From 71c0e80b61755a04ec20c2e8b2ccba335adb5d41 Mon Sep 17 00:00:00 2001 From: vanithakattumuri Date: Sun, 7 Jul 2024 18:46:54 +0900 Subject: [PATCH] #2 updated the documentation of PPF_DFS and updated the readtheDocs --- .../basic/GPFgrowth.py | 2 +- .../basic/PPF_DFS.py | 246 +++++++++--------- ...rtialPeriodicFrequentPattern.basic.doctree | Bin 138052 -> 140049 bytes .../_build/doctrees/environment.pickle | Bin 7986050 -> 7987306 bytes ...iodicFrequentPatternbasicGPFgrowth.doctree | Bin 53523 -> 53527 bytes ...eriodicFrequentPatternbasicPPF_DFS.doctree | Bin 50817 -> 52801 bytes ....partialPeriodicFrequentPattern.basic.html | 238 +++++++++-------- .../basic/GPFgrowth.html | 2 +- .../basic/PPF_DFS.html | 246 +++++++++--------- ...alPeriodicFrequentPatternbasicPPF_DFS.html | 238 +++++++++-------- finalSphinxDocs/_build/html/searchindex.js | 2 +- 11 files changed, 511 insertions(+), 463 deletions(-) diff --git a/PAMI/partialPeriodicFrequentPattern/basic/GPFgrowth.py b/PAMI/partialPeriodicFrequentPattern/basic/GPFgrowth.py index d42c0daa..5361b825 100644 --- a/PAMI/partialPeriodicFrequentPattern/basic/GPFgrowth.py +++ b/PAMI/partialPeriodicFrequentPattern/basic/GPFgrowth.py @@ -142,7 +142,7 @@ class GPFgrowth(partialPeriodicPatterns): - **minPR** (*int*) -- *The user given minPR.* - **finalPatterns** (*dict*) -- *It represents to store the pattern.* - :Methods: - **mine()** -- *Mining process will start from here.* + :**Methods**: - **mine()** -- *Mining process will start from here.* - **getPatterns()** -- *Complete set of patterns will be retrieved with this function.* - **storePatternsInFile(ouputFile)** -- *Complete set of frequent patterns will be loaded in to an output file.* - **getPatternsAsDataFrame()** -- *Complete set of frequent patterns will be loaded in to an output file.* diff --git a/PAMI/partialPeriodicFrequentPattern/basic/PPF_DFS.py b/PAMI/partialPeriodicFrequentPattern/basic/PPF_DFS.py index d54010dc..b9770eb4 100644 --- a/PAMI/partialPeriodicFrequentPattern/basic/PPF_DFS.py +++ b/PAMI/partialPeriodicFrequentPattern/basic/PPF_DFS.py @@ -1,34 +1,40 @@ # PPF_DFS is algorithm to mine the partial periodic frequent patterns. # -# # **Importing this algorithm into a python program** -# -------------------------------------------------------- # -# from PAMI.partialPeriodicFrequentPattern.basic import PPF_DFS as alg +# from PAMI.partialPeriodicFrequentPattern.basic import PPF_DFS as alg +# +# iFile = 'sampleTDB.txt' +# +# minSup = 0.25 # can be specified between 0 and 1 +# +# maxPer = 300 # can be specified between 0 and 1 # -# obj = alg.PPF_DFS(iFile, minSup) +# minPR = 0.7 # can be specified between 0 and 1 # -# obj.startMine() +# obj = alg.PPF_DFS(iFile, minSup, maxPer, minPR, sep) # -# frequentPatterns = obj.getPatterns() +# obj.mine() # -# print("Total number of Frequent Patterns:", len(frequentPatterns)) +# frequentPatterns = obj.getPatterns() # -# obj.save(oFile) +# print("Total number of Frequent Patterns:", len(frequentPatterns)) # -# Df = obj.getPatternInDataFrame() +# obj.save(oFile) # -# memUSS = obj.getMemoryUSS() +# Df = obj.getPatternInDataFrame() # -# print("Total Memory in USS:", memUSS) +# memUSS = obj.getMemoryUSS() # -# memRSS = obj.getMemoryRSS() +# print("Total Memory in USS:", memUSS) # -# print("Total Memory in RSS", memRSS) +# memRSS = obj.getMemoryRSS() # -# run = obj.getRuntime() +# print("Total Memory in RSS", memRSS) # -# print("Total ExecutionTime in seconds:", run) +# run = obj.getRuntime() +# +# print("Total ExecutionTime in seconds:", run) # @@ -59,105 +65,79 @@ class PPF_DFS(partialPeriodicPatterns): """ - :Description: PPF_DFS is algorithm to mine the partial periodic frequent patterns. - - :References: (Has to be added) - - :param iFile: str : - Name of the Input file to mine complete set of frequent pattern's - :param oFile: str : - Name of the output file to store complete set of frequent patterns - :param minSup: str: - The user can specify minSup either in count or proportion of database size. - :param minPR: str: - Controls the maximum number of transactions in which any two items within a pattern can reappear. - :param maxPer: str: - Controls the maximum number of transactions in which any two items within a pattern can reappear. - - :param sep: str : - This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator. - - :Attributes: - - iFile : file - input file path - oFile : file - output file name - minSup : float - user defined minSup - maxPer : float - user defined maxPer - minPR : float - user defined minPR - tidlist : dict - it stores tids each item - last : int - it represents last time stamp in database - lno : int - number of line in database - mapSupport : dict - to maintain the information of item and their frequency - finalPatterns : dict - it represents to store the patterns - runTime : float - storing the total runtime of the mining process - memoryUSS : float - storing the total amount of USS memory consumed by the program - memoryRSS : float - storing the total amount of RSS memory consumed by the program - - :Methods: - - getPer_Sup(tids) - caluclate ip / (sup+1) - getPerSup(tids) - caluclate ip - oneItems(path) - scan all lines in database - save(prefix,suffix,tidsetx) - save prefix pattern with support and periodic ratio - Generation(prefix, itemsets, tidsets) - Userd to implement prefix class equibalence method to generate the periodic patterns recursively - startMine() - Mining process will start from here - getPartialPeriodicPatterns() - Complete set of patterns will be retrieved with this function - save(ouputFile) - Complete set of frequent patterns will be loaded in to an ouput file - getPatternsAsDataFrame() - Complete set of frequent patterns will be loaded in to an ouput file - getMemoryUSS() - Total amount of USS memory consumed by the mining process will be retrieved from this function - getMemoryRSS() - Total amount of RSS memory consumed by the mining process will be retrieved from this function - getRuntime() - Total amount of runtime taken by the mining process will be retrieved from this function - - **Executing code on Terminal:** - ---------------------------------- - Format: - >>> python3 PPF_DFS.py - - Examples: - >>> python3 PPF_DFS.py sampleDB.txt patterns.txt 10 10 0.5 - - **Sample run of the importing code:** - --------------------------------------- - ... code-block:: python - - from PAMI.partialPeriodicFrequentpattern.basic import PPF_DFS as alg - - obj = alg.PPF_DFS(iFile, minSup) - - obj.startMine() - - frequentPatterns = obj.getPatterns() - - print("Total number of Frequent Patterns:", len(frequentPatterns)) + **About this algorithm** + + :**Description**: PPF_DFS is algorithm to mine the partial periodic frequent patterns. + + :**References**: (Has to be added) + + :**parameters**: - **iFile** (*str*) -- *Name of the Input file to mine complete set of correlated patterns.* + - **oFile** (*str*) -- *Name of the output file to store complete set of correlated patterns.* + - **minSup** (*int or float or str*) -- *The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count.* + - **minPR** (*str*) -- *Controls the maximum number of transactions in which any two items within a pattern can reappear.* + - **maxPer** (*str*) -- *Controls the maximum number of transactions in which any two items within a pattern can reappear.* + - **sep** (*str*) -- *This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.* + + :**Attributes**: - **memoryUSS** (*float*) -- *To store the total amount of USS memory consumed by the program.* + - **memoryRSS** (*float*) -- *To store the total amount of RSS memory consumed by the program.* + - **startTime** (*float*) -- *To record the start time of the mining process.* + - **endTime** (*float*) -- *To record the completion time of the mining process.* + - **minSup** (*int*) -- *The user given minSup.* + - **maxPer** (*int*) -- *The user given maxPer.* + - **minPR** (*int*) -- *The user given minPR.* + - **finalPatterns** (*dict*) -- *It represents to store the pattern.* + + :**Methods**: - **mine()** -- *Mining process will start from here.* + - **Generation(prefix, itemsets, tidsets)** -- *Used to implement prefix class equibalence method to generate the periodic patterns recursively.* + - **getPartialPeriodicPatterns()** -- *Complete set of patterns will be retrieved with this function.* + - **storePatternsInFile(ouputFile)** -- *Complete set of frequent patterns will be loaded in to an output file.* + - **getPatternsAsDataFrame()** -- *Complete set of frequent patterns will be loaded in to an output file.* + - **getMemoryUSS()** -- *Total amount of USS memory consumed by the mining process will be retrieved from this function.* + - **getMemoryRSS()** -- *Total amount of RSS memory consumed by the mining process will be retrieved from this function.* + - **getRuntime()** -- *Total amount of runtime taken by the mining process will be retrieved from this function.* + + + **Execution methods** + + **Terminal command** + + .. code-block:: console + + Format: + + (.venv) $ python3 PPF_DFS.py + + Example Usage: + + (.venv) $ python3 PPF_DFS.py sampleTDB.txt output.txt 0.25 300 0.7 + + .. note:: minSup can be specified in support count or a value between 0 and 1. + + **Calling from a python program** + + .. code-block:: python + + from PAMI.partialPeriodicFrequentPattern.basic import PPF_DFS as alg + + iFile = 'sampleTDB.txt' + + minSup = 0.25 # can be specified between 0 and 1 + + maxPer = 300 # can be specified between 0 and 1 + + minPR = 0.7 # can be specified between 0 and 1 + + obj = alg.PPF_DFS(inputFile, minSup, maxPer, minPR, sep) + + obj.mine() + + partialPeriodicFrequentPatterns = obj.getPatterns() + + print("Total number of partial periodic Patterns:", len(partialPeriodicFrequentPatterns)) obj.save(oFile) - Df = obj.getPatternInDataFrame() + Df = obj.getPatternInDf() memUSS = obj.getMemoryUSS() @@ -171,9 +151,9 @@ class PPF_DFS(partialPeriodicPatterns): print("Total ExecutionTime in seconds:", run) - **Credits:** - ------------- - The complete program was written by S. Nakamura under the supervision of Professor Rage Uday Kiran.\n + **Credits** + + The complete program was written by Nakamura and revised by Tarun Sreepada under the supervision of Professor Rage Uday Kiran. """ @@ -199,7 +179,6 @@ class PPF_DFS(partialPeriodicPatterns): def _creatingItemSets(self) -> None: """ - Storing the complete transactions of the database/input file in a database variable :return: None @@ -297,6 +276,13 @@ def startMine(self): self.mine() def _getPerSup(self, arr): + """ + This function takes the arr as input and returns locs as output + + :param arr: an array contains the items. + :type arr: array + :return: locs + """ arr = list(arr) arr.append(self._maxTS) arr.append(0) @@ -308,6 +294,18 @@ def _getPerSup(self, arr): return locs def __recursive(self, cands, items): + """ + This method processes candidate patterns, generates new candidates by intersecting + itemsets, and filters them based on minimum support and periodic support ratio. + If new candidates are found, the method recursively calls itself. + + :param cands: List of current candidate patterns. + :type cands: List of tuple + :param items: Dictionary where keys are candidate patterns and values are sets of transaction indices in which the pattern occurs. + :type items: dict + :return: None + """ + for i in range(len(cands)): newCands = [] nitems = {} @@ -384,7 +382,9 @@ def mine(self): self._partialPeriodicPatterns__memoryRSS = process.memory_info().rss def getMemoryUSS(self): - """Total amount of USS memory consumed by the mining process will be retrieved from this function + """ + Total amount of USS memory consumed by the mining process will be retrieved from this function + :return: returning USS memory consumed by the mining process :rtype: float """ @@ -392,7 +392,9 @@ def getMemoryUSS(self): return self._partialPeriodicPatterns__memoryUSS def getMemoryRSS(self): - """Total amount of RSS memory consumed by the mining process will be retrieved from this function + """ + Total amount of RSS memory consumed by the mining process will be retrieved from this function + :return: returning RSS memory consumed by the mining process :rtype: float """ @@ -400,7 +402,9 @@ def getMemoryRSS(self): return self._partialPeriodicPatterns__memoryRSS def getRuntime(self): - """Calculating the total amount of runtime taken by the mining process + """ + Calculating the total amount of runtime taken by the mining process + :return: returning total amount of runtime taken by the mining process :rtype: float """ @@ -410,6 +414,7 @@ def getRuntime(self): def getPatternsAsDataFrame(self): """ Storing final frequent patterns in a dataframe + :return: returning frequent patterns in a dataframe :rtype: pd.DataFrame """ @@ -425,6 +430,7 @@ def getPatternsAsDataFrame(self): def save(self, outFile): """ Complete set of frequent patterns will be loaded in to an output file + :param outFile: name of the output file :type outFile: csv file """ @@ -435,7 +441,9 @@ def save(self, outFile): f.write(x + ":" + str(y[0]) + ":" + str(y[1]) + "\n") def getPatterns(self): - """ Function to send the set of frequent patterns after completion of the mining process + """ + Function to send the set of frequent patterns after completion of the mining process + :return: returning frequent patterns :rtype: dict """ diff --git a/finalSphinxDocs/_build/doctrees/PAMI.partialPeriodicFrequentPattern.basic.doctree b/finalSphinxDocs/_build/doctrees/PAMI.partialPeriodicFrequentPattern.basic.doctree index ecd87b82d43250064299e303cb38f404bb9ffdd1..12149e31fd71823cfe9d78a598868eb4e2f7a67c 100644 GIT binary patch delta 12531 zcmb7KX?PVy*5*_avyg=Bxw&ihm;}PAK>`vMqwEQb3PK=2;L<=A0uHDM$__!63Kk$B zn;S|7h!}SX!U!Xdqo^pz2>7`@M1zPhj*|J#sk*msH(a0Z`SPQ?Z!PCN^}gp+S6Ai8 zDvH}_Y;Kfx3fi>EeynbO-L38* z?WHK*J1(2mNAc+Fu53>fPnmWrtKBH}4}y(Q$9tTKET z)+BaBLIU4#<{CR4#rN;;8qq`*&OrfgoAy~0-*GXU9gPy_BOp86P;;2)oz3kSnUgcT zd`kJO@`_32=vEmK&F{bMawSeukd{6$!@(9Sny?qDzK6$Y#j#9HXZYWO${fV~&Z zKP&3NPAIVB{=tr`G0e;E#r~!2VhI7NiiY%@`M@seH3q~`L_F$6KeNeh2z zP%?{-k!(iB_+>LPMzWa}BiY1X1Skvb{O-AK_P1!OL~Nd#QOB$L$2C*eWyr%x_=6D#7ZebV##lQ|J5j2 z^IcEDI_fnBza!CuKr~sJeG5pFyhA}EFS=utvu;D1HaPR(A7#6?**FUgB43>RwL4Q; zvGgZth`}F2whf7uiA9c0RPb0rgnBBz>*?bEoM_`~3nF>PUMZgE5I&)>Et{=(F!)8|&ULHV-Yzc1^3zC5Q)V+r}LAB(uiJ3BVO6 zbI~5>)84?fJr22c@<;BrvCeTa2(X0kWQCmv-P4ct(<=;kF^FeD)0mIQ>A8DGvhi^; zA15okGXHpGI-d9?0P=WM-(ZGigea@*ynJ9kwp<}%i2*Sd5y$C>g@cB(-EsPi^MXQs z)<5dAIx2fZnZ^>rlofW~G`J7@K(8=h#v$fT9dq-LUs;O+y67M1A_3X?Z$n)S;w7C} zLO`C1rNhRtSiQmk6pujP=|G;T!22ele7hb)Z(C><=OQ4-J4aB3oC-|K06w(D#`?zV z^Fr@MM>=%#PR0@hfeX9+G(I@FE_1U##^V{|CIQf{; z1?>I=zO5{U|AD3Bl({j=9Nx&>sEIMWxR;Grjkt|BPE7JVcjK-}ZCRy)!IlOXJHp&+ zfZ57c5yU{T(uorXzKq#w1%NjN@G0A=3}K1EkOK{^kcQ&@1!6THJ-HIX_@yCn{Qk)Y z*%9UaA!QtIWc;D>;E1_o0{cm8eD{ojY$HlhIkP#0B{%G;-Uz&^ zD)|4?V+RDyzJZ8Luh3nU4?AmaV@nhH7d3XaT)Dbfx(ZFAq!8j8rq6Z)drA)78$Y8( z@4oOK{@bcl@#ahj6^=o8iR%yj*xQM`y0!;7$~;p?_!2eu*}|HzTf_s!2`U3>;Q>IRyYKfvzB&h~76Zgn6Zv|^y`B6iY_;et_n zt(|mT+l4>S<$e}SgDeCoR3IHC2x~=pvQl~R%3y}>o?m3)RmZK7I6xysP2(UTKpSP@ zgFF8uB>G%{I5D9ZZsBtl_7-9QylhfqFsrjjA=X+*h?hjmKnN4# z219}RSAGN2*u0z{tL2Y)ki(Xy6SCpMnx_p9-bX`J{bYX*%yq!rGN0LdG zChX)_m!u?*E(u9e{GcQfpM8RCd2~TnbzN4IgF07Am)s<&OD@7IT}tRl>Qa()gDx)= z!vU#F+He@ov?P)wd-nM($hJd?z^BCu1U;KZIa3P$qMWg(tNQ5y_x*;7c=LtVj${L(21 zVH=Zlh4%SK-bw0z;jwtxx*I|~&-{f8ZCMkUq=b4~ak^J>8n_4h>caiY zXY-8FW?Sotz^D*X^YwuB(3GC}v*A}m?&B})}O4mI| zxkpzVpswpAazW`jH%Ta6!76nHt5?@7dXlKZZ{YFMFFrdm&{=x{$A z67$Ajmi5HW9)zJ*%CaS*?*q8@>uHs#mTxtrS~<4$YB`kpDJ}1?>Zul)H)3|>tZ5Zf zlc!9pD4QWZ8ik)Pt3`s}@()B3tG3E4JUkj2)Z|!U)#Y7k)pKYOp*ggnRw-`|$(s}E z-SbjE`5Doc2{K0t*I8xOEV9Zeb0K!u6@J-gcE8aqpY&8AJB|kQX)~XPZn4^CVk5s& z9<_Q>^soZkFTvPCWZ5Gn4#p#8gmwpEDJh4FL*pPZKs%+BJVgL<=Dbc%QpxK#DmlFr z_DLl#jE7+?!6ucA!P^TZ;?M-x91&yF?Wfz6kj-V#fnghZeMQ&|LKa|KuaN1~PYK!1 zrVGjU?|6#cZ6k4bz}xo_#CRo8f157QSeq`;XtLta(rqLVzrJe?n@OEX3e6^^7;TeM z+=~r$DOUOnEYl6pEcrBc)@2xI>xY$oC3wo_kzk_&Stdc)y~vA40(4i;rgns(BtVK( zHtn@hHpTBH1gXJEdXgHP6z8Yo%N*ZZjf2WzC$JwC>p$2;%PiO>{xKE$M*QHj`MZbq zoo>itKPcM2Hqstr_tE}4^;5KeD{0SeTssX`0CU>q+U*-(z0J;l-rphOTN4s`pPz6W z8dP52PEXS7+wJ-s5X`=@iRxoe*w}jpdu1gyp-B0 zbe<5WDj|~%w#(2dvKvBYj$sU?)K86JfSp1oTO6r^Y3wn(`1!BUE!v)}D<(&{!9 zmvv`nL$FGWf1_}3Pk|^=vJ4!&(3uz-;lS<=?T}q2#iQ?Z<4eDZ6k&59QgoUF@wk}u zG>uArI1-!Mv=r>&XNNq+!TTIa3DP*W;`0vWK@YuW=z7&N-+>E!r?@l*f^flidwZ=X znliqTt`WWdR)A=HLQ@>W+k;K1blcq24N}DUT1di0UmWkWAecEFGKV7^auE_nSZZ;I zgVxjQMH9;^y@nwZxHud}&dBsyNKaDbg$_MX<>IhW%!5OKlp-kw>`8~{^$;|um(-Kk z$rGT@JJj43Js;Y`ljNn9t#udz^c`&L)$e)gr}X0v6`+BS!ZLVY(U;ts7_r{hhdL;q6h>}gw8IkAIxf<#ezb}PRFiuwUeRVh1ZdwKlpoVIlV*52n zV3kficLJxQA>Icv91P3uTLm3O&Q@^ps874Whmr^UUT({@>FT+7PxuW($9b$! zeDx{Z6`+lG@=l-GkTW@-WjiTcN>kjoXq?t+<8h$gh#5-ksffvS>Tg5w>}u%FQe2pY zHu3vv$hPIWu$?+`3+U6gpJCIhgE;>@U`lVwG(&ZQ z-K5{Pt=`@`&}J;bosMlTv1SuI!*;vG?VF(od@F6*%#P9N*#*`9h>QRHy|eKY#uC7_ zn;f8)S4<9E@aF(E^Et3>3k)U)nzz86V!$5Ay8)gKxT2G#y9!>c+X_=zX0m*-d&HpA zskCGodZ=gU(aE%ExnbyJ%ZI#k8?OBj`Il|@1~~fSO~?`0y3mAN_cT_f7o<9vrS>Y>=GaC!nMmj*)Gu&jZ`TE+^EW!-LQ!@nf#-3m$yy+ZS&_J z;raaA`i$b{*%0W$zVhcE9j=`5`p0)%&0#;9+@rdi+-v(BaMo&aj}ARoZa7e2InMotQRb{hCnb8I;<@^Y)|ncCLNeqQY2X~dPHUEzUor2(`GSmTmiIQvea64P%j}kg5 zSfD65;u6tLn8)f&W2625b*8Z`kYl?cqsh)A$`0ag+6Pkz7xu$IcEBGlod?u=acMFW z6O%Eo-Zf#OzCzsiuT}1q4e; zH3nQVHgaNb-y0@eoIi=nsbovw4Z@H;-9hnGBMOYvwa0bPR)3CUVf#%cM~=P)jjY~;pNWlLG~sX3@#D z=BCJRkg51-g8vcaUGvZ>Pq9nX=iyd|)75zT9f-wmXqPzuBQ8iTHbJ=9*93dn)l|8Z zX07PYKf1zIg3X1?;<5MP9kK6S=mW9hqq9)Z?lO+S^QjS&h6~`e8+t{U%INb$t}BZ~ z_)+N1E~m;xWpgSmD#s_%Vp1(D^Rc^USy|gCs=vX{)SsFlG_20E#%oDcUnCeXKEa^B zDESgsx!ZqBi1>+IQR~4zY4X#g#poPuVC2U?fGFzIWGp?&Pm{5t@B+k#I%(>3Xg{Sk z;vPV_kCli2j;s{^9a(uWO|k-y5@a|s1G2xCk*IGg+aRfz}Dj+O>LyS{so+)RM~PG9tU_(O!yT#V+2UN zcCRF|2h)8~kS?&*$70D@7=+r(5zj*VUhTajHkIikE)p021q0ZubeSMC(q)1e#@(1M z-uwzaVU_7B5#BflZ=uTiz$*yJqp})!r4d`IoNxwv4DYmn=r}E8_yQt>riK4vEa(i(LLhHEco{I2 z85qC`Q$mD`vRM(3!4eDOq# z;;7Q-os1aa3Sud?4KLwTN`LOT(s^7ZsM)e2Lj}v7zrdSB51y3BXqhZ7U4cNc_bTA} zxdu;_PF;cJ?5c;UR`Q`6{?wVeoZ+Wy9=&DanGBtT%Rbj)GRg0uxbt^HOxT4Bj=tBR zH;xb6dNyVNXUxd^G4~wVkh>wgnq6s9uO4e-$AtSgZ?TM_67b2{KD7uuRnh3|O#7NHbey9V(N;MfifAv;g-#E&wKPWBhgM@G z?j_M4@BsWF&P1`~kmqoWZb$8U3iS00ybBqr6_SiwSlP5fq+MFA8RsC47MI!#e4}f$ zg3_AlLaPdG22Sr9y;-$py3m_On}Nxw(d?=<(}ku0Z83!wg}CHgBRREPx;&rNhId(H b3BX^{HR5J(EE6m;tFb7KMS=Lu$_D)}cz7A4 delta 20534 zcmb_k3wTu3wPtMsNrt>33CSeGBq0e2@3(~aD-Z~f09Gr{AsI-9yvR%d6&tWZ!5bAg zz!p&|)<;W=LaC%a!K#2r1$)6^QRJfD+p1W-Ywdl`oU><6g7scLot)Ww?X~{( z@3r6i%$B23FCB`CSlelP@_~p6(2R3DEi<%=zctw6TKldO+##kiw zY6)k1cX7=2F7-Bg>ngl{ZQ5BEJ0}c8y-%7lea~y2zocr-s(;P8;z;@^gg`_X~);QGV^yMXLdv55So=2K9sybF> z&a86HY+6#4(ozzlDDlGDo&Ig>x2@ZD+qPb^Wci=E^8uBpyX?M5mXpXo>kb9cZdBE@ z#J8UD#Qy+SLV0}%u*BSf1T0aY;_vQ<9x%s>XqH4YD;&{O9g(3S)`A90DQHUV(cDy9 zT{owxLFWl+Dmy=2()0D1Sk2v~EAy?ff>|xVq^%AIQ-)wR!icX&7-h3f z6npx6B#N72dcY%A0DB~WJ>dYBN&r~Y3IOF50K07gBsA1|R+o7j!x8Y6J0J^QvqCr_ zA)NTW5Kvx$aLg7$T&v$})C0w9R@Pn_5hpk};h$CjU&x5~A{@YeJtDBMl>{uHAh;qC zFn1y~=jdi8LO(Mx*v?}_248yvL_q={SOa<7wFjGCKdt=hAyK`PM6;t7ozi^cb68q7 zwj%dZY;z7b{;RHQXbOn0?gmew${~Z^B2eEH2ujp>YP}9U5K*M2-V+c?n*3NJmENV* zb>2$1%y;PZ6clSlW2&5}NK%IZ6%-4TqHIT?y0WI)A3(9n>I!MII)EKUeWTa!#!SE4 z>#3-6R|mYcjv9{;tgZ{nHF_Hwz0H1aUBK@axq<3hFP8SyHlY9RN>9ME#N+omYU=9I zf>E%psdfpvRln3-gMKN3wVnoSiw*US3Zg*0yVirH@qc%qib^c4Z>;qMs_W}e%MgLi z?WwDz%<4w>(njx!ChUZ7b|7z_nleuy;BBn)D?Vyhin4n99gR(Oa|yDQC33#HZkezY zs1JB*+$g2Fi_%?=T5oNApdz@K{r1`df2F=yxqOE=XukUH(brIE%+n1X6+lczOgxu!SaF(+Tec zOu-(%82=Q=(Vv?g2OXRcJ_s`(;d<6RoJ;RiP)K|vO`YTv6CIr`qdUKhNvJ# z9Xe>Aok@{n)2oETsS=fjHjWuY@yiF1&v&gfP+k}fqq??b5}B~gGs*Zkl#Fyl@Sh49 z$Lz=;p!Q_QvB+qaDl(C0A%oZMz!^;EZxgm30apkWPP7owRaE!17PYlW|y;uZ|lUrwXhs{<3NivMU;_mGNMKEm( zm}Kq=CDV<_b}MB5#EwjIz>drzmSG(6i6Q)&Be)&25v0hV6~DycHxu?@f?cR`nuU;_ zvEj5Mj_o`#4pQNdR#HhcjMS=ve-AXW{BM*n@t+N)JsZKlr_lb49qr_!9qm2MIZ)g4 zA3K^mVnKst@oZxJh6vjJBou`3oP!v?Y>#K==%ytW^f87-k_{tzZu&KFBD3v@5X|k- z9iRjKlkLpeO<7s@M3~*XS$oDW?HDC*>=-QxpDeaNQEYRb7()91T+DWA!FjeZ7d7a& zCYiM`LU0+^j>Sc{R<(bNnIIAZj62DWKKO%;G1zK)(>S^U+*mdu-pKuuY<2 zY_l8zql<)r?8)zO)(wvBDjCGjR)vg4K}M-c2BEVfV{GW^qs^6vHum98ooRB6Gr!{p z`>=z;osdDk0L?sMkRYZy>;=Vb$_#TmrGI-?quR;li>jdudtIfZ5J8+$D0xCqGESw0 zu-Z{l7QVtV7gNKdgAv002VoGqVn;)7RDDUM;ai0U$_%3+YK+BBg3;iuiTv?abT>X( z>B9P;v6y6Q7j{Xw>r~w(OhI?~@1F!$=o-=CFnx0!Lf`r(Qx6?d#r;rEL9%r=%SH-0 zqbH}#c6}2IQak@dhV-#i^^uI0C_WY>Q$zENTUAa+fAiwtGg zv@1%;Elt{)Ww$2NUToBA-2u6=@{f)kIxO=Ba9e5-ZVU9H{fGjwFH+&DX{xC41aL2) z!QJ28%iq+{dtiY>%C;@)sIT*u;8upe7j4N%RsIT3o!e7WBQ_)a*4>Ef9e&SBZ!g^9 zSX#ZhkH2Xt{UHqAz-qlL=DTG+ZSv4IgL_qVpvsMS#3lx9N;G&ItLt&r=x(GP3kM&V z2D#C~i|cWBhc8Zp`M5)H*HbVY%DCqor0_SNg6R=WxH-goJPi{x_ne4mW2eZ$aX+Cu z-|#ey;se$}r${}6zxp(c(>DJsj<3yyTt5667;Aoe=ouKUEuK5LSq7PJJl2mfL9Xgd zy9vG2rFwoC>Gp&NW7gEyk`P+fXiN#qGD51-GF{we7w&^FL^jKC*VpP3Q`!N7eRf;f z=4kzh8r*}?#6wDOZx+EFvN9ngcS$75o<>G!#986lu@fIsz#u0y-MV-Aq8&Fw5Yb_U zoBlCj#*q;<(d6Mxm4~6I?u^32VLKkksvQpnAq}hTMrB7zoLbu8gp#{knyV#TKDVP} z7=pX3P%=IJ8bFYs_C!p&I;JT7{%|zaA;sG7U$&!*5ZTc+tG$ke^8U?EB}nRxmWJqT z$B033yE3NtSt&My(RJutW{Pzut$FYd#g6sxgUXr^2O$#PwFw3qyOkplUVo*EGE->S z%2$Ui^1`l)Hi&+@lOxziCkIKkaGWc9bAwL#m5)ounL?QzXGLhORN<`C;-H0CLya}b z^w6V*;7C-pQ1P!+_!lzuAd5l&c+Rshf#DwOvS(o!Yqmo;3gvHA5b}uUU>@I&Vc^xaXW}(Q0HD1 zV)kLUhaHv#Md`<~WBH;!kZ){N?-l3C}rMxb_H)p&_{37=rEMAl@uM zXPX5^O@^hL)%m`iYvT~myQ*soUVsr~pWpWal!%AK_0W}FR-<7&7W_o1j(6>%o%Gu| zyg*JXj{gC!6Vr;!_MGi5g@?ZgefY_~&@W_?Ist7&rCR$1-i8mEsY<6h5eufLT07OK zRGSt{`t5wE<*6@2QE=9y4LIH@LL4Y09*1PU>t)DiBU5equ}P?JxPn*Pd&e18s)C!0 zQY8ww;R0MpM3FLEa2W41#Ocv&p7k=&Y};uMbrkd2p)5wlOG8m6hN_9;C&z-1-Kt`r zf@N1L*q7Q7OD62FFXeqtz#y7HT30DMPQZ0+rybN1)U#cI3ODitDR3iJNtE%}u)Yi1 ztHPvmk0~&>3z#7b4HCOcjJC!?W0RP;h=s;#k)bR!2B7?2-oG!5>0K4w(q&0aeZ}%c zE1K#9-fh}8qt9u1uvi=^7Kw@Zm@#Ac#r`nM;Wxie8vyC$lP2^FtPU7+eZTlJaDW^C z8_;j)_nlqOHcaVeri`%bQX+LJqbmu1H@lFFg8fo;lXWJ#`+>o}*{RBTJ`xaHSzi(G z`U8su5mpLHbUei|hRt9~fj;*_-QS>Y{}NAC58Bhq!h^`11>0I8b*0-pTH@_p9lozo z2xb4N)aD1GHixKPFu}bb;VLuh$&**(DRPY$Yk*)8`}4jB`*M>cSgX-NErv^$6q872 zcj^~Lt3;L~vefQ+KNd=)?^-9k=-S7Ccj!~x?AdT>v|Tnp$E4{>QkHB zu0y?Yjk+xePRoiL@P{ zJh84*1lETB&9$ftJF1rVwoyKpmt6;`+P=oPu||v(gb*yJKD4=pmuHFurMT0J&&I$) zTj_7A=9aZ#&Z#}u=nOVE@y!}L7gR0PZD{F9pnE16fN_^kj|lC2W7jkT;cOM*6;=20 zHgu zIzK%ElH;uXXiJrLTcBsmoPO?^p5>m}rbdrjo7ps^qr>6QuFU8Lm3G-fqx73cwz*?j zPZfwCfwd5Y5+)flQdj*Uf=+HYrWpvp<*rbqq{Q z^JAH&s@_$%;qW$}%F8>wQ_{4o0|oFae&87N4o<}#j-p0ypsBI0$j#joU~npa58T|~ z)o-F0;c|^q&X7`O5813!RBQrSlg7)Npl|FHt8aYmhcG;42PXL*j>Zp8Pmjna?aX7{ zcC3L&R*d|-1>^YD$?!YL<}K49o@=Y17yolH5_v!;a-UA5$WECGBV+fO#ty4Q=D|M6 z;bRsK|AgWOhli=Cw?bKuS}DF)!Eu>bwIN96(&ix zzNRO^*4Jr4wtl6v)lde%Wi1c$^V8sd{_P@&;-k+&HjlpzV`xS>l(25;BK%?!(v4sX zm5$VE?iwCz=KHeKjbNP2XU~CtEFm55o2D^Gx*3NfP@TbHHmQ~z#-@un+`vob!rYN& z_{lJ&i-`JtMswK_j4ry1VuYkrF!l#1Fr#yFy6j0}On4L0Wpu^{$v|f%-}5m^^1Xnb z1m6qNgM7!N%jn#36CCFw=ELv#*^j`<*Uke!TO}z5KOZn3zKr#o%GX<%e0l+lV1CJD zt%b?^QQTm1Jr$KqHb^E{@n;u8zpge!Xj`7^y2Ar;t{{O8mHj3eL#RRIwaZ5b%WIo= zrLte@tks)P9?@BAusSALJB&$^wIlQ-SUX~}R=g!Z- z%};w_7W=cLkNqiKOMJTAA`-Ijpn;0#>IxFx1Rnt~)TyYEn9|9+PC%Z=fgPzy{NSp-$0YT8FNL*8v_B z4zT+%aU~q$S69RE*!xYLj|bfdpo{>&!vg+glr+FUPNgLHold^x7TC(p=(z7SvtHA2 z@3h*GxIe-qiTffw3EUS=-1kb{ykreL%y-@fk7{qfl))2jgNdwTh8)SibGB}|4Y~kJ z&(O|fWNKwyk~{iRGWftwtdJ#%zj=wT;(Xyd(|TftQc?NrJL%?E7B|Obm~JNGv+m|M zqK;s_w&JGAiH@QM53b?dc*~deW{cd~{ufgDxhNKuW~5a3SBjhZMi+3cf*D~2%|5i0 zCp5v3n5*Q7B)x=}H9^1FZ>+9KVk;1`B({>C1hJLKkUqX&)dS)W8{i1ApXglPlEIH` zgpXryA%DdSI=&VQRio~NKJ1nZ5fOn5Gn{{c;zmTYP*DkPRR)DK@Bbh0Gk8KmUuow4 zMnYd@H6@`R#Uu&+7(EH-$4uxeGq^j6_2I``U}DOfLD{#0vTtRyX59si!2X_rdoR8D zk-MQ2JDHCVU zfMJwr7An`Eg$>T6;B)bRX^;_{lo@1eP$tjY2G_IkB7bCzHAjm+)68zjG=p?brU=rA zStzCbmt#^#U%e%Fxy)s=GI`k!n8JQ$$@^(APaFHjB=&Pl)~;X{-@{=NYqjJZ%+x$@ z7OISqi`dQN8+YNb66@jv?|>fK)TDIgbZMvF84?37RDN7q;DheRT171@@(W`7 zVuo&nxwJi-o&49+AxFHC$BVY268Dyrh~X&2ci#iQZM|zZyaa59OO6y%&B7%vT3U!* z-{GWLzLXbhkr?9A63-Tj_jZ`iMfXdhmr?ml-&7aAFPGA~YY!Y?X>Hzz;4Kfse)$nt#vW2# zi$qmF7p@scSIxpZ<6O^TagDTCoW#F-6ds{-y+St+kuZ=Lc>TrjaS zs(F%oO)>whop};7&ByJ<#Ri(6zZb^v1NVYU8|O+ej)ioVF2P#vQH0+ zuBhemDpNXt;Zev5sRB}H0_gELR1$#ok3%ucumcc}@+B&OK~KOvurLfj0!q$P0F>AP zAcZD?<@>=y0L1$)l8l-l@q(VH zO1g*#|F8o|?>K#~fMgMF>K6&(`$@KrdP)xvlZ{ zxd3e(gy~`gVvT4S#$NtvvrAkiGQ>fc(IrNpyxt{>D|eIJqDvg_)}e|nann<92TQTP zA*Nm*SRfn@X=L<9&yP`|`FfSOKEUeSO8-so2Q61T{4qbjFRX=;wjW7t*vUmd4@)V) zS3D2XSc{!?dWmMEYF*q6ctEvIujJgPSl?)8owS+O=N*9xvVPN4D*U&y;WE@E~e|;B8^hU^sD!vmh z0%uoMd~Ou`Qo;A39Xq5gh>v%98Ez(af@kf3`!t8b`e1rHA~{P5kAkD{B7gCa+5+fh zi~KBV0mdMhoJB)?NDoZvObk1Y1u=|*sdnb+Rf0)j=IInYo1gv%^yQn5LhxH2FZ(Ar z;KxFdxcZ{k486DTBL&^*`IyQ$@cHromxL*Y~^i^nujbQ-j68?Gx zfL{RUsvoWDI7#7;MAaGn!)#HlG-ZPEB17pP=+#8*AJ#7G8^vh4f@=%DZUahg`6HZU z4Cj4U;YmL46vS}%DcHwOXNie8_PSWpF8!&1|$sgPZ zuK1JatG<4@gpbNo+DMV;AlH{um5R=EHgidN+UXc#?- z1<1;iM1PS;}#!fbgeZxN02{>sQy@Zc4P^@VN0e7&I()Xj%_ZUlz#5<4=#2=5Wk^o&V3rFrC%r=rxUsjheUaPvdB~}}Htzwd1tMnvmRd{Pe z_tYG@y&HE0j+49ZTmc`j)4IFw=$j)Uo`uKb`MNLRRlQ9g*D@Y=@(HJKw43%d?q-zndoIF2yyJw%u~qk!0bPn#uflgw z%g28LBjZa^zfsNjD683;X8MgCpU@n`H~$NdwMu(Zg+nnvatRh&dcZAMT4~w8CO9#8 z1}WVx;cyw(^7-F^2X>ppOeLdwC`e*rN-Q{d^M`O<%9EI)M*=;`NKkm0+EYZr_Ez>R z(K2v8;Ffe3=H;6sS!eBymwNCr#x}xf$;~^Go6|ZsCwqnz-~|z^Hx3j;RqRO<&ZVCG zfe5w$I`T7LK&CeCnN;>2mZc5EtKzTRKvYVYM5cFU!`Vqm-%&xIrMVR3@^?G4Kfo)3 zrq-j8Y$U)iY3IswDRI8z1Va)vI9Eha%qtdTlBgNE22nHVNf0$NR|z0V6wi0Cqts;n z%fYIERprV~ut6B)XD>o3rHQVvGMA&!;kfP5xOqtb#82_?vW>VfSx@pK<15ja9!+=P zqlhLY%_QMpacmT;%oUx+!rahK<5!px&yF!quIMzxj^H5+35&^)B;lYWA=YEHEt}CF zF-eBYYxE>ocuiqpajw`JjESesCb@q(h!1SRX+cvGOW!_{WodtTEZTJ*w+fBl9`Xin zoAvU2i|H*Rw73(69IwH?1fNKV4X<`%ALa6|y0Yh@KGI?F9$9QFFH2@|tW#d=;$#LL z*~q-sitg-h9h;N$5MB~~R86cJ=bIak-^%IZENxM~M;{-M0~hEcmSi3H(bN)6Kh;7f z!hZVEBOhtmR5fvvP_Ri9-Xscc5`{K3Rb`QwuoF`?uBxvvQdL~VU(R5Y*}A;em`s)g ziNfFwWIsS3x99N}Heu7B>S8%4#A{vb;POdys!1o{zQ^c;j&OYrJSOqcL8PyiKIkCL zcbY!v5Xd(eqsB*PAHE&*LB|Kaujqre*?j?Wl6H}$lSH^+*Rb9ZzwzlV=8jrNG-bAI zrODOSW}{aTH6$;H#nNPqwpe{fai-*>X`HVZ$50di{RSGP>xgCEk-+l6HNacXfjo?>|<${rHD|KqgQfsPXnQcK+Lu zFt_+m<AQ;m0}w`SY)h?WS7 z@NF%f=S=?5bb?fvmj#73OmSiE65p$Ne18@6 z`2XVlt03?Hu;G11Vc{HcWt4ue$Bn-(Bz`KWmfpiNYU2B`FRI6=0voMU@U6oitTtF1 zk@=yuK~4p0qb#g8d|zO`eND`5w5 hwLOs_MFYYpB5Og4X8t=AHMUDpW785ZKbp;^|1VLwqrCtC diff --git a/finalSphinxDocs/_build/doctrees/environment.pickle b/finalSphinxDocs/_build/doctrees/environment.pickle index 4ae119c9ef1d056329526b661721e3df440f2945..a0f5c8785d8bb3b57b7b5a0fe127a3795bded6f3 100644 GIT binary patch delta 651428 zcmeF4dt6j?`uIC%hM76T+(7OF%y7RBGhF3<5yDFvbi>Wv0xhvlC1l>Zg0@TTW`Q1= z$8Fs}cXPX~VkPdS60IMarHrPz)fQB{YFDuOQo0qtXJ+JJhKdRb9M%hN`)uC*}bU1RvBS<;z*15ONos+n7SpXRGa|4)_aOCp> zU!gh8hcUv&H>3g3c5{x*`Jdz2Wnn^(DOhoN;nad_S1yaN3)+I}dAC;0yLII?rhX`kXWlVfbNk(1-mQ>5~oYTh1zVl6%*Wv?99~KzZ%3o zRj3q#EqdYABwr>J5={kRu=U*>FYDiP4Z_~IXsCF4LXcpa7$OK!A#C^^U|gOPhBt3D z6b7@)#tC;8juUDMVr23=s%~CzyO3iVFRV>82_Esm;PGc|h+v#3gWLa!pOG^qLijN( z&QmvU_U$w0-@0&i@x0l0E|@)c{z{nnm%M0v5U{mpVuWy)DFJ`mhp7d=&~ZnhJG(3b z49jyOBrBI0U~9LBpW_C?)~$s}?6Lsi&Rj2OS(YOg3?{iC&(sTFo8y^C2>CyEU;EEf zUVTk*>BM>cW?r}Z;bPPZY%Tyugw#pVabEjVuhJgf}vr;L^->1 z8C>=4#2EX>3Tu-5WwUObf7k5!LVZ{?6Keh2giyhl8N&L^6GANB_!?hfkJ%URO3ynv z2FbF3o4}Yi!CyEM9g4Sf>jM)*@g?EHR#PzNT%0SHMZuDX@}h+0d6~jZSqZ|{ z^&DTgBd}1xIlr)dA*?x=7lLnV?#9=C8R_rsQCcuDGz^XJXHE1{@3sc6E=Wr4y~ zMS=JMVQ}Qx3E}KAZ?LSr!drMCAw*am>khXUO!X5=io%&WaOb?j7$G(_0_KHI)w9cd z9d}uHsxScLMTO&_TRGKNvMi_=n8pcuCQ;ZrA)T=R^WGGT{ca@g#r68*{l-1DvvMwMBxiloc&4ofG&Hg8!l$&hCZ&Gx+3!Yh5T$^yd8Sj`gxIF zFvSPBN$t;Hn3fvBg!HQnne4h^R2t!M=c}^d{+sM0EJ^UOugBjNMhmH79zsQt3=9uU za1%-_!L091Q1WP@j}UB9Kw39`PJNaitf-ipCfpOPhL_%uI#h$(r0a?&PZPQ$jIawe z6T8d^A$*~MnIn_)(6!@oxlkS+!{~AI zc?r4199O8ce?$9|6A~++*Ljal)OE-cZ^r(+Z|A zjtPc}^a;WE{X=01TM%mBf-^7A4}{VM6TML>_A4?s#iXKZCS5mq+DcgSZcdPW8SQDy z4G=nuaQXduf*)-Aa#{kawJ5Y;1(IR|zF{mBEGvjxktr7{Zgk_mpNSrnyzokaYEg=)n8D8(kiMJ7 zGolm;a=uiQq9#4T=ZaD^`vCs~+y9=?e_O}f#A`7Rw)2mOQmkSz|7OjAxTb+m7Nt0^ zPX5IK>Ge$hb5V+)_68p}AieL&FB2ux_3!eYqLd){fS)oTEqR{5OO(vf>-ZZaHT~bz zy#HZdCtkG7lJoOKDd}&o@r9z4qAuXy>X+UK>#XM&icK|6TvRcw>s; z4t|e#?ba8*;dA_b{nDEmyRG~e{crka;ha`J zT)cMOznu~TF23}S zTeA6M;Fde)e&xX4UQof4G5f z5-+a!b|xPtO2X&w@V^wLol%eTyF_V!f`(5Jr31T@_E>W>NY!xPrf_U+VDt zs*C@3zf{u^aK!=sihi+U+8^fgMWR%)bPXRXN;jA8{zzbM_a_&5B2Md{x4 zck_q(A56#UYwzG+7q6}R?@N53DAhc_dM*EoDDJ3S&u56zzdEkwH;dALHXY-=MCreO zpT<{+(pTzuzD1P2WD^dDXUCsYXe3x(KI{u&HweL1&^567d+p8)p=NF0gZ?C#}I}iOY-K%-&8UEkm zOSS*V;J*~F>AvjczZI`}v_HWAQM~5a{agMzQSwTN=VywN_l(DQ4^i?dn#1oF?cZLX zuO{>V5#QAJPygW8i7)k=7|(AKC4b#wexLYC|F3885#qIgU)S(gi;_NS7k^lkA}{mj zeMQN#=NNyFX#e&m>F?mTix|-ziEr|Ip4~FG_b@^9x=hN(*A{;x~xW z!lWnp+Xke=d3=K?JrK8<--nXZ{_TBO`A`0C@nS>ejr?9wvQD^<4;H1>vyA*-L}}eK zMSPMdJ*5xgO9rIA0DinEJ^kJF{DDuO>7Jlw{#T;3wEYlY z(BPIV6dj(Ba)8!Px4(f;jw%l&a)B3|r^`!)adfb{iWd27G4|1!ak z&l4s2s&f7sQBtnf@(NKJcf+TArzq*Cl<^ZpDNxVz|Hoc-qx1Z?-=O#{|G0QD>W3Qs zHBpM0aggs3rBwIDe55F)8K2|d5T%^wH}KJ-l)KbN@VPOInFmV>m_SJbUuge7L9oTo zgA+P#3gQ|Z=h*s{(Qs!slOVL*yDJ`a z&-zCTm9v~*)cy%V-aWB+L!wUpfcE1bu<`a-;rf{-`yX=9C6~&D+S~kK`UFY5uxN!& zus!P`SZAd}-vewslzK{ZU_6RXVBr@`wBugbKf>B9j}s1llwiLP?$F|mZo7_vfS{k; zO2-|9))XdIXstYcQ=9vwmgCPV@q}+P2cm=zT9jb$mWH3{Yt@*PG4RKKsSQHI@6@OI ze$b@W#0Y7(IKO1KuPO{2w{-9?DMY>(zT&}HczXwW;ZFI5x1R8Yzulk%OPMM}Shva| zRNtn9=CA-ip|gb>fu8`=ZH(D*vxnz*+;{wUELj@~crzV~3FJOZlJ#nqThSsv-482! zhE0M4a;a|cC3AMqX5fdlY*pbqev$}fcSyp7ylpz6XLX>Uxf{RRy0Af3R&A9s7D_ml zgXSnk4qXcrL5}UPZgCo{UnV)j!;BKN@0h`uq18dxbV)33W4mw4zKu`3CBnBG5}|6M z8z-1wi5aF_({r7U6KZ-=py@i?+U0kJopJsC{2mDt>vStxLm)p`hs*9)?6?uWUzJPB ze|EpZol6KloGUX!N4=VZrtRpX?_W)$=+=StV>TBw$MAM{e-r`z3vDEBB9zUM7Q%EX zql1dM+7x)=`v^|Rzg-PB3FCE2-7?tiy=Cy*TQx5*OlbK-%tg7qZ?8%ewZEuc9jkN5 zw|M8y#Pi(OL%hY%9?GOa?=eX{SUi~%O;6>Lbja(&i;GfaKUV{G$Fm(DPFmKZ`M#r) zMEmT{1`68S5>B(cNBzC89(!wkl-zrvb1nxp)7Wt6_(5ZPb@*wKN1WjuSpYy>FWmNyfbK{pFWv}Wx7Zx4v-f7T!ax_L2^TCo)FTC&^tgndnEcZ`E_=B6)SK!Qj|*y# zGN$1^92EOWGNAT8HWb?30`Q2?rQx9MOApkDFX9pWfxTl+E1vzn^O-G)btv)L`H~{1 zKgQuY80y1(b@07+kY%Sp-At7UGF#P%>33riYjq7{!H?pE&ac9R)|MEd{YaGKPD5Q1 zlWo7<;Cml4)egUS(u#+sCTSeJtw%@BPY$c-je+(!NtV!3>pYcOCFnHix5&an&+Fi% z-_rLMeuE522sG`M=Yfy6^kk3BLrPVMa|sx}mU7U&O_~7*pT)e?=IJ^GG=0pbLRu12 zDpY?`0CVn^>Y!n{6kRum@MBMBw0xgK-^Jf$$zYqyanRSm#K8tDI>xG&nC)z=1KT`l zq|m%w2R#xAX5uVmJYn6v%$-8X%Oy}bOB!ci@6dCFHX45MESnAOWlRxte8)OZSOX5B z?qGbc=6Bd+s6OV+fpME&4z@(}9i5F{p;yCR=eSiCDHjOU9q8#g`S9KT z=?!50uPPest_WdaPmaS^)w_tjN+^5QW|aZZ7{HtBrmjbsv`cBup% zUJqa%Cfae6{Vw4>%jUf7zMtMtnTbwrawvZL0)&<+!D*0|Dl34tThUq2@HA`qiQC{e zw8~D2Mx$<(L1maU;=GnxHrHsnjJeGIKZnEjjEk;yA7;l@{}T6Z{$JG5!@m5u3$gsH zF_Pp#d`+b8&RN}^|3Vz1&Ku$7_ooZL{GcyJlL@Tw*ujn}Kegg#r$*t>e3=0(-@2*c%@4S9 zJjPrwjXL*ri9a;|knHI+6CDLuJy23AdF0l#Bie~Bdvs^W%H*P# z)ft31?~~Wa0I&5C^rhI-Jz(fZ{!CipqjrhIL(^G*$X9WmV4fu@0b1=RI=9YcwLeCy zeUz;Bb#4-SzX6N{XlJ5d`6sHK*1glI`^w8wCA5^OEJFD_42J*AyIZDWuLR>GjQVVq zzP)(Q9vWKmI%bZvuVxcY$ay-)kir>>Ju<FJ> zRKY>H9~(9n_+9=i=92b&$EvNfluBq@gObDFb7qhq16w503wLqVV$J#ap-)9akhVaQ zds5uvls>=_+bnk+w;8lqM&5ns`kN(>#Xdo{B_5tmm0J}i4Lq+H&c)q3#TH4VkhUfb zzHQUQK|PiuKwhdW{S@KF_h=_wFt-uyr0ej2poE71p})*_BUYcBSM>eDn4+`WPHCfd zJAq+S00$i#_3^@A4i}y#jReljb5Q&hg8|zudW6PsU944)p5d13CDEtPGNFCujFX+w zcY9htmjmz4Xt7*1P z+Gm(QIl`6=b0Nd62hgQ7b*;J(&Xyt%z93D7ErmL+v0G_^vEslOw*9uQnoWcaM=>?- z49T1q3@0%Iwm=d+^ds6cwDV4xxlB9HQ5Qe-ynqYHmZNm%RX}aIKFnHxId?815SUivmW%p3hNYAn!U}#s660Zie|8Bx(>@HZow*yt~xBF zuw03qGEV2I9O}7m)b7pdZ`eYxOb+IRyfvnwZO|&(prgYBLmSj(H|Rro(tObE$E5U@ z7qyXgfUSUY*sAvrX{#RG#}-4$6pj-%tisxsGuO@yQ=r@Fu<4tJwRhGv@~L9xKN;0i z`Edq0Tbd7}o$799^PEYqqcMrZ;X=K@meuf%q!@l)%ynT7ox`+y?Jb=LNl`h;1w^~o z+3UEJylOSz9*4g&=Um7I|VYHXe%@Y5bEb%CdUk*Dx+n&cvPFoG;^Ht|d z)NmGC`(Q3MhuAd%a{>)}u|vdZ6PMt?Y+Q)IQz`gpvQcDgI< z^v*P_kr#Vt3@OfB~Ifxe< z&=6tIqo>_5?`&(Bk5KdYIVLQf&>*KTQ<4hn?q{;jxlaF_%swfDk@tnWf-<=El*-`5 zu!B`R}e8OWFX67fK48?fva7 z?}ot#KbE;*U6B+U#NDDvIDN(11?Ga*ZzK~=SpiLoVdU%NhDkB3A;mCO4-8{MG1#uL zH}ia2i`_1L(I;8+M5n>Nr;~4v*vN(G?wyc$nbF>^j&&)hm@J4JLqw1sV-+2Dm zGDAA(A%t|uDf?$!+|$T_4k`82sKEF)iTSMXgS3gGsrjh&X6ztsk{~AS6OmjnA{j)R zKwUnU30*JQjkfW6U=)S`-Utzmw$K z138WvR?hCKXOm_*vIn42u2IvU#jxkzgn?l!gQZfpr>gQtZ#?G8GijUlAh$%&9c4TO z+xvkqO2V`!1ZFP8!HCq(@Z@iv(!)Y(N3hR(I{%cg(XDJ$V_n%)KIJwZ9Ek>{25AJ? zqU7q4cFLSt_h?_#jt6|%s7fFq?s3ecIom#4!^S<1Q4m$rWN|{;+s=7&7tZ-Rx|Psu zQbMQflzb{*&VUkXpCiq6bZTzsW`n?%?XMo}6hg?pc4Fc`KL7 z8!e2V%VLycLZjh2c?MX&V>95Ko7)dl(q0%TuHi`DA-p=FG2{hG>N$JGRbtb|oKRaZ zTyZqgUS~bWW|*|sFGpB=LF*1_fzW;=3QAsNqMqQ5bDxpCZV-58uIn(A%y6L6~Y|l(@imMvEUo4J9%932o^%QydP^2tp>##-OOP7 zK*m`=l}?0;?e1#3#~|K*(m(t5@t352OUuJM*tQ7UQk)l}S)1h;@9tA)LG?a~&pEd| z+ckz1UEC(@-L>T?XR>eflgEHvQYx>jMVd$vr(i{tp1ggQj`~%0+3#I_AzgHxIvs1f)^*rOOsRUAmC-!Bo2~%ee zsrqEt=r8|Oc_h>ZsMJvYy*dM0HflIW7mOi>3`i;dtSc5NMMtU2XbUfleqDGk=|a+l zbMBVvpkcYxL$DqSvJVpu7v{c)2kc!;0F-c8Gus@+$f0Y2BIu`Gf=1iHSSY_A17%Z! zqo8swJLXAoLz+Aa>Vn*cB?p!?BRD7#+j(0YCu-*igQ4J}nN;NPt4P@WjNA))baKN$ zhqN&<8Yr~i6a|CeEm-^9lCbcO6tOr(^;|)>$i)@$6q1aE%8>7aJLIi<3BRZH9^46HnIRS0|`RMH8Y-|a9HjP5g z-y02W6BJp{b6A58aVr}Gqsu3K?&>>Ko(26Qe1inbZEAbRwd1{LPgUr8QpOr_w@|gj z3_lqgOx(?y&!$J*AjPz#%!gWP`}3%x4^+uj$rmLopqw659-tWUym^a`ji4rt-b3*4=VM1$53}JhU zD$Ox|<|GHX&%GX(L-nuZ$x!kYW@i$z!)bF&POIP}CCU`XajvmjX&Q~({u3>~!KyGq z^|1&)Fzq#95#s_)(!k`cGtA1l7_A|Om*VlHic7v!hVct*0p0IHAF5vl|2h&Z<78^+ z$W@K@+Lp6W|9P-Mo}q-LGHuZ*`{|r(81(hCqI&ZYA0y-+^HAz8A zu+2m?tX!^`c#)DZ$+;x9MHzPI5}A(kN)gH+)A1A2(PY*}fbj^9X8b%lFbghbkolCZ zCo&x_X*$w4`7dC@Wb8;>?TfX;bvs!zj8_H3;iS+LL(rFYaKhd&3))sIVxZ=~is21Y zkR>@UOR||P$t7+{+E=Iwz_via36^EyZ~^MT>gDoW=)4u3PhuAZI+7f3WIIsGOLhgE zJzJM}oVvPqz^>FUP^3W1T!k8pSr`L125_;%8Vx5ib6#e~>ryu}orRtp7?cVNwCqP` z`<5eY5ja{tjJcyr3fmYCd*qo}&MDAm8JyJw_q#5{#&C1oBgO$ z-iLYZx{RQRlRC}OQAa4B7jB%tRP%Ibbbhf5`rfw-=t|0ofn2 zKcgvothbp8bo?Y5}b)FWQ3|+FSjgej2I#K@=Yw6tZ7!p3UzyYguHF>(9|Tw z4#|2p5+W1a3cwm8Nj|R*Bd+6l8!N}5K6fq}*15?Noei@uYP_dT;-2CR1Xwg|++h6x z&%zx?r=xhg(^m=AW@ir*XeiY9ShE9z!4@8@hCp{+Ay!~|WBg^CUJkZI+{90OAA!}& zuVJJ7p*1qOkR}RbLAq3I+I@1BWbIN3*I2K#oN}H5B}1R8az?fu<8byGQfT@;rhA;j z2r&bhE;NAFHS($8FkKtsv=(T{)5U}Ka?OdwHDfMvME1)$^x!1a@5-!dT(KKN5bPrmh6PVY-eckHN+aw^S5N5oVq~_ zSf;vh*0UadhN zVqRAg^xY@ZgKm$^4}4>FI%xYXGtSu$>y-0o&(_$1_GV=sylvnvK-&jbGI^gZ#%iMS zhtwu8&ytjY?K%|Ct=g9?ptAz_%#~W?%p3-1CN8%$d$<9sj%Ko%AWr2ye_Qwz*+Q~~ z*gUcPdv%7rEf{v{dDT4zBIhb64mMtLl%D>`AVS)DHW_M6N=~TQXoQ2gk_{%Wbp}j$!36VS83m{*QaNAYQM!=|v0g`bXrN$8!S=|$$Wv5aN+Q;=Ku-(YS1BD1r zYJxs;CbIj&nn>II+8jrqLD;YgTfHA2r4++8j_=R7SQ9EuJo|Y{qdY%`jHMquq*S?( zXSH{SdoHvWpt5qbVJBk=gEdkdG1sbWzcL5vbMf|HxUz>)a-1ZK84C~PNzX7gWaKQS zFd8i8c?};VV+p&Tk$XXpPHqq?XIWtQS_9L`a#ZtDkEn$e@A9BR)_VhF`7)+<%6@GO1j5-u(Eiq(ge-r zx&$z~Ykdcu?R(bws%K$9!M0fE3#IuO@ofH*HH}<{sZzoOxEJvW$5DvXQf@A!Jp_swQbUXy|5xz?SW= z9<=%MC2m#o@5fmGhFq%VI$hMM^9i>LL;e9Cw zIQ~&uVDX>)!-cu;VY7%`OaPQ{ z=x}b1V&u@ZK!G0mL+F7hNs?nD{Ss9o&;c2`rvyjAz{shALY>YdxWJk+JQLtN#voEo z73EY#J3F=*u9IiL#W)}L{#iX3mJ+YdT-k`5G=@A{m{p>3mJ+Ym2oRvw1C7O0Y)V zz=#t62TzEj$gVNjB6llL$ znghife>U@d#0$8Z3p_X|-J%W$+tpe%RKCreY|$gVBnjZysWn@%=%8hmJ_K5hdV53f zEo?4y)lsLDvC!${g65{_N4tTCb=&kALi>>@D0vZ+7wVFj>>tB>b*ToLfS1@ zgrjF8Au_?O0IV^RWN4e9$bz238YR?P*%*l1ggax)QO;x^{yHjKcV4)d_Zh7HA_-!^ zHhmc6S8CNlACT=A$NG-0r1My|F&g&BGku`vJxPSUvj`_tEiuEv7o@2WDN&|4R()eP zc6N0PbRq^I2KYvs3YELDdWza}UrME9EHMBvz=?HbCow>^HUJxHUZelXv7bP|0xng3 zMgTwnKmgESl_x`AB%U-4Ut==$rBO@%!HHS#mCb4kbgagqt{wH5tk<-i34~FR`c9qz zKNeeM4o@f4A!NUg5ejJ8We-5?(S`_%W}m}skjiI0GN9cpAk4YpySGU*gtEKhp(P&^ zTgs35hFUMjuIqi7l2llCKT`zfJ|kpw_y=^)`g36XrB(~IJsvuEPOrgV*TBRRap}Ym1noNKyfxQ_PS%<3BtNn7I7+cEJSKB#5R7B zHUqjpXA;5pK4vQ17>h}TMt3$4YBn*EAdAqXLdQmF7U-6vw_f`k7Y7ID>C&M4Y3zpL z==J@k1Y^|p&Z1WPpp3Q^a(Bn%M`w#s^!6v)Cr4rF@r&B=V9CchF*Y4n0G6q4ju(4^ zZja0lzGy|!uJ@sOhAz?3EZI3xqT+zGz-|@d;8Bgc)0dj}f4=yE4eCT#=Vp(*B?T$L zHWL973#hctWMquNVHhG%W`YtOYT6C=GI`LxPd~xg@T$k=j)8}7Fx)76&fj!uMbvsz zV4Qv4hZahe(pblr61u7)>^lzs{z-M9;JXwPEtg<#ba70sJy4JFjU;6(*n4dW8y1_O z{Cc-2kd?`!trcj>G{?|#c2#I1ptf9}<_r?zpL5n@z82{ARq3E*t!y0hse)1+dd}$X z9tyo0_B!h$47TO`AA>iv3}-#Bt7a2n!%=m#V4an2-~3pFcu-@2<~^(rSfZG4Xx+y| z34NcRJc_4bocr;9hYO3f$xxpr3x&FEZWd_TsP}`0ykNhRKvbx{4WqE(YCj0x%<91M z1*3FPEZosCUN;3zy=`egA~g3&El~Ln|17xDg#T^JF-5F%%nII?c&OeQ<|EWR9t~IA zqjXNV9$Khyt#Ex2GM;Yz%l`@nV$w$`g@#xJ9vgG;*QN;#IgR^eW6$X40XT-P zX*bRu@bQ+Kz=2a;a;aRXz0D5}@w&*9U=n)WxkM;_ipy}gi=eDQohMiiVTZs43KL?6 zH$L5MxVV1UpjU#CSL3F8RO$_Rz5!8CQ4pH}<|97Xb+F4z1Ccx23+#lZg!}|$0<3-) zZ$W)MZZAYP#JM-waHxt?q(Q?jH78VTG{X2EjYVjB0$;Tg!=Jss)HtE#gj9zb1*(9W zCMg2X@qsyVXnqGb)Dz!FVE@9`Bq30Cr>+33nAkx86^giBP6uuLR>G_Q?;6f*eikt$KVgweb=?^gI%%hO{Dg zT>M9TjF5kf^Fk~!Ti?YsQ~sph00&j7WH7|xdhP~kmg5h50%h2JdLwSEjv%*a+!**f zc=r^@dqJBny!}-?wC<1=IAYF@->6Mf8J#g=M?AT1j}LVIfRDl+O6~{1P$;`Ya)!{c zuF2B*IUtj~(YPhla136pUcn>aj0=5Yi+on$%4)jRWwXpt1fiT zX>iOzDw~TFPft1!I3Myhow4yC>KE(B%2a6jv)Ui3AMp19+fD`({g+`{O6NFvjM%<0 z#ySgEM*j0|a+Bu&3p#DH^+57aZfpqbQPz|clu zLtsN-Ltrzu!KP}8hZ%ZQ8bq1tI4g6kB94J=41^D*QR%}?IpuPlCp53u$DUB%M$ALZ z<7&*~&;u>;0cx=RUXgS<@cE3uhroxxXUu|6uZPZzUJUddR48LEZLf}tz|Y9|cZht* z+jA*+dxlOvGl+bMe29F`nSAOFdndug4rq-y{>auVQov}zs6*F%8b|sN24DR!esYQ! zm-T9VX~{Dl(L!rW%*Bp#5fKd@@oN2xHpLnCA}ktiEP|FP!5E@z#k_|*=Am-2PjSCk z@vtOFco?HtRc~P%gOeg-X$O5LLg$V8c(^#>F;gZ6#X94(@zyfE!Rn341Q$6>Hgs_M z!_UA8cTqMRWLe4tqD-KdrI^Z5rm_g-^TL5LfliePMD#RRh7i%y7|0hQda}2z7?~6z zqNgDx7mZQrJTb&W-rVXr-j0$qYcJ&d{7-NE)k&qErlAo{{{0yI2~nYxb7UBi@>O-SYHNVS5H zijazsijeBeHEI;jv$sF7cSAVu0yg8-SV3t1*ek)h(*vVv7rBUS>^Y@~s_gB?hokI` z!hA!oh8udA?`2n^DxAiPq1Ke3l>Q=7y>&I`L)HI7sQ!1H&CIXqGQs*^74-oawmtyl zzq(ldt5bK{I<@<1Hk z-0l(OoC$rl17XIv&ur9=h9OTGdCD%dr;HeFV9X5p%r2K z*Cp&d`|8r7wbr8^sRKhzFW9_3LN=P_2Lsdm2-yhP2-z;)WI#eTLbmg5qpHW5t`SQ3 zC&*o@u2&f} z-kE{k(V$L*b>|yAC79dCMB$kC40wfF>PvCH`*NuVw7i6^7^tPbD-0wem?N0upeIlk z4J{in0@xAc7Hz!