIRtLa2KlyxpqYmnH766dKYw4cPa7Z/5MgR1NTU6L52KBRCKCQnOnZ0ZP9qMxm5dIi585IT8No27efd2hPFhj1H0RuNK3oXZox+VXg5ETcuvmqG3jb5dulwoPEjUkfMiAEYmqRlOLojMSQSAm+r4gC734jmrn6yvgAc7Y5ktZ5Wuls29YstvELMhVxhgHwH+1SO2C3Pfoi/bjwAAPh/F07Ct87QLzCdKyR0Pjta7qeyKKQRYuzzVIj5fR7D0GR7bxRffpCk4nz6f/P4jMoBjKtCLBgM4uSTT8b27UpnZceOHRg9mpRqqK+vRyAQwJo1a3DZZZcBABoaGvDxxx9LCf4zZ85Ee3s73n33XZxyCqk1s379erS3t0tiLV/JxYKQF02rw0XT6nSfi8YTiMWF7OSIaUKTDl0cmh8WKiV/QHJHzOnr5SBDioIAyEmkrTeKCvE+J3N4Gadn3a4WjK0s0h330oeH8MIHh/DA109CeQG5ACkM+lFbJs9AFwQBv3plOz49bC0n1uPx4IqTR2JkhbYHopvoOWJh8Vjy2zU78L8vbUVjRx9OH1+JtduPSGPe2dWS80IMitAkWdIewOUGbc/CAaX7FfB5EfDrT6DZf1Q+NrV0RRT/d87AwrIQ6+rqws6dO6X7u3fvxubNm1FRUYFRo0bhhz/8IS6//HJ87nOfw+c//3msWrUKL774Il5//XUAQFlZGa699lr84Ac/QGVlJSoqKnDTTTdh6tSp0izKiRMn4rzzzsP111+Phx9+GAApX3HBBRfwGZMZhljnWXpxtSMmOMwpYfPDguIJKFmOGCvEBlCOWHlhAG09UbR09dsSYu/va8VhMSl5VGUhJtfxsIldFv15U8oxX3lQOUHpN1+dhkvqSc3FT5u68NDrn9l67YOtvfjt5SdK99OZrB9icsSGlYbxAYANe+WJMy9/pMz9/c8nR3D6na+Zeg2Px4OvnzYKC886Bn/beAC/e20H4ilyICcMK8WjV81wFBbWS9bvFEOTRr+roFieKSaFJj2GeZts4v/hjj4uxAYwloXYhg0b8PnPf166T/Oyrr76ajzxxBP48pe/jOXLl+POO+/EokWLcPzxx+PZZ5/FmWeeKa3z29/+Fn6/H5dddplU0PWJJ56QaogBwJ/+9CcsWrRIml150UUX4f7777f9RnMG8beW4+kPuUFEJcRaPiPhxGlfA3w2zNweRogFRBci6azJ/E4mNqKqOIS2nijmLHsDoyoKIQjEqaUpcYJAfFvpcYGedAS0dEc0mvTNH30+7c5KruBGuQd2tWFJTq7qGXhBnxeReALbGmSnWA6FBfGj88xdpO5u7sHytZ+hLxp3VFl//9EePP7f3eiLGjvHnzSSfWWT9W+/eDI+d9xQNHX2SQnsF02rw8ljhmBkRSEWPLURfdEEDhnMQKRM8uxBH4LYJdThyXV7sfCsY7DyvX3Yf7Q35b4fau/D7uZuU4WxjWDLV6gdsTIDR4yuE2FzxLz6ockDrfJFYlNnv+395OQ+ls9mZ511VsoD0DXXXINrrrnG8PlwOIz77rsP9913n+GYiooKPPXUU1Z3jzOQiKoOxI+Ikz2EOFD/Tevb6xHbJRVWkD8gea2yAZgjBgBfmlaH36zZAUEA9rYkmzVqzLiqIhxs60V/LIHDHX2DRoi5ARU/v7viRHzpxOGG42766wf4m5gzVRzy4xunjcbytUr3q1/Ms6ooCuLyk811vti4txXL136GWEJw1GvysTd34Q867Yv0qGQcouqSMK48dRRauvolIXb2hGpcPJ18Fm/dfDYa2pKLsHDzxzj2+VvRH6rA5PZlUp0uWij15xdNxkmjhuiue+Vj76CzL+Y4J05R+kMQkEgIUkHXoQaFWWlbI+p++ZOEJg+2yoKyJ2KvN7FT1u9qwS/+uU2RzzeyohAPfv0kafYrxzkDo29LHpLrM4JygpjBle3BjfaEWMdBsiytAyrEIsMtBmGdHa8AT18m3x8goUkA+O7Zx+Cs46vRH4uLzqwHXg/5TnpA3FoPPGSpc7uiKIihJSF8/u7Xsbu5ewBJ1Mxg9qvEHiGMep3K9ajMnxTpzNlYPOGofEW3OOtx1rFVOGWMca/ZcMCHr5ykFZxlBbJrxB4Oq4pDUksyXQQBWP0LAECo/yimePbg48ixAGTBMrmuFFNH6IfM3Up6V4cmW3siUsPvGoPWcvT5qJQ7xyTrq2YyH2qXj3/qiQ2Z4m8bD+Cjg+2Kxz5t6sL7+1pzojPMQIELsQzDT1oWUDtilEKbB4B24i6gdAQwZIzyMTWsCBtgeDwew5OUpe2IywGkUVPixnul20h1McY+zfY6ZXeBhgVpErgZaF5ULCEoXDCr7y0hiopZx1bh258bb21lQNFn0pI42vMmsE/OmxvqaUMsISASS5gqQC19by3trRZFr8kE0NxF3LAhhQFFThyLJMTEpd8rl69gm4AD8vYAuVVUpqEu3fzTRuP8qcNwy98/xN6WHl6H0GX4fFhO7hIzEmLGV99JoY5Y2Qi5oKvppuL8wKNBPKOlo+xBPmD3XVPxk8oTZ2dXFhk5YlE7jph84nfyr6P5Tl4H7v43ThuFyXWlOHuCtoC3Ia17FHcDIC5YTyQmCbGiYGqPwenXVlDkiAlSWZKq4hD8Pv3PRBJiorAK+I0LurYzDcT7k+ThpRO6T8fWFGPm+EqUiBcE8UH6m08X3BHLMPTHywOTJogahCYTNm36dirEhgMF5eJr9ACxCODnZRys4pazMNiQHbHk4xSOWMinO546YiG/eSEmOWKqE7/VHLGESWcvGb+4eKr1lVTHhbAvASRIqLRbDE0WhpI4Yi4dfNVahBViPq+BIyauFBNnxgS8cmhSXWS5rVd2xLIVmozEZOcOgPS+Us1K5ViDO2Kc3MXIEYvZnEHEhiZpHTHAnCvGrwA10BMw/2isQT8uT8rLMfl5trMF+3nLjpj5QzmdpadJ1rf4f6SiwsD8SR8qIVbsJwLmc7/6j/QeCpM6YuL31uElhLrF0RFxZuPQkhB8jNr7vy9PkW7HRQGmqCOmU1lfEAS0so5YlkKTkmAU/8l+JqzNcQ8uxDi5i5EjZiTQUm2LlsMorga8PiAk5kmxFfcB4IOV1rc/CJEdscF5ULYtQG04YkGDnCM7yfo+n0GOmOktiONpaDLT3RlUv/9jq0hiPA37Ta4r1fR61MN5aFK+nRDknK7K4qCiPtlZx1fjxJHl4j6Sx9jK+kEpVCyLLZrzRsmWIyZNKvBTR4y8rzgXYq7CQ5MZRpAvhzmpoAfcy58CRpwMvPFr4L3H7DlitKq+xweERQFWUAb0t2sdsee+rbMBfuBR4+GxSVuYzRFjnzdKZtdrqp2KABOadOKIUd3gJEfMFqoLtG/MGIa588+RvoZVxaGk4VK3djehyhHrFcOixSG/Qoj5PB5GwFBHTK4j5tfp/6rOF8uWIxaNyc4dAMnp4zli7sKFGCd3oQfcoqFASa08W9KOI0aFWMEQ+UgcLgewT24EzrGERwrxcKxgJ0cs6PPqCjdqTPgsqAsqChKCUkxY/U/GXUjWt4Xq9+9JRFFtUC4iGW46YoKgbOfECjGvRzlTFWA6DgT0Q5PqBuBZyxFjBCMASTTGE9kRhgMVLsSyROr8EI50wPWLB1m/WFvIjiPGVtWn0IR9NjRpdHTmV4Aa6Pl3MH00rpSvkG4lPwawAod1vBS5SQkqhsy/vp9JJHeS6yOFJjOeI6YqQhyP6o8zwOnutvVE8NKHDWhjcrgSgiC5VqGASoh5PVJuFQ3pSWP9Pt2m3+rQX0+WhJg6R0ye6DGIfvQZgAuxDMO/vhagjliggCwlIZa6hYkG6oixpS/C5WTJhiYND+r8P2fEoM0Rs/m+pZnTqRwx5rZR6DFhI0+LLa3AFhG1HJoUx2c8R0xdX9CqEKMXEDb/f9/78ya8+Wmz4jFWiAV9XoU49SpCk+Q1qcMV8nsRZArsUtQzWjt6rb1Ht1CHJtWCkuMOPFmfk7uoHTGfWGIiYaPdR6+OI0ZzxZp3yI+pr7Y5hvBZk/YwmybK5jkFfV5d4SaJIRuhSUAuLMrul1nikhuXaSFGf6Pi68YjhkOTYfd7qxZhAMmXk/P1fIqIh09HiPUzzdBpYdsIG5pUCZ2sCTFVaFIdYuW4AxdiGcZsfsigRxBkIUYdMa84E8pOHTEpR4xxxI45lyzffRTY/x65bZR/xtWGBp6rbw+zlfVZFKFJRW6S9fAgm/ivdMSs1hHLUmiyX2x6XjRU3BGroUn3d1gQBMXECfZf6/UySe5UiEkdEfRDkxpHrC87vSblHDFavoLsayJHj4cPPvggxo4di3A4jPr6erz55ptJx69duxb19fUIh8MYN24cli9frnh+y5YtuOSSSzBmzBh4PB4sW7Ys6fbuvPNOeDweLF682NJ+cyHGyU1YQUQdMa8YSbfjiOnliE2+GDj+fAACsOt18pg0I4sr5VTIOWK5eVBOB05aAsnbIKR2xOTbQYNZk3ZcKVY4sSUTrL4dejL2ZVqJ0ck1VIjZDE26SUIA+mNyuFEhxFhHTPzM+mLa0CQrxNTJ+u1ZcsRiTL0zQA5D52KO2MqVK7F48WLcdttt2LRpE2bNmoV58+Zh3759uuN3796N888/H7NmzcKmTZtw6623YtGiRXj22WelMT09PRg3bhx++ctfora2Nunrv/fee3jkkUdwwgknWN53LsQ4uQk7RV1yxEQhZvHAC0A5a5KlijQLlvLE6Ouqx3E0yLk2HEuYzBEzStZnsZOn5fF4mLY69oUl1XBOKuvbgk6uKRJnUWc4NKlHQu2IsaFJr05oknZEUDhi8g7FVLMS23ujWbngUdcRy+UcsXvuuQfXXnstrrvuOkycOBHLli3DyJEj8dBDD+mOX758OUaNGoVly5Zh4sSJuO6663DNNdfg7rvvlsacfPLJ+PWvf40rrrgCoZBxI/quri58/etfx6OPPoohQ6yfO7gQyzBmawgNeqgj5vEBvgC57RWXdhwxOtOSijoKFVxUqNGJAIFC668xyJBONrl3TM5pJEfMQrJ+wOfVDanZDQ/KuT72yxBIjlimhZhTR8zl3QGIII7E9UOTHo92tiHrnvl1Q5NkXFkBOebFEwK6I5mfOUn3ie5/pnPEOjs70dHRIf319+vPmI9EIti4cSPmzJmjeHzOnDl4++23dddZt26dZvzcuXOxYcMGRKPWvlPf+c538MUvfhHnnnuupfUoXIhxchP1jEnAWY4YzSPxqXpKaoSY+EP3q65+BlH4zSxOZ5/lI66Ur6A5YikkgZnK+nKOmDV5Qdsc0VlxgP3QZEYjk4m4LMSKa8jSYjkbaZKJi99bQRBkl0slxHweuXwF/cxosj7JEdMLTZLbJWG/9Hw2wpPU+aL7r34f6WbSpEkoKyuT/u68807dcc3NzYjH46ipqVE8XlNTg8bGRt11GhsbdcfHYjE0N2snZBjxzDPP4P333zfcNzPw8hVZgifrp4AeXFnh5CRHjF41U3eNYijE1AUiB4/YMIuUrD9IPxq7b1sSACkLusoDAgYNHe023qZtjqIJJ8n69l7bET0tIJ+8BygfSR6LdtvalJvfWwGyIxbSCU16VU4SW+qCimyFI5aQc7PKCgJo7oqgvSeK4eUqRz/NxFV5gJmuI7Z161YMHz5cup8sPAhov4uCIKTosqAdr/e4Efv378f3v/99rF69GuGw9aLCFC7EMsxgPWlZJqEjnBwJsYh2e4AsxGgyPx3nVzlnHC28fIUtBHM6TPG836tfviJuMzzolxwxF0KTmbTEuprIsrASCJWS25Hsl5xR5Ij5fBhdSVIbiDumLegq5155DCrri70ovR6UUiGWVUdMnSOWmcr6JSUlKC0tTTmuqqoKPp9P4341NTVpXC9KbW2t7ni/34/KykpT+7dx40Y0NTWhvr5eeiwej+ONN97A/fffj/7+fvh8qfueciHGyU3iotjyMsKJiiiL09XJ9qgQSxWaFHPTfDw0mQpevsIepstXME/7DRwxu9Xt/Tq5PtaT9bMQmuwWhVhxNRAsIrcj1hyxdEwySSSUyfrhgA8f/3yu9Dmrk/Wpo+TzeqUxejlifp8X9AhI88oyCf1+0GYMamcvVwgGg6ivr8eaNWvw5S9/WXp8zZo1+NKXvqS7zsyZM/Hiiy8qHlu9ejVmzJiBQCCgu46ac845Bx999JHisW9961uYMGECbr75ZlMiDOBCLGvwFkcpoK6Xj/mKOskRMxOaFAQgRh2x5BY4Z7CWrzC6Y30bqY4AbN4X6zqxn7fUeNuiGpIaTcfZ8hX2QpMZLejadYQsi4bKQsx2aNLNHDFlkVaANP+maIRYQna89EOT8vOUTNfuSiQESZxrHLEc/M0vWbIE8+fPx4wZMzBz5kw88sgj2LdvHxYsWAAAWLp0KQ4ePIg//vGPAIAFCxbg/vvvx5IlS3D99ddj3bp1WLFiBf785z9L24xEIti6dat0++DBg9i8eTOKi4txzDHHoKSkBFOmTFHsR1FRESorKzWPJ4MLMU5uQl0vr9uhSQNHLBElV9Zxg2R97vto4I6YPey0OPIbCK2EyW2p8buQ62OnvZJjXHTEKPe+9ile/qgBK2+YKc1StEpCEKTQot7ECnVBV7Y+V7Km336fRxK8me6zzYotOUeM7OvqLYexr4WEhCcNK8X3zjk2szunw+WXX46WlhbcfvvtaGhowJQpU/Dyyy9j9OjRAICGhgZFTbGxY8fi5Zdfxo033ogHHngAdXV1uPfee3HJJZdIYw4dOoTp06dL9++++27cfffdmD17Nl5//XXX9p0LsSzBk/VToOdgpUOIBQrJY/EIccX0JglwdOEtjpxhZdakz+vVHW07R0ynZILV/2M8G6FJmiNWVC2XmLGZI0bf7j1rSIuzP7y9B4tsCoq4ICjKV6ihAob+v2hoz+f1GFTWF4Wa1ytNqMi0C8XWCqPCfWgJuUDd3dyN3c1EAGejrIYRCxcuxMKFC3Wfe+KJJzSPzZ49G++//77h9saMGWPZObUj0LgQyzCDKYzjCCq2vGxoUhRldgq60pwzdWjS4yGuWNdhpRDj5StSwgTLsrgXmcWN36/ZNmesUGMdMXYP6LashgflvCT7OWJ2X9sRbXvJsqQGCJWQ2/2dljZhJIDVbYWs0BeV19UTYjQULDticusgv075il6xKXg46EOin6yT6XMHmwdGHbGvnzoKlUVBdPbLF8N1ZfZnC3IIXIhxchNdR8xJjpiBIwYohRgNTaqT9QeR2DCLnCOW3f3IFnbrUJkt6qx0xFwOTeqc/K3niNmrYWabWATY8xa5PXwGEC4ntyOdwCf/BCZ80dRmjL63bpXhCOkIMfoZUaeLNvX2+7xS+yq2phsVYoUBH/pEx8mBTrRFXEeIhQM+XDx9uNEqHJvwgq4Zxmyi7qAnXTliXp0cENoIvLeVJ+tbgDoLg1SH2UYweRBghYHf69FVW/RcabWEBA2VxZyEJjNd0HXnGlJHrGQYMPIUIFwmP/fMlcD+9yxuUPmG3dKTen1B1YVQJUeMDU0ySWC9EXKMKwj6pBmLmU7WVwgxnkuTVrgQ4+Qmeo6Yz0GLI6NZkwBQJNaMad9vnKw/WG2fZAxyR8wusg5LkSPG3DZ0xGw0/QaIAACACBuatLQF+f+esTpin64my4kXkd+xzw+EGDG2e62pzRjtrRsz2YM+r66zJpd9SCCREBQCWq+yfm+E3C4I+qT/baaFGJ256fFkeELGIIQLMU5uopsjloZkfYCEOQBg/3plsv61a6y/ziBCnjU5eJSYXn6W5W2YnTVpUEeMfV3HvSYdxLuoY5L2yvqNHwPrHgB2vELuH/sF+bmCcvl2Z4OpzRlNMnHjbeiFJQG2EKoy98rPzppkQpM9UdERC/ik/1W2HDGjGbsc9+A5YhlGDkvwL3dSkuaIOXHEdIQYbZXS0woU15Lb/hAJf3j94usNHrFhlsGeI2YXs+kJymR9/RO8nCNmr44Y68JY/YqnvdfkludIKHLL88CeN+XHqyfJtwuGyAn8zZ9a2rz67brxNox6gsp1xBKKRusBn/6syV4xL6ww6JP+t9nKEcto54RBChdinNwkWY6YnVmTMZ0m4pRgMVlGk9UR46jhOWI2MVlZX52srzfabo6Y1OKIraxv8T+Z1tBkIg789Zvaxz1eudk3INcBBIDDH5vatGFo0oW3URDUr6TuM3DEjEOT4qzJgA/UDM2eI8YDZ+mGf8JZgl9jpCCuU1nfL4qoeL81GyYek0OTukKMKQxJk/WlWZPc9jFiUFbWz+BbVRR0ZUOTjGCy22bIrxOatF9HLA1Hs85G/ceLqpXHBDZhv6fF3LbTOGuyJKxfEFYu6JpQFNENePULurJV+qUcsQy3FYplo07cIIULsQwzmPJpHKHniAWYejW0J6QZqBsG6AsxqTAkr6xvhcEeXbf7jTCbncAmSKeurG83NGk/Wd9u6QxTdBzUf5xeNFFCxcr7fe2mXyIdFxAlYf0gk5STlxAk8esVk+D1QpNU5AZ8Xul7kOn2jgmmxAYnvfBPmJOb6OWI+RkRFe2Fadixfp3igzQ0GenSVtYf7GojCVJokmtUS0jJ+hbW8Xm9ul9Fu/0epdCkwhGzWkeM7lsafiPdR/QfV18gBVVCrLs55abTGZo0TNb3yQn3UZXAoaHJWEKQ/gc0j8zn9chuWpYKuvIcsfTDhViGMVtVe9AjOWLMFabPLztkdoRYoFD/g5dCkz1MZX2VYONqQ4MUmhxUbqELlfXFpaVZkykcMaumhW6yvkXSWtDVqG2RWoh5VQ6UCadcmjWpftyFhJH1u4/qPs4WdI3TPpLi/zTAiDfaJomdsUhTtDKdAiAl6/OTVdrhQoyTmxi1JKJhRDtCTM8NA2QhlogSVwwA/HR2JT8IpWKwalS7J0Z5tVR1xOTnWVdCv3yF1YKuykrvgP3QZFoMk6iREFP9hm0IMUo6yldcPXO07uNsQVdauJU+xhaAjYi5Yawb5ZXyy7gjNlDhQoyTm+jliAFynljMihATD+pUxKlh8072rydLmqwvHZ0HqdpIAm/6bQ+pxZEbjliCjrVa0NV50+/+KE0o158p6AhDIZbKEetPuWnjgq7OMWoa7lXkiMn5X4AynEmT9OM6QizTOWKSK+fjQizdcCGWYcxW1R70GFXCp8n2tkKTOon69DXU9cV4+YqUcIlqDyk9wcI6Xq9H95ghhSatOmIOk/UTCUHqh2hUssERkW79x9U9YJ04Yi63OCoJ+w1nTcoFXQVF/hd5XY9UfyyiI8Skgq4ZVmK8jljm4HXEOLmJXmV9QE7Yd1OIAcQV643I932q0CS3fTTw8hXOtpHKxWJfixVaetX9rZ4raYsjZUFXc2/ukTc+w982HpDuFwTyzBEz+KzsXhxXFQfR3BXB9w3cMICtI6Z1xAAg5PMiEktIjliMqeFF9zdbLY54jlj64UIsS/DvdgqMHLFwKVn2tZnfVoxJ1jciUESafqtfR2LwiA2zDHZHzOn7TnUIYB0bo15/dstXSE2/E9YdsTte/kRxP5wWIWZwoaXOEfPZSNaXLq5Uj9s8Jv/60mnweICzjq82HKMoX0FzxJiQXyjgRWc/0B8jLqPCEcvSrEka9uaOWPrhQizDDCLzwBlGOWIlYguiDnN95QAwjphBsj5AKnZTKsYBtdPEx/lByAiPR/+ExkmO2V6TCkfM4GQYt5kwT0sm0FCYE9JyojYKTaodMPX9qJXQpBK7BV1rSsOYVKe+cFPiZ8KLUdWsSUBO2Fcn6/uZHLFMnzv0BCMnPfAcMU5uoldZHwBK6sjSqOCjHqmS9QF5tiQA3PAGoG7rwRW0BtkRGzyfjRvv1GyeKBvy9Xr0hZvdWl6yQ2M/WT+tGIUmBZVwLFK5UKbKVxg8bmK39DDTAUgqX5EQdFsHhURXUU7WF8OCPo/khmZ61mTK8hUtnwFrfgpseymDezUw4UIs41gv5jgoMXLEqsQ8jL1vm9+WmRwxtiJ3qIR5gv+njJBzV7K7H9nCrnAxW0uQ/VzZ8hTs6wo2y1f4ddrq5JSgNgpNelVh0CmXANOulO+byBGj2C1foR5nJrdMUdA1rhOaFJP16UxUmrrn83ikGnE5V75i3zvAf38HrF+ewb0amHAhxslNjHLEjp1Dlg2bzR90zQix4SfpP87LVySBl6+wg1nBYyY0abfNkF8nWT+n/o+GsyZVs5t9fuDLDwHTvkbuO5k1aXI9tUNk5rNnC7rSZH22dZA0azJOc8TkWmNyaDLTOWJa505B40dkWTs1Q3s0cOFCjJOb6FXWB4CyEUCojMyqbNlpbltSQdckQuzSx4Gxs4Fv/N36vg5SBmdlfeeYdcQUyfoefd/Fbh0xvcr6ds7zT3zrZOsrmcEoNKkWYtLj4gUbPW4kwaNwFwXdx5Ohdh/NrEXFTEIQJKcp4DV2xHQLuuZaiyMuxFyDJ+tnGN7iyCRGlfU9HqC0DjjSbqqvHAAmRyyJECsfBVz9gs4TvHyFEZJXOIg+GlfKV4jLVCEtZWhSbwsyVg8n1BGzU1l/TGUh9rT04N6vTU86U9ARRi2O1McD6XFRoNHjRhLY7y37/7QdmjSxIjWVjnT245a/fwhAKXBoUVxNiyNf9gu66goxQWCE2AkZ3KuBCRdinNzEKEcMYHpDGoQv1ERNlK/gWIZPmrSHaUfMhFtj97P365WvMKky6SrDy5Nc2DjFqiNGjxPxiP7zOghQ1uYyK2Y1jpiJFenn3dIt719AJzQp54hREeSVcsRyqqBr216gv538P6qOy+h+DUR4aDLDmC3mOOgxyhEDHAgxGycO/n8yxMPdQptYL1+RCss5Yg5KEpht0eQIPSHmLwBOvk5/vKXQpHxboW1MviFtsn5q9MSMbrK+qo4YmyOW6YKu7D5oaPyYLIcez/Tl5diFO2Kc3MSosj4ABIvJki05kQwzBV1TwcWGhsHoiLmRDye3OEoVmnS3BQ+Lk9pfNC/N6kxNS+jNmrx5j3EtQCrE4qmFGEUQBFuOmBozF9W6QkwvRyyWwM6mTjS090nryeUrbO6gTahbqltMmObnVh2fwT0auHBHjJObpMURS1LQ1RDuiBnh4YaYrZlsUo5YymR9o9d09vqA3PTbaLtmSOsvQ09QJfv9SjliqUOT7AWEnRwxtUA2o2n1XCV2NmKQEWJXP/6e9DhJ1td/3XTDztzUQIVY5TEZ3KOBCxdiGYbPMDOJqzliJgq6GiEdg/j/TY1HKl/BPxsrSJX1U44zv02rfRL1HBrzZTXs1S6zhIkQowLqnJtwxNjPSumImXs/mvpjJtbT+6yUoUm5oOvBNtkNZFscmRViXf0x/HXDfrT3WvwMVSTNETu6iywrxzt6DQ6BCzFObmJUWR9ghJjJ0KSTHDGOMYMwNOkGph0xTWjSPeGjlyNmVvjRvKq06TBBsBRiBMA4YhbWE1RCTOf9/HXDfvzshS1S7hbdPRZTyfo6n7desn4kllAIH7/XI/3fzRZ0/f6fN+GHf/sQt7+41dR4I/RaMUlIjhgXYm7AhRgnN0nmiPlDZGn2oEv7z9kSYjz+ZgQvX+F0G8nP4GZCk3bRK9JpdrNpT9ZPxC3sjYgLyfrqt5NICPjh3z7EE2/vweNv7WHWsf4P0HPEfLo5YnHUlsoh2PKCIAqDxC3rjcZhhtc+aQIAvPThIcv7Sfnfl7bi/17eBkAnR6yvHeg6TG7z0KQrcCGWYXgdMZMkyxGzkA8CQA5NJivoyrEMvVIfRDpMgx1RZLbpt5VyBVaPJwEHsyYlRyxdWWJWw5IAk6xvIkdMXAoQFJ+x+jM80CqHCF/ddli6rf6vDCtLnXuq5yoFDEKTM8dXAgBOHFmOssIAikIkKtDVl7pGGsuxNcWWxrOseGu3dFuz782iG1ZcA4TLbL8GR4YLMU5ukswRkw66LrY4MoK3ODJEdsT4Z2MFuaCruXHpoCDo0zxm9v9Ih5lpdm0LVkyd+3OynHBB8nUsFHSlCKrQ5K4j3Vi/q0W6v++oXEJj66EOKTRI1xlbVYStt89VtCoy3D2TyfqRWEISPudOJMVyS8JEiHVHUr+3SEyeWjm0OJRyvBl86n90y6dkyeuHuQYXYhnGbFXtQU+yHDGr+SBOkvUpXGxoGIyuritfA5O1BM28lt39KdQTYibXlScbpOkLwIqpmd8Fvvky8OWHk69jpaAr87mzpuPDb+zC5Y+8gz3N3RAEAc9tOig91xuN40BrDwRBkD7zvy6YicKguQpQekJMPzSZ0PxPiy04Yk2dcq/N0gKDLgQW0ejM5h1kWXWsK9vn8DpinFwlqSNmNTTpJFl/EKoNkwzGHDE1dt66WUfMKBdJb3aj1W9pQUDn0G/yzZidbGAb+tv3eMmF2JgzUq9jJzQp6LuAOw534sOD7Xj2/QOKxxva+zByiHwxZ2XWaMrQZIA6YnEUiLepUKehyc7+1ELsP2J+GKDsmuAETT4hFWKVXIi5BXfEOLlJ0hwxC8UbEwk5hMlDk64i54jxz8YKZnPE0hnyLQrZd8SoQHRQEzY5PWJ40KidkR5WL85AWxxpH08IwOuMoKEc7uhTfEZW3r9eUVQ2pBn0yY6YGiuO2E/+sUW6HY+78/3RuHk0R4yHJl2DC7EMw5P1TZKssr6Pzpo0cdCNMRW6efkKV+GOmD3MpieoP1a9Y4ZdEexGjlha3OIPVgIPnU5u67nhRkglbQx6VDIoZ01q33M8IWBrQwcA4OQxQ3D+1FoAQGN7n6rchUNHjA1NBsRk/ag2NEn/V30mZ01SYgl7pfijqhL+CiEWjwFHPyO3eWjSNbgQ4+Qmbs2aZFul2Jo1yctXGDII64i52uLIZq9J3cctaiKzuU16pNURe+7b8m29/FAjLLQ9YyeZ6Amxo9392NlEtrPsiukYVUFEXoNGiJnfPT1HjE2Cp45YJJ7QhH7Dokjr03HL1LAzOKM2HTG14FMIsba95LjrDwNlI21tn6OFC7EswQ2xFJiaNWkiNCmVrgincZrX4ESurJ/lHcki9locmXSeTIyz+9kXBOyHJs1ONnCMldCk1SLP0LY4omzc24pYQkB5YQB1ZWHUlhIH/nBHn2K80xwxv06OGFs4lv6+wsyMylQlTcqYBH27jlhfVLmeYt/Z1kb8eOoa/JPMMDyfxgSJBCCIB4NkjljMRPkKR8VcwXPEkiD37OOfjRXMOmJWcq3ttDhS1xIzX1k/zTliFCuhyRB1xFK3PWMFZHOX9hiyaX8bAGDSsFJ4PB7Uii5To0aImd89vVmTyjpiohDTCU2GGNGsl0PGwibox9LhiPEZk2mBCzFO7sEWdNTNEbMSmnSpmOtgtn0MGIw5Yq5U1heXqctXqFocueyj0yKi0uuZdurSsz8a7IQmoz1iZf7UCALwp/X7NI/T+mGjK8kMydoycuw4rA5NWnj/Pt3K+vLplwoxEppUTuagjhiQOk+MdczszppU1ytT7HvPUbIsrrW1bY4+loXYG2+8gQsvvBB1dXXweDx4/vnnDcfecMMN8Hg8WLZsmeLx/v5+fO9730NVVRWKiopw0UUX4cAB5VTh1tZWzJ8/H2VlZSgrK8P8+fPR1tZmdXdzD56snxo25Oh01iQVa34LYQ4F/B9lBP8O2/RJpcr0KYYZ5Yg5fX2RiMpdseqIpf3/709dsV6ChiaBlK4Y3e2mzj5NiQpA/hxoQVTacuhwZ79C3Fh5/6kdMTlZX72ffp9XCg/2xxJo6uzDDU9uwH93Nmu2qXTE7IUmO3pVQox1TqVJVNrQNsc+loVYd3c3pk2bhvvvvz/puOeffx7r169HXV2d5rnFixfjueeewzPPPIO33noLXV1duOCCCxCPy2r/yiuvxObNm7Fq1SqsWrUKmzdvxvz5863uLicfUThiDpP16Rgr+SYsPDRpiJwjxj8bK5jt1Wilp6EdURRN2BNiGZv5XVhlfqw/DAREMdZ1OOlQut8fHmhP+p6HlhAhVlUchNdDZlMe6ZRDmVZyxFK5n2yvSb1DjZSwH43jlmc/witbDuPrj63XjGMbg9tN1u/sU17gKnLEaMqIhwfT3MTy1Jl58+Zh3rx5ScccPHgQ3/3ud/HKK6/gi1/8ouK59vZ2rFixAk8++STOPfdcAMBTTz2FkSNH4tVXX8XcuXOxbds2rFq1Cu+88w5OPfVUAMCjjz6KmTNnYvv27Tj++OOt7jYnn2Ara+s5Yn4LlfUlIeZOuw+OjJQjxnWYJSQhk6p8hepzdVv42P2/yUIszUqsyIIQ83iAinHA4Y+Ao7tM5TB9fLA96fPVohPm93kxtCSEwx39WL9bboFkNUfuG6eNwlPvyKFQ1v1iWxzpFcwNB7zo6gf6YnF8lGS/44rQpE1HTCXEFIKThn31UkY4tnFd1iYSCcyfPx8//OEPMXnyZM3zGzduRDQaxZw5c6TH6urqMGXKFLz99tsAgHXr1qGsrEwSYQBw2mmnoaysTBqjpr+/Hx0dHdJfZ2eny+/MHXiLIxNIlbV9+mcfK45YjAoxu+0+uNowQk7W51jBbGV6o8+V/Spmw42kjl7ak/WLhlobXzGGLI/uTjqMHns/aUx+jqA5YgBwuIM4Ybc997G8HYtCtKZEGWrtZfK92Kbf6v1kn++LJtCiM8GAEhdYIWbXEVOGJpWOGBViPDTpJq4Lsbvuugt+vx+LFi3Sfb6xsRHBYBBDhgxRPF5TU4PGxkZpTHV1tWbd6upqaYyaO++8U8onKysrw6RJkxy+E07WSFZDDMhsaJKTBF6+ws57l3s1JmdsVVGKETJuaCKrBV3TfjFZPsra+IpxZHl0V/Jxqt2mOWBqRlXIQuyyGSM0z1sVorREBYUtVUFDk7GEILlarM4rLyTHwtaeSNLZtHEXZk0e7uhT3PexzSapI+bhQsxNXBViGzduxO9+9zs88cQTlq8WBEFQrKO3vnoMy9KlS9He3i79bd261drOZwiz7U0GNVJCqJEQs9DgN+7QEeM5YobQj+bdPS14ZYv+BRJHi9nC9NeeORYLZo/HXxfMTPcuAcihFkeU4SdZGz9kDFm2aWdCGuH1AJPrSjWPDy0JKYreLp03UVMLzOo5Lqjqnt2nE5okj2tnRtJ8NTZHTQ9WiMVtOmJ7mpXdCfLJEXvwwQcxduxYhMNh1NfX480330w6fu3ataivr0c4HMa4ceOwfPlyxfNbtmzBJZdcgjFjxuhOPASICXTyySejpKQE1dXVuPjii7F9+3ZL++2qEHvzzTfR1NSEUaNGwe/3w+/3Y+/evfjBD36AMWPGAABqa2sRiUTQ2tqqWLepqQk1NTXSmMOHtQmXR44ckcaoCYVCKC0tlf5KSkrcfGucTCI5YgZ5CJYcMXFbfrs5Yjw0aQQ9PP93ZwtueHIj9h9N3V4m33GlfIVJRykc8OGWeRNw8pgKcbzOtpzvjma/nvjvbjz4+k7jcfRGuoXYiFOsjQ+Xk2V/8pAju9vH1ZRITbVZRjNuGAAMKQrighOGyduw8d6DqnIhrPgKMbf1aoXRGZysENPbB7vii0XjiOnliOVgsv7KlSuxePFi3Hbbbdi0aRNmzZqFefPmYd8+fWG+e/dunH/++Zg1axY2bdqEW2+9FYsWLcKzzz4rjenp6cG4cePwy1/+ErW1+iU71q5di+985zt45513sGbNGsRiMcyZMwfd3alr2lFc/TTnz5+PDz/8EJs3b5b+6urq8MMf/hCvvPIKAKC+vh6BQABr1qyR1mtoaMDHH3+M008nPcZmzpyJ9vZ2vPvuu9KY9evXo729XRrDGcAkq6oPKIVYqjMjbfjNQ5Ouoz4R7Go2f+AZKDgpZmvXFdd7TTcS5wUIiMUT+NmLW/GrVdvR2N6nP058eSuzBs3tgCCHvL70gPWSMybbHLG7XT96iO6YUSohBiir1tt576zwKgr6cMPnxkn3/T6v5DDSkCX7P60UhRhbgLZYR0CyQsxu/mDSXpN01mQOOmL33HMPrr32Wlx33XWYOHEili1bhpEjR+Khhx7SHb98+XKMGjUKy5Ytw8SJE3Hdddfhmmuuwd133y2NOfnkk/HrX/8aV1xxBUIh/Yv5VatW4Zvf/CYmT56MadOm4fe//z327duHjRs3mt53y1Mfurq6sHOnfLW0e/dubN68GRUVFRg1ahQqKysV4wOBAGpra6WZjmVlZbj22mvxgx/8AJWVlaioqMBNN92EqVOnSrMoJ06ciPPOOw/XX389Hn74YQDAt7/9bVxwwQV5P2OS+yomSJkjxjyeiCUPO6baVip4aNIQtaNzsLXXYCSHwp4cs52dcOG0Orz4wSHMmVSD1VtJBIJN8O7VCZGldf8jXXLoa/JXrK8fFMVT1Lwze9q4Sry6TRt9GVWZSojZ2D1GiD33nTNQXqgUmiG/D73RuKbFEAAMEXPE2nvkGY2phJhd1GUv/D49RywzQqyzsxMdHR3S/VAopCuIIpEINm7ciFtuuUXx+Jw5cwwn+K1bt04xaRAA5s6dixUrViAajSIQsHfOaG8ns1orKipMr2PZEduwYQOmT5+O6dOnAwCWLFmC6dOn46c//anpbfz2t7/FxRdfjMsuuwxnnHEGCgsL8eKLL8Lnk/+5f/rTnzB16lTMmTMHc+bMwQknnIAnn3zS6u5y8hEpR8woNMn8EFOFJ3myftpQmwJd/SbKiQxyWJPClfIPDs67v/jSFKy4egYWnUNKPQiC8kSut3fsed51R6xXTFfxBuy1JJP6TaYq6Crv9yljK3Tf52gdIVbKCDE7/zs2/Kj32cn9JhPifsoMEUVbc7d8vNMVYswXzO5XQ+2IKfY1wzlikyZNUkzCu/POO3XHNTc3Ix6Pa1KX2EmAahobG3XHx2IxNDdri+WaQRAELFmyBGeeeSamTJliej3LjthZZ51lyfLcs2eP5rFwOIz77rsP9913n+F6FRUVeOqpp6zuHmcgYHbWJCAKrSSzyxzXEeM5YkaoTyX9OlfyAw2nfTXZta2eypOZs3Y0UVlhAOdMrMHWQx3SZlNVjlc4Ym5bYrTsRPlIexsPmBNiLB6PvqjSC02WhhkhZn3vFI6YXqV9mswvhybl5+isyQOtstunzm0TBEEVmrSxk9CWvVAk69OL5Aw5Ylu3bsXw4cOl+0bhQYr6f5lsgp/ReL3HzfLd734XH374Id566y1L6/GqbBkmY8UQ85lUOWJeH8ihUEhd1NVxHTGOEervcKqGxAMRqyc7t4WMG5cHbGHeVG1xEm47eixHxJlmQyfYW9+sI8bsttejP2ViVIX24o4VPnbcwBAza1Kv96TkiOmFJovIxee+FlmIqWdxuhCVBJAiRyyRWUespKQEpaXaWa1qqqqq4PP5NO4XOwlQTW1tre54v9+vSbEyw/e+9z288MILeOONNzBihLbcSTJyb+oDh0Mr6xuJJ49HdsViyadz8xZHmSNis7fdYELpiLknZJxsSdYEQsryB6wj6Pq15JFPyHKozTxgmiOWiJrrugHxc9N5H1XF2uNFcZgVYjZ2jw1N6px51UVdlaFJcixk3Sp1C6yXPjykuG/XvVXXH1PkiOVosn4wGER9fb1iEiAArFmzxnCC38yZMzXjV69ejRkzZljKDxMEAd/97nfx97//Hf/+978xduxYy/vPHbEMI1fW5xiSMJFg7wuSGZFmc8ScNv3mOkyD+kTcr5PcPdBwGqEWHMQm01VAVe4ZmvxET8fI67lMizgJrOo4e+t7zU3iYd8DccS070TP7SsO+ZI+n4oQU74iaWgyqp01WVagPX6pdfKvVlmrXWWEujWSboujHCzoumTJEsyfPx8zZszAzJkz8cgjj2Dfvn1YsGABAFJr9ODBg/jjH/8IAFiwYAHuv/9+LFmyBNdffz3WrVuHFStW4M9//rO0zUgkItUkjUQiOHjwIDZv3ozi4mIcc8wxAIDvfOc7ePrpp/GPf/wDJSUlkstWVlaGggJzuY5ciHFyj3iK0CTAFHVNceXLk/XThnp212AMTVrFDUeJPf+63eKIdUP0WuSoRYyr0JBigX5JiZSwk3sSMeNxDCRHTL5fVRzELy6eqju2OMQm61vfPUWOmM4GwmJoUm+2Ks0RY1H/d9S/P7tfDc2sSda+y+GCrpdffjlaWlpw++23o6GhAVOmTMHLL7+M0aNHAyBlstiaYmPHjsXLL7+MG2+8EQ888ADq6upw77334pJLLpHGHDp0SJqYCAB333037r77bsyePRuvv/46AEjlMc466yzF/vz+97/HN7/5TVP7zoUYJ/cw64gB6Z81yYRtOEq6+pUnOy7EUpMuR8mJJmJ7hrJuiF6LnEQ6k/WddsEwKcSUYljph91/5Uk4bZx+flAR44jZEaEBJsTn1XHECoJk+zGdFkcBnxclIT86md8cK8IPtfUqaow5QZ0nqJsjloOOGAAsXLgQCxcu1H3uiSee0Dw2e/ZsvP/++4bbGzNmTMqLHTcuhniOWIbhLY5MEE9RvgKQQ42mHTGerO823SohFuFCzBKuO0o2ofsRTyhzxHRDkzrruYbTiybWpUkYh8mVJUS0gseIEsYRs1OvK5AiWb8goBQ36hE0YZ/C/n+e33xQsz375SuUa/ryqMVRvsKFGCf3cNURo9vi5SvcRl3HiG1iPFBx+i1gT55WhYw8u9F5rSgWWt+qPxZXnIT1QpN64sw1nJaa8XhkpyapIyajzhFjXSs1rCPWEzEX+mRhBY3e/74gmDxANUQVnmRTuXr63fvtRRNmHDEuHdyEf5oZhp/OTWAqR4wKsRR2fIy3OEoXP7lgEk4aVY4xYvHLwRiatKpLEio3xj3sb4wtJMqGJtWujyAI0qQ5IB2OmMMuGIDsoifLEVOFh9XlLIzwM46WX2/aYwrY2Yd6grYgoNqmal+SOWKNTH9I2hPTjmaOJwTNev48aXGUz/AcsSyRG0GJHIUeRI2afgMWkvV5i6N0MbQkhL8vPAMvfXgI3316Ew9NmiCtOVY2CYshMUEAeiOys6LuW/i1R99BU4qm045wY2KN108uzkzmiHk9HsX70JvNqAebeG+WyqIQRgwpgNfjUbRLoqQMTapaIrGCifYF/c1Xp2Hy8FK89GGD5f0DtDXEgPzKEctXuBDj5B6WHDGz5SschiY5htB8l8EQvXWamOu2o+TGZx5myip0MyE3Vogd6erHO7uOKtZz3RFzw72WHDFzoTqPqpCYWSGWLIRphM/rwes3nQVAP1k/HEwubtRCTM8RG1YWZkZY/3LohaN5jlj64aHJTMMr66fG1Rwxl0KTg0Fl2IR+l+P8M0qJ2o2xtw0tTg4nAZ/sCnUxuUbsSZk6LorXtP+S+rgSmjSRI5YkWT/V/6RULOo6c7z1yusACW/6DSYEaBwx1a5ocsQE7f+npizsqN6cXmeFbLY4GixwR4yTe0iOWLLQpNlZkzw0mW7oFXNaE7lzFKvVy5VNs13eGZt4PB6E/T70RuOKmbAJZmcPtekIsVwNTQKmk/XV5VxTOWJPXHMKXth8CN88fYztXTRCPWNTLajUOWL059bZF5VKydSWhnGgtVfxvBX0umPotzji0sFN+KfJyT0k8ZTkgJypOmKclNDjdMKtZnc5jJuzJt1wxZ02IaeEAl6NEGMdsdYe7e/MVVdfEGQn3HYaAUw6YqwrqRSUemUlWE4aNQQnjbJZcDYFqcKdRqHJw2JYsiTsR1HI70gg69WO8+km6/NgmpvwTzPD0AMnj0wmwVRokibrp1uI8fIVqfBKjliWdyQPoCdPO79/T5JcPKeHE5onxhbpjTMzKNt7lc5z2twwIO2zJhWOmKp8RTb1hXompvozPnFUOSoYV4z+3hrbSfqFMj/M3kVDSiHGk/XTAhdinNzDSmgylkKI8fIVaYctCDrYsKrP6fhcKeZKoe11uvr0HbG2HqUQS1sxV8BhaJI6YuYKumocsSzGi/0qR0y9J8PLC7D+1nPw94WkiTUV9Q3tJBRZUxpWrGdnYom6hhigEohu5dxyFHAhlmG4sWICN0OTUXKQQrDQ3r7wHLGU0HDOYMwRs4osxNzdnlMKxWKiHX2y4GKFtcYRc+dlZejvFMhsjpiqxVGq0GQ6MVObLODzamYpH1bNmExraLKvnSzDZfZfhKOBC7EskVvXwzmGm6FJeoAP2BRi/D+VEilHbBAIMadvUQ5NWv9eJVvDab4W7ZLAOl+sEGtR9THUK3PgiKO7ybJ0uLPSCGbKV6j+iexnp1dWIlNoHDGDXfGqLnwaxBmTtaXOQ5NJ64gJAtDXQW5zIeYqXIhxcg9LdcRSzJqkQswfTj4uFYNAZNiFnrwGY2jSKvTk6eR8z37Kbn0tafse1vlixdb+1l7NOq7SvJ0sq45zth0zlfVVsCG8bDpi6mR9ozIUHtWFD3XEassKpDXtkrSOWLRXvkjmQsxVuBDLMNJvPsdyRHIKM5X16cyqZI6YIADRHnLbriPGQ5Mp8SZJIh/oWH3L9DNyUutJD6dbKxIdMVaI0Vmwu450YVsDcUKqSxzMaEzGEVGIDT3e2XbM5Iip7itKimTTEVOHJlM6YuS+5IiVKf83dn6Peo6YVEeMhiU9PiBYZH3jHEO4EOPkHmZmOpoJTcb6IR12AwXG4ziOoOWPBkdBV2fv0Q1HLB2UhLWhyVhCwGdHujB32RsAgKriEK44eWR6dqB5B1lmwBFTh9DZ+1lN1jf52lSvCWpHrJQc45xc4ycNTUr5YaXcSHAZLsQ4uYdboUnqhgEOhBgvX5EKdc4KxxgnsybTee4rCmodsXhCwB/f3oNoXMDw8gL85rJp+OoMIsRcd8Zcc8SoEEuRssDAOmJZTdbXFHTVh3XE+mNxNHeRi9FadfkKG7/HpMn6PFE/bfCCrhlGqiOW5f3IaUw1/aZCrN94TEysBu4NOKtNxEmKdGIYhD2/rZ7snNQRS/aaTvUDDU32RuWQXjSewCtbDgMA/vfiyZh93FAAwOs3nYXCkIt1pHrbgLZ95PbQCc621d9Jlmt/BUy8UHeI+uNjP89sGj3aZH39nWEnxzR1kONf0O+VWiA5eQsxnR+xJE77eaJ+uuCOGCf3MOWIBZRj9XA8YxI8R8wEg7nFkVWo+5JrvWbprEmWHYc70djRh8KgD6ePr5IeH1NVhOoSh5NfWHa9DkAAqo4HiqpSjU5OcQ1ZHtluWGNQ/TXNldBkwGQ1WY904SNgfytx/WtLw5rvlL1Zk9q1vNwRSztciGUYKVk3t47DuYWpHDETdcSkRH0nJw3+j0oF/S4PhlmTTrWm4CBHTG8VO+EnPYrDWiG2p4X8fsZUFiEcSGMl9c/+TZbHnOt8W1//Gzk2xPuBT1frDlF/YkKOhCbVIjBVaFIQgI17WgEAU4fL4siJyNcLTUr0tZElF2Kuw4UYJ/ewFJpMJsSoI+ZCoj53ewzx8RZHSfnN6u14ej0JvdHPyEller2P2ekszCIdR+ygWLJC3TrHdQ68R5ZjznC+LZ8fOPUGcnvbi7pD1OI1V2ZNaspXGM6aJMuEIOCd3S0AgNPGVWgH2vg96oUmJXqOkmW43PqGOUnhQoyTe7idrM9Dk2llMCfrp3rHHx9sx33/3olbn/sIgLOCrumkWCfn62CbKMTK0yjE+juBpm3k9vB6d7Y55nNkeXCDqeFuuYpOUSfrG8Em629rIDlx05lG5E6+WZFYEiHWtpcsy0c5eAWOHlyIZRipjBgPeRnjWmhSTNbnpSvSymASYlbfYWuP8vvpeosjdzYjzZrUY1hZGn8/u98EIJCK+iW17myTCrqWnbLIY0iWI5ZN1OUrjLQ6fbw3GsfRbvL9GjlEe7Fpq+l3MlubTqjgQsx1uBDj5B5Si6NkoUkTdcTccMR4+YqUeAdRjphV1J+Jk1mTyVw0pwabXo4YRd06x1We+RpZWqiEn5KiSlksrH9Y87QA49BkNtE2/TaaNal9vLRA/v95pEOWnfIVSRyxXpKP5nhCBUcDF2IZhp/PTRAXD8pmQpMGM6MAuNfeiJMUKUcsV85oGSTV71nttjipIyZvxP6qRujNmqSkNTRJ6Trs7vZOvo4saf5ZEnLHETM7a1LvMXcsVr1ZkxKRbrIMFrvyWhwZLsSyRI6liOQWppp+W5k16SC0wnPEUqJuucKRURsMcmV9dw4A7vWazFJoMl2MnU2WPS2ap7R1xDKwPyYwn6yvfOLh+crcOuqk2QtNki8sTf4fyhbupULMUYSBowcv6MrJPSy1OEpzHTGey5cSqel3rpzR0ojVt2jUTifXLsSSOWJpDU2mC9oLMdKjeUpTviJHLrLMJuuz352rZo7G3Mm1hs9bhTpioyoKce8V01FawFwM08+S95l0He6IZRxeWT8lUmjSYdNvXr4iI/ikukb8M1KjDtdKk3Vs5YjRbcjbdEtEhPxe3V6HpWE/CoJprCGWLujFV1QrxH7Qey/+GVyKIMhFXGk4N7puBEzO4GBDmDefZ9yJwEnTb7/Pi+rSsFw/ThCASBe5zUOTrsMdMU7u4VZoMuZGZX16g4sMIwZ1sn6Kt6yehSa4HJqkON2cx+NBUciv6DUJAFVu95TMFPTiKxElrjk9lvR3Yl70VcALTPCQWYCVxUmc9wyiKehq8E+tKAri5xdNRknYnzSkbAda0FUjCqO9kL7s3BFzHS7EOLmH6y2O8jDHJY/wDqKCrnZ7S8r3ydJtIeYGxXpCrDhPhRgrFiLdQEE5ub13nfRwD8h7G1WRGzlPZpt+A8DVp49JuT07bmlUzBELqMOkND8M4DliaYALsQzDWxyZIO52sr4LLY4GgciwCysqEgkhq9XJcw3WJRQEQQpV2gpN6jzmZjS4SKeoa1U63aJ0hrJ9QcDjA4Q4OQ5QIfautpzFl6ePwJqthzFjjE51+gyiTta3i5NzC3XENPlqUSZR3+TsTo55uBDj5B6WQpP9xmNcSdbnpILtz5cQBHgHUQZkKteBdQkFwaUWRzov6UaBaL0wV2VRGh0xgZlSWjDEeJwdPB7iivV3yEnmiTiw5y15iLgM+r147OqT3X19G6jLVzi9WLejc2kdMY0olEpX8LBkOuDSNsNwY8UEuRSa5OUrUuJhjiKDYeakFdhk/YQgSMItF6Wq3szJtIYmE3H59tdWur/9wkqybN9Plg2bgVif+6/jEprK+ja/JU5qikXF76umphkXYmmFCzEnHN4K/OEi4NM1llflLY4MSMQhiR7HoUleviITsI7YQNdhVt8eK0wFuFTQ1cH+JENPiKU1kV1ghFjNJPe3X3ciWR7aRJZbnlc87cmxiyuv1+Na6yvAZh0xadak2hETZ0wGuBBLB1yIOeFv3wJ2rwX+dm2292TgwAqrpEJMvFJPxICEQVsOXr4iI7CiYlDOnExCTJEj5rCOmFQmxPApR+iFJoemc9Yk64h50lAio246WR56n4QnD3/s/mu4DJubZfd/6uSrQOuIaUOTvIZYOuE5YnbpbQOOfEJu97cDfe1AuCzlatKsK2606MOGGs2EJgGSU+bVOWG40WuSz6pIiXcQhyZTvV1B4YgJOT1rMhzQXpePqUzjiZftL5msZqBd6k4iy20vAttHybmnIrnmiAGkbAS9FHX8DXFSR4yHJjMKd8Ts0nFIef/o7uzsx0CDPTibCU0CxuFJV3tN5t5BO1cIMAftWLJedQMAqzozbuCIuTXxzE3dq06XCPq9GF2ZxokubLK+Nx2O2InybUmEedCD3O0UwNYSs+2IuTBrMuBXCzFazJULsXTAhZhdOhuU91u5EHMFKqo83uQHZ1akGTX+djNHbJA5PVbwej1SonEkZhAmHqSohRgkQ9z62TLZGm4YbOw2vlo/AiuuniFXVk8HitBkGk5FoRLgnJ8qK8FXT0SvKMRyz5PUqd/lADt1xGivSU1BV+6IpRUuxOzS2ai8zzpi8ajyIMMgtThJz17lP2ZmTAJEpNG8EiNHLObmrElOMkLiFXR/TP97P1BJdapLaEKTtLK+k9dMz0UBGy6dN7UWs44dmpbXkaDJ+h5v+n5ns34ALJSLuGLYNAji0TcXQ5PKJHmbsyZhnEuYiqhhHTGeI5ZOuBCzS9dh5f2ju8iydQ/wuxOBeyYCjbmfHJpzmKkhRpH6TRrUEnO1sn7uHbRziaAoxLgjpiTOfBxsHTEnJQaUpOd76ctE0U56sZqORH2WspHAULEn45RL0/taDmFzs9IRmuzuj+HaJ97DX97br/u85IgZzZrkQiwtcCFml64msiypI8vWPUDnYeB304COA0SorX9IsxqPcKXATMNvChViMR0hJgjuJOtz79IUIT85mfYPcCFm1Y2KMzN6BcAVR0wPN8rhsI6Y2QbUjkhY+K07weMBvvlPYP5zwLHnMlGJ3DsYu1VdH9CX6H9//wBe+6QJP3r2Q911JEfMMFmfN/xOB1yI2aVbFGIjTyHLo7uB1T9WjlGHLxncuyIeYNAwo89E/SK/6HRR50u9HZoMzMtXpJ3gIA1NpoJ1CBOCIM2itPP79+ikK7qarM/skroBdVqgocl0JOqrKaoCxp8t3sndY68iWd/mNpLnEirbkamJGtYRY1occVyHCzG7UEdshNgao+MAsP1f5PboM8iyp8X6duMxYP3DQONHzvcxH7ESmqQ9JPWqZVM3DOA5YhlAzhEb2I6YmlRNwNnPQxDYgq7u7ocryfrMbc2JOB1QtzDdoUkVuZynG1DUEXO2h3rfzWqmLlxzlzaSQGdNBo2afvPQZFrgQswuVIjVTJYTyyOdpJbY2T8h97u1QizlQWDnq8C/fgQsPxOI5m47jrRhKTQpCjE9R6xfzGnwBc2JupRwRywZwcEixCx+DRSfR1pyxNyDbdauCU2lA8kR46chiisCOMkmWMetqVMrxFI6Yjw0mRb4L8AuNDRZUguU1smPD68HiqvJbTuOWNs++XaXcWhzwCI5YmZCk0kcsb42sgyXO9whXr7CDCGerK+LwhFzOGtSLw/MzW8lu/WMhCYzlayvQtC5lSsokvUdbkvv3bHRyCM6QiyW570mH3zwQYwdOxbhcBj19fV48803k45fu3Yt6uvrEQ6HMW7cOCxfvlzx/JYtW3DJJZdgzJgx8Hg8WLZsmSuvq4YLMTvEY0BvK7ldNJTMyqFUjCf5CAAQ7da4NalCGeg+It+2I+TyHSlHzExoUgw56gmx3jayLCh3tj856FzkIoPGEVOR6lTO5swpCro6+F7pvaYr31JmI5kJTVL3O7NCLDeDkgS/GwVdk7w/tpyKrhCLG82apEIsd3PEVq5cicWLF+O2227Dpk2bMGvWLMybNw/79u3THb97926cf/75mDVrFjZt2oRbb70VixYtwrPPPiuN6enpwbhx4/DLX/4StbW1rryuHlyI2SHaLd8OlQBlI+T7leOBUKkcWus5qrsJwx+ZQojprzugsTNrUi+E65ojRsm9q+dcQpo1GeXJ+iz9qmT9/ii5H1JXLs8BWHGY2dBkZjvtyV3mcu837aYA1rvmZ42AIzo5YsZ1xHI/NHnPPffg2muvxXXXXYeJEydi2bJlGDlyJB56SFu9AACWL1+OUaNGYdmyZZg4cSKuu+46XHPNNbj77rulMSeffDJ+/etf44orrkAopN931err6pF7R4N8gDZA9fhICK1suPzc0AlEZRVWkvtmXC1BkBNXB7sjZqmOGHXEdHLEqGPp1BHL4avnXIJeyQ/0pt9W3x0VXnRd6pBR4ep4f1wMmSuS9d0ITR7eCvz3d8azx7OUrE8vFdL2y24/ALz7KOk/bJGAG02/k6yXKjQp95rMr8r6kUgEGzduxJw5cxSPz5kzB2+//bbuOuvWrdOMnzt3LjZs2IBoNKq7jhuvqwdv+m0Htj6Vx0PCk5TqiWRZWElqifU0J99WrB949BygbS9w7Wqgmxnf3+nufucDVspX0INCX4f2uUObybLyGFd2i+eIJYfmFA22pt+pUIcmqUOm12A7FXrlK9TPOcHV8hV9HcDDnyMXVg0fAJc+rh0jhSYz6weUhgNAP/Cdz7t0bFDz2u3AhyuBbS8AV79oaVVFaDINUjFlaFJUappWS1kqX9HZ2YmODvn4HgqFdJ2p5uZmxONx1NTUKB6vqalBY6P+hUBjY6Pu+FgshubmZgwbNizl/tl5XT24I2YHdbycbSpdLP5DJEcsRWhy79vA4Y+A/g7g3UeUjpjebMCBjtTiyMQ1QsU4smz5VPtcy06yHDbN2f7wHDFT+AaJI6Ymle7sY0K1AgRJiLnliLkJG5r0OhVi+9bJ7vbOV/XH0IlJJXX6z6eJ4jA5tpw3uTo9L/Dx38ly9xuy62cSTUjQBsn+c+zPs6lTm9IR1csRSySYFkeZDU1OmjQJZWVl0t+dd96ZdLx6NrIgCElnKOuN13s8FVZfVw13xOygrtg+9VJg89PAMefKJ24zocn+TuD1X8r3Gz5QOmKDUYjRq2QzoUnqdh3do33O9QPH4BIYVhksQsyq4dcXVdYRozl0IRuOmO7+uLIVgvMuhwwNH8i3+9rJ5Bl1mkDzdrIcepzTV7OEJ93+g9cvi9D2fcCQMaZXVYQEXbgGVAsCIWWyvo4jxtZkzHBocuvWrRg+XE79McrTqqqqgs/n07hQTU1NGreKUltbqzve7/ejsrLS1P7ZeV09uCNmB3W8PFQCXLcGOOtmeYyBEJMSRQUAT10C7H9HfrLhQ6CfyStgfwCDBdquyKf/g1MQLiPLiE4Il4pYx7N8ePkKMwwWIWYVhSPGhCbtJOsnPy87P2uzJ2wnszoBAE1blffbdXobHhGFWFVmhZhEOr6qkR5lzmrTJ5ZWZx0x25X1k/zv2NDknpYe/PzFLYrnaa9JxaQBer6Dx6W+veYpKSlBaWmp9GckxILBIOrr67FmzRrF42vWrMHpp5+uu87MmTM141evXo0ZM2YgEDBXe9LO6+rBhZgdpGbSSU7yKRyx0o4dwP715M5lT5JlQpUgOBgdMZoj5reQIxbREaxu5TSEREfNRuLtYGKwCrFUvSf7YukITabnM2bP345z9Zu2Ke93HNKOoekDVcc7fDGLpDPbQJ0TzKaamMDtHp/q60d1pPT3/90jXSwIgqDfa5Jt+J3DqRpLlizBY489hscffxzbtm3DjTfeiH379mHBggUAgKVLl+Kqq66Sxi9YsAB79+7FkiVLsG3bNjz++ONYsWIFbrrpJmlMJBLB5s2bsXnzZkQiERw8eBCbN2/Gzp07Tb+uGXho0g60blUgbDyG1hLrVv4w6YF7SKto3Y8/G5h0EVBYpf0RD2pHzIwQE0VWpFv7nCsNvyHn/HUddradAY5PPEDHBpkQS4UmNCnNmnQpNOlmr0lGoTiq/N/bCjSLeZuVx5IcTr0JNVScseV/Mkoavqtq4aW+uE4B60TZ/R+wa6nfYULnC9PRF0U44FNcRAX0HLEcnTFJufzyy9HS0oLbb78dDQ0NmDJlCl5++WWMHj0aANDQ0KCo7TV27Fi8/PLLuPHGG/HAAw+grq4O9957Ly655BJpzKFDhzB9+nTp/t133427774bs2fPxuuvv27qdc3AhZgdzMzsS+GIlXWKB6qayWRZOxXY9R/loMHsiJkJTdL8r6iOEKMumdODR4k4cyZJA3eOfALRayQ8kEjlgKlRJuvL5SzcyhGjuGFUKNKTnGxv20ukRlj1JDKhpuVTZcoFQC64aK2/4jQlzRuSRldH3daO1kU0ic+FyvrJ/ndUh50zoRrv7jmKzr4YOvtiqC4B+piadwrHNurSsTQDLFy4EAsXLtR97oknntA8Nnv2bLz//vuG2xszZoypEjHJXtcMPDRpBzN5TIUVZGkwa7KkQ7Q2qyeR5fHztIMGsxCzFJpUCTFBYBwxhzkNJaIjxoVYUrzcEdOFrSOWSAhSqNJOaFKvfIWbdcRYHOWIbXmOLCd/hRS3BrSleKhz5A0ABUPsv5YT0vHZOXTENBXtHaL+fiSYWYGlYZIH1dVHxGJPJCY+pyqvwoYmOWmBCzE7mBELBVSI6Sfrl3aIjhitO3bcedptDOrQpAlHjIYdEzEgFpEfj0fkqt1OQ5PUERuMfT8tQGd76YU+BjRJ3m48ISASVyblUGFmp45YumHfiu1Upe4WYNfr5PaUrwBhAyEmFVwekvm8I+n10vBdVaeXxC2GJllHLC0tjsjS6wFKxDIenVSI9ZNjZlHQrwyLSvm2XIilC8tHgzfeeAMXXngh6urq4PF48Pzzz0vPRaNR3HzzzZg6dSqKiopQV1eHq666CocOKRM1+/v78b3vfQ9VVVUoKirCRRddhAMHDijGtLa2Yv78+VL9kPnz56Otrc3Wm3QdM6FJOqNPpyhrJdoRihwF4JETVYfoxJMHsyNmpnwFe4VGr9oApUPm9CquWOwv1slzxJJB604NdEfMis5ki7nSddNVR8xtKWM7R2z3WjEsOVls91ZCHlfniLk2q9kO6QxNqoSYA0fMjYKuRjliXo8HxSEqxMg+douOWEFQ9d10K82DY4hlIdbd3Y1p06bh/vvv1zzX09OD999/Hz/5yU/w/vvv4+9//zt27NiBiy66SDFu8eLFeO655/DMM8/grbfeQldXFy644ALE4/KB68orr8TmzZuxatUqrFq1Cps3b8b8+fNtvMU0YCahnFry0W5NnsB4jyhMy0cpD0QX/o4sT/m2uO4gdMQkt9GEI+YLyP8D9rOiB3mv35ygS0YJk6w/2NweC0iO2AAXYlZgE/UBOmvS5WR9V7aixbZJdWADWY6eSZZlI8myYbNynJmZ5+mG/p4FQemoO0GdE2zREXPc0QBIqjNpqNLrZRyxfhqapI6YWojx0GS6sZysP2/ePMybp5PPBKCsrExTT+O+++7DKaecgn379mHUqFFob2/HihUr8OSTT+Lcc88FADz11FMYOXIkXn31VcydOxfbtm3DqlWr8M477+DUU08FADz66KOYOXMmtm/fjuOPz/B0ZzVmxAK9EgRInSsxD0IQgAqP6JKVqLq5138TmHYlcOBdUmV/MDpiVkKTADk49EaULpiUH+bCgYNOukhESfcD6nRyFAwWR0xNsnfbp2qAnmAdMTstjsQzrN5rOprlKMJeZ9jOETvwHlmOOIUsR5Ljt1QzjCIJsczWpQKgVZn/+C7w0V+ARZuVfYPt0NtGlr4QEO+3EZpkZ0062xVAp3wFrWPp8aBEzBGjocluUZAVBlWyIJL7Db/znbQnKrS3t8Pj8aC8vBwAsHHjRkSjUUWTzLq6OkyZMkVqkrlu3TqUlZVJIgwATjvtNJSVlVlqpJk2zIQm/UG59ZHKli/1iF/scLn+evTgNBiFmJVkfUAWW6wQU7egckKgQH4NddiBI8GbfmtRCzFBEORZkznY4ojFljEjCHL9MNpajNbhUx/L6MWSPwtCTEL8b25+ihx3Nqxwvkn1TFCLocl0z5pUhCbDytBkr+iIFWocMRePpxxd0irE+vr6cMstt+DKK69EaSkJ1TU2NiIYDGLIEOVMGbZJZmNjI6qrtVOaq6urDRtp9vf3o6OjQ/rr7Exjw+yYCSEGMDOGZCEmQEAZqBAzcFeoXT8YQ5N2HDFA5Yi5fLVdJLpitIccRwOtI+ZGsv5ACW9qQ5Pu1xFzMzbJluaw5Yj1tspdLmjOqzShJqpM0cimI2YkcRLWSk3oQh2xoqFkabl8BXPHDUdM9QXRS9ansybpxJKg+ruZR+Ur8pW0CbFoNIorrrgCiUQCDz74YMrx6p5YelZ7skaad955p6I56KRJk+zvfCriolhIlcdEw5OqhP0y6oipe69RuCNmPrcrqCNaoy7P8qmZQpZv3QO0H0g+dpBCr+SdhiZ/u2YHpv/vGuw60pV6cI7T53ayvlS+QvsZ50S989bdZFlcKx/DWKHFtv6JZVOIiWjidnH9cVagjhgVYg4cMbsk+y4IjCNWqgpNCpJIU21ByhHjocl0kRYhFo1Gcdlll2H37t1Ys2aN5IYBpNFmJBJBa2urYh22SWZtbS0OH9bOUjty5IhhI82lS5eivb1d+tu6davuOFcwKxbo1G11aBKiaNALTQLyVWSsV9uTYqBjJVkfkA8OilmT9ArOJSv9kseA4TOI2Fu11J1tDjDolbxTN+t3r32K9t4o7n3tUxf2Kv0kMwDVoUmwLY5ysHwFiy1HrHUvWbIzwP1M95FIN7D9X0BHQ27liFHcEGIaR8xBjpgbsyY1OWK0jhjkWZP9Uc1zCvKksn4+4/rRgIqwTz/9FK+++qqmi3l9fT0CgYAiqb+hoQEff/yx1CRz5syZaG9vx7vvviuNWb9+Pdrb2w0baYZCIUVz0JKSEt1xriCFJq07YoJgwRED5HZKg4VcDE0Gi8iMVo8P2PaC5Ua+gwG3HDGK1+Wee25hpYBqvyo0mRCAflGchV3KEXMziKtM1rexgTZRiJUzQszjkfPAXrkN+PMVwD8WutcL1hFqleIwNBmPym48bXHnYNak7TpiSZt+k6XX49HUEUsYOmK58L8a2FieNdnV1aVoeLl7925s3rwZFRUVqKurw6WXXor3338fL730EuLxuJTTVVFRgWAwiLKyMlx77bX4wQ9+gMrKSlRUVOCmm27C1KlTpVmUEydOxHnnnYfrr78eDz/8MADg29/+Ni644ILsz5gEzCXrA0yOmLK9R8ocMTaBNdo7uJIkrSbr6wqxNBQgrJ0CjJsNfPZv0oqqeoJ72x4AuOWIUcKB3E5mN4M2Wd/ZrMlkuF0T1ZYjRiezlKiiFoEwcfc//hu5/9m/gdI6caxq5nhG0GlRAMhFoO1C3TBAOdvaAn6XK+urkZP1oZk1yT6ngM+aTDuWjwYbNmzA9OnTpUaYS5YswfTp0/HTn/4UBw4cwAsvvIADBw7gxBNPxLBhw6Q/drbjb3/7W1x88cW47LLLcMYZZ6CwsBAvvvgifD754PunP/0JU6dOxZw5czBnzhyccMIJePLJJ114yy5Af1y+FDpWp72HgBSzJul29epjDQasNP0G5INDfxpDk5Sxs8ly11p3tzsAcMMRYwug/nXDfix4cqOmKGqukaz3pDpHLBpPSJ+PnWT9NNaD176WHT1AJyWFVBeYejMjGz8mSyrIMolhaNKhI0bzw0JlckjWoiPGCmDbsyaTPMfmgakLurL5Ywp4aDLtWHbEzjrrrKT2vBnrPhwO47777sN9991nOKaiogJPPfWU1d3LDHQmjNdejpjkiBmFJgESVotHBl/CPj1wmRViNPwbYSZEpCv/ZKRYG+nINne3OwCgF/JxB7Mm+yJyKC8aF7BqSyNe29aE86cOc7p7rmHl3XX1K4UYKyrdKl/hZq9Jdku26pLRC86QKi2k85B27BExvF/qsG6XI1xO1pfaNpXJF+kWxZ2yjlgacsQScq9JadZkvzI0qXldLsTSTm5njOYq1BHzpnLEaI6YUohVecRQZWElDBmsJSzMzkilZCo0Cci5L+0H3EnsHUD4xNhkPG5fGOi5S5p2K3lEU4cyv7OXEZqaEgEOcSOx2zFUiIVLlY+XjpBv0ygAzX2tmZz23dKSJkeMhibD5fJFehYq67M6Kln5CvWsydShSS7E0gUXYnagP9hUsyZ1QpNF8U6UeURxxSa1qhmsJSwsJ+tnMDRZMoyI70SMtDziSNA6Yk4cMb2oZsiXv4eoxnalEKM5YwGfx9YJlzoVaeu05XTDRo7Y1/4MjDoduP7fyucChVnKERPRK1/h5DOgocmCcvnc4CBHLD1Nv+XwI208T/MWDZP1o1yIpZv8PcplEyk0adIRY0KTw2IHyUPhocmFwqB1xCzWEQvplK+QHDGXQ5Ner74Dx3Glsr5emM2JsMsEyXavpVvZv7BPKubqnsuXU58OFWLqpO5hJwDX/AsYXq+ceZetE7uRwvn4b8DdxwL73rG3XYUjJp4bLDtizivrs9DvZ3tvFI+88RkOtZELe69H/h7GEwJi8YSiD6UCPmsy7VjOEeOASdY3mSPGOGLjozsAAB3lkxDWW4ciOWKDVIiZDk3qFM2ljpjboUm6zb52LsRUeF0QYnqr5lzvSgu7E4kpy1f0Se2N3L/+dXvWpC3M5Gayz2WzmCsA3X9m9xHSe/J7G6xvTnLEhsjnBgd1xOyi9134xUtb8deNB5gxHsXM3f5YQpE/JpGIy2Fk7oilDe6I2YH+uFIl69PZQ0z5iiGJFgBAT9GoFOvqV+Uf8JhtH0WRHCrGEes9SpYFQ7TjnSJV8h+gIWObBYRdccR0Toz53O6Itoyh0NCkm6U53DQMHW/KTFkf1lXJmsOSQuzEI8mfN4I6YgXl8mdgMTSpmDXpSosjwqvblKkUXo8HQZ9KiOmFJtk6llkXzgMXLsTsYLp8hVZMecSfhuBJ8dHTRP6eo3b2MH+xmqwvhSYZh6rrCFkWa/uVOkZyKgegI7b1H8D/VgIbn7C8qhuOmJ6oyPUm4sn2LmogxOw6YpksX2GLmInfbi45YkYqVp3jZhbqiDlI1lc6Yu7ZnEUh5bnK5yW/WSrG+mNx/WR99oIzqw3aBzZciNnBSfkKs5ewkhBrsbZv+UwiwVxVO0jW724iy7QIMerADcCQ8YvfB4SEuLR2uncnR0z7mBtNxN0kWd0wNdrQJBFibs+YzBnM/HYrx8u3s+WIpbKaDn8MbF9lfbsKR8xe+QqfywVdad6X+jtHXS96UdAfTej3mqRCzBfSSR7juAX/ZO1gNkeMLV9B+3jRA3mqg0FBBVn2DiJHjA0vhkxWcZZ6TYquYywiV/gu1u9L6gi9JuMDgeadch0kAGjeYWl1ryuzJnWS9fO41araEaOz09wUYlaEYcptOd2UGUfszCXy7e4jDl/QKUne8Bu/tr45XUfMWpjT70qLI+V9QRDQ0RtTjSGD6HeRhCZ1ek1KeX9JM5o5DuFCzA6mc8RERywR0+kZmUqIiflNgyk0SYWYx6dsFpyMEOOICQLQcQCAQNanjXfdhF7FD7Rk/a3PK+//6VL5xGoCegJxklyvt6Za2AmCgD3N3a4WMk0XUVVNNeqQ2U3IpidIvfee9WR9QTCXVlDKFOfN2rHNoMURIEcimrZarxWocMSc1xFzZdYkgMMd/WjuUv6W6ctIjlgsbpAjRoUYnzGZTrgQswO1m70pkm6DxZB+TmJ40rQjRvtQqorBDmhoeDFUbP7MQj8nIU7EUds+cr9sZHrOToEBmqy/W2zbNOp0smzbZ2kaPz2BOEmu11s3rpo8cPfq7Tjr7tfxu9c+tf06bpJMEKpDkzR535+jtdEcuWus4Eg10eYbfyeznT+/1P7rOSHZcWHGNSQXKtoDHN1tbbusIybVEbMYmnThmKWuI6YWYQATmhQnjrCOmG6OmNkLY44tcvOIkOuYLejq9epU1xeT9VNd7xi0RxrQ0PBi0EKybLBITiLtaZavStPhhgEDMzQZ7QP2rSe3L/wdMHwGud3wgelN+FxwxPRQhyYf+M9nAIBlr2ZHiFkx4tShSXo/4GIeUM4Yg3HmZJ9qos0x5wC37ANOvi69+5QSnQ+vuAaonkhuH/7Y2uZYR8xusr6ioKs7LY6OdmvDo2pHrC8a1+81GeWOWCbgQswOZkOTgP0Qo1SV36EQa9sHbHsxP1rysI6YFYqqyLK7Jf3tOAIDsKDrgXfJibS4Fqg6lhTeBOQrfBO44ojpqIqBVL4iGiPvxZ+GpGc3TtqOiDEnezMTbbKa+J3ksyoaClQdR24f/cz8JuNReSa1whGzJsQCjFtqu+m3asXWHq0Qo9+XIYXEvTzS2S+Jeo+uEOOOWDrhQswOZh0xQDP70SMlRGbAEettAx45C1j5DeCdh+xvJ1PQZHGr08cLxYkN3UfkPLO0CbEBWGh39xtkOfZz5Chu9rsX6SF9N8E6Yvaz63XLV+SM5aNPst1r6yEnYZoTFk04c8TSrbUcfdQ0B9brz5/ZdXpvuKgKGDKG3G7dY35b1A0DSLqEVFnfWmjS9Rm1AtDSRYQYbfINyLXsakqJaF7ylw8UfSgleI5YRsiTX0yOITliJhoTUCEmzX40GZp0wxHb8Lhc/uLQJvvbyRRHtpMlvSI1C20q3L6fEWIWXTWzDMTQJCvEAOPvXts+ZW7cfScBv50MNO+UHTEHJ3P9WZO5JcTMipXXtzdJt2n4R07Wd3PWpHs42lbcYo/YbJLs0BsuAyrGkttWcsSoexwqI7nDPnuzJtkiq/Z7TSqhjtjMcZUI+DwI+r2YN4X0+Jw6olwad6CVHNN0Q5M8RyytcCFmB7PlKwDjemBmk/VjfZZmryn46K/y7b5243G5As3JqJlsbT164Gz5zH540ywDrY5YpAc4uJHcHjuLLPUcscaPgXunA3+4UA5zdzaQ5WevSULMWWV9LblWR8wsK96ST+LU5YhKyfruW1vZnjQphSb9Jjti5AQ6361gEeOI7TW/KermF4jHba+90CTriCVr3m0WAYLU83RSXSne/NHZeP2mszCmihzHrpo5Whq7q5mEVnWT9bNdfHeAw4WYVQSBmTVpIzQp/fhTOWJMeM5OeLKriUzBpuTD7MvDW8jSqhCjRSKPfpaBHDHxgLTl78Cet9LzGpmk8SPyfS6ulU9Aeo7Ylr+TcQfeAzY9pdyGPyzN9nK76Xcsnp9CrIBpY1Qu5uHQchYBm7Mm6Yk5J7VpPjliyY69wWJgiHhh13FAmfuWDClRX8wJpjlVQsL8NuBOaJJNexEE4KgYmqwsCqK2LIy6cllUBXxenDyG7DN1zvRzxLgQSydciFmFnY6cqsURABTSZH2LQszrYxpa2xBR+9Yp7+e6I5ZIAG3iFWjlMdbWrRCFWMtncjupdIUmqbAG7BV9zDVoyLpuuvyYniPWslO+/eIipVsQKHDHEcuDyvpmobNHb5pznBRukhwxFxo7S+TKx5OPjpjeZxcsIh05AoVERLXvN7cttnQFoJz5beH4HfLJAt5ufqT629XeS1y50gJ946CsgPzPWkXnTLfXJBdiaYULMauw05EtOWKqWZNmEgCkE6INEUWrVpePtr+NTNLXJovcIoutiagj1rYX6BKb27KCyU2OnSOXdxgIDdkPbiDLuhPlx3Sa1aNNdUJiC8AyQsxJ+Qq9VXMuR8zkuN4ICd+OqiySfuq0sn466oi50iDayUctFXPNg1wi6cPSecP+AvI8dYfN5omxpSsAcpFO0xgsCDHWEVOXP7GDwGwn5Neve1kmCrRWcXKJMjQppmDwPpNphQsxq7AxfyvJ+qpZk6ayOmiemB0RRUVC2Qj728gkVEAVDLF+VV1SR04AiZjs8NCSFm7jDwLn/ZLcznqLFofEIsCnq8ltmqgPMN875gRCC+UWkyRf7Pmv/Jy/QHJ5nDhYegVFc33WpBG9Yl/JgoBPCvXQZH1X64jliiUWGyChSTqRQsoTMynE1I4YYGvmOyvE1AWBzaIW5RFJiOmf7ssLlYaCl1ViUe6IZQIuxKzC1uOylaxv4cBJm1Z3Nppfh0KT1kvryDLaYylXIePQ/pB2CrF6vUDlseQ2nZ2aLkcMkEVe+4EcTdgxyY5/EYFeXAOMPFV+PMzkiAkC+S71iP+fL91Plp++Io/3h6SDd8zBVbxe5Yt8rSPWxwgxel6TQ5M2c8RoZx6dY4gbid2OiOdjaDLJd4vmiZktYaF2xABbM9/ZFkd2hRiLIAjMBYD+965MFbL06DliXIilFS7ErCKFJj2pWxwBzkKTtCxDxwHTuydBHTEqxIDcTth3WnbitAXK+2Ujne1PMkqHk6WQAP71o/S9Trr54BmyPPHryu8yPYEICeBPX5XLioTLgWPOBY47T7kdj5dxxOzvjq4jlmNNv9UTCozO5ZIjFvRKOTfpcMTcxJG7lk+OmPrYS2tkjT9HfsxqCQuXHDEWdUFgs6hrVKbq6KBxxHiOWMbhQswqVkpXAEwdsVYgEWeS9U1QJp7w2w+aX4dChU24XE4czeXwpNPZjid+HRhxMrk98SL5s0sH7FX/3nXG43KZeEye9TnxQuVz7EF35xrgpe+T20PGkJPYV/+g2pggHbxdL+jqYHvZhOaIhQM+yS2Uc8RytMWRo4KuNEcsjxwx+oZpS6bz7pSfslrU1SVHjMUVRwyyoAsYhCbVjph+jlge5P7lMVyIWcVKeyNAns4MQfyxWsgRo85Luw1HjK1SL12ZtVnfTqagP3i7QszjAa5dA/ysHbj8Sff2y4grxRpt9HPONw5/RE4QoTJg2DTlcx4PcO7P5fuNH5ElPTkFwsA1q+XnBUESF050Uz5W1jeiVyc0mY6CrpRsdzgaGOUrmMfZ0KSZ72AaHLEpw8tsraeGttYKmgxNKgu6UkeMV9ZPJ1yIWUVqb2QiUR8gzhlNfu5pkX/qZo6cNNG+w4YjRhs2D50AlIgJ1lYKFGYaWiDVyQ8+k2ejEeLMyY4D+dl38rBYY65umn6I/czFwG2NwJhZ8mNsfbdRp5LvlojPBUdMv7K+7c1lBL1wXn8sjq5+cpwoKwhIn01/jIgzp+UrclKb5qMjRj9IvQ+0fCQAD+kf2dWkfV6Ni47Y+lvPwUvfOxNjq5zXQhQEOTRpVKNMXdaC95rMPFyIWcWqIwYoEval0KQZ0VA+iixb91izGtoPEvHm8ZL6UPQESivX5yK0YW4wT668Civk/ytbYytfaKbtpI43HhMoAL78MAltV4wHTr3BYKCgaHGkV5jVDHprOUn+Twdm3llDWx8EgbhhFUVBTY6Ym+UrciUyKSXr54Mjpjn26hyT/SH5QthMeDKpI2YtJaSmNOzYDWPfSqpk/cKg8kKM95rMPFyIWcVqjhigmjlpITQ5ZCw5sEV75GKnZti/niyrJ5NWPzVTyX1auT4XkRyxNFXETwe0J2bzp9ndDzvQfR6aRIgBJNfu+5uBG9bKzq4EncYnKMRF1GY1fOqIjawowI3nks+2JxpPtkpOcqiNnLzqysPweDyaOmLpSNbPdmRSLqScR79feiyWvq6qT7GM6WGbCl1HjNbjy94kKQGClCNm5IgVBpTRHd5rMvNwIWaVuIX2RhRJiDXLdcTMOGI+PzBUPNmz7YpS8dlrZDluNlnWTiHLxhx2xCJ55ogBcgeAt36b3f2wAxViVcemHltUpWy5RWG+w2z+id3ZXvSn4fV4UBQiV+k9/bEka+QmHX1kn4eIrY3UxW7thiZpyChdocnja3T+x2ahBX/TOVvZNeQLCPGG+LDq/0JzdFOlhsSjsqMv5QQDKBZL8dgpP+QQRb59ilmTBSpHTFGUOcodsUxgMtGJIyH1mTRRuoJCD05mp0KzVE8iydJNW4EJX0w9XhCAnf8mt8efTZY0NNlxgBTiHH5S7k1HjjqcNZkNqCN2+GNg33qSN5Uv0LyXUjdmlwrKiuCxBGAjQkVDmh4AhUFyaOqO5JYjphZBeqKoWxSPhSHyHryqE7yroUkXVdmXpw9HW29U6j1oCerYl+eBEFMLLqPP0OysdeqGwSO7YIDc1SSLubnxhCCVlDFK1leHJnc0Mh1DeI5YRuCOmFXshCbpCfvIJ5jbTwthmrwqrp5ElodNOmJN24DOQ8RKHn06eSxcJuebPXE+8NspwHP/wxxAcoB8DE2yRWMbP8zeflglHpXbFzkqfCs7Cz6vR3J+bDti4pJ1xLrz0BHrjpB9Lhbfg1flgKWljpgLm/R6Pbj2zLE4YUS5tRUTCaBB/P4zEzhyH5UA0zhiJidLSflhpXJlfkA+5rbty/gMC3U3B8A4R4xtUA8oi8ryHLHMwIWYVewk64+oJ8sdq5gHTR45qZvVtM3ceBqWHHOm0vViG2n3NAMfPA28dru4X68AL/8I2Px09qZkSeUr8ugHf/w8+badma3ZYv3D8m1N3pcFVCcuesVtt/6RVEXfIztib3/WIs1AzBe6+4mLR9+DOhKZjvIVWaV5BxH2gUKgZkq298YEBsn6aspMhiZpCRs2UR8QIyEeImbMzLxMA+xv0ShHTH2h0MvmZfIcsYwwwI4IGcBq+QoAGDZdtqlFBLOlFqonkmXLp+ZaFO0UhRhbJRoApn+DiMcTLgfOEAt0bvw9uZJ99nrg3YeB5/+HiLJsQHPE8soRqwDm/B+5nU8J+2t+Kt+2EmI3RKxTJB7o+20KMdYRYxseb97X5mTn0oreKZy6eMViaNKnCU3azBGTXlN+1ZyoZHHgPbKsm27tuJhtNOUrDHLEzIYm2UR9gJTyoNuwMtnKBeg7YX+LZnMTe0RHF4m4PBuWO2JphQsxq4ydDdz0KfD1Z82v4/UCs5YoHzMrxEqHk7yDRIyIsWREeoC9b5Pbx6iE2JRLgB8fBr7yCPCF24HJXyEtbP5zhxymAoA9b5rbL7fJR0cMkIWylckU2STaCwjiFe/pixxuTJn0HHDqiDE5YjNGy3lKueWIpZY+dH9peFXdcsYoROSErPaaPLiRLIfXZ28frGCmfAUgz5rsbpLrpOmhV7pC2oYoxDobLO6kM+hbkWZM+rya76ERtCuE5IYBeZMj9uCDD2Ls2LEIh8Oor6/Hm28mP5+tXbsW9fX1CIfDGDduHJYvX64Z8+yzz2LSpEkIhUKYNGkSnnvuOcXzsVgMP/7xjzF27FgUFBRg3LhxuP3225GwUHKKCzGr+IOkGTedEWOW6VcB0660/noej3yyT5Untve/pMJ12Ug5L42FdT+oMNzxL+UY2leQZeMTwKPnAJ/9x/RuW8Zpi6NsUTedLI/ukhuX5zJ0Bpe/gAhyJ6iO6yHREYvarf3FzJqsLg3jtHEVAIDmriQnwRyEOgrGockcbXFkl0Pvk+Xwk7K7H5ZJ4YgVVsohuY5DxpsxcsQAoLiGLLMwcxKQL4qMwpKUeubCp4cKMdpnEiDHixxn5cqVWLx4MW677TZs2rQJs2bNwrx587Bv3z7d8bt378b555+PWbNmYdOmTbj11luxaNEiPPusbLKsW7cOl19+OebPn48PPvgA8+fPx2WXXYb169dLY+666y4sX74c999/P7Zt24Zf/epX+PWvf4377rvP9L5zIZYpvF5gNtsg2sLBmOaJpUoI3/kqWY4/O7XjVjsVGHai9nH1ASfSDbz4feDgBuD1O7Xj3SIfQ5MACU/Soqj7383uvphBEEWS1+9iJwJlaNJusn5CZUyMriDfhbYeOSQ/BB242vcKytBlc1/TD80Rk0KTmmR9e4ddj9KAzA2ifUyXhnwRYiYdMY8HKK0jt5PlidGwo94MZNrVJMNCjDqkZhvNP/h1+X/3vXPEkjY0SuELKSch5Cj33HMPrr32Wlx33XWYOHEili1bhpEjR+Khhx7SHb98+XKMGjUKy5Ytw8SJE3Hdddfhmmuuwd133y2NWbZsGb7whS9g6dKlmDBhApYuXYpzzjkHy5Ytk8asW7cOX/rSl/DFL34RY8aMwaWXXoo5c+Zgw4YNpvc99z/dgQT7Q7dyEqw7kSwbNicfR/PDjjnX3HbPXKx9rFMlxHqOyrcPbjSXp2YH2qQ8VJye7acTWrbiQB4IMYorIowqA7JwnKxPQ5PivvnEkwer6+4P3IefB/6A+wLmrzbdRFu+QquKaGiSlgXQlq9IQ0HXbEUm7zuJzCQPFsuzBPMFzf9O50NMlScWjwLr7ie3K8Zpn6eOWNdhW7volFRV9Sk1pWHsuuN8vH3L2bhomig+pT6Tue+GRSIRbNy4EXPmzFE8PmfOHLz99tu666xbt04zfu7cudiwYQOi0WjSMew2zzzzTLz22mvYsWMHAOCDDz7AW2+9hfPPP9/0/nMhllFsHi1p+OvQB8atjlr3khwyj08u5JqKyV+WGzlTeluB7hb5PpsbkYiREJzbCILcBoT2Z8snqBNwaHNWd8MU1BFz48ytzn3ya6fMW0EdINJLTj/DR7pDfM73ka3XyAQ9EWWyvnpW2oCZNRnrl52iRCwHOo+bxCN/s8giicUo9fs9oP/8R3+Tb+tFGLLkiNEfj1zMNfV3zuv1oK6cEV1S6YrsCbHOzk50dHRIf/39+mkKzc3NiMfjqKmpUTxeU1ODxkb9z76xsVF3fCwWQ3Nzc9Ix7DZvvvlmfO1rX8OECRMQCAQwffp0LF68GF/72tdMv88BckTIEzxe/dupGDqB5Cr0twOtBkVhd64hyxEnWytJ8JXHSJjqhMuBStGSpsm3gDJPAACOmCyjYYVorzwbNZyPQowK5U05FjfSwSgfxtlGAciOmN1Zk9QRozolJ0NxJugSQ5NFIf0csQHT4qiHuWC74k/Z2AObmAxNAqkdsf3vyLf1JisUi0IsW46YKMRCKXLEdIlmX4hNmjQJZWVl0t+ddyZPj1FPSBAEIekkBb3x6sdTbXPlypV46qmn8PTTT+P999/HH/7wB9x99934wx/+kPzNMeTRXOMBgN0rRl+A5HQdeA84+D6ZVlwxVllUll6ZTTBvhwIARp4M/GA7EW/PXkdctZZPAYh2bFx1BdL0CTDZ3tswhPZi83hJiCPfqJ5ESoP0tZG+dDkdorHQYislSqUUdClZn+a30GUu67Bk5SvorEm3Kuvn3OdBhVig0Hw6RC6RqnwFkLqWWPNOsrx4uX4eVUl2kvXV5Sts5SVKNcSyJ8S2bt2K4cPl3LtQSL9lR1VVFXw+n8b9ampq0jhalNraWt3xfr8flZWVScew2/zhD3+IW265BVdccQUAYOrUqdi7dy/uvPNOXH311abeJ3fEMorH4LYJqOvy2s+BB04GXlosP3d0F7BvHREyUy+zvltFVUTU0RwHtiaWetp2Oq7s+kQhFirNn/AGiz8oF8xt3pHdfUmFm46YuqCrnwgPpzli1EGSI0g5Iz1MiaDOPpJfUhwiF0oaIebSrEk32xvZgs4SVtVIzHnMlq8A5Or6eo6YIJD2ZoA8oUoNdcR6muVi4BlEyhHz2/jO5YAjVlJSgtLSUunPSIgFg0HU19djzZo1isfXrFmD008/XXedmTNnasavXr0aM2bMQCAQSDqG3WZPTw+8KhHu8/l4+YqcxW6yPiALsXaxue6mp+Tntr1IlmNnA6XD7O8fnRSwe6188lOHJiNpmK1GJwg4areTZWjz7CM5LsRcdcSU25SS9R02/ab7psrkyQv6Y3G09pATbnUJOWloylekJVk/CxcwdKZzPk6wAZCyfAXAOGI6OWKdDcQF9/iAocfrv0RhJUn9ADJaXV+qI0bLV9hxxHIgR8wKS5YswWOPPYbHH38c27Ztw4033oh9+/ZhwYIFAIClS5fiqquuksYvWLAAe/fuxZIlS7Bt2zY8/vjjWLFiBW666SZpzPe//32sXr0ad911Fz755BPcddddePXVV7F48WJpzIUXXoj/+7//wz//+U/s2bMHzz33HO655x58+ctfNr3vPDSZUVxwxFgEgfzidr1O7h831+6OEcafDfiCxGFr/hTwh4D/qGLy/WkQYk2fkGVe9alTQeu2DSZHTBOadJasr3XEPOzmkUgIOX/leKSTOMhBnxflheSqWl2+wm6yvjrHPOtIfXeD2d0Pyxh895PliPW2koLZbMFpWraj6lhyrNTD6wWKqsnFZlejLOwyRMRCsr6GHHDErHD55ZejpaUFt99+OxoaGjBlyhS8/PLLGD2aOLYNDQ2KmmJjx47Fyy+/jBtvvBEPPPAA6urqcO+99+KSSy6Rxpx++ul45pln8OMf/xg/+clPMH78eKxcuRKnnnqqNOa+++7DT37yEyxcuBBNTU2oq6vDDTfcgJ/+lOlgkgIuxDKJIlnf4omw6jhSYZ+tgh/rJ0Va964j98ed5Wz/QiWkR+Vn/wb+9i3ZdmdJhyNGJwDQwrX5iCTEcr3VUTocMYLT8hWpJGJcyL4Q05avUN4/3EGEWHVpSBKS2sr6boUmXdmMfeLiBBtvnp5GpA8wyQcZLiN5q5EukidGnW9APj5WT0r+OiU1RIh1Zi5hn+YTRk0WdNUlD/tMLly4EAsXLtR97oknntA8Nnv2bLz//vtJt3nppZfi0ksvNXy+pKQEy5YtU9QWs0q2j2uDC48DR8zrA8afpXws0gW07SMWsr/AHUdp0pfIUk+EAUB/p/PXUEMdsbwWYuIBOucdMSqS3MwRc6egqyA5YqpZSuL2E1lXHqlp6iCh/JpS+eSlNiPsJusnIyuZlbQPITtpKB9QX4Qkc4k9HmbmpCo8SbuQpBJi0szJzFfXd8cRy7O2c3kIF2IZxeHhUt3Iu78DOCqWs6gY647LccLlJNdMDf0xui3EBAFoGkCOWHcTCWPkKvSkY6V8iiH6syYjsQTe/PQI/vyufmuRlLumStaXQ5OOdjYjHJaEmByqUgvLgIstjrJK3oYmKSpHzOj4KVXXVxW77j4iPp8iL1eqJZZBR0x8K/2OcsRoQdf8ccTylTz1lLNHTyQmhR+s4u3thaP5Reo6Nf1dcl2xIWOdbFkmUABc/QI5633wNPCP75DHp10BbHgcOPoZsP89UvbCDTobSLjV45NnHuYjoWJy5dxxkExpd+vzcZ30hSYDTLL+/BWky8DxtSU4adQQU+vLLY70y1doHLHXbif155z2zLSAoAljKe8fFnPEqkvkk5d75SuU+5B1f5DOAsz70CTF4DdhVMKCXnAVpPh+l2TeEaPvRJ41accRE1sccUcs7eTpLyh7bNjTiqset9fKphyd2Ozk4kIdeox0yZXuK1wSYhSvF5j2NXKwHTMLqDqGtLz44GlgxbnA6DOAK1eSvDInNIkJr5XHGCe85gtVx4pCbHvuCrG0lK/QOmKUTw93mhZiVGBIlfVVjlhcfeJ88zdkefr3gaLcmHF7WCc0OWBbHFEhls+hSfY7ZeiI0RIWqtCkWSEmNf7OfFFXOTRpp3yF6IjlUY5YvsJDkxbxez0oCftt/RWGHB6wfCrd3NuqDE26jdcHzPgWEWEAcN4dcs2gvf8F/nWz89eQ8izyeMYkJS9mTqavoGtIJ1m/vdd87STqiHk15SvEHLGEgQfUe1T/8SzQJLrlytCkckxgoLQ4yvvQpJoB5Ih5lDOY7VXW545YpuCOmEVOP6YKH/3MXpmIw4cbAbERvO3z4Hc3AveLIcruI4wjptNw1m0KhgDf/CfwzJVA44fAx88C591praWSGklIjndnH7NJPsycTEuLI4JeZf2O3pjp9eX2IlAsqXY00mGkwvuxBk9mlkbdZH13HDG1Q5j1gq55G5o0cMSM0GtzdHQ3uQDw+ICSFDli2XTEnFTWl3LE8qN8RT4zQC7N8oOQWHkcSHJSSUXVMcD0+eR21xGgbS+5rW7enS7KRwI3vAFUHU9+qLSYrF2k/c+z6tx65MXMSRcdMROhyfv/s9O0YBDUjhitIyY+Hzf60dAK7xkgdfkKbbK+unyFW5X1WTzZmDdJ+8PmW2iSIghQZNoZ/Sakxt+MEPtUrLY+aiZQUJ78dagj1t2UsRknmhwxW7MmqSPGQ5PphguxDBIMMELMyQ+yaChZtu6Rr1qKqu1vzyoeD3DCV8ntD//ibFutohDLtzYpelSJ1bWP7ta2hsoV0ljQlR7s+1XlKz47Yq72nJQjRh0x+rhAQ5MGvxm2+XQW6YnE0NlHxEm1IkdMHuP3elyrgp/9ZH1aviLPQpNGOWJGUEesv0Nux/bZv8nymHP012EpqgbgIcI1w99VZ+UrqCPGQ5PphguxDBJkHLGY3cbIgJyzQGt9ef1AsMjBntlgqijE9rwJ9LbZ24YgkDpowMBwxEpqSdFdIQ607Mz23ugj1Yhwf9N6jhgA+EzmRFGd5VEpMal8BT3xq+nJnCOWDJofVhj0oSQkh+vY0GQ6EvUBZKeQWN6GJikmHbFQsZx+0XGQRCIkIWai2bnPT/r5ApnLExPfCk0TGCwFXfMVLsQyiN8nCzHDMIsZykaSJRVi4bLMT5saMobMdBQSwN637W2jq4kUo/V45feUz3g88qSDI59kd18McbGOmDo0aVBZ33Rokm5WWqrKV0SNhFjmkvWTFa9gZ0yyrhd721mivvLzyDp5G5o0csSSHEPZ5t+NHwLxfpKXWzvV3EvSoq4ZzhOT64jZOD/EeEHXTMGFWCZhDsgxR0JMPCjQA2G43P62nDD2c2S5+w1767fuIcvSEXl4MDeANv9tylEhltZek9pkfcD8d13ba1KxefT19+mshYzmiCVDriGmLMPC5oT5XHTEsp2rL4UmvXn621V/gMkuZtnm312imCofbf4CuERM2M+QI+ZOjhgVYtwRSzdciGUU+Ucbd5IjRoUYJVWyaLqgQow2HbfKQErUp9A8sZZcnTmZvoKuIYPQpFqYGaIp6EofJk/85NlN+uulo+2WDfTaGwHK0gF2G36nIrt1xPI1R0wVmkwGO3OSCjE6G9IMkiOW2TZHETd6TXJHLO1wIZZJWEfMSY5YuAwIlTL3y+1vywljZ5OD8JFtQKNBb8pkDKREfQqdvUrfW66RxoKubGV9VhjE4vYcMYogEDG3+3CbwYrmS2SkE70Zk4BSiDlp+C07hNm2wkSk0GS+5YjZCE2ytcSoA0vzvswgOWKZCU1KdcTE84ytbg48RyxjcCGWSZi8HEc5YoAypypbjlhhBTBCrCBP+0VaoW0PWQ4kR4y+l7YcFWJpLOjKJuuz57eYSfdXXoWWr5CfO9TWC7/HQHBlUIipRRB797BUzFV54gozs6XdTNbXtlvKMFKyfj6HJk0k6wOyI9ZxSC7rECw2/1qSI9ZgaRed0heNAwDCdhwxniOWMbgQyyjyD7045PAqspwRYtlyxAC5xyUtLGsF2kSXHuQGAtTd62nJmZCZgnQWdDVI1o/adMTY2ljtvVEEYSTEzFfvTyfUEatWhyYD8mE2zMycdpOstBEfcOUrknyKtGRQTzMQoULMgkApyWxRV/oWqRArCNr43vEcsYzBhVgmYQ4AU4eXJhloAjacly1HDJBnCTZstr4u/aFnuvRGOgmXyi1PcjE8KUg1Ipxvy6Cga79KiJl1fwWVWceG4tp7owjBQHAl4qZ3OZ209ZD9qyhUChO2kHNFUZ6JlmTkbWiSYsERKxR7mXa32Gv9Q6vvZ7DNEQD0RqgjZlGIJeKy0OaOWNrhQiyjyD90x8W1h58k385kMVc1deJ+0ObdVhioLTRonlhOhifT4IipC7rGlMLIbLK+IDli6mR90iqpzmNQDDOePUfs5Y8a8Nibu9DeG0VDO7mwKA4rhUmYccSGFNoXYqqOTzkwazJfQ5M2vvvUEes+Yk+I0cT+tn0ZccrpO+y164jRi2SA54hlgHy9lMlP3JzaNPp0+XZ5Fmtw0R+pnVmgtPq8P5R8XL5RPho4tClHHTEX64ipoEnp/VFV+QqToUlJInqUNwQB6OiLYozHwE3IYrL+714js2N/8U85R7I4pDzpsY7YRwfb07IfblXrt4QUmsw3ISYiCBZCk2JifiIqhxethCbZGZabnwZOvcH8ujag3wdqRrMXA6aIMaViuBBLO9wRyyRunvzKRwHD60kYbNRM97ZrFenYZePyXJqVM9AcsVxO2E9Hr0kCDU32qRwxs8n6iQRtcaQtX9HdH8M4j0GiM80Ra94JrPl/WWmuzFKkyv9kK+tfWj9CPTx/ydeCrorvrcnQZKAACIgpFLQbSMBCSgWbZ5WFunfshBFTUNfPHwbSVHKFI2P5E37jjTdw4YUXoq6uDh6PB88//7zieUEQ8LOf/Qx1dXUoKCjAWWedhS1btijG9Pf343vf+x6qqqpQVFSEiy66CAcOHFCMaW1txfz581FWVoaysjLMnz8fbW1tlt9gTuH2VetVLwCLNpHZi1lDVXXTCgPWERtFlm37s7sfemSkoKvyu2A2WV9TWZ/ZfCwhSI5YL1TfF5ojtuoW4L/LgL9fZ/YNpAX1RJzuftmx+97ZxzjeftZDkpS8DU1SLDhiAFAk5on1i66m1ZSK075DlvH096FVvxPrQmyApo3kKJaFWHd3N6ZNm4b7779f9/lf/epXuOeee3D//ffjvffeQ21tLb7whS+gs1OOiy9evBjPPfccnnnmGbz11lvo6urCBRdcgHhcvpK+8sorsXnzZqxatQqrVq3C5s2bMX/+fBtvcQATKpYTw/MRaXr0APuxl1Ehti+7+6FL+gq6Bg1qFZl2xMRdk3PE5JY+8YSAGk8rAKABqvpN8SgJje9cQ+7ve8fajlvAjAgqCiqF2GnjKlFXFsYXTxhmr56TSLLwY1ZmTVInMt8cMcUFhElHDJDzxChWj1thcYIWbRyeQQqsCrHmHWQZLHF/ZzgaLOeIzZs3D/PmzdN9ThAELFu2DLfddhu+8pWvAAD+8Ic/oKamBk8//TRuuOEGtLe3Y8WKFXjyySdx7rmkYepTTz2FkSNH4tVXX8XcuXOxbds2rFq1Cu+88w5OPfVUAMCjjz6KmTNnYvv27Tj++OPtvt/cIWcuax2imjlniQHriIk5e+05KMTSWdDVoFaRaUdMoKFJ5eYFgQixEg8R7l1QhYQSMdJ6hlJaZ+r10oVXNROnKOTHWzefrXncKVk/hORrjpih4Erx/ylUXQBYLdtBG4f3p1+Iqd+iZSG28utkmYvHsAGIq8Hf3bt3o7GxEXPmzJEeC4VCmD17Nt5+mzSG3rhxI6LRqGJMXV0dpkyZIo1Zt24dysrKJBEGAKeddhrKysqkMZxcwWZoUhAGbo4YLbbb107+cgkpWd+NjalCk0aOmGkhRpbqWZOAgHhCQCm6AQCHPKrWMokY0LJTvh816EmZRdwWYWqy0+JIDLkOmNBkCtSV9K0KMdoNJQvHBPVMXtOMP9vdHeHo4qoQa2wkORw1NcoDZU1NjfRcY2MjgsEghgwZknRMdbW2JEN1dbU0Rk1/fz86OjqkPzYUmptk+3LWJew6YrE+eZ2B5oiFioECMW8v52ZOpr+gqxqzfVVppXi9HDHEIwh7SCjsYf+VWJ+YgKMTxKv2RAxo+UzeEE00TgOpqtmPrEjfRYUD7zk95HtoEoC10KRKiPmtOmKiEOvIRHV9+b2EA17rTb9pysvZP3ZxnzhGpGU6hDqXQRCElNOr1WP0xifbzp133ikl9peVlWHSpEk29pxjHZuO2IENZFk0VLbsBxLVE8ny8Jbk4zKNumqqE1Qi3Ov16PZSNF9Zn27Wo1gKAuCLyhdWzd6huDzyUxyZeDV5oLcVePkmeUOR7qzE7coLA1j57czNYM56iyOaWpBvlfUpVspXADqhSYsXkNQRa9oC7FtvbV0HlIRtCGXaPUCdF8dJC64Ksdpa0k9L7Vo1NTVJLlltbS0ikQhaW1uTjjl8WDsF/ciRIxq3jbJ06VK0t7dLf1u32igwmkmynuCRZd