&Q(_FfdkW;epiL*3J8jhg!5q|CJi=FZ^#{bbaDd}uT`3$=ddQ( z9yd<~?Tgy+V98gRz^3C0z%td1gSHiNPtfg=`N0>hD3%}d4TW>@%n{LzgFaQzMQM{} z9q*X~j!eD!ZEjKa{sEXGm>28^9jn<0=%`oYGTF`q3e~sipfp_V2f>?J9az3#^svy% zCd2pN;6gGe6&7gOFHMIgvo->ZN91ZK%a`Utsi#C|l`uij@sY|$$lvcJJUSm!w9{pj z9j8ozrgSxKr>nJUSh!V{2`#hqA<%Nv+Z$-uB%>ZuzkgyoV!Lx=yY?sjbD+oO&cTK+ zJTpf9FaUDdjmZg?i!O%CjwnxIgz94ven3Ik<3U)Wyt(fowdQ$+K}nK44k)3{g%av= zxki0|cN&lK1kgR}k3-buQn^rjn;#tFb&=5S77zx8vzu zxZ)mV2-MAxW>_!B`5DxhSCR|VmSoINK_JQ_%8RfbKu5MNBM9e?P6`f$>TC4I(OpSF zd3b8D{$7y;d91=8YzEd7>K7-#cqlBs34=^ed0YDDS@T3H5Oe4 zjO<7W^6HUSZ{)pteoB+3hez8Fm=?DAnbDCuUf1LLLuZ16Ns8VA-j@~OhQ!$r^@C&_}ADZ!YF(CTl3 zJLYjZsGTnf6zXOsKy!fyHkW@`kq8UdyBk1Pg}vt6-cu0exgzE5CdwnqBg!MnBg!Mn zBg&(oEj7<`!GhcWT$%;91@=Z=aa3j-1(mzy8AN$Rc|>_cc|>_cc|>_GNO|kXmq)(5 z^QXM=Y$JlRJ!7W%sN5TROcD+(QA{|r?qi~azRxq@m6xSTXem=!gz|ae&@j$D7RqMJ zvSDGdmPVh&!QwyphYQptnYtwRx^vVed5;c^89~9I4boAUWFP4K!My;iF_L6!Gag6V z-d2Y~*&PxJ+M1LYbl#>j(kzTK&%)S5phuv0{-Bo*#&2-;SHnS#0h;%)K16v^g&$ac z#AKMB?^re1uEo1!>yW0yoV%quXjm@wfR>j~Ynz|e66IlfQP+K%c%nR_Jfm=cC~p(? z<*xVkFbQ>gi1PIDP&QW+4bSN{n0wg3#6f48BpGUm@~WnIn4u*;;LMb_kAk*Dc|>^> zw56ae1#Ky4OF>%-+PYxSHiCS4M0rGcM0rGcM0rGcE<|~ST%)Cb+*8Qw(rhZYU516l zo#W&&puQZV2Zn5#_Be*qgND`Kp(FaVtYyqg?s55?#)WdLI@u2^t;HSr$t9`PRW z9`PRW9`T+F@gB8RvF&8ip^Yf7fj>-?N0djDN0djDN0djDN0djgTNjMo`V!?4rb}1^B9{3)&N}!R4!Lc1oL66%pvS27L(uD}+_j6G5M>4XPX{-sonA@^$z} z+WpEDXi8U`fKZQ6k5G?Lk5JDAQExk;9-$tg-sncX6#JkjB)S)*@kDu0@{C8c(Ap9M zbxBM%*sj6E>Y8R{Ea>NGut(#S@s8_HS9P z3XW<&t`&-X!Rq5iW%og$! zlnJoRdI?mXxOFZgo=$u7~i9@0HGeC9-*EKqFw``9-$tg z9-*G=pdK|-NrA{6?gfB~O-Ymob#2o5Q1^z)1iha!6QNASUJ1rW7&Vv|1;tvM_GNO}8+@`&pUc<5NA+-Ku)OXNdceLY_Yu^A_p6e_{2i* zBK9h1PgP9@OQpm}sK-HhtG@~En8)d$cD^J~sGFGp%>^D-Gag#(1>Qc3n-a_<>1g$cwkF~IZd)ODhaR2W0L5$ZB-e9TlWafErGoZF z?Rc={qc`5B;|iQjY4F9KpxYz!gD+aKM@{)L-%zmKkMGi%5|rZb&i4e$^w!m!4{Ydl zkAR8;(gJA7m&ZZtQIAx6oP!gpmYAVe88jYrQ_%KzG^i6{otq>9YLbGKV4I2k^WQ(@ zriC`6BoG6aaC^JEc4u=$MxR=R;_I>&Z(3Ihs06jK)1O9I$8Bn<>C>vzY;eo0p z215jW&j%P_;k~kC`zIQq`dEY?{LrPsPy0ipDo7MZ&+-C^6TAj!d00( z+FHRBf#w*)L05$)0&2_kY0!HMn+wf-_=UFI?hyr*yX6_gd&GOhd&GOhd&GOhd#=iR z!5516vOu>S$8l<(P5`anhMd~8QIF)C7wiWe ztJw(XsK-&PP1~73q53u*l!mMQAb2yY1IrhT9u`{JWcdCYJTn-S3JbLCm!?CLSsMYy zBXTvAP6 zLj2ouOc86R>J0lo@ld@r%txqsJQ}XJ2M5U3&5&kTFSnlqGbO38*^SAC{KpXUJ8xB{ z!+NR04=g`o$fV~xY^-U!7GG!Uz;8C^ZYg%aTrTy1mY47o%uj3MVDX>)!-cu;;qS@w z3WJg)JcQI8_D+JbDEU;Vlep91Gt?X|nDhgsV zz<4!o0Q1LQ3D%t+V=z~bqPPwh!Gddv2ka`{1zmf8A=D$U9(nc1 zt4Cfv^6HUSkGy*1)pJ$UOCr=G)Fad*)Fafpgi+7HHb%gQ(x~){*=mIxd*s-gx>j8X zy`N!Nq<4pVF0^)fACG8s-l&gIeLNz_yb~hqh%{hH|Mp_DYEMi1vu~i1vu~E@9fc_+9k~^$7I{ z^+t5=?RY{xLOnt~LOnt~LOqJ%QVf@3xUL$*{gA!vvigI3$ zr$BKwmkH~Rc_#?#R$0Kf7|TAp4$5L-t_o-U)|7iBLBn=+42)l-#WK#%nMCltkC_TL z#!9d^k~9}Us?4AO?vHNi zP&LH^8*#)3sKNSsMH1w(3V*N}SWl>5px_|y1cQMbj{7Jn54yshiV2Hyk_HK}7^^a+ahL(-! zmFfs`i?-f??_l7uC3@Zq+H~RVui~L~hqORwKN1Dq!8p^X>JWBBZhz80$2oI}8Y)xY z71(@lU^LWOPD4 zcsz$jSh6-!sJ=}HrQvEn2;R)eU=HZD#@r^{fH96sTOTm*k`!Aoy~)nR^jb2>}5m2EGX0L|6otz z>t(@EUZe{V%J0Yg@;@?BAgh;TVXk-%6mN7hL-{)VBkg`=3N)pwO+ctes7I(rs7I*h zs;K8ps7I(rs7GEsLOnt~LOnt~LOoYSy;z2jvBL!^P{%WZBNRb5z4}0LnxBQc!vqTjQQ`f2sfm*MORO^+)RHQ-BN6<&m zN6<&mN6<&mcRJ|vg4VgpJVL$BIBmSOOmDDyvubCPMZ^8NA}~ulaf;bX$~2+1yf>D4k9w~_O|vo<^m8;yAk?$&#QgWj z9qt8yicJam3CaXm{Vt}@*Vi-Q(3vLDLhYMuI8? zPo0_R&6>teHSXI)d_;Uid_;Uid_;Uid_;Uid_y9>G1z!z7NH)Y9-$tg9-$tg9-$tg z9-*GAqTVDzJwiP~JwiP~JwiP~JwiP~Jy%7&uc+|~p&p?gq2Aa;y)3q|7&gi?vZxG~ z1M|mT2~>u=;fPNx^e$qrg7#F^WUy39j8NAmoeyte1uVhc~MZT zwMnkF>ZKgi66g`=xhm)x$)`u4N1#WbH#R{p8*JCG9CcjD0OQp%LOpxqL=Fh`;=sB_ zK2=zExCq+gBw5fhC76TqR(})RF^|(h?R-g~P&YFHnhS6ot>IxsA}n0*ZU9{suA#Q~ z6cN?~2*J9HAe>b@DL4?SuhAR9_L7`Nq=6|@!ok=ak(N%VN2o`rN2o`rN8wuv-;!64 zP|sDpdVeL+s16nvK&z_JjQOQ9|G68Su)>Qk-5@rm_g-^TMHF zoO>*k&6Z`u!eVVQ)ThZp!8+bE#|fbI+mKV6HtLal^Md`LV>KHA9rbEF5o~7yh3eaM zP#UiGgW%1q4lG|VdRS;>li~Ys@XTOPDlE{lUz!e0W^Du*kI29%TsB&5&kTFUJ!_U#27#HoGyokpCEBe&?;qbXYG{_<`j|%#P{#j#Y#0 zT6~?Y1HajvyQMm4ST6N|mY47o%uj3MVDX>)!-cu;;qS@w3WJg)JcQI8_D+JbDEU;V zlenkYk2xH4zaWhVYk)2VDwiuJg848Wox0mu8j(f`dz7#TKC9VcO4tiPbu>>(344E5 z`$P2u{yt#a$)rQuGE7YD94C(f_2rn~YdGkU4r!eH7qDTnBE~ukolN=9yUD@!P>ddo zu8Mm9r6OGN>XBEEyn5u-Bd;EL^~kG7UOiVuy#Vs+5$X}@5$X}@xh(3LxW=IV%$g4y z*#ziJlW3v#O*R~=;uLAnuuIJe6&sB(zDHvL;yvO$;yqX8y>4>t5$_T25$_T2xh(G` z!0LA~P*q>ggcIsfhdpY$a%o0!3&^!cs7I(rs7I(rs7GEs^6HUS&sDv84-o1R>JjP@ z>JjP@>JjP@>JjR>D(W4e0PcvRUOd-m?oXKUxK0;CZC9ukmuhh>lY==SZ;c6L>lGiw!}bP z5<|l?0-~UzAeL%zsTP+B1H&e&#kGE{Oob+@#jRhU;2`e>%_QiWE{WwD_;_;djX3X7 zhdpY$LTy)|G)3hF59LW81VX*r{NNC;i-dN!05s5FW4p`lZPE|YH_$e*}(vp}` zC~HvX3D!eFU|XOtVM|VL`^&KX&y$&fxzKitCIRw%3H1Uwp{6H=P>)bg7ZscagnD2z zu%7TU)O(gtk5G@IxD>^uC@w{DDT+%`T#DklY83Z!LOnt~LOnt~LOnvgO9l0cxkgEU zTFq9Iqy&tQ;3y*VqM%r7lU(hXv{XybN6_c0(DwyFA3+~MA3+~MA3@)x0(}#qOvPSF zs0YmjI9bB*up$u_u6H+pt_sHxwY{f^upU4N)@1~7P&Fwy5UQ`y8^QLH+zVRgD)T^= z6T6))>`jD{p~i$CZP=zWLa$FSj$@@z?*C`+&BLQA)_woo-AN~%sXHO_ z*g(iU2Lgfg6d(a)2!lZoNI(rUiO48Jf&-v31Y7!b01_2Y83RI=140A^WlB&HMS+Nl zh#)}}1(E!|@9NcC_u1#(=Xaia?mg#Z7k`9r)my8kRaNV=s%lkR)ShAgi>2KD0`&yy z3Dgs)Cs0qIoxFX z{a;R}89N}_Otr1}JaOfI_jsz=5fMt&mgrDwT%+zpjVpb1RC7obX|I@UprTmcP>Pn+ z2FkdiilA8zbvE7p8LJR6UY;3LchapJ)uih?k@1>`FBMze%v2PhF*r1;C~7?K6KuDh z474wwft0#wW9{{231sLepie-bfIb0z0{R5>wN>Z~70@T3@4p=SI*_AlfJvZUh9$5g z4a)LJro|V7vZy%TqdzUycq^M%uDIu{nsMl6euT`9_EKpCNo|x4Ws3%ZQpq@ZIfqHEf_09{_6R0OpPoSPaJ%M@x z_5MXsFGIIF-gP3)Dj#2?_$qfvVgwo6D)fCJpie-bfIb0z0{R5>3F!M5g+6fri*={F z2Q{^6)N3bp?FrNqs3%ZQpq@ZIfqDY<#8Pfsoz<%qs3%ZQpq@ZIfqDY<1nLRY6R6i# zQSZ7~z!j(`Q15>f>SgOz|IM|>#unqy3>y0-XbkU%|wdII&@ zD(blj)Dx&DP*0$qSjrW%dII$X>Iu|qtEl(2SjrWsCs0qIoIu|SP%l%r zTI<>{b7F~SZ(6ZVrK59u+~O#;y9O#*pW-Nvh;am|eJLgxJ~0any(nE15J#Wx@yf9u zyf2=NKkK_tftRO^$_w3f)Ud`gmonURk(ALN&ZZt7Nz`ce(b?1YCfZx(>Zo;dp9cY=buh>DdE24 zc+NA6ENag%YKl<@(8`&fIa7>3Cs0qIoIu{nsMl6eZ>B&! zfqDY<1nT|wMZMm-)v2zXGcR^<%XAFE87qS}`HOFH&D1c#FHL-lOC@QMI(ubHX9`}U zF5n||bhQ0ia1z~^tsYDVyZH2_j53Xp7B{%fpv6agQt8GeRUsAos0WhqDU~m!&yGrR z)Oh$hBHVOTC3sKpUR&k8X9VvF-V?khc<;Y2?-kIXemW3ds3u;Z-qroyDYT(`q(D6* zwdCr81nPCCW5N6abXC=nVs?jPlmB$LWOBUd(cixDVlO(Ftm#2@{i1bLQXiH|Q>W_; zR5e2rX#TB!9VpgxM&gz{L z$F2y}6R0OpPoSPaJ%M@x^#tm*Rn)ule}H;8gT~FZlg9skLlSkJt z!6EOB_5KNtEIkgTdD_F9S_~dBRPd5lDz#kn%ccwoG3j^dyHbV~yDypyI-B#z8Uzj? z!wGFDU8%cyxfwg>8w^~Z!YgdhTJGbxxqKm9`Z;G z85d!*2|{^MMY3L{(+s*P?!ygYetuq*BQU_juA4dn7nYRlUgX7S0H2F7@j~ zRV5KQbYp_rOtr1Z(7q}D@l4T2ef%Kt3aPkD|56R$k8>x96UNY0k@GvG!?S zpgfkqjx;C>Epze3pe!nm_vlZHHQt@M?d$03>uxFJ2semd&=9-!#8R$U%GGqF) zdL`1JBG7dC04=rzwYq1~4XdFCjq2k&nsR1p%yi>XO;7uc$~cO-j<<-IyYT{%V{uQX z`p&8(`ZY#pq@vC~fwaWp_9$iajn>&MFQ$@qn`dV-W?=Mfp6{2!uU~j;3DvYG!%daH zz3EIOUHAms?!~UXnVzY5Hw*&qi(PxW@$QdTAAx!T^(s?AX)yxz{(qgQoGMUHpq@ZI zfqG&oS1jdQe4mfqDY<1nLRY6R7t;8TGp9R>!z@)ns-ubaNc`?@VzY zc-wfh2xeu|ywYgRX-t8vT#1bp=W;Z9syeEUrSfFY9I8I%tFxExFjChRzYG$*CwNcr zUR&k8or3oS?+M-$yeD|?e=_gol5q&u*weobOcSUlj@c7uuZRtM|Ma`KUIO(5>Iu{n zs3%ZQpq`l36SI0^RNN_~6R0OpPoSPaJ%M@x^#tk()N8A#cjo`#?3FC4KIEGy zPF&#=S1y<}*fjGu*QS|k>Ap5`?20&cMI5^#zQqmq@uiyM9u^7?a!Vz{<}iG8?BV8N zubLc6-%T>a(Lwic{O$pNy?k}QTQ1%3)@4$`t2%tgoTVzF;%Z-u-SJ%%HHmL=SFiNS za16rXMJvU(xDB8BcA(;^;#*wtEiRS!^T*L^DdE24c+NA6ENag%YKl<@&_Au>o)S}g zVroxJ?TM*9F|{YA_QcelnA#Ildu?@U?=^vX0`&yy3Dgs)Cs0qIo%gq$;FhAN4>oK80T*N}nB- zbzP8GIm&DFJ!F+=G1oH{z6U^5ZnXfNplxd6t_3#^__4w7!snhZE zja4%=k@m%7)2P;l-w=yg>X}Kiwt2^pp&ZBeG<@ON$#Du0EdN4hd7tP=su&t!q^3O{ zfmA=u%R<^7(LL!*V01RcP4glGOHIu{ns3%abt)gC@Ks|wa0`&yy3Dgs)Cs41gpzU{nhtGIu{ns3%ZQpq^ODZL70- zs|4x^)Dx&DP*0$qKs|wa0`&yywN=#f7N{psPoUm^Gt^7ct?umFY?GNEkS)H-jid{o zs0(ONKYV{YC{z>g7=k@FgEsjm*z4;OX>pb+kD7+UtFqQBi6X}Pc~RX!kIcUx@86zc zbly7JcT<;21=fHpDtpzvD_IYCWK(lHmCkW1q$5=w3J7*|*QC-E0eu4c1oR2$Ypc*V zKtP{>J^_9I&7e;lz;aXNZ*MvyP|sp_d>2JcGd)wO;#Lq2+}ZD)LL0hAnyF!eUm96L z!sDsbmXu4zAvkO@{p-Lq$6@?7Ron;OHp0N>MbIu{ns3%ZQEai$>J%M@x^#tm*Rn!|L zP*0$qKs|wa0`&yy3Dgs)_b-BaU3II&U7KavpYa{>FLeORY5{!$`ULa|=o8QIu{ns3%ZQ zpk7-=y%K?X0`&yy3DoTIfW>y$y&-2;NDGE~!n4B|^%RS^|e`-(4d4Jp+4 zte0-}O0NvZAU!@P-tCo28IqroT5@$kRFW2{vsbosrr+TRoT# zcJb*;8D$zHEpBj|L5q+0q|%K`szNIEQ4b{JQz~CdpBL zbXe7m8pKbfRZsd+{3@FQ-wCWXvb^`|jO8Uq=<)sa-WTNOvzPJUgeafe$EGOWT69_hE}k}3E?KzF(@ z-H=09U&E>IHJyEO=%@xqyf@bSCpfaOHKXBa4{vHQc*Ib_OW35*a?vlFcWQJY{Vsi1 z%CKVhMUz2iqm2IUa^L_moY02Sm3lZ!ZiRH9rUi)QT<56H@@|ZlNNt2;jV_qB-|+54 zrKj9%ylj+A^*8;y@G-z^oE%1Zq@QB_Gq4&9ibHdAdYGPG}se>{~P_rTo?@i9={OWJnS>J!yPUM?_t zdv~B4e(Jj&PpQ19`gav>K(SAI+E}5^q^r@0GW|V6cXE8|lVEp@>qf?(QQ_4W{9>r~ zggTfq;&E7i{U@q;d+X&~+WU?he#NTTC&OMcJ(jB5c_&fv1KK>ARiMwNl{wlDwA7 zG^7|W&kU+N>DG;E()FFlc+JC?imh&DDhkjT92!*=HJ zTdP&c{6jF=RGA8Bh}my2(v9F~5Jr4-4mrN|>OwW^eZ#0?VOTJUrCe$ru1V5WPtyMH zp|3k_ycLutP*0$qKs|wapy~1fT5JhwbKW>Bgg)p7tA+aTIeM zZxJzf;{_te;+{_RomENnYmClFMV);DX^F+{QOf8Wt+QKROeO6$PqAyySz}lCyXDdi zZ(Sx8ysAUpiCud}v1@N-kbkOuu|Pe6dewQlK#GghcEL=7A&&|&G;#Fl9rtcj-p?P? zJt^V7v1UBbyOWo<;k8oRDH}>XD{7hq^>P~ z86==jK%aoVwhDb20{R5>3Fs5hC!p_t4D`{4?vVoZ#94dd02Z-p??14V`;|aFfqDY< z1nLRY6R0O<^~9{6nAK~mvwF`8)Dx&DP*0$qKs|wa0`&yy3Dj$=sCPpgtNb5Cy+qyW zIM=2b+c9ldarTNhdqteRB0k8iIga;*b06w+=-_xav+MAvD5?tg@g*276ddH1N`}p0 zI0VVV&BIpiv;4>(h?6t0M%}bNRrR;%ovCxS(_I52T=KsYJqw$n}Or+%9IFwePoS3!*ifgOQ;P$E^bg+w0U&<)c7-?~X+YDNK1V6uYMz6VNB1Pe7l5J^_7g2l|re#%%Rq zfqK2@V6vtM)%Azg!$B#Hx&Co>J7mrP&TAM$9@@A=LCe7OB9Ycn49M#zH zg=Z(nDL}CNJDufyq9dtdXoQiP_ILzR{WLENX?sNXq%(oh*%UX;tB|V7afV}^MXx98 zEZ+b+bjUq{8m?=7sl3oV3qP2N-`?5mpJ6Y4D1{8eaRg*jUYIYHp7-oQX-koO`Nv^d zbZ(GO0`-5%wIu{ns3%ZQpq@ZIfqG(A zPoQ2~oz=T8P*0$qKs|wa0`&yy3Dgs)Cs41gqMk#bo+>V4~VqoJ6s5zk58@?1%`Z zYD;t|HLg*2qQ;fJI;uIOinLcuHc(NlZzx4eY6E3lQAN-!2fhWo{WDe}V!S*vsP3d& zH>ye3cOv684__*_x|yjcKx1%dR8iD;-Y3{@JsD_UJ_9Lr)5hBC%M!@YPe7l5J^_6K z`ULa|=xeLcXA#gRpzr?<^u<#BC#raXdcUcCsc9I_<|B0nO1FFE@SpZ%7@>`(l3s@P_L2oUs$8pzC+$j2565U96BX=m zPp6WNxJZA}t25Pf^GzjzdII$X>Iu{nsMl6eZ>T^$fqDY<#H^k`J%M@x^#tk()N8A# z=P6K6pq@ZIfqDY<1nLRYYa^(aq+1>1+C}r=80`T2#*5;s+@`~-Zq%?0pZ}g~=aERh zz13I>x!~W8a&#W|(DuHbiH>pjs@S^I-GiEzBu3yTT=?gawz*|dOfruDE}E?FOe@x@ zaQz;)I7;oVflAh=IEo`;96?yRK`6wyz|f1*H34z-=^n2f`@#F-$@sIr3l(^I+W6~a zeC)i&GnX>lbdi+NAI_#89!b<__R-nX_a@p~<|4^eUeT03*guP;d65aU*x_NK);Lwd zf7$`d=LGZ#=o8Q8`e}Q^o!6Z+OZ=S-%59hl}gj9;aS`@q{q7}&hXn&y>8YffYP`O1~5SUQ)Z(Non?bu5)9d*)E} zF<+g%bcd0;w)ka`Ks|wa0`=M|>a_^e6R0OpPoSPy#TB!90`&yy3Dj$=s23+tPoSPa zJ%M@x^#tk()Dx)JhET6MTIHi&t)|N!J<_S@IaRngd4)g6JtB}#AfG@!fqVk_1o8>w z6Uf(wkgsB)ICb1#*TzafFFTGL^+M6_i z|Ah0OuW%O2q$pMg_)jALiRV8D`Oh5w^FIIip2MZF`hnHQtgf)iWR=B#s`$^3>{rRE zEC1=vf3C6LP5v`T%R-ylmArn(<=ZS=Acye?6}QZR>A}r!_C-S!wdk zypGiRQr-hJGQ`x8_6{|5rng^)VNnpA(d+Z(Q*0!Z@m^CZU0M%AOE#PXHsnpFPU%oZ z<4oNtXd?`>vf%V9Gxemm+4*oiVvc?#Zw48?VA##-a2KflujVbFnTyaRskxxsJ6j=Zt7 zGZt#V8+kbVdnZ!%@rJW#kxfg@512iu`VOkRX(z7uEdhow4|5`odL7O`xZ3u;o;Q=S zZ@Y3ZFwUGpPwayAwd?ScBfYr`k#^T2FmjMV8+XI{c>}C+iS+d-(db{`T+8a!t_X*+ z`O>lBW-m$}Y7U~|60Y#fbVlGy%Wn4aqfbY}aET3F!(c!{<4H0=HBU2lBmJ8&R3yTQ zNPVgD&Ac&Gnq=zecq?x<-E%UpqvK$n2MyS4&Y@FpA?TtH`PaSx_b%prt>3Z{lpBRpx#A!{HN?&UPT zfdN;*us3f6J^hL+z8~Ez$uxBzf_$q&EKU26$4%#)fj#JjKuZEW*8r=18~jk;T6!wN zl1`cL!Y?8YS1gRjy?XxLyjfH$H|*bV*L+hgJ!s~B1o@Tw!||?`UKDu%&Q5mjOfq24?h$`OH&W$Eu?9|h+3|Uz3WjK zJ&z#B1D)YlsYhjOIf7Oh{3EU?`VEb~^^C=vj1>iu&g?EeiohX!KO2U_di7}DBQ&cO z&S#G0O{Ec^L49__l1;;pBizf}BP$vauHkrI1#QvEtw>Ajj-&RB7JT;5_q-*Do@_+e z-(Thwx#ujqY)PZ`P4L^jAAYUd&{>~s!a(v_9S2cab7|xWSi7eob~Fkt6`_#mUx?wL#2Q2kP9fZ!Jf~qUb^97u$aU0GVa=eOpXFIql5^CO?|#JRXbiL8 zLLj+vRy<-&qidfdirYNY$dxntOr9tC_3alz(>9}LuQ(0s;S^Zqf$i7R7}#d<_$}va z*%!#yqenQKr_hf#ZMJ67$S-llQFKGOG$p%GnxEP0!D9&KN@51R8~T?NL;uo8)6OFB zanz*idKmZSh0zD>?{*Q9$Q5~WjWv{tzO?$#p;M@cN#|gFBOGzA{0WtqQ3tE_M4=zm zG{frG3~O9FSVw%13SYy{t2;P9&FBJicS6azieWzIXlwA_|P4}Fh79ll4P+6!p2rH|XXQ}8ADJ-;4) zb1&sRL^gTUK84z|thQxSpC4eoz|RBM6*{WfYE!!I4{SYg23Es1G|&~>ZB}~bGW_o6 zt|#~XKQ5!!{KTEOm27(2{&F9sDnGq~aCdKnq2jR3LUVqE({mF?#Us=!C*Wti3O|zI zC*PMRuA%1E>o6o-K;Wa-F$CTD0&0bSeg-Z38HRUG!Fl!P zylK>lTUymGd1dr!1eERuGUR?9_s58^$8R9)3%3wLaF?B z1pe|R7#dCa?ddu@3;9`Id^>L#J;L4j*zLS~XxX>$E9zuwNB91LAWMJXsQ$hG< zit3jiKm~VT_?!n9IouxEiDxv$wB`+`zyHRG$jhy5js!tGC0I z(TGq%BlCkOUS+bXK5@3ZCsn3{4S~lt!EeRHd>=YHKHoqZcZ3_t&nfst(j)9#$AH;yGLpZ= z&c5>4G9^EhW@_PF%l+*$EuuQjxOcY)(w*=c{N(a}P&;_4(Cjcq}U6QTw}0!(+ee4eF)WbSAHP%^fp=O z3w|DM@J6W&3}f;YSw6U;*I_u+?g%-w)2M zp0E~gL?M^4(>(^xtA3_&bd>2$~`N?#HoyWOx%27=TfYUn~X*32Ps>OF;*!uzUQrZrNAGjPd59f!|8Fn6G z^s)w;?xtdH_HP8DN^bKNa#Xe;1PR;ca!TxM#|`_)r>L;BU^wFeB~Y~v8w=xzx3m%Ot{J9>+`1Nd0@3Zqm?j5qV zM+}@P+|}2`AcBwiWoki4&mc-Q!cfXNs5YY5_1t&lDAF%Z-3WYax#j9eRdtP-IAR@=?9>^TW%(nM$7|qxft_zKq*uL&H2k~3`TXZ_≫&mU5@M z(gpRpb`$*MLeI%Tkk^?5Wap3UT#SY@#) zVr5}vX4Rk7A3U8gf>jgym9ct?)kCa~vZ`X0&1yNTU96sGb(z&GNtKYvEO)WzGFI=h z3Sf1dRX{m`I zVtIl+N3)Wrd?vAyCv|4CdY7$_v6|0n6)Sn(XC13p_S?)#o>6*()k&_I_gPi2^&?iD zS)F4g&jnp(^`<;abd%*RzC@b>B~L=NWA!*+Vq~RbmCEX6R^3^dSQWB*i`6hz9<0W) zl4qT!v0A}?^H}}PX)I+mmHk$ys47vnEMH>J99G*|y~Jt{t9`6KWVMOar>r)x`kGZa zs}@!ZSpC7Og%j~gg?fzrLRdY*DwfsPtTI_mWL0TqIhf^LtX^bw4=Z^V?g3Ui*l#+k z59CW&ooBU-)j(FyvGQTHk<|mNUT0Oqs)1EUR>xS~%jz_%W133H?^w#ydOx$8$7WR; zR5~j^R`;=rVD%-d1Xg#k>cXlQt9({TtOl{VpVcT z&7P60*0S2mY7?tmRuU_T)qAW0S)E{2%IYkuI#xfhk|!>IV->@G?&(nS#AN`hZ`dz} z)pAxTl`LOnnagS&s{&S6Sq)`nXI0ATNmf%?wP*D(t9n*TSUt+>8CGXly~t`mt8J|M zvU;19JPG;%D__mu(Ed)cEN1h0R#B|3vWj4Jo0XcCE(7W;S6ncwGWP4ps)1Dos~=dI zSjp3?{aC%ge#2Q=S>4a-X;u%is(gp#LYAL$)K9Tm#D34R+QMoBt3p;gS^dOnAFI#! zileOFX1~u_{mgzBSj}d?>#T^?-!h@TWUDW$AK5QFlgGbb*)yI!*Rp44R(G?qu^P*2 zAS-`X_p&<9Y67co_}ZDQHnQI%tah_n$?6lfu3^=Q{a#}=gjGGOi%^x54zLVi&n8w6 zvpU1-5UWe9npyqI>Ood+Sx_Tb`Lpt470qfpt7KM_S#@Jo&8j!6Pgo6MHJ4QhtB>UI zZwkw3_MFS=6;?QNPMK1-vl_&HwXC|b+R93vwttJ2JVk$q)%$Gygq1u+{}rp(+3!bI zOIiKS>NMAkXEu+2pR)|ghUXMEcVM-LRXVF6R+yg0sKlx-tBZU^F{|6G?qfBLtre^; zv)=+%pRwPQtO{5WD|c4wS$)c?atF(CEcdeN!|DjDpE#P&SQ**xTUOmz{lsc3t5#M^ zSow5@I?O7J)wg_Y9IJ5l%Vu?z{j98P>^FebLV5ff$?_DN$FoXd^9)v-SuJAKo7D=tX8rb$La#Ba#mri=CjIU^#rSCj>f^N1N*(qY89(GR^F`MVKso& zVOGJcPO%!r>Kj&-t65%Sd5zT_Ry|mGcZDip70RlLRVP;R>Q)vjJ^NW$O=8ubm6p{A zR;O8&vHG6XL##4bRk8Yt)$*=9{yod`dG@@)WqO6x4EEc_>H_<{%j$FXJI+cTHNIe_ zVZV#4uCw}um4lVK83!P(e95B2i6Gl=-J_j zqw-?}aJvU_4E+Rg9K6T$gNlx+dOG943gS$9UX850c`xEHOOr;K&Z}ta+MYRN{NCD~ z25!hpq6=dX(ad!SHKfE;r~X4Nxs{sEsA$4$B^sEk{wZry-IDR^%I`>(flW`$8_lmmxSN?s`(hQ+4v?N(WYVhXl@a+l)T}jkC;elXJ()fd5xx8viqKCZ z-TgR66XTDhu)>;2$Cn@qZ2&@aUy7to2jsVt{#a`IR7I;3T=(tqEx2z}pF+U0M5Oik zQ%GyH^yD&bAoaB9hWsrU0o&wdpGrC3WkGDf14tA@tPKnEN`O z-_xIr(@gCof4eDI#qI#dMsp0^^9-*0Ft=wrDPpxLMJF4i5$jBoRrJi8xbaxvO{Oum z$ikSndd5nJYx!zOf2xbO7|H)7l&+^nI`EQdnA+(-@JFkjKL4YqK`Pu}8l$31uUpX_ zl(pex>ir7hGSpj@?Cf~O6sTf%hV;v;rZQOuNK-eNHY+k|i)n)*zuIc5Riu5pX`NHj zI=$JC(=$@_ev`lS$PQD!VyPMAv;<4Hc5+U>ZbVL8%hGXleHU`#{gEptCA+z3aA(rS zdQ{5gkE{l%OfvORvuA+R@TO@2N^=o$$aC*l%TA%QZzB%VkFGfS?cvhE9UxV_W18ob zl<^_*ar{k_KUJUX<0mEUGfh`4brUU$#puz?Upm`hdQh=6UpD(m<@-%D6t|(hO$k}_ zxYdKU@3is-CeH3+HHVD^uu!A`e? zZ5T@xnRbmcCWqpbB&39TmEBy=1h+3Wbn2y-YJcX^$d+}3P|n6*F{)j4EAo;|H@N%$ zn``v$MSAM`J9@}3znVrV=GI16l$Gg-a`{cu)PJ%VvSG>j-89T;kzTlMnyaEIPh%ka zhdmhOlw-#Y>)6W0gme~j_jvO-#d#*$qNjBl3_ANBD{_~7)n+tyIbijDC@Cy675BxT zogu@d{_bXU+$Doirx;f^(U2h+2e)~cmr?aNvy~q8H1|=>r+0^$)9H6lbA;z=m9jQr z``(l&nRVt+73^0Vktp9YM@27Bs_N6rmpt>$0n&Oe^K`afTWXGzO*OW=Vx@^bPT#8g zY=61RTG}gsEE8~5nji9ntE|=57;Y{cYnXIYZ=L~P$>wj~!`5>LVEucV8PD|!qa%7; zJ-nTH3fm{v{WVW54-JVSMBy)W2r`f6c&dWUt2o@C5r5{wL$ZW&eORAY9!6Ml?LxM2 zb06|~0ZnXcxEXa1sWh=`5nTDQTdsW04t}+@S0G)DL@Vz%0p0%9DDy-mOyfATe^;1T zX;h54Qn3t}`WH(O4La7Vos`tx{IJt3?e1V+=1PY;>e}ZMPR2~s)&xJKzATe#3sR}ArY!Ri#f|=s4t2hl zuTy<8^7%pDV67%F*?ZRKktQn zbwzh`u+*uCxm+=0sFV}e5-d8Zz1T}faXrv9zR5!|ol&3@%3<84A!aV*swsaC+jFR7 zDvI~E6^);zKUI|=#^yd|cd6B89$L&+%NHxRe7a4?rLqpqj?0RMCE)oAkAfrh_j zD8~$`#N0B>T;+62i;B&SiYa{wsv+jrUI|joJ!U-1IlPoQ(u@IDzI5N4coxcS7lFK_ zAMfQfEen;th6m!GTf0V+XC=}dK8EWU(qBRy<1rTYO}>I%XmRoM>{yh&??n_?W-qsK zoK3iun(cF+d931=Nx*LwdS&HgvpX4Y^$M0Q-*29zn9nZ4PT*U>=}7w~nxAz_M-wQ7qmYoo1m(gtw@vbe?ozv{T-sZ2iLJ5AaxOqHP7e zgPdJ+$_!Ks;<-B0e2f3TG~29InU}gZ+?=!Ym(9VW$&VU zRX$SGLi0+#dTXV*h5ui-$b5l=9ovNtF9$0vR(nXFJ!+m0Z^s0T6Y!0uA09LNN;QvT z97A9^*R>_R6Qrq2%#U(3$m?nT|LBwEulfJFW#+Fqq?{@95)`ubq27Aw!V2?K?0q~Q znUcMmXZ8-1j#OjR!&Ub@ZT^A(@AZr`Qy9RM+G)CeSEy9wkZXYS2b_70maNb6(0;)A z2$1tx`UH}Re%?Gxr9Pmc?Gq6}b?@Fm()JhlrsNHEz7Swb$eVbpd}S>fm2McCU%PeO zo*3H_xT+ zBM|#%>&-wfNCmxOHk#{HI;m-+d8*p!4SX=rzHR0RvXQaR;h?s6gig`xQHR^phjmKGA7z zPt6mNZtN~jcfA>d8aQ}5RrGQVWi#u!2yi=JcJ@dpfk~SBhS^^u`%2Ysn?dQ_(lA)L zwo^{0_;d_b!FxH+kV>9M?lXg$WH+!thxxhU{SMy3<(DjM{!FH?kD`gx9X2cD&Y)vl7Pysh$9~*=uhU)MWPV<;$nQ~p zP3Y9E=0Y9mN8#@LaDwZcFO)1F^Z1tb0^V>9_u4E}w>Qr~UwnxTXeB3+*sT{(XGczQ zI*_3HPq|`cIsY?$Zn7k>xu=wI+DwYOc`Mw_Uzk@bK^LEK1(mYSnO{;ujgGT`fA z>;B>0_(rdHWfx*yg5<7Hr<(=B(o&vCU+w`-g(-13cyk^26`{atqB1rQ_gN4-6%sIj+>j7M-g zZeBM7`DL@^mc>u1{DoT@yQQ>W&07?c{E$X7F*v^M9ZE|B@iN-^Cf`T-Lit6KtsJ?B zwDlIJSQcR`cW(WyzHJ^$gCcFQQqUiqH%O&UM%>}2wd}^z8V#@2j5ib6?dlK)YHr2D ztGWdlzH0*BP&cS7NLLOc-wHWhLtcM(DNF$AZ#9Dy2K&YeA!t-G*Q^n#}>0NNV!4cuDj1mRYWlC-Gjw z7Aei2vo8ndK~O@HfEKrAOb%ePp}Z-&f^Iis>`M>g;y^0JnH6lQQ@up%e5@goImA++ zcG~3Xxg2c?bPlD5!#Lv`Hlli58>(kh<5tv(3=(mXoO`&H4m~N#g7(U8>1?!RlVajF zLWmO^4b%m0Qlrr_L$M%GqH}1iD?sCUu7kzqvM^}insDdP8W+p?$SYJB$hDC>hoa&v zcnI~uW8#T8E+C{_z$VouX;Fe@w%X|<4|7o_wC{$oY5*fYChkh+IE{0aII#g*-VOdJ zU7U;PcBOLBAe9^QTbc!wBfDb`V9azzmT8HR-psHpQ7ofV(I88+EcJ?eR4Q(vD`fCr z9wKu(bAyy)tM~;?CEA3p*pP|#B0ovm<#5(Uf2xcU*v-9+;!mNuEbPXGgjDY0`?oJq?%;)caR(nE&`hX=;@+)x+MGx;(Gnq{ts>%2wa#V=qA^jwv54(u55!hK zmWv3f6!F$L3y4N`gJ{4m6D{qjXmWoq(wsn(KX5-cV%aP=&Ak&X9oXzgtFvHUUB)%Q zW(gI97a>`qpet3hCSPfc*xhZR%af6VNj=em?wP{nfmF&2e!EKtkd(%A~j zDiyWt;l`+Z;$WeU40 zBl}^PTDs6OO6|0u%F*CQ6am!pYN-IHy+E#OgLMj!y z)PV|Bm!jbP$TCUow8--dQ%4qbq;x$Vg1YB9!|O^xBd*U=%;dQS8Ezf#0+AVOIM;A1 zHTuR{Zm_c3cmPiX#FiyJTw{5}=_&cWXn97l>rGsbBMTB~+fKCQKVIV0{6AA#t?LVz z+4T8mXmlesaQ-1NDY4Pgq#8(iZ(E2o;T6jewbNUkUtO^i4P5z3AN~p6Si>PA(a~6vXvj@vRi(XBQhg3l@(~E;oB{kvXU)4ToYRyhinm2 z$_~B@vO%Ug7#6BXbr@9i?|q;1&Mu@~-3T(0pT>#1xlnLB-!dxdaZdt{*#e|2$ueCn z8wk(hFy|LOaY$?&cPulurmYro|=6}?`h+z5O+luB3MLlTPy<3`;3KJu)>Hw^KX z40`Dx#*U8C&_kBRYW#otLmqhMRRCu2nbAC|o$gxSn0=J<1b2q?_Av|Ihadwm*qQyf zF1^V*s~|uc*2rx~w#e@kvZZ2vL7=2LVZpnLY^l~L*GRP=SupwikDdfiKWYlJg-i23 zvD~ki!MJ`>>q&l6a&X5$SF#B0E7hIiabrnurKPyOh{~YXKS!a56riQVoJRIl$DBjn zeP3AaV+ST|W1P9KT3O&Psn1vzv9~;bD`y?vQPPpKmSOUx(`_-5rJ3^({FDnT|KU@s z(RAi1RPf>RTvd=ttMvQEf)@~WOI6=mUR6v-6Y*+e`_A&RE9gl)H~6D1$@o2w0rK_o z04Zms!GZdH>k?b86k~L7eabZp$Dv?!h`YiK5mFf)rv8YQxa%I1K}x-9c~tGR$m=D| z*ElzFNIYirwAalVPNmNmD3ijguXBH3vxK>LV17wgo-tHD66;JMzoJV2$iu_C;#W(& zilx#@5B+ArD+;?MH2KYniSHcY&UsVmYX#v_`faX1`6BscMNYk8eSy}wIHbPAsmo@$ z0mW3K1IFDfhQ9Bw5uxf&}*0(MJvZq_Y|3HeGO z<4KI?@;l0Itre-s7s(5CNG+NoG$>G^r*#O8c^%*F?$h7{oG(4CgFUhBLiIQNBil$* z2945Lt)!U&_K@F+|NKO*yO$MHsx#2$HhNicPau_ha>d(Pr}|O?|BqJ7-V)G%k&4ob z@tnp7bzLaaAJ=*hM;lt}&*gzs+R#@4R!m0AZaggXH07&;PSO*B)>%$Z3Bw)O{~zqp zSn%xYA+?5Bd6s}UY#e6e3|8P6U>tUI=Blpu+m+>Hq%(9L|KY@u#cUtw1av+5K&7wSNAMDJ< zIPm$OL?(Z@m`e>gNMQMC)J;lPE)=9vsETe@OvTD>Oh03Knb%kv^2Qsbl3cuaS{KzNR9&Fj{IbS%)bWxdAvW!G+4}%Onfu&-=D(E-2Y%eTeE> zT~Cz#HZC{Z&T{K|qTJs~Z}qf>Xk=fK7t9eS7HJtA!U{RMS;w5ioRz-lW1T~m<0$3q zzFbO3rIc^?vtkiRcH_=t@-n(#J84>f>ukkSehya+wnkCa0IN<)9{5idBQxG^YSie}M`V%(<9+BKzDONS4~{{T_b)|?sz~Pp=6tNwd!1;&7blXJh<4#FyiC4v^T^CKWK839kdQgt*+t@kyjLC&H%O2$D;Z~}rX*!QSvin>G z9?x=(*FI3_>m=DHX8b$msxo|PD!=9B&*J+fUu|f@P8`?OZqmNlT)^x1{W;EP2_NKI z=)_!16L<0@Xri5{ zXl7xMw5N)1*QrhDFs=`OXHnDZt`3v%D0djR1E}aRYojVqGCpn{ua&m!~LPjcoVmCVn6iaU$!MotV=z7x$Vy;r}EQu1;h*JKM;7(>`I z)HzE3v4U%lEfRJqEK?EPkMQaV%J=dSH zcGalroQtE=c5?sWS(t~Ozwe z?u>{ml$r~OFI=((ueQoHu(YG@?}Lzszi1t&nC0h^ zd|}h-LT~BzOFR-dFXRciqK$Ygw>(?uDZRP=A1o3q8=WB~k5{>I%NNOWl5%vV639V* zb-VZ)mwCu$u#D@w?1xbb*Go{JEnHr>l?K0Tt988M2Bu&!Xlg%yDQ`QcE(en5*N{Xs zHJva=NIpCG9MQx>u8+0n(%e_k7H;q2Bp{V4wbpZ$vRm3MF`>w&sw`09 z!*5z&QA}BHb4Qg;@>qv7!=xK~tU$P-@43JXAEmw zgY1^ye(xNx8p*Jw(3|2DFy7DJ&*f#agz};Qa!47$N~*1%RC=foGrS*Q*7(i$xyzQF zSGugL{r~y7`Y8PTB8r>x0cQYGDQ?AwoPz8|1CRf6ep|vY#Sp|HxalWx%uENR_9~FR)>qDuc$vT!=?XJQ8mnQDZaA#89 zN7g!Oe#Y8PYW>KH)3f0jAg_+fiSqO`VS3tMI)74*btuNifBv+7Gz}c#8Y%mH#>Ir& z)o?zyVm?B4*KGs&%JEhl!ejcCvlxx<{=zy%F+W`AGFO!j2$u9`__-oqC=apnh5RwU zwDBz0_`F*fZT|T~{?V$d^wn@vN6GjVG6ILZq2m7Y81&&VO~qZtAcKy7q7XgsYurkC z>qquC)^ZLY@3e4M_=&<$=Zuxx1ynd}nH%vmT z6;eULu0Mb&?9#;_te8+^ZwV`nz?>^TnBsGv0{u@inS+oOr-{0I{xP{1O8Dr!Ni(0_#+qg$+e&u@^cn8^# zM@^h)kU}lLAup|W@a8n?rrbL2xZa#zzJ+qMmxldry$|h!z2()Nb>|90rK^ANL*u!F zO5>MD&OgsXxZa95%MRto?k=&RWKc@me_3Ti+n3$)_7TJtLM`VC0|*3^59kr zrrjQjw4otFDh=_iC={tLef11Rf}B)awDe-M4KG|AK*FtjOhxb2pe@KZ4~I`=QTL8E zyd%8mYL^>3a=GAE%5^E$HqPmm#>CmyD>5*_hB2B$NyidxTNSx1*@nSWzE-Bg==Qju zMTt0d<~@+g#p}`$T^Wa6ETYg@bfovwIXy_FwdgW!c#mecgr~tK#e|hmBh_Zv zJfv}*Z6%7Qb8981ai*ovvp&a$*7?mE#4Z=^&$Bb!x}k*I)*`WrZd_TAN@Yp8sH|dX zLU-HCYNxl{&{pK**bNyLMw&Rw%SYf@<2rYvD-E?EzIh`pvC=*ZXC6|?yvAn3_{VOk zGT-*5BK!8T?NwxGf$bgT0tCqZ%j9czA8zb&R5B1C5BP+ZSNRY3KyXER1SZWI*;~1MKRqQ|m`*@5Ei}q}mETuNA zn9CvMt&(!cQhgtH$#0wulq(0q(i^Zy4%EW5CI_lmKENQ&dw_3`Y{6`6G#SJCcuU6d z|LAGx0MGX)a5c#xWqOn2Xq;#ZmX=MjO;IfJzSQRFHa%5Ow)v3u5w!8%Q}{N@7s@M} zxG+#c>qiAPKdua%IDcgpy}lUju|oyd1f)_EWe?g$DsFjmF(Q9Lal2{;uQ=WNV04;c z!@P!kB`O6VwqbyuR5Z(m{Y|nbuT*o%k+-=vt#oC!ZH8jud0yEf!LnHKlwYdl;B}h@ z1k?NnFxfC=p6wpR?5b?g=;i_5(w+HyYvpw0`40I)>y81Dw0sgS{A8i6STSS7G0>n= z%-Uv*LaxVFab5F;5^ey-Lpcs?I{Y)QZqo8cxwgW}nLd=GX&#}5=`QBbF6KIeTWRb4 zme?@SAiFb`U|>xOL?gJM^A!h6d9jHyOJs3n@-ST^dE23aBPDed9K5N5_k!+S9sehWA z-|nZAs-Ne(Et}=B#AObb3fJ%>M7GGc++_)IEa~G`zwUowB_)Dd?;}t(uABbX(}nD>qVhkA zL`}86ipp2L;GDlN*o2zj7=`VAo||pc)an;B^wmjAwA==$;>AA7tvt4sBM&)*IT6?4 zL`(la#@;(Fs%v{6zB9-S2m)e31S$3|*c)wzehvcm27-!ZEMSWo3uugHtfNs@61#~d zF)F4wX)4A<6Ggz9W{o8p8^)XDN-XcQ_MQXI{oc>-^Zs+zJbSI(%UXM%eb!L)_nL*= zvxplXILtnOKerry`ch^)$6(@w8dLPf#G2A1AM!CzJ(jWKeMF%{T&$*|QV?%qFFwH9 zD77C(k9c(h-$z~O_-Cj^&;A%foj&IwgrANf^y(L=h}QrNq26D{jK(c9=7={k#Rp^N z!_b_Kvj3OYqz8wQ+KKsEEru3zEr5OP1xI4=E>--*ORR6@&#DTAQ&G>Eu67(K;+8WD zk$7QdZ+0qXf?jfX+}VrDViw{S%v?kluV~@pX$jSuhcx=0;cDQgVwsiJq zv|;WD?c5{k7p?%XJSbdzF{ViWp^LryrI?X=5lrG1QSWaOecrs<+$a}{>sL78S>K{A z!tj7Is*ZHw8WJ9I3>7l{$`!&-M}-z&kHPj;VDScm6C>NRWM6x$n=#m73l5(f+KX@T zGApoH{T6Q5%Rn*z zkXSH%?hi|4+e1$1OrGpYtT0ucvNk+IC5}x&CEWhtO5mrX66#}KbOjctyGSjFieKQE z!0k_7*9AwM;R;UqNvum{4YgfGqmBLR)rIK7sY`rlS2h&7^@MG47^SG<=xD6o8Mh`P6PWK8Cwi(^RCJNuLFqL*>DH z^~ZXbJxnlYGP*$_!U)b24&;poX!L}Po#_}Eo%(^(yL-i?NXd$L*7=Oag( zQEOjQk^Z9Ie$m(Tn~v;bApwtN?J27sQn@l-6Dz5Q{2$oo)i>S1V7{l_<}PnwnoL>u zQNWS@$m`T245g+GP2cL))pZ=8!PQwuS{i6dTz4IxsQeX(WH#D&HZuK=$@T*05+SBp z>w2NA8$!StU{47(-PX~-9vHT8hBlqdJ&|_rrbyeb7t(&-)P!5>C)T2_aE{i2CbU2) zA8vCffBK;XDpT9VZf$A0iD|wOlNp}V7SqFx`1*258{|;BvwK^7==GoiDZq&w?>PTlF$sL!Hi= zgQ#FIoVS#xxvW zlA@Z@g&5N@`u93?2t2tppvGoob)*o@x6%y8{`M%TaKUpS7L44ET1icDDCw*A$8jci zJ>A$D<46}y-|Eo3M2P;f3*B=k(R6Ix9h`B9OyLJ^C>0p6g79XS)+Zx_w%K@#m3G6V z(sc!~DznkusVdT*av;U@6s!4A@I`F+iSwfcsSwf+gV6m{#P;8Zj0;9a_Mmr|+an#^ zKKo@E>(Y*N)3-F^V`MKfxZf9C(onc3iu zW0%2#3omw=G+-5ax7{c(ynfP(SK$)jN3%vFTJTk^j5kI@Wb!ziHiS$!r?aEGhSYHk zM0$)zX*Z2w?q6C0n)AECG~#azjG^PeEsE0W0`6#{Xv~QE7BCjMX#E0*co~#Z1L>Wd z0LK2S7)mcDnzCr_HPr33NeDaDTvWFQ{bWGZPESSwK5hYKL@tQERyOt4-^cff2tCwbm`iY`KO>FD6{l3WRT}p)DYvuE3bBXCJfD z)K5=uHr6H_90B6+e>Fta=Gxrcu^Jf!tiaA%B=lenxJj$D0uOx?tKDtA-E%FknZ8?5 z4mb_;quGTJ`(-Q2akCKd%iXbF_tP=?9&it~#Bj>bv0iTC{RQWM#5Pd_N<6}NSVgATBH!AF8&Y``Za{CpaKn)Kd zl^U<36h9v@h3Khf1QsaK#%DfEDX2x_CEcro9Dk@Q{^ zFJC?Al@q3H%H5$2t$$8{IcbhIF5sK79>ta*&0%vfIEqTZ{eFeksqoiWhyFeV?)_CL zT3RV)=F>jfnAlwg#`men(XSjs=Lfz0`*PDgytb*K4eM@aA+g?oylrPutGPy)WjW_C z@#)P{jA^)e98SZ^P#5I~BzaJM`=-H3p9(z~oPI!N;OL0FV=?B}j z?%e+~L@rt|-ry0kKK=6xxH~7HXk#ye@hnrDvHLE8Q7~GYu>qGcmFRQx0nVaPC(OIrR{V-S0XW<4;DtyasN#fgG-!*W$X}L=G?PpWigu z^c)OZ)nxXk>9^5hFZ6^K3w(1!8!vm>9TPT}QL5Gi@Jm^b;_o7@Mk!cNKe~&Y^x2V) zoNnKPsdqISEB&JT7;V4UyFM@t)Pb&eXllfCcZI1j)6z$nG@y6?Fg0Xq__ryDX|q2~ z!A#@+GPPhj>2FNuLVWB?tDczdkzXHeeRx)hBHZYM%8vgBHL1e~%ysPTo|?k+bpDPu zP)qJV`OZLwE!+OGwEDgWN=82u)WC+ z^Af%^htf<1;Ztgui*z;Yja|*3>S&~Dp2Utd{b-ocoJ8$Y%uVRH5fSHjXuSt#n*kK; zZVq!>=jyn-l$`|Kwai!Rlx6OSaP)U=AfK&?vaP&}(GulhF4F(Y#s0{{3>$D?lEYeu zm(KAtGZ_MRy-=3->>Iqz_jR;13}&cU8$5iub{)0RIMWwWGwdzvn9)ird^D>8?mTg1 zT@Ru!>S-e|sXmI*?vgf(;pa1h{=S5qp8J8(@n@|K;qkLRCHf<7z%N*2KJf?Fw=3?K zRBPX74Z)4>uBALa0Cjn;w+958i*YpD9owY)LFN-2^m(w^*AbLE+Y~_m36-KBG&a|9 zgqJlnf5)P4H#2)Wf`-n8i`lXk$aql}CK_Cg22fBdG9tH|E=;GTIE3kH0Z`qMuh z5O>oY42-d1VEp;D)^_k;nn{O`qAZO%g5h^hTZVEvAx6<7t@lrNG8a*!hfzNE)t${S z(CaHGw6IVwG)39|(-qPi)3lK~x*O8k-dCG>qPzEWhe&aMt@!>u(B1EoZUH=+TJ_*tz_M-sqjRv(OZiC}zS&>9%NR|9Bn61dT|wG!S=f=JSr+6;kH z)?qjd(HdmE0`B8PWC{1Inem-it0R2BX40q2urOv0LCnYf(JF8N+k(CrikJrnAj#Yxl{ z!!UC>KK-4nCEY3$0{*#3dR-<2Qta^~%(ry(+^CI#XKgSBKFWqvyPDb<2pWk@+Aq;^ zhacHGlrst<_1{1dPLBfjt0^XFO8Dm>JY%-DgL*y3TvW&dBXNwmxt<0ca+`H_n_*bPPwjZx+(PTXh&=OtDrgzydtizg zr;q&0o;%gN79LOI`Z4o3C&Y69feN)k2dAt-*zZlublr|;9eDHh~jHws2c7ik9OnPxyQ{!LH0r$p8 zbUfVRj-WlGP>k905a#WNF!;tDMnC%@tZhER4z>-hO-sTt;_2n}9t#`%!=8Mngh=lD5!rMZsd=bNj{{I&fFhkAg!-lnu;HFEml z1O}Gx8uNbLHTySf%tLjc!E4R%$#KozeVw@@(+P#<5T?t?+=OY-TV@-+4jYdp72ba9 z(>L!Rp+CkWp|JI6h?Z-$c7_LFKbo@v+(zrr*uQN6cS2unhQcfGQ0meT(caz!M%w2Z z0}g>*X+>uoJzU+4xDCI6h`I$L*Rr*ag2*sBGZM9Uu@wyeh1#%y_u%@J^e&=BF4B7c z({~{fSFVjKxD~F4xe5{Q)94<{c5qAb(f(qk{AdRl-xMI_pq*HC-&zpiL)gUCu>ZQ# z{78?_)incnz-}(v5^csE*$s_U=whGtp&4$b-k6K|4Zp_e)E2PKNtJu{pJZe{-JzqZZCe!`NX^(A0;NBkyjotXVJHb+);L<6EPBD@MRoG zBR@kC+(&^?`WYAxYavrniTYoFaoh_zFZ=?PSnrM9f$2+g2R*suIfejy9#6zkD&poH zLK*(l+nXFVkJ9mvH;T7 zasoOZ^ROo+^h8g5^*stQd6G8mTb@8MQwM6cZQe<6BL`s)Up$G)@Qr;%2{+!3NKGfh z=dv%=DdRLuT9f6MA&tRSZFxLi4sP3}s7I&MNTa#^#%W$255KLA2)Jh+fzRKx!SLld zL|@@%?mz`K&Hc#b0-}#~M@!{iK=hXOkRQz6df~cR(FwoJAY6;=dy=$~WVs~1k|awqO_B_D!iPkCB$>*@MfhF@Im^gRcwGkS!pI=} zEd!mF=ok|Z;bj@*2qRbFUm1v!P_cPE6Ll>q=s;I z43S?Mxe7POK%NrifaC*imaqvE7vb0#wLc{T+cPl;cgBd{L84KTcae#UaAAy!#!A#$ zij0=%yhJx8Vu!^@`g=yM!c(!5?<)Kh1NM-ic1h~W7+De(Nz{T#P2rLl5!fFwigrVa ztdL}vl-wlILrLD0flDO{mFR##`NHEcYH>+2zh?IhI>>?OwCL^724h+Jcfk7U~Kz0cX#QuOm21t@ENo`3=9rKSp07GVn4EsXl1z}qCdoN5|8&BaFJ#Wh&>%^6 zO43o1R7tu?!d`n3VU|SSO2W>15%{r0Z!j?kAH4`<|GXd*CGRUq>WTTM6Ha--WRJWc z?2Z?Neer^@BVLdnC5o5CRgw#mjFco%5_Y+Z2q6-6XCgiAB5;WeJRu1?*v&_1LkZcp zE>Mg_^Ce-Ax(IA5(QZlNB)Kn%D#;*8K9i(@BspS)}%kMBhkKAxU#dPD;{JkQvLp;8S+Qw470sXG|KI zGj$sNjK$ne7y%h;Ew|xyHd~ki0Nr~q7>j5Civ`e0a87_U2^#lgu}BH>1Ykn}aSjPk zE;*jPSZtXDLj@?2U{^2r&(0Qq?|?{u3Dzf)72BI5-IHLA0Bt0=D!_6H+DEXMuLN@i zNS5G)0MjIB5XoX05{wbRM}nH42s9Ol^43TE(n?q$C{3Mcj`E6>`YDD1|K9^RL(B|d zo?SQhsqHQW9u45I2u>yK^T@{eLg_=ccP58#lR|HgVDNzi{@Dz29h{L2Sl=U#|7Zpa zCFhkK2ID38YYc;}67(C#;5!NOEDZWcaB6}`E=Qu)lbFRCJ_Fu_mrRDAVJjXvLa}qu zA5#$YZ#;6upA(=2uTJMEu`+(6R~U?zVB<^%HvwpCY;+@U@m~Unv3ov;7tyU7=H~gk z9C^jOj)cv4j~tK5o@;xyOD41C^Zz`7P3+dB+Cl$`tP8T=tZ@0qb0d6$rqZ7ocyg}efNY^pnQv$QX@2}Jgigprx)reyt5C!kzMnx`$@xG4R+-?u_YregRc5TE zPPcLF@C*K6(%hv#D@sm2=2N7M6K=S$$0J90kw?6`2RI(JBjG4c3&{Gj~$07g95d_WR$00m&pt`8|j=8n& z8r{8PZmxSwzQ3E>^khwh9C2R_*|Q?z)V=_+oa4uRJaUBJa}Kv1L(m#La^L`+X8vyO z5WpG<@!h`T_^gls76{Oijvxb}d2B-0tU?MKAYl{Ah7s!?n}xLvBUU~(3#%JOtbJ@2 z);Ek;{n&)UVZ{2!W?_xPh!v2{!YYRmYap8iI!B-qR=+l(beP#mAl5pJSP9uItacc& z7P47b?=WIDWV5j1VZ?gKW?{|4$X6g%J&afr*(|Jk7_lm{Sy=fn%3$-?W?}8akhKwN z7$wnEftos@=1!=k6Kd^*+B%{3PAIGzxBBhjPfl5Uxt>!PH3nT8t#NLoluq&8tH^a zJE1X7D1V$2v^b%OPH3_d%5y?fozQeA^okQ=i-yOVS&Xiq@?#`q6UQcu8fLPMW3&7e zD|yER?-wU@$q8L?Lf4$obtiPw3H=tE|8f?0oS1i=(0wQL&cgrBJC6~YeKyOf2@n6^PZud3=~;6V@vuHfC+Yd}YMetj)sqD=GnP?b!DBO)5u3F( zVb4}0wr3el5j-|*s}UQvjP~*Ik4>1k4hY0HE~5z|qW}96y&+J56Kdpyf}K#P6Kdjw z#=nH1|MtEFZI;JQ=uao~w-b8eg#K|t&z#T;Clvd^OI6CZ#J>zJiB4#R6Ji6OTZRpO zo3Qk&5u5sq_z2A=Y<)&-`lCt?9^3vl3tRilW8>du$-n76e;;n^EY$h1- z-oj?#-2@}vT-d~Rf)Vd7Y?j22C6Bikn4(U|_OV0%Nv7K;Qk0MBUkMdS7IJ%L(0P z#QIM%e|KWub3z@zl!;2onNH{{Cv?aO@fMB?(^zEBdpJfO0`Vqp)mrF3-qhJFPaMp3 z0{!EJo;e}j=y5W<@w15?Up3;bUp3-AU^V*HfqIE}ycq;9Uu+R!d|(gAqIU$7w}sV+ z_lMQU<7J#s>ioe*!5xt(~=Y!jPgM*Rfh-EuYJZL>r||M9+= zp-G7H2D%zubs#?IwOJ~iP@UsaQu5k5p*Sa$>4auhqpnEQRt3xN zaqz6-7U%fS2iMBjOJ2I=G-X0$9m3x{%yeJZLTihHA|=lLrF-0}uK4qS%i~ZlL=F=F z!C+q-9T%Erd|mWQOVZuN|1Zc&uZi=q-?qj5s&jQ`CRKDxs836`#syNtuJJyU`F>#jJ5PxbDNlR7%0g_Xt~)c>QmKP-)#7^s_MM}ro+y8a?c{-PqbKGk{@XV!JKr$34t z<)+^zQfx@&PvRnVhwVsqX)RaY_hryEpTzpq$}K*W&Ku*q>$a1ZTl_6DWhA}tzAjm7 z(5;zCDizd5GhEG1s6lD&aHi>5Gk%DdE|pRe0&M=2Y**;A&)P1f85F~h<{j1cgj9uW&AOtu05^lfJ$HaD9M8g3em2g zbwlipzr)Qmyj|9$^@Z`{b#rLnljHz<2*tPY&~=~(@mNR7&%q}l{6p5VuiO^jy_Rm2 zD7C%T=Se>`B@_<-#YOmIHHba-&|egT!k;c*#leGEH$I+7^rQ&)gse8ec38QpbcBC6^)WIjxL#*N}7b4qLS5WlH>@(;^Nurys zh3q-791g!`CntM4rYtu-RqTZ0AmQ+<^0kE4jda0cakNKoO_*cU-_g^-T?ylKH|!6m zC5Jf5^I}b`7d-hP8azs21?-dJP7~&$YMPfRM_55TGy{eiz7^S(Al*;Vzl##O>Q>10 zS0qvOKMD5S{Ru7W>2}dqyAnE*aOG5XETN-r6R&OoT(?HFbaB5+)113Mg|Li;{ODJ&Dy~#Q*UANQ@&9=dy3zdzv@fMu;pt0KP4%nd% zPRKSX4CiruE8)1Sc*`bdUjA5)H5a`d2Z{5jYLD&XL z4wbNCYn&$~bC@RAfM!|Zy-BSf6H39O;*GkmY16}m7`4xyu+7O{_EV1%EZ(%wg6Z_SExDc@oWqXEEY^Bp zxME2|(e4gHF%G81w51is#2H?CF*_WJIe?BtKr^**OKhgQOvTgDyrmIn)I3X!L3%T> zx+R{b#~E0kix;QVqm}N7P;$++3FlffadR8p7=lU9%XzG`*i4udP70^!5S3vu-+?JeXOO^-fCosgotz2K+hA~}TZE4C!o(z)^> zQ3i!Q#0X^p%K9MDkIG9><$2%5gvj}GkkyY&fcY)$L$)P0s;$2OZ#!{VJ0Emddl3sdK6z@==zfc10zLgY^H_ zQ)*YN#z@JHUNoL9KMJ>}o=Ti)%;%FXScfEu<1HL)#2X^pipFRm?74~ z{`N14n+cO53tc>%f7sYXP3-w8EaOjm}u#-!YuYnddP4c6HopDg%hCcP_o_msy zZnhZq1iLBFV_l46N-S?dq2ENduxHdv`n`tkjI7S{Vpw;H{?w!=hpbN5pUN0%$ zpxb#MFzGwjjvZx5QYGmo3E$vC@n%W%tt5Pd3xOa152LKJ!JQA`!2MZI591RW+E=wq zdSTH2q_^8TBz>kuz2J#scczoIf!UszrH}w=g0b|<9 z8f)uDryeA_>mTav!D;c!jHp(OoW)Mo)mO}zFIRP8TWMC*6Iay3@gAHHsgTcZHm8E! zba8A!J#f|Cm%Ah<^J$K&Q5DiHX|plD9$QfJ3}`n#*+LSZ{SSkvs{uu5AT+d{Z7YMD ze6Mc#RW>rrq+gnP^MMl*s3X(a@;~gN-`(*Fn!81qON9^MYJAk~q-h4-?=K05{3qVW z-sX?^V1q~1OZn@1d-R`4W;Y{WUBg>xiVj7|H$O`{?N;CMs-BOgkoyct*8cysnF@Up z2D-1)YxerJkmL^429^D4&Ez#Mx=f+R>@dJi8T425_KbST>x^!Eq=gLoSJ_N~l-D$& zmOZLba-2cePIQ*GU$I7(<^{hvFRnOs1s?)Sq7bzU@&#!kUI9a zmL}+Vto;2!B(2zOF{zmfahP7&(AG9MI|FA z=+;m2;U4(^SOGYfcovZ4L(e~kde-cRw)RGMl2^NV^XU|F<-;bBci1+#ZNzBegCYb} zumw==>c%HUfG5SQV!a*A1EnQ>V^CCaU}P1yJgnll$SQ7iSjBA)tGLBs6}LC6;?{;$ z+}5yKN|2;gT+XnHOBq&i8N(_rVOYiG3#+(vVHKAxtm1sgDlYn2#o>_EGF7Bt=7zJ1 z&kC&KQlC|PRA3eFyRG7r0;}bikO>#hBjPz%Jo#$^tN56}D!wJKicblw;!6T6J|ti+ ze@0*xUlCZvM+8>!4S`jBLSV%!Xq@(0#TNut@ygk1`9ef9if2#pTq&Oah=eAI-+bO+ z6(0^*#Y<%?e>Q*+K3cF^wu@)3c+L|~J`b>p?***lU9wetEnwyAgZW^j3!$yz*-AY3 zizjd8t>QZYtGGgF6<-Nh#fxOC_(Z@eUL#w@2Le{{eSp={Uc{Oso*l${-l5Z6+jnQ<1&D&3_g+B_gif;m};*$WY_#nV4z6Y>c>_Ud$3R^8%;#nk~ zEyOceJo!TatN0GUYFQydc8TXE@q8$rZ}KzWvQ&Uj@jM`&yeYDZ+y7R}*W!1Qc=FYM ztGM}Z74LJc;@-biT>H0*x42fzWg#<0$QO&}UGW?$p6kUkT0GZ?r?~8I74L4X;;O$@ zyt%bn5(N7X@#Jg%R`J%>DlYk3#XDQ8Fl4Rb6|GfV@V5#p)+&rxt9S)#6|Y{c;+3ma z7_ev+q_)oS*L2+eJ47CA$6CcZRjaUKt-^@43LDmH@e^FONv)RS;(1j(r-PASxT$Zo%oibSTv^2nK&xf92#FKV z`{Kz~l+`jwu0Nj%&_F!dIKr$GPd19I!X~m>wg~QH5%RnET|+$iTE11>%D0O5ZB`2# zGge{CSS@SC?@aN$A|%=Ju!`IGR!cj%{#+L9kHoX4c$SGLn+aBN4c{s(1gp4&Zxwg& ztrn}0`As}miRUfx^cTnlqt>R^u)v{WIu%5OGHEp%jm+Q}P5yXla>!oj3ZLM2-*77=0)&!5Hfj(CQNCo5U2#ah^SuGVJyt#Ou6wj7)u9lLh$E$}R zFQv2I>_Yv$lqkG$SnH*911a%RI_h4b7aVw-qP&%O<84H=1Yf7nmGJ3V>8*62eg29E zxR<<@L6Y0-I@uPf@J94QVn_07pc=tl?xSRbJn&HlNTK%EY2S_%Kg#q~n%9{$esa!Q zOa24hzwip4GYG$q{V=!%^%VGk^H$s_!UcaczvcTBPV8Q7r9ViFuaXL~+E<`kzDff2 zr|s(~eL&{bQ8Ga;)=@@)^sXz=`nt+^Bd-pYwCfb|1&a8JA+{Y|HN@7SSv^v`C9hv~ z-aQRMdLUh^qr}ti?kGZ9PZYtA0_rQnrTFk_@%H575$o#as0a=&AVmA3;Q~F}Pl?fW zp=o|fcaRVLlra5&^mN%z>7_eP4I3yXkcBYkxS^6R84Isd`FT{iLx9pAjLZO~ zpJcq@V3bM5^8h6c{M0}##nsno(KHLr5WCIeH4Nk9b?AVC+U%IN*xLe zMaLYY5uu7%GQK-W`8yRH!UdpswKk>(80DCS8<sWKU4ZBwNUNO4mPig0?`R7o<1b7}6Mq)5G5 zpXxuvch-5$ln8M5HdDq(?&FhG+y#?FypW4-j=l+}1yN@^`CYNhb2y}d0&)Q2q;1*lg`B|}DaE1}T05w)V7Qj3b4;hZ_OMXWbn zZK(u8?pc+bSBdPt=bey6ek&{=;bd>6^pdI6EurDtl!nyquLy7I)jGB&wQa4qL8MD- z^p&V)!;-2dGD^7#tz&(($rMgytwjNS+F*W%(}*@o7D#a$tsPpGPP47R7YY5=7CjbDt=cJyK@_J8MYqKC zJKP>^8Tc*^#x=G??NUsvPoD`ix+Noi&9jTzLVwAkd|7sWmrx}jC9<>)) zcItrn7EX&gC?jQr(F2#!<@d;YuwTGO&a; zEk$dWj!$c(HQ*6i7LJxXLO+KqnMU3jSh7ke`+a0IDGV89bW|e2-Ov%MxZsW{p#?qB zUOP9ZHLgyiS0^P|@+X$i;a<=I=2*HOx6D94NMQOf+ev2Ik5 z7>hqi@1@kBJz3cDg)KzKh`4W*(2=GP4Oy(P zsY%ac@sc=3F`}$}x+xQ+@aq3Z?jcvxd>jkFTng;2MWO#kl*q1ldlX%w75E)TXJ!p@ zD$3@oX*lDbig`Jglpe}tS(Gg(_mAl3tESi(3hs&VC93o8%j2t2FQo+)T}-P<#dEa! z?kJ&{L1>jNJ(a;S%KQJT1%i;-h+a^abJ4HLG%5K}b)GHA=hw6V+A>=dYfEosC?x*@ zk&<7cQ|n`C@0t|bmahJsR*UB6Yb7{@e(~pJKLSgyDD)8wu2tv*ujS~};-uJC6!e2= z`QeeuV5IwLq%s?%LzJ?{AR?S1Pm?m8dPOTC2p=A;tdI$vMbbx5InP982xY}6zB2d% z=ER?9tCV9L{#{+Fp_Ct#?m?5wMg9*Hls6zbD^Xc0 zC7)py4dfx4q>Pp!|2hT#ld?p~^iPuFDT7^3$?14tVtQkW{zx=dYO*o_sclbIW`P7L z%3P53ic$a)sKV9}O;_&}+`@t9teqZ6RB=0oev%zz9y>=ybnYFHOV%{F|d= z*mze-xRLG6{=QX%{z{56Rb~?Uf26%F=?!0=*i9)^RniLWN?jSF#VM-&0lH|#nAq-= zYgZbf&>yBMvt-HIQJ=9WS;e^6Bue{28|z_+GX%pX?=1|Q!{cN7Q*j@~C}VVzF;JJ* zlr4BKm{#di;QfYq}C37icfMNkzHb9vQ@_YbP^IV!R zP?-X9X&^MT=%lPuQhi}1Fw6Rkq7fO2N?`}82CvUxWvb+jr>*0ZmQ*wtX2e{o7_3Z@ z;rK_10f-Zwi-MNj=wFxek0=JonpzbFf7dlD7JuS28`kW`Vy*dRP~Jcp)v@l*a`aEc zG?>UmUn?zPSLT2W&CpiN6)$I1e5-%ss=kZP)CSm_js_~vgfS+Xtgt!+`u1~7veXD|#d#aK zSE)ACpf#0F*9P8(Q!g1qxyjgDpy-XMtY=?WI&@r1Ve=`{MPSwlUO|@Pi4w2Kf=wp! z-hPTYEQ5yK9D$nWErlM-+X;JSE_KRQrc06CDBdt`q0vetZQiA+v%QYlm^Mh;)el=U#(oow%m#p1H#ps(fUYjS^PEmLfYW#4#5{B3z7G;!-_S-3Hzg}rXDO+QE)77GM zKZ@EVYN(qaR<2hkD6b*H^9jmK8R0P+f4VZ1qV}hIYOQf+qB2j`;|c9gMLojSW8o<1 z*4L|Qv|OE}ye36nNDOliV47SQg#7@7=??X_RFz- zxtb?d*V}o@LWob8qO1UUGDVpOGIOd(!)2PXNaob2a5^@59e(RywZ{K5P0aMk)3uS% zyp&D!=3L;;)x!*lrOptG!B;bszChluD3d_uy`n6ZNq3>VDGF@dPh#=fVkP#d)uX6; zX_eZ*|3J)AOz`BR)RED8QSJFk4%r^1*Px1#iWkycJxf_4nK3V=nf6CIF3M@6N%CWz z`9VV8OI8Bi&(n%i{2;xKW}$rcs$xSPNpnO49iO8R(1^Lp5|H2KD(gVz%~Mu_c+OYm z%Ctss8OKmTh10AZSxRM3F%u$Y!vf69*CuQZx~WPNh0VltDzG@s)o~DTEa=`O1blk+ zH&E~o+GL(kD))iq8_?0g)B84{y#?9|KDm@m=VP;1^c8sXzKm@_dkU~871Ml5Den7V z>ovC@?6dNP*qCnVIS}tjf(F#88g!NgO0JZiiIg0MWk-zKzSYKI^g?Ya%qyiwyHUkx zmDinx(lUNcD5&|bDLJxr7E|s5C7H^D2Q(DzFO#=cC*KKw{oB|3Wo^B@^d${;d6Cdy z!LMtJ=bBQwmWP=c{f5%9@D#Q_wvYk%JDi?c`>ZRiGMr5^v$v2QYv*TQ!<;MYskB1( zU0SS}6q`z4S_e*j3z6V5r4B@PFVUv(d(~O?lS%F@t=fQv(Us5va>7X72i3e78L|gm z#``&88jGe6Yd8RJb*hZYqEdN8RBlyzB4>}K!f+hDROtlt)>0*wZ=POWsw6XQy-XR( zbn!C9V&qpLmSd$=7HBu-BrI1(Gu^Ws(^g27mCAFEs1-_M=8RgQ3^X?74a|j7+WH4p z|BN%SiRAMm7XGHxW+kSr;9lf;63k46e46yDMeSEX2@BR0nmbjpvS`a$tTIjM$SS2k zrh2oK9!^A)zqlIfkGFE@!lqPgQx-|?U9^WoonW(e24+#v1#EsMual{)h9wARxofas z!d=;V z`{F?49ZXiiZ&OC#=7YN68zMaWb9gvZ}?RIT(L$zzLejAij*QhNI#uf5QPtSno(TsyNWECau`0G=$u) zjo8(Xqn|e_U2%`G_9h%f<OGiVClXXo3f+t;CHNU- zw0Zyp_HD*4J&&GmR$h^eQ7BGT$M30t&f9#ppTA@I$)iVGl<6{u@#OOX`WhmAwEcP> z{x}V-m`8!zV3~HNf!mZABfsmjyi!KNYq1CKvQ23~CEJvGGI(|w9c+bCJh;@a>gc62 z1-*-P3Kz29RpLOly{mKq`SD$4B(7sq@As6IOiSKVHX8X2qGeTC)ppNFE4M2hn0xVU$+V{C&zukZb#3WmQsW5yn#`O(+t) zQ$>OowjZmRDAL_B$}PolRlY}DS1-r;vtT?ZqgDM;g-NyJ8c@_nSgI;1@gp41RMLiz zFvNt=-(}>v7DDan#G%1(OjD>pJB4}0)fW3J$gcbt%S0vB`a~HkTk&7C{{-xPpD&c^ zJ*7;{rCjKm!cTF&EK)a=J9kWiNL2FNtAx9ek0sqmS*!bNdQC+3{IAFzSWFxJm9*yo zHY7sOx19DbK^+c%q;$Y0(Lz)Gbh$s@)N{Dx|ct;z~O8 zh3vgAai%BA9#&qZyc1+dC$tM6hKtiwB+!=9-s$hyo`@)2%jxh7%=WV1`qwA#HQLbZ zQC?-tbd@RfE{AV^ELy?eV#8Q%dskB0LF^eS>BvE-j7n;I2sQ}D#35yruCnkjUYAtT zh{M`MNU!Q9T(D~v*Szpr|Au0338|jNibb~AAPPSOv&A+O`m1`j40VnRYocmnDr%BJ zQN@b#Uwcxd`{;-$QTErcD1_h`)Q!!nzrM!0T}e?#VciJE#PTZZ#Yp!LD{ZRHcqx!u zPU$_+UlqNvb3*x>QONvQbpI#mZjN=dk`{b}6Q@f0=Nqlgvm65|s%@M~d7q1Eed$}# zW_^x{_Sqwe=W!fGSJI^8I5`#NS&HslitJF7mL#^0l@#pLX{Wbb!k8vA@N z*0A~C!#Wf(H+$@a=u)?aUA|P)~%q9=-`6AedPuKa+gm-Ggp$&8N4n$N?B*n zT}SE28I1d*)b^}0$9R<0&+V#l>PC_0li}T17*m+PFHCUHws=JS)ao4BXLyugA#-Stoi|Glt;<`M`b_A$se()JWAbvQdWbU z_(?e=)9^(aRcn%{gh(TL-T*kzZHn#qQF{KfvJGVGFUpTHPQYnt4Q{#!qXvH+aS?j* zD8*jFA?8s!bqTWoEqEDkzK+ti%gS0Asom+9HV08lBmKCrAyjl1>+Dfle+9>rM=9{C z@-9g6Rg9yf)bbj3i$|&Gnz9ch>sM(0qx8kE%0z=`kT|OS7%hZkdEhn7q zcT6}DG6(I>C-8>5uo#Zw4<2v~ag;v4tIU`DMWmEg%nPS!wvgM7|A}*2N)f@ zNs-i&(^cyb?%BN<(1n8WJ`1VUzmFZf5LrPU* z-#4oV5ze`%#`(P@_3VKdQ4=4+P7=v(K(OVFg(R5F=G_N@ryJq42WxHMjTT}5OHrbK}29Q^!n4a}2 zv8_5v8!B;Jbd(-eLTiXLD^AmtJe*SG{)0tbggibikB6@QgR?mi^4Do;%HDs9MeRWxnjur&Rh>$;5Z2N`Q>>0z=GktOC9IREeSqSp&6$kE0a%9LItpan~~x zP>I2iwlc02m1hhLe0eOnz0B-jiwmgk*3Vzy{rXXQ`T{S_UtiZnjmLAY+6T{*YG2*! z6r@wTh|e%BL1!qt1`cT^>C~n=cUq%UQ}jbz=$cL)$h3!E9m901ULDJ{ri(hpID}XA zZ*Vzb04Bvs7j=LPIewi_^BYhL7qtiVd5kYFo^4W%980aCj$pc{hC0?DV#9W-p{CM! zSJhKSK6_o-AO{{Nb|a5H13ld28xzF3fximL-N0EZu)F5yp+|+S0fqU2GS$6l$aX3i+BgH6#A6BQU z%8)-Cf^TerpcmoZ4g9jZt79eiKjH#L1M=G&*_g6&Q@nhu?$xyvmpU!u&hQ4T?wjM< zG^UCNxaRUMU8<>u;geJ^4>eL}qZAJ{-e}`W>2AmiKt&#EPZ?6rvXM{*p9e5 z_=7|IyXihZ)hGpwH>8fv@>F{mL?Sh5brZEE<$0?3EXzf$gB+fEqMHQM=Z3r=lv_*f zC`0O0C(xV@>XJOQjgFA7e?w09KO3lloWBo6d8u_}O#kY%n#;}?o;SwiY%2Fw`x$3*8}zxc?ldf(2_cA`^&$33TXti; zF4m>ENq+hbX*q3dpazg_4_^F6dg5cvqL0SaqOhr|fr?ituDbq|-bigvS3ivN-~?(= z`w#I2UvOM1>ZL6(zm7*EdqK)aWSCXrfeAW%VfYX3x zdM1TXt-Z*u-K!WPvuU)int(51KJ-=7K%V)kSs7Mv_|4~ErOLuh_od@pnu<(8~`3TY-;p}sGvNfB+~4QbJZ)K_DSBII>+MNhQ_ zl?NoD9qX%ZM!t4wvEHE7;Yu9}3qu=&*N7fg@s^`L;Yxk_pe~v>#1EB9#aJ_lc&l)W z2ALxUPF(y@E-?%RYfW|D0aS1RU!@hl801E^8mMkE?mEhDsl_d`!))VgNILw@Vgoe; z5T)KvZ@##q)N43W})AwJS(o zkQ$*M>_Yp3R1?$3L26&)U@q!=H>)O7TUr&YddT3NH>*Y|=2$3>cRGZq9-_H9enqgF z!8A2QO_vdhZc^qR?DDcg)h1pq-wTA)!w}3pk=uc4sSX@}b*P#qIbYr60}osm2~}Ib zRBX{$?FKTUvD$^dnJ;XtnhhUwdC$>)U$rTJFB@D_vsylOp|(w+13*_aQL~snbl|k6 zs)g}aP1Q`Mfz8yxGNC&>2NJ2(?UcGQ;2t+K{_TOFG(=VptA`v`iY6GT^P8)+IhEDT z)mVJOf1$bBoxkL7f$6|k=Pj?CrP|w}?v$Pw_xK*y&s!_v&&>Y&24!!;wD4#s*)5#e zl{a|Hk7I$Bs;bA=W*IHjaRw3bUv#>g+P&~BJP>45sO~yFg|$+r8U@dAle}H9KG4}X zlTe8=iaUjdizp2!tF`LM=}m5}j-&k1s;kbsn%TCEWcF;M=CIJ#Hfj<+Zlil`)P783 z+Nz_B?8V#?d{gSs!|m11WNQnB7`9}Pyei0op6%38OsBL{Co{d)P8~^GLR43Mo10Y& zD!yI*A+D*@y-|^N`|7k4Wp3dwN6NYg10}Nq)>a|i`KHvY#Wnii4}-fVwHHgGL# z1%_iyok;V;Rf~*}j6C>C8rDJn=C2h+byVFTk=Rik3sTfkogoGL-Q)u&Kk~aCmqNBq zT44s>Zp*7UHe>Ispj zUDXM)xKsX*h|h%~IHDktR7p2=9K^eHS9`-d1x@RY!T%L~*j2b&Oh%W;a&7`O|q%-6U$%8*9-oG@!Sdpns~TO}*7VOds^ds>V+H zEyvN#MVPpm5o(+aIpG+g`=ZovS{30i9t}bo@8ZK%e_9fWuF8s3@dfb@DX#i*%zz(J zu*H#Ts!Zc7MoA6yX+?rsgO)|A9jNUexa%y^xNws<_&Byn#7JJ*FDaZZKgZ}2yq~J` zc9iDg%hHGXLz=Bju0wh>mPOG0(ORxIZ^}Eg4P(?!x~|kG2Ho40mdB`Fbld3b7&TUZ zPfuE#HotzFx`uT zMm$WB@tC!TX-m91(s-DAcJVp6ISxrsV`Yf-oTJTM;_=UDFc)O-@^e)UZ;~Oa&Q&#c z1kzlYsE!1Al&B5`QIlX@9i|VHU=kdrKa3Fg_+{hn+SZd#* z^2M-NqZL?fuC!WFCxN_B)QKPyRduEmYjlgR9$++NC-tU?6xA2pv=lW*a+}N?<91xY zQ1gu2xvb^q=W{A$g@b$!Kch6)!DMh@9%HiQGhDyg2?dMD^tq+f&cp!#!woKio(cY1}?X z1^cl2cI_O63%1K(1#PFN{nSLseQ=IqIzh)~_E*E7_(Uor4! zIF_z7MO9nV)j`l@#Q`XXurvj$$1S;i9x+fILb>fQ!43{o=g}4Z6*Wkmf^_x|LcK0f z=wNlGOb&l>JcXCvL25ib9Sj3Pq@>((><@>igCIVCh&oC)kA5AZT0l~Us&kF}>71p} zdD^O=#=i{}d}WwA#~>K+H#AJ0K+#iF4@58zS6>A=G+cdM#%p_?%5o6zm*MI#is+r8 z9R-QF9q=ym15PvpLr;WsJTKqp)Nc}>OuI8xPnij}|HGiEueNq{h7|7pvM|>OIqw>w z&H@R|fyx;N*6~#FCo>2qhZK^E*OpV0`%%=b)-zmLRUDYcG*x&ZMwv}i@_sVlPD}# zZTRMhCisK794-00^WyO0&BC^g$a^tD7jm_xpQl^$a^ew0CyzItQ@P!WZja-96$7k?;}zHkr_zb4#ULW> z=Dz7y>t%EQI&GSS#q2tHOjbvO#Ube(c@)i}d=&h`jpW#h1~ zG#8x*7X+Sp&_|#X^I$}RUd&T-nWjvU_}~1r>1x(hX#p(ZoUouT&DZKV%qsA=$=K+k8W!Q2gTQv#ZAkFCmgX7z4qi#Qo23{cDbL@cd;a4+lcED>_)*RKW|IUTB&%u5%h6RtJ z@w!3KXRaEfi=n=Au_(sS!MU(S1;6AL->$?bK=afTg9s_3Xf|q;JHC~|h)c0|r%mr$^e!dIsSb)OJ zXUV%zCTt&hFH~a;BIE&uEmGrX?+U1GRyr)de<6klsP}7_+d}I9W9&V^qB^?&@qn<4 zg(e`q*$WETDgEsBYz*;8CKcHh@T6BSc5u>h7= zETCw*iTeA@%-!94&G-2~e|;X#-gC~JbEeOnX@A_1gQAGFXbf?kMkpPA9WA1uVKpxf z32|V#g%mj7=*)wM%}0|5_||+3kpyeAdSyL&K88r3M7?2TxbLj|4J3LiI{gNE&2ik! zIp?Ub5R?3f1t_{(Xz~I$JGRit1;$A_eyX&%H5D#0W>LkP=<)@^t6nDZ&6UYXawIR% zKJ|PV0Eg8U8b{EX-x&s{3lSwj3qlaS4qST_c9&FQ6q>dO{mK@~Uu2vtS=v9%;;de( z*+LPEQA)PZ+Qr5K8K8T;9IgI2--vbLk_4sHZs0b5pp?=6=I9>MFS>y~d<&!6c69MA zW0XFgGey?RqW!|!bm4s zG7&_OA&@!W*w#uzZ}yL&l`OM@A*NnfKWjgRWDt^-m5S@son(jqu;}ykmul1Zlod0G3afis^!KU$v&Z8 zHWmlp#?)=l+Zay>DbLgL3bd~kJUn+RBFx6OjV4K)MrAvU?WklHZdpv3i?%0b14=r35-j{Y z-u^w1;(#fr8j73pV2Wrz8F3UQ+Np)OCehO8@OvPN zi_gnNrVno562-KQa6$|8C#*?mOKz_ko$Oz2M(=JkW^j0aBbrJ;(|b_*Dwpz# zC0jl>`q5|}X0#t}T{7{Lu!3RsQw$wt^9><$-^UzN@VtIrj7lmup_>zk1+a}DXqdVQ zt^t8rbe?;|BDo4*8vWm~mQlMPmV=!inv2+sIjX=cvtb6%H=E%}5$LyVN#2V(ePDEz z=y%k@4?#FB{lH@XDm5+j6!Jz$TC0>Dw-1fcJVnw!G>(>(jW*T2a7$r=BaJ#fR!8?v zTO@8ePi!F~*Y{quuho?)gno#$;*QWs9~r~#_RzYIF#6j=jUQo#xrb6e#>{*V?fh7L zxqpI@=pLH=2@1g;y8MYTSHFkn$7l7{r0}D<4{*U}`G+WtyhW4@yKR*bx1Vk?ww36; zO6yzkQ9?Mm9!B#b#O<$_$5f|oHFmf2p?9~UMfIWETaEcTAFl2=h3+uMVZ8@EoIspV znggVZA2n@3ZQyGSlJ;%AwLBXn=8UbQMRUIu?aPL(39abvLim-0xbJw&7e}r;(B=7H zuOQ}7KJ>~CV>Uqb4mc8gsM}6-&f)a(PAp%A)4rW(F!&7(#n;d)@}2JJaQfO`wWrKo zsP}?$ONnd5t^{lb`4X#CE}tU8g4O{0SECmaw2Du0zw489tU(IeJ+-xh;rOR0LW1@H zT`FIHZ~D}jEHS?U^Evb5`f&>7iv+zjuSI}A>#ai^3{?)mlDf|mT3QBwu(#7vx6H+aeTCh6Yv{oEc$1jZCc+8i4VH~LwWUN7c0XNTle6Wq;2nEJO#e=-Kda)&+Vq%j(+N6Kr_0?+_&WNOJbt1WiMo#3@9G$;3y34@5ImtlIM-rSg zLHfxc_qbg*zrU6;9ED=Mcw1@-7 zG#-a}2QYL6tUZ9~DPYV&K1k-pHtnVyPMkYrjA%8k#Ih0sp8E$a*^_X6Y# z>KIPJ`;3Vc@-;>Xyb4Qfo)zmz6Aoj%A=DH|dywk!5>aT4ZmdL%m57uhm`g(Y{v*aW zrG>>e`Sx~i+PxP|Ma5BLq(o1?X&tC0NeLxV!tmqpMwJ{hhDhuTiQRGx9!H@a&zZlmHsZMax6!S7$0(7Q|GbqEg)d^OYwUF|f%^bnfl7HSC!Gi+ZV*{0-FGZ!m+!?);9|^NUen{}v zn6><-b!^v?4qr|VrBh#78kUte<(T{KSJ>t89B(^6`bn;94fz_6V?Bo}KjFuEj;?%- z!TNJ#JYk%u6KtPT`U$wys`)k3eC7jU$Vu#$5X5~yN$=DLCowpAjvk%Fs6-GBL%7m| z`ccfegdlaNDL9V(WF5Ce(av`&L;U!B0bOZSgqOi*PeWl>N^ed7JK|E>pG~BDpR~uyD50vJu^OfWTIWZC8KE5d(YCFziepp5K z&thsI2s>=b28)$viT)I&mwP~5zJqg)FPut)zu*!EV>EGr;t{(Orhvb5pJk zm3Gsfp-3gC6Ck}EY=>mNljbfH1BjHd4Md&BFKN#v4kEy59dg3 zw-ekgg<0@@rL=T6ZY6Z3+4adSEwiF3n(`y&2~~9RM>sEku_y0y7##vWe-5K@z%%F2 z)AHMpiZ4J0U(q+6$BL7{T$YuHR^Np?RV*F|be+;~b!teC!Z~=fT>^cLB7Qce(B7ZW z{0hVkrQ+W?XY554jeN3&1%0kG>}O-1P2vuTXKmQ zMJ9$^9pE>(ei>7i6zWogNoop>t3d|EHKR{!kYD!XQfnNi~t7%ld5L8odd_e}wgmwH7(hE1>cRzH~=nkf{H<5Q; zDdLtf-K8s+z5QprpE(zoI8j6Z!{(Y}I@}XeitSKiIrY<@WqWk-7TP0z(^v6Ga{d#O zcyXzF56{FF)_oW&o6+Rk7&r*7=jeWeF`dHhU_dPpMM!7vsVlgH?G0evddE0}!_Wpa z^@3w6a+5dpuFaToXFSBWq}m3o0D`fx0qwD1EWO2hXden{!d8&E9*Lf`tr1>w@EmN! zd`|GZdP|PcWA4H$3rhK2%s~q1@?B%Lu7F454I0&fVYhCZ#Bf@24@)cswE7;V#08a2 znAi%IrMKj|#FsuW2#nZK;Ei^4>g(g>Rxru69Oc^tYl?jmqs0ykNE&?KSRmC9E+j|d zH{LgTO2it9y>Db1&sG5yK0r$&bXMIG&Y{a8TxC#V5LL9m)b+<^n$nLB`4%g^p3v_B{deHRIQ$EC0*>-6ZYg>_E@aRj zSabk<;}2{<`XBB81OA&Va{3b+(6YGYCu!Pk%;()g4PD4B#Na@6Ehgy1jt8)P`zMww z1zWXJWK#K^ViiG#4pi|ME`!R#ixkG0ROSOC&)wpyEIt&~V1$#`DsSpTqbvBz9%AuF zh`K~)|3q=DZfj7sPGu4M8y>AJ+W9xymU?@7^fxxLcBi<1Fn90Hjl6YBEbG5>kcCi8 zT8yspF;oP0WbTsOU@NUEx>1ix)}8VmVUF9K4m^S@UkLk6X&|4pL{zFH@W#Nh9w^&l zvsZU|>#=c!>CrZ0@LfT`hcx+6TdzAzNjq&o6-A zTg0iqvF0^8GSRwAvgREVOV`)%XtumV!@NaHn~C7EUGI zkso5)q`-RKrn5n?0O&~Bf(o=Z?P?{N1IgPRlT3m2gSn55{V1YuqPu1{ke~+I3{Xr8 zQSobPP7UpB#zx`#VmAk7;JKLZzy|C1-JZp7lHET>yexvpBP<>Mr*y@Ene_Y;!s70? zDY6~9j#Nh$rxTb69wqjhE8>6QuQ7|vKEi|0qk=uGfUXk{X6YHQ8m>qQF51tx$GlLE` zM^$fuR-!q}(YN6IX}9HFWkVXU?d9;K81$RZCbpxcEtss8k}Ko3s;+6c+*@)n?>r+e zsiuuBSdk1d968wrg#yyLQPn#}4~fpZO&ji^{@Y~mtt~oXN&!#wH2V25MoI!v_la){2ed(8ZahxCHPRoxPyy)Y@?aY;Fs|@WTb^qU!35L=H(zbhi|egLKUq zh2$WYa`A#(7hx`Ju*B3{u+$dZa+sFrORmX@F1DZzF33a?^!f$4n@_Y|A+9X2(v7*1 zaT#`s9i$zuYzjb-8+%@IH(rpPqm`RR8x!57%SMQ6vNgsLtF zE91c(XsFAOvUtHemWkrE zEe9(L2Wg5Ids$lPNu%4aF|r>xNO^78bdXQCu_RL9Mc&_tViQ95hU3+dcfFZASax`` zX#k-T3xXc9Go1GM~!7`NkVh)|JZsoT#JP$Jliz5+|Hu{8=vD$xC$6 zq-sw@i@U;R`msC+toCEY0E7J541gW}B9g%YY^aQ6>_xfsIV*sL;USuj1K3FY0A7fa zF3LgbWxgAtsxUD^=q;ymf|hzw?)CYyqoj4^ojC4NJBi7WU`W3x z*NCSE!AQ7>gV-cV81|G@xUhc5SWE;OaZy&lx+rvqcrB+pLb`;o=K)>`Vaa-aHEZ$n zXu|j|ZVW~GNX(Sma_@F{D0^07rYX(b=vX}CbvP7#qX;_F)`G>_;e2>oHc=8@xh)6! z-EN~KKzm!7)HA_J?CAjCUv1eifb@1KaX4Jvjt!Hc7TlI=Ae|>A_LoaWLd&Ata-G0C z3itJ|Z;uhHh}?W+TQ@9b9&XPD;WB)B)Sl&YnAd@gVio^`+V*%b4gqb?=U(KTk`#v$2x%W8@^i94IE0IZ=2VF4!0MagL^# z9xTRgG|lV5`s3B4eLYx$-2$=;M+2~cOyR5mU`IHFEg;tj@iip^gbYxb2aprw&Q+TBQ$3c-3pDHTa3Lw~u6L7>0AEq9_H z?#aUWs{;3XvUCpPda*+NZJxd75RgyiCvH+6Y@((G=wB;(u@+(hkz(#(Wcjl)3R#zAVjd5w+~cMgSD`LmRaS z+r?3r7txUZtXRK@C;8*sa;Tp+Oh%>yg%?j!_USF6paIAl!RK&Cn>1~yVp*c~7{nrK z7=T7qaJKjt=Z=A_6_oBD$R+@E7{rq7>S@X#W&qeb2yw6HmiXO~TN3^mf`<6XAPg`0 z{$Q|_3`Pv<>6^i996;m{ma7v1I#Ns&dsb5z>Zx`JTDy806vZ+DmPN7QQhLuja=`m? z98#=lRicx1a=NS;^@(OFdVY&^@qjy27c7JC$c6t$qj`$0 zPxMwxiilyOsJb8g6f0xU%!>f=cVr*z8q0?21SW~@4`BVI{JIHvS%W(k>|w~^SXRJc z$g{9pu%;tbdZR81TXq&3@B|ol2Z863m1o!;IV@blC!5?N`mir+EyIt{gw)}I$EL5h-1C=op=f@y(CAFsH1o-tcLOT&+6k? zGMW6mm|dybBC7aGFY7gtzw`o_*UJK?R3$LhCx(kWUi3XWJF~Z)b*CAzJdqRb~5aI@TL6> zV{bv-1QV5(JHqZdO-p4ly6fEb|4~C63*+ZgoG7Lf=F>~)pH!9skd}tFbqVLW2bVOz zL2E-k;t=y$VrNU|w1irk*jVtEn9!;(p))2-UY1Z~I@F4gk1xr=%+f5@lj_W93Gbyd zZ%M<`Z}61hZ8nZB$Y9P0IVr;uQh(W+ZblG>WC{iAGSSfq$!?eB-szAmW&(X$7RtyH zs*@lsTYMeNX0s%BFm&+^u)}jOZWZC%UY5?Xi`guJOdFceY`e z+*h)Mf`(&=AozP+=3`MG(tnval*)#qC5XPyTwqVjTvi6~RxU<~OXx{1E0qBTUX}y7 z#l4ZDB{|3daneW#8*-UXlN4b=$I%ywVS=E=T$bB;7N>#%d8W569xS1?d2EQ?NAztH%E5*^53>R!NJ z&II_l{x%W2(2)Y|2^w-L2g1a@hVWu$&~-AKDp@)<$T38hcMRAE#!oZiw&}?h0bw|2w+{mHry=a& z=Mkw5l?J?SMi>_h4dD&a{Zu=J#Y;@j2HB}Eu#d&M0zcTeo2E@=Q2;xq!ur>#VJb_+ zJ50Sx7}MwT*bQiqn-bQSuvif4O3;?%Q}i@865!ow$XLM^4^w%6vilZhWzlO5PGZM~ zq$M@T?so2U7Ar9+4f0${?Q}LkVp459-RY~NB`!*nB7~>gB7&<)X0R^w=2uvzW7w$& zBQDNBZ54dO8swVTje1lr@$98I)o_^>%!Kim>Fb%Si``LrFcUeLOx;RZ6o1$9c|e^r zk831Fl;RD^`qoHQxe=dva$XlLh|@lm&iWXyq)VhK?F%p=l9> z)yN>ez7{oy^`}o}qyHA@bv9}JarY(jM4-?)m^=vTdku26xoQq-lE7?kkee~}WsJWl zI=GC*0n95yOK^d{DMO2Qf&Awp!7k9NbJ=Kmau2JNb#pO*y+DKKVT8`#7b)JO6eXQ~ zQV)vSg$<*R=P|ub(7vR(b6FzQI3~$Gl`_OZrDfnDTzaV2)GpBB*HF?gP|)k>D*drw z!G;2S_BspK*>h!|$RhLTb=F?bUlS_cUL*I=4Vur|+t=WDk z=#~^{DT#t`1%mmW)v`sbi)6iC!&l2ZsbB&A#I#PraBUI%5`w$FhTos>O)oBHku0EIXCd%O z4d3yG1up*RY{?Qh9|N{9C(bi;3CrPd?GiSG!wXAT42Jsj~IkrEIuNG*1eCpW(vq3Z&e8E(<|tGK<6#MmenY_uqu%1dQWdoJ9k?0tbeVXt>!I3{HlGDTEQEJ zM|+p8fCn8hTeSj>u#gl*HA^s|Em;j8g4;@&&VDOdlGGDd%lBO4-o3U+%c_;kj|bkr z5-pSnY*3Or`WOBIOKESQ{zSAx{Fkj_Zd}a9 zRdAAv0MCQW3!0DIe=Dp2V zlMpv_%oy+??5MTy2?*-z(sC5-KrdyNoxm@swRruj%2_CF=#kVzmG4v6v6rOD<+XB9 zsawy6lG|sj4HrN9UA9n?->#Lr5<$-9l#%OMG>7Zgvu8QHx}Gr(BR5!Dtc|sDvemQ^ zE!NHrEL7ULN!kg7H!kKFGj5V5hd$)Bp?hT?wCd4)khD{(nBG^!;}gWATsL{#%n4J+ zu3R*8<-C>UzO-vptgqDx0qwi0F!m{;#wzqTMbvX6rl>_UXCuqf7x6ZJpUtEQ5JKO> zVvisk7TMVmcOoZw($4qcE8PDcYoQY~Tx~=s5;juH_c5y}BER=pHbBYyEEnM9`{-7R z$bS>OFGbkfj4oS*{;^h`uKwqBqyl6(QPs>?y`^(6qL!QC6Dp#t%`8m@sHvsKFpR&@ z?ck#3&CCnb8=KhxfRGO`z$>CrAD|m8qK`j7H(Er0eZb-YqCbS2v51y_h*2F9;6sc4 zziQ=JIe0%>-|CN8P>Y_H1TVq`r05ch=#d0@AH%g!LA_6}_sT5IYStnm8dYN0a z^Ai>brqiEb;7~*zwqOWfM9*!(NWX|SZ9!uxg0!oXjU_f%>Zp7ZRM({-H|w@wDJ2FC zsN@P!xX`5XcY1-$G+ zanFCzJ_(=EQn?zjh?2K6gJkSqM`z#SJ@j_gPhtku@hXkG&ACM0mP&L~otV4DR3Y*p zxf5?uEjx;Y&R9C~9}L>iU@9EWsY%uwdyD9w9cWqwV`3f6n+whtx5C8+CTxa|oQ@>r zO{-uq)LGjnMU=H^l?<$oUnPWuF(tLJPPmF_>@GG&GGx|ChrsTvq-W`1dXnDKoe23k zN`j|;Dsp<)r%zX-d-FwPROE4Soqev);KP!N{YS(_+N z3K^Nyk~;3Sl%%(jlKhb|biG2E8~wH(YxN@BJL*!lb1&;4(W}%Ih1-WqWidHL#oZ?w zhiUtm5nl)QVHPLkY|`lXk_Cfm`qEMhK0z(uGqIqxykLEaKXqTSP#JPtowZu?1}|^F zth)PIylk{~)5vY;o~jSPnH+V1wFXc60g)^l4p=Jbp*nsmIF68vL&U=l!k<}0eGal` z0bV+YZd#c5wUTES53;@z^NoTDJA^eb!E;){%sOPLOJ`M;rtT2yD2@6-7*#nw$=yBK zI$jnM&dYMmNuHWcK~OKKle_vb>i`RXKa8ng5rrQ?BX}4WxT1_4=1qKkom^usIEs0X zc+c-J#U5o7!L;Ql1{Z>ZmHSxYedQYW2^FFcRS(Jmch z9thra4D%g9{i{ySt)~75`FWW3{|BY^Fa`Y=4W^*mUy;Y*l8*4yT^#Eq&f0+G=l^my z+W|Op+8;;a-Qfnex*`|d2h^ZZ2$`N_bI-48Mw^afM6rsqoyJU*U#M~LTd+lZ#X3s# zS!F_PLHpxi0QL@veXkBuH+uKQ2us)j|ouq zYe~&%)uGx)4Cs7D~UDI@@m!};#*MDkLU*kYg(fm{RE$5VfH^aBX$leW>%xRSC zN1vW!{W+!K9O5S^`AX^VJ#FYM@A?twQ8r`RRaP53WGzHUyPq(*5iH|WDMO>r;PG|Q z>j>I}M!Eb}`xBa3fqC9m3j2$br4l{G#@LNUS0q_)&l7>Bp?LBwrJ~8GJCAnnr|)3P zDN51vSaiR@GB})f0gW3<-UT$UcvSTwoHfm8&P6sFpjLiGUxKHm8BdD08l_`!_<6%X z;Skda^irOn{g9XjSI-{mD-i^Bd84((87lc#+W0BvXM@f%OvYi*8dx)eCf2ZMfRAgi zw7!;_YA^_mro>tp6-^)2vJ!nXx90su>9w1BmBrAyHK-%p0YzNO;~f<@qQ8xRv=lzzLwpAbig>n-94lg`w`YB*?bqDK>)7aQfyjSslaCpWQl=S1$e;Bl{| zNw=^#T}$8HVx_pg8=C}fqCMc3WZb<4x9XYyVIdn+pxYQ}*77*sMN09TU2ZfO@_GGk zWq-d>UJ0|i(O{yv1F&ObLjc75s*dZj+lIkZI{+CVg#2Ms5np-qMY(PPHSUeDyO!oQ zvKf-`nY-48yE&EIH(2ij5n`I%l@)mUUCd$*(9XLoQFnkFIlS^QYrmqZua{+}e9oSt z?_s*PhOqmy5a5q{Y?^)z=XJd+C&oAbK!demH<~8lMP5UfnlN%+L#g+%18WU^b00gf z*3jSws4^m4kS$!QSlQMIbST9>z{V@F5GD}q@5=JI=*y%OxdtZCoe(pA&LrY@c(G#k zC$*RN{>-D)Uoq*OM{9m%{qg?NXU_pt|BkLk(4!EQyU6i%kFkDn=#im=r5g~`Seww! zl}C|2;=HOL#XS`;gna)*9t&FHUFq;lcw*=&j`Bn0>_5@=Ch{n3yDHb>D-R^ewRro) zX4L#IELK0@fama^3wKiu{|+l+=Q|^7fjJ%~A%_lfN;t|At)uVPkY6>{u#%$kOSA|I12o z{Dv-r2%eZn@U9D<$#;35{Lb-|4st2#C;IylX74!X^%$eosb}B>fAcX*cKMa}tJkku z95+{f$BcCQ6ZBvKPcWAf)cUJ(Dd6SPNipKOP>H^MRTlUvyHpI4&M2kP{#Sdt_XGnW z5wz*5Xhq(cnwl;Vzg!hP!aFso@e=X-RT{JsXY)RI!g^`;B8%{U*>ogI{(r8@(GcgS z{`RS@B>D;Da#x~2zq1U7GDUcJzTELt3$UHU(iOMvk$q}{4CHi;*0#l2in$-gV^fhX z8SP)QR42P1Xi>A&41i0`QpW&9JET6R|3Q>yTp`K(GhBTbFEQcQWmEW1Z(J%VZdabjC4NC&Tu+E(Z+0&69i5p`TvXDa%(PaDUq+rU^8!rV-K>LC6&d4)bTz#fm2ZwJJy*z8ZVF5W%o8tkeW#I8@QYP{dv4u14RzjA)cYE0m5NG-TOqpbsfL3IxRP1`KW72@ z1LRHM;s>5lN8pA{fS?Z5Q13rQHEO88+NeL$POhhfPD{|hL2qi|B0y(={N7yo8yW$9 zf3?P3JixR_Lydik`nHB@R8wiA3yS_;I>_}sq)QS!l)%RoQ5Vl`45(H|eerKr?SfjN zp*B86y{Mr!*{H{;0t#>){B{YxmEg7nPHs?sj7L4_tXjF@cdK$i?WCb*KShnuP)Dn% zG#3h>e7ywwCAc8Lp8!(%9F2hEDgoTI#Tx35Pf;s1)axoLmADJ#OC{JU!AS{j0_4BJ z#kc-W9rNjbSYs}zK^khQjoO@tZL6WaWTWObqr%q6bUdxs8b-WN>m=C6!4UchAg_W; zc&uqZb$?p5zs#xe*VVQ~+Nj@g>Ua$`-$unAR}bjs19Pk=;=Ys$JfVIm%>v+e(yj%TUt+u$Fi%_+ z?E62p{ulnT#(omlFi1l^VWW!MoF8iRe`}-erwA|TolL0`Oyb}oEe7D1sebH**!Sh~ z(|=HF@B7fIT~M<$)B!f?dpzuL4Rx@MiknVD+aUJ1;c{Q3jy-QZIf|7s+EuV+Zy#I zKHN*vP{-M*;$BCihFYPflARB-7}q)m1KPbtgMEMkBOKtmm?rqUIz7+2{%;fiA^zz>SA;>4vN(15vsd8u4ThDOMHHX(C3 z^`@q9oU&0{aq5eju+=ImPQf6<$I)F5woog7fDP1Df+T>vc3i+VjR2QN*4W2$YGl1S zZHCyWjhvdJp-!+-jku~6vCV@|#vic-e564C03^mK>K_38r?`yx^J)#h+hho8k%s!0 zjjG%yr4IX#ib^}7fM1ey2KqQ`mF4HfgAvZB%hP z$2Cp#S3a?ZeU7TQp6BQw2bbs)2UYYCfZqw=8-${Fn`{5&raA(1p0T$Ks8cw#0LQ&; zgUfkOQ42NH`8Fy}-!Bh>LhOr#BAg@tmVb4n+Y&ehqvk0G#?|s~*d(mv+DG0}Q@!l0 zwiR&dYZ_{djf%6x^MaA)fExh$nPMo!>D>ze{M_eXz~*=7GHz&O9JR@);Z&#FYWbNdSKE@D_-90bBt;cxX%BRC{X#1@#9FHQh!P z2ho1gP_tB2ysH4U2Wbum185xwXK0`N`UxOU96H*hiF-jat8z0p?c;kQYDzg!4g_5!AAi3OStl(m(|M0;3^7b3i}bKCTghTY}CP=`q3SA*a{mJ`=vuW zpv(hC17hEFeg`B4b|$|nKUd*1Zv~gJUZdf(O@`PO+@#U)myNoZhdrhV`;UrBZXFTb zQ0l=!8(hE#u$zh{SO}2!Iv4P}MnGSkHS+nK+P6U+J$`M6k~Eh&HK;~SouHytc7nE} z6vRO?4F=%5Uh_I3A)M(YeCFkF0ev(AUa<)f+fT=6lyA0Cbv*2R4fO{bHISOP+CXyY z3~+(MIPfQf1QP)ANX8^xQ$vw)m;$bBDyO&{MB)XH62SjFGr%3Eou z?l!7ecl}0_@q=wtEMV^HhP37jm>gmuuaQG65w#3M$!kWP!w~xsT*c2C6@D$P1_h4UCYDPX{aGKYBW_r0hUb;N^psTx9K4VPUO=au@~O_tBvZ|Z?_2$F8yqHQ*HUa z>nZAR4fS&y6^{Sq-4V+*v>l4zSN~Rm+W_`k;d1VQVki97VRzLE+Q3_JR3U@YEQ4yX~|qGBvbpQpKAqGgcO_)&7|j{Aa-d0y$oTtdmGP4RWtUnl#9; zP!T*zgB%nnkdJsbWL31XEJR?dHLO$H3FKQEC&~P$CR^6Z#1h_Q zOI{hiEzwKf<0=_;hNE9AB81=9%Kh_FN69T5zE-rydv+2%OA09yCC<)pa+JNq3%{wA z{qlWM+_Dg#qTDTPzUOU4}A&MEt)Vzk>KRHXu!W*V=mp#KalnWWn)y(Wh zXMucQjWm22t3-Q<8qLmj6TJJ>NW*|NN-+@rCu=Bz2o^pW3)1iz z{AvRInpy;VU1s?;HPUd&q{y8JG+m5JZC++!OxG|bc#2}TvUsB!%`OZPnuN#1YJm3_ ziUGScyd}d0@7EfnaezQxwIa)SbXk=mLHJ25f?2CD!7Lmg7Nnv5Af1fvII9fa6*S1o zvq6nC{5?;JMLRW`eb-6I&ErVgG60E?da{)iD!dU^UF-7|yM!CUf@bTMiSXiLWed_! zc|a+#!lPhCcPLj<{5iD=hUYFQjnpNMF0-(+MA`fazkmg4SmUHv7pIoNw)GWebX6k_ zVYN!#6H|YS2<9x4Qrr?|K^m&+72dM{sb#PbSuex{+{*l@O0oEan%A&6O-Z5v4chK= z1udr0Rw3G1aSVwk!yp zR75+&w%-)_!7B7KhFP-}`C`&(QOjy)3R|vgc%wHdBEGS4SgvrD9mO;3 zL2n^ry++1?B1PXl4SN4J1udqI7SU|OAR%J0hPTUL#f(rjnwh!^-rdd0R0(DH6;TlQ z*EP&z!v*rP8fnPSQh1N5(d>v!&SVX8hAer1X}Yf~g2QlZe$TjGnbuN?4VoGDh-=5tDKVt&Q;c|^VcsV##t=j$xVNJs_)87% z4?~4EF^soF*|2+=(rUb@;Wf!rD^i|>~7DTP(E*YzT!i?`U-2GA%bdW%oDRVLGB3>2E~Xu@~yDUhG3ISreVl^85k zqnUHG;Ju(0VCdCG;Vl!Ztky)sHc**plhiT{jc^SKDf>0(u45H$FEyI2lJ#}C8fl1s zOX0n#HiVV!ki}cPd}%e~d4EOU6txWIDvL^kT7sbxYrw*`pESJdWV$D4kiBK^gx1TF z>=;xV^uCI=b2dECA!`-EW7KH&#R8!%NrQ}*6+t}QW{pKWmT?4ch=#XZdJOstB&~}| zbt>yC6JeW%&q0pJ-_#&0Hw%d;HOLZKTmGj>m+M##5WIdG-sv(4#B*U5OUn!c-&L4n z)yxJTEM*B9b2R8>o=Sq9S8HTbWlI;P=4GGB)^m#*X>i=G$c-0hYbDHIr{Ehk>>p(* zXrl&w(K6{Crbe@H*|zRcBMtko2}H!iM}rPM!O>-KRy@%}o@%K#Lp1t#Zd>Rcd2A#-iRw6eAtf!Pq|8EnHJ;HC)Bc zEg@^Qn%5AwQ9(bWMzcXO*D)rw6nu;?HjEbnN-apem|$)UrX&3^+g(+zNGh<<#Z0#W4#7_6Ke?qz08X4%O|>@7!@futay$dGG1Z#)u4|A!BcUzPpXIg;ScBx z3RL`qWeQ_kH6wdnPH2~_k%pKYUr|B(Uz%3vxXJIU?(-wQ2)2WTdP5T1cUKFB8uEM zG8cbSN0Uw2Bt)&zgt>_oUxEIQ8qEUb*r`d4G<^1f!rM`eW`9ZF@HaMO0BTyo7mAIY zZFm&AXZ_8u8d8%?c>Sn$O{y0^y6Gr?`{{0iv%ED;b4&4b62Ak7PNjJ_W(4*WU+zPv z@;ml=j2|~Mqjbv5iIeeck07*E2=e5SKzUHLdx{qX&t0499iicp_bmvNn-Xxw%);q2 z<^6peUrO$-DILv?Yg1!$?C_%FgVZ1iuqN&abG>Qu11!vV(_0TxJ3H_x1Mam?^#$VW zgVZ)Ujwr`tkImzJ9K}X%+S!!q6DZKGQln{7=?vxC8iDr2*0Pi~dj7k#yc4eKj_Yim z|4ZtEK@NP5K@r{4g0a23M|hf#M6Bta7O3MSBv+Mhil^mws9T(eeeqYc&dNEuM_Pys z6VoHj(^rIPF;t|ZOfD&9D9u}w>fxa#%XIpR!Xwh!_z8l$3^#M)*sQ6~PMkSo+{~55 zUztZmr2RMEp^n=bQ<~<5{pV3Hr1|)AM7i5glPQsBn5l5)%yHAF%vf2B6Spsg#nahm_qC#&FkvY=Cr}5{~u}X0b>40 z>mmi=681mRyl6wZsX6dV|40i3_s&1kerqMA#Ws&vN0DdRKalv;Jfyl#VON;D1xw5)}$Srl1oig1|4!`#1YY6rxkT2p&~X;(~b zX!2uTZNOA#@}{O*ldqN2gF@;|ZajRQD!d0p^^Mn4%(p4cCFitDrnX?(QD^EU5otB1 z9y+cLmzNX{O!1e$d(nY`DSf2Yt^n(<2pf)EG4;pS!z-pp8G2WZDF6uLRa3A;oVj2M z0%GY^laG|tnqs3;Jnd$gk6bnN9xQPKDRh>72MP&J_Xh9mko4{}C?>@Zzvl+04{{XN ztO#Axkw(X+w6X@tjO$DxA?c9CgY=*Q>2W?hE%1>jmDl>G50LCbDU`E^ho6K4b6+6(Q}?`zs0R zn;s@bbrI2QDO&(8s+2+(Kij3_O#>0tp0uktt_?M%r06Sg5|Jmvg!I7x z2PUM)06d!CHaypWMqjx1^)A1<4imcX>qo*`e z(p-zvc>+V0f2BFa#iDsyT1s!AmlmhAe&+?yVefH+)e#&;Qs->AqCAI*TU_ek+L`OzHERdC;6m=`O%8nZz^4 zyk%1Qh$LxFM~dv5(HSK7y$Ig)X}VGx(a#J^LC5q&Qi`BDhs-#Puw#*oqh9^i**;h1&$#emq@uRMjuV!(vIy)D%6Pxt^sI z5yc#Vb$dC^nHNF?>?O7Jmd5Tpn!+pEE^~Spi4T`}QwiE4WME9TFZC#oYp$1R+)YwL z=EUKRO;%lk@f^?xkIwWCBF-eW1QinhZyvbZ*+TW`H6Q~p^LRG$@KNs;tXLTmZn zbl#Ng+MDhVaB6RQfXKU2+K`pf$?UZ+{g=M>vvB%5D$9>*2W5H75`Co+rDDTJDSn(5 zIXJ7EMB5F_YOio(FV@E?o>uNY)?WeSHYCdzx~4uz?+)kTib}%vji4viGJ)Pdv!QivTxjYDTP*{*j-@ zwNs@<$>fagnh;fkEg?El^>d<0N9azpb9d|6vAt+2Cy6P^4~A zG75ZN6z-qR8`teyGCErV<0iUb3leV#f1Kee72NyKlK4G@z{*piW-i~Fp|l_VQcvBf zlom4HeI(zu3|@7i7dM7~oZ(12N2a(+2E{U9m1ez{6fyUVXo4Wxhvp2nbnSRzbzw?? zY$g1%>3(Q7ZwtbL#kTyM;L@`hZ5{bOmr}a7 zIHjk#{%ppHb~=tI52gFX_Fm+?B*jH9ILdp|{lzJvly)l4!|eHcMrC)0_Iy}#C^a*j z9|3Ha+1-&N%2(W9I8QO6w^+hn#;ny=mY4m_7S98va%=p$gHo0zdW+%Or z)R_v`rF1qw*qn(cttL>kIkT-oX~!x4RCP11xw+h&i59C3t;zsW=9?0Q-sOH z*$pYm@6PwGmx&Kbq03LJ|QbHL^I#Gm6 zyt`h6D<44jz2n6&vxAh{Rw71!j^Us%xwAy@F{VtjnB`f%Vwh=P{E#+KmKbwlu!JF| zl_4BDLF%KDiIHe=x{fZtou!v{@gb+4rkYc{B^M@N-tl;-vsXrdv>1Y)PshjyqfYdd z4{67$ETk@v%V2=8)mdCi{_3n=02QmV`bsf@bj2?|h}+h%nrAM#ugU5tNo{DOhn)wR z)?_*AMOvY#7rMu{H_u&@H7rT;VA^*8<3eb=j%bSErbq^i?>fZG;ihB^lL$U20QdT9 zS)C-_U*hkLNoj78C_;)6fe`Cgc_oX7F<#H=VUd-N0jL~a3YOjy-wF5KrF60IKn%wE zm$N)10;4=`5g#i^L|cg{%S&;C^lksMq(}f2)@GqU!l+8g^==a5_IbLG%(9T0ETvFm zFv+Eg!K8?|qDBlWlvF8O7U#zk*ry%?%!f2cf`a<2_99u!J!jIPff-&PZNP971$lpc z)>nO{rY7I)_VU*izigg?wL#gPrTxLQD=1s(OdnEsaJEuO!Kn164{2F&c4upFr8^Z^ zr90&&Q?-9K&-lS1*-8Nnqu3A(tt&#Zy`(CCj_{;IA=yeM^^u4(15?@|By_7gRFMvf zb)rKR2s|>!&E*}c6dEQGyjPX!;8#j#7pC|_;GNKHRA_Q;o6W^Xw#6U-`QJ8MGM1t# zaqk%)YF^eh`&yvx7;hE5DfFi}Z{5mb{zc28v%BH2G$sh`90i%|dO&xN<;dz|6VZtnF zduqH3?VOz*0+zG0vp;cCOrG{?ln+HG=ius`1=+0?B^8%ahM0d@kR9zL1@)!aJUhHd zwNylD+Oq7!%_Sjb#m3usEMrx6s1h=Au{1Bld~9_#@=>Hq64?#6Z%4~aaBxh{j}O*~ z^eZL1zj2!h;({u@*si5{_xssjH%H2qZOiVZh>Kk<#ko~Bx6_#)Y|Eb7U5ac+53i?m z0P~WI*&QS*fb0t6J;?P!c1z%&T+D7mjTf`sQ@mw*&ApKAuc&dmp3>L+ z?xpMuUvM}5mfg;x&gbF+X~o{iYJE6NNr>3Z^IH zP z4XcpC5jmdJRFKnLFB7$#&X&jHJ<^fTz9T=!UBq?gsGNR^tb&|y>o43P`Url9W0X2N zr>j&BPZ<~Z?&B0CZF@+dGq!ya=#$-%LhQ>ki8j;}qg7MQv*O(yqEvKm}IFDk~e;mJ~n8Qr@`4e?=RkY)%R9#GB9^{}fjZ!iv9 zI>_N=9{1QchqaNvg7Hhoapmrmz9`p2{zgvPvmm>dX~V){-adldB7UebHcLqafoV-{ zZ{>P+Ra2!}fpL}mszrjA&8-#7GI@Euhj9md1mKRV0@pvAFafsUNJl&&0!YFp`%tT$&L z8`gP<1K&ACg-?bB*af|_et59>e#dUOKRz!H@1o;m6w^aKMjv1C+f8U2Bi33JWkEE= zP6{VN|q0JF;rp;(}#Pv5m@J^%G!r?7jmAa$wdB;LNbT@I`VL(ROn~yXdat6JT`-0 zh;d}|a1XsmUisnUFq~_T-8|e&{`z~<@Q^Z&!)j4dYzEV;?+JVhiI=NG0@GSzw97+k zUTK!VxJq7C-g7iY45nC?+@omvxM`*1=<%KS7W`Q(XYKHlF^qN_4_q}y|!&|u@9f?f#rhS`-x4bR zjrVpG9~4=g>uooQ?th=#&Vf^D?)SN#Ky?2hHxwZ4huj_jbACXoh`@N0?i$AFuGiz? zYMw-Af5>eQIsl%Pu$%MFn-;Pd%0w~dtGPdl$e!ra(oObdieFRJNl z&q>ELUVj`$ji$??mJx!H{39Lr~?t~r9JUqmg1Kb^W3xfYH zE$>F@uF+xUu(w9!jkL$zG22Jx`703p-87iU_d`+)}e` zWFEh>1^|zVad3hL8J1yU;2^WUZAn4>jI z2s8gwkoRn{og>YS%Ev2Y6?mXi{0;%)o7-QTbi~r%&Vs z`f&~ncoH&A>R5_!JqG7{+c}y8Pv*tVwA-xGA$|t}C3I}I>JYz#j?GfXW~qbY|E)uC za~*pAi#z}3xg`uVZ;H;Zn&H6rm||Ky(%o1{S z;P6Y)&p&PYXAAuZ4l_b&$l#HBDMQ#YTiP;P+9Cq}+ZG|7+oI>cO3R0md%J|8<`q#R zPvr3nfC|=(^jDx#j^}eD&#WHl;~;)jtsdD<$A6(rjqaJ?=~pa1oD+H}ah45$;B{Lw z(%1JXvaDW$JbKm0HjeyPDTNdodzqK49XV$Lzjnykp&&qkvQ+E&7T$8N1lpKyY$HEH z5^%})Q>7gu^b@-RZ>Tf7Iu^V-71tfLawrIt z0GDE;PU)}l=vuUk4~usGA+&o7^uM%UqeBqp_cT!|7lFBQyKCkpr3G7Zb$qWda@#H` z!CPN!`@m!ZW=N_RZ5(OjO`RZz@Go@ZZkX2ygeTdhBzQRrDy=_N;O`^QF19i$lLdD! zwW=-%_!m`L25L-ofv=v2ErlDh@P+7s<~7v?E;%~BMHw3pj?7N>(-+%5&|SVc%u!N( z=zdwU4@?x~cKoZo!s|`D<|g|DNQyh2UYI$tP}6zivZtw?Mg{XrpDH?y@|FVI(9&TE z-cBM^DHbW_y&2tmcjr-uhT*2B!)2rVC1^u#3z9LmqfnOXwp2`RfOlRUzuP%Dc}GQr|*38oqm#+pyf z9o2rFZVopKTdGcu_OzeVjGO~U`~1JQzC1k2D$9E+RI12Q*=k=?3Hy?euyhNu8b|_E zgA)98`{iEay&c^nq@VcpaXB%x=+6&&RUk!!MMuUrq zqSb>D4|M~G0|l=&mZ;fx=Cwv696z=-vnWTA7UnSX%4?10J6KhUDJ){BK#@-~iE-sK z`wO|^PmLcuq+UYt?Y-M?6uubxtc3LzEV(V$mcXVB{!-Nv*s;NHGO|<_O9`7;)df_L z&Jq?e>+pKN6$5{|!Ee+OknAmmMak+?xoo5VW>|F{T(A0VYT5)3u|N3DTJrT4)#4?s zoAt@XVe^^{^aidD@$>VV zY$nEagUWC|i^1!m~~qsOWyKg|EUsYJC6_WZ78jBs4=y1zy}DvXzt#lCDR5h2FI-hcIAf9`iJ zc+dGUkB+V`>;JOJO|Jhd%UKifiVN@Jh9X`D?D64 z{2&-BOa)4-$i$#dcJlUA=2#%_xoT@Bi$UFymdQdF&hNcIMTe2) z9c!_TVOf1j%dkzW%yO++4o{D6ajA)d!#`~?rSu$m!DAwuj~;6=m9uPaN{uKb#`02F zG}#qP;;J?4>HleqW%}?iB8wO^q{1YkQrBXCm%quMz|k+pHSNh37sa{a$riJ)=>DTE z^MyroVb5#TIA#3CQnQ+cZ#>!ZeH$yxStI!)34e1}D2n4GB@Q_8c>_)OF=@vt<#7r{ zdK^_(8?=If?+U+OjZ+{jWrfOmzgk;a&>EHzpLE6;&Q<%m8!N-2W|%t0%F#L{5(xfftv_hi&|xf`C5v6JHs29?L7B*yjoej~lm>Z6iMO^Y%_XG}(vQn<(RSix6da<9;7p604&~RS> z=M(P_Xz&g|rfeF*dyQ}bIXH92Qs?grjMXx3z#X@<@EJWOOjSI0=wu>Izc7$deHHZQ z)*Dzp*}DKPOj@`=erJ22^=`bia>2Wp7mvcWcLNUa{S~_)>@Pv*(7ORQI;Y5Bx@>sRxr!gt&UJOsa7nqar51ZtV-wR}0;kD*=y{!H` zaJX9CN4X!L6IAAcQlu@TZxmd)GiWFGyE}v9h2Tqbf)+Q)^wJ2K;17!#Mcnp}VL549}U20$Ww^ zI21h5Qwh#_!D`sEGMowdcem$`N=%*%(-sGvvgJnLeGO$ITJU*b1+4J|$3bUX`(*eR zPjD`r2(*`izj%~c4tyR^j{^O_^xOkMUvLR5d#-Mx*5|8kSX_-`gQ=UHu=VRe6BO*+ zupS=%VF;I>(^89t|L-E9S@6hTyG-CaR5uYSf|$Jb7i}C3*ZwDPFC{)pj{iM?H}O?G z-J_8oSra^-fqfOx@a!=GH`_HQ{ddM_NKH*xI;pRLKWIrovDDv);K7`^c?Qq7^?&kzlr4 z`BT2)iK%W3<_?59NXFgO*4pW&&tQu?8gb+IHPo5xgrntg;~nlqG8V%RrCY)=YqWe& z(b9lB(%L-~d&2FPTHS$YGSV`Y^g-MhH0p4YI^m|JmX1IWN~S9r>p)FEZ!oJCgJVIP74-Ag>)~&vpt-zj=%ecnVHRL^ zpzH2#3pKZq0jcb8N1HJ!DExW-csTuNs|I&ou5jSvyTQx@yTfWY{`30T@G7)D0z0m3 z((dnQ$dzvff`@XT@rmeFESMm^+E&$C497o;=m@jInXiK9h_MtmFKm1njyzar0_W6V z5q$bL{Fz=(2EPx-f7y!riF5B>EB|my@Oc$9&fK^QD(ZarD(TkXO^A)(^a^Rfvrki6 zb@JhRg0nPuN#C10f>ZOJU4HS0eZ5mszr2#npdD5;1hep|)|-WRkJOdr-@yExLA!eS zEquLZ^Uk1Ctyke2C);-hU22mGU(GwZGg$1NsKPh8QBkg`dp}&>8FZ_5 zfa)Kyz4$Ro!j4@*Qy%mCRNkLZSQjkX71ZN%-$5PTrMDt;%;PHWFNY}=4Fw1KmCE}9 zsadcqXomAe>oc{#QF&h>VgUA2m6szICcmICe&ben}y1=+Drnr!GcLOxC%w^f$TPuYK{DKPTNxdnVshw(Q7J$4dFKDZA_7sW$w#USa>5Cgjdz8oyDzA#gzM2)5Upi6d#974A8fsjG?7XF`* z!^(2BG&&>I%N6lw1O5(5<>R|UCCPE8Nww(0;y6y}!ZN5V{E;6|!-Xt(C3OBbAvZb| z--PIb=(=x0b`6W#U{RshF`oT6;K4pFc842i28N+*hB{lNAoj~n!-;P~<_f`Rjz(G< zxUp75GiexDokqkICE)*i$bgaRz73U<3EzgMs7VJ@ejOSo0DN=Eh%bs_1mA|n3P&t0 z3L{PUXi~_KJ*d5yX}J6~9zZ+|3%?7E5poj*USPpTw`giepmu@YvUs!7)j`baRSUof z?hQ4#ihLRdz6*^_VNSc(Ec`CW-CTo{3#VcItx$>Tw7l(B=%77gc6x)7Mx+{)*`h%~ z4mT*XMS~&)C#z>;77R5gh*E=sw{{=t2v2~^#op2KQAap)g_f=u=ry*(iD}iw(cu*3 zZ}OP%ZtpAYVLLkCwui?HL47;;r&sG8LQvN}d>KQ8hCO#J!_=OKct_ZvVXO#FR4v1U zedlG29wal}yU>d@Lm6XKX9gsiNawU6M87z7B>np zY#PFCX8Q=`;-}4E5nQRL(U0bk$=*94KF)iG9K9UA9>t5rH~HFK>bLkey`tTYz+=94 zr-lIB(s;zzZsIZ*5|I_{R+PAfLC|rnY&T`GpkawmtbwZDl2@*5-*uO2Hw^4+SH4K> zwQ*KW1#rpR)A)#;5FV+OcT=`|UL^F_jT!!P^VEm~sH zL}35@HIwDf``Vvv)X-%PI3nJA47XR&w;}~xc_L!Lt>i(C$_JGLUX#GxuxEC6sqo{| z%(J|>pfxwBDZ&M!VI$#d8L;__c87zt=M8a%HH_-v#P_?68P_u8r@m;{Bs6q=1nyQS z>F;)=`SE*?LmvU)gyS7vD;6+|jwNcmn*4CQt;3=E5gZM7=;=8^4f?l-J4ys(Mdvr+ z4i`FmW<>B1QNgh^Bo>2*$POfxena^6Src*!N9%nCu(b zx-vN0w_0R)Ul=c(pXTYr17TQtbo)FKb~OpX{mVNo8WzV>UTw?Vqe%8)Pp8!^6sL43 z_9F9T3=2oX9hpVCL8h=7nFF4bI-C^JwpoR0Jzm7oZOkN%xaRnmxy5kg@tQn2>Fum; zGGCjTkH(bWjcl zbYUE;p&WGnG-B0@cvdGnJN;6R5_<2^h!I2gAB&h_{*j1A%{s3<9eJ*8x(VA$i9kXrNk62b<6lPJucj9deDk9Y#Z?yCFY}a9yI5#v!rjgb z?NGcslnHOlkD4jK_4!eon%KBp6t!7cFprF;N|V~Vf^zc~M6FulCVOW=;a?Zdl7GA) z`f1X!mlCR5H9U#?S%`!j@r?={_E&?HL>96vr#hw)1HeuOe3_3 zANOAHKNq#C_R8Cyi~jdL_|QV6GG@}4C}Qkh?!)J{`4ch(ShQg#@FZ%dmv(!Y;7Vm| zqMAV1Q4zC_7P6~Wi!HHC<*!;jSW+Th6Kt9uvvWk)KwkKEAs)58R8u5BH9fZeVbw+` zc_n5L<2m+Qi#L))H zuI&vv4FmWw-s&}4*{@se^NH1U@m(Ph;<~uiG=eRx48x(kIF9E~DtTbLcglhPuE~-= z&5LU~H5!W81Owafm02n&aK94E#9~Ciq9!Kn*cP{{G_c~{_yhsuZHrqR94-&d81|7@ zv|ahG#%vFd6cM(t&Ykzf&6(s&!a!bpmRxyX{5LUttK$0gxD|?b1v6De(7(fLK&a$K z9CtgCA&aiZaknG+O0LHZ%gBedc(re7UHS0ED&}Mhj);_zd<7XQ5rXMBo+_iZO#b9X zd|IKAE=i@MiL0w<4xU@siy8YXB&&%zxhYO_G=}XYvKk~DK2jiEiiN+fMcA?;Z?9z5 zFwX%0w%cpUV!wr^_%_d}HQ7)E!{w*Kg%V3TV_ib)w~|FoTqw8|w`Y7DkCiv6 zq}^FI4w$>7C5R?QqB#8|QGBSZ5DN1WdL=-EN-B}Rmm_^tNbhmDol-Hmi=2{0agADR zyE&Te4#_SeM4u&-VJw-N%M#-`p2borx&Fn{1ac2oBudEL{F3B`^XA%2cxHlB z46#SOYWefUQo|Ne!r3*rUnWxS^M{l?g@G3&SIQ3N1?j(H$MI8=i?qJ{n^cKKPNfpC z=agg+`R9bniM6g#XgXB9C>hE)`Gq2;P@)RUFcNC^cL<%miV31>W03fZDUJ41(m0XI z|9W2H)V%egRAyjxN+|Jz$557+MEd7qdeK4|(>-R^QVgGxkH>(QT65zVIF@| ztCC81_)vmNF8;BE$I{vt<;vM_Nglm9K=nFjaUd~N0||oIe@SK|Gjmf+Q3(U^=rzeP zlUceHOR0nm7N&tqa0QI4Wd;t9X4e`s!hr)HOU3wPjQeBBWM@uMDhSptTvuBWSk;MP zVCBb>OBIk~A4}6lqx_M-Nd_&+(;k+Rd9|hT`+t*ur?Ih$5!I71Q9V(^`Tvm~)T4%C zr{qRwp;NL7$E3!(7k~?S3A-A5S?t3o;bvZ9jD~d#)LTjfn4fq|!=@y9Cqd=5 zMU&-;ro?p%hE!Ea^c+rcmE=HY<+Oy|%6dlDK32!Ik9`GH`&e*z?PDg@K2&zON;097 zTamD-8K=5OkyIqcpwqZmBB{qK5~XNje?{W;Y$SbWr3!R*o|UGebMwx`0(2_oCMIT* z3S9Vk){9&1e6=R|p}C2@>k8S1(QB61D0LEr_a%yp7|tSCsg42g?@L&=GhV>>u;JVP z2j>|%#tT#Op~z~n0HORsQi@h4Ta&G;L-$}S#Q|_90N;u=*h63x*ZSeBeF=l|Gi8|s zwiWneqM|J6OW5YKU_P;iReXjym7>}Y#X>8n-2SnSp1y=jw;hm8YA%u|(77d0-8}TDYF4)j@E}DVQIbC|K%b~d9+z%1MSn_N<{~aX4IhL58OhM|TxK$ux7uV!!Hkhj+x_ zbR%NN`@7xfTX+mVuXKOZtv*O1<+Hci zHRQvQbK_^raG=Zt-q?VXtvFCV2uJ2@ohT%5H}DtBOb#KDzq)=zwz9sPsIQn+qzi~N zGi+F0&zntD2jvxaZhgN^brZ^tZME2Lk`0CR%En(Y1?_WMczRS_maeu~V*oYqNv8d^>2RQs_kI7Cx%(C0Jn4{>o2YX5> zNXcV8rg|347J|YAMv4S7ybVd06&5j)FJ#j)>az^_p~re2nXi6>(*OF~J$S@lO*^Pk zv`a%iJW#Or-5x9cl-_{ecYCG?&;oJoQk)!M*{9#`F$pba-|2A)-;Q^BOsY4a{JkC* KI(VRQ*8c+js%3cq delta 655506 zcmeF4dt6jy`oKGLKQjz7h+JfV8Eyj%ml zeV^z1KG(0B_Dlcp+Xx;^nJX`opT1#`*K#MaD3GV9FZfhach#OQ&Y|$l_M74CRAjeW3h-967%{T@C;J zIy*|bGITDOR%L|X8_ui9h?cAjg-y51{P?0IId2@T1PNqB@k{OA{D=%IV}x~|dijEW zMXpM+G8Wz|&X46cW?10r=B!}Hn*}OUZ$xf8<*DxrqjtA3VVzSs5&Rt6+YO z)sO!?I~3+GnqX0{l+V8PrkM*@uN(z02jut)U(X9RZOrh(Z)}9a3*@8t`yy0)NMbxc zzaWf%IwcgY`e8y8e|J*w{i8MT^8&d$6n&ZFCRu6ZtKxn5`x4Y}e?(@i1aInl*LnEx zCaa1GI{t$nx?IV>pB}-4!tOjbKd39smCLUlH|g?;d`FHEMoi2x@SDX14Y9%Yp!Uy9+^Wc|eTKFZo3Yg4f1;Wc^6GM1iM1*AI?|3H3i~mDpAYY#1%YSaS zGCq(UtMTF2jW)ylH5vG}k7Y*iuUu~Azs(KegCi68yDTw`KSbo`_~Wy(?aa0E|CelG z%y4*zyRY+cEe_W(=@1mFusFphLs@9Q51)0g&BT}>h|4uH6ZuVvVSH0TAU|((JWT&% zjxTRYiI;@rL(oL2;n;(XfK3_dQLrH~SI@5+8_M4o6)o|(8kSDU^>RI?xSH|8V;aRX zF{Ai-)=2)dm;fdWvfB&7nIMR}UNTa+f$n%4ATBY}%(sX8^0v!axW8nAoi}6#^1ocJ z!bL9LX%_Ev!Thq@Z@Zb-Uv7eq_s1&vO#HhiGlTgX!qxl}kmvG5o5GApY~H5S_;P8)h!NZT|EHt5^E)n=C$j z>*Yq)b+ZL^aoCbAET@j;xe=0;@es617A`Cv_L^~%@-IhiV}xvJz7fBi*|j|Jn)d2z z@{c_(ypzs_E_`KE5x*)VkiRP13WODl59>cMIU%t}D!vm4U8}fM11|gxZAb!J+(^F&_M;5P$w(v9bKqsown4 z){&?fALeuY@JBEIN3K=)bf>a0MZ58P^3xdC$2)c8|Anzi;RA#(ziwY<5PmrWT=o9U zk&va&QSw_NOrU=*2URBCqyzaz;Wkdm@s+H!K=#V)C_(M*&dv_z-%l{|g`sjj#}*2I zD4T#PH|T1f88-@QX5~5`uLV}UgZi?=9LadXrs8Z*_(nYe-zNmJk7NsqIUqA9kmtu+ z83XLznQp*;u?hOB(Gmu^UrtEI#}CF;8DV@`b`XPGW6Bs@XJHopmGL3`j+_8k@XS?z6Qb)ZLU3!GD=#WpFh;nG*^|E;khPL7Xpa zT$!O1R>QEm zM7te40ZniE1i56T$z`K)twa2CnTZlKqPR^*@g`hVZN^+3A2cq4zbeiIS6M~`3Hur9 zx8$n%=18Y)@q(ZX_XS>gIXCW^iC3tlmFuLJT~?62 z>k+ti{+3s`J(6x|LE3M)tHo;z{yT%aUzBdUL&_}@rQfk{a|e%06+dxr9+$qAaJxjQ z;-+k_Mf`+{PeM3brFil7?0oK%|D+(+U|7iRo}(~H*@ZoP-QN0jc!yNz3VTzavA z`&N{Ge;sf~#CKVwi07t?*B1SC9k)ta+5LMLj}PY_6E7})ZwvRC_=lCMB<_ErRAryQ zZS8*LZ#^#C$BjKMZJx+Qic;cx4|4^gl+-nwyHS*;z+R4%URLS4`M-VE@GQ4ny!h@- zPjf+{^x<<`xO=;$>-;&6`%IL=ra#BsAxcSWU*mo!N;&V!xZT}f`?}l>&vTo^Yelwu zxVKTNbUyp*=4B*te-|&_zW5n#y(lfb#>#ynzRi~6h1^}@weLE7xOYYA$ciJ}AyN9@ zG9PYaw{*Q;bC|0WC69MBoKlb~g{60We%5Q;DDmRe%sB49-5+@Uq`w^E(#2~xeD@1? zxhO4tc?P#vl$MA5m5Uao6)ExD1EREMpNu;oN^6sWD|bqj!pCp>lCGgH9v7*i&EBazv0?N zDSPb`oKbw28{T(thGSACOfCNOQEtC@aqem<_k}3k`cxd(CBDtNA3xyY#cS(tU(3~q z(od;ckg?gmnePnpGn-7ZmDu=$M*ZV)!pJW%T0;ghuv>8Eo$p` zT!VOR%uY2IC`y@Mmvg^}ubiA$#r;*hHf2d8_b*ZUUCW2uYob&YpyH;8Qsv4&eZqYs zijRC;%3Uu?n-(N+FNso9ek~`et7$LaGmg7SytaMAT<&pEYTo9>{kvPbVPuYp`?ULu z-e7!Q$9*7P3#vTwC+@H)#y;83Wr4IGHlpALV?b%@emJ~_(m6s5o4^hG82uqZz9&qdsyMCr2%J=fGN z6|4VH!#PB0$!UIl?`3ja$ktop1!kzdrQ3b%$+)} zO_a8_@8xb47gTZ6dsW=c;>DLM{ka9A^vZ-a+&EEsHR@9?@woI=0QaCMy#`ykC{cPn z;ayHEO4~+xaRT0*S|ctr$p(k|8wW2i_*XE z58_fp>FvZkZi6VjqZ`kKic-sUKXJ1~snsulyHm7(#jWo@%&EkSNArH<9_^M&q`!TV z^Ajam>~?Nv_pc~XKY0fiB3|=c`6uo+Q5w1A&)gNFmOC zvx^rk*8k)3MalNJTe;tel0Cx4wTe>O8$9=%D5d}V3NBBSGG184Z4;$2PkhX+5v9z< z_i_^i$!Y&evTl5v+adm@?2@;+iQ-FhN_KPKi`T}@{{vSmUK=m<;z~v7$|LV`EuwVI z(@%0{QM&%`f8k<9Y5Fx5F2N}Y_OE0{{H@$B@gr{jpOt%Ad?`0Fkn<6x1&jA`C8Bg& zhCer2lz#u5KQd&BvrlC~3IW zkK@IQj|bIpyG5xnZ?`NEDN<{gxXeN@@G-+(J=Gf8z!2b5Y9k z{(_4Tr7Jf5$n6zBaKgUzT#k6H@a}2c3{fhYwSfCdeC3o%bvgI3cya3EuW%oV(v5o% zDMV@J;y7-aD9tsz%snGYx4qNIeI-hjA3w!?DN6T*?d96U53H`P=SGOvAhmKfS1gKa z*k`ynQL6X+A2(l=)_okpy(3EN$478ah|)9pTe)gcdhwT+IGHHDDzS5)iy!~?luXW3 zy!QUMs!Hw^QQUR8C%0IXzW99@cef}VJg|q;h|<>|FW^{F`gY$`?zf`!-3B}7FG}C% zeaOudrJt{PiBoh-GvqsrT;)blR5VMuLQzuw<8E$_D5+ju!F?)9?3!%OB1-C8D!FD+ z(&YSy`TkGk@mlf+8Qf9vT4wqkoSS&9AnJDRXYtyVGd6P{iS}ea{m;s-TCuN++p!rRmmLgYw_AWwNG+?5T%+KT9vnj z^Oat9gX{b^gFh0&EfX)U{X)h4MU)FG20GQ24xtgFh7 z`KIY6*eGGNV6#YA=#rx&4qd$J> z8!zbXuPwDW?+4#{AIle48u`w*q9IE;B9eb@dpI1sH{$07K*whc3x!4|7(bai_Q|WJ zTV3z5{viw*jn(VHq>}hT%T3Ze=WSg6&nSL!WdvWbIMVs{b$2?yd;m0O`yjG^zG+nhtB0mG=@`DWJO+wtb&*gN-Ldm)H7&yC{y>&JAwsb-;=!?=#~0rdW7-P_~O z0&Av>g}OzGI9N7a?*Zle+`RbWm-Wz*jKMzhf`GIA=E?VG^FM4n{<|~g;M=XlM_;o7 z@3OG2f3^5J8nk-8YL^+z8<=>g`cB1y)lC+{cYVadMoW)tvT@1?E7;;tUo>qG6gS7o z3sby9e9H^*=X;kv>)*SSye1CX7YDGs@sl9un(xQkRjOrD_&>klQqA4^ySFR#LTaUBXB9 z_Wr_?j~{(vItImKGxC$0!qJ?sACiyG1@Bv5M?TmpXM=ia`v=tn6r$PPgurkAvmQ3C zl6bn#w`bmj^|LG)FlIm6$)bsj0?HYwAC&7QEZ_A|(52av#z%Eg0zBg(c(I8;^X44T zPZ;XMWtg?KM$Yn$D}v5n$5v(I5wt_aD52w8Re*@$&b=$G;qKz+-4FoPpGzWKpXGdT zYuyp?zgGpi3|swlOy1S)l>|WY5#KSe%$+HOPB{||_84Y7l)k9Rg_c&C70RP=9dvxD zy2*J)-Rvu|K+7Da0FKP{AIn?ko1kD0`c%-9;sK?R(j3?~MUn|EYTRFfHw@ZCb#dS` zG0^GNfd)@m5j^iM35Rlji5E2dgw6ppG0|X66{zf=>I86K>3=GNZ?!YwP;-yUPdrca z9dGCH+v+S(YLuk$Q~wbPW~nsVMRbZgq*w9wuk!h2Z-qc(6aHwy+ML1ihcA^SLS>#b z4=+p7Q|Z zI>vXsB#nb6v&w_txW(UP7JGPPd~uTzs>aJ%D3M?y?wCpP(I@ycGFxrDu9f9=pI>{@ z3EV{%jZ@vCp?n7#(~eCVrRbbEeyTB-#lk823U6dK2n=`J$~%cy_o^M1{UFPOC00*# zvf*(K*U-CzV+{!|7BE_vK&Vd-6#Se{zvJ**QT}Xg;$_Tb!v7$9F@rwCv#+agu&>8# zXP;^4HaXG9bCFiqp~1Go%0i@S=uqO#J?2v%rfbb*aL!eGUE)Xghx>Q6^xq@Y(4b=aUA~o+BEl|G>7+kRhZ-$?4O2F*FGji z{^$}^`3EE+!lC4}%2YV~L)$}G{kLxe6OP9dEZ6Hk;-1qIHbdtVSQDw(D>0vV;=PpX zxD5~|o4ORyP@KyoI1jh3lgvO^%w6x};rCJ)PPYNLaY2@UnP=EM_hTq~wb)9|@)phb7`6y_9HV8ePzLKCb zyDQHNKnAqp-u{yEO6bUzXpd{}^I7HQ&(SG#)C=>j zgu++wxK^C329PTN}}PJnogf z7rs|EACgBwv424C(Y~h*g8`~^c&7vppG`}oBfvUoMC7SauHj=g&VBDxBuK1KJPu=y z&JY@Hpk9aN&T|7r(+29}z|8p^EKbK=w1LoZgn?+a<2GG_Lyc{fe(gXSAeKmIq#$I> zoFBC{T#b1IPA5}u%u&e>DGR!EOsl{Q%M&s!$S@sC;b?!zH$h0R7zL(SWzvP=-4HfW zgJXvsIKIQO*;=<_2@Ab;dC^vLl^yl5Z;ZCu$yH^-aq3-}7Yk*#NP?klmV|X!B(~!r zW#{2)aBRHt;~Vch91^G7Z;o5=lxw1>>R3TDY=9nfGA-8f|!v{mXb zSxu_rYiH4?8=i9f-sC= zr9De~wwD2jBig%Y&z?3+(f@lkT9H7u*^+1fwr}nTSnXZgGg7!<@ts|``=It9pA;sX!0s~w4+F>?R{dK(~ta4xj#0R zS*o`=D^8&62@DCJ95L;7E01;g+~)?^PH|)nCQDBH{xm5;wC@N0z7IIjoYTG+yIGvJ zHjV7P&`9Hqc@_h8-;o-=O#a7pb5(8zB#lI}z7Mb?kmzC`|~CI$bp2R9l5paM!B&{&}TaldRJrEsjjZf{Ql z@Xp;hKeTzd6x$rQ;h0dN?N6VphRylX(XiQH66vhIMQ8ikGpdFNILAU4(hEb!BaqKa z({LQ0ViaVp!m5dLF1hK66-Yz$VFJsg(GbF@w;|~?FMByE54!B>BagI8T z%yLc*`UbA9(C_!mc7?TVUuv<7h0q-RbRGYWA2jqq?%B}xiEJRAHZG0Y$R@DBCYl#i zUO3ba9Hcf}*?6Qj#6G3R&m)_EQ71UYYJ`T>&y(snraHj;XEZ70*UEa=S8J&HE-#(} znS2nvN|lqRI~O6mQ7`iqh(d&RL9QOhy~ri(QJn}AsObPB zkO--hlbY!aId!t}JuH}M`(Acz1X)jQN-jXL6ejD_z<7m%&Ny%atOyhBNxP7C`Bg!? zQ@b?Xft8TfBSLkg=uquPcgaP<7Sb~pDM)jIp85LpdZto`b2Qs0%j^)o1*dOhJ(%h{ zjN&!~HNS?MOQCkk?v-U-gd@`c*F9FYHoSX!$KltoFS@g}Kp&S(UObPk`3>#mP#>Z< zorpZ`q>6fOBuA=f0I4EuagGfZ=gXY#mwxu+3~;4%Y;eX9R7J+qyNXXsMTPI{qCr20 z4T2JFfHyQB6o#+i$Z@#!SK|_fM8ezf)=FNm^>g%!6h@9nhU)ilE`itzA1>Jm&525+ zpL*=VG_X*qafbn?5iV9m!ShQEC(N|yp^n|@d+w2!45Xya+Jl#r6e+1b@m^yVEqdHC zl}Q*()`RUy#urYBw+~@IcAu!L{TEqXmA<0P1N{y7*m_w(2-{wk=Yeg3R0A6g*uA~) ziV1t28c6Dk)K{<7SALN^r^f_C(qR{hTwjn5>q8w@|5t2ny`58-geVrv+rA4P>SdF3 zYQ$M5z4vO7Mgx;V8gNSPQlC&+*LgVIFT~U3q_VQ*IBYm`xANG`#dB}&FtE|A2(qI6 z-T94;HW)0bZP}BGY}inbkE84kMKIiBWz(Dkpih})dWIHH;Qd#Hm2aAkq2hF9D8CHn z1D({Bm{cCAJSAVX%M9iXO#CS!MsRp4aqw2}N>cko@5NsVk|Vu$!j$IY+2qypu(`Yb ze{$`m=z&EVu(zR1(^^$L;4~vFYi(NE_vxgi2O`!ZASNW66Urjep~N*_4I`< zbk4>8dW9N&lk4R%;JsLtcp)K$njW>{r!vJzXj7?;{J|T%ph>x_pm~IH1hjU@P9DzXa&8U@60KT>zLI)vfDx)X(c|7+ zB~wHBEtuvue0A#<(ygRh{hTwD_+JeICEbeMiZ0j-O1jk!MIU3jn`smq)x(hRp%1XD zPgJt?qtOUuj#WktDhFyw0QM!{?odZMCngVcSL!J)f&3TLaeQOr#dHf)&%){DWeeFz zIC>BIJc`yaO1|zFf3T)vJBgZqsuRF{rN18ZHwOFjT_53)cMB6LH-cb?P32 zT<4~vFK260yR$bo9m<22R+$yfZ`5bMcpykwEAEh9#oNEi@4NI;a!hy^4dhhRGdm_+ z@J!0u*~z%!Tv)nOt1f`%E!u=jn6-7`%Gx|rQ2>h{)Q*SJ7d5%0r~}}1RNejvX7TG< z44H6iEZ!+X>!q?ps65@YIYR4SSFo4-RWkuv9#EchJ62NJP~pjB@F(}3@3C1&AgOH7 zrAsW(IAw$$I=)oh#J9W<5B4cS57Pr!<$cjS(3h00@7t)w#t|KC0CarDL<8yU%w@7T zuop3QzO*_5!bxYVSm;m*t;4QW1qfMOXX!dZI{Vaa{(V;s@yogRM1})qm&NPT;oqI8 zrHeUc4k_+_QryrG&W`3Ac7?*FD8C&j{t^BE5I}o1BgI)~(UV8J>^(dZZGA|IoKee6 zUkSin08Yvrj#GGZwgjCf8K2D*2%AObP1kj4oE_v z?->1GgHf%wD0GQERp^~V@bb+5@YCt`=1k1D(H|LMIS*e;qX*`0lx3q`p$9(C<4oq}9#~IFpz@hGt z>n&jV*3$>-$0!4!&Qpn_xqH{Z=S(Ibm93R_XJ*W+i-KNt#C~ni8iNX*CIjmBNJ~zs z*(Qqs4W61l+ zSAxFL6&6@_)IG6xW?{;ZGYgJul}WBdkTa*F4}#M|d%Mv8SIPRq)Fz=T=n+}LsnzU* z=kO5Qsx?9VGNl*P+4OXb=%aWp84WTTJ@h~BU!(C&&ql-h76kQ^yFLxH2(Z(;bh-nD z({g04LN(R)qS}jWh|qMtpSq%)=W&B3&vQ=H@kAxECKqf?8We8vy>n>2 zL?(qy$^~_79Ly%g+|Fi0mq{56^>?YXeKLAx;N`wHXQJb~CRLy9$O(vnCI3y*L(xRW z0QOzXJWw9d-USWG5{xh})Qy4D=D(7GIkC6dfG8pEr|@|X!4fdr+_R5IOnPr+D#^+W zF)L$ZYfatB71>+jFJgz_!EA5x^Yy7z!@}rP{azKxH_y;Q)9YC8NiqC>=}JG~Y|iEvS=W~cr0I|2!Zk)IIX2)lcvX+pM&W1^EeqI z)KVJQXu#g!%i1O5V0grDKwpO@xj0lECX7uP1tp7^ei_Y2)=3fyjZLUPwtgo0)u=ym z$o27@t6>=N8Oqk_-xtj~Rb0uYg3l*jdT72%;saa9vwEnX&X}R$YV5D}PPsn|HB0q2 zIO_!06MF&nCPj_TN~ccnA`>;h4p2XO#$DoRH^P7O=|^8rcpsipa+^YOv7FLCI&ZV4N8At9zud+xB+4@uVjZ^j~^ zv`L)=jo+ecr|V9s^^{7^QxdPqs*zPY*6eGbx&;S=Rm0$m+7Zj*oVjPPkx%9>=H|Xh zju@OauK8ZA9X71PejSCcYcWTi44o2AE*!d4hVFwQbY3GvclL5saCY1=`e-a?nz?kk zgPew~)ph4-ygV=R(zif3p(d%1Q_0ErJ?@tcJq>j_`;m@}--#`D$oOd@p!^9&>pDZ% z%$E%m<9C>h->}N_xG>}A#!s${fPH&$()%TE{c|zw9<~NUhrtVK8yx!42j?OVfP|3Y zeDX_Az?S>1YuOm6`-;T|G*`;J2bG_b%-}#ZgIQz-$qaJ6b9<5*gpNgi1}Oi`&zo;6 z4Fz#7R)k&S8G= zwj^l`RDP?@gm3IBme2e=0@@b`u)Oh;Ab#5ikx+3b69U#}{p|4PyeJk9CSpkLA}6w3 zDj#XZ8SLX+&Vpg#^`k7HyU#rvl2^&29Ys|R+G zWKC0G7RSkLIZl@V(_h}w(;XPeQYNAc=XlXISxT(O?whokZ_bc5LzYsWC!_}sq{@Z; zH@d~b#$-1w)cxQabo$8|WG;jK`L2&}7_0?5K5w-%;ZSpr$`5RDdX{h69>{mRoyTvh zvjCY(X&zK0NUTsiP7(nX1(Hc%{+x+}a~*4a>4J+}q@yqo^Dr9+?XT)09skC7)ya-l zvYUNwH(Mfgqj~R7EW`bT`N)7hVOrVRfMXdSFnzINER-!5nxXGjnxXRv#sZrU$)ljy zKfnyhM|^v#q)3FW+319*Ovk*hPanp=#bF{tH&KTS>aT}~J7<*)wt!`AgF1t+oErk| z5BVkt=}@D<6pQWiw|)K)M zyG!1zRN+F)CX43iVqo!u+VN2Oq9zwwT4h!!*?}izUAn{q{XZ|6PO5ZLwH}ei zp-bBjW9&Q8jpOLAlj>;b3e<;+JvkIm@&H!Zw-2ZS6Ed&o-9VJitT+PH+12`Z6cwgU z#Xc0pw_v}BthX>b$T=Le_pPq0$kLLf?Qlb%qiwodGzbGnDJSVt1z88d8I~-qEFSjV zjE!R`sTUJ;dr0cNc-~>C*g7f}>Pw}uVERbII)eJM{-uxX?Ig0dWN**W-Z~FXZA;w) z9dD2Hh8lmllFwRba1L!fUH=3sAwB<|;$(e$(M8BjQtJ%|B_kssYdc1*dl(8!=iR|{ z-o>VN;b=vr-h9_vy>Dec*er1bn47doYz^m4=9tVend5<&aZKj87v@+Cr<-_4W|+)y zzw|}A&;v1)9Km2@@ia|@V=Nxrj~V1tGRQ;CAlskOWkFdaRxb8OVig^dFKXHB;IYb` zbKR1m{vKR*6bHU&z2*me%Zc84r!UF5xM2q-;gytXLcqLUZU^thszf+@JNo`H$k&iT zCWGA3sMG=-lj)eeAOI)->KzKD2{M<-;=o?S*!j}x2nb(_Gm$FudMwU87Be1T2Dx;s zn-Q#CzSDSkHyY@eOvmK29Fqr zc92@-Ft#?hy9dYa?W%E5HcpuWt=C~nK=-`TOHdU&zzUeijU5UdpHWTIMXqV0Q!`~+ zKixN(*2CUD|9+6#=YiDwimWnaV248g^kk+}Go6}!q1-fr1=B>S1@uAKH@M`lnu|B= zj!wLt1;Xfmtx(Do7& z089Rxq=%x3i~;&?dII^j$+z9BO67qRaqbw(Ryukui=$_r(#FGoQt-cQGZY3eU8&GQ zX_Gn$8o$Lv^{zXyDP-F$3G0{}U;|wZQ%FYp>_&T^O*>lXCo&Q`-ccH1n=k}$C}(VE z-J^}c--`@gld5N-e3T?*;LLCs>c?v`(7aq~1BYC10n@jhK2SeK z831*jO3Qf`I`^R=-~1hF)Z5MKFvz-z#W8?ysxqO%lgZ$9ui9bR53)SioG-;@VQ*+J zhx!n`2{!+tPU!jIz4Jtq-r6j|u?ue)(YCEX9L^l8i~{dlG#PNVu}bOC_}xewE<_qSfCo%mP+~Y)d$RUt9X)Y@A#cUoTKkYP`45xH zr&Ij}kF_9^Kd?;xKp!MUcHSn*0Pi9R&O&_;TkW=ePfbL@6sHXX-CjIvZXFo;Z9~r3 z|7lnn``XREk>J>ag9iq*^Io5fL52DsS^53tXF2CP8qm|zade~? zrq;M?U2oRG$Vjwz`9#+@~ecMu}f4^j= z!W$a@X0U;IkpdHxgrO?!k^UCwd`55KpW7aO$)`1wr(f-eWuu_*8NsQ!i@6ynv2HMU z`iB`4ct5I*IOjaOo*e&wF<>~S`YvrSble$$Gmt%*#Pf&)G#%rFpbYoXCwTwujq(I& z{7@GT|9l?}L*v!5C@6hJnRn`h=F+FMX;3jv9u5^cO(Iw)3F(__3_57r>F(jO#GRjO zu7&LmbtH8DfPs~k9omV|+A1?cc{GLzI=)mH!9E2ow)H7PJp3t;34(o7B*!K%n(`D$ zScZlp-Y0LuFSL1@)&?bicMpRGPgxOkCaB|~@k<5X1~*wQcw3loC<~FQp+m_;Lfa~h z8cZ|YqQH2A#ta>aN_Tk5O_~c2OWa&Ko8PxO4}^ISeADz8!4{^#wip&aVUh6dUcnjd zSyM5Pi=m5H=t#x8UH7AB1V)A!8`KFI0nRD(&KezTkK$4~l~wo$*sVJl(nq_qeC1*j z*kg2IV6SDS_0(sAZ@rJ@Yi1Z-V+Fci!uzm&l`0I{j;gg_{Yrt;frUKSj{P_iyNZ!( z1tS^@tyf|xmat!V>+5mQ^|(Rr3}GFQUe#ovS<=0Y@n~0@{C5p%D4!Y_38lBWTc9wt zd!mdGGjbflXI3(kQSzpBW_a#vADj3XP2e-fkb3&?&M5($riC&gLm~uBU*I=wy$@qQ zy1kMBVR-i#A(bk^IrqN$b$9fujbX-u_X>{)7yQ(x;zMkm!;FFF-6iQ@o^42j>gD)V z>+e!w^O-l*xX6VzG+EQ|(fztB`eVD0j!G6W3eaD{xWT@?8aq^dhqu6KsP`>pVvcoh zk$YIcwqFv(PyGibxxS!Ig+o93=%L2SoY*?N=5IQ0$NRETu1{}cJaJ8L(f^KEM1A6}Xt3oet;AB0xU@Z%AckUj2UrQ!W`uGcbORWO{I{k#EJp^X=q zR5+mt(|%nCwu6Z%9-8isx8kU$)fFKWqNBXIELOP7*(da^a_TteTq11|J`Ge>IL`f8 z(?`B(2@A$sP-*lKWQ2_`8oZ(FU&>g}-ylaVA%qKC@5cAo-r_z6%9_;CJ!R(DENJq( z3>=qieQPWUh(@x!(Nzhcz}gA(*N2K&Rq zYw%HYJ);kDg5kBL7AU<#kp~-}!Iu`6=<~tc&SpE8ReQQJ6iOdKCqZKq-rB97A@h6t z%X7f}dc{aEr5KISAsmou|zSoVQx0_ffFQR_pin9z7DFZkTJXoV?@>iUvl6v|b&|md4dLu)SoS0yKk_GH zj6!jT^eT9)MiULr@>J9sZjLsk6*?NUuKr9F1(Hdytf0FaV(HyzQQDHFDX{U|qySgS zt9=(U4r=bjVSR;Z@iFqs)!W{~)Rk5p<{>=vCaU~0En|h2Ke;7>`2eb)F$Uab&hck8 zi~Yi($%>}oo*$$Mu<>?hXLkod4M7b-4M7b-&0v8V=)6gn#@2dtXRl-%Fib*_)3=b5 zzu7NcV2}jjn@h(x2>4dl5ukb&rkq|F=`11AA<`kzA<`N6q*L}J9>?p{db890MUEU9 z#td)LrSp~zdeH08?M<{pv@_(qIekhy9z;8*&`v6B{KXv|`mE9iiVjK9Q%Mo4fe^70 zqJ>>g`$d4FNp2mCVJkeFpf7ltUpy3FlGs&CsxBV338B`(9=1BpJs6Q@h5Z`sxEp=i z6v-k0>Mr2ypP1I*cK3upJ2NT*YNqM5U_OFnt%EeM1)Gh5iG1f<7_k;SKTYdZ-jG>? z5#tF{G3099Af&2XP_*j}q9UTAL6OHZfT#${HW|{PIa?Cbt85;^B86K#^hGugVbN(5 ze8?|!tgi)O(XX?72#d}!3CMjIV-Yx%0l7V=H^uAFyk=XI3 z2t;B7qMp1Nkmzgldyp5^|Xpr(7+RLFnL~nu%9;7^os|d&+ zcM<(@Z;?Nah>nP^#$T@FvlbfQv0cn4C|SfPKz{|}2K)AE>`?U`&N*-Vo52SAmNGH0 z)y{-NjoiZmw*8VQe(FC$q4NcGDjfRJM-MgDa~Xn2MAy7Q6$UmQ>1XTHI7)u7yXT1L zTvLRoE@9x;C3s)%pA7Zy8q{F&(L}=bih$Am+}VtX?jjOh8xb85-2f&!p$}N`H`oWP ze20N`ydr$lG0a%-Uf~e|Ee%X8)Tb&iA8rma2A+49q=R|3Aq~i5*MH5^$YVzyJ7Fju zqWEW$1gbl=2@Te;btF1w^ZeuB`K5+XP%L2+`Gyr1*!-OqTPd7tNS5)$gQFF@4z%TY z*kSV_c@)_Gg&~Hramp0fXz@#g%}0Ebp#2f_7+1GTGQm7kQ2>h{)Q*SJ7d5%iXI?yF zKEdn^vi57|9+$n9n2(r`m@jJ@_FrvV>K^ELd!#pzPcH$gvaw#FL&Yee<62b!ymL1W zM7L%tlZg5HlKG-fNYB|cLOvR7^MoD@Z;i6R#wF5VSCqGG17+Yr^K6X;YEt#M3a^o+ zz_Jfi6F~2VUSM5`TMR_6Wz(QlitSOec(V>{9jqKSj1{8kixhEC^eUry9qMbOVNjKZC23^~*+`h2%k;9_E;;)yqOMGZZB3TON4zpk`Is1tD@LW<}=iv)YReqj) z#qBYWUnI|ghTW1PD8FCI@->UXp+9FWoV&Ac0WlvjA2A;>A2FY8J-XO*r)^!NzAKS|}{h z=TjGBitSP%$H1SddhUL{#G%T3wRMVIMhfdysa7Zpk*c9X$>3a$RT`{Fn&}n=#v3$d z=txw$!&3x(1bqa31bqa31bvjy_ld>|RLL=)tHkD83#4@`r!cWGF&{A>F&{A>F&{A>G2f79zFEY4 z#C$I1i(zX6yEA1D*RqLFdYijNm?}9M%r?x8SoVV~&v9r33neodC2v}1hUdQav4M3G z{*!5q!2~{Y45^U+q1+oPbut#(C(G;*zJi&|N6tQCK63Vv zvyYs82>-ekuY#0zU%3iw}NUXk$FF+2J-s4r0CysxYwem`J|$X+*oa*HqYuu+Tpo%&+S* zgi)C+5cBz)p)^vO1Bx9|E7*_7Vxc2dj`!&Wbp&K7v2kYkevJuCiJC~qbZqJ9?10($ z6HXrO_>75$_UGJVpgB{b1=|9I->MA;CFpMq_J@bp;G1+kqYvVrBjzLKBjy|O%=aiU zA2A;>A2A;Vc*)O4%ty>e%s1qj&ySdon2(r`n2(r`n2(r`n2(t61m;U%YxUh(IN2(F zGPEX3^TB4pjyHA7rJRpQA#z`|D>@%d7XzZG*$U|@)ftoKz@-t2O4%u zilF>{Da+R^3Wt`N`W$GRjPJ4aI=vlQB6XvA?