7/A1keOydLcZU0UzuVLBs/zO5+aHCzjphWhOtdeZvuNWmgEQUICIpCrN9bCMFL8l1i9D3EVKFIIS6LhAyy8KzxqCvPTpjdk8l0/XgU+MOFQLs4K9ibZ+UojY43lh0xi0IszHRTeeZKa+tahH0rJVbb6cWj8sxOK/00ObZxVYiNHTsWtbW1WLNmjfRYJBLB2rVrcfrppABpfX09AoGAYkxDQwM+/vhjaczMmTPR3t6Od999Vxqzfv16tLe3S2PUhEIhlJaWSn8lJXy2R0awE5rsawe2PE9un/Jtt/coN6g9gSwbckyIpbHXJCCXsGCx22uSJUCFmL9YqsuV8CQ5wUS6Tb2mm6jrh6WNbF/EPXYOsPsN+X7ehSYpTh0xmzliQEbFq+X8MLbyf4ifRzOB5W9DV1cXdu6UE2N3796NzZs3o6KiAqNGjcLixYtxxx134Nhjj8Wxxx6LO+64A4WFhbjySnIFUFZWhmuvvRY/+MEPUFlZiYqKCtx0002YOnWqNIty4sSJOO+883D99dfj4YcfBgB8+9vfxgUXXDAwZkwOKGyEJj/7N8kvqTwWqDsxLXuVdWqnkGXTVvLZ5Izrl77QJKCfJ2Y2WV/aLGhoUty6APijXQCAfl8xfOITcahmgl3xZ+D5BUTodzfJdZ9cJNnXXF0/zG00TmG29FjDB8r7BdmsY2gHlxwxy0KsRP92GmDfSbnVtloR8luDL5THIju/sHzk2LBhAz7/+c9L95csWQIAuPrqq/HEE0/gRz/6EXp7e7Fw4UK0trbi1FNPxerVqxUO1W9/+1v4/X5cdtll6O3txTnnnIMnnngCPp98YP3Tn/6ERYsWSbMrL7roIsPaZZwsksoR+/hZ4N+/AC77oxyu27GaLI+bm/bdyxqVxwLwAL1HSSXt4hzJtUhjQVdA3xGzWlmfFvJm64gF4+QqPeIvlvY8xh6+xp8DTDgfKB1BhFj7QTlPL0Oo64dlkozq/NLhQMdB4MLfkdulwzL44i6iriOWimLVBDKrQox11ArKra3rgKHFFkOo/aIQ425YxrB85DjrrLOkej96eDwe/OxnP8PPfvYzwzHhcBj33Xcf7rvvPsMxFRUVeOqpp6zuHifjpHDE/nYNWa6YC9x2iBTe/FQUYsfO0V9nIBAsJM2/W3cDR7blkBATRVGaztxOQpPyKK0jFhJDk1F/MXwJ8kQsUExCPIkYMO0KMrhsBEmGZuuKZYiMhSazDS07M/I0oHpCdvfFDux3nz1upfpNlKjq01lt/eP1Etf2ma/JNdjSRFOnnCNZVWLTEQvx/LBMwZtIZY0BkqyfyhELiI1xo91A0ydAw2agp5nkS2SzR2YmoI7Mke3Z3Q8F6SvoCuiH52Jxs5X1lTlibK/JQJzkfEX8xVKdsaivALjuNeArjwJTv0oGlw0ny/aD5t+HBXIhNEl3IWtHkOhA6Yhh0RHzerV5YlahLlMGJ5OMq7LQExOQc8R4Vf2MwYVYtsh2wm2mYF2vB08F/vglcnvUTOt1ePKNoWI+Y9O27O4Hi5vlK3Tc0HMmaGc1xxImHTHVrrE6zyfO4or7CiQhlhBAcgxPuEweXCoKsY70CLFkFAQHweE0kWBakxVmd1+coihfYfL3MPnLzl7TLzb/pmI2A1xyksVG81SIcUcsYwyCIwcnvVhM1qftPUaenJ7dySWGio5YLgmxNBZ0BYCZ47UJ8ubLV1BHTNtr0pcgQizhC8qzJvUE3pAxZHngvYxf7IT8FtvI5CNsqZB8dcQUFyEWL0y+cDtw8nXAhffae+2AKMTUJVdc5pwJJJ/tZxdOst7flIYmeemKjDFIkho4aSNVaJLmJM35BfDqz0g+DwCMOCXde5Z9pFpiHxEnwWpOiVvEY0DLp8DQCYzt5MK+6Pzvq4q1LqfpFkd0s6rNJwQBvgTJqUn4QlK7oEg8gUgsocxLO/YLZLZX8w7yNzQzs6y//blxGFmRGYeI/guT5eqmheadJLWAkq9CTMJC6QpKsBD44m/svyRt55ZmIfbQN+qxcW8r6kcPST1YTT/PEcs03BHLGgMlNJnKERMfDxQAp/2P/PBo/XpwA4qq48iBN9IJHP0s9fh08dJi4MHTgHcegqvlK3T+93pVvK3WEVN3z/jH5kPY33SUjPGFpByyG57ciHm/ewNx1hkLlwEjZpDbhzabel0r6L2TmeMqcev56Z+hmaxoa9pnTR7cCDxwMvDsteS+1w9489UBNEjWzwS0CGya+6EG/V7MHF+pO3kmJREamixNPo7jGlyIcZyR0hFjfI4Z15Ck6mteGRz1aXx+2RVLgygwzaYnyfLNu9Ne0LVEp3ik6fIVmhwxeR9DIH0NBV9IqiMGAJ8d6UZnX1S5oUKxrlUkM/1m/TptnTJBRiXE+3+U3W1fEDh2AJSeYctXZKr+R1BMnI/3kwr2uYiUI8aT9TMFD01y3CHVWcHjASrGAZc8lpHdyRnqTgQOvAsc2gSc8NXs7ktBhbvlK3REeEivjpjZ0KQ4TM4RkwmJDb/Z0KS0fXWuGM1tyVB1fZ9eK4CBRG+b3Alj/nPA2Nl57IbBoHxFhv6HrLjp75QvGnIJLsQyDnfEOA5JcQDL9IEu16ibTpZsbk22cL2IpDY0qQ4rAkDUZPkKmvOkzhEDlI6YWve8seMITvm/V7HqY7HHLXUdaK6Li+jlZfky5aZI5Su0++Bqr8m9bwOf/Ue+//qdQF8bUHU8MOZz+S3CNGTYEfMF5DwxOnEp1+BCLONwIcZxRspekxk+0OUaw04ky4YPSMJ+NikY4nL5CnOYLl8hLqnjpXDEqBDzhzUO1JK/fICmzn4seGojeYAKsQHuiKUlvSkeA34/D3jyYqC7BTiyA3j3UfLcvLtIuD3vyaIjBsjNvzsPZ+41rcCFWMbhQixbDLQ6YkbvZ7A7YlLCfhfQsjP1+HRSMATpLugKAIVBpWNiVojRchSyI8bmiJFZk4IvLIUuDZFCkzqOWCIO9Laa2h+z5EJo0jVdzbo0XYeB134OCHHg+POB8Z83Xi8fsVJV303ojMnH56TFtXUMF2IZhwuxrDFAhBh3xJLDJuw3fpj514/0yLfT5YipRLi61Y/ZyvqSRNTZtwIPqSMm+EP2hVgiATx9OXDXGGDNT4GdrwF9zsNDmRZiab2GY4VY+wFg+7/I7XN+msYXzTCKY1YWjsOs+PpwZeZfPxX0O8CFWMbgQozjkBTlKwa7IwYwrY4+yfxr9x6VbweLIAvj9P301a1+TDtiUvkKKJYAMMZDwjj9RcNTCx+aC9dzVPn4tn8AO9eQ2//9HfDUV4DfnQAc3mJq/wD907Y/Q0JM8yrp0BCsMN38J+KGVU/OeAP19JLl0ORlf5Rvv/mb3Js92c/LV2QaLsQ4LsEdMUNoUdFs9JxkxYidli7JMHBDi0Kq0KTpZH2yVPeaHIo2DPW0AwB81celdsSKSFVxdB9RPs52OPAFSci4t5UkoztAPYszG7i2B6wjtvV5spx4gVtbzy2yUb4CIJ/nbYfJLOaOg8CBDZl7bTPw0GTG4UIsWwyQyGTKAxh3xMhsM4BUes80Pc3MHcHd8hUGbmhRUOmIxU33mqQ5YkpL7CzfZgBAS+kknDphjGbWpGYbxUPJHbUQ62wgy7OWAksPAt8WZwZ+8k+gdY+pfdQjU45YRtAL1U4YYEIsm+UrKIEwMPJUcrvhA/e3//6TwP737K3LhVjG4UKM4xCTlfUHtSN2HFm2fEaSxTNJV5N8m3UA0njiCQeUjpjZyvrSrEmFIybgUt8bAIDK+q/A5/UkDU1G4wJQRIVYs3KmaqdY3qK0jjScr54IjD+biNO37zO1j3oXUJnKEaO5c1KLo3RczalLKpSPknMcBxxZcsQow04gS7eF2K61wAvfBVaca33dWD8QJxNj8lGIPfjggxg7dizC4TDq6+vx5ptvJh2/du1a1NfXIxwOY9y4cVi+fLlmzLPPPotJkyYhFAph0qRJeO655zRjDh48iG984xuorKxEYWEhTjzxRGzcuNH0fnMhxnGGlcr6g5WSOsDjAxJRpTDKBF3MFHkh4W6yvsE2AqpK82YdsYRq3zwe4Mf+p3CqV8ytm3QRgOShwEg8ARRWkTuCaoYkdcRKhsmPnf49snz/j7ZzdXJj1qRL+9Cv6kYw8aIBeBGl936yIcSmkaXbk3icpECw//88a/q9cuVKLF68GLfddhs2bdqEWbNmYd68edi3b5/u+N27d+P888/HrFmzsGnTJtx6661YtGgRnn32WWnMunXrcPnll2P+/Pn44IMPMH/+fFx22WVYv369NKa1tRVnnHEGAoEA/vWvf2Hr1q34zW9+g/LyctP7zoUYxyHcEUuJzw+UDie32/dn9rUVws9tR0z/fx/wKQ8rUZP109Q5YoFYL67z/0seIObaJcsR64/GidsVLicPdDPvnzpiJbXyY2PPIiI5HtGGMk3iz1Yz93TQ1668P/XS7OxHJhAEYNuL2Xt9KsSatrnbe1Jw4LpTRzRYnHeFe++55x5ce+21uO666zBx4kQsW7YMI0eOxEMPPaQ7fvny5Rg1ahSWLVuGiRMn4rrrrsM111yDu+++WxqzbNkyfOELX8DSpUsxYcIELF26FOeccw6WLVsmjbnrrrswcuRI/P73v8cpp5yCMWPG4JxzzsH48eNN7/sAOoLkGwMlSYzCHbGklI0gy4wLMdYRE9x1xOQNK+6pGw2bd8TIkuaIDW3bLD1394j7pdvJWjv2x0TRV6xK2I9HSagSUDpiXq88tstegc2Ukwdchn6aaSljwYYmz/253BliIEH/Xx/9lZQxAYCy4Znfj9Lh5IJBiLtbY1BwUDg6x/LDOjs70dHRIf319/frjotEIti4cSPmzJmjeHzOnDl4++23dddZt26dZvzcuXOxYcMGRKPRpGPYbb7wwguYMWMGvvrVr6K6uhrTp0/Ho48+aul9ciGWLQZKQVcPd8RMIQmxA5l9XbUQS0tBVyVqR8xsr0m6b9QR8yeIS/B+4hjsKZwsjUoamqRCjM6cpI5gVxPZvjdAZquxFKvGJt1D7XvJVNPvZK/i2h7QZP2zlgJnLnZrq7nJoffJcvo3gKuz4Ix5PEDFWHK7ba9723WSh5pjQmzSpEkoKyuT/u68U3+Gc3NzM+LxOGpqahSP19TUoLGxUXedxsZG3fGxWAzNzc1Jx7Db3LVrFx566CEce+yxeOWVV7BgwQIsWrQIf/zjH2GWgdCvgpNV+KxJU2RNiKlCk5Ij5sY1mLnQZMxkaDKhmtDpS5Ck4QgCCtcpaWhSEmJinhh1xNiwpDqUWJRfjlhakYp5DuQaUsz/a8TJwAW/y17rpiFjgEObHM3a1TCAHLGtW7di+HDZrQyFQknHq3MlBUFImj+pN179eKptJhIJzJgxA3fccQcAYPr06diyZQseeughXHXVVUn3l8IdMY4zeGV9c1Ah1pbt0KSb5SukDSvuBVUOkVlHjLpN9CDnS5DwQETwK3Y3WZPt7kiM3FCHJmmifnGNdiX6mM2JFNkqX5EWT506YuEBLMTY78+8X2W3f+aQMWTpqhAbOI5YSUkJSktLpT8jIVZVVQWfz6dxv5qamjSOFqW2tlZ3vN/vR2VlZdIx7DaHDRuGSZMmKcZMnDjRcJKAHlyIcRxitrL+IKd8FFlm0hGLRVR9FV1u6WI2NKmTI9bWE8GqjxvR2SfPVEyoNLtXEIUY/ArXyZckFNjYLiY9q0OT0ozJWu1KVkKTOh9fpkKT8j5od8L1XpMD2RFjHSMqhLIFff2ju93bpiNHLD/bGwWDQdTX12PNmjWKx9esWYPTTz9dd52ZM2dqxq9evRozZsxAIBBIOobd5hlnnIHt25UzVXfs2IHRo0eb3n8uxLLGABEoKR0x9bhBSjaS9dWzAN0uX2EUmvSrc8S0J4af/GMLFjy1ETeulGsoybMmVY4YAordTeZAHWrrJTek0KSYoC+FJodpV5LcM3OO2CTPHozxNEj3CwKZmV2m/pfpCTLHDAZHjC1T4gtkbz8AoFQ8LnTq5zHZwmQqgC553N5oyZIleOyxx/D4449j27ZtuPHGG7Fv3z4sWLAAALB06VJFqHDBggXYu3cvlixZgm3btuHxxx/HihUrcNNNN0ljvv/972P16tW466678Mknn+Cuu+7Cq6++isWLF0tjbrzxRrzzzju44447sHPnTjz99NN45JFH8J3vfMf0vvMcsWyRZ1ccKeG9JpNTWkeWfW2kEXewMP2vqc55UvyP0heaNOOIvbOrBQDw6rbD6IvGEQ74mMr6BK+YIxZVO2I6QqyuLIxD7X040CoKMbW40itdQSkkYQhNb0od/LFuPBv8GQo8EZzV/xvsEYZpCthmA/fqiA0CR0whxILZ2w9AvmBgO2DEY0DjB0DtCfaE4gDKEbPC5ZdfjpaWFtx+++1oaGjAlClT8PLLL0vOVENDgyJcOHbsWLz88su48cYb8cADD6Curg733nsvLrnkEmnM6aefjmeeeQY//vGP8ZOf/ATjx4/HypUrceqpp0pjTj75ZDz33HNYunQpbr/9dowdOxbLli3D17/+ddP7zoVYprngt8COV4AZ12R7T1wi1QmA54gBICe2QBEQ7SZhskrzNWZsowm1uVy+wmAbp45VzkrUE2Ksq7W9sRPTRpYzlfVFR0xgcsQM1qVcdOJwLF/7GeOIqWdNJnHE6CxKE0IsEO1AgYcIxNv9T+Cq6FKEAwMosCA5YmXZ3Y90kmCEmDfLjlgR045LEMhv6q3fAv/5BTD5K8BXf299mwMoR8wqCxcuxMKFC3Wfe+KJJzSPzZ49G++//37SbV566aW49NLk9fQuuOACXHCB/VZgA+gIkifMuAa4ciUQKMj2nrgDr6xvDo9HdsU6DmbmNTWOWAKZKOh6xjFVWHH1DDz7PySPIp4QFGE0QRDQ0h2R7m85RE7+CWnGEnncazBr0qdTQPXkMUMAAAepEBsyhswMbd9PWr4kdcREIdabWoh5EzHp9onezwBoWzqlC4/qf+Z6YDIRByL5G5oyDeuIZbsYL3XEEjHilgPAQbE1zpa/2ytFMUgdsXyGCzGOQ7gjZppS0Y3paEg+zi3UjliGCroCwDkTazB+aJF0n3XFeiJxud4XgP/751Z8fLCd2TV1jphfcb5kHbEJtSV4/jtnYPgQcmEjOWLFQ4GpXyW3//0L4PDH5HayHLGuJtJrLwkeQT6J+0BOkrkQmnQFtr3NQM4RY8R01vGHgJDoPtJ8RhoqB4Ajn1jf5gCqIzZY4EKM4wz2hK6XJ8YdMRna5ihbjpiiybELP/0UYs7P5Iqx1fWPMm4YAHRH4rjgvrcQV+WI+ZhZkx6DHLE7vzIVJ44sR105EWKtPVH00BIW075GlgfeFffXJ0+aYCkdTk5+iShwaHPS98Q6Yn4QMTlwhJgYlvSFiEAYqMQjqcdkEnXNO/ZnddB842gJV2ZNDmAhnoNwIcZxD92Efe6ISUihyUOZeT0qxGi+FFtHzE1hbDBRg23+3R+VTw5qIUb5rKkLgFhZf987GP8ZqUwdQUCxt6wQo30eS8MBlIRJyqvkig2vV77AF+/Wd3o8HmDcWeT2J8krrHsYIUYdsUzNmqTQj9v1SZODYcYkYLu5e9pQCzH2H2un7iAPTeYdXIhxHMKeIrkjlhQaFuvMcGiyRCw+mK7yFQbZSkGfVwoj9kRlAUOF2LHVxYrxbT1Rcdc8wONz4RWTjruEAsNZk2wNr+GiKybNnAyXApO/TD73772ffILMcfPIcs9bxmMAeAXGEfOQnLtMJesb/ct4DTGLJHJNiNGEfTE0yQqpLhtlLdwITQaLk4/juAoXYhxnpDwLcEdMItOhyc5DytdVFHRN36xJ+WkPikLEperulwUMTdSvLQsrxtMx6kmRL8ZnKh5jc8QCOkLsN6t3yIO/+gRw45bUs1RHzCDLw1tJ+QADvKr8Ij/iAyc0GRUFbCADpVWySZL/b1ZQ17xjhVinjbZbg3jWZL7ChRjHPXiOWHIymayfiMsh0LKRZCmAaXHk4k8/SYysKEhESne/fHJoFYVYRZGyhhNtT0RnSwLAgshiHEKVYY6Yn8niD4nOlKa6hdeEUCofDfgLgHh/0gbMbLI+APiQyHhokqLXgNzZBmlF3QF+WshZR4yGJhkhduBd68KRhybzjgH+i+OkHU+K0CR3xGSoM9V1OP15Kl2Hyewwj08u2SAkgKjYAsiV8impuypIjlhE64gNKVQKMZrPXxglbZkSHj9WJU4mr2TgiLGi7GunkDZSEZO9LRV4vXK7maRCTOk2+BGXBGC6kT9tQfdxx6RDpOciOZesn0SI9bYm/T7qYjc0GY8B0R5ye6CHp3OMAf6L46QfPmvSNIVVYgFJwd2WJnq0i+HP0jqmOrcgH2jdEGImxHWhFJrUOmKVRUHMP03bjy0UJblK0WAZ6PdG2WtSPmwFdG5HYjZPRFSwJgkHDejQ5GARYr4cmxFKy1XohSYBoPlTa9uL9dnbD1rd3+MFCsrtbYNjiwH+i+NkFu6IJcXrzVzCPu1pWTYCisKrUh6QiwWFk4Qmi0M0NKl1xCqKg/jxBRNRqQpRBhLkRBL3yTlkXoXel1+vICiLoKDY4zJqxxEDGCFm/L9hk/UBIsSyFZp0vaLrYBFik75ElhMvyu5+UDSOmOof27LT/Lb+dTPwwZ/t7Qe9OCyqNhfO57jGAP/FcdIOryNmjUxV1z+6iyzLRiq7H7jpiJkITVKXKso0/m7tEYVYYRAhvw/nTqxRriOQoqpxn7yPrCPGFoNlRVBQcsRs5sgUi/uhqb8m40loc8TUvTXTjfpn5lqfycEixD53E3D1i8AlK7K9JwQqxHpUjlgB6RZhSYh9uFJ530qNEzrLmhY45mSMAf6L46QfPmvSElLCfppriTVsJsthJ0B2xBJy2MKNmXEm/qU0nyvBnBCOqpL1WVcLAIJUiPmZWZXMa0UYUUddMPY2K/osITlixmFjvdBkxlB93q63OBosQixQAIz9HODPcsNviiTEjpI8Lfp/GDqBLJu2md9WYZXyvhUhRlss0ZZfnIwxwH9xnLSTKlmfO2JKpBIWaRZitEJ83XT5xJqF0CR1stgWRy1dRGhRIaZOdqehyYQiNKlfHFaxnlNHjAqx1t3Ai98HXv6R5r151KFJTwaFmAE8WT/PKawAvH4AAnFj6Xdu2Ilk2fgRkDD5nda06LIgxOixwT9A+iDnEfwXx3FIitCk5IhlZGdyn0xU1+86IuaIeYDaE/RDk64cbFOHJmnBVdriqC8aR0cfETNVxSRpOuRXOmL+BA1N6ueIGTle1BGL2HXEaJmPhg+AjU8A7z4MHHyfPCYIwKY/4cQd9yr3NZOOWLpJR9cFTmq8Pjl3tOMQ44gdR36n0W7g6GfmtkV/3xQrpSyoiBvI7a1yFC7EOC6i54jRG/zgDsB5sv6u14EPnkkecqBhyapjxXY1TGgyktlZkz6xJhUVYntaugEApWE/ygvJbM4QE16c5f0Q0zcuJeuYyBFjocVdI/GEIqHfNNSBYHnrHrJ87zHgHwtR1K9spO6Dg5pNFvGI/0f6zlxvcSQ5Yvy3mnGk4wIjxLwBoHYqud3wgbntqGdMWvmSxNLglnNMwYUYxxmpkvV5jpgSJ9X1d74G/PFLwHM3aJNyWQ5tIsu66WTJhiZ7SY0uKRHYDZIc62nh+3hCgCAI+PWq7QCAcUOLpSRzVoj9MvCodDvBXJmz3x4jx4sm6wuCssm4aXx+7WM7VgF73wb+/Qvy2v5idAjyiSoXHDHXflpS+yt+Wsg4rFPOhoiHTSO3972Tehts6oH0GHfE8gH+i+M4hOeIWYKtrm8m7yMeBV65jeQr/XOJ/PhHfzNe5+BGsqQODxua7GkhN2ntIkekDk1SRyyWEPDhgXa89glxlGYdKycVh6SZjwKGe1qkxxM+eUIBOzPw66eS2mNnHT9U8Vps4r7tEhanf48sz/4JKfCaiAG/n0cSmasn4y9nv4ET+h/DQYF8frkgxBzR/CmwfBaw9QWeI5ZNjITYuNnk9uY/yRdRRsSjOu2NdH4HiYR+0VeeI5Y1+C+O4wzea9IaxbUAPKTNSk9LyuFYvxxYdz/JV2rdIz++5y25Sj5LIgHsX09ujzxV9Vwc6D1KbhepZlfZwcT/lM6ajCcENHfJicTXzRon3aaOWAmUV/NHa0+XbrOhyeNrS7D5p1/A41efrBjPlpGwnbD/+dvwwblPY/6OM9E2ab74oIc0D5//HASPD4AHcYG8VoHP9bmLKaFhV1daHK38BtD4IfCX+VyIZRMjITbhAqDyWJL7tfft5NuI9WofUztinY3Ar8YA98/QForljljW4L84jkNM1hHjB3eCPyjX6UkVnhQE4K1lyscmXkjySWK9wL512nVaPiVXzv4CsXQFZMHUdZipUeTiFPVksyYZIdYbJVfhp46tQFlBQBpDhVgRK8TGzELT8LnydlSar7wwKG2b4vd6pJZHPVGbjZ0DBfjSS8CbO1vww4OzgG/+E1i0iTQPL5HrncVAXLxr/S+nPkG6hJHu9Thxm498It/mQix7GAkxjweomUTutyZpddTXAfzlau3j6t/moU1AXzupM3j/DOCZr8tjeI5Y1uC/OI4zUpav4DOxNLAzpJJxdBcp8ujxAjfvAa7/D/CVR4HxZ5Pnd/1Hu85n4mMjZsitjeiJ9cB7ZFkzxaUaSiZmTXrl8hU9ESLE1HXD6KzJAg+pLxYLlABXvwiPTx5nxlD1eDyoLiFX84c71NP4rdPcEwPGnAlUjNU8d0AgYdG5WEdCl237HL9e1uFCLHuUiEKMTdanX/pysQ1Y627j9d95UD4e0NxQQOuI9Xcp73/yknxc4I5Y1uC/OI578GR9c9CE/c4UQuzwx2Q57ESSXD/8JHK1OuZM8vheHUds+8tkedx5zIOqz756otU91sfUrEmxoGtCQJ/oiBWqhFhYrCNWCHIiSPgLAY9HsXmz1eOHlZGSFw1tOmEaixSHtMn7/WLI85exrymfeGe549cziwBg7Y4jaOlysXl1UTUXYtnEyBED5IR9KpjU9HcB7/+R3PYGgPPuYp4Uj7/xKLDlOblrxHHnEXcdAD78C1lGRJHGc8QyDv/FcRzCk/UtY7a6fotYO6jqOOXjo2aS5aFNyllSvW3A3v+S28fPkx9Xi5giZZK7Y5KEJn2MI9YrOmLqJtmlYpiyAGIhVzE0wobcvGaFWDlZ91C7zcbHDGrBCAAb9pCE6a3CGNwQWSw/sflPOsU03YV+AruOdOPqx9/FBfe9pXzCKuz+lo/iQiybUJc8HpF7TtL/w6jTyLLhQxKCVLPpSZLmUFwL3LKXXLBR6P/0nQeBv34TWH0buR8qBaZdSW7vfJUsqatbNsKVt8QxD//FcZzBy1dYR7r6TVFLjAqxymOUjw8ZQw7ciShwYIP8+IENZJZfxXigcjyzguqzd2XGJLvd1KHJeCIhhSbVAoeGEws91BErUG4e2hwxI+pER+zv7x9AwkYJC7b+mN7qO4/IoZ1XEqfgq9UvkbBSXxuw8Q+WXy+r0H6kgNjWhv9Ws4Y/KF8gtYu5o1SIlY0g4UkhDrxyKznO7n4T+N9qMpt61S1k3OwfAsEipZCm3+fXf6l8vWARMOYMcrt1N9DdIk8GGjLG7XfHSQEXYhyHpDhoc0dMi9laYrTZb+U45eMej+yKsQn7XWKPxAr1eNXP3I0Zk3Q/UkAdsQ8OtEvJ+gUqR2yoKMQKxNCk4CdlK9itm9UGw8qIiNtyqAOvbjNu3m0EW/ZCXYtMEAQcaFVWLq8uKwLOvJHc2fRHy6+XVVZ+Q74tCNwRyzb0Ai1Kih4r/g/n3UmWm54EHjgV+MMFQLyfzKYGgEARMPUycbDq4ri3TVvoNVQMhMvIRRtAcsVoeYwho916RxyT8F8cxxm8fIV1zCTrCwJwRGz2W3ms9vnRYmkHdsYebVZdXKMcq/7s1Y2BnWIiNPnu7qN45A3iwKiFWMjvQ3lhAAUgOU+C2JB8xBA5V8VsXbBjqoul229/ZqI8iAq2fdLaHUfQ0ReV7h/p6kdfNKH4OGtKw8Dki8mdxo+ATuvizym2flmCIAt9gIgwPsM5u9CEfQr7f5jwRVLbDgCatyvHBYuB838tdtGAdgLV7rXapH1a0Jl+d19cRJaFVUCoxO474NiE/+I47pGsfAV3xGTYxt9GIuboLjLN3BcChk7QPk9rhB3cKBeGlYSYOgdMnSPmlhAzU9BV+38vCGqT4KtLQlJokgqx8UNlUbVpX4piliKnjJXLcoytKjK1DktM5YjNX/GudH//UZKPN6w0jK9MHw6/14NrzhxDypHQhOrday2/plnMTlgwBf2uUIQEd8SyTWkSIQYAZywmSfb+MOmL+tU/AAvXA9//EJj+dWY91hFLAJ/9m9w+5Qbg7B8Dp/4PUP8t8bFvEyFHUeejcjKCTk8PDscKKZL1uSOmhSbrR7uB/g4SIlBD2xTVGpSaqJ4EBArJ+s07gOoJck0odU6Z+oDuliNmoaArS0FAe6KvLgmjoFkMn4hCzOPxYOa4Sqzb1YILTqjTrKNHOODDuROr8eq2JiRsNGNUt0/6YH+bdHv/URKWHFFRiN9cNg13fGWqPPFg9JmkH+DuN4ATLkNO09sG3KMS91yIZZ9UQsznB65M0tpMvS51ORs+JI+NOROYdJFyXEktcPGDwF+uIvdz/bs7QOG/OI4zUiXrc0dMS7BIFl9GCft7xBlxdSfpP+/zy8/tW0c+58aPyP2aKcqxmlmTbiXri5go6MqiriMGiI4YlI4YAKz45v9v787DmrrSP4B/QwJhMYCC7IKoraigIlTrMmrr1opa67QuRdTW2lpXcLRq7apVqrWWFrfq46gzrh2VTqf1p4I7SkUBK4pbK7iCaEVWIQmc3x839yYhYQkEQsL7eR6ehHvPvbknkOTNWd4Tin3Te2NUt9oFYoB6FmZZHbLrK6pYxxIAbuYWAuBa6kQikfbsz+dVyWcvH6h5KRojM/g7zo3D6vt8F5VWIEavVZOoKRAziOpvyCqA/Lvc/arGfnV+DZhykMtRGDKlHo9J6ooCMVI/NEasbqobsF+uBK7+j7uvmYaisvYDudtLe4Gnt7mZeyKxnq5MzemHEsDWuW7XrKP2syY16euabO0oFRK6wkYdiNnbSBDatpXegK4qfKb+uixzVF0gduMhN2Oyo3sL3Z3+/bkAWFEMXPinwY9bHwY3/Gn+zw38SH0SahEzLZ1ArB7vmfzfUFGiTofh1Kbq8m37cq1h9D5tEvSKI0akr0WMv0MvcC3VDdi/fYbLqG/XkvuAr0q3twCxDdci9tMMbpt3D8DaVruc5purvavx3mxrNWtS9y2m8mB9QNU1qWoRg0aLWF3wmfqNH4hxLWLPu+sZzCwSqRcM/22j/nVA66mqp1sqMfBtnM/QPmCRerkt6po0veoG6xuK/2fhW8NsWqhbP0mTQ684YjzV5hFr1Ctp+vhvv4V6uiaT1nK3nUaqlynSx8kb6KEa28Encu0erltO8w3daAP1NVw7CGzoC6Tt0Nkl1vN315coVbNrEjaGD7LXZMO3iFUTVFVFrtTfvPS0RI47qjFiz3tUMass8O+Aow9QnAskrjH4sQ2h2UDIp+yoNT5xZ0s/9f8GBWKmJ/PQ/r1egZjqWCFJaxtq7WrC6BVHjKCaLioaI6afkNS1Utfk9UPAzSPcUiV95tZ8nhdnaP/u17f68kZL5goIf9NHV7nlmP47Eygr1CqhL+uEVktVuQK4+gs6lt+EvYhrRRLZ1G+JFRuxcbsmGWNIvZMHxrj0GK4tqliLT2wNDF3G3T/9DXDrhMGPX1tB3uoJHpozRWuF/3B29q0iEKPXqklIZVw+MJ4xxogJf+tquiWJyVEgRuqPf+P+vw+BuA/U6RQA0BixKmiuLcdTlAKHFnL3e88AXDvoHleZS3v1VHSH1oCrnpxjms+9MZc30vc3rdQq1spB3aL3t+dc4WRnjWBfZ3WB/1sI7A3H8z+Pwkjxb9w2m/rlMeJbxMqU5QYfq6zQDcTKlBXCIuJ+rWroNu3yOtBpFLfCwb6pQPFjg6+hKprPdnu3Ftg8KRRhXT0xf1jH2p+kohx4ququcqYWsSZFJNJuFTNGi1jebe6Wli1q0pp9+ory8nIoFIqaC5IqSflVATP+CwAo6/oWmPcL3D5WARGAMrkCrNT442YAwNraGmKxbndXk8YP1s+/B2T8DDy8wn1452VxY0X6f1j7cw1dxi1L0m5AFQGvZiDWAF2TmnIuq+9nnsLQ+4cgQzAKYY9/vdMTZcoK9WzDB2lAyladU8g89QSTBlAHYsbpmiwuU+JRIReIVdkaxhOJuHQAD9K48TlnvlO3khmRbyt7DOnsjiGd3WsurKkwh1say0rCjVN8eIXbTgldmwaZJ/BEtbSZMcaIaXZNkiar2QZijDHk5OTg6dOnpr4Us1d5jl5eegLy5NwHfgelEtYA7j94gLJnDZex2dnZGR4eHsZNetmQ+MH6uRnAjxHa+0Lf5pYgqS2pDOgXWfV+zTd0o2bV13iu/QdwyUwf3+B+l5cA20fCAUC6LXAnIkk75UO5Etg/jQsAOr/Gja36bR13znomlTR212RxWTkeF3GBGL8cU7WkMmDIUmDf21yqiAYIxNwdbWsupA//wezozaVAoRaxpsXYLWL86gm0fmST1mwDMT4Ic3Nzg729vfl8gDdFIituQVqV1or7cPb3BwBIVB+K3t4+YO7+Rn9oxhhKSkqQm5sLAPD09DT6YzSIymM2HNy4Qd6O3kDoVOM+llbXpBHHiGmet9NILhDLzQCUZcDRL7SK+uZfANBZveHiDuCvm9yYtbBvuZQVNg7cBwY/k6+O+MkAz+SGd03ygVg3Hyfcf1qKx0VlKCpTIiefa811c6xFIAaoZ7s+vs61jnkFG3wt1amxZa4qmuPDAArEmhpjBWL8l6QSVdc4Zcxv0oweiCmVSnz++efYuXMncnJy4OnpiSlTpuDjjz+GlWoqO2MMX3zxBTZt2oS8vDz06tUL69atQ5cuXYTzlJWVYf78+di9ezeePXuGQYMGYf369fDxqX9fd3l5uRCEubgYObklgTg3HWJb7W/sUqkUsK3jt/ga2Nlxg7tzc3Ph5uZmHt2Utk7AC9OA85u5AffDVgD3U4FW/oC9gYOva9RAY8SKNNZV7PwaN0C9MJtLpXF5n3bZ0gL1fXkJcOIr7n7/Berg8OUlRrksByn3tlZUpjT4WD4QsxZboYVUjMdFQLFciQf53PJGXrWdoejgCnQcDlw/yHXZGyEQ04x7XVvoWW2hNp6qxgw5+2mflPKINQ1GaxHTzB1orbvaBmlSjP6KW7lyJTZu3Ii1a9fi6tWrWLVqFb7++mvExsYKZVatWoU1a9Zg7dq1OH/+PDw8PDBkyBAUFqpnXEVGRiIuLg579uxBYmIiioqKMGLECJSXG/4ttzJ+TJi9ff3yFRGVyq2Jj65xg4KBRps1yf8tzWq83/Cvgch0YOhy7jn0CWmAIAwN1zWp1Bjz18INePED7j4fhHUYAoS+w90v0wjEktZxAZuzr3q/EbVQBWLFcsMDMblqmqe12Ar2NuqALvspV1dPZwO+TASM4G41F2Y3Emf7OgZij29yty7tuVtqEWtaZBot+vVK6KqZ36Sbbm5B0qQY/RWXlJSE1157DWFhYWjbti3eeOMNDB06FBcuXADAtYbFxMRgyZIlGDNmDAIDA7F9+3aUlJRg165dAID8/Hxs2bIF33zzDQYPHozg4GDs2LED6enpSEhIMNq1Unekseh5HuXFqjuNM2vSLP+WIhEXjOhJemr0x+EZc7B+/wXc2LB3VYsK84EHAHh0BcZuVy/lVFrABeUJXwDHl3PbXv4EkNSxi60afItYcVkduiZV48qsJVZCQPekSI6/irms/97OBqTW8OvD3d5P1W4RrKMKjXkEMts6dmY8vs7dtlbNtKRArGkx9hgxAGjTq+7nIY3C6K+4fv364ejRo7hxgxu0+/vvvyMxMRHDhw8HAGRmZiInJwdDhw4VjpFKpRgwYADOnuW+OaakpEChUGiV8fLyQmBgoFCGNCH6giA+EKM8YqZXLlffN2YeMc9uwOSfuZY8AGjVTr2v13RuzJfUkfv93AbglyhVolPGJaINetN416LBQcp1TReWGt4ixqevsBGLhPPczOWWNrK3EcPJrpoEu5W1bMt1CVUouNxw9VSs0dVa50AsX5W3TuiapECsSeH/LgCqWzqsRkxj0slzg+t+HtIojD5GbOHChcjPz0dAQADEYjHKy8uxfPlyTJgwAQA3SB4A3N21p127u7vj9u3bQhkbGxu0bNlSpwx/fGVlZWUoKysTftfs5iQNzfQtYqQaJU/U9422zqQeIhHXOnbvPNCNe73DTuPx+FQVXccDI79vsP8JmZQLlorrMEZMs2vS1pq7vqvZXGuWl7OdYS2vIhHXSngmBrj2CxD0hsHXo0kzsOSXcTKIskw9eJvvAqOErk0Ln9YGqN/i8ZrH+g+o+3lIozD6V5+9e/dix44d2LVrF1JTU7F9+3asXr0a27dv1ypX+Q2NMVbjm1x1ZaKjo+Hk5CT8dO7cWW850kjkXCsCtYg1AZqBWEN3g/qEAC9OVz+OvkHCL7zboB/2rVQD2Z8pylFYatiYQaFrUqzumkzO5J6/Tp6Ohl8M313753HDj62kLi18WvjJFVbW6rGIWoEYvVZNzsoK6PkeN7mjplUyakPmCViZweSlZs7o78oLFizAokWLMH78eAQFBSEiIgJRUVGIjo4GAHh4cH3glVu2cnNzhVYyDw8PyOVy5OXlVVmmssWLFyM/P1/4ycjIMHbVmiS5XF5zoYZWXdcktYiZnrTh8rfVyKsH0MIDcHkOmHYMGLcDaPNCgz5kC6kErRy4YIxfH7K2+FmTErFIGGv2TMGNNevm41TlcVXiu2tLn3K50+pBa0WCuihUvefKPNWvR6EbkmZNNhnDvwbeO2Gc8ZO+vet/DtLgjP6KKykpEdJU8MRiMSpUYy/8/f3h4eGB+Ph4Yb9cLsfJkyfRpw83uDUkJATW1tZaZbKzs3H58mWhTGVSqRSOjo7Cj0xmwg+fBjRw4EDMmjUL8+bNg6urK4YMGYI1a9YgKCgIDg4OaNOmDWbMmIGioiLhmG3btsHZ2RmHDx9Gp06d0KJFC7zyyivIzlYvOK1UKjFnzhw4OzvDxcUFCxcuxOTJkzF69GihDGMMq1atQrt27WBnZ4du3bph37590PsNWlHCH6TaQIGYyYRMBrpP5IKgxiZtAcxIAqYdBbxDuHxjjYAfVP/gqWGrOfCBmI3YSgjEeAM71iG/ma1GK1pZ/Qbsd/J0xM+z+iJ5yaC6nYBfYN5Rc2YejRGzaPXsDieNw+ivuJEjR2L58uX49ddfkZWVhbi4OKxZswavv/46AK5LMjIyEitWrEBcXBwuX76MKVOmwN7eHm+99RYAwMnJCVOnTsU//vEPHD16FGlpaZg4cSKCgoIweHDDDDxkjKFErjTJD2OGDcrcvn07JBIJzpw5gx9++AFWVlb4/vvvcfnyZWzfvh3Hjh3Dhx9qL5FTUlKC1atX49///jdOnTqFO3fuYP78+cL+lStXYufOndi6dSvOnDmDgoIC/PTTT1rn+Pjjj7F161Zs2LABV65cQVRUFCZOnKh3fT71GnvUImZy1nbA6HWNFgTpsG+lnj3ZSPjB7CUGprDQHCPmoZG9/oW2LdHBzYDVDnhia0CimmlZmm/48ZV09XGGm6yeWfX1zcyjJY4sy9uHuHGYAWGmvpJGtX79evj7+8PW1hYhISE4ffp0teVPnjyJkJAQ2Nraol27dti4caNOmf3796Nz586QSqXo3Lkz4uLiqjxfdHS0EOMYwuiD9WNjY/HJJ59gxowZyM3NhZeXF95//318+umnQpkPP/wQz549w4wZM4SErkeOHNFqxfr2228hkUgwduxYIaHrtm3bGixZ5zNFOTp/erhBzl2TjKXDhJxFtdGhQwesWrVK+D0gQL3IkL+/P5YtW4YPPvgA69evF7YrFAps3LgR7dtz+YNmzZqFpUuXCvtjY2OxePFiIWBeu3YtDh48KOwvLi7GmjVrcOzYMfTuzTV3t2vXDomJiZDL46AzdvjWcaD7BI2JPxSIkcbDv54MTWGhmdD19WBvbD+bhZu5hZj9cj3Wv7R1BIqe1btFrF4YAy79yN33DlFvp4SulsmvN/fTjOzduxeRkZFYv349+vbtix9++AGvvvoqMjIy4Ovrq1M+MzMTw4cPx7Rp07Bjxw6cOXMGM2bMQOvWrfH3v/8dAJeOa9y4cVi2bBlef/11xMXFYezYsUhMTESvXtppQc6fP49Nmzaha9euBl+70QMxmUyGmJgYxMTEVFlGJBLh888/x+eff15lGVtbW8TGxmolgiWc0NBQrd+PHz+OFStWICMjAwUFBVAqlSgtLUVxcTEcHBwAcAlP+SAM4JYC4pcFys/Px8OHD9GzZ09hv1gsRkhIiNClnJGRgdLSUgwZMkTrseVyOWIWOACVA7HLB4BBn4FaxIgp8KknDG0RU/KBmEQEOxsx9n3QG4+L5PB3daj7xUgduYHyRsglVmdZiUDOJUBiCwRrrG2q2SLGpzmhwd3EDK1ZswZTp07Fu+++CwCIiYnB4cOHsWHDBmGMuqaNGzfC19dXiFU6deqECxcuYPXq1UIgFhMTgyFDhmDx4sUAuLHoJ0+eRExMDHbv3i2cq6ioCOHh4di8eTO+/PJLg6+92a41WZmdtRgZS4eZ7LENwQdXAHD79m0MHz4c06dPx7Jly9CqVSskJiZi6tSpWlnmra218x+JRCKdLlF9M1l5