@uiJwhtm=oiYj@dJ|Jw%Cw9XTK?pg2<8JAA(`5w#o0`SBf^AK zAr^{n(S}0JV!v=`vMRN3&kxcB*m%1(iLK#wN-n#sdUXT@Ww?)ar4(h3#W%G#$`hdR zLtQxh^L>1)#;avfQ2L5856YIKn7LbNh7Id*v{u)r-lL)O3C04YPifPjVw^l2Ds&jL z>K@glgSMUS9^lv`jf2k5HP^y+hdL5Ef51LLEjzRmp|w?JhVp2f+|}`=$_Vx;_&V!T zhIsJ4%0Cwh=1BFRAIEsWzA2JSXi+mbzbj9X1T6|C4kmBHFS&V|)&?bicMpRGPgxOk zCaB|~@k^X9RqZCr1#b%z4rL)yHFPM2yS7TB2GdM8oNaZ3#ta>aN_TjQz>mO>z>mO> zz>mO>z>mQ11n^6Q=6kh4P_#$xHH4Tigq(fEe8haje8haje8haje8hZ1p80Mg<|F1K z<|F1K<|F1K<|F1K<{R?NcLgyYF&{A>G2f76z643F4z|j}Y}B)b>UU!x>j0)B8UN!E z2AwHPDilp}Q$ur-G=$ebgtX{sg0ilA|Lc`Tga3$g0qKfWk{U zM))HZYUaz7*hxtm;P~0c1h)Ixkx-b5NmN~V{&Dd9QbQ;xmavI@!wL&*{!WY8Pj9L+ zp~92NfU-0_CUfOu29x;>?d4D(qBlXOR$T!46#>z%dj3YMeD1A|r3;CP<(jhZQk^p7#`gC~k zQG*(a!j+NE>TX`YkcM*DcQNCjX1EXK7*E(o*hkn$*f%7xkNWgc&lW}vbzdup`H1-f zfS6AxT}kvO(4U>? zkLZu+kLZu+kLZu+kK(;1_b6!eK%j1=G`}IA=9k|u^oKofe7k$z#Cf_~sD%r3&UH(M z4mXY35z9tFWfh)ZYy9QGkUrX-7z%rL^fo0$~odI{4+wy(mu25m>N8^84{MFQx9+_Rx$KlawCV&q!T*QsKm^-4_c zF~w=acU+lX`zgD%niVX zj9(zEI>$-r_DTXE`H1frs9L6saQqvytgHX0#{QGvcqBsk4g>3WMc~vi%vkVV;Sm8X z4NNT5r((0l);Y`=c-~!-4(8d0G|=70;J;P+M?uz9r0lAzbwN;nmr4tjfCCjg zD);LZBf*qnG(yK-C6-%gWESYWNtX_t$`NT$as)G0T5gi&f%$VBzVyqU5$M=Ih#4rh zKsgKgPZaSkCw%o1T@;kvE5odmO@6OZLC%S5dm6n99kg2!q!A<)i@ zih!DFIxU!wNJm4~Y=xVnO=*RW2Cbbht&V_-0?8y;Rv=A<_Q(CQq4aJ{k7`SnVzZoY zss7`{A#QoZfy9Btfy9Btfy9A5abP}}+u3ZQKkE0ViG=MH0i*fMFEEWq6_5&g74|kP z@^v@D<}PfhgZ%~Fp}s~M232X8gHyJUjfBa$OgdC$t74ALPrVYe-<@3wbuETW2((~^ zPWv8JBs42AlgB#AU`6s7A_TAsJN0%1u6lCn!oA19q-FVx$2SI7*7^V+pwK&*(O6eG-pd< zK(_*ur?&3I@lFm-9>uSJC;-Pv;XgGVW}?8@t~No|PHg#;|DnPL)w3|jQn<`79*XD7 zB0xU@#mdaU6j$AJ^;)c(HhrXF9YLBTsISu|LFrgGBQ#b@^iXmy;}2%9z<3DnP^1az zGb|w>As`_jAs`{(Fhal`lFKfuUL65J8SbN9wkLC}G79XC@&su7P!|sWd|!yeUoDG* z(pQvuP_`V!%-z^!Zo@k4<m*F@HLWq|plzqS z2etpB1~5c_M1Mll%Q9b8Fx33S+M)1fY(CkzSP=ou8?cq7jmMU=Tc4IhL)~jCIFcxff9Lrt)3ihk(NX23{^8HPg*~#~( zhZ-yT*lK=8r(DM(KLgPp(I1w(S}|&VFl@1vV~` z2D|1jlx@I*#B8(Hia*!Bb)=hpnSi^1g1nyq+>ez zhn*cY8;Sn#-qGMU1I`c#S4Ps{H!A!+vGDhM^8FG0QSu)p|54#mP#>ZiC8_m=|HzC5RQ*BKANAS*BUE+D zwV+FLw?HLTe^B)YjeVo6Kb-7GgFgm9+&7lkkJzv8*v}g(bvU)Nooas%{pdsVNA%}` z-E6w<#A4mHSrXPUH-PAm=#S`+=x<NR;4nRUc zLO?=5LO?=5LO?>mUm;*J)W3_JqfI`VNTR=@J#sH-O_t`nI=Bz^rY}B3e?)&oe?)&o ze?)&oe?)&of5RyJTSD|l^hfkZ^hfkZ^hfkZ^hfkJjOcGP(I3$t(ci$Jzi75LvOCXa zH={@b2Pco>*FO}16Qz_m5cV(=1;%!@39@$LRM-3u6*j1zg%gDfm-)p*@qAeX=qI39 znHiV@)&EnoP`%b85lkOxSVxd13F_;#Nl-f0%?OQ^5UV-rt-l0f?tl0{d z5Red%5Red%5O5eF;ABETLO?>mfq{TApj&~cw{@pHis-Mf&_5i^uj?{Ew-;~9!9++)!zC$TUN5(U_hMBdct5I*fChzI zJZOug__udyqo8=2Cc-gR6Tvqv!6f!uFs0r3ZbW}Xe?)&of5V9W-Y5Da`Xl-y`Xk>T z(I3$t(I3&@FrvR;qCcWPqCcWPqCcWPqCcWPqQ4&LFM+L1?as`}R_T+6Q1$P9gn)#A zgn)#Agn)#Agn)#Agn&IFU?Mc%s||u7*8Am4YW__0NAySZNAySZNAySZNAx$0=y{Sy55@2iy)c6w< z03Dw((a`>!dki#ZO0-~GfVI$78w^U&-x%x<53iB4(DjTyh<}bakT{Sya2Rpmb;NN}~qTOg9{-b%VwX9f?YJc#1fXIFLAyIFLAyIFLAy zIB*zo;PwmVz|qk81Y;rkgYs7xEp((}Hg(;Po)O@XGd8HZQ)-3cagqq=oa>eh9c~)6 zBbJSV$|^kzHU9EoNFVLa@|BBCV2{y-fxVWQ2BkC9;h?|UkO5nyqtsAzn2qCG?_>Fz z8AjN5Gm`>cFCimuU!@9zwxgKqWBp2z0Qw;JZ0OjpG(#05*Mh!I6$`CbV&bJ=-8{oD2PU8fzF$B z>CmYhkp?A4FlfEdh^!FaoAJHGtAJHGtAJHGtAJHGt-!P)T z{nQ4A=#S`+=#S`+=#S`+=#S`c7}4K8^8KAF{aGcoN_bhBXoD(N=>tWFq?kuB6?0JZ zbJ$q0+5Ho#0yzIexi?hmFn6bYvdj+QTd=E7)`O|OP;n)j3j1>W)1dHqq5b~%sz7L3 zC}SOS1F)aZ7g(_D99W>+D+z$)BfevxYMC;^@oy}suKu4I^Mtp=&su1J$96HJpkxuF0R0t=8|>Sw zu|w5&ST)`FH-ioKEoEY0s~tNG)yO?8VB0T=;-~&26gpo}r^2Bhee_UcW&EM$XZ$uD zi~I~w^EaKh<9*pE*OzHyJh4U6HcVzJ+hj!}4Ez;^Ed;eGL=a}4<-DZaznIZEWXzEB;yNJg9${H(Ww9KxhUC zrT#%?5T<5Q>fisf_vYbI73;pg-ATIBNjlw0APE_pDf2u*NO}qo5P<|4MUa3p4+*FY zG9-u~C_^+RuYy2O1~*dzA`3(yf`9@-L`D^e2naGHh=L-+@B6M^t$XjY&-tBupZnbB zo}J>4@U41l)v9S#eO6ViYC8>^jl(hO+PJi(>f7m|RJRkqikNXm)tO4?1)-nGa*O6J zrX|(-YJKT^Ln8vfd;x&}T>#9a>WAJK%mn?dh#={DK+>N_JenwAbZ{n^M9`n0KS6(> zWV`|GF2EV4RX!lvM|=nrZ?ebR4nB8?!EXCUZaBxZPXYfVudCibC8>J6J&ebXl~o;V z7DLrDTv|9TE!?0@q{DB)Q2a_r1PzOJ$sx@NM3?cKYl7p8h`j9{QSyd9n9os!7!9Y3^N@RH~k&PuG=>Diri5=ua&Eip5_s z_a_#A#p176{1uD8jcD$#yP!Woe}eu5{R#RL^e5;~raxa@dEj5C;Aq-V*eHD@6|Kci zl!6Do(PcjtVMohEy$@-cx>zW`H})HpPH@#?kA_QV#r*&iCB3O@LV1}y$J-$!nYPUg zZbh0Iy0o&@ugB2VU-bC7gwNfrG|^9Grot?2AKIOZb8#XL=pU!bmPQlZ(R*|v5y9 zRoQ%!R6L&=(1CMZ?KpD}}{i17!UL_h_os;sC0|-ofD%@i4$nwz>Q*e55X! z=B(4$DYu(GgEUiIdeE9u&z4lLY8FMM0}XnL_|2sqA715EQHKxZ8&>Nx%7!h9qKTc< zy=hJ-vGwo&Z|mOz0e}Jk|Ca$!9RDH?{}YG*InF^8^e2AzSA6)PiRTYZys5I(r8Sjg z;T%#ye>EjReq|FU#ZzuRejI!C_v(BqdecQ$RysA3P7XEZP+cEIM1{J1B6`$N#5pg*zrD;9sn;;&fz6^p-O z@wX8z{yrw={sjFA`V;gg=ugm}pufgRe~G$sz4N@A<_~ey%^bmijfes7iWxw`fPw)9 z0}2Kd3@8||aWY_%{NtMyF213H{uB^&=8*K((b5C;oypw6a zXBri53eM(lwc^R}x)xuAox%@2Rg7|rEnB}d6hABluc}+BSPHNAFp=$)hn{keYm#Wu zaC~K#Hzz2C22F5{B4bxLi>+a8Y0>W<_&un_K51k+?WwD1?wL-N%k}9rtfN;rRTZm^ zR4`8!LJ>{FQYf-Plf~yJ=mY}_1{4e^7*H@^BVs^{U_iluf&u^UFktB_gMY;_*Je~X z%Uv(%FK>hkxOSQ*ifT8wx2B{r9B#0CGmbA<{uvH8$jb|fq=Z542#w&&N z`MBGnS^8KSG|)4uqN8V2SjgkJMbma+uZpyi+$)HB{`EQg!K!Jb) z0R;jI1QZA;5KtgsV?@Ac-eJ;`YJIi7jf?&+iKG7n{R#RL^e5;~(4U|`L4Sh&8qxA^ zj+pxs^e5;~(4U|`L4Sh&1pNv6Yee)nM9`n0KS6(j{{BbNUjoHwlRW6j#qO!%!{6;5 zQDoEl;^3YiJxydv^Ng+-jH7|hFT^oGRez{Lso|U|j_M`+a6C>Q(o@p&_yW3QL$H>N z&$bAmWpBIb=+TG9=4FzgKS6(j{u&Ye{Ula?1^o&76ZH2#ivGm0FB!kNCQw5rz%5VE zpNc*7ojT;a~_A&!^;&v8MQ~-feK&4bh`C>Z3Jyt zfl2g7-}$$rJ8M-jG;E_jizaqGLoTH!E8@o|VZwDKw?v%F=Ra|gMraM1)_M@W} z9?^8?u1gY~JfZJK=g+%FP*I!;&)!w{aLVY5aETj(Q^>zZNPFru+Qmr5&MF_e+*fU- zlOC#;Wa^+vr;{30GWFTymP%U(>XWG8Z{DqGwV!J~-AVOGp{lF+4XZ_7uIy2c9nqw0s=;Z&m222lPDmuRvLFzU!ST9-gc86jy@v`3|P?8jMt&o7E9 z+*C=le7Z{_4eG3pqB~=~+E9a+r$U2@s^g}SoRA>nj+gsLq)+6hKJ`UZX{tL_0dc_;p)NhM=* zZ#y;o2rMsAx#`Kc+&zKLcgLP@Q?kBwS>nEAdh|iCv8?1w1bsQ%&6{dp1Av#Bu?yUA zSkRxKKS6(j{sjFA`V;imi0JP_L4RWIPtc#BKS6(j{sjFA`V;imi0JPpL4Sh&1pNv6 z6ZH3QN`E1`a+`Ap&!%V9@!|j&@d>aN3s*QOsLVLoMEl)*+fdzbwT^1P!Ez9v7F6Nl z8%lEo2R0%Oyec?QaG>Bo!GVGU|4lhi9RDW{fLR%gtwfQ6{;F@Mhf>{69Eq86M%9^0 z=LO*ar7X8b`@?T_;`l#7e}eu5{R#RL^e5JU#Tu}f`)fpVf4*YwPtc#BKS6(j{sjFA z`V;gg=&upc-ylJM|C0XN|J}(qn{+Pi%4!D3QS&^B*%HbsmK&LRW<`qla3kXXm3+9gjKnp5R0cRdwT zFwQXA5u8d{mjZEy(dM8i($u&mlHfqWfr0}C2MP`p9N36BFj;WmzvRFU)MvalQ_vqp zB;j>!=Gx4GqID`i9Fw^p2WA#-3eKilJ9gYYGMk<=?no1>hccj`~rKN^`?xB2gkd6|q+H^ig6Za_!j;rX1uu1DwfmG53#sW1? zJvy0bNWtE6C;+^UD)pf_Ht7!V-jL-T<2d`MFwngPmHwg2pu7=WlG8L%RJ#Eu8YPt( zkoV2%I9mQ0?wywx5=jyJ3}!N1LR8n%V7M{Z8;5&7@Do1)Cw>CXwJpv0+Py0oz0hpL zPrzw9(X=J{E;Q_8&-RqNH7J{`&DE(?m}1PPC1M94)wOYHOJWD0p61?lNu}yZ`gC3C zs0o7p1pSFMU@`Y6=ugc3iMc;9_b2B58qwU}mxBHT{R#RL^e5;~&|jmVzc_Vy6MCRc z&!9VPRhg9E+slJ$(_LDY8J7z76YSTB*l(?1Kf!*2{RI07_7m*aDA+HaY*%>e@mZhN zg8sz0e~tR&mqmj91pNv66Z9wOPtc#BKQZ?w=KdPd+@GtUKS6(j{sjFA`V;gg=ugm} zpua{$e?N#*p9TH>=k%AUD{tZa;ixwr_s9|7{*v(tl^0#UUFf-!x-WC z47&QEcU;A6FC85{>20CH8jm=9BaPFKb{7Pv@TpNaU}(BaqWn8sIO!;fl47v%_Q*}u zlKK>Q$5XAV-asX(dVD)R9`RNkY!*Y+GhA9YE-l=kO{Bwb!BG54NCXXwcF7^l2}CEp z{T1K-QvG{q7>nxFR*D!ZzWt?!)%uLGVT+<@VkdQPn$yW8lj=VRveU5HIKD!B`x{9$ ziQ0es_Sa9$0tycN&pEK2IQfMNrm8f8{=~^Irj}$q=NC(buL=6A!3jLO&*5Yd{}8tv z@_t&=giLM2!>NG}=~?dS8bf!UGi1{pt#1|;{N|EOC!cfaKoLKvlIh_EoFFym8h&mz zDGUb&8Nbz}IF8+1G{bYzlgbR<}`irL9Y~S=5k;aP<@%Mf*qMoTSoBBMu?z zDdQ=F`ORtc}sPqS9$W|APMZ2>KKB zC+JVC0gE+Yu?8&GfW;cHSOacEYrxY4{R#RL^e5;~(4U|`L4W_=^cSToH#&Fp3|6UP za6Y?l8+lIx)qaD?SpMau3K!o{nj;vn5i#Iw!GMAR1p^8O6bvXBP%z-XHv>kKP3x;G zGfp-M`a7fQOr`UJ@C!p(ZqfYXLM^G*SL;jX8yXS)c?$Xy^e5;~(4U|`L4Sh&1pSG* zzeYrVIzfMe{sjFA`V;gg=ugm}pg%!>jfno967(nNPtf20LHcW{D-UpPvAH!)*N$%7 z3oue?qAG++@2hmwFf}NcN>>^DD~`D~qsm$Cda6_T>BzJnUo{qP3eM*5wc^R}I=-RY zeabDCDn_}*maShJN+u1ws&1)bDZJjpM7C2NddfYnNuou=5pUj{pcEQ3!8MAEUEwUY zhP9WIFAst7z_-PL<2`=`^gPS2$G_tBq7J59x|%8kRzl4VoqgS>7>JT!OPZ z3Ip9+Q0X7K49Xkf0Dyx}+-vS#0{FY-A^e5;~(4U~cMnr$(1^o&76Z9wO zPt5%Z`V;gg=ugmJBceZzpg%!>g8l^k3HlTCC+JVm-@i5e)mqhF>hjp~H(Ud$Zl@}g zGQ>x~y3$eA0s;jD3J4SsC?HTkpnyODf&bPJSbaM^RM4MGDpgO?r-T0T1pNv66Z9wO zPtc#BKS6(j{sjFsq6Og5g8l^k3HlTCC+JVmpP)ZMe}euR5&eB9=ugm}pg%!>|1Z*C zgswcnd794n0bUmI5%635v+l2iM9{EkmmJcZa7m<$-&_-@A=3>XOK9C+b9o18C6zw00^Lk1%agb1A zPuI3I=WF+_Wc0$xL52dac#2!B%cAox`sQRSi!e}9gU*dMbObpspQ=fw{Jkmg8l^k3HlTCC+M#c(Vxd(^p~kCk96+0S&?Z-r;IAMRH`~| zh@?-BVg9`8N!M5!wny863SWcM`n@)SHmtxT`lIjs+tHo1su&u!QJ+Nx^M=Ly{>CRo3BszIQ-;K_nca5N;I2E3~tM1{H z(HG$oHwLGWe~*y%)M>Pfk&K;HK6JUS+Da!qR4vKWL6c4=HL7Ilvk8gZI#8cP1%LBy zO{@J}^XX2iM+#M4#qU`y@^WoY{xPaZDs1WEK@D0}G}XP~=|QHUUidAoXFMaQAx-N| z8wCOi1QZA;5KthXKtO?j0s$Kl0$TqiE>36zu(l14>)RC>p5?B)0TqNu`6l|;*@W1IG% z&gv+-GuEpOHF$Y?R3zwP9lwNC8sgT1vfFv<%8I9%C?np`nlj2&18LY0k4Q4k4mQ&c zmu4Q6e@mBKc7CC*taL~?T^^xoOOJMfk&nKC-^{9efKA?sKWS3Q*xcJr4L<_QOH}y1 zE#q?c1Ulaxd%jJ{`qpKM`;zI=2f@a&k~0zXzwLtl#N3~tKS6(j{sjFA`V;gg=&upcpGnZ4pg%!>g8l^k{m-SpNL{(7 zbK}lnA6<+%`$c^H+n#c_24$1AxjK~!Q;gZPWMwecks`HNv(ozN%8ZjuwBOCQ4b=@- z>!|h{tOW5vK@~2(p)^MzU?W1nU(}C1w&<-WYHs!x%fHbfF;t-qZC`fzEwTI?LwT9% zb`+6>W#u_{T{~3Vz;@1pp(<^eX+;D{*8`IN+~H}WfYHI3lzZIGpNb8xIH;kIYX(K` zz?M$ilFUGw*d1%Q!uu!?g&n$tV@B|y1F?iiZnHDi6jtEAmIO8 z1QaL#iL+lcooLz;eHR+`v8SNFPU_w?r;|%2)qfCVr(v@(gw?fiX-neQ-}E&1?q9$D z_PUq=6cd1A0#MMOpg%!>V)<7r|BAW4Ml|<#L(KgN`V;gg=ugm}pg%!>g8l^kH6r?p z6mx%GE;+jL6zArd75nvRV)?gdKv*;ld%;^Q{|3{VGpc4(Fjb`?;}a?`x_rqqgGzqE z7t>X%f|Ka-OjSJX&cNwHrEWekl=P!Iwrs$bR&-~(M<(647ht5)L{$it-p68e!_=T) zDqUspuQ=w~%&`_-r}D$`Nc(Y6QsJiHY^t@Z;~n4M?>^-gOBJKsV$0Sq4JDICi~HSD z;k=@H4-?r=;d}4gw)T48P&9d$T%@mVbtO=jDZn zpZ*X({h`froTwmv`U5*x3Oj4Dh8Yu-Mq7UiOsD$ya1h&~dYp^D3yP$gMD0H=|2_~CfMNnrOaO`rKtX?E0#Hlzx!hDPtc#BKS6(j{sjH~&!@k3y7HFJ zjXbx0aL=F(9kDpNe5xjy^7pDdX!&(bJlU@B=>undTGO4js!Yo7?d3tW=`JnHj7tUm z3Hob9^mkg!{R#RL^e5;~(4U~c|M~QnMd!t#f8y8|vG4D{x9@L@pg%!>g8l^k3HlTC zC+JVi{fW81Ml|>Lil9G1e}eu5{R#RL^e5;~(4U~cMnr!NV&9*jKL`EAm*3QS(9h+% zRB_;ow#+tJ9QYy*eEC9~K*nd>00nAOOR}Exi>1QXcqf^MF~V{7P4z?XxQf|cIy!pN z+d_pk9&tDr2ful0RunEDe_e`4xSO#O+eKQZ;! zh^GE-iK#z9e}eu5{R#RL^e5;~(4U~cMnr$t#oV8uKS6(j{sjFA`V;i`??ZoC>T+K) zs@$`vFvXZnOI8MZP=2H~nrvEMU72yR3BSnW+eY4yK(*hvB+>bWDqV$(Zz##Oyp^9_xN{@M%r6Z9wOPtc#BKS6(j{sjGrxxYq4e}RJj z1pNv66Z9wOPtc#BKS6(j{u&Ye%@On`=ugn!|1SN-smqh;5BKauDs}V0xg9^MW6K6? zX+?Lodt}m$djUo&O;m+Y>3x-s8m0yXQ|T&$f5kD^W>h)LT~Bo?KOLF&d!|w0rr>O< zwX5UF@VXW!hMdAV4;7=_V$0Sq4JDHXURAeLu@qkKVItcp4?X1`*Cf%R;fObHPEZOB zn&28m#;$M{Tf^GYqTfAqv}mzU8ktUe>MELhrc>o|eL4;6=oL;?#cCrJ%tN{&nueuN zWP>J)PfpMY02BZy08jv+0Ki5BfbR+b6aXjy@P8Ko<7sz>DpJs&n~n<9sw6s@X-L7Q za;TCyfYwTVXgHPJanq9_%R7dOON=@y40LZnrGMx$C~t%dxOSQ*ifT8wx2B{roRGJB zGmfoV{+Tkq zQ=GkLja0X#i1lt6>YqiD6pD~0s=xZ9#x`dAt?&@-x{qi0lE%?$kL>lom- z9Gjp&L4Sh&1pPH4`dcUHPtc#BKS6(D?oZI4pg%!>g8mv2{kaJG6Z9wOPtc#BKS6(j z{sjH~+tHs*SN_;zs>k>rjql-`BR&8QilmxEt)AxIbxEb_N&0kM>8RF%0|f^P4ip?H zI8bn);6TBF|8^WGj(-`WZ$+ik{uTZ067(nNPtc#BKS6(j{sjFA`V;imSk{2)mCEeI z;uHAsw^1>mz)>&qpKbg{;y*9(pWXat7XR7Le}3k`9az1_e-81VuKcHz|J3rIulY|m z{!_+(PV=9)`OkO!ryu`0$A5hI&ng#h{QVot2L3aOY%8);RV(O)71`%h7wC;E*)3>e zS92u2`(CzhYWR7-VveQ->ky<@91IQX zvd2?F4Ad*@k(ORAP^T7}GpO?h1S!3OE7onu?oYQaLPc#vkTW$ zy;(!~RoTO6@aM3W?1c4vRrVPAwI0s%A6YbXW1qPdyQa8veR`mPSvZrif;6uuevE&3kL{F!zQ)eW_1sq`UAymm9LD38Du&9s(i8t@^U zy;{Jz`@`%P>5>XcPC@qwOB~JH0;^j%{NzY~--1ZnyTOSR=qb)-X-TU;LJ$?#hny|L zR%Gjs)o?Cl72g_xkwHD}yxr52;(A(|P+tjG6mZ_;SmyuU!JAGFv^1rk*w8x2akt@A zc>zJ{##!2uVLJ?ozd0h+Q}OofXXpnMUB$=QlW6go?3NY#v$fQ1oh5@#eT<;{4}9QV>7XYjkre$%3G8#%=VpCFwF3~(l$uq0CGPFR0qD~e$P4Y-&cO=B8R z7M*s%(C-AILO6e_*_Hhi&1~w7<)*7Omd5TzkOiUetKE&1rQUZ0*3yzD)+l_d>f zmvKGP=t-XYvjeF5dtAGe4IK{3g*lyCw8I6J`?HJb=be17P~5BY0XRdO$mOn~h68B) zj|alFAGvw$b7a`d({YiG;=e#fCZ@t^`_8JNrEgi=lIua-V1gI?kP!`yJ(xX%D*fP; zi(}VH6i53*2=ee-+_2by;#hwOP4c-P;Y4w0=+RlLCz*Sm8ivuo!&x~L#W1K9{Jvqo(`p2+JB6w!nyE23 z@;LE043|wXpf1oY9M7IYlRn0^a?_2q+hS?`2?UvQ67}{mLVVNNmQ1-Pvu&!+$mc_J zvv`0sRCN+f`Rf2j{Gn8u(+R!7AX`(KehL>K{sj@@##2aj1WGQYh9X-MZ9Wa_gd6aa z>p%Dm>c2-iVv$Q{;mfuJx^)IYf{t^FxO4`d&3305mq!Is;W|9(3%`MN+&NgePbmw0 zTxn}9zlHz9EKUz6Z~nJPUZ#=?Ev;Q=OQHVXAxPOqC0m2GAX~q%myI75=e=H_SROH) z&OmB7)=^9A4j^X<=MXru>aXhq`H^i#pR<2!enjLF{rz2AAmx8&^P&T%aMh^uuy*23 zdeP4)&7^8rZC`crrsZ|8de_0a6>-v2S5flsvhxV{ov4lRRGk1N_nq&2kKTLg9fXs! zH%Dz(p3i~{xZ+GK!pUv^iwoI>^wepDLvzofiXUM8pbf0Q|B(GGy}AnqIlga$?Qyi} zBCHkM@Z?B?E}_g?KR^&uqCJzYT!Qs)x1G1VY{xC-$9mRf82q@XOJA~U>BeO|r<>8j z<)?PRk8ru4$5l`CvPVn)gV zZ%6(=!LJH#b+(Ir&8x@urA?*I`6Cc59+=!O2 zu*z=IxvR}RX)rg68ESKX8o(9(huZuUt>)yc8qg9WUyE^tIQ1S=a z!PI?DPAEO+j>~&^<08+wIl*+n-Ha}|Ham>w@*~+@XMTo~j^bWNb><%Q<{Buu0Q-30 zvXwk&Z}&jHr)-9y_KBP()ZWu9AT1B~n>cK#F%=kk>~0p#Ni=Rh9k`>aNm=d*M1cW~Bwn}<+ogEN*_4KUo|hxI1| zZhoDiT#j#&5r!?>;QYpD?ngt@fU8NKW?vfN14H-$7zXXkiKRR2+}qNbj4{4&x-sS* z^+kN$nO=8&jsz9>!7!0)=*5FML3Ea#r>kMLH8J<5>kMJrnxI_N%xQ88>`f8mkN07a zof11g+5_jIlPI+We>ks!ZK(J(TI>7l+{%NNCcxZ_p5x1=2blZNuRLDM5$FODq#ZwP z;oqZC%w*?R3>Oyzao-rusvK@?GZ;MiIjC)hqz(KPhR#9eB3jG6svP8I5Q4<&5aiH9 zM=pn3tTaSql!yt?@!v6Fcfh^8r2e+ zS<0Q#l4Ka}v!PuAt|(|_ev<0>39QR#A4oS^!7z7&Q*tqyB#5OPi7mfKEs?|hP?4<-4wylD*b0Xq3 zaw}ap1%?xe934L$wy8*1_arzI+Mo#UPJ{Dvc9Mj^8)l$DEXi=%jp&26up09-3;`+T zLDZXHzTQbOKS%F!S(s8$Vb3yBzmtlRisAbPFT>qhr{S_$hu|z((cX;~q?xr!x`cQ@l{%cO2Tcq6_SNpWh!lw!;-q@`zT` z4kdY)$CZpMw5o$Li}Jvnn$8qzv*>LXsvnDrYn|ldg)OYc)BAn z2I@)nYt8CSRw=Beva+(e#;Pl;&sjai>I|!4tWI()&$CKmzYI79hDxc-E>^YFtC|09b$&)^lST$$AS6Izs^#&_>T4x!nDeSk7m19nc z)%To)eXKUI^%$$etj@ENr+}`rT3^hbzq9<7FVVz7$um%Xtd6kN#OemCcvekVwPUrM zRVP+jR=rp?V>OtSJbN{cRW|!gW%W3#xvVa+DvwhYKQ=0k<$LV;4y!6wS6F?*s)*GW ztg=|0WTj^H1FJ+<4Xn(p97=3Wc4Gf8deuseaY$(U-1pA6qjPi zA6b^N`4?7a*{n){YQuisteUb4X0?M=6sxybrL#KDSLCo-&3<{T!dMMp^^mP2S-sDG z6Ip%1Y8F)SsLxoIvS(jbOIh7ywU*V>tRz-DS$)PzZZlu8dXD|hvHF13HCFO8xNufBR&m8FC$h|Bb(1g2W%VBW^<3#=Mg)w4Rq>OQMwtaM3Gud?!I zRl}+!s|r?0tY)w>vyvxVyRbUIetlVavwDt|8>{iGia%mGgXK_Gud|A0^){>XTpp`f z-Db6!RV7<@v%1KBhgltDzcZ}rSY2i{j@4~eBUn9_4D~!KJ*&>Ff|9xaOJf3-AG3Oq)o@lXv)agN5v#$h-euL6)!$fcV6~N1E2!d8 zds&WT&stW~S)FC&&gv&tD_PxT6~xLl1?m(h#)nl)_6uY60;^b7Pq1psstc=*tR}H~ zl2rz)L9BA+wmgPqFZP_m>O8ACtRz-ttU9o&WF=3{Z(#K{`+dwxo|QkqN}k|9&Z-+* zzi0I;C-o+)a`yX!mHcwzp342-N%m}-3eN~uEm$S6N@SJF3bXX6UXJE*R-dw8A65aZ zo@G_Qs)$uPR?}JaVf7lTW2}f(3sx&xEo4=^iRD#}dKaso+4B&qDpsdi^=Ea7)m~OV zv%1VzJYv;@{k+nkj>UXRjW527c?y}zOM{JXW(=Rj~48^*$>dt7=wH zvD(Qhgw;V-<5`_zrD1iERdF@TTP*WfJ!CbSm1i5M?^p%0iec57RV}L&R;yT9S$VMP z%F4>>DOTHA4P#|u^*pOzICCYeUT41rZMgrt!JdoRGm<^muzJ9LTUdFq->0nZv)>U` zr`hjYR$EwIVf6~DUs*M9ICWd7PuS1E>K6Nju)5BE(X3vE8Zs(_WqbB)&nl2rKC3yb z2C{mW)hJf$SWRN(!s-=Pty#UnY8R_zP%qAReWCE#=ii$CR@A5!(i5G{i7I+}nza=z zd))j9O`Ku%mBw^2f32duKjmalO_HS@RdqFwqlMRUT9Lh*xmtZeE#2;BKBb}pb50?z z0=A}S^39#8tpyI$cu*A^mbpwQ+>;-1a$3(fT8tPqx4xn^9>b!u>g@_P4Pv#vB(+O_NNi% zNGT$lI>7vuilW{^WLRj7rOVGCve0s5?a4t1)0U96CIx&$-xcjMD)P;lybSp=eY*nh zE_a5Qt5s*DHP4!VQ<3T*?t?YS*QxZV^FBL=Ar9X!?S4|paPu7%t(wywiC&YPM$Jay zK2u*sB(p~$O#a;VzEY>r=CdlA;)=9j2{Vljj769w8b`+V(ljm7^6NMbbF%^W!s4cx zW{gLeklW51{xlwCeOfKOJHh-wMI#oP3wh-;n>xIRV7(XNCA0cP+%CG*>?=)}XuhVR zPsU^Vs^~N8le{oGn+8tFQOfbfDdy^mnV3ggJHc!$yV)wB%#^65qylqOY4S_v^(spF z3W>n-X$tL|hS(F1*;`Tabd<B4mLPbx}Ujoe~Y)lSn&5a8Zw$kg^Df?Q3@Svu*r1fRYbGlSwz!rF77ix zx;EE*MMdNKwa*~aRa-lny*@jJ#=eeF?VduYGp{4m8`5j@&F55P9+KmzKP=tOAlB6P1Nr#ltuha z-!k(U6_vHXby)R{rDrN}=$>%*p@Vi>t`<}U%TK1;An>KGc z^8kg>X_fgI75N9F>g6RLEE~sC$2ExWaG27trA=$hO;qgmrJ|kYFzMG1%)=aRY3y3_ zIz`5;H?LCU_Z!TWiY%)#FLOv*X0XUNHBspvvyb%hCUcHrS)S*x_)GUTb8>u6D<$S! zx{jdRTactPr*m3KgFfQiK`Q05dMnDZqtsV2_f^Z@((di%87i9bGV&x(%VV)Sj?V2s z1mDeb=BdjkoF}+_CFE(ULsHTgNXU`xW*;g&(b-#y*=?SnSgJ=_6^lvR!ACk*V;-+q z>aJV7rNTYt7ZkU#xm^jFKij6Is?Am(Deg0KR~03Gj|y|Hw~xVcg|ot@@8>MR?WnNN z4xqw1xkwW~H$SPCy{U8u5*Ai#Hqf?aNV4t_;w%5&R`};q{RCR(YI8h5Qo)y;H@KDh zT6x6W-{F>wwdS`JQ|-@YIm!SsP0DkX&VOYdrtz|H(A(Z?DjE&ZA+ildWm9XHQZ z(Xp45X9Ifznv?nz3U=Al_N}CGr#KssO3i$98Z|RY8g|C)&!!yK!YxrOC56SMe{pK@cdGnflMP1{77(zKp($cki1gt0?a`WbGezWfW4|-)*g=mXA1BkUqo}@zHS05XE^m%xa)zE~p%LwPm8> zS^BKqAi?uR#eL-$N1$d>S2qiu(%YTU`_*YIYw5Gc(dTW{TIRc#cU4v>#z$K0^pd-! zGaDWEqo3U^!PJmviIOZjOQ6bOd34lb;B0CuiaNMcN#_oFa?i2&N-I4qc=qIr6DQ-w z#(5S;kmdF#T1g|l{7~?9hbjL(t^A zj6fgoL8xV<66WX-CD|ONl{6sSQmk0Ijr}`IQ!*ZVvWXPi+%m;smOg4>neU8)pA}s0 zCrxd|NevjN^ucl$irqRdP~AXuzn3F8sgO!iW1_f$uv@B*w(M6-1LBqYN_eEJ6#Kw< z%iD_G&|E1Te&mf(Tq56co=?2*wwxG+D!z{V)NT8eaq=hqS8mW}4bBohx z`gtVEb%za)g!+3mjUQxbO?90uZe^t{JS1I?1)XK^0_XUQ{ZFx^>41`Xe35f3o6v!a z2ksG%xx;cf=*@PNOK`?r;4Q?yCCAh zqs*R?C4rq?=Fk-BZ5782bpQfY0SpS28D+*Kpd6M0X>BUn7z;zp)>9sH&1&sjz(W_i4+eGdB! zYI^kYCe)pe^xiN|mK+;*LlVX;j2!HiFyvu4lTC6j$Pr73c!c69HyuRhCi#u!NFHjD zH|#7Zp?D7`I=oWIiG^D!%Fm0qMrAk3FOI719gU7Ytb77@nGVZjzzjOnFxr^g5xqiF zba7)|;6h>Z)`^y@4ki6D$?~fr)h}6oP%eKa9u;GpY>A+n0+qYeZkpva#Zn!MHivA) zlj)q=OA4LAmBn#NyNWI664%Q8)|6!bw7VF{yauUPcb z^4Z*_$uS{YHAL}b||K^uUU>M^3(a2S|ya6+{!^6!>RK5jt1%SLd)xl<$NTP zYk3tJse7?w6X{SX_lELKM!sqJMv=YW`ZKx4Pm!qI(bzeM+y_wY?I!}Ik_u@!sw%F23vFv8zDec&?sZ_Out9M)sUQqEE${P^FXw6bI z$Y*2GApMqc9YZP&vhQ+BAI1GwKRW0=^g!p{=%|%0R`M<6;N5RJyJ48oG3-5qw`9{6 zo0YOwTBgu~ZxH+Gl@?GNq(W`st1Z>48&d6R%UHF;8;#RQyEkI+whh9-^ZMT`T~*ZV zWm}6eI+n7 zIKTa2i$cxVtT};h91eaRVsRGLZI5zEsKw}cwRfGC?} z7V@q|^L=FLq$9%sn~!wuD=uy}OO~%KvsCorhiE6pr?JDSdRMlQzWojx+XkJ$jdHf2 z#T+_;8>xP#PkUJsCBrEcllo`1H1@P*EeleeHwQ>b-&ja?eYF9ux^FGza-d0P5eS#6 zMp*o$^z)YG?C2I@50q}yS(Z5+1cyob>;ifNj*z1uL=hkrU9=39y&ibm!U(zWku;aN zcYd{pQZS&E6mq|Uq(1p1%H)MBoYZW`Ft+U~s0xlR!|+;Ne;q|obf}}JH1L{bJbSO$ zX%ClfUI!e)@yKKkrz1x?21<)>@(4UE*#08#(|v*RLNJ=R-r}-`bdC`}TLvlaf<1Uk zLu0`=A;&tpQ~uG8__>}#DCOU8Tktx-*GNUbTGl%+KY{iw2d_JYzIb&HaQyRk`C*k~ zm-&Uw6_+{&(%dGnrv1*fC0pgk-+3>swBa82BU^3Ye|Zma>3z#!T4o3OH+{hAg;dh} z)I*Hu4)>#O7K2p#$TCN9V^ne`=n=-a(gvjei4k~-U8S<(zH%I12J|cPeT~^&-J}o~ zD~jl&W9Yx+hKbF}&r|W&XezVatavCPmCog`##&81k7L4Zq1LKW>B?2klU5eFTjx^# zO0y@nvRFTHT!O}E#C8;GQ>u9t8Bg@E;@Mx|&XX?Ohc$Rwr_gX6s(FEz71@JSviFtV zinmAEZS+S{*ZEpQsMg!+Ax$$_CptrN$+JaD@Zt2!!MU%Ka7zH<6`S)RD5}9G?Y&K` zooTZjnM!PmOsTHW_bbdvG|}H$4ZY0E79d#yths79?t24?u7_EhI6BOO%{bk|+N0xf z?#!M<-8)!XNf9BOZb&8Fqe87i9Bv8diJ2AIgw|rD8(~)L?7G_DO{z6n!KbnXfnprp zW_2z)$9Gy-?TQ5`V&EhMIl9e=R-6QTApqOC5j=xJBaowJMJT^{5nN4>ay8Y`%_7VS zz8Pg5rgnJB?^vN`o&cJm221iV@I)*}`CU&iiE}ggEb9K06HK@zk84`o#p993?G;WLXHP(9=l$~Lk zILFQP(niatVZ z{fiy&1Fa~t89SVV#urx3CEUuOp|^9(k=-&}jE&Dtq}t~m_mt{#teC}+Enp#UskDRj zfWs|~%(X67Ox?#K!?-Akj4$Dld#*F*!!+gZTD;qzyY8D(pDswul_{veJzY3&kaFId zlSfx;mC8UE!~>~nfYpt%d*BJ^Gu!4b>AG3N)Q+I?z+TwL8ceOTFx|{&7PPB>`hp;}Ke9V6$JxS`_vbvr?HKScKaJ`Pm9s1%%e~bO zQ!RS4-6O5R5*jVy?Y+dx*kYzGgArN&yJ#0%2XpQqmE7GMVg<3t?y8M=@^E!?DzfEz zkjqzS_j{k?hAf-qx7=ML@nFL2P30*tmk;C2vspsf010G?Jc5KXzEDOfYz?>4_0dRy z>p|3BzcHK>NTp>iAB(Ikmh#70r>kXe2@@3n%DeU4D3wnotkm*(L{Qg&eq_<}oCQcF z3tzv$U4-mDy9ICBmdW^fq&hd(Ls~M?it(K-5~fuultA(X0s_T29-rnfaYOj@kP{a1 zDMm8+O~c*hA4YR1p2o?ARFb=YI+APWk`Is;&an1TJ8WoO1{(WRZc{Ri&UL5y2N(lW zW^&A%>Ksi>-Xo4LJK9jpEJQx-dqiF_i?af$WaXPzxHi}=^_gP@>B}a0UPF$%#s?*D zn(?@oR4~_yw+Gpbl2>jmoB!%JGGF6nCx?;W8pkW5N>UQFVUs zVj=f;k?ea*kn9)UjzHnM9`!;yzEU;>1JxP|0d*t-4-KMo+uHG-8bvv)8h}JQyw9jKN4A zIW%iIzO;3~6z69+>2!Y`65f5Y^EG0`dQLsuO2@i>1CQvkyV}*(j0&F14VL;=Szl5- z4Q7l2xP__WfIV1>+awPUxLPXNY@Lq{Dw3RgcZpNRxK+z$05QlZIEtPpx>bX1BC`504OiccH}a@lib0e}?EwYMh1j z^gd2C+>TVgw;!p#DD^yGouih0rE6bUXJCB4=$!GucS}?0@hhk@c|K;+VNN65N@4H# z(u!9f*)6~NpjUESGk!+Edb7V`=wA>~V`bNCv$QJo6hb>a&G3(ra_9S?E zQ*9G_kTmtU^*P0ya2I3ZqZ2%OavT-i@uDP0j?j9k`V{xwx1Uv7pz}McB>M0S3ZmvY zG{f+3I1i9YIY0ZY^;yNuv%HSTN*3k%Nb0jzyh_O-WxAGc152oM=$y5e!y+Zsamv>` zmsVa56TzFr!4u(T2x@6tPp2@3iesnb2?k3rPw7$`uHdABYsE$qdC70n@Af{(S{;!aQ#9m{lnOs=pW9i zrSN*|8)}EYys}bv3u$n;<=${$ODNyH^XK560 z7X_Lz0=b)YmkSh9DbNGIS@HTJy8)yIk|VEKnX9L!ewg5ybC2uN5&Q(6^n$W6Yy$+wVSOJ#F@J-+*qSIx>F@xygsKKkW+m2D=yu>i^XRb@k= zH+2+xri*PTJ5bo+60TmRQa5#>!M|eK2(ECdKI6>$M;coWhb-|&k;4{7!7k{WJGtAQ z)Rk+UFCm-!tm#zaVsj&Z9YCz+ggKFnI$INb8v!*yXS31gzoRGlr*HAvdDuGB6OWvo z$Z8K8staz%<9NfROvYI4PQDX`yiUu{;2S!KFB0X zrR=}=wV^S~Zn-g!`98O`G_Q$mqQg_dOU~MVvWMZb*vGZfqW~Ma8~I9k2*H)Xj>13C z3?<^Q$o(@cL5}{ucd!lR-X{~~4%k>g?c1T;KMmzfK`L#~Jsi0T$ikc4!EoDTwZkHF z#I9IdjH9Dp)`BDYIT;Z-zeQX?mr@X$u{CE9QpsSi2pbv-yQOoHw$qAfXEC?4SX(mH zK6u=lvi9NCIU>e3SqWJcYkOCbAhD$?dZhsExg4_=;}UICspnwaNT0;XhE$T>E7?}9 z3Zw6@+XJMK6kC6_!`3hkEkgb*QtsCGr*Xnx3Ubb5J3o%hq?!!W(au(=7$a8Gr1&;A zKNY)`p0lW}4b!i(8}pQyf9I8%YE2iD6xYr+U9n&u%wef84-b>>Wc_K7=L+RZOd*}Z zq#Cmg-H{yG`6Be0vZctslk$=?%F2m6wH8b$zjepjZO>Efht5}%J$BAH+>TbLYmbb- zFMZtJ7T_ZLlDz7UII+yjNYShlN0-+J(|XE>o>R!u7jp-b9_PA(RO)I+7aJCyWH;(N zf=a`>_(|is+9oNU@*8(a4_hdebhGKC*zW(qVxpRsU9{5GynnDrxCZs9n{x8mvoiPWsJ*=sD#N@9;Tl3f<|0n%Z^EB1FQR? z*KoLC30Gf9c)^ua-aGy3cYL1s z*JrQ;>F!xHMV|sr2BeaV-h;Uu*)5?QHz_9WTcyh9Y?!Ka1Rcjkj1Ow1r-s=u2<~m- zh(41BjX(xJXo{E*jo_FeeWZqww%HCzaxaaTu)yD`6GnQTgE}(Wh8agWBoO*d=SAae zud8U}A-pa-KhB*@=TA6iR_BlB=;2lxdF=%5jbyj8U84MkcG5eBnRze#3v&> z9p+5rx|FYWte0~w<7!uF_ax4sWj8ul`6UP616%2X;_$H~l}Fw-(#RE0@#`v9+T77dthTJ}Kd9+xMQ*6+6E@o=9)J zkH!-<3y+bi*fH5t_zE7PV#zeyHe8MW=e}yIP|@!Rz%u72!hipD@_~6s`qe}{LaDED zsv(uCpY%Fcz3fKS8>w(Jc8Vl+=+aV(UBKO&Y{7^bz@CAQ{`$c}E;qJF7%b<56prG) zygK{WchA$`#2r14Il1uao7@G!olHq@p}W3*%;qQEe#_Rzg*~xffw!uR+sscH&*(h= zHa|uOzg7xDew6U(bP5eyjA-dNO5@mK&IqKE5&w5>81)@)eq<3@AXRqh;w{xI<%e6g z$PH1pnBM4QkY+5m;XO^Z$nR-RiyyVyhe5LM3fmCHERR^SxyIbhQ@a1&pHa%sZT@O> z+I2g}=%kNV@=)lA67zi$EUO)EN&5jebJ-+6u5xsB2l1+UB!3qE5@~$# zJat~rxr9`5Ie&v~xZ*~oL{jD0ED8rv@;Ufj4)#tdwY~2L?_J2H1U?4t_ z#_X2qdrk(Vl8omr@CYEgF#^b44<7%oIw3(npho2vh182SEJ4X(mDC{=Z(2=G~SFYJGPshFz zwj`og*cGo7D~KkUMmM0{zLtQ(Jk`LtfK+l3{4?K3cFS)L18*WLNoUc!Y`bm48|pt< z8qRexI#w2^{K{#U&CBvo3-X2e4LE&dBTsd>+~vyM`l6BwdG8BOTZp5E-;k6U6Oohw zzjIC?6{39q9p1tlHr%ugWYt-ziYSoEIL8H^RA#;e#mtI;r9IBg8k^l+)^? zL3ZQ}O3B&#Dm$JE*)6{^As!5mWnFw6quO&WcCd?VuJg4A(DEIHj(Ks(=w?SVku7pZ z#}`(_*fdh5#*VUz8?5BXc``(z@x(mUW6uv6{MQ=HOm~Z&?hVFfE^nP3lbUzT&8ff6 z{x$n4xqZgNUaj({9&4=F3FB$U43BJ+-ym>Dcd1fuNBK`Ja!l^bqRI)*(I~>mIfXk( z8s)>efb=EI=6Fl>zV=GR%@a9NRTKMk#m(C*iDSm^0;8v}dE$@>`R#Cqza3STR1N6M z4786X?Iu*t=YjS>OjT{dEAFjkc5F=YybnByg=2DF!5OsVvkm_bhO2fLy@Ji z^!-~Hx-#PJVbY2)`#`m9moP%kQqlHO-?V4WOfTC9CB3#uB4_tmiGsLlLnoJzA} zEJneh@tnI}9nf-c{>DrS>xf(JOXL!SRN9Iz*^XCoc1tBGcDw<~rhyT56IG_zwbGC@ zJ60uSPi$2(IPP(_p_BX83_IH8D|%92N$~?-6FfC z;vD;SMLyoazDtpTx%QpP1qhJ(cZ)!&o$Yv*<)~y*KsxYkFYgjK_&BFyLWUz9@-#D! zB56Z=oyMHz--nD_a z%ryL;yrr5E_L&G+F~WIy_*WAGqy?iK;Xa*UPoUD#b}!Prj3(W245|yU%B!PDOcMz$ z9mRC*6;J~Xf0;-@uR1ZIMG;pI+)2`~@%H|*bnLH{>L%FdDQZYh&KzxV%yX$gisnj((xJgK8hJ#ih=S9 zK;A`*pVvu4O6(vo$A!EjTaMB+w6mv#LhGeiy8r03Ac3yZf>~T{U#~^i=REV~Wm>up z%~~^u%MDU#)?Hq;V?IK5C%%dvAYrdvC)LeGtN15Rf@dh1UPBX-5#Zu${A@WQVzB26 zIZTM-L7zUKAFzpED*YnPQ{3-NGSkD#TVTF8wYQt3LvO3}(^NJmTUL)8v%-gMxI zv!J-MvYR&Hk{@lsnfeWWXKkow49cJidQ?kZe8}D7|FJvv#Ydy z`JXpMU+gY*Sz%x0h->Tn_6gU)6Lz8X=w&x>R%&25E;&d&~ACR97m@D452jaje%(e1r{YRg35qfRmX_SNZSIN57IfD{>NPZx; zVgX>tVGN@t34>ItFYROSIBdnV%KyjLcLzpQEpflyklln-2rVRpgx(WCI%&J<_W}uo z4k46KmXgo}q$C&xmb#!YB3%Uw(kv_%n$IUnOQ@Cz1Sx_@)2BWa$oHE$y9xWg_kH`v zo&BAeGpC<3=iGbe@?7KGTax%ZZWp(5EuL}&0xwgGsX=Ru?7nBYAo%MV1MALlFBUAh z5C0{jvorSsn=2A156vU6wK_dW`OdE-CZ?^u2ECRaP$v9y6=~76#E}Zhaw^&!k27jITi!^Vr5L>5a2~mdxmKcy`5|(p zHxmQY+Hb$bk5;rNCdD-Ts_dYS`+;DezRI3XxF@oL)1$1Xz26#gHZAe>f+Z7NdNL*Tps*& zwMx@R=vgm)juZJGA0>`4DvmsjhV)=QpHIUsjn8>DRj|rE>8=5Ytz#msH&}4PG6QP8 zjTRIOe_h2&_p-o16D<2yw=#74ie9Gu-WCiM;qp+yX2XIWC|LG}Xe&v&p$rk4>tpF! zr}Fb!wvYK`&+6=cWZ@RddOtRiO1vy4GW%LO(AGtG7Oa=ArI>aS3J zb<18#UyqxWUp2G_%c*_U8-kbpEIY8ji-FY-*JyYSIS}RA+QD@w4%btby@v75*dWUf zu+J99;!)5Vmf2Ki30?tgRTFxDS`r)Lyj#<9(Lh)CAX&IkYe%`Yp=9S?qN)3EYAt*Yr%5WK_z0=dZ~YUn52Cw@zXAb0IW84N~{^V>^614Jq6Yz++gFK3vib zp<{tyY{&p3^Gh^B=5>os*EGav@D(!OM~BM#`+Hd)8K`9mM%sC6H;Sz2S%(((fy}QZ zkh$9jk^6n_&iAVo$al9aaKHUZ<*XJS2SvVjZ9>AL|88G!XKqHqgZn}M3}^LhOH(|h z9gK|z{M=2ZirTJ?21O5qfaWY8XgOw}EyeKTBw2_5yWv#$0$OO@5Tst}i>wRd_)yDe zI#?aq${Gg7Tt8$>7;uaiLaz)*!pmy9E38@$M4sR3jth@@_3_#=MD%S?aA*X$Yg?ci z;Xp5x{6>N?wk0w>Ya|%oIKhBFy&QVy0K(diMp%P6395!hjY0VF1@1yz9|PvL@B~*@ z;B2oxbr=hEn;PKse)Cvxr(JXx4bJw&0pB31xa>N1q9NlUlJF{01a}PiZ$OH5YzUiG zhA|6&e8b85J+gdaBEt5@ql0l5S~uA;f+zt4x_C0e-yH64c(~}RPiLke15409+b_)7a9lWBaL&7e5W$k$K?moQB@rX{@!DGk?0p$IH0Z zi!Mc2ThZ&!s_#gmm6Sxr^P5XDC zPSz|zSaPYmbnqn@LD%ibf6y7^KXWO#2d=t%3H%GzptZ}u&A;L9C5Gh?X)+m8hzz>) z6&!a8y55H?&^J3e$F8*W!(%mzkt)0p;`o0x1g0!O(mPfoX00dgnD^FzQSk&ZhrEQj z?WmX2|7FW918uY*D*P1Ir8(;$VY4FYjdh3`VaI@wMBBasM)`7ghg$y%QqFZ|thZdp z18(Qt6AD}!=1{_Q_kZuhDj-Fz!cJf1`mr(BU#~ zp~HQ*1B{>ENA`o>ve+nizdPrf-m>g7-ZnZj-?of4@ShLgu{4oCWjig=^2dLdrIq~Y zy4&)$fiB$U0_?R6rHVW5b}reA0+j!ZD!Nwwsa;90av6zegmaxlG zhYF5hsmpR^9kpQF+P1x0|EzyP|DWxl|Jpwhy~O$Q=N50g;9lXHOG;~^ND;>@X={6+ z>6RYjioNCH9sUw65qr;Fxrtwa8M4~l)!`I!6x~}5&3_*UqyI_w6a)8=wJGT&(!Fxt zJ;m%j36Z=s_Z$Vkks<^;&|J5a>%`0XRjK7?1Kl0q z?(1F7L85#h`ugkV&{iJ|ip62zdCPzB7HV1v)eVf47Cdz@)sBM0ekxVdmaIfU|e zxVewN0k>vncmCj!vKA$OheQ&(x{JT>JBak@=Po5&Ro0=u%OKJ{8~GUbJ-9)2-9^}Q z35@URq6lG^QSCX-lb3lEte%9i2w#@NX~bl7psiOCsqQg%s^@<|H%#~n2_{@ag&0T1 zJv}RKyv}7FiSF-n11kS=essg)Fs{Q}yi{(nhSH2%97B*|@ zZZP=9tW7C*pe4)?8GG*z5+7L)(lYbj`Wg0BTqtt&!d=Tgs#zZm=ie-WE`b5RTVRQcvIT!wDsT@w6xQ>~ zKP`8uTDf~Bdi)o%_oy7})`Y)Nocny>9O7*I$P#0uL3UIgymyYEHcOGs-WACI?J)Q9 z3O}BqYd2Wa=xjKcW`p$$+BYOtO({K%)*MXOdp34-a?A_`3olrseb;)sABdW|7w%x;6*LSF zL|J3V@keYu(k`Nkm-#|?{TJ?;?_70cZ|pH77w>1?YrJ7}KJ>FbG0@8&;fxB-Lnlzq z$B1<&5P7jUHwIbn;&}f}n1nLH`qf12Id38MteV!n)cb8qu(L~uHOfdmQxPBTMeER| z+K};0gOc<*NIHH2)^vCq9Zo)l2zyc&VZ(-^7U6QV4yA=cxa}|~{2&yJ;2=H?tXza2 z*9W(xrh7J<5QZFI@^XfSTaOqyye3|@upZ~2j~ZHQx`OiOz`gE&qLk=6jjSQA@RBCh zFIjYbQ>(u#XvjP`xh-jK{lYMuvc7~>25+Zf6wwl?ez*)RwX`MjM2OE zVYz#bdo~4`n$|R4jfwbXsKKMDkl51PEzvd&5+ilg7978Z(Y$nU+x9})Z>59rf|q+H zfiu{l)TjSuwzIffO9-e1&=-zg>=A6OM@TfONtGGyd+$y#i zeLMtezUqVAHyeskIoSF2P;04y9_P3xtd=rBlB-Z9YD%_be!g|v{BQ@xfKJvIV z`pA1DA=+Apu82`cX~{g)8eG|iP~K=T`p-vR&x{7+`_*pcp?P3byyRB?VjfCT&J$wV zSZgyQy_4sjyrsww$3yzLvCuz!0&>yE8ECV9V&o84@A_?$1n-z^-2gu;12D0`NA3jj z8;B^e1=f9ZWuT?z{;5_RJn}zh{xs{$upfQh>l0k)hR_Q$kjkfi?mRu1fgJzT*ewFz zx0- z9!whe31({^%GZy@znW{%6qConq`9!hnr={kV_vqJU4PTpTBBTl=dH5_x&CeE zWLRhkdFlPwW=@~CtS4}PI^8Yae<#E@XP|c--HG=7NXHpp@w?XF@!G>OWD)L?N6@8Z z$b@YVlG)xDr#|qRJf4nZyQ{4AKD75kqx14U>qGZd`WfzizG^>| zEuYD4>4dTsgWYunXUpL<>Hu;wcL;KF`T)3}Z*g0-bv_28e4Bd_dH!RR$m;C)i8anh zV}EejEO5&_iK4F|qXmbMpL$--#)qxg?BLImBi0u3=e?uW&hqD{&$!!x74o@@75gu1 zQwbUK1@}>~)*Q29$FMjVqYXZu>(QrQAs2m9FuYnENA}`%clHWSfYG2AO7;B-d(ig7q zK-MTSSCKo4e5uH{im=0INX95srU?6qMqsc)OB7kC$ghg9UucL7Q)o3i5(Ruy5q1Wx zd5I@zki#74BR-&kS~4<;_h+Ed3fY+WiO*+{C`R7m?HTAYBeVEk56v#7A5wL)kz^h2G*d8E_~=Z}FE5BK^WkJS79Y zrQ)ApQe7M*Bk&v}lek6(N>I_CRg&xw8G)~My8J{2wFV-4wGQ6Qj62 zM&KYuX8Fn-v=JjO@pO#9uT_N2DsV9qfAMat1&C{7L|CABHJJE`M`J_}WaKTrjDf_F zF-noAMB6GR`!5EQofkuNtKzZSVxZ#+l`F|9Obp_x7-YIaX^K3f$Oc7PD-xgxJ0(Vh zs#~C{kY$b~TI$jTM@qh^9z}BC}-t z8N{2|D9cBC( z#6>VWeA}bYPH^7Mgi$Z%88KTHPnJB-%5Xn-3C5r3^DMaW? z3SL#@j3PfOr8gDIR3u-K-ilmM#GpuyBL7lkg(B?47v1?E3bFfMp!*6{}Bo(=>2s_~gucn|v@xKe$ zUNNUJsU~iB5%`V@T%|}gMcC6Wcp(aXrpP=+UR1%-6} zE_8vuSIkz5lq#}ak?M-XEAo*dkxY!@Cl}F|sX%s+3)Ea8c8v?mTBGnWU#!|jOad84PyoIEOT z+H@SES=)*cF#KiPE!-d-DW(8G*KQ2@A{xLV0c#XEFJP_$jk>eg9R&&me5t@80pBX% z--E^2Xn?jM0%8>Btsd~^JyJe40oL!rVmksLsV7GYR&r|uEK#6bz(NJu#j@D13d|G0 zRt6Lt7cfk5>cz3xY6Zp$cvFGu9|&UWg9I7+gT`Zke4sse+p3~V&$ znzeV0yDIEqe-7IMK$#!KH7c~VQQqju?p+M+J2GK6gC>D;B^4nmXy#SNET}d?Oed&Z_&-`)@Fsg z5VPXM7opgSOP+j@0Ajg|S*%FuI=F;E9R=zyWiZ(l^Yk*rEX5^HR$f-taV3H};gToc z7T};)90+<9mpoZ+q5lOuVmz`?mRq3riFJCb1cKKy$Wy@aDg$0>A$E5IgRP2_v5CQP z1>W4uV2T3Qw=fv5K!>dirYle+AWebOTj3ykqwTGKnalrGu{@g=zA z$wCTo!@De=t8(z10A5DH`BlJK1@OEY#BLkuz=(+(q%UVQ1pm$kU$$#TXy_<@5SNf5789Q5o_1kL8lAzbpXbkUL9)>ejPbmz9U z84dty{$y?4omV0xpZG6Mo);pH`Z190JYVkOk|$o+Io$CDg4W=Y2Y2i=>nCe;7_Uf( z@ADZftq=s79OaT2WsPi+IgUuDpZIhI#fZRXFO1657gBIb@xC$Jy4tnO7K9Ir%<88 zmh=>K*it-Dng`18K)MI&?SV2qP+t#}{WL1H4R{*b26><%9%z^c%JD$C9%z&Y8smY+ zdZ5Db9?<52CV8MK9;mZ$2fFKl?t7qz9_UvO#5NfhiA^+zZR$XU z*hX{MrVoVW$xH=jdN5~spgA6Bt_NcCjO0|`NLTbvHh5-5F3AtK9PuQ{V`%=&|zcqj}cpg4qJmc3b8rpur>5RQ68wV z2Wl#)u!Y!>4zV3sshW^|ij>l~L}_&ojq0$mRmzBsRELeNQbug0I>bD!LTsKg;)5cG*r`>B?Nmmag~tXfqe2DQ zWM#NOm~65#Iwpv1Rz_^XI&5sTGGZInAyz9RHeww%Hd`6773;9E-O7l~Sci=bS4M2d zV#?pD(0EndY`Zd(O<9!Ch0+AE@yfhs1hMtXXoDa&Um3AA>#(u?%81QbhZwMo*q(LR z*n(xm2Cc)!CM=_m)%wRqEJLw-XR<1*4DV(8ln@nMp~7UqE(c%X(JD9Qsh_COP! zLRkNHKLs7OUp>%o9_SAb^rr{<+XFrJKouS+>7A#FRA@_i8rsr4&fhK#PMILC22Rh(^ z&V1ln|5Sp!%i(n=1+&`l3?ixIDXiuscV^Jfp# z;S;4)NzU>>pL(D}9*DPaoEhHHIb;vVh_`eO8*k!Py^QsbH+2r%p8{Lh_6qvj13mUY zywPJdeMFLXd{v0IepQI~fK})R7n&&XcryrIp==QyvKwSk-W@t*TUdp7e^`b5K2zx5 z(%MZuP@D%E=z$76kllp}m73Q)nD@f6~1v*OAAkN3?Ct&%)% zpsP^13-Lj(!}ga43OS}E6|ap4O7=iG9%xn->I|ihDhR||bxxjl?he_jGvci~l6UbA zIg9_YJ~FtEjd|COeSKfZfUHqut|E67`BD+rVX*5MI7S7QDdIZw<$X4^EK!7a)F779VH~j2kW2%g zSo=|fO!)B(2#1@mw*Edno@933eW-{d~@asA|4igBfSaPR3Z{&v4gD$CcXz8}(aH`)qC75#FjtgIRD$Q)DMZG(x zgwwKZ$&D!Uep+=nElm5uM7gKo_ypqkHutvV>du(o(;na}D%_MKmcmmMIAw+{H1@UR zJ_fTBEz;D*oir&m(D~r4@5TAQ2c@Uhoqd~&)esQwPv3u7>=^b3r z&_50u)4iPcPbW_bH{5Wds@HjY%iRE~c#u?w0v;w?4eOm*50gjxz=QXQV`z%fKa=AO z1x{#P8sObSN_jOHFB!M=Nr|Eh=9I1mBL(`T-1J-9+FjiV^w2*ApJn%fTg32}((yv_ z-)NcK`hf6t-IA^Zr0BGzI=mnk)j%zkk4&vbkuRm2oc`5Q1_v6VX>7feVnZx#`x9>Z zkWNj?4NYn3ObAUGQ_EXMm#XN)ZBzOfzcV_6+ohZ{d-Dd>)dFCcD8DoOF{2qe8h&u1 z_H%*^uhOpMlsU$~jnsZ3-25Hro#OHbJS!!or>{5fVqFSO_etqvIN*%POqu6nyk(?~ zgHj%w)a{IQjnZr569gzr=@2CF_2885#-EK85@TpcsN^seDqdVqk50L2GKA4ye8kr9qx0(O^aei8Uei;;4TkGvn~~Dr zP(fKf=#@|u3V-_X-p=l?roZp4y36i)=q|!3eFODa{#?p}5JLybI*HMRVD$Z!@LRfN zWy&J6(cwjo==Az@<-K%2Dq4psKF|fRH~j?P*zn0&oi?mXnE=O{GP0bJl+xPI(1q@$ zV5%xTk3zDyOXtehQo05hYD+1c0UxD*+k}u=GYunrF%DwC`WZgq{!^bWm*ed0WtA2D zuSG>yQ))Q7Tu#5`>rAEDG+p^eXHJpOl;}ZPFxIkwDUU4%y zD_W)w2sC_7Q^#ZovyOPlbC$i(N%gFF^4SsGJdhjOP z7m5F|zlu{^H86e;*SL<1`p$%HsdLT7b6#}tt<>>`htB)cGa_A?s#t@svVmWZ%D?1E zws$XInm7-2#%`~k3M)!U^(XX0ys7e*_`~w0-}k0IV@ObQylANW7KAf@Uuuim#%Co# zyl>8arAod??O?nIM@XH~$xws_wDrr>AZPlq)F28m?gU5tZl`!Ma z#0bdFax9eV!F)MMU! ziZWac)xsZBHA6QwK*95I=2ONoS1q2NfCZWZ34x*Pz}J^dHiT`Yj3@;kY)kg13=VV4 z)uY+AlpxaUBt}ug(J5v_KiYghH4*N1khKx){3h{1s?G2mz55^)pPLa_pZe@Vf6ID^ zDty4JM;P_qm4Vldx52I4sfVeyAj8*EvrYsbc1;7aY5>ClOeQjRXCN|hFf*|YtuUv} z4CFJN%C$d?j>cj(Y3-BN)Ua4qdpaG9DlM?V`HnbIvHPT*@mrhXp43}XRQ0r$^rCOt zET?z%v@NX-M+hcEnDa=dv<4jw>zr6K8~GR(kYQ@tNJ9;oFq{eRXH0d~9QPw<$wwI* zT)5PP%q^ITcg@R-;B8>%k&GR#QnVSIf^SKFk#XfIOu&tut4?OzG&xtTPTOJf=2NKQ zlz%a~4rRWA6a(qu`zR1J`Z|lg&Dg8DuXDxLv;c!QA5smcnEU9REI_&Mq~Xg&CsE${ zUnWM%=rMfA%a~HY{1(o^ucbApL3?bN>OV?GX77EHhDTW6PwQc5>qJ`r@xj~wboD-L zI&fUC{L6^M%i%64!}3?76GqA@RT@kdqA8g0vVL9ii3b#Ufzo%X_rypQmGVCSk$*lZPw(rL(kdMW{|7(^KDMDXo#-Kz;J4)YQ8U4Zk$U*Jpg6-ZNg#vvpP@0G3!=Z?8OCiYm#I zBd`x6gVO_?F9xM|G#Rp;AJtBWL2~jIhAxczPrN(w!(+%#k|JLy@`@t5BK+_eM0zRo z8~n+$q3vPUJ!A6W13*ZPRl{vni}VT;eK$Hi(77=>{UZ|k9crDf2P$1!njdZU6co##Cn$vamv}-%hs7Og`$yzwIBDHda}aAU+X89`38GO!^;I z)la^LO={_4V{6?fc_Gd*x6-GX3~^5h$9$59&+-0}5@A9W%~r~;vGrx~LB?B1KnqHU zLdLf|PCw&Q*Yz*~AD$t3J|_eD>3^7A*NnbvtGSj8avV!*MFoRkqrmwyK93lfQEPv2 zYFagl*_9DYL(#lWm~5v^G{_4*c0%n8yV-}2*`RxPr4dzSizS&1?^jx34W00woMobm z_pn)BFeW3&3A=5Ii2~lw@S$hNz&HY~GS#}6jO9l9J3OO(rA^k*gzivN)e5Y!aLSF# z@NpiB%?L30@G%{7(Voq&VJ3``X)55<|FW*d}Xa zHq28qdzF1Ocy30h+5Dp9uLX^)i#7xE5tctkhS}iDR?zp{i(OA_@Ub3BHkFN_lO`Iw zJtL5E9%4`IwsgKSb>PE3$n;TUq9Wfb(n^t1MYbza{eKuJ?{lu>)pRVDOH2iwDS`Z+RR1 zxhdnEAHIRn_EC?S*na*WWDx# z~er*mxn;?@*tvJ4zKJuyZXmJ?6yA(g&al> z?efr}U0!;y%l&w}yz*eT@!fd4yzpR`_Z{r=x&u^5_#C;;lqGs-nuuCa0rlIwS(jgJyg-*SDG@5b3}{4#@GZgksi2ZX_IGT7y2w_V<2u*)Nk zc6p1zE;qXE@(P1pZgbmh6(Zk3;yUEY_q6Tu@`Bw~TS7jO>&tTGyV`bnZ=ujGH?{3H zer>@ncc$&OuSDo`xek=;J-H5*>p{8lF|u7=R`C|}xo(nc zoLpzi^_pDSu)*{o@)r3&O0N9IfL&e~u-nc{$R)WBm+Sj#{`pD3ZMpKR0(N;*z%F<6 z?DCp`U91GVyd+?kcLeOVRU%(auKa?4UEU9{+dh+!d2)SGu6}a$l`F5+cDVy*w@p?3 z-y}i2GTUWgw#ywdySx%$xACfMxACHEw{4eeb-BjN^&`1P%9WQ{yR5R9S>=Co3Fp@U z?D7_X9ZM(w|3<<;z%|Qm(q0dzG)OQA=<^v2hCYUn1Y4XdLKQ{uy_#M|MU zV@cjVuF_1PQV2n|ZCx$d(2}Ot)w+VbTUU!Qrh3ukx>^r|57n=ySwM!@(}tRO(z3w^ zw6|W5+SJ#Y&|mem8esZ|YC{xrIvokstW*@;$D1hy~Ez``CtZlUq+;151rH!I#7t{&rv&^oA)H?PryZ=tR{ zLTiJJ1T@sLKt?pw(m~#Ch-^!?-oHj!^&yrLfLj0!Z|lK^(bO|i>ues)nf~MiU0tS! z(DF#FDQ>yF7m3o?nDN;OdRVhp2!%(XacndqO0z1)mnW$3O)ZR0harDuQCbwZkE67i zAk!P6d2RG=BP|i+UL!4AMfv&!_1TSb8S`VeA7Vaj#rq!pmzsCkq zk5)<5sZA@*2O^zXp@F1?^-osTj#*d=^TZTvM=o<(X!!6Ki&n&FwV>_C zHfXV>)UvInnIuo0D4_)g-{E$s+roB`PKZW-z7p+L*R`s0Qd9yxPO3R&?0KoV`QV^D`c{89=C8>QWz!l(5lg{T-+Ovd0q=rqDxNF(Iya$ zT%-j(B^6kf8Aye?W>QkiPSTm4DD{S752*%I`qo-!(M-r|?=IRzCA<3nllZA(tqz34 zySjzx|05jN88?~|PP%jYs;eb)2YTdT(@Cv1RBGL{DJuP~$m=)gkL8x6L~7U_4J?)P z`qQ1OK@Y7tMPJRVPDkdt%edntB@RSQZ0)WMQc>RiU!{&fVk3HB!L*|>wdqRoy{a^u zQ|9-XVYGFQRLj<$+7L+o4WcAJK}*)byxuuIsSRz3)k0M8Av8lMPxrByaV5V;(Un%A z$^)094UeQJwWNrzH8XS#i_->yd>E(A0f~;+)|e#1De|{yGpI*`7Rgcx+6txU98@1g zx%|_#!IYb*)l|V3F${h~HT6o-`cq71QV3Nfihi?2TMq@>K$PT_lT+?FZYHjoo3+N(`HVo9Vp+G?M|?O7;{9G}#Zp3K(jtJ$R$w&NAi0<)apU?m0sF3r8?^Wk}IE(1-af@J(Wlkiqf^rbxy68 ziqQNN)p!SOvSMsfSIT#44WRDbKH6+0-IjWfLzW(lPfDlEkKO$`25|ugPp2+GC-1+-zgH>MQp|>qU_I?7r z5&f{Xpx^g%H$(C%if;|>rPknD6o2E0|3XEco%uIbWBkPIHAO;h0$Xxn(L z1??RKgTYP@25D1Ocs@6xP6_$Qq@z5$78M@VOo}zFGD=g5ac0$`%}3mX5b4yqz>8&WCQj>)!kpw^T!3$(^cVBx8!X5;8# zGPO@0rWHWTBI zPpo@dTaVN$7c7*Z6~$c2#yNDMTVUguDG0jhD-*So!u^1r|T$HQ% zBgZRpVR%W}+fPySGAx{1Vo~zU#aN#T-h}01r;a1F8A@a)vNx1#Xp9y|Ti$Z7QoCIv zFLRW;9Q#gD!V&cUQ!gfUp~&vpzT|jYW}1po+DxU(S*0r;uFJDR-81dO(NdL@$Eb=O zqb)!lhUaM$LB7h|0ESo#85(ZqbYKnG-&!bZJtWvY*j9vp{={Mnuywd zy!6t7t!-!bhOB2Gna? zQcsHfFsm-bza=F!Oq5ybxrtgaB0QO>%~BD5Mdi=XhEVynY=3uc+@7S(SLOJV_VqzI zVm4sDC~chVUun76seH0ltb{6*kYkFbL-nO8lETP*Z5hzrd~K0R$nP{IhG8BlxrlCz z?8Q^`fh@H?Lhe?9_B_bMsoDyVKc{N*L1s-89bVJ57gS0O*3Hm{QSa`3{b)+56zlKl zGQ_9MaQB5~r`Zy3##w$w`WW=|nJE*%r!%#_Kta!HlR@S`t1VJmJ5j+@tvwz2AgLo| zevnk{sV>y@bmjVhk5bImEbwurg{WvfsKx>Wr?v<~Y|VT*F9L4WKMy1Of8?deJb*rL*U1^Rdue*76s zw36;xOBCYLBDcM;`Seo*|J1)Ak{Q)Mpt3@CE_RRHH>wiurxd?=x^itacr_w z%V64SnKp#!qGg)R%r`k~U!1PAExRx$b-6Z%>8|A%rXo>tS{-7kffO!tb zy?C0o{et;^_}Qd13jPLD{Tyn&5@S`k-}B&T$V`o5&SLOv>C?|l?N(uJ75){PH%;+# zY3n(dX>;i4Dy>MVzHyrFPeR34lqZGaHX0go4jpl5FDULE)Q4*o!OrU}jG%~%*vd>< ztF)|!u{Ve6uE9J#hn`=f6{!UO;1Sl4HnomxNx5q@e29Jx4qGa71=*sPv=>zhk55ze z14zHiNEFN4Za{pSVEkc4iX-kxN?UKp@_Z9PA1=lO7H0ee`{@g2CPmtjC+B1fk zl)N4%A2Vs;dMuhVxj|Z#RIW8J?t@OifF z*OMB!4-RJ1oL8|h%%m?~)kcD}*Z@0uCT-uKrGebrfbHo_%GjulSIQDfD(8`AVEnNW zM`n^rN(q&>N6}aQh|`alo^d|ZZj)A%FV$(wCUldT^wuWq=4aA(o3ze&th&Z#oIvfP zp_{cqrhQzHfz)RsYWCF6N$pAhIVr%M!+q3Xi#FLTGQ&$~b$uj4zQa3|F!%UR%N3cm$R}%)i$z>(%!?-Oc`x_4_!@!{wU#Tq8A0P%ZAZ0 zCd<7VmeI=hFw`8drPIjt5lYxbsyqXSu~nTJ)0#}_Hc^l zTPfT{wMY2StU$``h0!f>{r@X&w36E08{6(O+O;3s6p^c0O8XY0Xoug^qOs#NtNmpe zt#E43La^Ea?KzOb1F&Ao=rNEgLDW+v=sm4(EwOf##wMjSbpSNB4M~os(urC1Tzh0m zt~rvc+!eVce5qjUQ`L3qW7R^R;IK|2#gtaAmA5QT{G_0EL%_vfTcvNyU@-x^JA~P0cV2xuU|1c4p5M@7~;I^a8lkOh1PgOb|pmmS652`An<$u|Ok_%^P<>^HNR6RVU z%>tQlS{ny)=Cn3aW%i#Kc5IAimf*BdB7RY&7`L4&=fJN@)q!7~4#~KQwgks-B7O4d z;NXb<{%XrEypqyNI}t~JamgL!a0SV?Kcn?m(Jz#$8;HaHfGHi(0nK?YyuY&dA$R!< z7TPijK8ss_#guy%O;k)r&!U$XQ=4+Q|@b5f5 zgxlT3>EzzTNh1AK${U?dH02_U83}n@HJc4kA^$j2xgPjXLox#Dc3s0g6O{0p zbcNp6r7P^Yj_p# zyE{zBqmsJ@Odt7d<-O`+%K6dVO~#&4v%|d~-Q8runWwr*rVZUBqK(wm%3E&D`Ddul zI7}&59zcEM1kAk!3veCTev13RG@ zAD+OWL@|AIM_ZuyFPwSGcnqGN97zwJ^be-xKWojEz~VENQl2len2pDU+z z?qWYL39X>?OK6J7DR>?4NPcoddf+|4&t-(7+3#VeA#yKO^)DQ5PfM;_d2mxqkMBu8 zn{*!*kqB=@we!k-d3v&5)%iy}z&(g!I{X0VM(FhqwHH7RK7=(@O!2?KYA>b@zhJ^H zCjVdE$$o$)`cSV$@BRvdP;@(8A<_Sal_Vh_yFxzrH`W#jIp_*mcR<6<&EK%qET*@9 z(_RAU`8&2UB6JcB%Xami{>gRL{ein!$i*MnGYa!URU2E~!^!X;Z2N>;=F-3MKiU{X zGyLh+dDX>uYc_6K_L_yUl)D&XVD}~L;{W;+CTlU({tH{GV%qo@j*g1y{$E&2MCXGu zG_?T77Wsc;-j|SH�rK^1pFNCn3L|QAX?CM>t9;8a}{8yB=v_Q1jIzZGmdfNBB6I zmP0*r2h^q`kKGev1v;4Pumy|lBQ2ita|gJO0E#K@2@VM*1@E&I_80m?=E~%j6jY%# zQo%k?2S+=S!>U^KqYB(cFQ!KoxI=z=Z6`ei*LiwxTupm&nDJ8cnXX=F7V z+Dta+O$>KwjY02a#H$8Z4f+74-HiHJrrV7AIHuLT^s#1su*>#2o6s_A`bg17Fk;-0&vERy}d zrgfp?-g*s|zvQiF;r)halRg;4Zqg^18}o`&j>lelb3(p)SGsJ{eW~<8FF%OnnB5{b zuc_I(nJ@AZ;iE@@8|$NwR|l?Lhk%=|c@t@rh{XJ8Udj703MHFQ`B{^|adAB<89 zKkK?Otv1!u!^p7*{{>;_F4$V#GsDBYe4radCO6r_F5f!rxvO=vMvhM2OZ8N@mAr986++-3J#!B zOY5drr|3U*f8&~}w8N-qKVDMv4^8)>fO!UN~=JyIVn5kQY z-WjAILXS0mYot99x`pYl5qe)UKci}U<3{BGYD23U;)yN^e)C3U&&2mnqi}u`9jW`N zD$Z|<7fOF^s1Knl{I74M-djc5dxLUzVXv1Pr8f?I`q@9Ecs~+jPE_x&l8WZMtd7z% z73b3%e3pTSK%(^KhEQtWNbdqNqLJQ--@sqjNVl5!30&KG+E-I=!mr0RtnPmB1@CaR zX^goabVXx5m+5^M&TOLF7=PMC&tV$gR3D@i-R8cJ?+Vo%te*W-p+9qNr_pg=tQeBs z{i^;Jj7PoDO&2u7vH?}Ao9RjL3UINR-j$sLG{;y-=jMO*9M#y4rB3UPPLCIJ>jt^= zIhNUfT&IznF(&-#D|T~F_Fva|_g{yCTIjlQtQQS$p^rC7#DCD4E_&B>=itcD7O_x58_N|n4`y z-dfLNx~;XIZoKG4KeyKVF->fvk2YWAGBmuQmeIrQ^k>M?1}kIkl7Zf|7Y{D7pnqF^ zG}EbV^(joRw$(?`-hsNevGtA0ITaJa*U3#h9upPa?W%OAsnps(9Vz#F7$-T=m|jKt znHy?}JyNYV-VE)W-cDvk#p`lI9W|$29Ndx;Iv`3j&U}v>m6K8@Lo*s1qh~2b;th54 zs6|^$hq>J_9scXw;94$wxEY1F$CTQP7PQxGNVCgFX&q zZwGy*66|+_kDlsM-D}Cc$kEZAkpVaOkfSc$w5E5b`yKVVCduDmGIY`VQt*YraO2Qe z_fw(6DnkRMo{_+nXY|P+y*jxwly`%-67}eG2fYX7aQv-n^$>`(>kNZMlux`-IX4B< z-kZs-=zeG2A0m%B>l2m8)c;H5!CCZy>ZkLs#EmXJbuInIkyTgtVEsm-b+JjM}hnunPM&*i&KIT&9O|2g!S9dR{qG0_E zK9H+R&HZ?Bs)+L@#{=Z^N)HU48`8^Zb)sII<}}iS_(ghu!wqWC6Vp-~>fcjOHP-c_ z%{}$rOz-u?1jmp1+m4~B_hR_w#Olc^l#R&KY8Cw*m_fa9|&{L|RVIQRG)o59q9!;0}PxPgjcs$xHQ7+!#69Am=q+wEC z*)P34U4DXYCcJN}GT_S6_fJb7%7%0x>1HlSRsyC;(0vK+q;K3%Pt4X&)H@p1Q}0AH z^mrPR z++;nDIa`x;%}_u;C&Roiptuwa-vZj2qK`833rn^|=hZGbGF4AfA@=jGiuX#vhtv2W zWf5F{zOwc$DrD99%Ic1V&XsBUD3FI~`VbI39adHWy_*grp@4o%*L#4p&wvrygJxvF z2yH~iGW22QMx2QnH>q?H%|W5tzk$vq6$r)1Tsn2XDP7;H~BdPbcvDaJt?-A zUK8BRUV5J5Hoi#lV2IWjsm#Js1`` zG`6EJr|30Q^jqhtXb&df&d(&2)-byKHtN(SxB(fw5-*z*s?5?$U3#pf-667Kr6 zFqa4^zcoUi4HA_Li#nDHbJ1&KsWcZBW{?*Jjnp-`4WeNq(L?x!KU<#*l-m?{Bu|ah z(@heBJI7=6UNm8pUW-KwN9kjf=%5R#Gj$%LccRi!FgUr_s7OO8c#4i2m}4;WP3QoB zKlfK7lcF!@f?9+zvv||@qp>PMYyB~>U_cj+!5jfvJ_e=R(i*!18(m>dZAW5RYTXHr zlDONbL?%;AzFwbtX2D%gNggI+(O+;u4lZ7LyL$r)T7*;^aC6PLKmiss_RhTc=9OmX z9xuupi}MW7gJW@i!7p*yhM@iVq3>Q3^ez-M4%0t3CCjWF=a$L6sm?gQ?v~P9<{gtn z9ZjoeBaJ%wFb@uo*Mm4x>3G<=pzSAMx)iBNH!EkSYBXh9dKdR1C)|A3@ULsr(>UHp zo1Sg>f%e-l7=ECd6R|J+ffh{ECz*fX+`fkP;(5kr66|^j*^W-Yr$-nA-ZXTw-kJ7H z!ZF7Wbb69*Gl|GfZk>JsPaFL|(B{dQ!hRsXDf$?Yf+_k0kng6Tzx+V0^K~mlE`-AA z`Ff)1RZjUR<&MNz-|2j`;C`5p1z3ncCl$bi1pU51&u7|es=^1S>T}HdIpR{3pC^cm zv(w|rPjhz;;jOr-rmV$U3T}W-N9#$j!__81GxT^h3MBX?DlgCnQgko(D3H)~Rl=G{ zLe^94EbLk5&VaEa0UK}fF)<9e8Cb_No1tBY;U@9A3O)AI}ftZA*(ED2zHz07Tk4{c8@?i+^=wR;X`g$NwJ zsow2bv^c)8>?+L%IMcN+s@wWop3_^Yka`!DO}&3mN;`M|N^h;1u<7b1(mk131*oZDwZ<2q*%6Cu4R#>hPHgmRIpOZ z1<=eD6m2il|L2_Z-h1EI@9%m3`aH~iXXebz+2`y@v~vZzZQk{8{yop4oB+BkMlBay ze_WPMQS=5hjJQN2gc=v4briI}v6&qSabUHH6!4tEi3jih9GXAC7oUTRBv`v#Q5LA5 zgNp=8-1C@02%?(jk?28m{CV`9empl8o}!Wx4E&>)p#09ESxYeeF^7&UF_hWO;q>lQ zvdoZ6wJ)I07YNTQGLf&YNlTSJy+C_k;fnz{nYI+J(HvU76xk^Vf#By$!>xy5ba@?I z(9C7%VCK+-WrkUjrRRezPU>ZvITXDdMPv?bSZ*ki0R~)=uIiu98Ss#1d9qSuuW*Ck zR0`;@hS8C7hV%-(^&(u_OLX={L!2&yGsRqy<@)grX`$vNjtnZQfp;$$hF*~qCQUVl zp%OFVikvI)+k<#iKb7oF85=Q+$PYY94*ea9y>?>kg z<>jZMkjx8`JlKVrZ~>kZ zO?nM~f*-{U^GS+b4Y&6s)vq?>OZFL8WOH%wB@E+6z69?=NO_D_*P@}V<>9$^fiPQM zGGs|&1y$`bgmK&aDZM(`f#P3=?IPTKqyRsjw1S{L{@G-Ev+-86>Sg%$R&@4dcxF~K zcn!*c6_3iIE9QD4!r*E>K4))5x7VP@vm&+@ovz?qenq;z9lMZo^^1~&>F!$i)mG$E z2k%9&)IK1rJ8iE+yI_SESxqc;VBx3m_J0H^uG`c4(&$nojumbsMAg4OH!f1P164_&>^FpI-m>kK6_Ow?&} zL?5Pcn=vK=dDnWhS3=}q3wboBRBXV!7~pps(7yt@ZN%i&K+4}}NCT+fXvhcnV+ zEjM^LzNQISzuw>^8OERHyPLcyXs3qZ-}MGh2s*YILnw%?hjS?8J$f2vmXXZ6>J4Fb z0yB;Flc5)NzGv$oE>|@5ICMaV$)a(xw7S~Y%yS|DgO;O3{}qTj$U zRbWO?fd`mpb1?ZQ%2;l6LfpxjgG7rpeOPqRroq z_GR<-WJkKW6ypsc?pxmSC6dc7^m{9?MGzyZ74-BjLmoi$F7%fxsNZgM&qL{{-B`#P zN+0h=gYghI?I(1Nd<#5!ogvl_b)lR+sP}?$O^Ivto@Bh1{t4EroZmx)1+5+SuR~WP zXtnR*g4p{;6l6iWrM6ZueEA*}9@Oe{U-PAX#Ug!xjPl zykd58;H(^gC2f0?yP0Yn?CpFXMM<#UyP`CGdrfh}w31lxUH4&fhN%PzR-3ElYJof%R#T;faw%cl zmza<$|I839vGXMM-On(m3Ar7gVGs+*K8MpGOk1EXV7tG7U(@l$q^`=Gjo_%V#6N;+ zn^1&Xo0H8G*Mj9)i#39!8+CY3ay4onYHb#;*+pRQuT!>G6OVd<2^( z1o7h^rFU6lq#?`In9#b%U_Ji4LiKE@GqQjo`2E0yB ziaLsX5G-H+j||Z%3ffUME&7OdCo~$R0XoBPa36(d&8Q{0Ro`Jkwv6_ChjD`-9JCO^Y4=I2ab$dtj#bbOU8T}3-o=ZnAqP@iV1GJbUkM%0+@3SWkWF8Uz0s53Lb)<0newari|M1)_HQ|@p6 zo|Z_B_b_zlIcfJ3mxj~XH&BWNsrEkHHoh%`haPni>js=75|QT9j!hR0*#Z%BO}1BY zKVg>%=NNQN7Mm+o(?(PACA2^h^w&>V--)2BLp!+nW@94dakExwf4@(j+GqD(`!5t7P`NK#qRzN7??Iy@vLO-{6HiL!JJ_ z7+u^o8tIYZV4m^DMWwT@!!HnAkJ9aSgOU2*fWIsd(~!V?Dz4}TwlaWq`whc94nx|} zlnahI$VJ|iyL4g7Ri+T%jau8$zJRf#9j&flth~lMU~dZS#NLl;_Y@D>(SZqZ@Eq*G zU`_D+=bCiE<8K=DoKkZWLyR+Y{-z<%?hKFE^Hdzpup75WN))ZQh4qv(wC)y0yl3h< zF>VzsE3e5#h)=v>5E!vETh3)GOR{<&VnJO-YKKSJ_`sLb=y!RH4v^JM}l|U zHh4(HdP=x$V48`mGgNX1EsIcBe@)E&oDYV!VE>driVnoa4&1u$^9vR*0IPq&9s+(j zVJY;8nY0bRU_+z1$K*V7el_vv&d5!pcEKrW)LcK^zV7wuasge+a5y8k8iQ`6=pd%! z!CQVqp%E%v&+xk?yy&Q(G-pU%FmsY5cWA$X$%)2a3?a0setI_w9Lel>@R5IDVFB>@ zKd{;8b=v<2=4B?5{h!!kHjyX#5vsV3ae929z7M$u>ut#2fw_U>=$}}F6dcV;G06x; zNvI9fhg0oexX)=KE;BaFmn^5Q@kJDGifcFE%6zk^Ie!~mz*qIRVX{>o^0O~l4Yv?E`4p@09uCe`;T@h&RC``o^3*TjPT+Jh{Z;xpsz>h3{BKriMd z$?cXBs-ipPP3Gy9G&7zt0GaT#m27p>BW17 z@sjVK2SrnKguWXch)R*h+X-p+sP>*AO?0pn-3wc2tghpBG#1Gv;|4cOHqk1Mwz)2M zJskT7D_fIdQXEVxx!2cbF{AD}k88Kl71)P9wvXCE5v0G>>2^wb?QciFjB>V)sBi5fD5wrK_CD6}&^P%eAro zKFC+W;5taJ?C28=!s^NZ~$oATGs$R@q~KE`+CA@)w?<@+L-C3JQgW&w1pwpOJT--L+@ob^^1D4*h}T z;7?`Hfv(J+U(`IOE6We!w=9-sUdKa4wvU#T%$v7n+59z&)~tQVbiH&)Qc4{8I4}<$ zBFceH=WvSyo2C;X$05IZApap4iH#jb5?y$mHs3;3uO5b&gBC{p?=TlT5u}JGYbO18 z4=#{Elw4QUXj6z_Do#=gKi9a!kri|3?8MUX_{VrBHd;59NA>$NaxST_6A~*pCB@BD z)^E~JPRQ(=oarnYTE2wAoY^ReX*pvm{`G+gWJ$PH`dKgF#Jxn-BCsn(3ZTqqeT|jzs{I@L}#jXL%;S{ z8?740@OBGaP*wpD;>{KSZ1QI104_eJ!2NM9Yzp(P`-kt5@nC&L5t3@7DBh11(2c?r zXH9|*M6~#H)qG!82wBa(tQ26RADaiT%TGiy$e)dokxV!%7bq9_v;KHOW}82osN*;N zmZqMS9_D$zf1$o4C0aH2D;UzxN)ON_LNW}J?zEs~;Edlsbfus4lC-|OJI2g~H(Er& zV8p>fzMMNJ5Jnc#H-W5-veu&=ANzn*Of&rshe`w*e^yn)>ZhiJ^9~xJorBq908a>vEYQqAUd`_W06{(6a2h zoX_`)!vhtYdZK3$5qu6=*AI2Ju_qg8{XKf?o@@e#h2d-phlj%1EDoc4Nw~QeE92iz zz1b5we!*<%hj0`F*#K&umC}n^dNX&4-lur$$Sb3rVBF7Lwcb=cpT9}e2gB|C5v-eJ z{`8u;p~uc_E~w2P9W(E1CBtE5Q1f^=>qjl~(M!C2lR47rJ}kxR0R7m9jllCl9(~bj zVM@O*%Li!a%ccPY_G8m^G2BoRt)(|*VhWa=)AR$VydSfnQETD)#85{+)QT7??$4%5 z_WJA6xgFV$4WZUllYbLK0|p?)V`#+yHbru7Lk9B8eBv{hJw+wr!6I=zCPojDEZ%Ag zEsA8rtlp-NBU!Q)ZtICc-9JWIQLG4HR}_RDBbR9LH9H!4e~cS@K*{?r7pBDE!V|Rb zLHwYApf%FHQ07C91K9x07La4KGDb+d8H2(gSie>ZLu!_OnB1o;&_}P!t>cXYS(NoV zm<$}qj2tFD%u00caQ&wckdMG;ZpCX!u7lA=&i?B$>48ax9~Bp3Lkjv>!7%y-Sjp!* zxTM*GSec!W)XF=2AKDqu0z>Qdtj8JZ}2`2%Qp!c(SL89jn&>#ILl!EWC+W&T1DN4vhe`ZhO$yx6_1VlCx^1> zK*SDXrMgu-!uPIAPd#%i;)7QXu-sn=-+9uPPuNr2nQ6+d*i{rb99bkn*xXPhkqEJB zRf?UdKUhWW!_lM)PKW>D+&Kcx$ST@Dg3SO3AIVa!u$5>e(*x`qiG;A>Hu>I=dk5~u zq8YwF65b-e1QsmiqYxe3wmXVV1&E1d1$H6;y#6@$h^A23P-`q2JR2Gr$8rEx#j$Zx z`oJ5~e|;(u$=7zEtgC6c0Pi>q9?jBq{F3L=;WwzomwRxrEQp%NpoIVRilzA%ETeA7 zHTr)iq1)Jy;$o#32Bi;7t^ z=Lw`)O+`wb6QpvB<+$67ZwYWGmlQZhxMCoMO$NA-f<{U3E&wmz(`#0!nFbOpRU$E? zggJD6o?h7rAZX9tFt-riRGx;}zWZ@#b%pcGuiP*F@Eo7Y@Sw6Z7OoSRedlOPA)4o< zp_og+`)eoC&>SD806jAAFi(SJ$QV8t*b$E^*7h_q`iP!6N?Oeg>C$y(b6PqJquQZx zS;WQ6hY1%;&a@LUUZO)Ic$rSUa@zU9DhV2T6X+MLvEvQ>zr_!EBTivFL3>I&9n@8YhYENYS`3VzyitmkX zBcASNuxxxmS>@@kEfzbV3nX_Cbn!i`STIcP2#Ke_ac~+0f8=@Yp?Z_!ckm61B%$=c0%OGa8wGXMlUM+MP;m1kmdN4HlhCcbMuSVxZ$ICKmX@&b99}A6 zr5t8WW{+`rU^2S5=Xp#{-H;;-eG$6y;M17+s(zFOa-RA}*-Q?*O@U&;+iGcMys7y) zJi&Kt3OqGIyNGs-yZX~6vjploYNB$IOVDt(t(f6(`{@+(UJuCKHI>bfVQ*ME98`@H zDbD5`c#Wn^V=;K{ux=VWrml2)8k$d>q?(R-l&;+T-*3pRL$%Y9QC;cybaat|a2K|Q z!%tavHf6AwMYj{^``i>f965ufNIvU!IV+w#1Et34lR47wfT)C-=t{fN#+j(cU2z{H z>amdE+%AjDkXpQhB>cJesHT(+wR(>}FNHr>P5+j{`LE#Cd9+I>deUQ>glnxFl$F`aiIPp_KeP^*blBHL>^fCIZ z)nhvsKd4wi_hy*{^vBt`k0D?}1-j+N#}Kp4b$Yx$*%eN|&=A!wXPa7Qvm}Wb*e*N$ zCDsX8G~lNe^QdADiv!p_2iEtX_BrsW?PyRrV>&UbKD=G-E!b4f5bWR5!3&wKb$YuzW70a84VOF_ z7M=l=|3$g8(!>biMoV099mzb_hh}V<;!GK-A;F*c6ulMEwMw)L z4m9*}mJhJ7)fwRsatEX57wf&OfM5`Pac3wQe9@Pob>~^^i+U~a$CRY&zx9)J_)DYf$l!Zrc1F;)0QV$hNiz3fuB*z%b$Ox;LO&Om@@Wynz_j^ z)wE?M3Via@Y_Qd6TJSXb+|k^`7usbDhA{CaKSmIiqs;P(obw-+Em>Ez%U-15KggkG zzK3r#_68$w1^>$^1^oKYx&=st(bTa3or@r>L%#53v$%z97`^ihI&^{FXpuGy7g{n8 z1PWP*;f0{S)-D%}>ldO93CtVqa!aMIit$%MM^&*zfJIek2=>u8RcP+^kzX}ZY9IZl znoR;YC%;B5LL0Y_$Mqwn_}E#eMpE1!?D@R62xVB%KB4MrmO?GIcyn8vw-DHaN~^#_ zI7h12$@Wp>vuq-?1TIFOiLG;s*%*NL7qck4O|1L%D3PMW@HH!$krUsabp&(pmP2_Nv z0*}7PCiCy;8jLmoYirVjv?3YO2|h7~N9!!s*b zJcs@(S)L5*+$!r=`F7@67nItaruwA1smLlub;K+gUR_`HGM2*-w^v?9(<@}fQOgR9bj#N<+?u#XrnK)GmMS$R zw(>pGxGXOesad~<`SQT~*PwwCf%Qs)k6z2NIA!%(bd!RTrBFVqL)3@WF@K59u_P8A zdS1u6c}&kKFPW{WnE9>d`XciA-#R#45S~S*{3xa-o_oTmHe%hS?8&XNXLfys#Y@c8 zR?2)HH7Gg^@n7`{bLC>Tyn?xNVdG;U^P(o?M6Y9xoE*1~WpcP`9h=1A?RA)(1I%1+ zDxpuSf^}E7Uqa|JwCE+iYJ|9nsnT{B?LgjdbL7^bd{Xw-vK1jo4s}j#q>}*(%RE-(8Go zLOkxun4h3C4F(&j+Z&kkX{6jYSf&in(n=lu;XI-Lz(vY$Fi%h~zrltB1iuLft&xh~ zL}%DY+ulTH*hqi9$&vs@zlG_RPZN&AT z=-V3UUkM7gVeX)j4sH`70^UL45>e>ZCLacR%41$Q1-y&thDJL64!ZwF3V#=Vcq2Xf zF5LA-+WIb9JrN|VO}2X2=V(VYTcNrw9og0PF0-R}w1ko?Sm8q3$m6wZyD6Xgv{A@b zjN{w3v+nfiDtM=jG;Rko$Y4=z<_-!s$nJpf;#y3i3&jKfhcfmeJzG6Ezw;*FwdH>c2+K!-kuw}m!O;c&`G zHD8$9NOyOkbrg&#ZM3KwoKI}W>=~FGDQoaNJ53WQ`1Eb&c1DqCZX%^1*2XXQ>4*0@ z=HcZi)K)}o${sdZQghnm0RO|>)JN!`F;!>k6@>77CAl-+6ZyR7J&dOXVM3eS>LP-D z`YQb5M%w*8=D`~&bT1nPP%Od5y`qra*lVgcvxP`sB?Ts+T9%JX^(5ECdEIE!2k5Sa z{0c?!-2Hsd%Q$r9QOo98&XhEg(}$P?L9O{v)P;{e#EM2Exi*-}a5Yj-aSo6w6Oak& z1{$_D2(#`tF! zKnK%&0Q1Cg2T*~6zC@Db9T1Ji<^!fG`e_@#xf|D$PDR}NAH)Eskp>@Rj{rP*5Phw% z@+&3h&K_h#B<33h)BjT}a0#B{3TDBlruuY3RdL!rWxb?b-wV6yrl-2OrJ3DcA>p(v z)STp@Y4Zj3j5@`e8(BCk{JjyQwnmCNgeI^KuXUiL)bR%XN}F6iE;@{{i+D}1juH;D znP7VNFgygo)Y&G7Ft2tXg{mIIAmRRDEFwj1$WXTI2(Dk+O3BJe`($h$r##1bcG*59YM$=*KUx`cp^2 zUt+Mkkelp?8?O2BjNvV48iFUyH&4Igz2L21!Y|-Y8kQc%IFjFPaquX(qW{Z!N%RS2 zFl<8mVS7GSE5z4mni=@hK8x+aYVJ zU~KyY+fpLNAX$W1`wr<7Bk>b?6qX!kDg3SHrsJqz|MG0@-a!{$##DIZH5A3&-(g78 z{A_Ahn%IO1MZw_NVNUf}9`twmKA6j_Aq_4M`d9dW`+aU*=M~)!dg_>ET8*^(`h@9J^4|cbK*llo1vyg6m$uU?8X&!%#tr?T~Y3 z$e9y?jz@a)!QJ&H#zQz!&=JfpiF=m>eGJ8%Vc1B!G}U~|oxmp}rRO1i)4#*WBK{XImKIE!3u(ue1}?3Y1K~{Zq6XZKu)t{qQYp zIY#L^9)SU8ST=`?&Y*SMOUKWkncYi)XEE)vmlmGIw98&FriluG`P8dA&nUyv@1D;%Vc0R1YzgwVz&W!$z0=bhnND zM{;iOkee^<&g#d|fWesR5CV2}m|OU+^EW&fibtD!WKlmSRevujU zME-x2~&`^wB!;do7?HfOW66+&W-*I*~0f$M|NOdqxmwr z{Y_g_?Zk|+WcU)vr8He#Y1iwixB&zcbdvUUhg=mo^+sx{JZ~Um9_^6(T{d6F@^3r+ zbD5P%{%A(7LQ*R)s z2^Pr_b%&8i;uxtQB|Z=^n0)@^p4oELu#}r}CNufI9_O7`Azk04XZ}PJ%pXcG-EmPa zzSkW{m5cAzzgSb(zgV2Eo=0=V)=U%x1ee7#i${G=wOI9j)L zp>w85|FY;vk^FZr zN{5K^(=h7{Y&+#KxDUB}eo&y-uEIGynWTaIQES9Lt?#o8fLJf((?GunJO@4kW%3Bf}29B;5s{u4w}`u@(V`S?(E4mi!|v{N|QL zu*O~D9UQhs=`tRHy|~U|B!48lR+r(=9|_+Hh}Xft(PabxT;m{#boLnmu|0XD{C~1~ zXh!CYOtDS4^dRndFWuv4jd#6ga%zHx+F_ygp%RF|%h*)_{AKJ-_E3X|tvPlp{m8+i z^anufqg>D@->B70zGYTZ%Bi1fsIyd5GIoWeQtWLOV1)$la;Y=jadp^pDk?QgJvRaP<5^CQ zC=`JG6qp8B*uwRHtC3Oki&?*TP3n|}y66GwZ4I?vMWseZME5Cb;h+*%NDJWWB)~9$ z!b+}uM3XuKmn{MWb&Q63`vIy!L;cl4y+FIUo;`G2f_4s$l7q7V5dag8a^=r!1PuAr z9P@3Qx=ce&c!2tnhH6k#X^S&z#CAH!^_``268tTJw+o^!Uf3Aktd9Ef-^|(twN^vz zcz}9VL+!Ls7gH@1SS_ZV5*(G_x&-#FP`;Q)E)efJSSr8%ce8Rq?X98aJwT1tP$#LV zR1F1CzDa`p5}c9XPXMWWp+>-$DgoTILnGG%H4$Wl@e^1;D`iQ0VW*h z;=6yVj``d_%rO_#Kn=ChLhayTLp9VVEmYh$U(y|!9!3kh!w3)BD8a`ZY^EOo3iVvV zJx#M}_orF=5Kc|Hq_!=_LQUq>=^E+;3pJOr+@YtHW^;0I^06N%EOM+P)Av)xRErZ2V#$_NP9qUIZcq@X%0rxD*%O|T!Qmu zwe~M960AA(h(`YH2dFnR)L&Ipa`l3qD2n7@B^fw~rBVr&0!)bI;uBA*l~4Z19Ca5? zP1R7RTBzc#M1zJ}tEQ5bH?kO4F$Muz1<)vOq&e;*EaaaT=}CM}xX3kptdViYB12FQ zXsEwgsOx#yLmKLz7Ah_dyv_CFMm`rG2?qe;WR%SB za_f^i>|GU=c0&Qb!>9@RIPBnhzaWPIq{0e{04N;F)puwVymrqVeL?NiP~WgnAL3zu z(nNpFeREiBLE(Bl=^zK6&^Zpu=x+disNW|LMK6v^_~oiP0t+9qHu>3WIJM|UHFePg z)DjK#ISUns=T`?pA@)8(5zc`h*0eZb*lP z`ZcFMcScR^R8y%U7<#YK%3$dIoVH7F1c09{yar<7ST5p(Mns0SIf8=vy@qPEP;c_E zKWM1ADk|PXfZCh1kb^?n$U%4dSbqHgQ20F;uvHWHqAq6T2RL=xS#|769-wa5P^Va^ zRg@J9bul!XgDF%a!8;thO#cC zB*s~Y;xMHDH?#ns0P8t$r;h*%&++E&!*lA$y=RdisQWb34=mL0xNQeC)Q>FG!xY^U zdTvvO1Z5n=({c&k2AB}f1&lebRzBI*Z2se%nxdgjwNS;5=(lgE!`51;*byBPjxrB8 z8W209Cxjy@u>1Hw^79pZ77pebHfb~*x5((qsht`Pe_5#Saq4H9uy<8da_xoaR#PMg z6}To3AdgBVSPD?sgA4dwBVdS~Ir4U#I;344y{Q)Ja83R`X-bje2=}CMR5*IL7Bj9O^00&N;tWo}kg(`MuKBu96Z=rTlCs*4^&Jh6ns6Pj% zNiV?+fC-zp_;)nQ9dJXKGNJJTr|#5HogSd>(NN>nRJss>Y<~eS;3_bnkNh5~zyiQR zp<_v_I{il2Yb|(1L(O}Dx5<74*O)o>K6Y>1#FB=K<<& zje36zwVtXYp*Ea0ad3(DOK^sRBlIUgVH=MfpFXz4ZlOhhpxSE2yNe#6+H0uKS*TAm zlt*R6TU%|RJuw*}RSs1ztjS(edXe`mFS}Sjl#c)GA9sPw=0=#2ABPF#OB&?r9s>Cv z4KhF?Z)lK1y9>^*G)R4wr@;QG!Tu`MpVHXW?jbm%HJo$Z1oEr~`Hs}|gC=;BzuEcx(OBzjk>@pp#VShuHQoDjAyLKC$i*dr3~wkO%e_VZ=nT zDUbEeH+7P?RK;thFS=+a(aTlnhxF5bwx!!6GTdkApPpbP8J4LStn_6Y6?BUV{g8g` zCkpy04LT8vw8ADaL20(B6Zi89^ab3)n}pojqY1UBQz46aM{}s}PAD0Eaa>ZPV38}xcLy2#INp6*B)P@cgg2l9m znfXM8B3R6an9wXHO7Q-pu6+8~R~5ktCc#4PsfPuxnC&nL(0^&lpsNs3Wobk|na8&}7kDv$ zVUoe#l-VsV!!{xHj|3~_Ps}Em(XP3QZMAC2?2G4w-1C}vq;0qIlKP<6(w*oVKewfX z1QZVa8-+?${Y1^coKu7}F_brJ{&Rs+`@UBzVJW=?@0)4?`twiONX25bZW6)DWU7c8 zynq}mx;%YIoKg^8SIb}?lKE>jQg7$4BR749`y~A=y^;`O%xhAi{}_FbFh~q`&FEW^ zijG2!xVH>ShKRANnfsaPc%>pO!=sAHR%D7MkRMY5y{$&G&HaVmZ&XMt=KZEXit(XY z{HY4XMlmonp;^!qg7>yX0BVmu4DOD=$6N3~J8x7{Sd9M6GG@tYc~hN5`ln50<~5Co zj6y}S7~Yvh{MtvT!~p)gmgWw0b!v-8wQ{k44xuNbPW#lPJ{e?xiD`YEu z*Gwh#{;L+oJ{ly9cUB|yY_5`ewrVtcTpB6-bhFyG*D6(Ds=`|(JXhft!$etF4N`^=c8!MjCNRQxrG6tMDG_@=%qfNn$@n2*GV?33_|9 z-~v5cjb>3j1#*T4=^G%B^EAku5P?k9AYG(0J*Z2Ss!e3M(mmXuVI3@y{WQn|A0gC9 zgS3{F|AsoU>;q|NjfV3z$@#H1{y77L(CHf1EujLrQ-chX&0>iLc|mdx(;zdX8@xk< zJT9ASzE?t3ySoG_DLqrotbg)1#XWgOjb_`W(`>Is>QDWm_!L_;=q~As2wydtZA5le zp>m0*ugxWC?|g+hOwFwS`40s>UyWw_Wb&qKkgv&<(5sR9n{yQbPpHvVdN=IT5J@~l zjn|KVNU7>SVdyC6HChz+d10fFfbMhWSHj#Ah00lN@GW*61pc`EAs2x@{H)G-;5} z%R%#p9BC;8oncBkzN}$>eYB8pL5pca1ShKo)f&aK_(Q{+94`dilDt*QyicpllQNBj4Fi>4_*D)1 zsW%lP;xy=Y$`tgIYBYOHc49xNk^1m=72e(v8vOLv75vW{o2~ofQX+UPCsqjCC#%CS zE7_r5SBKC?E>Z-YQS<7nhbrjrHR!TU3i`Yn&DP1JnrK3b%Bqhr&0)N6!t?5?pZcL9 zMvc_Z#C{qfdafGH zhUE$5F*Q45#M9RLXVZA&?AjOJ< zIm`aNtr*c;&8yGA`j6li$C=FBM@=(@jvDT3M-(A?$=rr$)2sawZqEhbkYYS?2qGHK+b&Avc0Minle)2~UcMv}>64=M;;d)u1<+TJkY! zG}|m2TyG7s#~LAbi5jW@yK1E(c%vH6T%~{gt{SO#UZL=IQKQ*J8M|;bQvYbB!h2AS zW@|0sg*UoaYuGyM8ncwGM0?Q{%n`1%+LTn z5UFt+BO*I}>g=qN`SYjFojq?&DJRgT0hs~dEQ`wYvEhii$jl!2u8+#})`^h*V<>0? zjJBuqQJG#<0_Py5$$;uX?CuL`aLI{tRVrB?#&rJ+z_$E86 zPY)Tjm>F5&;0c_Wr6kUz8CgB0_&^GYPIs@1Nq2(U^)s`!`Pzl>$oHUxA&FkPQt{zK zEkhE01LcQv<-D1*r#~`veu)xU&Qe(uLAPVlBO3nuTvm;*4M)+5O4S6>NjW29*q+PF0EPNcFVZhK2$L(v9ERMGIDOq!nK!^5_J^)Y13VPm$Z~>|hYjw`N5HAW$#)#0PHEI4T6KXftW+Pw|f= z4&Y4pxbT(1d44urIBhwX#ZNknxR5o%!J>^8`R0WH4NH1TbPP9w4!xZn1vF&D07PHR z3IfQIp!{N1NRSZWCJat2nO`!wWZu-sxs|v!M-aMGLR`9sj{mN#LFPKdg*J3t%yJwh zZAl0)_9o_U^n%bu!NvhJGCti`rq&>G%S`M;X&H%*JQ9sT#v$e~agsffeEf_)@^^|1 zHJCzj5{Kxd@-bB5Z|p-^xru&UgfYZ8RC4Jh;jyIjFtg0QLh)0K-6eLoWa~^%4~Lk@QX^Wmz3I-<#HMM+{=iO{X&eZ!YNm0p4AhTS zXQT&GK%vnIZH}P$Q`VD-cC<4i-CfG*V=|*6GkuW!jaI5O5vQc?82u$;FkQ$>kD$gW zMi+?~#t|b-#1dn=l6Vo)%8a?$9+KFfjMI!kG%GvZ#a5)q%Wlu%t->irM=GCY><$xx z%ZxoG@S&nIV>cNt=;e?V?&Lft(TOMC>M|pWWy7vAn=;}g4$eG%%yheq7#d@x-{ z_bL+IIqO0N;|b~xGqrJ%h;H)-#@;e~^d4i7S&}=&hvwMO{U-$zWcuQDj3he>4ofo0 zjFjRYmO2LkK#?y+HyC-bfFfU+uElqZ?lK00$ZAs}E($uF9x4%`5>fwit}BAHHW-IU zyg$c#QuIg0t`gBtK}<|{rKSn#_TZlNkug?nZfmZWMoVy8ZYbDza@1YP_2VJ-8NDcD zM0Pj%n^SA|8G8nZOz_B^I;(un+>){fY9*c6XY@xx-`r;m94hr)xGBo5)g5CXt^!K; zg`7o&d3Y_VG}{@!gMQ@&u{@hsf#bJD@dN8Hd;tVm(!_chj`YXo@>06xj&UTw`8&o4 zsiJLIE^iDG9FJwKNOV_f=y0l-o6R{7{9+sq09F1JG$WnI2)}zPsrqul=eUxqDxF(X z@vAXd%1r1q1}ZH}A3C%+v2VkrUyY9>NMhE&Y@U%NL$gDvdPuele%B7k9tCi0NOrX3 zIW#akLY7!Ex?1~bN(ch-1`lCE>soSok^mFN3xlJmW}HCrb3|f|9+s_C^kKB80+rEH ztHLFMXFNpQ9ws6?V0d=2MlZ4&REP;BC6_ygXU75+IU>8C1i@6h*Hm$OyQHogE@mDo{|WC#BmVhwqQbUdl`Htn%!hR5mbMDNZ9^PIxY;ZgP5nVnWQ`#4uA< zhs*=3lGO+{Qc4ve)+E_b@ExO%3PrB5xx6bGP?4>a^H?sMj?KyrmTY~+_nbY6j!K3n z3dH@2?B3F_-s;luh#}=i&RK05o=R?OAr}JV3l#iuD-ku#H!v)K5(ZP9~sd#(#U@88> zHdFBnc{`hTrtRCaN2yeK)9#7sE@o50!12tE>=EX`xH4}?Hn088JF|Pxf!HJm-X!9K z_ukPvv%{n;ce=GKoi~tkc5?297k6gchS{}nKg6GozL*|p%YRqWt>x(h8*ZG){#qf1 zkXs!#$~XO%?TjOc4XwXrHx0niz+GWE1MQyTp?i_><@5-kTzlpW;fDq@bNWe22;F8m z{`OgOFqT+T`V?*KnG*$uqdjwa>3Gn}nvrDHlsKwkaCnYu-~X>rFsLM0J=IW>l{3>v zs_Oajmc4^zsu<+sXaNOm;8;F{mV6H7ze`J6xx>up`g$~HF+up$0V&Zphghy>f*B|~iZW+&o( ziS=0=GrJ9Ei(_ig1TIPJWnGHbTt?;g=Cr2U#u$YM@0pip`^gC{3uA{WH zc4%&Z{3SXP9-a@xZ*NcU-7t4_ZnYbN1Q>I@$ibM~UH>Y(P*#^453r*yw+}${x?DfH_axlTvv{sP z7Y|;&l-t8r#Dww|Qz9}EN4w6>W>&@u!K^8D%=(w$9;Z+j)-U8d>q zsLoRCE4e%+V1OTW&P?nsT|A*=7$tlJpRer|5kbL`wJ$vc+^{SPVA8tWhZUVx&*P}1 z#i=_>o$GRa@W3_tYVo_LOv^pBxnV$zTAv#r0#;J9F}HWa^Xqf-Q>AsiDC9tTgyi1c zmKy`^tV<9D7ta&FtCZh5;trh*5=TE;fmE8Xhfx@MMdAyqJ4$K<}a4RTJ-OKR+bpd%wCnrSXK8t`nrISOh z2bqE?ot!|KIyoUP!jv&0oap4vQhadUV2ST92N-oMIB%51 zE6OuN@@!?_rx?h~QBg?V2(?Jr`N4#cJX7Zf} z@j0u<{gRMLeX z(lZ;bR^(N8lMGX+;r_(l}4N(j8vbfFFOY#OQ9JS}t zV;lZhk~i93${0d!E!Mu2zbY?KC$!YWkufLfVe0hj(yd|Ns=NhVrMatL$xDQN3)kgs z>I#toujggrbJpv5o{G8s>Gs9+07}`O=b~FvDlJY}7Z={pwj=NP0SGefY+hf0)o1g< z&1qMXg!huq<|z@vt;8G=dnV6Cas<;imoZ4Qa&yWF3MMa50s2y1V(R~Gb!H* zJkLzZ4+hvYDSw0nffQAngRNf2-pS z8_V+-jI`ssYA|=V$Qn=5n|^oV*7Is(fvvqjcqZqr4M}sygG1soSbPTQq{-B1O9r^z$!X*Mt z-Npt=;KMKBvc+#F$FTtb{T#msPRh9rPbSJdwGj5m*m{! ztdzNPo|r#FnLZ4ogN|eUbevj=)CuWoz&OTfY<--So|@9f_Mof?y!R=7``PKaM0Xx> z6hrY5hz~?t{O(R$wJirh&d{{D@8Dz8tgPSRkYC@b7Dk->|A-v(J zVeHhAc6_T*O?O%yUhH8tgbYi^`uGZzThbUqLN1@;H_dmiDIG#pOUH)w6LeQI-8@$> z@D36$C+mmMF$nCdCP@1P#znHKtQ*qcx@_#dVOGf$eR!;&omf^7zk`7?9v&M6P;q!{ zUx1B=#|GLY!+6@#IM&mS|Elq!3Xe2jzf$obBak?A+B7U|D7lkN&Yz79u;p~L<%i-z z>)g|H4F#W#jfl15yQpfs>5x~NCw1DS+2~3w7$4=si~jXa^FsB{U3+0%9}0GzVM{Jn z<9vJst4xx~VkJc>oVk=>H7>|1mrAV0dD(C-+I?@Vk1hXINvrvtxNSaZZViX6#yy*5 z!*^^^ym6e5`4?_{<|VV0sQSJ5Z(U!u@L#&ok9jPPd|ZoGM7Y|_5$fC3hRRm zG7khpcXB(<=h0dl;&R44mL1IZJ=Js{lbVpt9$4Oy6siuwTN72w3vB7)8{<4|IF{~j z9T!|B=&t6F=29W>4iYadlaeGxyMCqSl|~ATi{w=m6pqHUv{uOudF?7LL&{xuYC2d!3L05_Jpsc=z9$d<)Tq*7E+yY-o z^Pz?P41Ts;L?vzUMUldzNL~#y@(R8iWOIrOUbM6z(E1dvj9*?5%;BQt1woS1w6q|C zV~#JE95Hs|NWS|MEKF}OVCuEkY;ZU6YiY^`>i1cJF|RD#GEW}hE$OJ0bnG?^@(Yiw&~Rn zd#a#3-iGfYq!XUwJ>;)F=3mAh$?T0Tj}a6wvUh*Z73F?tCX=P1ocxN}sf*6j!s{UN+vJU(o`H z%W2V?Q2Ct{?ZrQ^K=g$!r248=Bq?U6i&LawqN|HC7#6g=+W ziJ8RQoyC_8<|DA8Gd?a!O84V_3SLtJpJwii!&TAEZe;Mo?{0p^p%Z8fhGt)~Dh9Yvcc&hkIj$ zb^#Rac1}Z^W{4{QCgC7veYr=SZeyJ&=+i-Ul)1;u+bCn)ev%| zFmb*W?uX&h1yH10OX=29y0w&U{eMd5SSj6FO2_rMkZ#NIl{D!{VQj;;(Gxb$)2-ye zy^_f)HQCF)RP}{*8pOzkV`$HNFl;4lj-41nZLaA${67Bv1b=VA?vk96m8^-{O1c|6 zF%V24dnfd;6HFddQefyIv{lxOrY(<*j&E4McfyFJHnChm^{9yfcKjC{_sE{fxUye- znC()1DRzlq!me1AUE+5HF7pxQiBSJ*UaT}PR+=Z6qFaAZZIsu^s~X>WVMT2D~tSm z1>QONfsEi-YV1MV>mr=AKNeKbYkqJ}PTsXv@^mF%4<9MM-n4FDkkvRCMD* z=)U-%?u$~l!2geKj+MGEO5K7@(QS3HVRdEEy9G8Ma<1s(MZV@=7?kp6gcC48-7?YO ziDpE61@kXIQ2?!RjnSt~MZO%KZ7K@z77Wf07DP~8n~VGd9;C_~5LovVkr)uvP~2RE z$AfSKQd6&DU#br;wpBiYIPC0I9LS+-@8Ui-7r5Db!i)Wa_^%o_Y~q+dv!qPzD+_`T z#pEaZ`j`G6T+#*z+|j$(-QPyH&-$ zb|<*XK(eYXcBiQ7Vkh8ZtBZYXIGz#~7W?=M4#%9_B)n-qUuj_l&Lbz6_SB`iN0n+> zq%i{LW(ub2nocyFs4nig(fSI`=>|-KljA?hR{8J_;+wH++*0$D0$FEYGYKRHfsg>oQb>qECO`%zgai>G$z&#znPm1%7HfsH z6{-daE#|FMg(y`~TgV0Z#5F2WpSl3|Y8R}MJlfl0EsNgUdKLA)=RMy{Cg}6r{E>6s z-@BamJM*3OJIh{ElS)HyI+y1SCGmz$O`4Kq9`}imEH0ho5rbop-Pc$m$SqAveuL*Y zRleC|-~rCa|E@_U4N`vmu1SOF-Zz_OY+(TYRtZ-VEjKZyiVW@(K}r#t+^d}=&Akjl z_FGL_C2_QzX_Tb*m*PAs8LUXHO@3C8zoG@2I-&c0aeB$I(^R_Oze?*L_B7?ii zZCAtDl{G5WBtCcfJ-G6EvzF|~`e!h&@T>Kq)pB9}8_kNCL;^op<}^qp=pi;CPVD`$ zp+TI~BY$9-)5wABrOxRJ#_CtrL;h!Wm5GRq`uKpKdqkibC9q$F`qpx%ifiT8Q$I)| z5!RPGf9R01?X+OM*J)0~bTIHor;L+lcRT5HuaZ5^nQ|tIBb2iJHF|d9m*h`QEerSV zapswcm*Z~r`W<3NS{&Pw{g;04G%(SF=`MV!%bi9+Kj2(aEyacVV&d_bm^hIvaXdxhXX_3qu{F76M#K0b>6@%eDP8~PGQjp9O!hdqc=vc7YQ!WZar(Dz7@nDXB zIn6Nghbn2Rk5dH<{os@*K9_XjJm8OJnAyC@ZM1uPRBhcDj}7}P&BQYin(0h z>BUQ=5O9pTRB3@KZwC%CL=whET?!_A;0yd=*?waf_#e#Ucnt5@`EREj1%$6rphwPj zRbX$k>~M`H9uFO=Qm6Pv!4YmTaLfY3M^@)CY;U+luO^*o)hn@ZW0l2!_EC5#++w_j z#oxhExD;;DDVP@P01h3(4&ahV%TB=K(q2w;>3N`nOKC2dnQiBwD(2eCkTGC*ipx5S zM6!9}$;E^4^kk=Y!>#Eqy(XE#T_R&ca+gxFTR4#J`spv_Y-V0|Lh@` zY9gKHbeGCJS&~0=+><(}9SteD3%3lpOh#hl#LXsEW@x+P*RJKv$KU?ibrV;~Iq14U zO)672Mw$cB=9W%x5XUqqRQ{;Tz=a$Sx$=1S;MLuuP3m}7ojH@pDm{$rnv9%bfxV+m zR+i4UkGhI^c8kpbO9{JoXO|WZ9<53fS|4*=FyUu?$0?TugWxIG3=G!)%ZY1Mu#lzr zh?tJppHI08F!=VAYYql;MqT+B^nKw}L-vDJawfPNOB{dgPaJkC7}>9` zfpFNS!d19LT8Xr#_&Q))z1yfIFtY}i3iC--{+oBeK)u^+zLv>V?Nw=ziB-P21NiQ^G#$fEd zni4_zocqQ`IoqLyiPT;63#AARXU$)C(Xo*Kj zB}>j2IQH57_Zn?F#jQB7@xX9-jV0w1Y;BjKO37F4@>~Wd7c68pE%lg8q{K!;BA4e0 zq4?8WtWh&FN0xfRDJNDy!7@(`WU0NKP`qJTt8$21%^^gi~JGxs>~Zj1+fnATriwS(quMPT{FuY;!7Zp8`L^V^nW zEMYT?eybHfTQ7ghx2#>pzsU6K2DcFV! z>^}}>W+ByyOuriioBbgu`|K7qT>o(pKZwt+OHb|a2B5MftbyMRwPwJ|!Ob}mH2vd_ z3OJYP%Yf{Xjzv@B{zYN|$nV*rhfC92r+{NsmlWiGbLPO}hOI`pXFO<0V%+t018)2{ ze>1Kze7B+KTE-d4`eN8N&!^nZY6*9w5i_WmJ;BVxW3ohBnmb}_Q0caML)N+0;%F>1 zt87Aq>;C_$37f%ydo`}6h!*1jx{d5;;?HJ{wloK z>Z7<NnA+rI_Zn2oQ(#ffK51{T5P>YJswo_mU?tp9%;6+^WHe&@1!X zG_0)RyhVdEotM=+_IK*w;5{9x`^LKd9Shv1OyR&tV6g<3?`)luURPpW*WBLhk3}Fy zvHnJQ@qB|)Xm9WwNf~@*QyT7H>X`xqZ*A>{u@|GI5KQ&_0LK1~_4(K@+VbI#sh-E- z+aiDAi7lQNr^4gEYBS=JskVOD@AOz;RfcCK_}e_i;D4a)9PIFKvIx(&dwxC@j(+aU z#=Fb6Y=V&v{8%#PS?`3O6?^jFsl#r(%`9be#^8gVSx_nuuZK|TW?~k=>6LC=5p;YL z-Z8r{xDp(5oVb8$<;{L5n(fJfz>~q{kbSl{A8UYSBb>?YtrOfo^gN5t8QQ!Cnx6FI z1$_e62qo{XPs8ik9k{sVN1iJ%cFEhoY_-761)d`C&GXEMz}eRMaAuz8YvI!!p8t?a zZi1KY^vq6uW9{c~@lMZ;tNw{sE$!OZpX1=aQAuNCOE7@Ds&KX9<(!m%v#TWb!bt*2 zjW-DtOYqV+&rXj;I!j_-0C(;5o0kRA#s7G1!t#>PRVJAiGU2XBzk&qj}YGGYnYPD22DO+g{x&IR*oPHZu=! zjg4}1I-Ci#>Evt|I?nh?zNsldW=^opXdo!laZRt9p|CvAWz|oF2EdqT? zFMbp)wPgvf2HSR2OFv=4IYJvA$c^)y3DO|>1a>^rX5v7f&^Cj|whC=JWQ{-5rcP(7 z{TfWY5ialAq|y@2ylE7_|I=*lNN<UIXW-V9yDgTIM6T_Nv!Hv3?xD;ur@rtdZ@3A{*%h`P~r@ z7DGa^35npo&MtRj0NbIsB-UK6#!fZ_77-cC`l=)%#5nMQ#HZzM7$JLu&6I+eKgFkm z(iESPGxDJ}6=)o5qlPYhVgH(Rijxs@*T;1JOccoRG(f(Nr5EQSHz8&m=P1{ z*QEMN;z^R_Z*}%GuE$Og|0dO^N#`|9+$w(DP4#7Ro(Th^)K`c>rPP7nvCij1ZX#w$+0ktiwFvrwxYc(9%4R;|nTf%;)i(={?s3W>C*PNc zKv}-8SjNbVdIV~#St7z|kLvxR5EK2Id&UA$-G zWBifcWvQwmrwFg(Dm~vT!+8Kny<5xpp^tqA&c}7rVVe~mI^T<%7(eo9826ozeMT*5 zW9bsd@I1+PQwRUz((-I$1JsNPItjDF232Yyh# zuSSiBu@BX^7h~|d`gRkSy@Fag63ard$qAN$xuM;tVBA>$T#&3@Ggk;Sw6D8K`Zh~& z1ln~|SPZKYTwC-ybam+w->?~PS4KGbyV?s3g7m`96BjZi*xv^#f`z) zGP|Z^GN0!FVL5S~q(Hlq?A!jjc zYKO|ZHH=&ORlAB~xQhC4KxZO;CVttQl>dY(;mVRy4CVwo@-VOmJM_{$%$JHlhegg}xO!}830^--ajgR!@3-n? zjEF&*drcAEWoVlwd=cz8RwI=%#h0Gz&=^^)AG6kBU%@IQ{%wPHi%Vhb`3@Zyl|0{J z<+1VSI#fDRO6N*E&$$_#b+@bLCUbd?6OzT{lk%IvSoL1nXPYTJ^FoL57jxJ-CEuxa z37q1ne@d|8N6fnt{AiZ#TaOMa$r@vhk_`>g6&K$Y6IZXmP zgLR#Ff&%UjjXV-FF7;YESP!gWss{?j439lrW9pqJmyejfvrZMB<{;(S(*1K4kV)25g2^D$Ad zeiJ^g*fdx z1&_Bw^XY9`PN=cby%pEo-H9i}uLu@NnFOwQ59)Z#aZ^yocvn^gO$O4=WC^qPJR*LP zBaQLOpcdtX(M%IS9L`HE(!r;F#WWj4M zFc8;7hvCT^LuNTC;He3I`*a@1g{2?cG%3C?WGy6>l7%6Sl!?L71tFazEHp0+?cO7i z!==|kdIe3u=5B!TG?y}uh@1`dHH~#46X&B4!vy1Dy9E`SUJq$YMMaXGJT4?oI=8}~ zm?5xkG^9c07heyVr36%-3Mnc5SpO^-|Eq1bQ20h@#~OJ$%LDA=99)AHxJXoV+qIH( z7|RVCF}Ru=F5+T1Ki*?kTSzLS&f!R2C&5(_q=gbGI0YI~hE+y_a}%;j%}=^;Kp8Ig zODf>Q9bq#xp6HUpM?1peTy6z-Yy7H>tz#hyH&I=+<)`>6ps_D(gbz_62MvqwxSwkI z3fS8hHlxiWePOkN)RZ_Sgx^F^PZ;Y9|941!l9|qhrX4u#a1t(k7S>A{1i{b3>Z!yu zZLD*w#?=G0HF`Y(*#xi_I??qx3EMso>#rwvI%o6jCnQTmCXSjpDGYrccIIf=5w&c? zX59)LQ}7y9EJCqvHFCcD4oQuv>V!caXP7=5ZKfy%f3>Cby z)2?9`iu_gD=zGfuJVUE<4N?TMo92mS;UMAf<+$rO`3)@rmb>$(APk)vyIi( zXl*AdZ{2{Vd43LNRf;TBjG`s5n*~(WCLK8=^D$Gp?T(wepyCUbK)WgtKc$?aY-qk3{iw27NVd zTUs6YNf%Es-G-~30ws=SFV8~9NW^LpeIbsA{b#A+3t}K)7(NwIW7h^9czGnERM18M zPUyI5HaD95Vv@cY%8IKkdTuOJ6pEsK{O!qJ$;%P#Y!Vgy;^l`B(J1@kMtOn5Sxhwi za^yPx#AjcK!_>j0w@B;6%iqBU6O!mm^cAXh@ZLu(6H( z()`Su5#hlvBA?1R^O|BmA{KixhYPM>e$;Lj&V3v4DWweJ#eO7F>?x*CK`kowJfvce zQ7ZNrQnAO7iaqx;>oI$=5K={ha>cCyjK0>OBDpCW*V@F&fh0~3Mors^lg2n=2vhTrZcsa=sc6;#K6CSpL%|^1q^v>FtJLazQ-iBq17@1-UiDqyF{`AYJ zQAbQ%qJqg&Ez>Hx1pl}%sx2pO7UO!OE3g>}c=3CfXpx?qS3VOdBv(Bn(0qT?g73hN z`=dqtO$*!?&ExrvGuhAEubV}hWQkWn6A3a}>{;;yVfenNDvbnm=n<=$a1{olW4MUA zuc6u`^z4r=pQ0s^@6<3ORKu(y<~218Vc)G`2>!krW<*gU6* zJ#-X)if~uR zXze?lS{aMQz_Go$2*#dUlO}w1rt?rOyC7_+Af{c&j_d5t*@%yM&CCrkvg3@2Zav|6 zn8Pl1&L0t3aiPRdNN^g#Jm0>C%vemPOv1UB=ta}?m`ctVIO#C7v${w)I6d}9hh!Rl zA&u!4PGi~jeeMzCd)yL=H)?44ud~#()R@D`thz-M7d}vlAkTTqD(V zj`M6IB$p5vzWWwcj>zTCk;T1#iJ6onmqsHhKH+gSMOgp0*eQqPIFv5#iZ3K5!iZSS z;x2>yILlfK)GqE47m^=`-HW^QYQm@0HzW^>j>B_{yNvqDEbaxvVzA?Hu@b?&q-)0Q zlINl6M3;`H{dwGs!5t^MOp51OidGvf=i!9PMtdGn;QWa$wUi0Km8ZK5CKAoGC5E&- zEkc#h_mN#KWAPZ|E$Lb&+$nSo?38|rz~HiOV?4s=o#hP1d4aS4W!GRyCn}#&)A2gG zUzK;8bOdG9Ps}s$y#EwVmv>uG=ps(dDo99G&!-$d74j>($9F1z%uE~WVF;&NlL;-H z##KZdF`&*Oob1`>W73d6+C6g$>FMhoc!WlcUP}1(Q{CExiOPgMT&&DyW96iwgW=(7 zy_O91C;!@vi`#lCx|az*eZBj!ZoL0)c14dxx|5}NX<3g^&SIDeLszgLm~nr*0?$mu z_;eH;uIOR+<-JqUqnScd+PY1AW!3ik+hxkEx=q*o20OvHyvHbGvRJEJvM&>QmiIi+ zCS@npLh0i@YRQvOa=1sQU_gKNCfNRFlLlH2qdz24`*@G?X5yu7Vr$`fZWEA0z~qU6 zBuV}b5RgfdNyBi4vSVZRzEE8(=$`2LeGISRyOh_Vo9D93RkSXzrJJ97)vX6Q+#7Y z(t7{zgNl%4N2(az}<9})S|Zsy$GANHE%EQV81Ci!YyV7a8d-?`bbD3Y-2~V9L2G$=)g`KW!yW{v)!$k z>2Y_Dv_(NP;ItF6VH_iE~sOND(M*NCJ)t1u3c^4g@Md0R>b+0R<_-_rIh2 z^)Wr&v$K*mg{$Q4dHs(6`2PR>@4bHSy?N|iKk&>t_Fu5w>zG!1d0wyA+fLo^dco$p zQ|q>jw%>cKxA!f*M|*R@q^qCvoUU6ldciv6sF_x??i%gh>0U5R*?p_&&5QCAo>B8H zryUkI$INka;&gA$oD9Z%%WoRWt6<{TvBT9vhfnk<3vz5aX)III(Tkt#aVo|;I@cGUg{)x885rPd{J}!sNd7O=8MezirC(rD>f#(d;%93feTVv zo%08P1P?s7mo%qQp2d(=$b3CyKF=X9FpXJtovOzW};HsbJk(2Y3$QlR{KP^gTMMR5Y2uc zJHAizjLz+QUhnVO%S@T-+|KIM+il0!6D}dR<)Pbd@L}o)v^`8zd+yk$-6m8h0xsB6?}chQLDR5JyW%dO@C#s@rR$2H(C&Kf-``&yJeCH%;Sa zkN=38yg9!~_`rtVZTi)-db4Z9n-8w^x}A>W`c+@)*|Rp?R6` z5+ejuWYv4-W5GC{5Nh^Nb{Ky<;k`gEzcF$I$A4b^viXYx2OuKUSPveG!4YUh|V<6fsQl9u}sL zepj@k*xe%uBS84MwPUpF2+XU?(49)=1FK0N#;_Aj3*EEcRNAy3CHiQHyF0i#fgs7B z!p&O}+{AlC4DA?8!G_Lx3NFv@=lYEyhOqZ0hCTa7@F&mfhTyhOBPWLY1of6~wR?6z z2@^>0&v#&x0!YCYq!`Pcrd6~2-UXK7obI;qI0@AYsMB9k~<80s$m(;dNmPvM_zG^y;npXy%I%}0rd7tUf%~ z!W%Z5<;_nq=*3|gPK>OiVi^F9rm`r2`s-3s6}BnFxe<8(7RnF8`!}hL8Jl!5$oRiZ zSwnqM1HVft-1xtOM``>5UG~?Mv|zeYIS%KH5pd1$B0x<=i3*;+Cn_#x-U3hGr9vTn zV8?z|CE$v=SLz;NX3@|vt!&iyW&vVnDwou5#+yi0J2!Ai6eBpUsxe4%8_E|{6|q@P zRn$O9RZ$ql2J@<_j)jSes^&{^E>!g*D%4k151!b#Zry&ZQeorvN=2KiptGp#)%GLt zDCnXoRWkY`?GAdF24??4Ur=*eohD`>Fzx44wwmL*MpO5VdgKTyQ&hP_vxYg9qw`X0 z_b|>fP+igL`M96eZ?!>+t2LUA&K@FWPJ)RpX5h4%-qyU1QL`H7#XP2FpufZ$Ox4z$ zF0Y}3$$Sio;E{>7y6)=;>%pq^Mq^$(!exRyh<{sJ9YU!206dzYoEk++RE!g*!Qp`} zV~J);k*BR$=&M~rN0BH8VkyiJdJvu@W1b5SS&kh~2=5@`a@T3{CNW=NwYn{>-EA#` z3sRV?w>^Z>pq`r6&Y4!t)b#dw%|GX$b))5J=fE>w=~7orE+DGYF?3fp&1NDlP1_jK zCmKFU;mujywe&@x5YJF&ozPgvEEt0PuH~76xrXbsGza~aj)`ZXTBs!w%e;1yl*Na| zG;hsE_f#u14SZnod0u;^bIv#`w8p^WF)2AnbFDh-4J}u#1y&2}LV7av+Omkjmf`o0 z7bYo^sFF(5PWW}JXOQWh**-!pf+p7OPpe*hG9*I!<>c(1eYBKEdXjpL8T(!oLIkoq z*r3fR-i?ygnHq#Bn~he-#L}3j%4UptC`r;rSh!NjVxp4#VD(|jtq?T6SNrQXKc*}S zFj`fjY#l{p=NsHT5*I01IXD7;tBArMUKGmYL}Ga{irZx{IROFQgQf;`sdsZ(zk+48 z593cL#@DZA50QcQcMvI=co!X&)W{h7t;qCURFW4GoDW@{qLp76UL0kRz8OgWS*FW;dFLSgFDjMq+h8Tb z(7r*6NgLW!Bn62HxpotU`F~zYsiJH7Gp3%DsZnx&Q`=R^iW((lS7y9au=h`is`H^C zI-HQqv?=D3`b!lGTh>|_D@FO#8YEs(_5Tj9>N0L-5^m;C7>@I?l;dWWnSot`QA36g zcrFH*89o5Pr5M;qbR-uR?dMU+vYqX4tVHn8QQ;zkV2Q)9uz&FEuswB4TE>zGcwVC>Ez^<1P zx#&W5CcIP^O36bS(Ah-Me8mU@3du+tP(CT&w+8gK;l)_SfVRMZPBRST>nX>8ezQ{f zKA63UuU`Dd8s~|5iNplYgy2bfki@4mpDG17;XXdbpp$YRlsu&S__ajQd{_$i5t5O1 zANiy_i3oemOfyQweQNE{tV9IQ46oQS4s9zO+7k?w`N)YmwEhhQ<9tfD7p&jUK03IQ zh6UjQ3r&aJRv>y8i-EK{Q*MQc8YsEKbXT|!LRk!q5*3wvuaruj=JUDVr9z>f9k{uHm%QAXv8|xNk`*LKA5V(YHNC|bVj3C>XuK#EXWAb2 zrPQ@WEMy?7Sbvd=6|DZ_W$QK7IxKo!fU`N+tYVvvG? z4sA{Vxmb_&1iAPysX%375sa3h2G$s#S(36v`)s~o$vTUbC!R-2EQ)e5$HZiSZ=ZkFTh_AT@`zXFmOJ^zs#AgJkg*iC;E+9xw7Rv?i*aY(F zRYeykLjB~%-n|KsPeAMyb${L73tNIX?X9em=^P;EIOl| zENgtVBn11axVj9mKSZL*0Xw5Z>O_DYX^L3gJL^TA%ACPg1VF}x7UfE~Lf?bk9b=1VyT?61ZUWn}$s2DU#$lE}oi z(yUa$WSFMN@}s3>DX{$nlS&HPl)M6Le=$)!U+MzeAt`BW=aX|YIr36*kCfv=$%2Zs zzdAgNWstiA$o&A*QN9dwkb8fnGSUz)1H9iMVWh#kMQK@z9J_*9xT%QpA4-W*0Qc{h zP*T990h zAIRQ_ABwu}N)*kProd)MMjD&>q+Am%@Wuyh5`DYFHPqO9h2Rsz6I=#gR{&pgOxpPp z8Gx@6L(mL-ImBx=z6P$2_@(3|@bw7eIOYE+c}RS{HBmHQngU-T8EJgwlaj`l7~l8B z7k{td>)pc>Tn1lP0$(jA?R<&k;A)GMSErYD9fUM6mS?9|m z2U&+Il~GM@sq;#~!4cHUfSg$A*_onu0JT_lNL!g-r`e ziZ;VlaCMG4VHx$UMuyVujtds%xE&%*L%L2TA1NJ{- zg5UlZT0+4FzdJD*8_o99eAc!CQKne#prwLx%N^7}ndJ@)e(p1T)2S=FX(mL9qKV_B zH1RZF=(wK>^by@;7<56ykCxqs}sXg0+P0o$X1y$ObxEx*TT(MoLz+nS?ejW^TDDmGIUZG78j_9#&!W~I9tkE)SI;b3u_xB z4VqwI;thyRd~)-i+_OhR`L63>m7sZEP=w9%*oUMZTO}v+L-r0PHtB@5F-Ecd%QfgU zs^P%s zFW?z_eUvYZRlfL6#k;&i*syb$c3}18X@yPQC)d5g22K`V;==e#Svm@NjHJp?lqFRt zkGG7e!M-i$OdGDK<>S~zg$1y_?YjIu_S&4mqLf(98?MEoYeX+*!C*vEA;V;TKK3Dq zZIKg52Zek{%c_^11AWts1jXyLOL-m9r=CF}Hl!U(Zcd>${kzo{7V|xl+7}cNh{DU8 z6O9+@mN_r|yPEWZ$<^@xOH2a!4TxZ^&a%cAOx|9pTvom{161!PVWvR^=U0$&sl^)$ zf#@KyfTH$AtPAH=iwwihpSJK$8!=4e9#C~a(R?NKYOEaxLkK$uIg41{L^;rB4P=Qof8;YXN{yZCcmu_YttA``(7kyu{Zk)%Pw zW-DBMC?7?~e_Be%!b-l*w3THg^rpX+Jd|?uqnmz|jJ`JM;z!nmBDKFwu$d2BVHsR% zWh~=5SjN*#*7*&@ETew|dCNyMyZ3N`fuvYIq6L_8%SY5ew0zW`NSb*3ZNAFWq(917 zEjIld?5b4mUdBoZI~k0xt;m(8*y&03b2sx&1$f<=DxoO#TFR$1moIZ+3fG{}paXZ} zC*NHUK}gQ9Lnr1!uBuc{8ZJT{Y`m#Ct(M-#JP|{7oTZy1mUbiyC>-573`Yy4Il3Xn z5l)NRCeGZgE;gOo8TH7hCl5PrOZN{R4 zo$kpvQhSLM>bGc(`>h5Ko=76+Qp1x!ZYQST8Pab;3yuXa&>DZ}v z?D3}gTVA5wdecqXP4h36E@f>I%@1yYN?r*?dIQey55^h}T_toO*xb}{a2rHN*YaR{ zmqS;mOqgx!yZi&(U~_oRbAK@#0`7_ z0y&NHgWSSH)JEhBLW$z4kGNO3zEU};H*pO85)OF9ae6o@keQ6!c9-cQ&PKwS%`L6? zi{(;W3lHcQU^OnFn-#9X>piGIZYq25xA9Q}W3upp)EbuFaXzGU9~#a(#mUQ4Q|uf~ z?RITX%+~izO$jvK4iks1-;jo70(vOHKD|R-Wz z%gcl2LKm2K$NU8jiFNHHeIs(V`uuA&JVw1Q=6k zcu`&l4TlnSu#sWkI`EcPfd^E9a4{+$M$C!QVHiOhM~M*Jv*xtx9ub2I z_^nIk?*B*g|D#zL+?qyn7*hN+T=k%k!v0}ox?n$m{|Do|qw3kO#jmX3;nsLppmy&8 zJ|H{j8g^kTO(hRn*t)y?~5j3nxx~)GKxErf~&F+(Tm?L zLqj=!A(FyC@=hfCX)wgEMY45pWG~`>F}>RjqzrQtl5L`(`Iv1{wf~J~KoH%5BxK0$ zXL&{d3GzIHY;k$c#fM36NY4DhsQMi!f`GZ~*PL=TV6~fxEO30XOdrPm<=U|~rr(W% zMd!??{R>rKI>YVG;)yQlSuu2nu2+>2Pz7qwiLH2@FaI zRfTaUsUE6q#NobD95S5D*n3fEP^=>+dr26DCVOY>T`a3TP;Xnf-q`&NQVOxOh`S@D zxD)z2OodA6PaMWVU8eoU6clN#BY9fO8wwMq-r~jY3Cp;%i(Tr)d}6FS5Y4h%zQlw> zt@k$jagb;vlQ8uIy zk*K(ZYXq?>G`eQA&y;miad-G%Ku`t_&;_ixviijKY*y zw0PMFClgb7o;rC)r3gbdq0pd+MT8+FjAU=0td-r_H)H=R%R16n^aZ836Z*TJ3YF4d z`B?Pjg$Wx$ENVXj$%+v4Sv;mg(3ccYsL=f_1+og=lORj!J{}Y%VIsaVk!CMFTYe!C zg37)i)N4ivdJo9W4nggoC#lhU``z@^qNn$SPw&Ok=)=upnEaDVcq587?_SZ&rzBf@!>;CkQ6(NWh4`m$3_w= zDs-(NYLuS}svp8BHD?5nyR&5@9bdoKk~8 zm7G|y4@SxqiSY4MDSkvi@i`P46nlt(f>ek!8GfHNw1r_R|sOw~;zX%K{MJDv(tGf}~pt5c$EPh%lw) zOE;HaNJN;@afiyzh%o;Ri^(UFx2S_?CU5niQGREzrWSQQ~}9Hu%Wp93_TAU&$hO#H@WM@qOtd!z+}? zP_o!J8jQ$KMT2|6&P9j@A3!rQ8srjWG02Mqh>Apm2eGTH)@|aPRDAMAlZbxe5D$0o z(UQ^}Mp9Q~M>WBQbf|^m#x-I!OivF-dRnbmak-QXMfB07LbJjq3&o1JN3r4x@Uy~N zBIH~s#kB|^-iktlVhs^MkbnvX5H8C)(une7rMMG1{RkB*rPK1u*S}hru$9D+f-W_9 ztfJv`@c2cf4pOMl{TB*k6}l%umePHG94LZE=?bK;%P%B?N9pH7y=DZDUj?~&!6Uur z!Q;Qs6Puo7PpcC=9^rdjM-n#PF?`raRP+rPgU2u1$cxj>Vy>KxMAI^g;lfTuvYU7{ z{9{f2Bl4Y-+lG%`$HKB}Lxw}HnMZ8eR};sVK5pHrYP|nqc|>?BV*MVh{~|=J^N^Q} zSh?(2B(y;QCo^J=@6hpUz&OK(~&A>KAp-pgo&Y$c-a3@LHVvPbdE41PgZJKaRbpcdQULf-Yj(luoO` z0R>p7mzMx|xGKP*U7zW8J32o$GTh6#mRX1##evY+Ihcxs=k|JLFHGkz4RxMhQgn6_ zBIxWwql@>Fb9_@q=5_)8t=4PMB=78w(-Z6L*i)a*PLPXkb@=T8?97AXhSzQS-iSWf zTESLTm74w?;N`p9Gfw}YjxgL&s}{>x7~HD9m!sKuVubsqz^x3`;^@ua#bAbIFXLSd zabYkS57|*h?AmW6&M$pO8BX=ZnCv^n6ETqLFc-nlMd&c!iDqPn$z{l#ry+n;pu?=h zZZpwvUkvWAXBXHo8L)26<^D-Rzf6(HFdi2)WgCY2aS9l+*~n|wu2Z4w7*FpFd5W7< zvZUw`qzKRgX6HZfl>A zd*Oq4`e*v2?~d|Cg8WV>jLb;vOM1eB%ui!)^tVwcZ+1i;1o3g?eYRj;Iz=JUjQvfb z>(cxDaB#%*(bv~Ugr|J{?}3qv;OnSum&xqC-Vo-|4tp#>1!K&*d3mNpe98k+*eA3V)l10 z6`BqMDLbsAYW)u`bvl=`~s%Q}--SrFgSsUD`vG5b5J}iFWd1 zmj^k`rx?xsv#wx%+~1uu!zKzEESK` zGA)0`J}^K`6i13_c|v%>Y55lxs8vkMOQV({N*YYp85o)B4V4DVZ)%KiY722hI=Hv-s#>P4%9lz=F#qB=TDAgZvNo#bMql7eZ$k> ziOY6^ULl^veL1uA;XbFZOvcQ_WcX70ASETTt}g*3s%{&fG_e?i-;-)TbiU&w-nZ5TX7hnvt^+T!1Y0c}hSiGeV6|-@p8zQ#WWn zorMrsh@$y=%;wi{{9)=g-`LEBG=LS<5E;xr3W}v;j~h&8cQk8%o(l1~ioXvz&Mzst z1SueN2_f#{eaYa->kZpwm#~qZSeL+_`g93`+*Ie2WR8<)9^?MQ{845UnZ%8;+mPeu z@bHQC9U*NyL)zF=k~VXzlz7y_oOxR?(djhy*Bc%xzX3;q-*_75mm{f4NxHcQNqbMz zspaOBIb&`Vr0#<0vXTK?Zgucu3vZ^1 zy3gR}l=#_ooA|ZOcWTu|y>^D)qPa2ZlF#>oD;kdD)8XsN%X`-c+i*Csk8_=?%d{BP zL&`K_Y^zhH8wOC+LzOc;#o%{XdsSK&t1_j5WV9#>Gqv1~zBzV3HDnQ1H-s~d~mCDb>4PG?7@A%|<|Eu>7+5}ZLy_1+dtv$L9sWlB3awbx7ZGEtvk1~{6##k-AU^ek4 zQH6ackQhw!dLtTS>1*RJ5`}{u#DfPxnGjJEJoRuLf;d_q60hU;2BX~zuEZ_hj$5zR zjSldEW+Z2X{t)w<>Bi%kQJ z2r4I}L74l3tzgE339v;@WZx#TRcR1N0b{V6p3sPA;4*Wk4c$;}b*OxctDg&h0-`&~ zs(_sK5`fsWT9)6tZ^xcsx?^;zxL_TZwc|>4;%_UZ&}wXzj3cB0+X$3Xr3VhRj)$`xe)B|&bNJixfSF+#yXBF3LV5ymjcD80>9-s!rb9;l7nFvw(Ot*t3ra_%= z`H(;N0~dfEr)ISqz<_iNSCFglx{HZ?RtskfqcNRZ<0j^nfSJ~!QHKei2MMNO_-JGo z*0S|8RimX_&8l9nV|joa#@m9OR5PjEGnx(V)-D7aaRW#X-Au5VyA#+iposIOEf0rv#p>;zGOmd|c`0nFgsABDq^=IO+i<1HI44FKa8_O{-frt$x`w_sJ%8ZHh5%ib1=tsHzel>;X z11MlLtwpC9+7-)sRU$FWJsGQUQntzpT@kCF1=Q3}?n>4r-mD9z;E8JvK5(WkXG_g# zHaWb}8&4b*>5lVwS*~Phwc63kl5JtUmg)GVT}4{?5ff))3v4|SVM|%-ktlJTN$*V0cDLr0 z?jC8E#EAn*977j`@;DbL=N3*b#7W^K+&}>HDj>WnMTLR_if08w0)(ni_X79&QmK3I z_n$|fK0Vz%-LoTU<%+UBr_ba6zyCYuKd(OLsfp(<{O&sTU%12X+D?0U&aBtlox0`s z!_DJLI2tQ><9Z#_GiK=&%Ee&dS1=yhwBidW;@NgXSMrJ^uz5GJ#d=-oJc?E zTeZOHw4>zqguTh0e4;;NPlXeK6Ev;Zt8j8*;aK&^vD1Buf*2dmSj$wjdhy{tmts@b zM43U~-Wg6+BO&b#;U*#5$#7%SX>)|#g8BM{FM zZL`InHrIPy^<&Yjo%gH;#p#8Ufw@Gl`t}Zc+TLp4Y;UmlgpVIQ>sy|G@PgTP0^2-) z@QByxE_Rj=E^P%A_k6hDRwAY0bPP=X`$Kc{f+TR6@?AHLV+wkuW{M(Cvv!oqz^&FW;pHgBF(~N zrSVpJq~U(jz6F&6gxZKIUK`-k4Bl*~H&x#O*Mpv?RZ)rdjC0IsTKkQb(>~qn;;*?3 zMzh}wr}i7Z)qQa9JA=KmtSVEUJ6N7(yWI)QM3WHS^Y{a|1*q!t#$E>1-b4G12c!&D zziZa4c_WHq>^*b{6lbl-?r?&o=!=E{^m?4v%1F&f8Jym;U?ZHagjfl9=tn>r9}MwY!U632dX^@_~lUrWXPEEhbS=*eI$pertbb4ziYHa1ky~WAzB9mj_ZCVrEz6w>H#u$AkBwFB zjpSHmdHjbe^6va1(FQimUNfj(Fq=I~FFw4^?{&K!FR1!0^iki_>rj9B88nOT!MIe} zelAfXhev#2pk;#)d=P@}z}yALx>&vo-LCb%UqSdk;)+$qM@6e3kcM zecm-M)4jw90U0^t2~X&1_QQSoImA2j>KrSr4l$P*q{f z=RUvIX$LgmQan@xxhZlROP<-aW3R(^J#1oVHE+zLU(Sl0fA{-~i)${TBX8D%;_%8Avx_arI-x}RISR=bXld371Ki;MZTODP}5u#-&(?%8a{%5FYq~4cxm-EG?W-|{xc33ZJ@>u%lh^7-Mhf0_uY^JCJ_*Ml`Yh{w4=wJ2UO zzi)iZU=?izrD0^gmV4Ax&0Jz?-pGLr*I~N2FVG)WIo&2b^7=UyRvM1gtXC5qKvg>@ z*!vj$)GLuR*^%3F1l>{3>9S#(;Heg-+|ADmN$fqmG1Ivj?_rZB|D9q_yPu~&Yuq^G z^&@N-JN1DejHrhiO&P2vW7#zrPiD&2e^AQSg0;Uzi8yP22akCz4>9DoDLQA!uxjxVMcw1Z z3ivFAuxjCc4v!L5!FTtIv9Pdm3XK*YWT0qf~Ey!Mu2%E1HeT*tH?zER; za>!x0pm=gn?tXVE*j`7mr`@~o2hAf!fW|9NJsX=jV{hVPEW|lJ7G+;~>L>hImxv^Y zmlNwlCuYGT2RiK@U}EQcsMm50XINBsKmO>gh;GrxIy4EIZqZIJh?~^Mh|w~J*;JU+ zy)Ra9IKfJhbzl5a%&(HjY$2kE3l=7PoGF-QLV6R=4sqT*Xu=V-Q&K03DP+NOOzLr3 z@Ev@nNSJWGat3v=huK-9X0{E#Yt@{_ikRazEO>dm!8CrY(`%zndPWxuJs2=!g^Oxv z-3&|&`A}n>@3-cd!De(*Y7iUgfSOj%<<}}jG8R2kWoK4 zcB6LK#8hO{!x*}HohBSEjEgBXr`2m2?OtmU#-!%gGuu8!nlPeI#=U4eHQO-TD@Jg! zV^F*98y8`EyfS6)jnTui%x>2*y;Mu*PnEepmoQ8rJHM1^XL^&cbA#FW((A6QpA@2y z^*=jy>v#FA>6JCVoVpc$SN>FB{bj;pg$VFxnFOFWSDXMzAqo-TPsUDwU&I`+^2ujx zjHND^o?|Y;RpS}Wd!0I2b#&V>A=GnxTh#J~*J&9YjNnWxQi`VDjJFSS2Kfgug-UCj zd?uK3MavI=frZLB@3q%u6n3xUlkF_;UyV3DlYxUgla-un&AvBChj_moUh1xMWZB_Al?K7lJ96yRin{Fs#fc+g!1F@LS)W1R?AgA}} zE@QsMue7XI$6Gmj`t*=o%oguxHw=o)Q=#+S_OU0eZY-jQMv{3QtUa_url(3|N^yr| z%12#Ow0i}pIn+tao(Z@<5h*z-5Z<8nu{&|4CMWdkTN#WJ9<|YZQ|Wq8M79i>DYe zOYoCaY~fh~oh07@AwSNAwBtqQ663{E1qxzNDG@Q;{ekuIFUaCmJ3o55LFRsgi2h>P?r=Iy+d$ zCUT~_`f5wjjH|U6a!{H%M!kOH=xxR{WW5&Y(M2u8j$2C=DcC{fjLZ%N&mcSaJH?KB zOG&4*<7NPI7XzdaJ2-Y_*g=S=v4c8avHq@3j%b%xf*V7ouO2G}gx+rKft)885T%$= zEmfpo29;Bs8M`vD0Ws2EDPD9-$)@w-7QoSBa1`PNN3IMn2=6pr>`e@DvW7Qlj%8A$ zm92dATVe7er7+Pc@?8-5hZrV0MK;n{OqR)ir~;oaRiGdUl~SA_H|Amlnq)^%a=uhb zPMs_UfcY!~rVv>;hGob?$fuFzb+Iw7K1$3P-=;BVBgKzQ$bKkjzETProine29cYhAG#Xoi0_NAQqKUoLH}44Uk~n$mtcV^-@~ul)MwLnhe%Ll;jpDLrJn* z8YS;foj%pu`P8Y?GzMkuAe7vPT-fz9%`uUUGIljb@V~Pf4)ox5DZ-N@1l_ zYZj{f3d2gL){v>7KP*+GAQzQWoLmP-0S`ngolXJyx23ewNw*I`{uKkV5a~GPWk^Ss zN+aFE;F8QBa%Gld(pWeZ6(V^U3sC@myA*&r6JHDcUS$B5Vq#?zNL9GoD40m)6ldb0 zG2jVet~MJ5^K>blb)N1A%r_!^!HIBgkup3bJErmUF;1cQDqkM1MOXL|vtNRiNSz=m zg(w8yPzphvsB=*8K89c^qQ0qAk%FjH&X|Zg98if^E>R0)qhLN)N@ty@1oK%2bD;*6 zTciw8sQ^yY{8W$9!osxs<^t;jVlT++S=9Vo^=}}qLjh$r*H50X0=t8wP{ayA^jl&7 zbSdn`rjQRQzTwjk8c)Z+emF;KEchA|$3;}JsbPjTQ_QkG9W{KDiX~`ld3UX*q4DVagAP^?W(OX#5+A~ho|lGT&!e{$*&t|&n+ZH*4XlcFJx#t z41j=DSw?&}5ivu2PW6y~1iP<~(P;=7GLKrq3AtHCr~a4FOm!ph44_8M5s1UgvI ziI<2rGNZ(t)^o%XPx0+K8Rf~%Jb`)MYRhdmqm;xN8utY1zuf4+m-T1#%@2DAT8H$O zfn}F)-Pb15%EoQ*g=*z~s#GhdJMw$b=swRp%+UP`yK~e)*DmX|lJn80e&W z2pIhD;-unml_3>@oJOiASlh)964GbB#s+m_UggHD5+%*DBPgtI++1e(r1R}zKyf|N zV>Wr%Fnv4}5tHKM$xLA|TM7f6Z-;@woeYCQ(*hi>GJGSD)A-hc_2cuPmv#;`t##Y3 zOCVX73|2V5sT9sS*Ny;&!^ODvuFC)gTD?nMjKb|)Dcp2^9tCb^i}RC1T!x=yn0$Wn zS@Wb(#yex4&rc@7AU}Dq!udieoOOO40}S4X{JaEEr15ji#VFjKE`^)U&o=?L4;AMp zhqw$s$uMdBY@qd0Yb;52j(2?};kdWPi|6OqGOhKN)ECt`jou`S`b0&5LoTLLZa5BtVh-RJ%v0ru56 zEj}MI9^fAhiyv6U#KIIp`PmWlK%c}Ns#K0H`6cF zzKi~M*W7*LWXGY4o~NW98KIXJyf} z@r|7;f`B89fx?cr<6EfcJRLf9ClV<>{?}#VZ)k@W5|9);DN4Zu4FnQ-u%S>wFO>)0 z@+|OxEYLYt=~W+Em*D6!cEHj0J9ab?1i`&?op#+PVUU41UU^1m=aF&PUD9|wnJK<^ zSHbtU5#L#(qAN_~0+!hnmC6i{s04lgDg?#lSE+*Tpjr^CDN?S1a3w~#3Naqf5aae_ zO;SXZb#8`VaE1|ZvB*l`pIn8&Ph<%E@amfi3H33a)hkauKfK*}<*83(wLG!i@-MDJ z;cAA$oDiyAlhO}_E8M@d3Ng$KF^plYsg!GYL?!5#S0QLEL(pm7GAkbQW*5!2B64mV zCEg#eLOd%&ygM}hDwm+U6$$2Sf}(nSMoO;kY>b6pTZPz58DbM+S#C}Wn;S==`mI%n z=VXX?dj_hSqm^=E|2p+HqI$1DMRbWNdFB|V-(H2#=QD)fo$mLgm|3qCl9kHn9mZCM zP`FDl))gDp>5#JCoq#km9fOy;D=} zi#7Q%fH-;4xQH(BMcjdc3!-Ru_~|+0qG6 zUZ;VxAaRKLDRap(&eqKp;}HjEanDuoAHz=Xz0@y9+0tg0r!d9VyH;UlA7dnIm`PoIiZ;@kF@vVe?Mh1ktH*MvsyBK}XayW2p>C^rzg zHWJ#;x(;Rg0Tcs)=+1jJdbEPp1NQ7OmZ;^RX^)kUrg?o{vc}}-?sI< z_B?&#hQE})a0!)pkM7D7XC+JLaurFenuQ-07LiLb`SX=x0`3$g;a^0^3K9fBA;*)^9k(ELibbjlU=tQ`#st2IOwJfxMew8#|i!PFs%yf}TfdLo!i%{q?xX5py80jK8hRj92 zEQmCUi-g9P*hLmDp`eQ_oL}_axcVeL(gv6>@_@BZerCj7MQzGsn|248` zAr~nLfSyxSwTin)_tPlNo!Wx`dy$?h^z@nN>9csEtG|=(kc+z-cesGTh?+hhi#I&F zssW=ECfgbQx3xT8RN@cwg*U_o2QpR4XmLx-K(foKg(=404$@?=%H}&lBT5@yP56%J z2bH$&J*4=R_k-7^up!$GD)|T8;7!oyGPuFxC`P(L4k2@cdjyRNxWSJc6DN|;Ng_V( zgXi;->DQ}bRlk9YSmbP{n6*r~%qGQ^$aTYLOIYMG;s;o-6>(H`J}a;+<-l&HMBIU$ zifmEHfl1TBfkkzqtOIMJNbbN|^u!z(d&+WPT-?<-u*YNVqxSL5SbW*SSbSMbu57pV z`K!ULX_^f4aB@>ld<#u1gA`}CJKdPl?`6GKb>?Zo`Sd!I?*e}?N*i9KwiwYHD#hLB z2!ku{4R1;DhB4-3J4U6-fMa|Ts$B-h__HWRI!2BrbBs?3ausll7f*`|+}LTv@}@Yo zqnWmLne5uS1|6^kZ#FO`I^gmK)9{(lZhbD=W+rRd6)Rs=<6jbJrB`G7jwkx|Ui_PV zq7SHDF}?W#O2l2?FGOe;a(&V`aD7n)DC_#ZiXyq|`y+Z{u8%!sxjruLYFyu2&{{@& z@W$fqj;zYv30bmT+^5#Ei;JWm=GNk?IuZN>QEheu76W-HJ$7EF6$dn z+VCpEc0@O&lyzSvy|28R+7)wC($<+%mrDEr*Yq{0a~WLIj;+cyaRixb`g=j50GY*DT{e)S3p(ar(uTdX_^e@_6lP>v)7Fx z{jeP-V(m_v7tSrJHf5dLJt&epw|nV{IXCu{<=nWqt8s3}u{w;yL&xIQ4vp^CNQ!KS z_K7v?(74>gT-kQnfN`(~oY+R54R>GshvM;xTps5;uH#YK@T$OYM3<%1bRQ>;ue{6J z8n<}%I7$gV;H(Zqk;~w$JQO3xQ5-wg_#G3(Dd4PLK0#M;%WaYD0|tJWqO}}&CJsXu zJ}f#tIvO?6UEMe_nNDOTCnpc9rt7;ah)wr;`|_AZIwJalI3gMone>h&!oJK!-0V%C z!C>+dvzzkNXy2$cJ3h`(9xS&jzgd+-v8!1H)lj@&*etz=o8j<|QX)Q@dv9d(LZdlJ z5jec4(v@|1&!I@}@IFpY%;B-8EQiO%U5&$gjBQLlW%<2k;E&1itzz$HT$*eLxOVq$ z>hceBgwfv3c(RlU%B}JDvX<(BiuYd-yiMnQzJvVPDD4{Fn4*KhFdorSDs|moC(WGpB z=JEDPQol?RRWbff$dq0&G91E-l!!Zozm0S%tb!Q}CkP6prn^@$k=Ogzr}I6p;HOFnA-HsNFAX z=QdDV_Y(Fd--$$dQz7ybflnjutp(%K=LE_!?rTV{EANt`u^Y2TrYll{54fT!C~_HG z(E`CNJ|p1RF;}#eVC3Ji4f~AX!>c(tGr-+8{7Rbnu8AcwTvEfBI&ZYGUPhn0(Ws7} zJS5`LRHBMj^DnS)>E+glG^(P!Qy^K&fo`Eh+=0G5vP7baC05qN6rwa79B5P($~sUV zMRErk&=Yf@>?zBEa&cGVKu^XFEf~u@;^EQf5hGEuUFj#+t}B%%u=iOjXy<$c7wuz< z6iyjMO+_zd4U2^+mj8%gX*$dE{pt@zX~U}rSLIwwefXwyb)P4-ue_()DQ6j#p)=i; zl77HleF)lI26y#E6eHag2avg|rv-%yjGW$Z7)L76+#mBSm^2^wu8jd9rxat?vB?Us ziX2ph`3)g)dWFdtSAB#MakucRk;aAGf&>U|A>v(GxA12ulDmaJrzhqX*i)8U;Nrq9 z=p`kU6YQ!#{fjle9seI9*}fjh#-5V0*;^&zs)QN)fpD_h zZ5*gKd}MwbwyVIovY;vjnXw%#cEz5yHwaPp!x-1(b!fv)ey8Wv(DB|+tX&^&$9;ny z?k=o~@RPU&ON7vci~W<~W?ZO9^WAHxqU zC&MW*U)}MLehO3II42P2E8@o%UQ88vpU2ON_}TNC__ZzQ)T)bS?L56jaTAcsTj__p z8l6ti?gUosKjOrO(rj6SlQ<{=ippwX|=orYCr zG>D86MS`a3`z&CqXVH;h)h2F0Z1x|yCalDOxVDNU8ou!|m+!$||me?9_p1Kb-0XjRW@|@EttgtiP;Up4aiJ zHm3iZmIs_k)LPIFcks?w*2|OXpxgG@no1PZ^{rmLQ(bNm zrLMJ>yI3%(##1tu)PgFVV1eCol(1TNd~>l$iU=tuWreW!hg+eHk1D_xWDtFuh*oW2 z2NIIqfA7vFWs&pnu}pz2Ww*)ve;D zQrzK*`$9>-trW6oLUyVg;f;0>bp82*2NCSg@sm;KI^NR3es}}LWC9>&70XXBPXKdl zM)-j{?s^^Y-0n4MiR>vvWq+s4p4O{~vga*t&ar|9D+AU3pdGZDC~PV)7g3Aqf!%*( zbGQebY*nM`87WZpyTp)Z!fXANc3>`7ZD+}D;ve|CvDqQ&Z}nTaLxrCL>jS9k*l%_y zENWH<_w#XR_tb2R!*JB7$LkwVW)LFv`Cb=AY^O6jodEdrcHkLyG^x{WfCI8&*hNi+ z-&;(?b6P}Rx|WpH#*M610%ux_RvlG%1tQp%6`+tCuuET=FJJ}FQ|wwlO0r!po$(bHh3}O?1WIDR=|$D1I^I5 zKZyoU3#EZ43r22@=*K3y*A_SaBKjl+@@My31|L2EO6ikCtio{+#6;jrHu<`=3D~7QRW9wha%sWZr3G!5X5w9%sds52 zgw61{)W>wG584a2#VY}`%C?$=szlU)rFaOnbuu0|e>{Z8Lu-Oc(^~8_qk6@nUY`hz zVozx~PRUYPqFq}4tRG2!@`hwy;?26Sf|j_}!A2}{Ia_L-W|Pw!-gxq`2!9rI`f&dg zS{2NYpnU>6ebgf=a0ZOp?yvZ0gk|&B4QrAKtf5obrSfe{ypM4m~ao;;s6uBAMg_Bq0ZYl^P+Z{bLWyxwm(Av!)A!;RE( zpxbf!=v$ATI!gTy-f?7kpb@9e;UkX{m_NXakVg=SVo?1a#pve;@lsCX$}57qv2#Ge z9P5gETXJG3`+t#yC~N;OAQ5EzcudCd#J+u}*;(Lp+^C%I;|Imkz>FwR%ZdE(Ok9Mhg5jDOZ*Pe}P0v3f#1B-(k9$d=Vgo2t~Gmg>MSi$hqqFvUcTrM Ja}PWB{{bLl-@^a^ diff --git a/finalSphinxDocs/_build/html/PAMI.partialPeriodicFrequentPattern.basic.html b/finalSphinxDocs/_build/html/PAMI.partialPeriodicFrequentPattern.basic.html index 582a09a9..fe949dd6 100644 --- a/finalSphinxDocs/_build/html/PAMI.partialPeriodicFrequentPattern.basic.html +++ b/finalSphinxDocs/_build/html/PAMI.partialPeriodicFrequentPattern.basic.html @@ -310,6 +310,7 @@