fED266+/wtvbW6uc/d4BgEI1Jk3qBHgEAbcTgQtbNMaIEdJ4+BaxEgPXm1Souib5hcNlttaQ2RqQO0wffpyYKVvEznzH3XYP1169QTMQy8vk7jtVWgeVEBMpLCxEQYH6dSOVSrnl8iqRy+VISUnBokWLtLYPHTq0ytyjSUlJWrlKAWDYsGHYsmULFAoFrK2tkZSUhKioKJ0ylRuaZs6cibCwMAwePJgCsfoQiUQGdQ82FRcuXIBSqcQ333wjTJL48ccfDTqHk5MT3N3dkZycjL/97W8AuPU409LS0L17dwAQ+sjv3LmDAQMq5aXR/AZtZQUET+QCscxToBYxYgoOqoW/DV3maNvZLABc16TR8EltTdEiVvgQODCNW5BdZAX0maW9XzMQe1Qp6z4hJlY5DdVnn32mtyft8ePHKC8v15uftKrcozk5OXrLK5VKPH78GJ6enlWW0Tznnj17kJqaivPnzxtSNS3mF3kQLe3bt4dSqURsbCxGjhyJM2fO6B1wWJPZs2cjOjoaHTp0QEBAAGJjY5GXlye0kslkMsyfPx9RUVGoqKhAv379UFBQgLNnz+JdhRzCdxSRFdBWlf/m3gWoB4lRIEYaj71qxmOJgWPEHGzEKJaXC+kvjKKhW8TKlUDCZ0ALdyD0baAoF7BrCVz9mVtcnZ8t2XW89uoHgDoQe5an7pp0fb5hrpMQA2VkZGj1wOhrDdNkaH7SqnqBNLdXd867d+9i7ty5OHLkCGxt676eJwViZq579+5Ys2YNVq5cicWLF6N///6Ijo7GpEmTDDrPwoULkZOTg0mTJkEsFuO9997DsGHDtCZHLFu2DG5uboiOjsatW7fg7OyMHj164L1+YoCfOCkSc+sndgwDrv+qfgBqESONqC4tYowxlKhyhg3toj9fYZ00dIvY3XNA0lrufvwnuvvtWgLjdgK+L+ru4wMxPgiTeWmn3CDEhGQyGRwda/5/dHV1hVgsrjY/aWUeHh56y0skEri4uFRbhj9nSkoKcnNzERKingBTXl6OU6dOYe3atSgrK6vVBEOaHmNmTpw4odM/HRUVhQcPHqCkpASHDh1CREQEGGNwdnYGAEyZMgVPnz7VOmb06NFaY8AkEgliY2ORn5+PJ0+eYMWKFfj999/RoYM6M7pIJMKcOXNw7do1yOVy5Obm4tChQ9rjz/huyt4zK105BWKk8dSlReyZolwY0uhgzGEKfOqOZ0+qL1dXBQ+q3ufXD5i4n2ul1jcIv/IMydbUGkbMj42NDUJCQrRyjwJAfHx8lblHe/furVP+yJEjCA0NFT7TqirDn3PQoEFIT0/HxYsXhZ/Q0FCEh4fj4sWLtc7yQC1iBAA36P/IkSMYMGAAysrKsHbtWmRmZgq53WqNf2P36wO0eRG4+5tqOwVipPHUpUWsSLU2pUhk+ASaajn5cLd/JADQnb1Vb3zXY+DfuZ89qtesZ3dgyi/Vv/Z0ArEA/eUIaeLmzZuHiIgIhIaGonfv3ti0aRPu3LmD6dOnA+BmPN6/fx//+te/AADTp0/H2rVrMW/ePEybNg1JSUnYsmWL1mzIuXPnon///li5ciVee+01/Pe//0VCQgISExMBcC12gYGBWtfh4OAAFxcXne3VoUCMAACsrKywbds2zJ8/H4wxBAYGIiEhAZ06darF0Rpv9CLVB5hIBLy5Ddj8Etft4dC6IS6bEL3sVYHY6ZuPcfhKDoZ18aiy7OErOfgp7T7G9OACJntrMaysjPjFocsY4NAi4PENrnvS2F1//BqSMk8ugefi+8Dj64Bbl5q/AFXeT+PDiJkaN24c/vrrLyxduhTZ2dkIDAzEwYMH4efnB4BbnefOnTtCeX9/fxw8eBBRUVFYt24dvLy88P333wupKwCgT58+2LNnDz7++GN88sknaN++Pfbu3auTQ6y+KBAjAIA2bdrgzJkzdTtY881c876jJzDnIlCh4LK7E9JINGdA7zx3p9pALPrgVWT9VYL/u8yNBSk2MOVFjWTuXJBUmA08uga06VnzMYYQ1pBU1VHaQjtpa3V0WsRoxiQxXzNmzMCMGTP07tu2bZvOtgEDBiA1NbXac77xxht4443aLxV14sSJWpfl0RgxYgQawVflcSjWtqZddJo0S3Y26v/DwlJFleUYY8j6y7CFwevETdWy/PCKetvts8DW4cDJr/Xn2yt5wiVGVtSwXmb+Xe62RdXBZpWoa5IQk6MWMVJ/Wi1iFNsT05Mr1eufao73yi0sxeX7+ejbwRVSiRh5JbpB2kfDGyAYcesM/HkMyM0A7iZzaSX+PMrtu30GuHEIiIjT7rbc8xZwJ4mbyRj0d6D/h4C8iGtd419zTzK5WZOA9hqStVW5a9LB1fBzEELqhT41iRHoGSNGiAmF+LUU7mt2Nc7cmYp3tl3ArF1pyC0oxd7zd3WOHdXNW2dbvbl34W4fpAH/fEUdhPHuXwD+NQoo1wgM7yRxt4UPgLOxwFdtgDWdgNTt6jIX/sndunUGfLSXPqsVzcebdtzw4wkh9UaBGDEuahEjTYCttRg/vs8telzwjAs2cgtLcT4rDwAQn/EQPVccxcpD17SOc7SVwN2x+qSRddKmF/fauHceYBpj0KbGA5P/B1jbc0Haha01nyt9n/o+H6z1i6rbOMxW7YDQd4CXPga8exh+PCGk3uhTk9SfjcaCyLRgMGkiWqhyiWU+LsbCfZdwPjOv2vJhQZ5Y/npQtZm468ylPTBshfY2sQ3g8wLg3x8Yuozb9n8LgEOLAXmxdtlxOzXOpc7tJySJlXnW7bpEImDEt8CABXU7nhBSbxSIkfrjlzQCuDEshDQBfCAGAHsv3MWn/70MAHg92BsXPx2C/R+oEz0OD/LAuvAeGNnNq+EuqOd7gI3GxJV519RjtHpMUQ+U/209sKLSdXQaAQz6jLuv2Z2oVA3kl9R9eRVCiGlRIGZBpkyZgtGjRwu/Dxw4EJGRkcLvbdu21cnKX5lcLkeHDh1qTGWxbds2IXM/AtV5V5CXVevrq61ffvkFwcHBqKioqLkwISr2Uu3W2b+KuWV8Ar2d4GxvgxC/lpg76DlIrESY+VIHfacwLisx4P839e8OLur7YgkQ/h9g4GLdnHtBY1VlVOtf8ssRAYCyjLuVNEB3KiGkUVAgZkG+++47vblSDLFp0yb4+fmhb9++1ZYbN24cbty4wf3S/uV6PaYmfcHiiBEjIBKJsGvXLqM9DrF8VS1TFOTtJNyPHPwcrn/5Krp4Oekta3SvrgS8enDdgZU5+wIDFwFRGVz+vfG7gch0YMwmbj8fbJWXqY/hW8QoTx8hZosCMQvi5OSkbqWqo9jYWLz77rvVllEoFLCzs4Obm5t6o6wBu3QAvP3224iNjW3QxyCWxdZa9+1NJAI6ezlq/C6C2JhZ9Gvi7Au8d5wbIF8ViQ3Qyh8IGM6V57svxao1XbW6JqlFjBBzR4GYmdm3bx+CgoJgZ2cHFxcXDB48GMXF3MDeunb98VJTU/HHH38gLCxM2JaVlQWRSIQff/wRAwcOhK2tLXbs2KHdNQlwHxwqMpkM7777LhYtWoTu3bvrPM7q1avh6ekJFxcXzJw5EwoF98EycOBA3L59G1FRURCJRFqDpkeNGoXk5GTcunWrzvUjzYu+Qff+rg5aY8fMCt81yQdfjNEYMUIsAAViPMa4mUqm+NGXVVuP7OxsTJgwAe+88w6uXr2KEydOYMyYMWC1PL4mp06dwvPPPw9HR9218BYuXIg5c+bg6tWrGDZsmM7+Y4ruAIB7tgFISUmBr68vNmzYoFPu+PHj+PPPP3H8+HFs374d27ZtE7pTDxw4AB8fH2GtsOzsbOE4Pz8/uLm54fTp00apK2meNLslzU7lMWLlCgCq1z61iBFitsz0q2EDUJTozlRqLB890E4BUYXs7GwolUqMGTNGWMg0KCjIaJeRlZUFLy/9z0FkZCTGjBlT5bEf/fMYwnqNwierNwPWtvj0009x5MgRFBVpz6Js2bIl1q5dC7FYjICAAISFheHo0aOYNm0aWrVqBbFYDJlMBg8P3Szh3t7eyMrKqlcdSfMSN6MPDl95iI0n/wQAdPEy8oLbjUkIxFRdk0qNpY+oRYwQs0UtYmakW7duGDRoEIKCgvDmm29i8+bNyMurPjeSIZ49ewZbW/1v6KGh1Wftvn79OvxChnBrS6r07Km7uHGXLl0gFqtns3l6eiI3N7dW12dnZ4eSkkZYF5BYjGDflhj/Qhvhd5+W9ia8mnoSArEy4LcNwMH5uvsIIWaHWsR41vZcy5SpHrsWxGIx4uPjcfbsWRw5cgSxsbFYsmQJzp07B39//5pPUANXV1ekp6fr3efgUHOLXeUxOfq6TK2trXWOqW1aiidPnqB169Y1FyREg73GAuCtHMw4YJGorv1BGvfDs3bQXTOSEGI2qEWMJxJx3YOm+DHgTVQkEqFv37744osvkJaWBhsbG8TFxRnlKQgODsa1a9fqNOasY8eOSE5O1tp24cIFg89jY2OD8vJyne2lpaX4888/ERwcbPA5SfNmrzE4v6qUFmahqlavHhGNex2EEKMy43el5ufcuXM4evQohg4dCjc3N5w7dw6PHj1Cp06djHL+l156CcXFxbhy5QoCAwMNOnb27NmYNm0aQkND0adPH+zduxeXLl1Cu3btDDpP27ZtcerUKYwfPx5SqRSurq4AgN9++w1SqRS9e/c26HyE2FmrW8Tcncx4ULu9RgLYtw8B9q2AexeArmNNd02EkHqjQMyMODo64tSpU4iJiUFBQQH8/PzwzTff4NVXXzXK+V1cXDBmzBjs3LkT0dHRBh0bHh6OW7duYf78+SgtLcXYsWMxZcoUnVaymixduhTvv/8+2rdvj7KyMqF1bvfu3QgPD4e9vRmP8SEmIbYSYcfUXnimKIebzIwHtbt1Al7/AWjdEfBStQy37mjaayKE1JuIGSv3QRNz7949tGnTBnfv3oWPj4/WvtLSUmRmZsLf37/KwenNVXp6OgYPHow//vgDMpms5gOqMWTIEHh4eODf//53vc7z6NEjBAQE4MKFC1WOhaO/KSGEWIbqPr8tEbWIES1BQUFYtWoVsrKyDEqNUVJSgo0bN2LYsGEQi8XYvXs3EhISEB8fX+9ryszMxPr1640yIYEQQghpSigQIzomT55s8DEikQgHDx7El19+ibKyMnTs2BH79+/H4MGD6309PXv21JsKgxBCCDF3FIgRo7Czs0NCQoKpL4MQQggxK5S+ghBCCCHERCgQI4QQQggxkWYdiNU2oztp+uhvSQghxBw1yzFiNjY2sLKywoMHD9C6dWvY2NjoLM9DzANjDHK5HI8ePYKVlRVsbMx4CRtCCCHNTrMMxKysrODv74/s7Gw8eGCi9SWJUdnb28PX1xdWVs26kZcQQoiZaZaBGMC1ivn6+kKpVOpd25CYD7FYDIlEQq2ahBBCzE6zDcQALveVtbU1rK2tTX0phBBCCGmGqB+HEEIIIcREKBAjhBBCCDERCsQIIYQQQkzEYseI8XmlsrOzTXwlhBBCCKkt/nO7ueSHtNhA7OHDhwBAi0UTQgghZujhw4fw9fU19WU0OBFjjJn6IhqCUqlEWloa3N3djZ5bqrCwEJ07d0ZGRgZkMplRz93UUd2p7lT35oPqTnU3Rd0rKirw8OFDBAcHQyKx2PYigcUGYg2poKAATk5OyM/Ph6Ojo6kvp1FR3anuVPfmg+pOdW9udTcFGqxPCCGEEGIiFIgRQgghhJgIBWJ1IJVK8dlnn0EqlZr6Uhod1Z3q3txQ3anuzU1zrrsp0BgxQgghhBAToRYxQgghhBAToUCMEEIIIcREKBAjhBBCCDERCsQIIYQQQkyEAjEDrV+/Hv7+/rC1tUVISAhOnz5t6kuql+joaLzwwguQyWRwc3PD6NGjcf36da0yjDF8/vnn8PLygp2dHQYOHIgrV65olSkrK8Ps2bPh6uoKBwcHjBo1Cvfu3WvMqtRbdHQ0RCIRIiMjhW2WXvf79+9j4sSJcHFxgb29Pbp3746UlBRhv6XWX6lU4uOPP4a/vz/s7OzQrl07LF26VGttO0up+6lTpzBy5Eh4eXlBJBLhp59+0tpvrHrm5eUhIiICTk5OcHJyQkREBJ4+fdrAtatedXVXKBRYuHAhgoKC4ODgAC8vL0yaNAkPHjzQOocl1r2y999/HyKRCDExMVrbzbXuZoeRWtuzZw+ztrZmmzdvZhkZGWzu3LnMwcGB3b5929SXVmfDhg1jW7duZZcvX2YXL15kYWFhzNfXlxUVFQllvvrqKyaTydj+/ftZeno6GzduHPP09GQFBQVCmenTpzNvb28WHx/PUlNT2UsvvcS6devGlEqlKaplsOTkZNa2bVvWtWtXNnfuXGG7Jdf9yZMnzM/Pj02ZMoWdO3eOZWZmsoSEBPbHH38IZSy1/l9++SVzcXFhv/zyC8vMzGT/+c9/WIsWLVhMTIxQxlLqfvDgQbZkyRK2f/9+BoDFxcVp7TdWPV955RUWGBjIzp49y86ePcsCAwPZiBEjGquaelVX96dPn7LBgwezvXv3smvXrrGkpCTWq1cvFhISonUOS6y7pri4ONatWzfm5eXFvv32W6195lp3c0OBmAF69uzJpk+frrUtICCALVq0yERXZHy5ubkMADt58iRjjLGKigrm4eHBvvrqK6FMaWkpc3JyYhs3bmSMcW9o1tbWbM+ePUKZ+/fvMysrK3bo0KHGrUAdFBYWsueee47Fx8ezAQMGCIGYpdd94cKFrF+/flXut+T6h4WFsXfeeUdr25gxY9jEiRMZY5Zb98ofyMaqZ0ZGBgPAfvvtN6FMUlISA8CuXbvWwLWqneqCEV5ycjIDIHy5tvS637t3j3l7e7PLly8zPz8/rUDMUupuDqhrspbkcjlSUlIwdOhQre1Dhw7F2bNnTXRVxpefnw8AaNWqFQAgMzMTOTk5WvWWSqUYMGCAUO+UlBQoFAqtMl5eXggMDDSL52bmzJkICwvD4MGDtbZbet1//vlnhIaG4s0334SbmxuCg4OxefNmYb8l179fv344evQobty4AQD4/fffkZiYiOHDhwOw7LprMlY9k5KS4OTkhF69egllXnzxRTg5OZnNcwFw738ikQjOzs4ALLvuFRUViIiIwIIFC9ClSxed/ZZc96bG8pc1N5LHjx+jvLwc7u7uWtvd3d2Rk5NjoqsyLsYY5s2bh379+iEwMBAAhLrpq/ft27eFMjY2NmjZsqVOmab+3OzZswepqak4f/68zj5Lr/utW7ewYcMGzJs3Dx999BGSk5MxZ84cSKVSTJo0yaLrv3DhQuTn5yMgIABisRjl5eVYvnw5JkyYAMDy//Y8Y9UzJycHbm5uOud3c3Mzm+eitLQUixYtwltvvSUsdG3JdV+5ciUkEgnmzJmjd78l172poUDMQCKRSOt3xpjONnM1a9YsXLp0CYmJiTr76lLvpv7c3L17F3PnzsWRI0dga2tbZTlLrDvAfSMODQ3FihUrAADBwcG4cuUKNmzYgEmTJgnlLLH+e/fuxY4dO7Br1y506dIFFy9eRGRkJLy8vDB58mShnCXWXR9j1FNfeXN5LhQKBcaPH4+KigqsX7++xvLmXveUlBR89913SE1NNfgazb3uTRF1TdaSq6srxGKxTpSfm5ur823SHM2ePRs///wzjh8/Dh8fH2G7h4cHAFRbbw8PD8jlcuTl5VVZpilKSUlBbm4uQkJCIJFIIJFIcPLkSXz//feQSCTCtVti3QHA09MTnTt31trWqVMn3LlzB4Bl/+0XLFiARYsWYfz48QgKCkJERASioqIQHR0NwLLrrslY9fTw8MDDhw91zv/o0aMm/1woFAqMHTsWmZmZiI+PF1rDAMut++nTp5GbmwtfX1/hve/27dv4xz/+gbZt2wKw3Lo3RRSI1ZKNjQ1CQkIQHx+vtT0+Ph59+vQx0VXVH2MMs2bNwoEDB3Ds2DH4+/tr7ff394eHh4dWveVyOU6ePCnUOyQkBNbW1lplsrOzcfny5Sb93AwaNAjp6em4ePGi8BMaGorw8HBcvHgR7dq1s9i6A0Dfvn11UpXcuHEDfn5+ACz7b19SUgIrK+23P7FYLKSvsOS6azJWPXv37o38/HwkJycLZc6dO4f8/Pwm/VzwQdjNmzeRkJAAFxcXrf2WWveIiAhcunRJ673Py8sLCxYswOHDhwFYbt2bpMaeHWDO+PQVW7ZsYRkZGSwyMpI5ODiwrKwsU19anX3wwQfMycmJnThxgmVnZws/JSUlQpmvvvqKOTk5sQMHDrD09HQ2YcIEvdPbfXx8WEJCAktNTWUvv/xyk5vGXxuasyYZs+y6JycnM4lEwpYvX85u3rzJdu7cyezt7dmOHTuEMpZa/8mTJzNvb28hfcWBAweYq6sr+/DDD4UyllL3wsJClpaWxtLS0hgAtmbNGpaWlibMDDRWPV955RXWtWtXlpSUxJKSklhQUJDJ0xhUV3eFQsFGjRrFfHx82MWLF7Xe/8rKyoRzWGLd9ak8a5Ix8627uaFAzEDr1q1jfn5+zMbGhvXo0UNI82CuAOj92bp1q1CmoqKCffbZZ8zDw4NJpVLWv39/lp6ernWeZ8+esVmzZrFWrVoxOzs7NmLECHbnzp1Grk39VQ7ELL3u//vf/1hgYCCTSqUsICCAbdq0SWu/pda/oKCAzZ07l/n6+jJbW1vWrl07tmTJEq0PYEup+/Hjx/W+xidPnswYM149//rrLxYeHs5kMhmTyWQsPDyc5eXlNVIt9auu7pmZmVW+/x0/flw4hyXWXR99gZi51t3ciBhjrDFa3gghhBBCiDYaI0YIIYQQYiIUiBFCCCGEmAgFYoQQQgghJkKBGCGEEEKIiVAgRgghhBBiIhSIEUIIIYSYCAVihBBCCCEmQoEYIYQQQoiJUCBGCCGEEGIiFIgRQgghhJgIBWKEEEIIISZCgRghhBBCiIn8P3FGoUC2qWV3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "params = step.get('variogram_parameters.dat')\n", + "\n", + "df = pd.DataFrame({'range': params[:,0], 'sill': params[:,1]})\n", + "df.plot(secondary_y='sill')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.13 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "2c57ebfed52ffd848a0d2f36f1ea9c0a9060c9b67397fbb725d6aa92a9494b08" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}