Submodules class PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS(iFile, minSup, maxPer, minPR, sep='\t')[source]

Bases: partialPeriodicPatterns

+

About this algorithm

Description:

PPF_DFS is algorithm to mine the partial periodic frequent patterns.

@@ -319,148 +320,160 @@

SubmodulesParameters:
    -
  • iFile – str : -Name of the Input file to mine complete set of frequent pattern’s

  • -
  • oFile – str : -Name of the output file to store complete set of frequent patterns

  • -
  • minSup – str: -The user can specify minSup either in count or proportion of database size.

  • -
  • minPR – str: -Controls the maximum number of transactions in which any two items within a pattern can reappear.

  • -
  • maxPer – str: -Controls the maximum number of transactions in which any two items within a pattern can reappear.

  • -
  • sep – str : -This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.

  • +
  • iFile (str) – Name of the Input file to mine complete set of correlated patterns.

  • +
  • oFile (str) – Name of the output file to store complete set of correlated patterns.

  • +
  • minSup (int or float or str) – The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count.

  • +
  • minPR (str) – Controls the maximum number of transactions in which any two items within a pattern can reappear.

  • +
  • maxPer (str) – Controls the maximum number of transactions in which any two items within a pattern can reappear.

  • +
  • sep (str) – This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.

Attributes:
-
-
iFilefile

input file path

-
-
oFilefile

output file name

-
-
minSupfloat

user defined minSup

-
-
maxPerfloat

user defined maxPer

-
-
minPRfloat

user defined minPR

-
-
tidlistdict

it stores tids each item

-
-
lastint

it represents last time stamp in database

-
-
lnoint

number of line in database

-
-
mapSupportdict

to maintain the information of item and their frequency

-
-
finalPatternsdict

it represents to store the patterns

-
-
runTimefloat

storing the total runtime of the mining process

-
-
memoryUSSfloat

storing the total amount of USS memory consumed by the program

-
-
memoryRSSfloat

storing the total amount of RSS memory consumed by the program

-
-
+
    +
  • memoryUSS (float) – To store the total amount of USS memory consumed by the program.

  • +
  • memoryRSS (float) – To store the total amount of RSS memory consumed by the program.

  • +
  • startTime (float) – To record the start time of the mining process.

  • +
  • endTime (float) – To record the completion time of the mining process.

  • +
  • minSup (int) – The user given minSup.

  • +
  • maxPer (int) – The user given maxPer.

  • +
  • minPR (int) – The user given minPR.

  • +
  • finalPatterns (dict) – It represents to store the pattern.

  • +
Methods:
-
-
getPer_Sup(tids)

caluclate ip / (sup+1)

-
-
getPerSup(tids)

caluclate ip

-
-
oneItems(path)

scan all lines in database

-
-
save(prefix,suffix,tidsetx)

save prefix pattern with support and periodic ratio

-
-
Generation(prefix, itemsets, tidsets)

Userd to implement prefix class equibalence method to generate the periodic patterns recursively

-
-
startMine()

Mining process will start from here

-
-
getPartialPeriodicPatterns()

Complete set of patterns will be retrieved with this function

-
-
save(ouputFile)

Complete set of frequent patterns will be loaded in to an ouput file

-
-
getPatternsAsDataFrame()

Complete set of frequent patterns will be loaded in to an ouput file

-
-
getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

-
-
getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

-
-
getRuntime()

Total amount of runtime taken by the mining process will be retrieved from this function

-
-
+
    +
  • mine()Mining process will start from here.

  • +
  • Generation(prefix, itemsets, tidsets)Used to implement prefix class equibalence method to generate the periodic patterns recursively.

  • +
  • getPartialPeriodicPatterns()Complete set of patterns will be retrieved with this function.

  • +
  • storePatternsInFile(ouputFile)Complete set of frequent patterns will be loaded in to an output file.

  • +
  • getPatternsAsDataFrame()Complete set of frequent patterns will be loaded in to an output file.

  • +
  • getMemoryUSS()Total amount of USS memory consumed by the mining process will be retrieved from this function.

  • +
  • getMemoryRSS()Total amount of RSS memory consumed by the mining process will be retrieved from this function.

  • +
  • getRuntime()Total amount of runtime taken by the mining process will be retrieved from this function.

  • +

-
-
-
Format:
>>> python3 PPF_DFS.py <inputFile> <outputFile> <minSup> <maxPer> <minPR>
+

Execution methods

+

Terminal command

+
Format:
+
+(.venv) $ python3 PPF_DFS.py <inputFile> <outputFile> <minSup> <maxPer> <minPR>
+
+Example Usage:
+
+(.venv) $ python3 PPF_DFS.py sampleTDB.txt output.txt 0.25 300 0.7
 
-
-
Examples:
>>> python3 PPF_DFS.py sampleDB.txt patterns.txt 10 10 0.5
+
+

Note

+

minSup can be specified in support count or a value between 0 and 1.

+
+

Calling from a python program

+
from PAMI.partialPeriodicFrequentPattern.basic import PPF_DFS as alg
+
+iFile = 'sampleTDB.txt'
+
+minSup = 0.25 # can be specified between 0 and 1
+
+maxPer = 300 # can  be specified between 0 and 1
+
+minPR = 0.7 # can  be specified between 0 and 1
+
+obj = alg.PPF_DFS(inputFile, minSup, maxPer, minPR, sep)
+
+obj.mine()
+
+partialPeriodicFrequentPatterns = obj.getPatterns()
+
+print("Total number of partial periodic Patterns:", len(partialPeriodicFrequentPatterns))
+
+obj.save(oFile)
+
+Df = obj.getPatternInDf()
+
+memUSS = obj.getMemoryUSS()
+
+print("Total Memory in USS:", memUSS)
+
+memRSS = obj.getMemoryRSS()
+
+print("Total Memory in RSS", memRSS)
+
+run = obj.getRuntime()
+
+print("Total ExecutionTime in seconds:", run)
 
-
-
-
-

… code-block:: python

-
-

from PAMI.partialPeriodicFrequentpattern.basic import PPF_DFS as alg

-

obj = alg.PPF_DFS(iFile, minSup)

-

obj.startMine()

-

frequentPatterns = obj.getPatterns()

-

print(“Total number of Frequent Patterns:”, len(frequentPatterns))

-

obj.save(oFile)

-

Df = obj.getPatternInDataFrame()

-

memUSS = obj.getMemoryUSS()

-

print(“Total Memory in USS:”, memUSS)

-

memRSS = obj.getMemoryRSS()

-

print(“Total Memory in RSS”, memRSS)

-

run = obj.getRuntime()

-

print(“Total ExecutionTime in seconds:”, run)

-
-
-

The complete program was written by S. Nakamura under the supervision of Professor Rage Uday Kiran.

-
+

Credits

+

The complete program was written by Nakamura and revised by Tarun Sreepada under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()[source]
-

Total amount of RSS memory consumed by the mining process will be retrieved from this function -:return: returning RSS memory consumed by the mining process -:rtype: float

+

Total amount of RSS memory consumed by the mining process will be retrieved from this function

+
+
Returns:
+

returning RSS memory consumed by the mining process

+
+
Return type:
+

float

+
+
getMemoryUSS()[source]
-

Total amount of USS memory consumed by the mining process will be retrieved from this function -:return: returning USS memory consumed by the mining process -:rtype: float

+

Total amount of USS memory consumed by the mining process will be retrieved from this function

+
+
Returns:
+

returning USS memory consumed by the mining process

+
+
Return type:
+

float

+
+
getPatterns()[source]
-

Function to send the set of frequent patterns after completion of the mining process -:return: returning frequent patterns -:rtype: dict

+

Function to send the set of frequent patterns after completion of the mining process

+
+
Returns:
+

returning frequent patterns

+
+
Return type:
+

dict

+
+
getPatternsAsDataFrame()[source]
-

Storing final frequent patterns in a dataframe -:return: returning frequent patterns in a dataframe -:rtype: pd.DataFrame

+

Storing final frequent patterns in a dataframe

+
+
Returns:
+

returning frequent patterns in a dataframe

+
+
Return type:
+

pd.DataFrame

+
+
getRuntime()[source]
-

Calculating the total amount of runtime taken by the mining process -:return: returning total amount of runtime taken by the mining process -:rtype: float

+

Calculating the total amount of runtime taken by the mining process

+
+
Returns:
+

returning total amount of runtime taken by the mining process

+
+
Return type:
+

float

+
+
@@ -479,9 +492,12 @@

Submodules
save(outFile)[source]
-

Complete set of frequent patterns will be loaded in to an output file -:param outFile: name of the output file -:type outFile: csv file

+

Complete set of frequent patterns will be loaded in to an output file

+
+
Parameters:
+

outFile (csv file) – name of the output file

+
+

diff --git a/finalSphinxDocs/_build/html/_modules/PAMI/partialPeriodicFrequentPattern/basic/GPFgrowth.html b/finalSphinxDocs/_build/html/_modules/PAMI/partialPeriodicFrequentPattern/basic/GPFgrowth.html index 2ae0e656..8e38d7e4 100644 --- a/finalSphinxDocs/_build/html/_modules/PAMI/partialPeriodicFrequentPattern/basic/GPFgrowth.html +++ b/finalSphinxDocs/_build/html/_modules/PAMI/partialPeriodicFrequentPattern/basic/GPFgrowth.html @@ -238,7 +238,7 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth

- **minPR** (*int*) -- *The user given minPR.* - **finalPatterns** (*dict*) -- *It represents to store the pattern.* - :Methods: - **mine()** -- *Mining process will start from here.* + :**Methods**: - **mine()** -- *Mining process will start from here.* - **getPatterns()** -- *Complete set of patterns will be retrieved with this function.* - **storePatternsInFile(ouputFile)** -- *Complete set of frequent patterns will be loaded in to an output file.* - **getPatternsAsDataFrame()** -- *Complete set of frequent patterns will be loaded in to an output file.* diff --git a/finalSphinxDocs/_build/html/_modules/PAMI/partialPeriodicFrequentPattern/basic/PPF_DFS.html b/finalSphinxDocs/_build/html/_modules/PAMI/partialPeriodicFrequentPattern/basic/PPF_DFS.html index 8bcd1b0e..b1b5e4b2 100644 --- a/finalSphinxDocs/_build/html/_modules/PAMI/partialPeriodicFrequentPattern/basic/PPF_DFS.html +++ b/finalSphinxDocs/_build/html/_modules/PAMI/partialPeriodicFrequentPattern/basic/PPF_DFS.html @@ -96,35 +96,41 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

 # PPF_DFS is algorithm to mine the partial periodic frequent patterns.
 #
-#
 # **Importing this algorithm into a python program**
-# --------------------------------------------------------
 #
-#     from PAMI.partialPeriodicFrequentPattern.basic import PPF_DFS as alg
+#           from PAMI.partialPeriodicFrequentPattern.basic import PPF_DFS as alg
+#
+#           iFile = 'sampleTDB.txt'
+#
+#           minSup = 0.25 # can be specified between 0 and 1
+#
+#           maxPer = 300 # can  be specified between 0 and 1
 #
-#     obj = alg.PPF_DFS(iFile, minSup)
+#           minPR = 0.7 # can  be specified between 0 and 1
 #
-#     obj.startMine()
+#           obj = alg.PPF_DFS(iFile, minSup, maxPer, minPR, sep)
 #
-#     frequentPatterns = obj.getPatterns()
+#           obj.mine()
 #
-#     print("Total number of Frequent Patterns:", len(frequentPatterns))
+#           frequentPatterns = obj.getPatterns()
 #
-#     obj.save(oFile)
+#           print("Total number of Frequent Patterns:", len(frequentPatterns))
 #
-#     Df = obj.getPatternInDataFrame()
+#           obj.save(oFile)
 #
-#     memUSS = obj.getMemoryUSS()
+#           Df = obj.getPatternInDataFrame()
 #
-#     print("Total Memory in USS:", memUSS)
+#           memUSS = obj.getMemoryUSS()
 #
-#     memRSS = obj.getMemoryRSS()
+#           print("Total Memory in USS:", memUSS)
 #
-#     print("Total Memory in RSS", memRSS)
+#           memRSS = obj.getMemoryRSS()
 #
-#     run = obj.getRuntime()
+#           print("Total Memory in RSS", memRSS)
 #
-#     print("Total ExecutionTime in seconds:", run)
+#           run = obj.getRuntime()
+#
+#           print("Total ExecutionTime in seconds:", run)
 #
 
 
@@ -155,105 +161,79 @@ 

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

[docs]class PPF_DFS(partialPeriodicPatterns): """ - :Description: PPF_DFS is algorithm to mine the partial periodic frequent patterns. - - :References: (Has to be added) - - :param iFile: str : - Name of the Input file to mine complete set of frequent pattern's - :param oFile: str : - Name of the output file to store complete set of frequent patterns - :param minSup: str: - The user can specify minSup either in count or proportion of database size. - :param minPR: str: - Controls the maximum number of transactions in which any two items within a pattern can reappear. - :param maxPer: str: - Controls the maximum number of transactions in which any two items within a pattern can reappear. - - :param sep: str : - This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator. - - :Attributes: - - iFile : file - input file path - oFile : file - output file name - minSup : float - user defined minSup - maxPer : float - user defined maxPer - minPR : float - user defined minPR - tidlist : dict - it stores tids each item - last : int - it represents last time stamp in database - lno : int - number of line in database - mapSupport : dict - to maintain the information of item and their frequency - finalPatterns : dict - it represents to store the patterns - runTime : float - storing the total runtime of the mining process - memoryUSS : float - storing the total amount of USS memory consumed by the program - memoryRSS : float - storing the total amount of RSS memory consumed by the program - - :Methods: - - getPer_Sup(tids) - caluclate ip / (sup+1) - getPerSup(tids) - caluclate ip - oneItems(path) - scan all lines in database - save(prefix,suffix,tidsetx) - save prefix pattern with support and periodic ratio - Generation(prefix, itemsets, tidsets) - Userd to implement prefix class equibalence method to generate the periodic patterns recursively - startMine() - Mining process will start from here - getPartialPeriodicPatterns() - Complete set of patterns will be retrieved with this function - save(ouputFile) - Complete set of frequent patterns will be loaded in to an ouput file - getPatternsAsDataFrame() - Complete set of frequent patterns will be loaded in to an ouput file - getMemoryUSS() - Total amount of USS memory consumed by the mining process will be retrieved from this function - getMemoryRSS() - Total amount of RSS memory consumed by the mining process will be retrieved from this function - getRuntime() - Total amount of runtime taken by the mining process will be retrieved from this function - - **Executing code on Terminal:** - ---------------------------------- - Format: - >>> python3 PPF_DFS.py <inputFile> <outputFile> <minSup> <maxPer> <minPR> - - Examples: - >>> python3 PPF_DFS.py sampleDB.txt patterns.txt 10 10 0.5 - - **Sample run of the importing code:** - --------------------------------------- - ... code-block:: python - - from PAMI.partialPeriodicFrequentpattern.basic import PPF_DFS as alg - - obj = alg.PPF_DFS(iFile, minSup) - - obj.startMine() - - frequentPatterns = obj.getPatterns() - - print("Total number of Frequent Patterns:", len(frequentPatterns)) + **About this algorithm** + + :**Description**: PPF_DFS is algorithm to mine the partial periodic frequent patterns. + + :**References**: (Has to be added) + + :**parameters**: - **iFile** (*str*) -- *Name of the Input file to mine complete set of correlated patterns.* + - **oFile** (*str*) -- *Name of the output file to store complete set of correlated patterns.* + - **minSup** (*int or float or str*) -- *The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count.* + - **minPR** (*str*) -- *Controls the maximum number of transactions in which any two items within a pattern can reappear.* + - **maxPer** (*str*) -- *Controls the maximum number of transactions in which any two items within a pattern can reappear.* + - **sep** (*str*) -- *This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.* + + :**Attributes**: - **memoryUSS** (*float*) -- *To store the total amount of USS memory consumed by the program.* + - **memoryRSS** (*float*) -- *To store the total amount of RSS memory consumed by the program.* + - **startTime** (*float*) -- *To record the start time of the mining process.* + - **endTime** (*float*) -- *To record the completion time of the mining process.* + - **minSup** (*int*) -- *The user given minSup.* + - **maxPer** (*int*) -- *The user given maxPer.* + - **minPR** (*int*) -- *The user given minPR.* + - **finalPatterns** (*dict*) -- *It represents to store the pattern.* + + :**Methods**: - **mine()** -- *Mining process will start from here.* + - **Generation(prefix, itemsets, tidsets)** -- *Used to implement prefix class equibalence method to generate the periodic patterns recursively.* + - **getPartialPeriodicPatterns()** -- *Complete set of patterns will be retrieved with this function.* + - **storePatternsInFile(ouputFile)** -- *Complete set of frequent patterns will be loaded in to an output file.* + - **getPatternsAsDataFrame()** -- *Complete set of frequent patterns will be loaded in to an output file.* + - **getMemoryUSS()** -- *Total amount of USS memory consumed by the mining process will be retrieved from this function.* + - **getMemoryRSS()** -- *Total amount of RSS memory consumed by the mining process will be retrieved from this function.* + - **getRuntime()** -- *Total amount of runtime taken by the mining process will be retrieved from this function.* + + + **Execution methods** + + **Terminal command** + + .. code-block:: console + + Format: + + (.venv) $ python3 PPF_DFS.py <inputFile> <outputFile> <minSup> <maxPer> <minPR> + + Example Usage: + + (.venv) $ python3 PPF_DFS.py sampleTDB.txt output.txt 0.25 300 0.7 + + .. note:: minSup can be specified in support count or a value between 0 and 1. + + **Calling from a python program** + + .. code-block:: python + + from PAMI.partialPeriodicFrequentPattern.basic import PPF_DFS as alg + + iFile = 'sampleTDB.txt' + + minSup = 0.25 # can be specified between 0 and 1 + + maxPer = 300 # can be specified between 0 and 1 + + minPR = 0.7 # can be specified between 0 and 1 + + obj = alg.PPF_DFS(inputFile, minSup, maxPer, minPR, sep) + + obj.mine() + + partialPeriodicFrequentPatterns = obj.getPatterns() + + print("Total number of partial periodic Patterns:", len(partialPeriodicFrequentPatterns)) obj.save(oFile) - Df = obj.getPatternInDataFrame() + Df = obj.getPatternInDf() memUSS = obj.getMemoryUSS() @@ -267,9 +247,9 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

print("Total ExecutionTime in seconds:", run) - **Credits:** - ------------- - The complete program was written by S. Nakamura under the supervision of Professor Rage Uday Kiran.\n + **Credits** + + The complete program was written by Nakamura and revised by Tarun Sreepada under the supervision of Professor Rage Uday Kiran. """ @@ -295,7 +275,6 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

def _creatingItemSets(self) -> None: """ - Storing the complete transactions of the database/input file in a database variable :return: None @@ -393,6 +372,13 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

self.mine()
def _getPerSup(self, arr): + """ + This function takes the arr as input and returns locs as output + + :param arr: an array contains the items. + :type arr: array + :return: locs + """ arr = list(arr) arr.append(self._maxTS) arr.append(0) @@ -404,6 +390,18 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

return locs def __recursive(self, cands, items): + """ + This method processes candidate patterns, generates new candidates by intersecting + itemsets, and filters them based on minimum support and periodic support ratio. + If new candidates are found, the method recursively calls itself. + + :param cands: List of current candidate patterns. + :type cands: List of tuple + :param items: Dictionary where keys are candidate patterns and values are sets of transaction indices in which the pattern occurs. + :type items: dict + :return: None + """ + for i in range(len(cands)): newCands = [] nitems = {} @@ -480,7 +478,9 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

self._partialPeriodicPatterns__memoryRSS = process.memory_info().rss
[docs] def getMemoryUSS(self): - """Total amount of USS memory consumed by the mining process will be retrieved from this function + """ + Total amount of USS memory consumed by the mining process will be retrieved from this function + :return: returning USS memory consumed by the mining process :rtype: float """ @@ -488,7 +488,9 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

return self._partialPeriodicPatterns__memoryUSS
[docs] def getMemoryRSS(self): - """Total amount of RSS memory consumed by the mining process will be retrieved from this function + """ + Total amount of RSS memory consumed by the mining process will be retrieved from this function + :return: returning RSS memory consumed by the mining process :rtype: float """ @@ -496,7 +498,9 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

return self._partialPeriodicPatterns__memoryRSS
[docs] def getRuntime(self): - """Calculating the total amount of runtime taken by the mining process + """ + Calculating the total amount of runtime taken by the mining process + :return: returning total amount of runtime taken by the mining process :rtype: float """ @@ -506,6 +510,7 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

[docs] def getPatternsAsDataFrame(self): """ Storing final frequent patterns in a dataframe + :return: returning frequent patterns in a dataframe :rtype: pd.DataFrame """ @@ -521,6 +526,7 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

[docs] def save(self, outFile): """ Complete set of frequent patterns will be loaded in to an output file + :param outFile: name of the output file :type outFile: csv file """ @@ -531,7 +537,9 @@

Source code for PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS

f.write(x + ":" + str(y[0]) + ":" + str(y[1]) + "\n")
[docs] def getPatterns(self): - """ Function to send the set of frequent patterns after completion of the mining process + """ + Function to send the set of frequent patterns after completion of the mining process + :return: returning frequent patterns :rtype: dict """ diff --git a/finalSphinxDocs/_build/html/partialPeriodicFrequentPatternbasicPPF_DFS.html b/finalSphinxDocs/_build/html/partialPeriodicFrequentPatternbasicPPF_DFS.html index c88e1e50..067d2626 100644 --- a/finalSphinxDocs/_build/html/partialPeriodicFrequentPatternbasicPPF_DFS.html +++ b/finalSphinxDocs/_build/html/partialPeriodicFrequentPatternbasicPPF_DFS.html @@ -121,6 +121,7 @@
class PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS(iFile, minSup, maxPer, minPR, sep='\t')[source]

Bases: partialPeriodicPatterns

+

About this algorithm

Description:

PPF_DFS is algorithm to mine the partial periodic frequent patterns.

@@ -130,148 +131,160 @@
Parameters:
    -
  • iFile – str : -Name of the Input file to mine complete set of frequent pattern’s

  • -
  • oFile – str : -Name of the output file to store complete set of frequent patterns

  • -
  • minSup – str: -The user can specify minSup either in count or proportion of database size.

  • -
  • minPR – str: -Controls the maximum number of transactions in which any two items within a pattern can reappear.

  • -
  • maxPer – str: -Controls the maximum number of transactions in which any two items within a pattern can reappear.

  • -
  • sep – str : -This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.

  • +
  • iFile (str) – Name of the Input file to mine complete set of correlated patterns.

  • +
  • oFile (str) – Name of the output file to store complete set of correlated patterns.

  • +
  • minSup (int or float or str) – The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count.

  • +
  • minPR (str) – Controls the maximum number of transactions in which any two items within a pattern can reappear.

  • +
  • maxPer (str) – Controls the maximum number of transactions in which any two items within a pattern can reappear.

  • +
  • sep (str) – This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.

Attributes:
-
-
iFilefile

input file path

-
-
oFilefile

output file name

-
-
minSupfloat

user defined minSup

-
-
maxPerfloat

user defined maxPer

-
-
minPRfloat

user defined minPR

-
-
tidlistdict

it stores tids each item

-
-
lastint

it represents last time stamp in database

-
-
lnoint

number of line in database

-
-
mapSupportdict

to maintain the information of item and their frequency

-
-
finalPatternsdict

it represents to store the patterns

-
-
runTimefloat

storing the total runtime of the mining process

-
-
memoryUSSfloat

storing the total amount of USS memory consumed by the program

-
-
memoryRSSfloat

storing the total amount of RSS memory consumed by the program

-
-
+
    +
  • memoryUSS (float) – To store the total amount of USS memory consumed by the program.

  • +
  • memoryRSS (float) – To store the total amount of RSS memory consumed by the program.

  • +
  • startTime (float) – To record the start time of the mining process.

  • +
  • endTime (float) – To record the completion time of the mining process.

  • +
  • minSup (int) – The user given minSup.

  • +
  • maxPer (int) – The user given maxPer.

  • +
  • minPR (int) – The user given minPR.

  • +
  • finalPatterns (dict) – It represents to store the pattern.

  • +
Methods:
-
-
getPer_Sup(tids)

caluclate ip / (sup+1)

-
-
getPerSup(tids)

caluclate ip

-
-
oneItems(path)

scan all lines in database

-
-
save(prefix,suffix,tidsetx)

save prefix pattern with support and periodic ratio

-
-
Generation(prefix, itemsets, tidsets)

Userd to implement prefix class equibalence method to generate the periodic patterns recursively

-
-
startMine()

Mining process will start from here

-
-
getPartialPeriodicPatterns()

Complete set of patterns will be retrieved with this function

-
-
save(ouputFile)

Complete set of frequent patterns will be loaded in to an ouput file

-
-
getPatternsAsDataFrame()

Complete set of frequent patterns will be loaded in to an ouput file

-
-
getMemoryUSS()

Total amount of USS memory consumed by the mining process will be retrieved from this function

-
-
getMemoryRSS()

Total amount of RSS memory consumed by the mining process will be retrieved from this function

-
-
getRuntime()

Total amount of runtime taken by the mining process will be retrieved from this function

-
-
+
    +
  • mine()Mining process will start from here.

  • +
  • Generation(prefix, itemsets, tidsets)Used to implement prefix class equibalence method to generate the periodic patterns recursively.

  • +
  • getPartialPeriodicPatterns()Complete set of patterns will be retrieved with this function.

  • +
  • storePatternsInFile(ouputFile)Complete set of frequent patterns will be loaded in to an output file.

  • +
  • getPatternsAsDataFrame()Complete set of frequent patterns will be loaded in to an output file.

  • +
  • getMemoryUSS()Total amount of USS memory consumed by the mining process will be retrieved from this function.

  • +
  • getMemoryRSS()Total amount of RSS memory consumed by the mining process will be retrieved from this function.

  • +
  • getRuntime()Total amount of runtime taken by the mining process will be retrieved from this function.

  • +
-
-
-
Format:
>>> python3 PPF_DFS.py <inputFile> <outputFile> <minSup> <maxPer> <minPR>
+

Execution methods

+

Terminal command

+
Format:
+
+(.venv) $ python3 PPF_DFS.py <inputFile> <outputFile> <minSup> <maxPer> <minPR>
+
+Example Usage:
+
+(.venv) $ python3 PPF_DFS.py sampleTDB.txt output.txt 0.25 300 0.7
 
-
-
Examples:
>>> python3 PPF_DFS.py sampleDB.txt patterns.txt 10 10 0.5
+
+

Note

+

minSup can be specified in support count or a value between 0 and 1.

+
+

Calling from a python program

+
from PAMI.partialPeriodicFrequentPattern.basic import PPF_DFS as alg
+
+iFile = 'sampleTDB.txt'
+
+minSup = 0.25 # can be specified between 0 and 1
+
+maxPer = 300 # can  be specified between 0 and 1
+
+minPR = 0.7 # can  be specified between 0 and 1
+
+obj = alg.PPF_DFS(inputFile, minSup, maxPer, minPR, sep)
+
+obj.mine()
+
+partialPeriodicFrequentPatterns = obj.getPatterns()
+
+print("Total number of partial periodic Patterns:", len(partialPeriodicFrequentPatterns))
+
+obj.save(oFile)
+
+Df = obj.getPatternInDf()
+
+memUSS = obj.getMemoryUSS()
+
+print("Total Memory in USS:", memUSS)
+
+memRSS = obj.getMemoryRSS()
+
+print("Total Memory in RSS", memRSS)
+
+run = obj.getRuntime()
+
+print("Total ExecutionTime in seconds:", run)
 
-
-
-
-

… code-block:: python

-
-

from PAMI.partialPeriodicFrequentpattern.basic import PPF_DFS as alg

-

obj = alg.PPF_DFS(iFile, minSup)

-

obj.startMine()

-

frequentPatterns = obj.getPatterns()

-

print(“Total number of Frequent Patterns:”, len(frequentPatterns))

-

obj.save(oFile)

-

Df = obj.getPatternInDataFrame()

-

memUSS = obj.getMemoryUSS()

-

print(“Total Memory in USS:”, memUSS)

-

memRSS = obj.getMemoryRSS()

-

print(“Total Memory in RSS”, memRSS)

-

run = obj.getRuntime()

-

print(“Total ExecutionTime in seconds:”, run)

-
-
-

The complete program was written by S. Nakamura under the supervision of Professor Rage Uday Kiran.

-
+

Credits

+

The complete program was written by Nakamura and revised by Tarun Sreepada under the supervision of Professor Rage Uday Kiran.

getMemoryRSS()[source]
-

Total amount of RSS memory consumed by the mining process will be retrieved from this function -:return: returning RSS memory consumed by the mining process -:rtype: float

+

Total amount of RSS memory consumed by the mining process will be retrieved from this function

+
+
Returns:
+

returning RSS memory consumed by the mining process

+
+
Return type:
+

float

+
+
getMemoryUSS()[source]
-

Total amount of USS memory consumed by the mining process will be retrieved from this function -:return: returning USS memory consumed by the mining process -:rtype: float

+

Total amount of USS memory consumed by the mining process will be retrieved from this function

+
+
Returns:
+

returning USS memory consumed by the mining process

+
+
Return type:
+

float

+
+
getPatterns()[source]
-

Function to send the set of frequent patterns after completion of the mining process -:return: returning frequent patterns -:rtype: dict

+

Function to send the set of frequent patterns after completion of the mining process

+
+
Returns:
+

returning frequent patterns

+
+
Return type:
+

dict

+
+
getPatternsAsDataFrame()[source]
-

Storing final frequent patterns in a dataframe -:return: returning frequent patterns in a dataframe -:rtype: pd.DataFrame

+

Storing final frequent patterns in a dataframe

+
+
Returns:
+

returning frequent patterns in a dataframe

+
+
Return type:
+

pd.DataFrame

+
+
getRuntime()[source]
-

Calculating the total amount of runtime taken by the mining process -:return: returning total amount of runtime taken by the mining process -:rtype: float

+

Calculating the total amount of runtime taken by the mining process

+
+
Returns:
+

returning total amount of runtime taken by the mining process

+
+
Return type:
+

float

+
+
@@ -290,9 +303,12 @@
save(outFile)[source]
-

Complete set of frequent patterns will be loaded in to an output file -:param outFile: name of the output file -:type outFile: csv file

+

Complete set of frequent patterns will be loaded in to an output file

+
+
Parameters:
+

outFile (csv file) – name of the output file

+
+
diff --git a/finalSphinxDocs/_build/html/searchindex.js b/finalSphinxDocs/_build/html/searchindex.js index 5435c53a..81fff1ed 100644 --- a/finalSphinxDocs/_build/html/searchindex.js +++ b/finalSphinxDocs/_build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["ContiguousFrequentPatterns1", "CorrelatedPatternMining1", "CoveragePatternMining1", "FaultTolerantPatternMining1", "FrequentPatternWithMultipleMinimumSupport1", "FuzzyCorrelatedPatternMining1", "FuzzyFrequentPatternMining1", "FuzzyGeoReferencedFrequentPatternMining1", "FuzzyGeoReferencedPeriodicFrequentPatternMining1", "FuzzyPeriodicFrequentPatternMining1", "GeoReferencedFrequentPatternMining1", "GeoReferencedFrequentSequencePatternMining1", "GeoReferencedPartialPeriodicPatternMining1", "GeoReferencedPeriodicFrequentPatternMining1", "HighUtilityFrequentPatternMining1", "HighUtilityGeo-referencedFrequentPatternMining1", "HighUtilityPatternMining1", "HighUtilitySpatialPatternMining1", "LocalPeriodicPatternMining1", "MultiplePartialPeriodicPatternMining1", "PAMI", "PAMI.AssociationRules", "PAMI.AssociationRules.basic", "PAMI.correlatedPattern", "PAMI.correlatedPattern.basic", "PAMI.coveragePattern", "PAMI.coveragePattern.basic", "PAMI.extras", "PAMI.extras.DF2DB", "PAMI.extras.calculateMISValues", "PAMI.extras.dbStats", "PAMI.extras.fuzzyTransformation", "PAMI.extras.generateDatabase", "PAMI.extras.graph", "PAMI.extras.image2Database", "PAMI.extras.imageProcessing", "PAMI.extras.messaging", "PAMI.extras.neighbours", "PAMI.extras.sampleDatasets", "PAMI.extras.stats", "PAMI.extras.syntheticDataGenerator", "PAMI.extras.visualize", "PAMI.faultTolerantFrequentPattern", "PAMI.faultTolerantFrequentPattern.basic", "PAMI.frequentPattern", "PAMI.frequentPattern.basic", "PAMI.frequentPattern.closed", "PAMI.frequentPattern.cuda", "PAMI.frequentPattern.maximal", "PAMI.frequentPattern.pyspark", "PAMI.frequentPattern.topk", "PAMI.fuzzyCorrelatedPattern", "PAMI.fuzzyCorrelatedPattern.basic", "PAMI.fuzzyFrequentPattern", "PAMI.fuzzyFrequentPattern.basic", "PAMI.fuzzyGeoreferencedFrequentPattern", "PAMI.fuzzyGeoreferencedFrequentPattern.basic", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic", "PAMI.fuzzyPartialPeriodicPatterns", "PAMI.fuzzyPartialPeriodicPatterns.basic", "PAMI.fuzzyPeriodicFrequentPattern", "PAMI.fuzzyPeriodicFrequentPattern.basic", "PAMI.geoReferencedPeriodicFrequentPattern", "PAMI.geoReferencedPeriodicFrequentPattern.basic", "PAMI.georeferencedFrequentPattern", "PAMI.georeferencedFrequentPattern.basic", "PAMI.georeferencedFrequentSequencePattern", "PAMI.georeferencedPartialPeriodicPattern", "PAMI.georeferencedPartialPeriodicPattern.basic", "PAMI.highUtilityFrequentPattern", "PAMI.highUtilityFrequentPattern.basic", "PAMI.highUtilityGeoreferencedFrequentPattern", "PAMI.highUtilityGeoreferencedFrequentPattern.basic", "PAMI.highUtilityPattern", "PAMI.highUtilityPattern.basic", "PAMI.highUtilityPattern.parallel", "PAMI.highUtilityPatternsInStreams", "PAMI.highUtilitySpatialPattern", "PAMI.highUtilitySpatialPattern.basic", "PAMI.highUtilitySpatialPattern.topk", "PAMI.localPeriodicPattern", "PAMI.localPeriodicPattern.basic", "PAMI.multipleMinimumSupportBasedFrequentPattern", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic", "PAMI.partialPeriodicFrequentPattern", "PAMI.partialPeriodicFrequentPattern.basic", "PAMI.partialPeriodicPattern", "PAMI.partialPeriodicPattern.basic", "PAMI.partialPeriodicPattern.closed", "PAMI.partialPeriodicPattern.maximal", "PAMI.partialPeriodicPattern.pyspark", "PAMI.partialPeriodicPattern.topk", "PAMI.partialPeriodicPatternInMultipleTimeSeries", "PAMI.periodicCorrelatedPattern", "PAMI.periodicCorrelatedPattern.basic", "PAMI.periodicFrequentPattern", "PAMI.periodicFrequentPattern.basic", "PAMI.periodicFrequentPattern.closed", "PAMI.periodicFrequentPattern.cuda", "PAMI.periodicFrequentPattern.maximal", "PAMI.periodicFrequentPattern.pyspark", "PAMI.periodicFrequentPattern.topk", "PAMI.periodicFrequentPattern.topk.TopkPFP", "PAMI.periodicFrequentPattern.topk.kPFPMiner", "PAMI.recurringPattern", "PAMI.recurringPattern.basic", "PAMI.relativeFrequentPattern", "PAMI.relativeFrequentPattern.basic", "PAMI.relativeHighUtilityPattern", "PAMI.relativeHighUtilityPattern.basic", "PAMI.sequence", "PAMI.sequentialPatternMining", "PAMI.sequentialPatternMining.basic", "PAMI.sequentialPatternMining.closed", "PAMI.stablePeriodicFrequentPattern", "PAMI.stablePeriodicFrequentPattern.basic", "PAMI.stablePeriodicFrequentPattern.topK", "PAMI.subgraphMining", "PAMI.subgraphMining.basic", "PAMI.subgraphMining.topK", "PAMI.uncertainFaultTolerantFrequentPattern", "PAMI.uncertainFrequentPattern", "PAMI.uncertainFrequentPattern.basic", "PAMI.uncertainGeoreferencedFrequentPattern", "PAMI.uncertainGeoreferencedFrequentPattern.basic", "PAMI.uncertainPeriodicFrequentPattern", "PAMI.uncertainPeriodicFrequentPattern.basic", "PAMI.weightedFrequentNeighbourhoodPattern", "PAMI.weightedFrequentNeighbourhoodPattern.basic", "PAMI.weightedFrequentPattern", "PAMI.weightedFrequentPattern.basic", "PAMI.weightedFrequentRegularPattern", "PAMI.weightedFrequentRegularPattern.basic", "PAMI.weightedUncertainFrequentPattern", "PAMI.weightedUncertainFrequentPattern.basic", "PartialPeriodicFrequentPatternMining1", "PartialPeriodicPatternMining1", "PeriodicCorrelatedPatternMining1", "PeriodicFrequentPatternMining1", "RecurringPatternMining1", "RelativeHighUtilityPatternMining1", "SequentialFrequentPatternMining1", "StablePeriodicPatternMining1", "UncertainFrequentPatternMining1", "UncertainGeoReferencedFrequentPatternMining1", "UncertainPeriodicFrequentPatternMining1", "WeightedFrequentNeighbourhoodPatternMining1", "WeightedFrequentPatternMining1", "WeightedFrequentRegularPatternMining1", "contiguousFrequentPatterns", "contiguousPatternMining", "correlatedPatternBasicCoMine", "correlatedPatternBasicCoMinePlus", "correlatedPatternMining", "coveragePatternBasicCMine", "coveragePatternBasicCPPG", "coveragePatternMining", "faultTolerantFrequentPatternBasicFTApriori", "faultTolerantFrequentPatternBasicFTFPGrowth", "faultTolerantPatternMining", "frequent1", "frequentPatternBasicApriori", "frequentPatternBasicAprioribitset", "frequentPatternBasicECLAT", "frequentPatternBasicECLATDiffset", "frequentPatternBasicECLATbitset", "frequentPatternBasicFPGrowth", "frequentPatternCUDAcuApriori", "frequentPatternCUDAcuAprioriBit", "frequentPatternCUDAcuAprioriGCT", "frequentPatternCUDAcuAprioriTID", "frequentPatternCUDAcuECLAT", "frequentPatternCUDAcuECLATBit", "frequentPatternCUDAcuECLATGCT", "frequentPatternMaximalmaxFPGrowth", "frequentPatternMining", "frequentPatternPysparkParallelApriori", "frequentPatternPysparkParallelECLAT", "frequentPatternPysparkParallelFPGrowth", "frequentPatternTopkFAE", "frequentPatternWithMultipleMinimumSupport", "frequentPatternclosedCHARM", "fuzzyCorrelatedPatternMining", "fuzzyCorrelatedPatternbasicFCPGrowth", "fuzzyFrequentPatternMining", "fuzzyFrequentPatternbasicFFIMiner", "fuzzyGeoReferencedFrequentPatternMining", "fuzzyGeoReferencedPeriodicFrequentPatternMining", "fuzzyGeoreferencedFrequentPatternbasicFFSPMiner", "fuzzyGeoreferencedPeriodicFrequentPatternbasicFGPFPMiner", "fuzzyPatternMining", "fuzzyPeriodicFrequentPatternMining", "fuzzyPeriodicFrequentPatternbasicFPFPMiner", "geoReferencedFrequentPatternMining", "geoReferencedFrequentSequencePatternMining", "geoReferencedPartialPeriodicPatternMining", "geoReferencedPatternMining", "geoReferencedPeriodicFrequentPatternMining", "geoReferencedPeriodicFrequentPatternbasicGPFPMiner", "georeferencedFrequentPatternbasicFSPGrowth", "georeferencedFrequentPatternbasicSpatialECLAT", "georeferencedPartialPeriodicPatternbasicSTEclat", "highUtilityFrequentPatternBasicHUFIM", "highUtilityFrequentPatternMining", "highUtilityGeo-referencedFrequentPatternMining", "highUtilityGeoreferencedFrequentPatternBasicSHUFIM", "highUtilityPatternBasicEFIM", "highUtilityPatternBasicHMiner", "highUtilityPatternBasicUPGrowth", "highUtilityPatternMining", "highUtilitySpatialPatternBasicHDSHUIM", "highUtilitySpatialPatternBasicSHUIM", "highUtilitySpatialPatternMining", "highUtilitySpatialPatternTopkTKSHUIM", "index", "localPeriodicPatternMining", "localPeriodicPatternbasicLPPGrowth", "localPeriodicPatternbasicLPPMBreadth", "localPeriodicPatternbasicLPPMDepth", "modules", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowth", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowthPlus", "multiplePartialPeriodicPatternMining", "multipleTimeseriesPatternMining", "partialPeriodicFrequentPatternMining", "partialPeriodicFrequentPatternbasicGPFgrowth", "partialPeriodicFrequentPatternbasicPPF_DFS", "partialPeriodicPatternInMultipleTimeSeriesPPGrowth", "partialPeriodicPatternMining", "partialPeriodicPatternbasicGThreePGrowth", "partialPeriodicPatternbasicPPPGrowth", "partialPeriodicPatternbasicPPP_ECLAT", "partialPeriodicPatternclosedPPPClose", "partialPeriodicPatternmaximalMax3PGrowth", "partialPeriodicPatterntopkk3PMiner", "periodicCorrelatedPatternMining", "periodicCorrelatedPatternbasicEPCPGrowth", "periodicFrequentPatternMining", "periodicFrequentPatternbasicPFECLAT", "periodicFrequentPatternbasicPFPGrowth", "periodicFrequentPatternbasicPFPGrowthPlus", "periodicFrequentPatternbasicPFPMC", "periodicFrequentPatternbasicPSGrowth", "periodicFrequentPatternclosedCPFPMiner", "periodicFrequentPatternmaximalMaxPFGrowth", "periodicFrequentPatterntopkTopkPFPTopkPFP", "periodicFrequentPatterntopkkPFPMinerkPFPMiner", "recurringPatternMining", "recurringPatternbasicRPGrowth", "relativeFrequent", "relativeFrequentPattern", "relativeFrequentPatternBasicRSFPGrowth", "relativeHighUtilityPatternBasicRHUIM", "relativeHighUtilityPatternMining", "sequentialFrequentPatternMining", "sequentialPatternMining", "sequentialPatternMiningBasicSPADE", "sequentialPatternMiningBasicSPAM", "sequentialPatternMiningBasicprefixSpan", "sequentialPatternMiningClosedbide", "stablePeriodicFrequentPatternbasicSPPEclat", "stablePeriodicFrequentPatternbasicSPPGrowth", "stablePeriodicFrequentPatterntopKTSPIN", "stablePeriodicPatternMining", "temporalPatternMining", "transactionalPatternMining", "uncertainFrequentPatternBasicCUFPTree", "uncertainFrequentPatternBasicPUFGrowth", "uncertainFrequentPatternBasicTUFP", "uncertainFrequentPatternBasicTubeP", "uncertainFrequentPatternBasicTubeS", "uncertainFrequentPatternBasicUFGrowth", "uncertainFrequentPatternBasicUVECLAT", "uncertainFrequentPatternMining", "uncertainGeoReferencedFrequentPatternMining", "uncertainGeoreferencedFrequentPatternBasicGFPGrowth", "uncertainPatternMining", "uncertainPeriodicFrequentPatternBasicUPFPGrowth", "uncertainPeriodicFrequentPatternBasicUPFPGrowthPlus", "uncertainPeriodicFrequentPatternMining", "utilityPatternMining", "weightedFrequentNeighbourhoodPatternBasicSWFPGrowth", "weightedFrequentNeighbourhoodPatternMining", "weightedFrequentPatternBasicWFIM", "weightedFrequentPatternMining", "weightedFrequentRegularPatternBasicWFRIMiner", "weightedFrequentRegularPatternMining"], "filenames": ["ContiguousFrequentPatterns1.rst", "CorrelatedPatternMining1.rst", "CoveragePatternMining1.rst", "FaultTolerantPatternMining1.rst", "FrequentPatternWithMultipleMinimumSupport1.rst", "FuzzyCorrelatedPatternMining1.rst", "FuzzyFrequentPatternMining1.rst", "FuzzyGeoReferencedFrequentPatternMining1.rst", "FuzzyGeoReferencedPeriodicFrequentPatternMining1.rst", "FuzzyPeriodicFrequentPatternMining1.rst", "GeoReferencedFrequentPatternMining1.rst", "GeoReferencedFrequentSequencePatternMining1.rst", "GeoReferencedPartialPeriodicPatternMining1.rst", "GeoReferencedPeriodicFrequentPatternMining1.rst", "HighUtilityFrequentPatternMining1.rst", "HighUtilityGeo-referencedFrequentPatternMining1.rst", "HighUtilityPatternMining1.rst", "HighUtilitySpatialPatternMining1.rst", "LocalPeriodicPatternMining1.rst", "MultiplePartialPeriodicPatternMining1.rst", "PAMI.rst", "PAMI.AssociationRules.rst", "PAMI.AssociationRules.basic.rst", "PAMI.correlatedPattern.rst", "PAMI.correlatedPattern.basic.rst", "PAMI.coveragePattern.rst", "PAMI.coveragePattern.basic.rst", "PAMI.extras.rst", "PAMI.extras.DF2DB.rst", "PAMI.extras.calculateMISValues.rst", "PAMI.extras.dbStats.rst", "PAMI.extras.fuzzyTransformation.rst", "PAMI.extras.generateDatabase.rst", "PAMI.extras.graph.rst", "PAMI.extras.image2Database.rst", "PAMI.extras.imageProcessing.rst", "PAMI.extras.messaging.rst", "PAMI.extras.neighbours.rst", "PAMI.extras.sampleDatasets.rst", "PAMI.extras.stats.rst", "PAMI.extras.syntheticDataGenerator.rst", "PAMI.extras.visualize.rst", "PAMI.faultTolerantFrequentPattern.rst", "PAMI.faultTolerantFrequentPattern.basic.rst", "PAMI.frequentPattern.rst", "PAMI.frequentPattern.basic.rst", "PAMI.frequentPattern.closed.rst", "PAMI.frequentPattern.cuda.rst", "PAMI.frequentPattern.maximal.rst", "PAMI.frequentPattern.pyspark.rst", "PAMI.frequentPattern.topk.rst", "PAMI.fuzzyCorrelatedPattern.rst", "PAMI.fuzzyCorrelatedPattern.basic.rst", "PAMI.fuzzyFrequentPattern.rst", "PAMI.fuzzyFrequentPattern.basic.rst", "PAMI.fuzzyGeoreferencedFrequentPattern.rst", "PAMI.fuzzyGeoreferencedFrequentPattern.basic.rst", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.rst", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.rst", "PAMI.fuzzyPartialPeriodicPatterns.rst", "PAMI.fuzzyPartialPeriodicPatterns.basic.rst", "PAMI.fuzzyPeriodicFrequentPattern.rst", "PAMI.fuzzyPeriodicFrequentPattern.basic.rst", "PAMI.geoReferencedPeriodicFrequentPattern.rst", "PAMI.geoReferencedPeriodicFrequentPattern.basic.rst", "PAMI.georeferencedFrequentPattern.rst", "PAMI.georeferencedFrequentPattern.basic.rst", "PAMI.georeferencedFrequentSequencePattern.rst", "PAMI.georeferencedPartialPeriodicPattern.rst", "PAMI.georeferencedPartialPeriodicPattern.basic.rst", "PAMI.highUtilityFrequentPattern.rst", "PAMI.highUtilityFrequentPattern.basic.rst", "PAMI.highUtilityGeoreferencedFrequentPattern.rst", "PAMI.highUtilityGeoreferencedFrequentPattern.basic.rst", "PAMI.highUtilityPattern.rst", "PAMI.highUtilityPattern.basic.rst", "PAMI.highUtilityPattern.parallel.rst", "PAMI.highUtilityPatternsInStreams.rst", "PAMI.highUtilitySpatialPattern.rst", "PAMI.highUtilitySpatialPattern.basic.rst", "PAMI.highUtilitySpatialPattern.topk.rst", "PAMI.localPeriodicPattern.rst", "PAMI.localPeriodicPattern.basic.rst", "PAMI.multipleMinimumSupportBasedFrequentPattern.rst", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.rst", "PAMI.partialPeriodicFrequentPattern.rst", "PAMI.partialPeriodicFrequentPattern.basic.rst", "PAMI.partialPeriodicPattern.rst", "PAMI.partialPeriodicPattern.basic.rst", "PAMI.partialPeriodicPattern.closed.rst", "PAMI.partialPeriodicPattern.maximal.rst", "PAMI.partialPeriodicPattern.pyspark.rst", "PAMI.partialPeriodicPattern.topk.rst", "PAMI.partialPeriodicPatternInMultipleTimeSeries.rst", "PAMI.periodicCorrelatedPattern.rst", "PAMI.periodicCorrelatedPattern.basic.rst", "PAMI.periodicFrequentPattern.rst", "PAMI.periodicFrequentPattern.basic.rst", "PAMI.periodicFrequentPattern.closed.rst", "PAMI.periodicFrequentPattern.cuda.rst", "PAMI.periodicFrequentPattern.maximal.rst", "PAMI.periodicFrequentPattern.pyspark.rst", "PAMI.periodicFrequentPattern.topk.rst", "PAMI.periodicFrequentPattern.topk.TopkPFP.rst", "PAMI.periodicFrequentPattern.topk.kPFPMiner.rst", "PAMI.recurringPattern.rst", "PAMI.recurringPattern.basic.rst", "PAMI.relativeFrequentPattern.rst", "PAMI.relativeFrequentPattern.basic.rst", "PAMI.relativeHighUtilityPattern.rst", "PAMI.relativeHighUtilityPattern.basic.rst", "PAMI.sequence.rst", "PAMI.sequentialPatternMining.rst", "PAMI.sequentialPatternMining.basic.rst", "PAMI.sequentialPatternMining.closed.rst", "PAMI.stablePeriodicFrequentPattern.rst", "PAMI.stablePeriodicFrequentPattern.basic.rst", "PAMI.stablePeriodicFrequentPattern.topK.rst", "PAMI.subgraphMining.rst", "PAMI.subgraphMining.basic.rst", "PAMI.subgraphMining.topK.rst", "PAMI.uncertainFaultTolerantFrequentPattern.rst", "PAMI.uncertainFrequentPattern.rst", "PAMI.uncertainFrequentPattern.basic.rst", "PAMI.uncertainGeoreferencedFrequentPattern.rst", "PAMI.uncertainGeoreferencedFrequentPattern.basic.rst", "PAMI.uncertainPeriodicFrequentPattern.rst", "PAMI.uncertainPeriodicFrequentPattern.basic.rst", "PAMI.weightedFrequentNeighbourhoodPattern.rst", "PAMI.weightedFrequentNeighbourhoodPattern.basic.rst", "PAMI.weightedFrequentPattern.rst", "PAMI.weightedFrequentPattern.basic.rst", "PAMI.weightedFrequentRegularPattern.rst", "PAMI.weightedFrequentRegularPattern.basic.rst", "PAMI.weightedUncertainFrequentPattern.rst", "PAMI.weightedUncertainFrequentPattern.basic.rst", "PartialPeriodicFrequentPatternMining1.rst", "PartialPeriodicPatternMining1.rst", "PeriodicCorrelatedPatternMining1.rst", "PeriodicFrequentPatternMining1.rst", "RecurringPatternMining1.rst", "RelativeHighUtilityPatternMining1.rst", "SequentialFrequentPatternMining1.rst", "StablePeriodicPatternMining1.rst", "UncertainFrequentPatternMining1.rst", "UncertainGeoReferencedFrequentPatternMining1.rst", "UncertainPeriodicFrequentPatternMining1.rst", "WeightedFrequentNeighbourhoodPatternMining1.rst", "WeightedFrequentPatternMining1.rst", "WeightedFrequentRegularPatternMining1.rst", "contiguousFrequentPatterns.rst", "contiguousPatternMining.rst", "correlatedPatternBasicCoMine.rst", "correlatedPatternBasicCoMinePlus.rst", "correlatedPatternMining.rst", "coveragePatternBasicCMine.rst", "coveragePatternBasicCPPG.rst", "coveragePatternMining.rst", "faultTolerantFrequentPatternBasicFTApriori.rst", "faultTolerantFrequentPatternBasicFTFPGrowth.rst", "faultTolerantPatternMining.rst", "frequent1.rst", "frequentPatternBasicApriori.rst", "frequentPatternBasicAprioribitset.rst", "frequentPatternBasicECLAT.rst", "frequentPatternBasicECLATDiffset.rst", "frequentPatternBasicECLATbitset.rst", "frequentPatternBasicFPGrowth.rst", "frequentPatternCUDAcuApriori.rst", "frequentPatternCUDAcuAprioriBit.rst", "frequentPatternCUDAcuAprioriGCT.rst", "frequentPatternCUDAcuAprioriTID.rst", "frequentPatternCUDAcuECLAT.rst", "frequentPatternCUDAcuECLATBit.rst", "frequentPatternCUDAcuECLATGCT.rst", "frequentPatternMaximalmaxFPGrowth.rst", "frequentPatternMining.rst", "frequentPatternPysparkParallelApriori.rst", "frequentPatternPysparkParallelECLAT.rst", "frequentPatternPysparkParallelFPGrowth.rst", "frequentPatternTopkFAE.rst", "frequentPatternWithMultipleMinimumSupport.rst", "frequentPatternclosedCHARM.rst", "fuzzyCorrelatedPatternMining.rst", "fuzzyCorrelatedPatternbasicFCPGrowth.rst", "fuzzyFrequentPatternMining.rst", "fuzzyFrequentPatternbasicFFIMiner.rst", "fuzzyGeoReferencedFrequentPatternMining.rst", "fuzzyGeoReferencedPeriodicFrequentPatternMining.rst", "fuzzyGeoreferencedFrequentPatternbasicFFSPMiner.rst", "fuzzyGeoreferencedPeriodicFrequentPatternbasicFGPFPMiner.rst", "fuzzyPatternMining.rst", "fuzzyPeriodicFrequentPatternMining.rst", "fuzzyPeriodicFrequentPatternbasicFPFPMiner.rst", "geoReferencedFrequentPatternMining.rst", "geoReferencedFrequentSequencePatternMining.rst", "geoReferencedPartialPeriodicPatternMining.rst", "geoReferencedPatternMining.rst", "geoReferencedPeriodicFrequentPatternMining.rst", "geoReferencedPeriodicFrequentPatternbasicGPFPMiner.rst", "georeferencedFrequentPatternbasicFSPGrowth.rst", "georeferencedFrequentPatternbasicSpatialECLAT.rst", "georeferencedPartialPeriodicPatternbasicSTEclat.rst", "highUtilityFrequentPatternBasicHUFIM.rst", "highUtilityFrequentPatternMining.rst", "highUtilityGeo-referencedFrequentPatternMining.rst", "highUtilityGeoreferencedFrequentPatternBasicSHUFIM.rst", "highUtilityPatternBasicEFIM.rst", "highUtilityPatternBasicHMiner.rst", "highUtilityPatternBasicUPGrowth.rst", "highUtilityPatternMining.rst", "highUtilitySpatialPatternBasicHDSHUIM.rst", "highUtilitySpatialPatternBasicSHUIM.rst", "highUtilitySpatialPatternMining.rst", "highUtilitySpatialPatternTopkTKSHUIM.rst", "index.rst", "localPeriodicPatternMining.rst", "localPeriodicPatternbasicLPPGrowth.rst", "localPeriodicPatternbasicLPPMBreadth.rst", "localPeriodicPatternbasicLPPMDepth.rst", "modules.rst", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowth.rst", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowthPlus.rst", "multiplePartialPeriodicPatternMining.rst", "multipleTimeseriesPatternMining.rst", "partialPeriodicFrequentPatternMining.rst", "partialPeriodicFrequentPatternbasicGPFgrowth.rst", "partialPeriodicFrequentPatternbasicPPF_DFS.rst", "partialPeriodicPatternInMultipleTimeSeriesPPGrowth.rst", "partialPeriodicPatternMining.rst", "partialPeriodicPatternbasicGThreePGrowth.rst", "partialPeriodicPatternbasicPPPGrowth.rst", "partialPeriodicPatternbasicPPP_ECLAT.rst", "partialPeriodicPatternclosedPPPClose.rst", "partialPeriodicPatternmaximalMax3PGrowth.rst", "partialPeriodicPatterntopkk3PMiner.rst", "periodicCorrelatedPatternMining.rst", "periodicCorrelatedPatternbasicEPCPGrowth.rst", "periodicFrequentPatternMining.rst", "periodicFrequentPatternbasicPFECLAT.rst", "periodicFrequentPatternbasicPFPGrowth.rst", "periodicFrequentPatternbasicPFPGrowthPlus.rst", "periodicFrequentPatternbasicPFPMC.rst", "periodicFrequentPatternbasicPSGrowth.rst", "periodicFrequentPatternclosedCPFPMiner.rst", "periodicFrequentPatternmaximalMaxPFGrowth.rst", "periodicFrequentPatterntopkTopkPFPTopkPFP.rst", "periodicFrequentPatterntopkkPFPMinerkPFPMiner.rst", "recurringPatternMining.rst", "recurringPatternbasicRPGrowth.rst", "relativeFrequent.rst", "relativeFrequentPattern.rst", "relativeFrequentPatternBasicRSFPGrowth.rst", "relativeHighUtilityPatternBasicRHUIM.rst", "relativeHighUtilityPatternMining.rst", "sequentialFrequentPatternMining.rst", "sequentialPatternMining.rst", "sequentialPatternMiningBasicSPADE.rst", "sequentialPatternMiningBasicSPAM.rst", "sequentialPatternMiningBasicprefixSpan.rst", "sequentialPatternMiningClosedbide.rst", "stablePeriodicFrequentPatternbasicSPPEclat.rst", "stablePeriodicFrequentPatternbasicSPPGrowth.rst", "stablePeriodicFrequentPatterntopKTSPIN.rst", "stablePeriodicPatternMining.rst", "temporalPatternMining.rst", "transactionalPatternMining.rst", "uncertainFrequentPatternBasicCUFPTree.rst", "uncertainFrequentPatternBasicPUFGrowth.rst", "uncertainFrequentPatternBasicTUFP.rst", "uncertainFrequentPatternBasicTubeP.rst", "uncertainFrequentPatternBasicTubeS.rst", "uncertainFrequentPatternBasicUFGrowth.rst", "uncertainFrequentPatternBasicUVECLAT.rst", "uncertainFrequentPatternMining.rst", "uncertainGeoReferencedFrequentPatternMining.rst", "uncertainGeoreferencedFrequentPatternBasicGFPGrowth.rst", "uncertainPatternMining.rst", "uncertainPeriodicFrequentPatternBasicUPFPGrowth.rst", "uncertainPeriodicFrequentPatternBasicUPFPGrowthPlus.rst", "uncertainPeriodicFrequentPatternMining.rst", "utilityPatternMining.rst", "weightedFrequentNeighbourhoodPatternBasicSWFPGrowth.rst", "weightedFrequentNeighbourhoodPatternMining.rst", "weightedFrequentPatternBasicWFIM.rst", "weightedFrequentPatternMining.rst", "weightedFrequentRegularPatternBasicWFRIMiner.rst", "weightedFrequentRegularPatternMining.rst"], "titles": ["Contiguous Frequent Patterns", "Correlated Pattern Mining", "Coverage Pattern Mining", "Fault-Tolerant Frequent Pattern Mining", "Frequent pattern With Multiple Minimum Support", "Fuzzy Correlated Pattern Mining", "Fuzzy Frequent Pattern Mining", "Fuzzy Geo-referenced Frequent Pattern Mining", "Fuzzy Geo-referenced Periodic Frequent Pattern Mining", "Fuzzy Periodic Frequent Pattern Mining", "Geo-referenced Frequent Pattern Mining", "Geo-referenced Frequent Sequence Pattern mining", "Geo-referenced Partial Periodic Pattern Mining", "Geo-referenced Periodic Frequent Pattern Mining", "High-Utility Frequent Pattern Mining", "High-Utility Geo-referenced Frequent Pattern Mining", "High-Utility Pattern mining", "High-Utility Spatial Pattern Mining", "Local Periodic Pattern Mining", "Multiple Partial Periodic Pattern Mining", "PAMI package", "PAMI.AssociationRules package", "PAMI.AssociationRules.basic package", "PAMI.correlatedPattern package", "PAMI.correlatedPattern.basic package", "PAMI.coveragePattern package", "PAMI.coveragePattern.basic package", "PAMI.extras package", "PAMI.extras.DF2DB package", "PAMI.extras.calculateMISValues package", "PAMI.extras.dbStats package", "PAMI.extras.fuzzyTransformation package", "PAMI.extras.generateDatabase package", "PAMI.extras.graph package", "PAMI.extras.image2Database package", "PAMI.extras.imageProcessing package", "PAMI.extras.messaging package", "PAMI.extras.neighbours package", "PAMI.extras.sampleDatasets package", "PAMI.extras.stats package", "PAMI.extras.syntheticDataGenerator package", "PAMI.extras.visualize package", "PAMI.faultTolerantFrequentPattern package", "PAMI.faultTolerantFrequentPattern.basic package", "PAMI.frequentPattern package", "PAMI.frequentPattern.basic package", "PAMI.frequentPattern.closed package", "PAMI.frequentPattern.cuda package", "PAMI.frequentPattern.maximal package", "PAMI.frequentPattern.pyspark package", "PAMI.frequentPattern.topk package", "PAMI.fuzzyCorrelatedPattern package", "PAMI.fuzzyCorrelatedPattern.basic package", "PAMI.fuzzyFrequentPattern package", "PAMI.fuzzyFrequentPattern.basic package", "PAMI.fuzzyGeoreferencedFrequentPattern package", "PAMI.fuzzyGeoreferencedFrequentPattern.basic package", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern package", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic package", "PAMI.fuzzyPartialPeriodicPatterns package", "PAMI.fuzzyPartialPeriodicPatterns.basic package", "PAMI.fuzzyPeriodicFrequentPattern package", "PAMI.fuzzyPeriodicFrequentPattern.basic package", "PAMI.geoReferencedPeriodicFrequentPattern package", "PAMI.geoReferencedPeriodicFrequentPattern.basic package", "PAMI.georeferencedFrequentPattern package", "PAMI.georeferencedFrequentPattern.basic package", "PAMI.georeferencedFrequentSequencePattern package", "PAMI.georeferencedPartialPeriodicPattern package", "PAMI.georeferencedPartialPeriodicPattern.basic package", "PAMI.highUtilityFrequentPattern package", "PAMI.highUtilityFrequentPattern.basic package", "PAMI.highUtilityGeoreferencedFrequentPattern package", "PAMI.highUtilityGeoreferencedFrequentPattern.basic package", "PAMI.highUtilityPattern package", "PAMI.highUtilityPattern.basic package", "PAMI.highUtilityPattern.parallel package", "PAMI.highUtilityPatternsInStreams package", "PAMI.highUtilitySpatialPattern package", "PAMI.highUtilitySpatialPattern.basic package", "PAMI.highUtilitySpatialPattern.topk package", "PAMI.localPeriodicPattern package", "PAMI.localPeriodicPattern.basic package", "PAMI.multipleMinimumSupportBasedFrequentPattern package", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic package", "PAMI.partialPeriodicFrequentPattern package", "PAMI.partialPeriodicFrequentPattern.basic package", "PAMI.partialPeriodicPattern package", "PAMI.partialPeriodicPattern.basic package", "PAMI.partialPeriodicPattern.closed package", "PAMI.partialPeriodicPattern.maximal package", "PAMI.partialPeriodicPattern.pyspark package", "PAMI.partialPeriodicPattern.topk package", "PAMI.partialPeriodicPatternInMultipleTimeSeries package", "PAMI.periodicCorrelatedPattern package", "PAMI.periodicCorrelatedPattern.basic package", "PAMI.periodicFrequentPattern package", "PAMI.periodicFrequentPattern.basic package", "PAMI.periodicFrequentPattern.closed package", "PAMI.periodicFrequentPattern.cuda package", "PAMI.periodicFrequentPattern.maximal package", "PAMI.periodicFrequentPattern.pyspark package", "PAMI.periodicFrequentPattern.topk package", "PAMI.periodicFrequentPattern.topk.TopkPFP package", "PAMI.periodicFrequentPattern.topk.kPFPMiner package", "PAMI.recurringPattern package", "PAMI.recurringPattern.basic package", "PAMI.relativeFrequentPattern package", "PAMI.relativeFrequentPattern.basic package", "PAMI.relativeHighUtilityPattern package", "PAMI.relativeHighUtilityPattern.basic package", "PAMI.sequence package", "PAMI.sequentialPatternMining package", "PAMI.sequentialPatternMining.basic package", "PAMI.sequentialPatternMining.closed package", "PAMI.stablePeriodicFrequentPattern package", "PAMI.stablePeriodicFrequentPattern.basic package", "PAMI.stablePeriodicFrequentPattern.topK package", "PAMI.subgraphMining package", "PAMI.subgraphMining.basic package", "PAMI.subgraphMining.topK package", "PAMI.uncertainFaultTolerantFrequentPattern package", "PAMI.uncertainFrequentPattern package", "PAMI.uncertainFrequentPattern.basic package", "PAMI.uncertainGeoreferencedFrequentPattern package", "PAMI.uncertainGeoreferencedFrequentPattern.basic package", "PAMI.uncertainPeriodicFrequentPattern package", "PAMI.uncertainPeriodicFrequentPattern.basic package", "PAMI.weightedFrequentNeighbourhoodPattern package", "PAMI.weightedFrequentNeighbourhoodPattern.basic package", "PAMI.weightedFrequentPattern package", "PAMI.weightedFrequentPattern.basic package", "PAMI.weightedFrequentRegularPattern package", "PAMI.weightedFrequentRegularPattern.basic package", "PAMI.weightedUncertainFrequentPattern package", "PAMI.weightedUncertainFrequentPattern.basic package", "Partial Periodic Frequent Pattern Mining", "Partial Periodic Pattern Mining", "Periodic correlated pattern mining", "Periodic Frequent Pattern Mining", "Recurring Pattern Mining", "Relative High-Utility Pattern Mining", "Sequential Frequent Pattern mining", "Stable Periodic Pattern Mining", "Uncertain Frequent Pattern mining", "Uncertain Geo-Referenced Frequent Pattern mining", "Uncertain Periodic Frequent Pattern mining", "Weighted Frequent Neighbourhood Pattern Mining", "Weighted Frequent Pattern Mining", "Weighted Frequent Regular Pattern Mining", "<no title>", "Contiguous Patterns", "CoMine", "CoMinePlus", "Basic", "CMine", "CPPG", "Basic", "FTApriori", "FTFPGrowth", "Basic", "Frequent Pattern mining", "Apriori", "Aprioribitset", "ECLAT", "ECLATDiffset", "ECLATbitset", "FPGrowth", "cuApriori", "cuAprioriBit", "cudaAprioriGCT", "cudaAprioriTID", "cuEclat", "cuEclatBit", "cudaEclatGCT", "MaxFPGrowth", "Basic", "parallelApriori", "parallelECLAT", "parallelFPGrowth", "FAE", "Basic", "CHARM", "Basic", "FCPGrowth", "Basic", "FFIMiner", "Basic", "Basic", "FFSPMiner", "FGPFPMiner", "Fuzzy Pattern Mining", "Basic", "FPFPMiner", "Basic", "<no title>", "Basic", "Geo-referenced Pattern Mining", "Basic", "GPFPMiner", "FSPGrowth", "SpatialECLAT", "STEclat", "HUFIM", "Basic", "Basic", "SHUFIM", "EFIM", "HMiner", "UPGrowth", "Basic", "HDSHUIM", "SHUIM", "Basic", "TKSHUIM", "Welcome to PAMI\u2019s documentation!", "Basic", "LPPGrowth", "LPPMBreadth", "LPPMDepth", "PAMI", "CFPGrowth", "CFPGrowthPlus", "Basic", "Multiple Timeseries", "Basic", "GPFgrowth", "PPF_DFS", "PPGrowth", "Basic", "GThreePGrowth", "PPPGrowth", "PPP_ECLAT", "PPPClose", "Max3PGrowth", "k3PMiner", "Basic", "EPCPGrowth", "Basic", "PFECLAT", "PFPGrowth", "PFPGrowthPlus", "PFPMC", "PSGrowth", "CPFPMiner", "MaxPFGrowth", "TopkPFP", "kPFPMiner", "Basic", "RPGrowth", "Relative Frequent Pattern", "Basic", "RSFPGrowth", "RHUIM", "Basic", "Basic", "Sequential Database", "SPADE", "SPAM", "prefixSpan", "bide", "SPPEclat", "SPPGrowth", "TSPIN", "Basic", "Temporal Database", "Transactional Database", "CUFPTree", "PUFGrowth", "TUFP", "TubeP", "TubeS", "UFGrowth", "UVECLAT", "Basic", "Basic", "GFPGrowth", "Uncertain Database", "UPFPGrowth", "UPFPGrowthPlus", "Basic", "Utility Pattern mining", "SWFPGrowth", "Basic", "WFIM", "Basic", "WFRIMiner", "Basic"], "terms": {"ar": [1, 2, 6, 7, 8, 9, 11, 14, 15, 18, 46, 54, 56, 58, 62, 71, 73, 75, 79, 80, 82, 88, 90, 91, 97, 100, 110, 116, 119, 120, 123, 125, 127, 135, 136, 138, 142, 147, 148, 149, 154, 157, 182, 185, 186, 187, 188, 189, 190, 191, 192, 193, 195, 197, 203, 204, 205, 206, 207, 212, 214, 216, 217, 218, 219, 224, 225, 230, 231, 232, 234, 236, 239, 241, 242, 243, 245, 253, 255, 256, 261, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 283, 285, 287], "specif": [1, 13, 119, 120, 136, 138, 139, 140, 143, 154, 198, 225, 236, 238, 248, 264], "type": [1, 5, 24, 26, 28, 29, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 154, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 183, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "regular": [1, 13, 18, 19, 133, 136, 137, 139, 147, 154, 198, 215, 216, 223, 225, 229, 238, 265, 281, 283, 286, 287], "associ": [1, 5, 8, 10, 15, 45, 66, 75, 84, 120, 139, 144, 145, 146, 154, 161, 162, 163, 164, 166, 183, 188, 194, 201, 205, 209, 221, 238, 274, 275, 277, 280], "exist": [1, 19, 46, 80, 154, 182, 191, 214, 223, 265, 277, 281], "within": [1, 2, 12, 18, 24, 26, 52, 82, 86, 97, 98, 100, 101, 103, 108, 119, 120, 136, 137, 138, 139, 140, 143, 152, 153, 154, 155, 156, 157, 161, 184, 191, 196, 216, 217, 218, 219, 224, 225, 226, 227, 229, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 252, 264, 277, 281], "dataset": [1, 2, 3, 4, 10, 11, 12, 14, 15, 17, 18, 19, 30, 39, 43, 71, 73, 75, 79, 80, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 110, 116, 117, 123, 125, 127, 129, 131, 133, 135, 137, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 154, 157, 159, 160, 161, 181, 194, 195, 196, 203, 204, 205, 206, 207, 212, 213, 214, 216, 221, 222, 223, 228, 229, 230, 231, 234, 235, 237, 238, 240, 241, 243, 245, 246, 247, 248, 249, 252, 253, 254, 255, 262, 263, 267, 268, 269, 270, 271, 273, 274, 275, 276, 278, 279, 280, 282, 283, 284, 285, 286, 287], "where": [1, 2, 4, 8, 9, 11, 12, 14, 15, 17, 19, 82, 88, 91, 97, 110, 119, 120, 123, 125, 127, 129, 135, 136, 137, 139, 141, 142, 144, 145, 146, 147, 148, 149, 154, 157, 181, 188, 191, 192, 195, 196, 204, 205, 213, 217, 218, 219, 223, 225, 229, 230, 231, 238, 241, 250, 251, 253, 254, 255, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 285, 287], "occurr": [1, 2, 5, 8, 9, 12, 136, 138, 143, 145, 154, 157, 183, 188, 191, 192, 196, 225, 236, 250, 251, 264, 275, 277], "certain": [1, 3, 18, 119, 154, 160, 216], "item": [1, 4, 6, 14, 15, 17, 24, 26, 27, 28, 29, 30, 31, 32, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 145, 146, 148, 149, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 185, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 275, 276, 277, 278, 279, 280, 281, 282, 284, 285, 286, 287], "attribut": [1, 7, 8, 9, 10, 24, 26, 27, 28, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 144, 145, 146, 152, 153, 154, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 187, 188, 189, 190, 192, 193, 194, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 274, 275, 276, 278, 279, 280, 282, 284, 286], "statist": [1, 88, 91, 154, 230, 231], "other": [1, 10, 12, 71, 82, 106, 110, 116, 120, 141, 147, 148, 154, 194, 196, 197, 203, 217, 218, 219, 224, 249, 250, 251, 253, 254, 261, 265, 266, 283, 285], "These": [1, 2, 7, 8, 9, 13, 14, 15, 17, 119, 136, 137, 138, 141, 143, 148, 154, 157, 187, 188, 192, 198, 204, 205, 213, 225, 229, 236, 254, 264, 285], "repres": [1, 15, 19, 24, 28, 43, 45, 46, 48, 52, 54, 56, 58, 60, 62, 80, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 136, 139, 141, 148, 152, 153, 154, 159, 167, 175, 182, 184, 186, 189, 190, 191, 193, 197, 205, 214, 217, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 234, 237, 238, 239, 240, 241, 242, 243, 245, 249, 250, 251, 252, 254, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 285, 286], "meaning": [1, 5, 16, 140, 154, 183, 210, 248], "relationship": [1, 5, 7, 8, 9, 10, 138, 154, 183, 187, 188, 192, 194, 236], "depend": [1, 32, 40, 71, 73, 75, 79, 80, 110, 154, 203, 206, 207, 212, 214, 224, 253], "between": [1, 5, 6, 7, 8, 9, 24, 30, 39, 45, 46, 56, 75, 76, 82, 86, 97, 108, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 138, 143, 152, 153, 154, 162, 163, 164, 165, 166, 167, 182, 183, 185, 187, 188, 189, 191, 192, 217, 218, 219, 226, 236, 239, 240, 252, 264, 265, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "differ": [1, 4, 18, 147, 148, 149, 154, 181, 216, 250, 251, 283, 285, 287], "set": [1, 14, 24, 26, 28, 29, 31, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 204, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "discoveri": [1, 3, 8, 15, 43, 45, 75, 97, 108, 116, 123, 139, 141, 143, 144, 145, 146, 147, 148, 149, 154, 159, 160, 165, 167, 188, 205, 209, 238, 239, 241, 252, 254, 262, 264, 268, 274, 275, 277, 280, 283, 285, 287], "can": [1, 2, 24, 26, 27, 29, 31, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 140, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "provid": [1, 2, 119, 139, 140, 154, 157, 238, 248], "valuabl": [1, 154], "insight": [1, 2, 139, 140, 154, 157, 161, 238, 248], "underli": [1, 140, 154, 248], "structur": [1, 24, 82, 119, 120, 123, 141, 147, 149, 152, 153, 154, 161, 217, 254, 268, 283, 287], "behavior": [1, 13, 18, 82, 136, 137, 138, 139, 140, 143, 154, 198, 216, 217, 218, 219, 225, 229, 236, 238, 248, 264], "data": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 19, 24, 27, 28, 29, 30, 31, 33, 35, 39, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 104, 106, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 140, 141, 142, 143, 144, 145, 146, 149, 152, 153, 154, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 201, 202, 203, 206, 208, 209, 211, 212, 214, 217, 218, 219, 223, 224, 226, 228, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 247, 248, 249, 253, 254, 255, 261, 262, 263, 264, 267, 268, 269, 270, 271, 273, 274, 275, 276, 278, 279, 280, 281, 282, 284, 286, 287], "applic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 79, 116, 121, 123, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 154, 157, 160, 161, 181, 183, 185, 187, 188, 192, 194, 195, 196, 198, 204, 205, 210, 211, 213, 216, 223, 225, 229, 236, 238, 248, 250, 251, 254, 255, 261, 264, 267, 274, 275, 280, 281, 283, 285, 287], "fraud": [1, 14, 154, 204], "detect": [1, 14, 18, 24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 137, 140, 152, 153, 154, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 204, 206, 208, 211, 212, 216, 217, 218, 219, 226, 228, 229, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "suppli": [1, 154, 250, 251], "chain": [1, 154, 250, 251], "manag": [1, 12, 13, 17, 18, 136, 145, 154, 196, 198, 213, 216, 225, 275], "healthcar": [1, 2, 4, 5, 7, 14, 19, 137, 138, 139, 142, 144, 146, 148, 149, 154, 157, 181, 183, 187, 204, 223, 229, 236, 238, 255, 274, 280, 285, 287], "analysi": [1, 2, 3, 4, 5, 6, 8, 9, 14, 19, 50, 137, 138, 139, 141, 143, 148, 149, 154, 157, 160, 180, 181, 183, 185, 188, 192, 204, 223, 229, 236, 238, 250, 251, 254, 264, 285, 287], "retail": [1, 2, 4, 7, 138, 139, 141, 149, 154, 157, 181, 187, 236, 238, 254, 287], "market": [1, 4, 5, 7, 14, 19, 141, 142, 143, 148, 154, 181, 183, 187, 204, 223, 250, 251, 254, 255, 264, 285], "basic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 28, 42, 44, 48, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 78, 81, 83, 85, 87, 89, 91, 93, 94, 96, 98, 100, 101, 105, 107, 109, 112, 115, 117, 118, 121, 122, 124, 126, 128, 130, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 167, 175, 184, 186, 189, 190, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 237, 239, 240, 241, 242, 243, 244, 245, 249, 250, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "techniqu": [2, 3, 11, 12, 19, 24, 45, 46, 54, 56, 58, 62, 84, 137, 142, 152, 153, 157, 160, 162, 182, 186, 189, 190, 193, 195, 196, 222, 223, 229, 255], "focus": [2, 11, 12, 19, 119, 138, 139, 142, 143, 157, 195, 196, 223, 236, 238, 255, 264], "identifi": [2, 7, 12, 19, 119, 120, 139, 142, 143, 157, 161, 187, 191, 196, 223, 238, 255, 256, 264, 266, 277, 281], "cover": [2, 12, 19, 157, 196, 223], "substanti": [2, 157], "portion": [2, 157], "irrespect": [2, 157], "frequenc": [2, 5, 24, 30, 39, 43, 45, 46, 48, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 147, 149, 152, 153, 157, 158, 159, 166, 167, 175, 182, 183, 221, 222, 225, 227, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 249, 250, 251, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 283, 284, 286, 287], "unlik": [2, 3, 4, 6, 18, 136, 137, 138, 139, 143, 144, 146, 157, 160, 181, 185, 216, 225, 229, 236, 238, 264, 274, 280], "tradit": [2, 3, 4, 6, 18, 24, 52, 137, 138, 139, 143, 144, 146, 152, 153, 157, 160, 181, 184, 185, 216, 229, 236, 238, 264, 274, 280], "frequent": [2, 12, 17, 26, 28, 29, 31, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 143, 150, 151, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 215, 217, 218, 219, 221, 222, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 255, 256, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287], "which": [2, 3, 4, 6, 14, 18, 26, 27, 54, 56, 58, 62, 64, 66, 71, 75, 82, 86, 88, 97, 98, 100, 101, 103, 108, 110, 116, 119, 120, 123, 136, 138, 139, 144, 146, 148, 155, 156, 157, 160, 181, 185, 186, 189, 190, 193, 199, 201, 203, 204, 207, 216, 217, 218, 219, 225, 226, 227, 232, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 252, 253, 261, 271, 274, 280, 285], "priorit": [2, 157], "high": [2, 48, 52, 54, 56, 62, 71, 73, 75, 76, 79, 80, 110, 148, 157, 175, 184, 191, 193, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 253, 254, 281, 285], "emphas": [2, 157], "have": [2, 18, 49, 75, 79, 80, 82, 116, 119, 120, 144, 146, 148, 157, 179, 191, 207, 211, 212, 214, 216, 217, 218, 219, 250, 251, 256, 261, 262, 265, 274, 277, 280, 281, 285], "wide": [2, 157], "across": [2, 18, 157, 216], "consid": [2, 4, 5, 8, 18, 26, 40, 43, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 84, 97, 98, 100, 101, 106, 108, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 156, 157, 158, 159, 175, 177, 178, 179, 180, 181, 183, 184, 186, 188, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 216, 221, 222, 236, 238, 239, 240, 241, 242, 243, 244, 245, 249, 252, 253, 261, 262, 263, 267, 276, 278, 279, 282, 284, 286], "signific": [2, 4, 17, 40, 147, 148, 149, 157, 181, 213, 283, 285, 287], "thei": [2, 119, 157], "overal": [2, 14, 157, 204], "characterist": [2, 4, 157, 181], "trend": [2, 13, 116, 139, 157, 198, 238, 262], "present": [2, 120, 142, 157, 250, 251, 255], "understand": [2, 157], "broad": [2, 157], "inform": [2, 3, 6, 11, 24, 26, 43, 45, 46, 48, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 103, 106, 108, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 152, 153, 156, 157, 159, 160, 167, 175, 182, 185, 195, 217, 218, 219, 221, 222, 227, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 246, 249, 252, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "decis": [2, 16, 157, 210], "make": [2, 6, 16, 137, 143, 157, 185, 210, 229, 264], "process": [2, 4, 7, 9, 10, 24, 26, 31, 35, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 142, 143, 149, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 186, 187, 189, 190, 192, 193, 194, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 255, 261, 262, 263, 264, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286, 287], "optim": [2, 4, 142, 143, 149, 157, 181, 255, 264, 287], "oper": [2, 43, 45, 75, 79, 84, 108, 119, 131, 157, 159, 167, 208, 211, 212, 221, 222, 252, 284], "improv": [2, 97, 157, 241], "effici": [2, 24, 26, 46, 54, 56, 58, 62, 66, 71, 75, 76, 97, 108, 116, 121, 127, 135, 152, 153, 155, 157, 182, 186, 189, 190, 193, 201, 203, 207, 209, 239, 241, 243, 252, 262, 279], "effect": [2, 43, 45, 49, 97, 121, 131, 133, 157, 158, 159, 162, 167, 177, 178, 179, 191, 241, 277, 281, 284, 286], "web": [2, 14, 138, 142, 157, 204, 236, 250, 251, 255], "usag": [2, 14, 24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 86, 97, 100, 101, 106, 108, 110, 116, 120, 121, 123, 125, 127, 129, 131, 133, 135, 138, 152, 153, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 204, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 226, 236, 239, 240, 242, 245, 249, 250, 251, 252, 253, 261, 262, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "manufactur": [2, 4, 6, 9, 143, 149, 157, 181, 185, 192, 250, 251, 264, 287], "social": [2, 157], "network": [2, 4, 9, 49, 137, 139, 148, 157, 177, 181, 192, 229, 238, 250, 251, 285], "approach": [3, 4, 5, 43, 45, 88, 91, 97, 121, 123, 143, 159, 160, 167, 181, 183, 230, 231, 232, 239, 241, 242, 264, 267], "aim": [3, 12, 16, 26, 73, 79, 80, 116, 138, 143, 155, 160, 196, 206, 210, 212, 214, 236, 261, 262, 264], "discov": [3, 7, 10, 11, 12, 14, 16, 24, 26, 43, 45, 46, 48, 49, 50, 52, 56, 60, 62, 66, 69, 73, 75, 76, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 140, 143, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 166, 167, 175, 177, 178, 179, 180, 182, 184, 187, 189, 193, 194, 195, 196, 201, 202, 204, 206, 210, 211, 212, 214, 221, 226, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 243, 244, 245, 246, 247, 248, 249, 253, 261, 263, 264, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "larg": [3, 45, 56, 66, 79, 80, 90, 97, 98, 100, 104, 110, 160, 161, 162, 189, 201, 211, 214, 234, 241, 244, 245, 247, 253], "contain": [3, 10, 33, 71, 73, 75, 76, 79, 80, 110, 119, 120, 144, 145, 146, 160, 194, 197, 203, 206, 207, 212, 214, 224, 253, 265, 266, 274, 275, 280, 281], "both": [3, 12, 80, 138, 139, 160, 196, 214, 236, 238], "uncertain": [3, 6, 40, 84, 121, 123, 125, 127, 135, 160, 185, 215, 221, 222, 267, 268, 269, 270, 271, 273, 274, 275, 276, 278, 279, 280], "record": [3, 24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 221, 222, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "reli": [3, 5, 160, 183], "exact": [3, 6, 160, 185], "match": [3, 6, 32, 40, 160, 185], "base": [3, 4, 7, 10, 15, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 145, 147, 148, 149, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 186, 187, 189, 190, 193, 194, 199, 201, 202, 203, 205, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 275, 276, 278, 279, 282, 283, 284, 285, 286, 287], "support": [3, 16, 24, 29, 45, 46, 49, 52, 54, 56, 58, 60, 62, 71, 73, 78, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 103, 106, 108, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 160, 162, 163, 164, 165, 166, 167, 179, 181, 182, 184, 186, 189, 190, 193, 203, 206, 210, 215, 221, 222, 226, 227, 228, 230, 231, 232, 234, 237, 238, 239, 240, 241, 242, 243, 245, 246, 249, 252, 261, 262, 263, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "confid": [3, 24, 152, 153, 160], "valu": [3, 14, 15, 24, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 86, 91, 93, 95, 97, 101, 106, 110, 116, 117, 119, 120, 123, 125, 127, 129, 135, 144, 152, 153, 160, 162, 163, 164, 165, 166, 167, 179, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 224, 226, 228, 237, 240, 249, 253, 262, 263, 267, 268, 269, 270, 271, 273, 274, 276, 277, 278, 279, 281, 282], "emploi": [3, 43, 45, 46, 49, 78, 80, 86, 92, 101, 121, 131, 133, 158, 159, 160, 162, 167, 177, 178, 179, 182, 284, 286], "approxim": [3, 160], "find": [3, 24, 27, 37, 45, 46, 52, 54, 56, 58, 60, 62, 71, 75, 76, 79, 80, 82, 84, 101, 108, 119, 120, 123, 125, 127, 129, 131, 135, 152, 153, 160, 161, 162, 182, 184, 186, 189, 190, 193, 203, 208, 211, 214, 217, 221, 222, 252, 267, 276, 278, 279, 282, 284], "therebi": [3, 160], "accommod": [3, 6, 160, 185], "error": [3, 121, 160], "miss": [3, 160], "chang": [3, 13, 160, 198], "thi": [3, 4, 5, 24, 26, 27, 28, 29, 30, 31, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 183, 184, 186, 189, 190, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "allow": [3, 4, 6, 12, 82, 160, 181, 185, 196, 217, 218, 219], "even": [3, 160], "presenc": [3, 138, 160, 236], "uncertainti": [3, 6, 7, 8, 9, 144, 145, 146, 160, 185, 187, 188, 192, 274, 275, 280], "geo": [3, 40, 64, 66, 69, 71, 73, 125, 160, 187, 188, 191, 194, 195, 196, 198, 199, 201, 202, 203, 206, 215, 256, 275, 276, 277, 281], "spatial": [3, 7, 8, 10, 11, 12, 13, 15, 52, 54, 56, 58, 60, 62, 66, 69, 73, 75, 79, 80, 129, 147, 160, 184, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 198, 201, 202, 205, 206, 209, 211, 212, 213, 214, 215, 277, 281, 282, 283], "remot": [3, 160], "sens": [3, 160], "imag": [3, 160], "weather": [3, 160], "forecast": [3, 5, 18, 139, 140, 146, 160, 183, 216, 238, 248, 280], "refer": [4, 7, 9, 24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 140, 145, 147, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 186, 187, 189, 190, 192, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 275, 276, 278, 279, 282, 283, 284, 286], "occur": [4, 7, 11, 12, 13, 14, 15, 17, 19, 137, 139, 140, 142, 147, 148, 149, 161, 181, 187, 195, 196, 198, 204, 205, 213, 223, 229, 238, 248, 255, 265, 283, 285, 287], "meet": [4, 24, 120, 152, 153, 181], "threshold": [4, 24, 27, 28, 29, 35, 75, 76, 79, 80, 84, 103, 110, 119, 120, 123, 125, 127, 129, 131, 135, 152, 153, 181, 211, 212, 214, 221, 222, 246, 253, 267, 276, 278, 279, 282, 284], "mine": [4, 20, 24, 26, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 151, 152, 153, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 193, 194, 195, 196, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287], "us": [4, 14, 15, 24, 26, 27, 29, 30, 31, 33, 35, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 137, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "singl": [4, 45, 71, 75, 80, 110, 119, 120, 166, 181, 203, 207, 214, 253], "uniform": [4, 181, 265], "all": [4, 24, 26, 28, 30, 35, 39, 49, 54, 56, 58, 60, 62, 71, 73, 75, 78, 79, 80, 82, 84, 86, 89, 90, 91, 92, 106, 108, 110, 116, 119, 120, 127, 152, 153, 155, 177, 179, 181, 186, 189, 190, 191, 193, 203, 206, 207, 208, 211, 212, 214, 217, 221, 222, 227, 233, 234, 249, 250, 251, 252, 253, 261, 262, 265, 266, 277, 279], "vari": [4, 18, 136, 143, 145, 181, 216, 225, 264, 275, 281], "level": [4, 33, 101, 181], "By": [4, 45, 162, 181], "more": [4, 18, 66, 143, 181, 201, 216, 264, 265], "nuanc": [4, 181], "each": [4, 12, 14, 17, 19, 30, 39, 49, 73, 75, 79, 80, 82, 86, 119, 120, 139, 141, 145, 146, 177, 178, 179, 181, 191, 196, 204, 206, 209, 211, 212, 213, 214, 217, 218, 219, 223, 227, 238, 250, 251, 254, 256, 265, 266, 275, 277, 280, 281], "evalu": [4, 181], "individu": [4, 181, 191, 277, 281], "its": [4, 17, 29, 30, 39, 54, 56, 58, 62, 82, 119, 136, 147, 149, 181, 186, 189, 190, 193, 213, 217, 218, 219, 225, 266, 281, 283, 287], "import": [4, 14, 15, 17, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "context": [4, 14, 15, 17, 139, 181, 204, 205, 213, 238], "traffic": [4, 8, 9, 19, 136, 137, 139, 143, 148, 181, 188, 192, 223, 225, 229, 238, 264, 285], "involv": [5, 7, 8, 9, 10, 11, 14, 15, 17, 19, 79, 137, 139, 141, 142, 144, 145, 146, 147, 148, 149, 183, 187, 188, 192, 194, 195, 204, 205, 211, 213, 223, 229, 238, 254, 255, 274, 275, 280, 283, 285, 287], "explor": [5, 71, 110, 119, 183, 203, 253], "itemset": [5, 24, 45, 46, 48, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 86, 88, 91, 101, 110, 123, 129, 131, 133, 135, 141, 149, 152, 153, 166, 175, 182, 183, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 227, 230, 231, 253, 254, 256, 271, 273, 282, 284, 286, 287], "exhibit": [5, 7, 8, 9, 12, 136, 137, 138, 139, 143, 147, 149, 183, 187, 188, 192, 196, 225, 229, 236, 238, 264, 283, 287], "linear": [5, 183], "assess": [5, 183], "through": [5, 119, 123, 183, 271], "instead": [5, 183], "sole": [5, 138, 183, 236], "co": [5, 183], "strength": [5, 183], "uncov": [5, 183], "basket": [5, 14, 91, 101, 141, 148, 183, 204, 250, 251, 254, 285], "analyt": [5, 14, 104, 148, 149, 183, 204, 247, 285, 287], "financi": [5, 6, 9, 137, 140, 141, 143, 146, 183, 185, 192, 229, 248, 254, 264, 280], "ffp": [6, 185], "captur": [6, 8, 136, 185, 188, 225], "inher": [6, 185], "partial": [6, 60, 69, 86, 88, 89, 90, 91, 92, 101, 185, 196, 197, 202, 215, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 265], "event": [6, 8, 9, 10, 11, 12, 13, 15, 17, 19, 82, 136, 139, 142, 145, 147, 185, 188, 192, 194, 195, 196, 198, 205, 213, 217, 218, 219, 223, 224, 225, 238, 255, 275, 283], "requir": [6, 40, 73, 75, 136, 185, 206, 209, 225], "variat": [6, 12, 137, 185, 196, 229], "degre": [6, 136, 137, 185, 225, 229], "membership": [6, 54, 185, 186], "similar": [6, 185, 197], "them": [6, 119, 137, 143, 185, 229, 264], "suitabl": [6, 143, 185, 264], "imprecis": [6, 8, 9, 185, 188, 192], "medic": [6, 16, 185, 210], "qualiti": [6, 185], "control": [6, 26, 82, 86, 97, 98, 100, 101, 103, 108, 155, 156, 185, 217, 218, 219, 226, 227, 239, 240, 241, 242, 243, 244, 245, 246, 252], "geograph": [7, 8, 10, 11, 13, 145, 187, 188, 194, 195, 198, 275], "mai": [7, 9, 12, 13, 18, 19, 136, 137, 143, 145, 146, 187, 192, 196, 198, 216, 223, 225, 229, 264, 265, 275, 280], "object": [7, 27, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 41, 49, 52, 80, 82, 91, 97, 101, 116, 119, 120, 147, 179, 184, 187, 191, 214, 217, 243, 262, 277, 281, 283], "epidemiolog": [7, 8, 187, 188], "environment": [7, 8, 10, 11, 12, 13, 15, 136, 144, 146, 147, 187, 188, 194, 195, 196, 198, 205, 225, 274, 280, 283], "monitor": [7, 8, 10, 11, 12, 13, 15, 19, 136, 137, 138, 139, 142, 146, 147, 187, 188, 194, 195, 196, 198, 205, 223, 225, 229, 236, 238, 255, 280, 283], "recur": [8, 9, 12, 13, 19, 106, 136, 137, 138, 139, 188, 192, 196, 198, 215, 223, 225, 229, 236, 238, 248, 249, 265], "tempor": [8, 9, 10, 11, 12, 13, 18, 28, 31, 32, 40, 62, 79, 86, 88, 89, 90, 91, 92, 95, 97, 98, 100, 103, 104, 116, 127, 136, 138, 139, 188, 191, 192, 193, 194, 195, 196, 197, 198, 211, 215, 216, 224, 225, 226, 230, 231, 233, 234, 235, 236, 237, 238, 239, 241, 243, 244, 245, 246, 247, 261, 262, 277, 278, 279, 281], "locat": [8, 10, 15, 145, 188, 194, 197, 205, 275], "repetit": [8, 136, 143, 188, 225, 264], "natur": [8, 9, 123, 138, 145, 188, 192, 236, 269, 270, 275, 281], "phenomena": [8, 11, 13, 139, 188, 195, 198, 238], "over": [8, 18, 80, 119, 136, 138, 139, 142, 143, 188, 197, 214, 216, 224, 225, 236, 238, 255, 264], "time": [8, 9, 11, 12, 13, 18, 24, 26, 28, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 188, 189, 190, 192, 193, 195, 196, 197, 198, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 216, 217, 218, 219, 221, 222, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 255, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "space": [8, 12, 24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 188, 189, 190, 191, 193, 196, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "while": [8, 11, 43, 64, 66, 69, 75, 82, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 188, 195, 199, 201, 202, 209, 217, 218, 219, 228, 230, 231, 232, 233, 234, 237, 241, 242, 243, 244, 245, 249, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "entiti": [8, 188], "flow": [8, 143, 188, 264], "studi": [8, 188], "character": [9, 14, 15, 18, 138, 192, 204, 205, 216, 236], "seri": [9, 11, 18, 28, 30, 93, 97, 106, 137, 140, 192, 195, 216, 224, 228, 229, 243, 248, 249], "product": [9, 192, 281], "among": [10, 194], "It": [10, 11, 19, 24, 27, 28, 30, 35, 39, 40, 43, 45, 46, 49, 66, 79, 82, 86, 89, 90, 92, 97, 98, 101, 103, 104, 106, 119, 123, 131, 133, 135, 142, 152, 153, 159, 162, 167, 179, 182, 194, 195, 197, 201, 211, 217, 223, 226, 233, 234, 235, 239, 240, 241, 244, 246, 247, 249, 255, 267, 268, 269, 270, 273, 281, 284, 286], "analyz": [10, 11, 19, 142, 161, 194, 195, 223, 255], "coordin": [10, 194], "timestamp": [10, 46, 82, 88, 97, 101, 116, 127, 139, 182, 191, 194, 197, 217, 224, 232, 238, 239, 242, 243, 261, 265, 277, 279, 281], "possibl": [10, 106, 194, 249], "relat": [10, 106, 119, 139, 147, 194, 238, 249, 283], "servic": [10, 15, 145, 194, 205, 275], "conserv": [10, 13, 194, 198], "tourism": [10, 194], "hospit": [10, 194], "sequenti": [11, 30, 39, 195, 215, 255], "preserv": [11, 195], "order": [11, 54, 60, 73, 79, 80, 119, 142, 186, 195, 206, 212, 214, 224, 255, 256, 265], "instanc": [11, 119, 120, 142, 195, 255], "transport": [11, 13, 147, 195, 198, 283], "urban": [11, 13, 15, 145, 147, 195, 198, 205, 275, 283], "plan": [11, 13, 15, 16, 145, 147, 195, 198, 205, 210, 275, 283], "alwai": [12, 196, 265], "entir": [12, 19, 196, 223, 281], "interest": [12, 78, 79, 80, 116, 196, 211, 261, 262], "In": [12, 24, 30, 39, 45, 75, 116, 119, 121, 123, 127, 131, 135, 139, 145, 147, 149, 152, 153, 162, 196, 197, 209, 224, 238, 262, 265, 271, 275, 278, 281, 283, 284, 287], "word": [12, 196, 197, 224, 265], "agricultur": [12, 17, 196, 213], "crop": [12, 196], "public": [12, 54, 186, 196], "health": [12, 196], "surveil": [12, 196], "disast": [12, 17, 145, 196, 213, 275], "describ": [13, 198, 277], "consist": [13, 14, 17, 18, 143, 191, 198, 204, 213, 216, 264, 277, 281], "activ": [13, 198], "area": [13, 198], "interv": [13, 18, 19, 28, 82, 136, 137, 138, 139, 140, 143, 198, 216, 217, 218, 219, 223, 225, 229, 236, 238, 248, 264], "reveal": [13, 198], "movement": [13, 198], "human": [13, 198], "logist": [13, 198], "infrastructur": [13, 198], "transact": [14, 24, 26, 27, 28, 29, 30, 31, 32, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 141, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 204, 206, 207, 208, 209, 211, 212, 214, 215, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 254, 255, 256, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "databas": [14, 16, 24, 26, 27, 28, 29, 30, 31, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 136, 138, 139, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 217, 221, 222, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 264, 267, 268, 269, 270, 271, 273, 276, 278, 279, 281, 282, 284, 286], "contribut": [14, 16, 17, 141, 204, 210, 213, 254], "significantli": [14, 17, 141, 204, 213, 254], "reflect": [14, 15, 17, 204, 205, 213], "domain": [14, 15, 17, 204, 205, 213], "georeferenc": [15, 205], "combin": [15, 45, 46, 66, 86, 88, 92, 103, 104, 108, 148, 166, 182, 197, 201, 205, 227, 232, 235, 246, 247, 252, 285], "distribut": [15, 17, 30, 39, 49, 101, 177, 205, 213], "lb": [15, 205], "develop": [15, 145, 205, 275], "The": [16, 24, 26, 27, 29, 30, 31, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 136, 139, 140, 148, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 210, 211, 212, 214, 217, 218, 219, 221, 222, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 285, 286], "hupm": [16, 20, 210, 220], "maxim": [16, 20, 44, 82, 87, 96, 137, 139, 161, 175, 210, 217, 218, 219, 234, 245], "from": [16, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 144, 145, 146, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 210, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 284, 286], "perspect": [16, 210], "diagnosi": [16, 210], "howev": [16, 24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 210, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "pai": [16, 210], "less": [16, 37, 116, 191, 210, 261, 262], "attent": [16, 210], "interpret": [16, 210], "explain": [16, 210], "scenario": [16, 210], "clinic": [16, 210], "drug": [16, 161, 210], "prescript": [16, 210], "therapi": [16, 210], "diseas": [16, 210], "predict": [16, 27, 136, 140, 143, 210, 225, 248, 264], "identif": [17, 137, 213, 229], "ha": [17, 46, 86, 97, 106, 141, 182, 213, 227, 242, 249, 254], "predefin": [17, 18, 82, 141, 213, 216, 217, 218, 219, 254], "measur": [17, 82, 110, 136, 141, 213, 217, 218, 219, 225, 253, 254], "resourc": [17, 18, 213, 216], "precis": [17, 144, 213, 274], "emerg": [17, 145, 213, 275], "respons": [17, 91, 101, 119, 145, 213, 275], "top": [17, 27, 50, 79, 80, 92, 103, 104, 117, 120, 123, 139, 161, 180, 211, 214, 235, 246, 247, 263, 269, 270], "k": [17, 24, 27, 50, 56, 69, 71, 79, 80, 92, 93, 97, 103, 104, 110, 117, 120, 123, 127, 129, 133, 139, 152, 153, 161, 180, 189, 202, 203, 211, 214, 228, 235, 243, 246, 247, 253, 263, 269, 270, 278, 282, 286], "lpp": [18, 216], "some": [18, 30, 39, 82, 106, 137, 216, 217, 218, 219, 229, 249, 265], "non": [18, 82, 106, 123, 125, 135, 191, 216, 217, 218, 219, 224, 249, 265, 267, 268, 269, 270, 271, 276, 277, 281], "A": [18, 20, 26, 40, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 91, 97, 101, 110, 120, 123, 127, 156, 159, 162, 167, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 216, 217, 218, 219, 224, 243, 253, 256, 265, 266, 268, 277, 278, 281], "said": [18, 82, 197, 216, 217, 218, 219], "appear": [18, 26, 82, 97, 98, 100, 101, 108, 110, 155, 156, 161, 216, 217, 218, 219, 241, 242, 243, 244, 245, 252, 253], "regularli": [18, 82, 216, 217, 218, 219], "continu": [18, 82, 120, 216, 217, 218, 219], "s": [18, 26, 33, 56, 71, 73, 75, 76, 79, 82, 86, 88, 89, 90, 91, 92, 93, 97, 98, 100, 101, 103, 104, 108, 110, 116, 117, 120, 156, 189, 203, 206, 207, 208, 209, 211, 212, 216, 217, 218, 219, 227, 228, 230, 231, 232, 233, 234, 235, 241, 242, 243, 244, 245, 246, 247, 252, 253, 262, 263], "demonstr": [18, 136, 140, 143, 216, 225, 248, 264], "one": [18, 24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 216, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "distinct": [18, 216, 265], "indic": [18, 119, 120, 216], "segment": [18, 216], "assum": [18, 216], "anomali": [18, 140, 216, 248], "sequenc": [19, 20, 30, 39, 71, 73, 82, 137, 141, 142, 149, 161, 195, 203, 206, 215, 217, 218, 219, 220, 223, 224, 229, 254, 255, 256, 287], "durat": [19, 82, 217, 218, 219, 223, 224], "cycl": [19, 223], "subset": [19, 148, 223, 285], "stock": [19, 223], "internet": [19, 223], "associationrul": [20, 220], "submodul": [20, 21, 23, 25, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134, 220], "arwithconfid": [20, 21], "arwithleverag": [20, 21], "arwithlift": [20, 21], "rulemin": [20, 21], "abstract": [20, 21, 23, 25, 27, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134, 220], "correlatedpattern": [20, 152, 153, 220], "comin": [20, 23, 153, 154], "comineplu": [20, 23, 154], "coveragepattern": [20, 155, 156, 220], "cmine": [20, 25, 157], "cppg": [20, 25, 157], "extra": [20, 220], "df2db": [20, 27], "df2dbplu": [20, 27], "denseformatdf": [20, 27], "sparseformatdf": [20, 27], "createtdb": [20, 27], "densedf2dbplu": [20, 27], "densedf2db_dump": [20, 27], "sparsedf2dbplu": [20, 27], "calculatemisvalu": [20, 27], "usingbeta": [20, 27], "usingsd": [20, 27], "dbstat": [20, 27, 39], "fuzzydatabas": [20, 27], "multipletimeseriesfuzzydatabasestat": [20, 27], "sequentialdatabas": [20, 27], "temporaldatabas": [20, 27, 32], "transactionaldatabas": [20, 27], "uncertaintemporaldatabas": [20, 27], "uncertaintransactionaldatabas": [20, 27], "utilitydatabas": [20, 27], "fuzzytransform": [20, 27], "temporaltofuzzi": [20, 27], "transactionaltofuzzi": [20, 27], "utilitytofuzzi": [20, 27], "generatedatabas": [20, 27, 40], "generatespatiotemporaldatabas": [20, 27], "generatetemporaldatabas": [20, 27, 40], "generatetransactionaldatabas": [20, 27], "graph": [20, 27, 30, 118], "df2fig": [20, 27], "df2tex": [20, 27], "plotlinegraphfromdictionari": [20, 27], "plotlinegraphsfromdatafram": [20, 27], "visualizefuzzypattern": [20, 27], "visualizepattern": [20, 27], "image2databas": [20, 27], "imageprocess": [20, 27], "imagery2databas": [20, 27], "messag": [20, 27], "discord": [20, 27], "gmail": [20, 27], "neighbour": [20, 27, 56, 58, 64, 66, 69, 73, 75, 79, 80, 189, 190, 199, 201, 202, 206, 209, 211, 212, 214], "findneighborsusingeuclideandistanceforpointinfo": [20, 27], "findneighboursusingeuclidean": [20, 27], "findneighboursusinggeodes": [20, 27], "sampledataset": [20, 27], "stat": [20, 27, 30, 49, 177], "graphdatabas": [20, 27, 41, 120], "syntheticdatagener": [20, 27], "createsyntheticgeoreferentialtempor": [20, 27], "createsyntheticgeoreferentialtransact": [20, 27], "createsyntheticgeoreferentialuncertaintransact": [20, 27], "createsynthetictempor": [20, 27], "createsynthetictransact": [20, 27], "createsyntheticuncertaintempor": [20, 27], "createsyntheticuncertaintransact": [20, 27], "createsyntheticutil": [20, 27], "generatetempor": [20, 27], "generatetransact": [20, 27], "generateuncertaintempor": [20, 27], "generateuncertaintransact": [20, 27], "generateutilitytempor": [20, 27], "generateutilitytransact": [20, 27], "georeferencedtemporaldatabas": [20, 27], "georeferencedtransactionaldatabas": [20, 27], "syntheticutilitydatabas": [20, 27], "temporaldatabasegen": [20, 27], "visual": [20, 27, 33], "convertmultitsintofuzzi": [20, 220], "generatelatexgraphfil": [20, 220], "plotpointonmap": [20, 220], "plotpointonmap_dump": [20, 220], "scatterplotspatialpoint": [20, 220], "topkpattern": [20, 220], "uncertaindb_convert": [20, 220], "faulttolerantfrequentpattern": [20, 121, 158, 159, 220], "ftapriori": [20, 42, 160], "ftfpgrowth": [20, 42, 160], "frequentpattern": [20, 24, 28, 79, 84, 86, 108, 110, 123, 129, 131, 153, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 212, 220, 221, 222, 227, 252, 253, 267, 268, 269, 270, 271, 273, 282, 284], "apriori": [20, 43, 44, 49, 66, 121, 158, 176, 177, 178, 201], "eclat": [20, 44, 66, 176, 201, 265], "eclatdiffset": [20, 44, 176], "eclatbitset": [20, 44, 176], "fpgrowth": [20, 28, 43, 44, 49, 159, 176, 179], "close": [20, 44, 75, 79, 86, 87, 96, 97, 112, 137, 139, 142, 161, 182, 191, 208, 211, 227, 233, 239, 242, 244], "charm": [20, 44, 176], "cuda": [20, 44, 96, 137, 161], "cuapriori": [20, 44, 176], "cuaprioribit": [20, 44, 176], "cueclat": [20, 44, 176], "cueclatbit": [20, 44, 176], "cudaapriorigct": [20, 44, 176], "cudaaprioritid": [20, 44, 176], "cudaeclatgct": [20, 44, 176], "maxfpgrowth": [20, 44, 176], "pyspark": [20, 44, 87, 96, 161, 177, 178, 179], "parallelapriori": [20, 44, 176], "paralleleclat": [20, 44, 176], "parallelfpgrowth": [20, 44, 176], "topk": [20, 33, 44, 78, 87, 96, 115, 116, 118, 137, 143, 180, 214, 235, 246, 247, 262, 263], "fae": [20, 44, 176], "fuzzycorrelatedpattern": [20, 184, 220], "fcpgrowth": [20, 51, 183], "fuzzyfrequentpattern": [20, 186, 220], "ffimin": [20, 53, 185], "ffiminer_old": [20, 53], "fuzzygeoreferencedfrequentpattern": [20, 189, 220], "ffspminer": [20, 55, 58, 187, 190], "ffspminer_old": [20, 55], "fuzzygeoreferencedperiodicfrequentpattern": [20, 190, 220], "fgpfpminer": [20, 57, 188], "fgpfpminer_old": [20, 57], "fuzzypartialperiodicpattern": [20, 220], "f3pminer": [20, 59], "fuzzyperiodicfrequentpattern": [20, 193, 220], "fpfpminer": [20, 61, 192], "fpfpminer_old": [20, 61], "georeferencedperiodicfrequentpattern": [20, 199, 220], "gpfpminer": [20, 63, 198], "georeferencedfrequentpattern": [20, 201, 220], "fspgrowth": [20, 65, 194], "spatialeclat": [20, 65, 194], "georeferencedfrequentsequencepattern": [20, 220], "georeferencedpartialperiodicpattern": [20, 202, 220], "steclat": [20, 68, 196], "highutilityfrequentpattern": [20, 203, 220], "hufim": [20, 70, 204], "highutilitygeoreferencedfrequentpattern": [20, 79, 206, 211, 220], "shufim": [20, 72, 205], "highutilitypattern": [20, 207, 208, 209, 220], "efim": [20, 74, 76, 254], "hminer": [20, 74, 254], "upgrowth": [20, 74, 254], "efimparallel": [20, 74], "parallel": [20, 49, 74, 101, 106, 177, 178, 179, 249], "highutilitypatternsinstream": [20, 220], "shugrowth": [20, 220], "highutilityspatialpattern": [20, 211, 212, 214, 220], "hdshuim": [20, 78, 213], "shuim": [20, 78, 211, 213], "tkshuim": [20, 78, 213], "localperiodicpattern": [20, 217, 218, 219, 220], "lppgrowth": [20, 81, 216], "lppmbreadth": [20, 81, 216], "lppmdepth": [20, 81, 216], "multipleminimumsupportbasedfrequentpattern": [20, 220, 221, 222], "cfpgrowth": [20, 83, 181], "cfpgrowthplu": [20, 83, 181], "partialperiodicfrequentpattern": [20, 220, 226, 227], "gpfgrowth": [20, 85, 225], "ppf_df": [20, 85, 225], "partialperiodicpattern": [20, 86, 220, 226, 227, 230, 231, 232, 233, 234, 235], "gthreepgrowth": [20, 87, 229], "gabstract": [20, 87], "pppgrowth": [20, 87, 229, 230], "ppp_eclat": [20, 87, 229], "pppclose": [20, 87, 229], "max3pgrowth": [20, 87, 229], "parallel3pgrowth": [20, 87], "k3pminer": [20, 87, 229], "partialperiodicpatterninmultipletimeseri": [20, 220, 228], "ppgrowth": [20, 220, 223], "periodiccorrelatedpattern": [20, 220, 237], "epcpgrowth": [20, 94, 236], "periodicfrequentpattern": [20, 62, 88, 89, 90, 93, 106, 127, 193, 220, 228, 230, 231, 232, 233, 234, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 278, 279], "pfeclat": [20, 96, 238], "pfpgrowth": [20, 95, 96, 237, 238, 241], "pfpgrowthplu": [20, 96, 238], "pfpmc": [20, 96, 238], "psgrowth": [20, 96, 238], "parallelpfpgrowth": [20, 96], "cpfpminer": [20, 96, 238], "cugpfmin": [20, 96], "gpfminerbit": [20, 96], "maxpfgrowth": [20, 96, 238], "recurringpattern": [20, 220, 249], "rpgrowth": [20, 105, 248], "relativefrequentpattern": [20, 220, 252], "rsfpgrowth": [20, 107, 251], "relativehighutilitypattern": [20, 220, 253], "rhuim": [20, 109, 210], "sequentialpatternmin": [20, 220], "spade": [20, 112, 255], "spam": [20, 112, 255], "prefixspan": [20, 112, 255], "bide": [20, 112, 255], "stableperiodicfrequentpattern": [20, 220, 261, 262, 263], "sppeclat": [20, 115, 264], "sppgrowth": [20, 115, 264], "sppgrowthdump": [20, 115], "tspin": [20, 115, 264], "subgraphmin": [20, 220], "dfscode": [20, 118], "edg": [20, 118], "extendededg": [20, 118], "frequentsubgraph": [20, 118], "gspan": [20, 118, 120], "sparsetriangularmatrix": [20, 118], "vertex": [20, 118], "dfsthread": [20, 118], "tkg": [20, 118], "uncertainfaulttolerantfrequentpattern": [20, 220], "vbftmine": [20, 220], "uncertainfrequentpattern": [20, 220, 267, 268, 269, 270, 271, 273], "cufptre": [20, 122, 274], "pufgrowth": [20, 122, 274], "tufp": [20, 122, 270, 274], "tubep": [20, 122, 274], "tube": [20, 122, 274], "ufgrowth": [20, 122, 274], "uveclat": [20, 122, 274], "uncertaingeoreferencedfrequentpattern": [20, 220, 276], "gfpgrowth": [20, 124, 275], "uncertainperiodicfrequentpattern": [20, 220, 278, 279], "upfpgrowth": [20, 126, 280], "upfpgrowthplu": [20, 126, 280], "weightedfrequentneighbourhoodpattern": [20, 220, 282], "swfpgrowth": [20, 128, 283], "weightedfrequentpattern": [20, 220, 284], "wfim": [20, 130, 285], "weightedfrequentregularpattern": [20, 220, 286], "wfrimin": [20, 132, 287], "weighteduncertainfrequentpattern": [20, 220], "wufim": [20, 134], "pattern": [20, 24, 26, 27, 28, 29, 31, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 196, 198, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 254, 255, 256, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287], "python": [20, 24, 26, 45, 46, 50, 56, 58, 86, 88, 92, 97, 98, 101, 103, 116, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 167, 180, 182, 189, 190, 226, 227, 232, 235, 239, 240, 244, 246, 261, 267, 268, 269, 270, 271, 276, 278, 279, 282, 284, 286], "librari": 20, "class": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "ifil": [24, 26, 27, 29, 30, 31, 33, 37, 39, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "union": [24, 28, 30, 39, 43, 62, 71, 82, 88, 100, 101, 108, 129, 152, 153, 159, 193, 203, 218, 219, 230, 245, 252, 282], "str": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "datafram": [24, 26, 27, 28, 29, 30, 32, 33, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "minsup": [24, 26, 33, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 71, 73, 75, 79, 84, 86, 93, 95, 97, 98, 100, 101, 103, 108, 110, 116, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 203, 206, 208, 211, 212, 221, 222, 226, 227, 228, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 252, 253, 261, 262, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "int": [24, 26, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "float": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "minallconf": [24, 52, 95, 152, 153, 184, 237], "sep": [24, 26, 27, 29, 30, 31, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "t": [24, 26, 27, 30, 31, 32, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "sourc": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "_correlatedpattern": [24, 152, 153], "about": [24, 26, 30, 39, 45, 46, 50, 86, 97, 119, 152, 153, 155, 162, 163, 164, 165, 166, 167, 180, 182, 226, 239, 240], "algorithm": [24, 26, 33, 43, 45, 46, 48, 49, 50, 52, 54, 60, 64, 66, 69, 71, 75, 76, 78, 79, 80, 82, 84, 86, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 199, 201, 202, 203, 207, 208, 209, 211, 212, 217, 218, 219, 221, 222, 226, 227, 228, 233, 234, 235, 237, 239, 240, 241, 243, 244, 245, 246, 247, 249, 252, 253, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 279, 282, 284, 286], "descript": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 281, 282, 284, 286], "fundament": [24, 43, 45, 48, 49, 69, 84, 88, 91, 93, 97, 100, 101, 106, 121, 123, 131, 133, 152, 153, 158, 159, 162, 163, 164, 166, 167, 175, 179, 202, 221, 228, 230, 231, 232, 239, 240, 241, 242, 243, 245, 249, 267, 268, 269, 270, 273, 284, 286], "correl": [24, 52, 86, 95, 152, 153, 154, 183, 184, 191, 215, 226, 236, 237, 265, 266], "fp": [24, 28, 43, 45, 49, 131, 152, 153, 159, 167, 179, 284], "growth": [24, 48, 49, 75, 82, 90, 97, 100, 127, 152, 153, 175, 179, 209, 217, 234, 243, 245, 279], "depth": [24, 46, 82, 89, 98, 119, 152, 153, 182, 217, 218, 219, 233, 244], "first": [24, 45, 46, 49, 75, 80, 82, 89, 98, 110, 119, 120, 152, 153, 162, 179, 182, 207, 214, 217, 218, 219, 224, 233, 244, 253, 265, 277], "search": [24, 43, 45, 46, 49, 54, 56, 58, 62, 75, 76, 82, 84, 89, 98, 119, 121, 131, 133, 152, 153, 158, 159, 162, 167, 177, 178, 179, 182, 186, 189, 190, 193, 215, 217, 218, 219, 222, 233, 244, 284, 286], "lee": [24, 97, 127, 152, 153, 240, 278], "y": [24, 33, 43, 45, 71, 97, 104, 116, 117, 119, 120, 152, 153, 159, 167, 203, 239, 247, 262, 263], "kim": [24, 152, 153], "w": [24, 79, 116, 127, 152, 153, 212, 261, 278], "cao": [24, 152, 153], "d": [24, 152, 153, 256, 265, 266], "han": [24, 43, 45, 84, 152, 153, 158, 159, 167, 221], "j": [24, 43, 45, 46, 48, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 91, 97, 110, 116, 119, 120, 123, 127, 131, 152, 153, 159, 167, 175, 182, 203, 206, 207, 212, 214, 217, 218, 219, 221, 226, 232, 233, 241, 253, 261, 267, 278, 284], "2003": [24, 45, 152, 153, 165], "icdm": [24, 123, 152, 153, 271], "pp": [24, 45, 49, 56, 62, 69, 79, 80, 93, 97, 110, 116, 129, 131, 133, 152, 153, 162, 177, 189, 193, 202, 211, 214, 228, 243, 253, 261, 282, 284, 286], "581": [24, 152, 153], "584": [24, 152, 153], "paramet": [24, 26, 27, 28, 29, 31, 32, 33, 35, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "name": [24, 26, 27, 28, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "input": [24, 26, 27, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "file": [24, 26, 27, 28, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "complet": [24, 26, 28, 29, 30, 31, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "ofil": [24, 26, 27, 28, 29, 30, 31, 35, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "output": [24, 26, 27, 28, 29, 30, 31, 32, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "store": [24, 26, 27, 29, 30, 31, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "user": [24, 26, 27, 28, 29, 31, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 255, 261, 262, 263, 264, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "specifi": [24, 29, 32, 33, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "either": [24, 29, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 281, 282, 284, 286], "count": [24, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "proport": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 225, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "size": [24, 29, 30, 33, 39, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "If": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 208, 211, 212, 226, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "program": [24, 26, 29, 30, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "integ": [24, 29, 30, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 217, 224, 226, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "treat": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 226, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "express": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 226, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "rang": [24, 30, 39, 40, 52, 84, 123, 125, 127, 129, 131, 135, 152, 153, 184, 221, 222, 267, 276, 277, 278, 279, 282, 284], "0": [24, 26, 27, 30, 33, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 64, 66, 69, 75, 76, 80, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 189, 191, 197, 199, 201, 202, 207, 214, 217, 218, 219, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "1": [24, 30, 39, 43, 45, 46, 52, 56, 62, 75, 76, 79, 82, 84, 86, 88, 91, 97, 108, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 162, 163, 164, 165, 166, 167, 182, 184, 189, 191, 193, 197, 212, 217, 218, 219, 221, 224, 226, 227, 230, 231, 239, 240, 243, 252, 256, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "variabl": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 137, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "distinguish": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "anoth": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "default": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "seper": [24, 26, 27, 29, 31, 32, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "tab": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "overrid": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "separ": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "memoryuss": [24, 26, 43, 45, 46, 48, 49, 50, 64, 66, 69, 75, 76, 78, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 199, 201, 202, 214, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "To": [24, 26, 28, 29, 30, 33, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "total": [24, 26, 28, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 250, 251, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "amount": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "uss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "memori": [24, 26, 28, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "consum": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "memoryrss": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "rss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "starttim": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "start": [24, 26, 33, 43, 45, 46, 48, 49, 50, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "endtim": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "given": [24, 27, 28, 29, 32, 33, 40, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 86, 90, 108, 110, 119, 120, 152, 153, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 226, 234, 250, 251, 252, 253], "minimum": [24, 26, 27, 29, 30, 39, 43, 50, 54, 56, 58, 60, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 97, 98, 100, 101, 106, 108, 110, 116, 119, 120, 121, 123, 125, 127, 129, 131, 135, 139, 152, 153, 155, 156, 158, 180, 181, 186, 189, 190, 206, 209, 211, 212, 214, 215, 217, 218, 219, 221, 222, 230, 231, 232, 233, 234, 235, 238, 241, 242, 243, 244, 245, 249, 252, 253, 261, 262, 266, 267, 276, 278, 279, 282, 284], "ratio": [24, 52, 86, 136, 152, 153, 184, 225, 227], "should": [24, 52, 119, 152, 153, 184], "list": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 221, 222, 228, 230, 231, 232, 234, 235, 237, 239, 240, 241, 242, 243, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "mapsupport": [24, 43, 45, 46, 48, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 167, 175, 182, 221, 222, 227, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "dictionari": [24, 26, 27, 30, 31, 39, 43, 45, 46, 48, 49, 50, 54, 64, 66, 69, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 186, 199, 201, 202, 206, 212, 214, 217, 221, 222, 226, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "maintain": [24, 43, 45, 46, 48, 49, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 167, 175, 179, 182, 217, 221, 222, 227, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "lno": [24, 43, 48, 49, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 175, 177, 178, 179, 221, 222, 227, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 279, 282, 284, 286], "tree": [24, 43, 45, 46, 48, 49, 71, 73, 75, 79, 80, 82, 84, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 110, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 167, 175, 179, 182, 203, 206, 207, 209, 212, 214, 217, 221, 222, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "itemsetcount": [24, 46, 48, 90, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 135, 152, 153, 175, 182, 228, 234, 237, 239, 240, 241, 242, 243, 245, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 279], "finalpattern": [24, 26, 31, 43, 45, 46, 48, 49, 50, 64, 66, 69, 78, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 199, 201, 202, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "dict": [24, 26, 27, 30, 31, 33, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "itemsetbuff": [24, 54, 56, 58, 60, 62, 108, 152, 153, 186, 189, 190, 252], "maxpatternlength": [24, 108, 152, 153, 252], "constraint": [24, 73, 79, 101, 108, 110, 116, 139, 143, 152, 153, 206, 212, 238, 252, 253, 261, 262, 264], "length": [24, 27, 30, 32, 39, 40, 43, 75, 79, 82, 108, 121, 123, 125, 127, 135, 152, 153, 158, 208, 211, 217, 218, 219, 252, 267, 268, 269, 270, 271, 273, 276, 279], "execut": [24, 30, 39, 45, 46, 50, 58, 80, 82, 86, 89, 91, 92, 97, 100, 101, 103, 106, 152, 153, 162, 163, 164, 165, 166, 167, 180, 182, 190, 217, 218, 219, 226, 233, 239, 240, 245, 246, 249], "method": [24, 26, 27, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 159, 162, 163, 164, 165, 166, 167, 177, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "termin": [24, 26, 45, 46, 50, 56, 86, 93, 97, 98, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 167, 180, 182, 189, 226, 228, 239, 240, 244, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "command": [24, 26, 45, 46, 50, 56, 86, 93, 97, 98, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 167, 180, 182, 189, 226, 228, 239, 240, 244, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "format": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "venv": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 91, 93, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 228, 231, 232, 233, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "python3": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "py": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "inputfil": [24, 26, 27, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "outputfil": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "exampl": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "sampletdb": [24, 26, 48, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 86, 89, 90, 93, 95, 97, 98, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 152, 153, 155, 156, 175, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 226, 228, 233, 234, 237, 241, 242, 243, 244, 245, 249, 253, 261, 262, 263, 267, 276, 278, 279], "txt": [24, 26, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "25": [24, 86, 152, 153, 226], "2": [24, 40, 48, 50, 52, 54, 56, 58, 60, 62, 69, 73, 79, 80, 88, 89, 91, 97, 98, 100, 106, 108, 116, 121, 127, 129, 152, 153, 175, 180, 184, 186, 189, 190, 191, 193, 197, 202, 206, 212, 214, 224, 230, 231, 233, 241, 242, 243, 244, 245, 249, 252, 261, 265, 266, 277, 278, 279, 281, 282], "call": [24, 26, 45, 46, 50, 56, 58, 78, 80, 82, 86, 97, 98, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 167, 180, 182, 189, 190, 219, 226, 239, 240, 244, 267, 268, 269, 270, 271, 276, 277, 278, 279, 282, 284, 286], "alg": [24, 26, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "obj": [24, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getpattern": [24, 26, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "print": [24, 26, 28, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "number": [24, 26, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 281, 282, 284, 286], "len": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "savepattern": [24, 45, 46, 48, 75, 76, 84, 101, 104, 106, 110, 117, 120, 125, 127, 131, 152, 153, 165, 167, 175, 182, 222, 247, 249, 253, 263, 276, 279, 284], "df": [24, 26, 28, 43, 45, 46, 48, 49, 50, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getpatternsasdatafram": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "memuss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getmemoryuss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "memrss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getmemoryrss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "run": [24, 26, 28, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getruntim": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "executiontim": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "second": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "credit": [24, 40, 45, 46, 50, 86, 97, 103, 152, 153, 162, 163, 164, 165, 166, 167, 180, 182, 226, 239, 240, 246], "wa": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "written": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "b": [24, 52, 54, 56, 58, 62, 66, 75, 79, 88, 108, 121, 152, 153, 184, 186, 189, 190, 193, 201, 208, 211, 224, 232, 252, 256, 265, 266], "sai": [24, 40, 52, 54, 56, 58, 62, 66, 75, 79, 108, 152, 153, 184, 186, 189, 190, 193, 201, 208, 211, 212, 252], "chitra": [24, 52, 54, 56, 58, 62, 66, 75, 79, 108, 152, 153, 184, 186, 189, 190, 193, 201, 208, 211, 252], "revis": [24, 45, 46, 50, 86, 97, 152, 153, 162, 163, 164, 165, 166, 167, 180, 182, 226, 239, 240], "tarun": [24, 45, 46, 50, 75, 86, 97, 152, 153, 162, 163, 164, 165, 166, 167, 180, 182, 226, 239, 240], "sreepada": [24, 45, 46, 50, 75, 86, 97, 152, 153, 162, 163, 164, 165, 166, 167, 180, 182, 226, 239, 240], "under": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "supervis": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "professor": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "rage": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "udai": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "kiran": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "retriev": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "function": [24, 26, 30, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "return": [24, 26, 27, 28, 29, 30, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "tupl": [24, 26, 43, 49, 82, 97, 100, 152, 153, 155, 158, 179, 218, 219, 240, 241, 243, 245], "send": [24, 26, 36, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "after": [24, 26, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "final": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "pd": [24, 26, 29, 32, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "calcul": [24, 26, 29, 30, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "runtim": [24, 26, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "taken": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "none": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 39, 40, 43, 45, 52, 54, 56, 62, 71, 75, 79, 80, 82, 84, 88, 95, 97, 100, 101, 108, 110, 117, 119, 120, 123, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 184, 186, 189, 193, 203, 207, 209, 211, 212, 214, 217, 218, 219, 221, 222, 230, 231, 232, 237, 239, 240, 241, 242, 243, 245, 252, 253, 263, 267, 268, 269, 270, 278, 282, 284, 286], "main": [24, 26, 31, 43, 45, 52, 73, 75, 79, 80, 84, 86, 88, 90, 91, 92, 97, 100, 103, 104, 108, 120, 123, 125, 127, 131, 148, 152, 153, 155, 159, 167, 184, 206, 208, 211, 212, 214, 221, 222, 227, 230, 231, 232, 234, 235, 241, 245, 246, 247, 252, 267, 268, 269, 270, 271, 273, 276, 278, 279, 284, 285], "printresult": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "result": [24, 26, 27, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 106, 108, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "recurs": [24, 71, 73, 75, 79, 80, 86, 88, 97, 110, 116, 119, 123, 152, 153, 203, 206, 207, 209, 212, 214, 227, 232, 239, 242, 253, 261, 271], "node": [24, 49, 75, 82, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 152, 153, 177, 178, 179, 209, 217, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "root": [24, 49, 82, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 152, 153, 179, 217, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "build": [24, 49, 75, 152, 153, 179, 209], "ani": [24, 26, 82, 86, 97, 98, 100, 101, 103, 148, 152, 153, 155, 156, 217, 218, 219, 226, 227, 239, 240, 241, 242, 243, 244, 245, 246, 265, 285], "current": [24, 80, 152, 153, 214, 277], "being": [24, 152, 153, 265], "_node": [24, 152, 153], "save": [24, 26, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "outfil": [24, 26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279, 282, 284, 286], "an": [24, 26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 62, 64, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 92, 95, 97, 98, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 224, 226, 227, 230, 232, 235, 237, 238, 239, 240, 241, 242, 243, 244, 250, 251, 252, 253, 256, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "startmin": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 276, 278, 279, 282, 284, 286], "code": [24, 29, 35, 56, 78, 80, 86, 88, 92, 97, 101, 103, 116, 119, 120, 153, 163, 226, 227, 232, 235, 239, 240, 246, 261], "minrf": [26, 155, 156], "minc": [26, 155, 156], "maxor": [26, 155, 156], "_coveragepattern": [26, 155, 156], "coverag": [26, 155, 156, 157, 215, 266], "bhargav": [26, 155, 156], "sripada": [26, 155], "polep": [26, 155], "krishna": [26, 69, 84, 86, 88, 89, 93, 101, 129, 155, 156, 202, 222, 226, 228, 232, 233, 282], "reddi": [26, 69, 71, 84, 86, 88, 93, 97, 101, 110, 129, 155, 156, 202, 203, 222, 226, 228, 232, 243, 253, 282], "banner": [26, 155], "advertis": [26, 155], "placement": [26, 155], "www": [26, 54, 88, 89, 95, 106, 155, 186, 232, 233, 237, 249], "companion": [26, 155], "volum": [26, 86, 123, 155, 226, 267], "2011": [26, 84, 123, 155, 222, 267, 273], "131": [26, 155], "132": [26, 155], "__http": [26, 155], "dl": [26, 92, 155, 235], "acm": [26, 45, 49, 75, 92, 123, 155, 165, 179, 209, 235, 273], "org": [26, 43, 45, 46, 50, 75, 76, 84, 86, 88, 90, 91, 92, 97, 98, 100, 104, 116, 117, 121, 123, 125, 127, 131, 155, 159, 162, 163, 164, 165, 166, 167, 180, 182, 207, 209, 221, 222, 226, 230, 231, 234, 235, 240, 241, 243, 244, 245, 247, 262, 263, 267, 269, 270, 271, 273, 276, 278, 279, 284], "doi": [26, 43, 45, 46, 49, 50, 52, 56, 62, 69, 71, 75, 76, 79, 80, 82, 84, 86, 88, 91, 92, 93, 97, 104, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 159, 162, 165, 167, 177, 180, 182, 184, 189, 193, 202, 203, 207, 209, 211, 214, 217, 218, 219, 221, 222, 226, 228, 230, 231, 235, 240, 241, 243, 247, 253, 262, 263, 267, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "10": [26, 27, 37, 40, 43, 45, 46, 49, 50, 52, 54, 56, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 177, 178, 179, 180, 182, 184, 186, 189, 191, 193, 197, 199, 201, 202, 203, 206, 207, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 281, 282, 284, 286], "1145": [26, 45, 75, 84, 88, 91, 123, 155, 162, 165, 209, 222, 230, 231, 273], "1963192": [26, 155], "1963259": [26, 155], "everi": [26, 78, 80, 82, 86, 92, 97, 98, 100, 101, 108, 155, 156, 217, 241, 242, 243, 244, 245, 252, 265, 277, 281], "must": [26, 78, 80, 86, 92, 97, 98, 100, 101, 108, 110, 155, 156, 191, 224, 241, 242, 243, 244, 245, 252, 253, 265, 266, 277, 281], "least": [26, 108, 155, 156, 252], "maximum": [26, 30, 32, 39, 40, 62, 71, 73, 75, 76, 79, 80, 82, 86, 90, 97, 98, 100, 101, 103, 106, 110, 116, 117, 127, 129, 139, 155, 156, 193, 203, 206, 207, 209, 211, 212, 214, 217, 218, 219, 226, 227, 234, 238, 239, 240, 241, 242, 243, 244, 245, 246, 249, 253, 261, 262, 263, 278, 279, 282], "two": [26, 40, 71, 73, 75, 79, 80, 82, 86, 97, 98, 100, 101, 103, 110, 120, 155, 156, 203, 206, 207, 209, 212, 214, 217, 218, 219, 224, 226, 227, 239, 240, 241, 242, 243, 244, 245, 246, 253, 265, 277], "reappear": [26, 82, 86, 97, 98, 100, 101, 103, 155, 156, 217, 218, 219, 226, 227, 239, 240, 241, 242, 243, 244, 245, 246], "4": [26, 52, 58, 69, 82, 88, 89, 90, 93, 95, 97, 98, 100, 101, 106, 116, 117, 123, 127, 131, 155, 156, 184, 190, 191, 197, 202, 217, 218, 219, 224, 228, 232, 233, 234, 237, 241, 242, 243, 244, 245, 249, 261, 262, 263, 265, 267, 277, 278, 279, 281, 284], "7": [26, 86, 155, 156, 191, 226, 265, 277, 281], "5": [26, 40, 64, 66, 69, 82, 86, 91, 97, 101, 116, 123, 133, 155, 156, 191, 197, 199, 201, 202, 217, 218, 219, 224, 227, 242, 261, 269, 270, 277, 281, 286], "p": [26, 40, 43, 45, 46, 48, 50, 52, 56, 64, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 156, 158, 159, 162, 167, 175, 180, 182, 184, 189, 199, 202, 203, 206, 207, 211, 212, 214, 217, 218, 219, 221, 222, 226, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "likhitha": [26, 40, 43, 45, 46, 48, 50, 60, 69, 84, 88, 89, 90, 92, 93, 95, 97, 98, 100, 103, 104, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 156, 158, 159, 162, 167, 175, 180, 182, 202, 221, 222, 228, 230, 231, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "creatingcoverageitem": [26, 155], "creat": [26, 28, 29, 32, 35, 37, 40, 49, 75, 79, 80, 82, 119, 120, 155, 179, 191, 197, 208, 211, 214, 217, 218, 219, 224, 256, 265, 266, 277, 281], "_databas": [26, 155], "coveragetiddata": [26, 155], "tid": [26, 32, 40, 52, 54, 56, 58, 60, 62, 82, 86, 91, 101, 104, 155, 184, 186, 189, 190, 191, 193, 197, 217, 227, 247, 265, 266, 277, 281], "genpattern": [26, 155], "prefix": [26, 46, 49, 52, 54, 56, 58, 60, 62, 75, 79, 80, 82, 86, 88, 91, 97, 108, 116, 155, 179, 182, 184, 186, 189, 190, 193, 208, 211, 214, 217, 227, 232, 239, 242, 252, 261], "tiddata": [26, 155], "gener": [26, 32, 40, 43, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 75, 78, 79, 80, 82, 86, 88, 91, 92, 97, 103, 104, 116, 119, 127, 155, 159, 167, 179, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 209, 211, 217, 218, 219, 227, 232, 235, 239, 242, 246, 247, 261, 265, 277, 278, 281], "string": [26, 54, 60, 80, 82, 106, 120, 155, 186, 214, 217, 249, 265, 266], "generateallpattern": [26, 155], "coverageitem": [26, 155], "load": [26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "tidtobitset": [26, 155], "item_set": [26, 155], "convert": [26, 27, 30, 31, 33, 52, 54, 56, 58, 60, 62, 64, 66, 69, 93, 95, 97, 101, 106, 116, 117, 123, 125, 127, 135, 155, 184, 186, 189, 190, 193, 199, 201, 202, 228, 237, 240, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "bitset": [26, 45, 121, 155, 166], "gowtham": [26, 156], "sriniva": [26, 156], "trinath": [26, 156], "v": [26, 119, 120, 156], "r": [26, 45, 56, 62, 69, 71, 82, 84, 86, 88, 89, 90, 93, 97, 100, 101, 104, 108, 110, 127, 129, 156, 162, 189, 193, 202, 203, 217, 218, 219, 222, 226, 228, 232, 233, 234, 239, 241, 243, 245, 247, 252, 253, 278, 282], "2015": [26, 54, 97, 156, 186, 241], "journal": [26, 54, 86, 97, 156, 186, 226, 241], "intellig": [26, 49, 54, 79, 97, 116, 156, 177, 186, 212, 243, 261, 262], "system": [26, 49, 54, 56, 62, 86, 97, 116, 121, 123, 141, 156, 179, 186, 189, 193, 226, 241, 254, 261, 267], "45": [26, 156], "3": [26, 29, 33, 43, 45, 48, 49, 54, 56, 58, 62, 64, 69, 71, 73, 79, 82, 88, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 116, 117, 121, 123, 125, 127, 131, 135, 156, 158, 163, 164, 166, 175, 177, 178, 179, 189, 190, 191, 193, 197, 199, 202, 203, 206, 211, 217, 218, 219, 224, 228, 232, 233, 234, 235, 237, 240, 241, 243, 244, 245, 246, 247, 249, 261, 262, 263, 265, 266, 267, 268, 273, 276, 277, 278, 279, 281, 284], "423": [26, 156], "439": [26, 156], "http": [26, 43, 45, 46, 48, 50, 52, 54, 75, 76, 84, 86, 88, 89, 90, 92, 95, 97, 98, 100, 103, 104, 106, 108, 116, 117, 121, 123, 125, 127, 131, 156, 159, 162, 163, 164, 165, 166, 167, 175, 180, 182, 184, 186, 207, 209, 221, 222, 226, 232, 233, 234, 235, 237, 240, 241, 243, 244, 245, 246, 247, 249, 252, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 284], "link": [26, 82, 103, 123, 156, 217, 246, 268], "springer": [26, 103, 104, 116, 121, 123, 127, 156, 246, 247, 261, 262, 268, 269, 270, 278, 279], "com": [26, 103, 123, 156, 246, 268], "articl": [26, 88, 91, 156, 230, 231], "1007": [26, 71, 73, 75, 76, 79, 92, 97, 103, 104, 116, 117, 121, 123, 125, 127, 156, 203, 206, 207, 212, 235, 240, 246, 247, 262, 263, 268, 269, 270, 276, 278, 279], "s10844": [26, 156], "014": [26, 156], "0318": [26, 156], "percentag": [26, 30, 32, 39, 40, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 97, 98, 100, 101, 106, 108, 116, 117, 156, 175, 177, 178, 179, 184, 186, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 239, 240, 241, 242, 243, 244, 245, 249, 252, 261, 262, 263], "period": [26, 30, 39, 56, 58, 60, 62, 64, 69, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 116, 117, 127, 129, 135, 140, 156, 188, 189, 190, 191, 192, 193, 196, 197, 198, 199, 202, 215, 216, 217, 218, 219, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 261, 262, 263, 264, 265, 277, 278, 279, 280, 282], "generatelatexcod": [27, 58], "latexgraphfil": 27, "fuz": 27, "idf": [27, 28, 33], "plot": [27, 30, 33, 39, 41], "point": [27, 33, 191, 197, 277, 281], "plt": [27, 33], "path": [27, 30, 37, 39, 40, 41, 64, 66, 69, 75, 76, 78, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 199, 201, 202, 217, 218, 219, 221, 222, 227, 228, 230, 231, 232, 233, 234, 235, 237, 241, 242, 243, 244, 245, 246, 247, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "rank": [27, 49, 50, 91, 101, 123, 179, 180, 271], "gettopkpattern": 27, "storetopkpattern": 27, "get": [27, 28, 29, 30, 32, 39, 40, 49, 64, 66, 69, 75, 76, 82, 101, 179, 199, 201, 202, 217], "defin": [27, 28, 78, 80, 82, 86, 92, 139, 143, 217, 218, 219, 227, 238, 264], "patternid": 27, "predictedclass2transact": 27, "predicted_class": 27, "minthreshold": 27, "8": [27, 43, 45, 56, 62, 97, 159, 167, 189, 191, 193, 243, 265], "dens": [27, 28], "un": 27, "getbinarytransact": 27, "inputdf": 28, "param": [28, 29, 30, 32, 33, 37, 39, 40, 43, 49, 75, 76, 80, 86, 91, 97, 101, 103, 110, 119, 120, 123, 159, 177, 178, 179, 207, 208, 209, 214, 227, 241, 246, 253, 271], "condit": [28, 45, 49, 75, 91, 97, 101, 108, 119, 120, 166, 179, 209, 243, 252], "judg": 28, "thresholdvalu": 28, "db": [28, 29, 30, 31, 32, 35, 37, 39, 40], "iddf": 28, "16": [28, 29, 35], "convert2transactionaldatabas": 28, "outputfilenam": [28, 29, 40], "convert2temporaldatabas": 28, "convert2multipletimeseri": 28, "multipl": [28, 29, 30, 60, 84, 119, 181, 215, 221, 222, 223, 265, 266], "timeseri": [28, 60, 215], "convert2utilitydatabas": 28, "util": [28, 30, 39, 40, 52, 71, 73, 75, 76, 79, 80, 110, 184, 191, 197, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 253, 254, 277], "getfilenam": [28, 32, 37, 40], "write": [28, 119, 120], "break": 28, "convert2uncertaintransact": 28, "createtransact": [28, 80, 214], "createtempor": 28, "createutil": 28, "csv": [28, 29, 32, 40, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 86, 88, 90, 91, 95, 97, 98, 100, 101, 116, 123, 125, 127, 129, 131, 133, 135, 159, 165, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 226, 227, 230, 231, 234, 237, 239, 240, 241, 242, 243, 244, 245, 261, 262, 267, 268, 273, 276, 278, 279, 282, 284, 286], "denseformatdfplu": 28, "thresholdconditiondf": 28, "denseformatdf_dump": 28, "sparseformatdfplu": 28, "beta": [29, 75, 76], "calculatemi": 29, "getmisdatafram": 29, "respect": [29, 45, 62, 82, 97, 101, 108, 127, 166, 193, 217, 243, 252, 279], "rtype": [29, 30, 32, 39, 40, 48, 49, 64, 73, 75, 76, 80, 86, 110, 116, 175, 177, 178, 179, 199, 206, 207, 208, 209, 214, 227, 253, 261], "sd": 29, "getdatafram": [29, 35], "readdatabas": [30, 39], "read": [30, 39, 75, 76, 119, 120], "getdatabases": [30, 39], "getminimumtransactionlength": [30, 39], "getaveragetransactionlength": [30, 39], "averag": [30, 32, 39, 40], "sum": [30, 32, 39, 40, 52, 54, 56, 58, 60, 62, 80, 184, 186, 189, 190, 191, 193, 214, 277], "divid": [30, 39], "getmaximumtransactionlength": [30, 39], "getstandarddeviationtransactionlength": [30, 39], "standard": [30, 39], "deviat": [30, 39], "getsortedlistofitemfrequ": [30, 39], "sort": [30, 39, 54, 60, 71, 73, 75, 79, 80, 88, 90, 91, 93, 95, 97, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 186, 203, 206, 207, 212, 214, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 253, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "getsortedlistoftransactionlength": [30, 39], "getminimumutil": [30, 39], "getaverageutil": [30, 39], "getmaximumutil": [30, 39], "getsortedutilityvaluesofitem": [30, 39], "fuzzydatabasestat": 30, "printstat": [30, 39, 75, 209], "creatingitemset": [30, 39, 43, 64, 66, 69, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 199, 201, 202, 221, 222, 228, 230, 231, 234, 235, 237, 240, 241, 245, 246, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getfrequenciesinrang": [30, 39], "max": [30, 39], "min": 30, "getnumberofitem": [30, 39], "kei": [30, 33, 39, 66, 71, 75, 91, 101, 110, 119, 201, 203, 207, 253], "getspars": [30, 39], "sparsiti": [30, 39], "gettotalnumberofitem": [30, 39], "gettotalutil": [30, 39], "gettransanctionallengthdistribut": [30, 39], "getvariancetransactionlength": [30, 39], "varianc": [30, 39], "plotgraph": [30, 39], "multipletimeseriesdatabasestat": 30, "fuzzi": [30, 31, 52, 54, 56, 58, 60, 62, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 215], "convertdataintomatrix": [30, 39], "matrix": [30, 80, 120, 214], "form": [30, 45, 71, 86, 88, 108, 110, 166, 203, 227, 232, 252, 253, 281], "densiti": 30, "getdens": [30, 39], "disctribut": 30, "ndarrai": [30, 39], "like": [30, 39, 281], "avarag": [30, 39], "minimun": [30, 39], "so": [30, 32, 39, 40, 82, 217, 218, 219], "subsequ": [30, 39, 142, 255], "self": [30, 39, 49, 52, 71, 73, 75, 79, 80, 88, 91, 110, 119, 179, 184, 203, 206, 207, 212, 214, 230, 232, 253], "getminimumsequencelength": [30, 39], "getaveragesubsequencepersequencelength": [30, 39], "per": [30, 32, 39, 40, 91], "getaverageitempersubsequencelength": [30, 39], "getmaximumsequencelength": [30, 39], "getstandarddeviationsubsequencelength": [30, 39], "getvariancesequencelength": [30, 39], "getsequences": [30, 39], "getminimumsubsequencelength": [30, 39], "getaverageitempersequencelength": [30, 39], "getmaximumsubsequencelength": [30, 39], "getvariancesubsequencelength": [30, 39], "getsequenciallengthdistribut": [30, 39], "getsubsequenciallengthdistribut": [30, 39], "statu": [30, 39], "sampledb": [30, 39, 43, 45, 46, 48, 49, 50, 82, 84, 86, 88, 91, 92, 97, 103, 104, 108, 116, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 217, 218, 219, 221, 222, 227, 230, 231, 232, 235, 239, 240, 242, 246, 247, 252, 261, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "_ap": [30, 39], "shota": [30, 39], "suzuki": [30, 39], "getstandarddeviationsequencelength": [30, 39], "getminimumperiod": [30, 39], "getaverageperiod": [30, 39], "getmaximumperiod": [30, 39], "getstandarddeviationperiod": [30, 39], "getnumberoftransactionspertimestamp": [30, 39], "stamp": [30, 39, 82, 86, 217, 218, 219, 227], "getaverageinterarrivalperiod": [30, 39], "inter": [30, 39], "arriv": [30, 39], "getaverageperiodofitem": [30, 39], "getmaximuminterarrivalperiod": [30, 39], "getmaximumperiodofitem": [30, 39], "getminimuminterarrivalperiod": [30, 39], "getminimumperiodofitem": [30, 39], "getperiodsinrang": [30, 39], "And": [30, 39], "uncertaintemporaldatabasestat": 30, "fuzfil": [31, 54, 58, 186, 190], "_convert": 31, "startconvert": 31, "numoftransact": [32, 40], "avglenoftransact": [32, 40], "numitem": [32, 40], "x1": [32, 119, 120], "y1": [32, 119, 120], "x2": [32, 119, 120], "y2": [32, 119, 120], "50": [32, 40], "typeoffil": [32, 40], "frame": [32, 40, 78, 80, 86, 92], "cointoss": [32, 40], "correspond": [32, 40, 73, 79, 80, 119, 191, 206, 212, 214, 281], "filenam": [32, 40, 90, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 135, 228, 234, 237, 240, 241, 245, 249, 252, 262, 263, 267, 268, 269, 270, 271, 273, 276, 279], "createtemporalfil": [32, 40], "getdatabaseasdatafram": [32, 40], "performcoinflip": [32, 40], "perform": [32, 40, 46, 48, 49, 75, 76, 86, 88, 119, 120, 175, 177, 178, 179, 182, 227, 232], "coin": [32, 40], "flip": [32, 40], "probabl": [32, 40, 79, 80, 123, 127, 144, 145, 146, 211, 214, 271, 274, 275, 277, 279, 280], "tune": [32, 40, 84, 123, 125, 127, 129, 131, 135, 221, 222, 267, 276, 278, 279, 282, 284], "arraylength": [32, 40], "100": [32, 33, 40, 191, 197, 281], "15": [32, 40], "avgtransactionlength": [32, 40], "6": [32, 40, 54, 60, 89, 97, 98, 100, 117, 123, 186, 191, 224, 233, 241, 243, 244, 245, 263, 269], "outfilenam": [32, 40], "temporal_ot": [32, 40], "percent": [32, 40], "75": [32, 40], "frameorbas": [32, 40], "you": [32, 40], "want": [32, 40], "temporaldb": [32, 40], "generatearrai": [32, 40], "num": [32, 40, 91], "avg": [32, 40], "maxitem": [32, 40, 80, 214], "sumr": [32, 40], "random": [32, 40], "arrai": [32, 40, 73, 75, 76, 79, 80, 120, 206, 212, 214], "n": [32, 40, 49, 52, 86, 88, 89, 116, 127, 177, 184, 226, 232, 233, 250, 251, 262, 278], "whose": [32, 37, 40, 73, 206], "m": [32, 40, 60, 69, 71, 82, 93, 97, 110, 116, 127, 129, 202, 203, 217, 218, 219, 228, 243, 253, 262, 278, 282], "getpoint": 32, "bool": [32, 40, 45, 80, 88, 120, 162, 214, 230], "true": [32, 40, 45, 91, 101, 119, 120, 162, 163, 164, 166], "fals": [32, 40, 119, 120, 123, 125, 127, 135, 267, 268, 269, 270, 271, 273, 276, 278, 279], "otherwis": [32, 40, 43, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 162, 163, 164, 167, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "equal": [32, 37, 40, 75, 207], "numlin": [32, 40], "avgitemsperlin": [32, 40], "line": [32, 33, 40, 80, 82, 86, 97, 108, 191, 214, 217, 227, 241, 252, 256, 277, 281], "gettransact": [32, 40, 80, 91, 101, 214], "dataframeintofigur": 33, "figur": 33, "column": [33, 224, 265], "xcolumn": 33, "x": [33, 75, 79, 91, 101, 119, 120, 121, 208, 211], "axi": 33, "ycolumn": 33, "fig": 33, "plotgraphsfromdatafram": 33, "end": [33, 45, 78, 80, 82, 97, 101, 165, 166, 217, 218, 219, 243], "titl": 33, "xlabel": 33, "ylabel": 33, "plotlinegraph": 33, "draw": 33, "idict": 33, "plotlinegraphfromdatafram": 33, "plotlinegraphfromdatfram": 33, "produc": [33, 121, 281], "miner": [33, 54, 56, 58, 62, 71, 75, 79, 186, 189, 190, 193, 203, 208, 212], "take": [33, 40, 119], "viz": 33, "markers": 33, "20": [33, 71, 73, 84, 97, 110, 197, 203, 206, 222, 239, 240, 253], "zoom": 33, "width": 33, "1500": 33, "height": 33, "1000": 33, "marker": 33, "screen": 33, "createdatabas": 35, "detected_object": 35, "appli": [35, 79, 116, 123, 212, 261, 273], "detected_obj": 35, "saveastemporaldb": 35, "saveastransactionaldb": 35, "saveasuncertaintemporaldb": 35, "saveasuncertaintransactionaldb": 35, "saveasutilitytemporaldb": 35, "saveasutilitytransactionaldb": 35, "url": [36, 45, 46, 50, 97, 162, 163, 164, 165, 166, 167, 180, 182, 239, 240], "usernam": 36, "password": 36, "toaddress": 36, "subject": 36, "bodi": 36, "createneighborhoodfileusingeuclideandist": 37, "maxeuclediandist": 37, "neighbourhood": [37, 52, 64, 66, 69, 78, 79, 80, 129, 184, 199, 201, 202, 211, 214, 215, 281, 282], "euclid": 37, "distanc": [37, 73, 79, 206, 212], "pf": 37, "maxeuclideandist": 37, "pair": [37, 71, 75, 110, 119, 120, 203, 207, 253], "euclidean": 37, "than": [37, 73, 75, 79, 80, 116, 120, 206, 207, 212, 214, 261, 262, 265], "maxeuclediandistac": 37, "plotedgedistribut": 39, "plotnodedistribut": 39, "printgraphdatabasestatist": 39, "printindividualgraphstat": 39, "transanct": 39, "e": [40, 71, 73, 75, 79, 80, 110, 191, 203, 206, 207, 212, 214, 253, 256, 265, 266, 277, 281], "g": [40, 48, 60, 119, 120, 175, 265], "wai": 40, "text": [40, 119], "randomli": 40, "target": [40, 139, 143, 238, 264], "databases": 40, "avgitemspertransact": 40, "collect": [40, 75, 76, 224, 256, 265], "onli": [40, 71, 73, 75, 79, 80, 110, 140, 147, 149, 203, 206, 207, 212, 214, 248, 253, 283, 287], "ignor": [40, 265, 266], "metadata": 40, "creategeoreferentialtemporaldatabas": 40, "avgtransact": 40, "synthet": 40, "referenti": [40, 197], "totaltransact": 40, "No": [40, 88, 91, 230, 231], "noofitem": 40, "creategeoreferentialtransactiondatabas": 40, "creategeoreferentialtransactionaldatabas": 40, "creategeoreferentialuncertaintransactiondatabas": 40, "creategeoreferentialuncertaintransactionaldatabas": 40, "createtemporalldatabas": 40, "createtemporaldatabas": 40, "createtransactionaldatabas": 40, "createuncertaintemporaldatabas": 40, "createuncertaintransactionaldatabas": 40, "maxutilrang": 40, "createutilitydatabas": 40, "transactions": 40, "numofitem": 40, "minutilityvalu": 40, "maxutilityvalu": 40, "minnumoftimesanitem": 40, "maxnumoftimesanitem": 40, "__init__": 40, "constructor": 40, "initi": [40, 73, 79, 80, 206, 212, 214], "createsyntheticutilitydatabas": 40, "createrandomnumb": 40, "targetsum": 40, "hemanth": 40, "sree": 40, "normal": 40, "multipli": 40, "total_transact": 40, "num_of_item": 40, "avg_transaction_length": 40, "create_temporal_databas": 40, "output_fil": 40, "generate_random_numb": 40, "target_sum": 40, "utilitydatagener": 40, "numberofitem": 40, "averagelengthoftransact": 40, "minimuminternalutilityvalu": 40, "maximuminternalutilityvalu": 40, "minimumexternalutilityvalu": 40, "maximumexternalutilityvalu": 40, "generateandprintitempair": 40, "generateexternalutilitydata": 40, "getexternalutilitydata": 40, "getinternalutilitydata": 40, "getutilitydata": 40, "saveitemsinternalutilityvalu": 40, "saveitemsexternalutilityvalu": 40, "savefig": 41, "itemsup": [43, 116, 121, 158, 159, 261], "minlength": [43, 121, 158, 159], "faulttoler": [43, 121, 158, 159], "_faulttolerantfrequentpattern": [43, 121, 158, 159], "ft": [43, 158], "fault": [43, 121, 158, 159, 160, 215, 266], "toler": [43, 121, 158, 159, 160, 215, 266], "properti": [43, 45, 46, 49, 90, 97, 121, 131, 133, 148, 158, 159, 162, 167, 177, 178, 179, 182, 234, 239, 242, 284, 285, 286], "downward": [43, 45, 49, 121, 131, 133, 148, 158, 159, 162, 167, 177, 178, 179, 284, 285, 286], "closur": [43, 45, 49, 121, 131, 133, 148, 158, 159, 162, 167, 177, 178, 179, 284, 285, 286], "reduc": [43, 45, 49, 54, 56, 58, 62, 84, 121, 131, 133, 158, 159, 162, 167, 177, 178, 179, 186, 189, 190, 193, 222, 284, 286], "pei": [43, 45, 54, 135, 158, 159, 167, 186], "jian": [43, 158], "tung": [43, 158], "anthoni": [43, 158], "jiawei": [43, 158], "2001": [43, 158], "problem": [43, 54, 56, 58, 62, 158, 186, 189, 190, 193], "challeng": [43, 54, 56, 58, 62, 137, 146, 158, 186, 189, 190, 193, 229, 280], "falut": [43, 158, 159], "here": [43, 45, 46, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 150, 151, 158, 159, 162, 163, 164, 165, 166, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "csvfile": [43, 45, 46, 48, 49, 50, 158, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182], "compress": [43, 45, 49, 131, 133, 159, 167, 179, 284, 286], "decreas": [43, 45, 49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 131, 133, 135, 159, 167, 179, 228, 230, 231, 234, 237, 240, 241, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279, 284, 286], "extract": [43, 45, 46, 49, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 165, 167, 179, 182, 221, 222, 227, 228, 230, 231, 232, 234, 237, 240, 241, 245, 249, 252, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "yin": [43, 45, 159, 167], "et": [43, 45, 49, 62, 75, 76, 79, 80, 98, 116, 117, 159, 167, 179, 193, 207, 211, 214, 244, 262, 263], "al": [43, 45, 49, 62, 75, 76, 79, 80, 98, 116, 117, 159, 167, 179, 193, 207, 211, 214, 244, 262, 263], "without": [43, 45, 103, 120, 121, 159, 167, 246], "candid": [43, 45, 71, 73, 75, 79, 80, 110, 120, 159, 167, 203, 206, 207, 208, 209, 211, 212, 214, 253], "knowledg": [43, 45, 75, 123, 133, 159, 165, 167, 209, 268, 277, 286], "53": [43, 45, 79, 159, 167, 212], "87": [43, 45, 159, 167], "2004": [43, 45, 84, 159, 167, 221], "1023": [43, 45, 159, 167], "scan": [43, 45, 73, 79, 80, 84, 86, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 166, 206, 212, 214, 221, 222, 227, 228, 230, 231, 232, 234, 235, 237, 239, 240, 241, 242, 243, 245, 246, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "frequentoneitem": [43, 64, 66, 69, 84, 92, 103, 104, 108, 123, 125, 129, 131, 133, 135, 159, 199, 201, 202, 221, 222, 235, 246, 247, 252, 267, 268, 269, 270, 271, 273, 276, 282, 284, 286], "getpatternindatafram": [43, 45, 49, 50, 84, 86, 92, 103, 104, 121, 133, 159, 162, 163, 164, 165, 166, 167, 177, 178, 179, 180, 221, 222, 227, 235, 246, 247, 286], "_frequentpattern": [45, 46, 48, 49, 50, 84, 108, 123, 125, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 221, 222, 252, 267, 268, 269, 270, 271, 273, 276], "breadth": [45, 82, 162, 218], "agraw": [45, 162], "imi": [45, 162], "nski": [45, 162], "swami": [45, 162], "rule": [45, 52, 66, 84, 162, 184, 191, 197, 201, 221, 224, 256, 265, 266, 277, 281], "sigmod": [45, 162], "207": [45, 162], "216": [45, 162], "1993": [45, 162], "170035": [45, 162], "170072": [45, 162], "also": [45, 46, 97, 121, 123, 125, 127, 129, 131, 133, 135, 147, 148, 149, 162, 163, 164, 165, 166, 167, 182, 239, 240, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 283, 284, 285, 286, 287], "memorysav": [45, 162, 163, 164, 166], "enabl": [45, 143, 162, 264], "disabl": [45, 162], "mode": [45, 162], "delet": [45, 82, 162, 217], "intermedi": [45, 162], "moham": [45, 46, 163, 164, 166, 182], "jave": [45, 163, 164, 166], "zaki": [45, 46, 163, 164, 166, 182], "scalabl": [45, 66, 163, 164, 166, 201], "ieee": [45, 50, 56, 62, 69, 79, 80, 90, 97, 98, 100, 110, 123, 163, 164, 166, 180, 189, 193, 202, 211, 214, 234, 243, 244, 245, 253, 271], "tran": [45, 49, 75, 163, 164, 166, 179, 207], "knowl": [45, 75, 76, 163, 164, 166, 207], "eng": [45, 163, 164, 166], "12": [45, 163, 164, 166], "372": [45, 163, 164, 166], "390": [45, 163, 164, 166], "2000": [45, 163, 164, 166], "ieeexplor": [45, 50, 90, 98, 100, 163, 164, 166, 180, 234, 244, 245], "document": [45, 50, 90, 98, 100, 163, 164, 166, 180, 234, 244, 245], "846291": [45, 163, 164, 166], "kundai": [45, 58, 164, 165], "diffset": [45, 165], "kdd": [45, 75, 165, 209], "03": [45, 165], "proceed": [45, 46, 75, 88, 91, 123, 131, 165, 182, 209, 230, 231, 271, 273, 284], "ninth": [45, 165], "sigkdd": [45, 75, 165, 209], "intern": [45, 49, 56, 62, 69, 75, 79, 80, 88, 91, 93, 98, 103, 110, 116, 123, 129, 131, 133, 165, 177, 189, 193, 202, 209, 211, 214, 228, 230, 231, 244, 246, 253, 261, 271, 281, 282, 284, 286], "confer": [45, 49, 56, 62, 69, 75, 79, 80, 88, 91, 93, 98, 103, 110, 123, 129, 131, 133, 165, 177, 179, 189, 193, 202, 209, 211, 214, 228, 230, 231, 244, 246, 253, 268, 271, 282, 284, 286], "august": [45, 165], "page": [45, 86, 88, 91, 123, 165, 215, 226, 230, 231, 267, 273], "326": [45, 165], "335": [45, 165], "956750": [45, 165], "956788": [45, 165], "yudai": [45, 49, 163, 166, 177, 178, 179], "masu": [45, 49, 163, 166, 177, 178, 179], "implement": [45, 49, 86, 88, 97, 116, 166, 177, 227, 232, 239, 242, 261], "we": [45, 54, 56, 58, 62, 166, 186, 189, 190, 193, 250, 251, 266, 277], "check": [45, 46, 71, 73, 75, 79, 80, 90, 91, 97, 108, 110, 119, 120, 166, 182, 203, 206, 207, 212, 214, 234, 239, 241, 242, 252, 253], "superset": [46, 73, 182, 206], "same": [46, 49, 52, 54, 56, 58, 60, 62, 179, 182, 184, 186, 189, 190, 193, 197, 265], "origin": [46, 80, 120, 123, 125, 127, 135, 182, 214, 267, 268, 269, 270, 271, 273, 276, 278, 279], "ching": [46, 182], "jui": [46, 182], "hsiao": [46, 182], "2002": [46, 182], "siam": [46, 131, 182, 284], "sdm": [46, 182], "457": [46, 182], "473": [46, 182], "1137": [46, 131, 182, 284], "9781611972726": [46, 182], "27": [46, 182], "tidlist": [46, 66, 82, 86, 88, 92, 97, 103, 104, 116, 182, 201, 217, 227, 232, 235, 239, 242, 246, 247, 261], "hash": [46, 97, 182, 239, 242], "equival": [46, 64, 66, 86, 88, 97, 116, 123, 182, 199, 201, 227, 232, 239, 242, 261, 273], "maxfp": [48, 175], "grahn": [48, 175], "zhu": [48, 175], "enc": [48, 175], "concordia": [48, 175], "ca": [48, 175], "paper": [48, 106, 175, 249], "hpdm03": [48, 175], "pdf": [48, 52, 88, 89, 95, 106, 108, 131, 175, 184, 232, 233, 237, 249, 252, 284], "maxper": [48, 52, 54, 56, 58, 60, 62, 64, 66, 75, 79, 82, 86, 93, 95, 97, 98, 100, 101, 103, 106, 108, 116, 117, 127, 129, 131, 139, 175, 184, 186, 189, 190, 193, 199, 201, 208, 211, 212, 217, 218, 219, 226, 227, 228, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 249, 252, 261, 262, 263, 278, 279, 282, 284], "functon": [48, 175], "numwork": [49, 91, 101, 177, 178, 179], "li": [49, 54, 177, 179, 186, 277], "l": [49, 121, 177], "zeng": [49, 177], "q": [49, 177], "he": [49, 177], "z": [49, 75, 79, 177, 208, 211], "shi": [49, 177], "mapreduc": [49, 177], "2012": [49, 123, 177, 267], "13th": [49, 177], "aci": [49, 177], "softwar": [49, 86, 97, 177, 226, 241], "engin": [49, 116, 177, 261], "artifici": [49, 116, 177, 262], "comput": [49, 75, 97, 104, 116, 121, 123, 127, 177, 209, 243, 247, 262, 271, 278, 279], "kyoto": [49, 177], "japan": [49, 177], "236": [49, 177], "241": [49, 177], "1109": [49, 50, 56, 62, 69, 79, 80, 93, 97, 110, 123, 129, 133, 177, 180, 189, 193, 202, 211, 214, 228, 243, 253, 271, 282, 286], "snpd": [49, 177], "31": [49, 177], "numpartit": [49, 91, 177, 178, 179], "partit": [49, 91, 101, 177, 178, 179], "On": [49, 177, 178, 179], "worker": [49, 101, 177, 178, 179], "executor": [49, 177, 178, 179], "unit": [49, 177, 178, 179], "children": [49, 82, 91, 97, 101, 179, 217, 243], "null": [49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 179, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 253, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "nodelink": [49, 82, 179, 217], "addtransact": [49, 82, 179, 217], "addnodetonodelink": [49, 179], "add": [49, 80, 82, 91, 101, 119, 120, 179, 214, 217], "generateconditionaltre": [49, 179], "haoyuan": [49, 179], "pfp": [49, 179], "queri": [49, 179], "recommend": [49, 106, 141, 179, 249, 254], "2008": [49, 179], "static": [49, 139, 179, 238], "buildtre": [49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 179, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "genallfrequentpattern": [49, 179], "tree_tupl": [49, 179], "id": [49, 52, 75, 76, 101, 119, 120, 179, 184], "gencondtransact": [49, 91, 101, 179], "genfreqpattern": [49, 179], "new": [49, 71, 73, 75, 79, 80, 84, 88, 89, 95, 106, 110, 119, 123, 179, 203, 206, 207, 209, 212, 214, 221, 232, 233, 237, 249, 253, 267], "getpartitionid": [49, 91, 101, 179], "zhi": [50, 180], "hong": [50, 54, 135, 180, 186], "deng": [50, 180], "guo": [50, 180], "dong": [50, 180], "fang": [50, 180], "icmlc": [50, 180], "2007": [50, 52, 180, 184], "4370261": [50, 180], "xplore": [50, 180], "topkfrequentpattern": [50, 180], "element": [52, 54, 56, 58, 60, 62, 66, 75, 79, 80, 119, 120, 141, 184, 186, 189, 190, 193, 201, 208, 211, 214, 254, 277], "iutil": [52, 184], "rutil": [52, 184], "keep": [52, 54, 56, 58, 60, 62, 71, 73, 75, 79, 80, 110, 184, 186, 189, 190, 193, 203, 206, 207, 208, 211, 212, 214, 253], "tact": [52, 184], "rest": [52, 184], "_corelatedfuzzyfrequentpattern": [52, 184], "lin": [52, 54, 75, 76, 116, 123, 135, 184, 186, 207, 261, 267], "chueh": [52, 184], "h": [52, 60, 116, 184, 262], "citeseerx": [52, 184], "ist": [52, 184], "psu": [52, 184], "edu": [52, 184], "viewdoc": [52, 184], "download": [52, 184], "416": [52, 184], "6053": [52, 184], "rep": [52, 184], "rep1": [52, 184], "starttimetim": [52, 184], "itemscnt": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "mapitemslowsum": [52, 54, 56, 62, 184, 193], "map": [52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 110, 119, 120, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 253], "track": [52, 54, 56, 58, 60, 62, 75, 79, 184, 186, 189, 190, 193, 208, 211], "low": [52, 54, 56, 62, 80, 184, 191, 193, 214], "region": [52, 54, 56, 58, 60, 62, 184, 189, 193], "mapitemsmidsum": [52, 54, 56, 60, 62, 184, 193], "middl": [52, 54, 56, 62, 184, 193], "mapitemshighsum": [52, 54, 56, 62, 184, 193], "mapitemsum": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "mapitemregion": [52, 54, 56, 58, 60, 62, 184, 189, 193], "jointcnt": [52, 54, 62, 184, 193], "ffi": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "construct": [52, 54, 56, 58, 60, 62, 75, 79, 88, 91, 97, 119, 120, 123, 125, 127, 135, 184, 186, 189, 190, 193, 208, 209, 211, 224, 230, 231, 241, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279], "buffers": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "buffer": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "itembuff": [52, 54, 62, 184, 193], "starttimemin": [52, 184], "getratio": [52, 184], "prefixlen": [52, 54, 56, 58, 60, 62, 75, 79, 184, 186, 189, 190, 193, 208, 211], "ration": [52, 184], "fsfimin": [52, 54, 56, 58, 62, 184, 186, 189, 190, 193], "fsfim": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "px": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "findelementwithtid": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "ulist": [52, 54, 56, 58, 60, 62, 75, 79, 184, 186, 189, 190, 193, 208, 211], "writeout": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "sumiutil": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "patten": [52, 54, 56, 58, 60, 62, 82, 184, 186, 189, 190, 193, 217, 218, 219], "correlatedfuzzyfrequentpattern": [52, 184], "_fuzzyfrequentpattenr": [54, 186], "desir": [54, 56, 58, 62, 186, 189, 190, 193], "trivial": [54, 56, 58, 62, 186, 189, 190, 193], "huge": [54, 56, 58, 62, 186, 189, 190, 193], "prune": [54, 56, 58, 62, 186, 189, 190, 193], "chun": [54, 123, 135, 186, 267], "wei": [54, 75, 101, 123, 135, 186, 209, 267], "ting": [54, 186], "fournier": [54, 66, 71, 75, 76, 82, 89, 93, 110, 116, 117, 127, 135, 186, 201, 203, 207, 217, 218, 219, 228, 233, 253, 261, 262, 263, 279], "viger": [54, 66, 71, 75, 76, 82, 93, 110, 116, 117, 127, 135, 186, 201, 203, 207, 217, 218, 219, 228, 253, 261, 262, 263, 279], "philipp": [54, 66, 89, 103, 127, 135, 186, 201, 233, 246, 279], "tzung": [54, 123, 135, 186, 267], "fast": [54, 75, 76, 123, 186, 207, 271], "29": [54, 186], "2373": [54, 186], "2379": [54, 186], "3233": [54, 186], "IFS": [54, 186], "151936": [54, 186], "researchg": [54, 186], "net": [54, 186], "286510908_a_fast_algorithm_for_mining_fuzzy_frequent_itemset": [54, 186], "fmfile": [54, 186], "joinscnt": [54, 56, 58, 60, 62, 186, 189, 190], "compareitem": [54, 60, 186], "o1": [54, 60, 186], "o2": [54, 60, 186], "ascend": [54, 60, 186], "ffiminermin": 54, "fuzzymembership": 54, "nfile": [56, 58, 64, 66, 69, 71, 73, 78, 79, 80, 125, 129, 189, 190, 199, 201, 202, 203, 206, 211, 212, 214, 276, 282], "_fuzzyspatialfrequentpattern": [56, 58, 189, 190], "veena": [56, 79, 125, 127, 189, 212, 276, 279], "chithra": [56, 189], "u": [56, 62, 71, 80, 82, 88, 89, 95, 97, 104, 106, 110, 116, 131, 189, 193, 203, 214, 217, 218, 219, 232, 233, 237, 243, 247, 249, 253, 261, 284], "agarw": [56, 189], "zettsu": [56, 66, 69, 79, 90, 93, 97, 100, 101, 125, 127, 129, 189, 201, 202, 212, 228, 234, 239, 245, 276, 278, 279, 282], "quantit": [56, 60, 62, 79, 80, 189, 193, 211, 214, 281], "spatiotempor": [56, 66, 69, 73, 79, 80, 129, 189, 201, 202, 206, 211, 212, 214, 282], "2021": [56, 79, 80, 97, 110, 127, 189, 211, 214, 239, 253, 278], "fuzz": [56, 62, 189, 193], "fuzz45933": [56, 189], "9494594": [56, 189], "neighbor": [56, 58, 75, 79, 119, 120, 147, 189, 190, 208, 211, 283], "intersect": [56, 58, 73, 79, 80, 189, 190, 206, 212, 214], "neighbourx": [56, 58, 189, 190], "neighbouri": [56, 58, 189, 190], "common": [56, 58, 64, 66, 69, 73, 79, 80, 189, 190, 199, 201, 202, 206, 212, 214, 265], "samplen": [56, 58, 64, 66, 69, 73, 75, 79, 80, 189, 190, 199, 201, 202, 206, 209, 211, 212, 214], "fuzzyspatialfrequentpattern": [56, 189], "block": [56, 86, 88, 92, 101, 103, 116, 227, 232, 235, 246, 261], "consol": 56, "kwangwari": 58, "generategraph": 58, "_fuzzypartialperiodicpattern": 60, "irregulat": 60, "mapitemsgsum": 60, "mapitemshsum": 60, "f3pmine": 60, "palla": [60, 92, 125, 127, 235, 276, 279], "_fuzzyperiodicfrequentpattern": [62, 193], "2020": [62, 66, 82, 90, 98, 100, 101, 123, 193, 201, 217, 218, 219, 234, 244, 245, 269, 270], "glasgow": [62, 193], "uk": [62, 193], "fuzz48607": [62, 193], "9177579": [62, 193], "maxtid": [62, 193], "lasttid": [62, 193], "last": [62, 80, 82, 86, 119, 120, 193, 214, 217, 218, 219, 227], "itemstoregion": [62, 193], "il": 62, "_georeferencedperiodicfrequentpattern": [64, 199], "extens": [64, 66, 119, 199, 201, 250, 251], "\u00e9clat": [64, 199], "stand": [64, 66, 199, 201], "cluster": [64, 66, 199, 201], "bottom": [64, 66, 199, 201], "up": [64, 66, 75, 199, 201, 209], "lattic": [64, 66, 199, 201], "travers": [64, 66, 119, 199, 201], "referenc": [64, 66, 69, 71, 73, 125, 187, 188, 191, 194, 195, 196, 198, 199, 201, 202, 203, 206, 215, 256, 275, 276, 277, 281], "avail": [64, 66, 69, 199, 201, 202], "ifilenam": [64, 66, 69, 199, 201, 202], "getneighbouritem": [64, 66, 69, 199, 201, 202], "keyset": [64, 66, 69, 199, 201, 202], "mapneighbour": [64, 66, 69, 199, 201, 202], "neighbourfil": [64, 66, 69, 199, 201, 202], "georeferencedperidicfrequentpattern": [64, 199], "ravikumar": [64, 79, 88, 97, 104, 199, 212, 232, 239, 247], "_spatialfrequentpattern": [66, 201], "popular": [66, 201], "version": [66, 97, 201, 241], "koji": [66, 79, 90, 97, 100, 101, 125, 127, 201, 212, 234, 239, 245, 276, 279], "toyoda": [66, 69, 71, 86, 90, 100, 101, 106, 110, 127, 129, 201, 202, 203, 226, 234, 245, 249, 253, 279, 282], "masashi": [66, 86, 88, 89, 90, 100, 101, 106, 127, 201, 226, 232, 233, 234, 245, 249, 279], "kitsuregawa": [66, 69, 71, 86, 89, 90, 93, 100, 101, 106, 108, 129, 201, 202, 203, 226, 228, 233, 234, 245, 249, 252, 282], "masaru": [66, 86, 88, 89, 90, 100, 101, 106, 108, 201, 226, 232, 233, 234, 245, 249, 252], "veri": [66, 79, 80, 90, 97, 98, 100, 104, 110, 201, 211, 214, 234, 241, 244, 245, 247, 253], "dictkeystoint": [66, 201], "ilist": [66, 201], "eclatgener": [66, 92, 103, 104, 201, 235, 246, 247], "clist": [66, 201], "generatespatialfrequentpattern": [66, 201], "spatialfrequentpattern": [66, 201], "minp": [69, 88, 91, 92, 106, 108, 202, 230, 231, 232, 249, 252], "maxiat": [69, 202], "_partialperiodicspatialpattern": [69, 202], "georeferenec": [69, 202], "c": [69, 88, 93, 106, 116, 119, 120, 121, 129, 202, 224, 228, 232, 249, 256, 261, 265, 266, 282], "saideep": [69, 93, 101, 106, 202, 228, 249], "2019": [69, 71, 93, 116, 129, 202, 203, 228, 261, 282], "big": [69, 79, 80, 92, 98, 101, 104, 110, 116, 202, 211, 214, 235, 244, 247, 253, 262], "233": [69, 202], "238": [69, 202], "bigdata47090": [69, 202], "9005693": [69, 202], "partialperiodicspatialpattern": [69, 202], "minutil": [71, 73, 75, 76, 78, 79, 80, 110, 203, 206, 207, 208, 209, 211, 212, 214, 253], "_utilitypattern": [71, 73, 75, 76, 79, 110, 203, 206, 207, 208, 209, 211, 212, 253], "help": [71, 110, 203, 253], "hufi": [71, 203], "cutoff": [71, 203], "suffix": [71, 86, 203, 227], "pakdd": [71, 89, 97, 123, 125, 203, 233, 240, 268, 276], "978": [71, 73, 92, 97, 103, 104, 116, 123, 125, 127, 203, 206, 235, 240, 246, 247, 262, 268, 276, 278, 279], "030": [71, 73, 127, 203, 206, 278], "16145": [71, 203], "3_15": [71, 203], "candidatecount": [71, 73, 75, 79, 80, 110, 203, 206, 207, 209, 212, 214, 253], "maxmemori": [71, 73, 75, 76, 79, 80, 110, 203, 206, 207, 209, 212, 214, 253], "highutilityfrequentitemset": [71, 203], "utilitybinarraylu": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "hold": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "local": [71, 73, 75, 79, 80, 82, 110, 203, 206, 207, 212, 214, 215, 216, 217, 218, 219, 253, 265], "utilitybinarraysu": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "subtre": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "oldnamestonewnam": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "old": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "newnamestooldnam": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "singleitemsetssupport": [71, 203], "singleitemsetsutil": [71, 203], "patterncount": [71, 73, 75, 79, 110, 203, 206, 207, 212, 253], "rhui": [71, 110, 203, 253], "itemstokeep": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "promis": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "i": [71, 110, 119, 120, 123, 191, 203, 253, 265, 271, 277, 281], "extend": [71, 73, 75, 79, 80, 110, 119, 120, 203, 206, 207, 212, 214, 253], "itemstoexplor": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "need": [71, 110, 119, 203, 253, 256], "backtrackinghufim": [71, 203], "transactionsofp": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "prefixlength": [71, 73, 75, 79, 80, 108, 110, 203, 206, 207, 212, 214, 252, 253], "useutilitybinarraystocalculateupperbound": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "transactionsp": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "sub": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "tempposit": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "rel": [71, 108, 110, 148, 203, 215, 251, 252, 253, 254, 265, 266, 281, 285], "what": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "chose": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "isequ": [71, 73, 203, 206], "transaction1": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "transaction2": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "ident": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "useutilitybinarraytocalculatesubtreeutilityfirsttim": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "sortdatabas": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "sorttransact": [71, 73, 203, 206], "trans1": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "trans2": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "useutilitybinarraytocalculatelocalutilityfirsttim": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "35": [71, 73, 75, 79, 80, 110, 203, 206, 207, 208, 209, 211, 212, 214, 253], "pradeep": [71, 73, 75, 79, 80, 110, 203, 206, 207, 209, 212, 214, 253], "pallikila": [71, 73, 75, 79, 80, 110, 203, 206, 207, 209, 211, 212, 214, 253], "satisfi": [73, 79, 101, 139, 148, 206, 212, 238, 285], "37188": [73, 206], "3_17": [73, 206], "highutilityfrequentspatialitemset": [73, 206], "pmu": [73, 79, 80, 206, 211, 212, 214], "shufi": [73, 206], "ie": [73, 75, 79, 80, 206, 207, 212, 214], "subtreeutil": [73, 75, 79, 80, 206, 207, 212, 214], "grater": [73, 79, 80, 206, 212, 214], "calculateneighbourintersect": [73, 79, 80, 206, 212, 214], "backtrackingefim": [73, 75, 79, 80, 206, 207, 212, 214], "shui": [73, 79, 206, 212], "neighbourhoodlist": [73, 79, 80, 206, 212, 214], "av": [73, 79, 80, 206, 212, 214], "lst1": [73, 79, 80, 206, 212, 214], "lst2": [73, 79, 80, 206, 212, 214], "bin": [73, 79, 80, 206, 212, 214], "fastest": [75, 76, 123, 207, 271], "zida": [75, 76, 207], "cw": [75, 76, 207], "inf": [75, 76, 119, 120, 207], "syst": [75, 76, 84, 207, 221], "51": [75, 76, 207], "595": [75, 76, 207], "625": [75, 76, 207], "2017": [75, 76, 86, 88, 91, 133, 207, 226, 230, 231, 286], "s10115": [75, 76, 207], "016": [75, 76, 207], "0986": [75, 76, 207], "highutilityitemset": [75, 79, 207, 212], "hui": [75, 79, 207, 208, 211], "greater": [75, 116, 207, 261, 262], "is_equ": [75, 80, 110, 207, 214, 253], "sort_transact": [75, 79, 80, 110, 207, 212, 214, 253], "_pd": [75, 207], "_transact": [75, 110, 207, 253], "ifile1": [75, 208], "hmier": [75, 208], "mapfmap": [75, 79, 208, 211], "euc": [75, 79, 208, 211], "fhm": [75, 79, 208, 211], "genet": [75, 161, 208], "huicnt": [75, 79, 208, 211], "nighbou": [75, 208], "explore_searchtre": [75, 79, 208, 211], "updateclos": [75, 79, 208, 211], "cul": [75, 79, 208, 211], "st": [75, 79, 208, 211], "excul": [75, 79, 208, 211], "newt": [75, 79, 208, 211], "ex": [75, 79, 208, 211], "ey_t": [75, 208], "updat": [75, 79, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 119, 123, 125, 127, 135, 208, 211, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "saveitemset": [75, 79, 108, 208, 211, 252], "updateel": [75, 79, 208, 211], "duppo": [75, 208], "vale": [75, 79, 208, 211], "duplic": [75, 79, 208, 211], "construccul": [75, 208], "exnighbor": [75, 208], "phase": [75, 209], "vincent": [75, 209], "tseng": [75, 209], "cheng": [75, 101, 209], "wu": [75, 101, 209], "bai": [75, 123, 209, 269, 270], "en": [75, 209], "shie": [75, 209], "philip": [75, 209], "yu": [75, 209], "2010": [75, 209], "16th": [75, 209], "machineri": [75, 209], "york": [75, 209], "ny": [75, 209], "usa": [75, 79, 80, 110, 123, 209, 211, 214, 253, 271], "253": [75, 209], "262": [75, 110, 209, 253], "1835804": [75, 209], "1835839": [75, 209], "numberofnod": [75, 209], "parentnumberofnod": [75, 209], "parent": [75, 82, 91, 97, 101, 127, 209, 217, 243, 279], "mapitemtominimumutil": [75, 209], "phui": [75, 209], "mapitemtotwu": [75, 209], "twu": [75, 79, 80, 209, 212, 214], "createlocaltre": [75, 209], "alpha": [75, 91, 209], "thread": [75, 76, 120], "renam": [75, 76], "resid": [75, 76], "byte": [75, 76], "uniqu": [75, 76, 265], "read_fil": [75, 76], "filter": [75, 76], "primari": [75, 76, 80, 214], "secondari": [75, 76, 80, 214], "binarysearch": [75, 76], "arr": [75, 76], "binari": [75, 76, 191, 224, 277, 281], "project": [75, 76, 80, 101, 214], "file_data": [75, 76], "utilitypattern": [78, 80, 214], "abc": [78, 80, 86, 92], "actual": [78, 80, 250, 251], "model": [79, 143, 211, 264], "mani": [79, 211], "real": [79, 211, 281], "world": [79, 211, 281], "spatio": [79, 211], "orlando": [79, 80, 110, 211, 214, 253], "fl": [79, 80, 110, 211, 214, 253], "4925": [79, 80, 211, 214], "4935": [79, 80, 211, 214], "bigdata52589": [79, 80, 110, 211, 214, 253], "9671912": [79, 80, 211, 214], "mapofpmu": [79, 211], "constructcul": [79, 211], "compactulist": [79, 211], "exneighbour": [79, 211], "eyt": [79, 211], "duprevpo": [79, 211], "pamalla": [79, 125, 212, 276], "penugonda": [79, 212], "raj": [79, 212], "bathala": [79, 212], "dao": [79, 116, 127, 212, 262, 278], "minh": [79, 212], "bommisetti": [79, 212], "2023": [79, 106, 125, 127, 212, 249, 276, 279], "hdshui": [79, 212], "novel": [79, 84, 212, 222], "dimension": [79, 212], "26": [79, 212], "s10489": [79, 117, 123, 212, 263, 269, 270], "022": [79, 212], "04436": [79, 212], "when": [79, 80, 82, 120, 212, 214, 217, 218, 219], "_isequ": [79, 212], "datasetpath": [80, 214], "largest": [80, 214], "getmaxitem": [80, 214], "tkshui": [80, 214], "additemset": [80, 214], "prioriti": [80, 214], "queue": [80, 120, 214], "ad": [80, 82, 86, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 214, 217, 227, 228, 234, 237, 240, 241, 242, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "numpi": [80, 214], "heaplist": [80, 214], "inttostr": [80, 214], "item1": [80, 214, 256, 265, 266], "item2": [80, 214, 256, 265, 266], "whether": [80, 119, 120, 214], "posit": [80, 108, 120, 127, 214, 252, 278], "strtoint": [80, 214], "temp": [80, 214], "transactionutil": [80, 214], "utilit": [80, 214], "prefixutil": [80, 214], "offset": [80, 214], "pointer": [80, 214], "projectedtransact": [80, 214], "till": [80, 214], "getitem": [80, 214], "getutil": [80, 214], "getpmu": [80, 214], "getlastposit": [80, 214], "removeunpromisingitem": [80, 214], "remov": [80, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 119, 120, 123, 125, 127, 135, 214, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279], "insertionsort": [80, 214], "projecttransact": [80, 214], "nams": [80, 214], "maxsop": [82, 217, 218, 219], "mindur": [82, 217, 218, 219], "_localperiodicpattern": [82, 217, 218, 219], "spillov": [82, 217, 218, 219], "minim": [82, 217, 218, 219], "ensur": [82, 148, 217, 218, 219, 285], "those": [82, 217, 218, 219], "yang": [82, 116, 117, 217, 218, 219, 261, 263], "ventura": [82, 217, 218, 219], "luna": [82, 110, 217, 218, 219, 253], "discret": [82, 217, 218, 219], "scienc": [82, 104, 116, 121, 123, 127, 144, 217, 218, 219, 247, 262, 269, 270, 274, 278, 279], "elsevi": [82, 217, 218, 219], "ppt": [82, 217, 218, 219], "1016": [82, 84, 86, 97, 123, 217, 218, 219, 221, 226, 241, 267], "ins": [82, 217, 218, 219], "09": [82, 84, 123, 217, 218, 219, 221, 267], "044": [82, 217, 218, 219], "consecut": [82, 217, 218, 219], "tsmin": [82, 217, 218, 219], "date": [82, 217, 218, 219], "tsmax": [82, 217, 218, 219], "ptl": [82, 217, 218, 219], "tslist": [82, 217, 218, 219], "bit": [82, 121, 217, 218, 219], "vector": [82, 121, 217, 218, 219], "whole": [82, 217], "findsepar": [82, 217], "split": [82, 217, 224], "cretelpplist": [82, 217], "createtslist": [82, 217, 218, 219], "generatelpp": [82, 217, 218, 219], "createlpptre": [82, 217], "lpptree": [82, 217], "patterngrowth": [82, 217], "prefixpflist": [82, 217], "calculateptl": [82, 217, 218, 219], "calculateptlbit": [82, 217], "getlocalperiodicpattern": [82, 217, 218, 219], "lppmgrowth": [82, 217], "minsop": [82, 217, 218, 219], "f": [82, 217, 218, 219, 250, 251, 256, 265, 266], "nakamura": [82, 86, 217, 218, 219, 226, 227], "localperiodicpatterntre": [82, 217], "child": [82, 91, 217], "next": [82, 217], "getchild": [82, 217], "itemnam": [82, 97, 101, 217, 243], "don": [82, 217], "frequentpatterngrowth": [82, 217], "firstnodelink": [82, 217], "branch": [82, 97, 101, 217, 243], "frequentpatterntre": [82, 97, 101, 108, 217, 243, 252], "fixnodelink": [82, 217], "newnod": [82, 217], "deletenod": [82, 217], "createprefixtre": [82, 217], "timestamplist": [82, 217], "fix": [82, 197, 217], "lppmbreathsearch": [82, 218], "extensionofp": [82, 218, 219], "lppbreadth": [82, 218], "lppmdepthsearch": [82, 219], "mi": [84, 221, 222], "ya": [84, 221], "hu": [84, 221], "yen": [84, 221], "liang": [84, 221], "chen": [84, 221], "2006": [84, 221], "mechan": [84, 221], "deci": [84, 221], "42": [84, 197, 221], "octob": [84, 221], "24": [84, 221], "dss": [84, 221], "007": [84, 221], "were": [84, 123, 125, 127, 129, 131, 135, 221, 222, 267, 276, 278, 279, 282, 284], "appropri": [84, 123, 125, 127, 129, 131, 135, 221, 222, 267, 276, 278, 279, 282, 284], "limit": [84, 123, 125, 127, 129, 131, 135, 221, 222, 267, 276, 278, 279, 282, 284], "misfil": [84, 221, 222], "note": [84, 97, 98, 100, 101, 104, 106, 108, 110, 116, 121, 191, 197, 221, 222, 241, 242, 243, 244, 245, 247, 249, 252, 253, 261, 262, 265, 277], "11": [84, 86, 123, 222, 226, 273], "edbt": [84, 222], "1951365": [84, 222], "1951370": [84, 222], "minpr": [86, 226, 227], "venkatesh": [86, 226], "125": [86, 226], "170": [86, 226], "182": [86, 226], "issn": [86, 226], "0164": [86, 226], "1212": [86, 226], "jss": [86, 97, 226, 241], "2016": [86, 97, 226, 241, 243], "035": [86, 97, 226, 241], "storepatternsinfil": [86, 123, 226, 269, 270, 273], "ouputfil": [86, 226, 227], "300": [86, 226], "getpatternindf": [86, 88, 90, 91, 226, 230, 231, 234], "getper_sup": [86, 104, 227, 247], "calucl": [86, 227], "ip": [86, 227], "sup": [86, 227], "getpersup": [86, 227], "oneitem": [86, 106, 227, 249], "tidsetx": [86, 227], "tidset": [86, 227], "userd": [86, 227], "equibal": [86, 227], "getpartialperiodicpattern": [86, 227], "ouput": [86, 227], "userspecifi": 86, "term": [86, 250, 251], "getfrequentpattern": [86, 90, 108, 234, 252], "relativep": [88, 230], "_partialperiodicpattern": [88, 89, 90, 91, 93, 228, 230, 231, 232, 233, 234], "3pgrowth": [88, 230, 231], "ssdbm": [88, 91, 230, 231], "17": [88, 91, 230, 231], "29th": [88, 91, 230, 231], "scientif": [88, 91, 230, 231], "managementjun": [88, 91, 230, 231], "30": [88, 91, 197, 230, 231], "6http": [88, 91, 230, 231], "3085504": [88, 91, 230, 231], "3085535": [88, 91, 230, 231], "partialperiodiconeitem": [88, 91, 230, 231], "updatetransact": [88, 91, 123, 125, 127, 135, 230, 231, 267, 268, 269, 270, 271, 276, 278], "aperiod": [88, 90, 91, 93, 95, 97, 100, 101, 116, 117, 127, 228, 230, 231, 234, 237, 240, 241, 245, 262, 263, 278, 279], "constrcut": [88, 91, 230, 231], "descripit": [88, 232], "3peclat": [88, 232], "kirana": [88, 232], "venkateshd": [88, 232], "toyodaa": [88, 232], "kitsuregawaa": [88, 232], "tkl": [88, 89, 95, 106, 232, 233, 237, 249], "ii": [88, 89, 95, 106, 232, 233, 237, 249], "tokyo": [88, 89, 95, 106, 232, 233, 237, 249], "ac": [88, 89, 95, 106, 232, 233, 237, 249], "jp": [88, 89, 95, 106, 232, 233, 237, 249], "upload": [88, 89, 95, 106, 232, 233, 237, 249], "publication_fil": [88, 89, 95, 106, 232, 233, 237, 249], "774": [88, 232], "jss_2017": [88, 232], "creatingoneitemset": [88, 97, 232, 239, 242], "getperiodandsupport": [88, 97, 232, 239, 242, 243], "periodicsupport": [89, 90, 91, 93, 228, 233, 234], "kiran1": [89, 233], "venkatesh2": [89, 233], "viger3": [89, 233], "toyoda1": [89, 233], "reddy2": [89, 233], "799": [89, 233], "max3p": [90, 234], "IS": [90, 234], "3p": [90, 234], "yutaka": [90, 100, 234, 245], "watanob": [90, 97, 100, 104, 234, 239, 245, 247], "bhaskar": [90, 100, 234, 245], "chaudhuri": [90, 100, 234, 245], "9260063": [90, 100, 234, 245], "maximaltre": [90, 234], "periodicfrequentoneitem": [90, 93, 95, 97, 100, 101, 116, 117, 127, 228, 234, 237, 240, 241, 245, 262, 263, 278, 279], "updatedatabas": [90, 93, 95, 97, 100, 101, 106, 116, 117, 127, 228, 234, 237, 240, 241, 245, 249, 262, 263, 279], "max3prowth": [90, 234], "threepgrowth": [90, 234], "_gettransact": 91, "addchild": [91, 97, 101, 243], "summari": [91, 101], "info": 91, "add_transact": 91, "add_transaction_summ": 91, "tid_summ": 91, "get_condition_pattern": 91, "remove_nod": 91, "node_v": 91, "get_t": 91, "ts": [91, 277], "merg": [91, 101], "generate_pattern": 91, "glist": 91, "isrespons": [91, 101], "lambda": [91, 101], "cond_tran": 91, "cond_pat": 91, "cond_tid": 91, "getpf": 91, "tid_list": 91, "getp": 91, "4pgrowth": 91, "me": 91, "npartit": [91, 101], "getfrequentitem": [91, 101], "getfrequentitemset": [91, 101], "perfreqitem": 91, "psinfo": 91, "setpartit": 91, "031": [92, 104, 116, 125, 235, 247, 262, 276], "39847": [92, 235], "6_28": [92, 235], "candidatelist": [92, 103, 104, 235, 246, 247], "generatefrequentpattern": [92, 103, 104, 235, 246, 247], "topk_pppgrowth": [92, 235], "irregular": [93, 137, 228, 229, 265], "workshop": [93, 129, 228, 282], "icdmw": [93, 129, 228, 282], "1020": [93, 228], "1028": [93, 228], "00147": [93, 228], "remain": [93, 95, 97, 101, 106, 116, 117, 123, 125, 127, 135, 224, 228, 237, 240, 249, 262, 263, 265, 267, 268, 269, 270, 271, 276, 278, 279], "maxperallconf": [95, 237], "_periodiccorrelatedpattern": [95, 237], "897": [95, 237], "venkatesh2018_chapter_discoveringperiod": [95, 237], "maaxperallconf": [95, 237], "thr": [95, 237], "topkpfp": [96, 102, 238], "kpfpminer": [96, 102, 238], "_periodicfrequentpattern": [97, 98, 100, 101, 103, 104, 127, 239, 240, 241, 242, 243, 244, 245, 246, 247, 278, 279], "toward": [97, 108, 116, 239, 252, 262], "columnar": [97, 116, 239, 262], "iea": [97, 101, 116, 239, 261, 262], "aie": [97, 101, 116, 239, 261, 262], "sy": [97, 123, 240, 268], "khairuzzaman": [97, 123, 240, 268], "tanbeer": [97, 123, 240, 268], "chowdhuri": [97, 240], "farhan": [97, 240], "byeong": [97, 240], "soo": [97, 240], "jeong": [97, 240], "young": [97, 240], "koo": [97, 240], "2009": [97, 240], "642": [97, 103, 123, 240, 246, 268], "01307": [97, 240], "2_24": [97, 240], "metho": [97, 240], "greedi": [97, 241], "udaykiran": [97, 241], "masarukitsuregawa": [97, 241], "krishnareddyd": [97, 241], "februari": [97, 241], "delimit": [97, 108, 241, 252], "pfpgorwthplu": [97, 241], "append": [97, 119, 243], "detail": [97, 123, 243, 271], "ps": [97, 243], "anirudh": [97, 243], "kitsuregawai": [97, 243], "symposium": [97, 123, 243, 273], "ssci": [97, 243], "7849926": [97, 243], "getconditionalpatternsindatafram": [97, 243], "onelengthitem": [97, 243], "conditionaltransact": [97, 243], "_interv": [97, 243], "fail": [97, 121, 243], "9378215": [98, 244], "maxpf": [100, 245], "maxpfrowth": [100, 245], "tostr": 101, "pfptree": 101, "itemid": 101, "satisfyp": 101, "numtran": 101, "mincount": 101, "framework": 101, "807": 101, "819": 101, "machin": [101, 135], "nowork": 101, "func1": 101, "ps1": 101, "func2": 101, "ps2": 101, "func3": 101, "endt": 101, "freqitem": 101, "topkpfpgrowth": [103, 246], "komat": [103, 246], "amphawan": [103, 133, 246, 286], "lenca": [103, 246], "athasit": [103, 246], "surarerk": [103, 246], "advanc": [103, 116, 121, 246, 262], "technolog": [103, 133, 246, 286], "chapter": [103, 123, 246, 268], "10392": [103, 246], "6_3": [103, 246], "sampl": [103, 191, 246, 265, 266, 277, 281], "2022": [104, 116, 117, 127, 247, 262, 263, 279], "bda": [104, 247], "lectur": [104, 116, 121, 247, 262], "vol": [104, 116, 121, 127, 247, 262, 278, 279], "13773": [104, 247], "cham": [104, 116, 127, 247, 262, 278], "24094": [104, 247], "2_14": [104, 247], "minrec": [106, 249], "_recurringpattern": [106, 249], "haichuan": [106, 249], "shang": [106, 249], "693": [106, 249], "could": [106, 249], "potenti": [106, 140, 248, 249], "numer": [106, 249], "minr": [108, 252], "comad": [108, 252], "comad2012": [108, 252], "saveallcombin": [108, 252], "tempbuff": [108, 252], "frequentpatterngrowthgener": [108, 252], "port": [108, 252], "particular": [108, 197, 224, 252, 256, 265], "__mapsupport": [108, 252], "__minratio": [108, 252], "23": [108, 252], "minur": [110, 253], "invari": [110, 253], "252": [110, 253], "9672064": [110, 253], "relativehighutilityitemset": [110, 253], "backtrackingrhuim": [110, 253], "maxla": [116, 117, 261, 262, 263], "_stableperiodicfrequentpattern": [116, 117, 261, 263], "stabl": [116, 117, 215, 261, 262, 263, 264, 265], "dicov": [116, 261, 262], "three": [116, 261, 262], "contraint": [116, 261, 262], "labil": [116, 261, 262], "proc": [116, 261], "32nd": [116, 261], "conf": [116, 261], "industri": [116, 261], "lnai": [116, 261], "230": [116, 261], "244": [116, 261], "loss": [116, 261], "calculatela": [116, 261], "pfpeclat": [116, 261], "fujita": [116, 262], "ali": [116, 262], "wang": [116, 117, 262, 263], "ed": [116, 121, 127, 262, 278], "theori": [116, 262], "practic": [116, 262], "13343": [116, 262], "08530": [116, 262], "7_70": [116, 262], "includ": [116, 117, 119, 262, 263], "spplist": [116, 262], "appl": [117, 263], "intel": [117, 263], "52": [117, 263], "6917": [117, 263], "6938": [117, 263], "020": [117, 263], "02181": [117, 263], "ee": [119, 120], "rightmost": [119, 120], "containedg": [119, 120], "v1": [119, 120], "v2": [119, 120], "copi": [119, 120], "getallvlabel": [119, 120], "label": [119, 120], "getat": [119, 120], "index": [119, 120, 123, 215, 271], "geteelist": [119, 120], "getrightmost": [119, 120], "getrightmostpath": [119, 120], "isempti": [119, 120], "notpreofrm": [119, 120], "rightmostpath": 119, "onrightmostpath": [119, 120], "edgelabel": [119, 120], "getedgelabel": [119, 120], "vlabel1": [119, 120], "vlabel2": [119, 120], "getv1": [119, 120], "getv2": [119, 120], "getvlabel1": [119, 120], "getvlabel2": [119, 120], "pairsmallerthan": [119, 120], "smallerthan": [119, 120], "smallerthanorigin": [119, 120], "setofgraphsid": [119, 120], "vmap": [119, 120], "emptyintegerarrai": 119, "emptyvertexlist": 119, "findallwithlabel": [119, 120], "targetlabel": [119, 120], "getallneighbor": [119, 120], "getallvertic": [119, 120], "getedg": [119, 120], "getedgecount": [119, 120], "getid": [119, 120], "getnonprecalculatedallvertic": [119, 120], "getvlabel": [119, 120], "isneighbor": [119, 120], "precalculatelabelstovertic": [119, 120], "precalcul": [119, 120], "precalculatevertexlist": [119, 120], "vertic": [119, 120], "iter": 119, "precalculatevertexneighbor": [119, 120], "cach": [119, 120], "removeinfrequentlabel": [119, 120], "accordingli": 119, "minsupport": 119, "outputsinglevertic": [119, 120], "maxnumberofedg": [119, 120], "outputgraphid": [119, 120], "_gspan": 119, "edge_count_prun": [119, 120], "eliminate_infrequent_edge_label": [119, 120], "eliminate_infrequent_vertex_pair": [119, 120], "eliminate_infrequent_vertic": [119, 120], "findallonlyonevertex": [119, 120], "graphdb": [119, 120], "outputfrequentvertic": [119, 120], "option": 119, "infrequ": [119, 120], "boolean": [119, 120], "flag": 119, "determin": [119, 120, 136, 147, 149, 225, 283, 287], "getfrequentsubgraph": 119, "getsubgraphgraphmap": 119, "subgraph": [119, 120], "belong": 119, "fid": 119, "clabel": 119, "gid": 119, "gspandf": [119, 120], "subgraphid": [119, 120], "snippet": 119, "_ab": [119, 120], "itself": 119, "doe": 119, "modifi": 119, "found": 119, "dure": 119, "iscanon": [119, 120], "canon": 119, "compar": [119, 141, 254], "readgraph": [119, 120], "pars": 119, "removeinfrequentvertexpair": [119, 120], "rightmostpathextens": [119, 120], "graphid": [119, 120], "seem": 119, "rightmostpathextensionsfromsingl": [119, 120], "design": [119, 161], "outputpath": 119, "savesubgraphsbygraphid": 119, "flat": 119, "row": [119, 265, 266], "subgraphisomorph": [119, 120], "isomorph": 119, "try": 119, "valid": 119, "getsupportforitem": [119, 120], "incrementcount": [119, 120], "removeinfrequententriesfrommatrix": [119, 120], "setsupport": [119, 120], "vlabel": [119, 120], "addedg": [119, 120], "getedgelist": [119, 120], "getlabel": [119, 120], "removeedg": [119, 120], "edgetoremov": [119, 120], "deep": 120, "empti": 120, "tkginstanc": 120, "dynam": 120, "invok": 120, "loop": 120, "suffici": 120, "gspandynamicdf": 120, "until": 120, "insuffici": 120, "encount": 120, "smaller": 120, "compos": 120, "empty_vertex_list": 120, "empty_integer_arrai": 120, "been": 120, "spars": 120, "triangular": 120, "increment": 120, "entri": 120, "below": [120, 191, 224, 265, 266, 277, 281], "_tkg": 120, "dynamic_search": 120, "threaded_dynamic_search": 120, "getksubgraph": 120, "correct": 120, "newlin": 120, "getminsupport": 120, "getqueues": 120, "getsubgraphslist": 120, "metric": 120, "registerascandid": 120, "startthread": 120, "elist": 120, "connect": 120, "represent": 121, "koh": 121, "jl": 121, "yo": 121, "pw": 121, "2005": [121, 131, 284], "zhou": 121, "ooi": 121, "meng": 121, "dasfaa": 121, "3453": 121, "berlin": 121, "heidelberg": 121, "11408079_51": 121, "frequentfrequ": 121, "abil": 121, "handl": 121, "inconsist": 121, "incorrect": 121, "cufp": [123, 267], "peihong": [123, 267], "expert": [123, 267], "39": [123, 267], "issu": [123, 267], "march": [123, 267], "4084": [123, 267], "4093": [123, 267], "eswa": [123, 267], "087": [123, 267], "puf": [123, 135, 268, 273], "carson": [123, 268, 271, 273], "kai": [123, 268, 271, 273], "sang": [123, 268, 271, 273], "leung": [123, 268, 271, 273], "compact": [123, 268], "pacif": [123, 268], "asia": [123, 268], "2013": [123, 268], "37453": [123, 268], "1_2": [123, 268], "cup": [123, 269, 270], "tuong": [123, 269, 270], "le": [123, 269, 270], "vo": [123, 269, 270], "van": [123, 269, 270], "nam": [123, 269, 270], "huynh": [123, 269, 270], "ngoc": [123, 269, 270], "thanh": [123, 269, 270], "nguyen": [123, 269, 270], "sung": [123, 269, 270], "wook": [123, 269, 270], "baik": [123, 269, 270], "busi": [123, 269, 270], "media": [123, 269, 270], "llc": [123, 269, 270], "part": [123, 269, 270], "019": [123, 269, 270], "01622": [123, 269, 270], "getpatternsindatafram": [123, 269, 270, 273], "richard": [123, 271], "kyle": [123, 271], "mackinnon": [123, 271], "2014": [123, 271], "14": [123, 271], "societi": [123, 271], "893": [123, 271], "898": [123, 271], "146": [123, 271], "dict1": [123, 271], "printtre": [123, 127, 271, 279], "lije": [123, 273], "sun": [123, 273], "transform": [123, 273], "sac": [123, 273], "computingmarch": [123, 273], "983": [123, 273], "984": [123, 273], "1982185": [123, 273], "1982399": [123, 273], "gfp": [125, 276], "33380": [125, 276], "4_3": [125, 276], "neighborfil": [125, 276], "sampleneighbor": [125, 276], "ms": [127, 278], "zhang": [127, 278], "mantoro": [127, 278], "ayu": [127, 278], "wong": [127, 278], "hidayanto": [127, 278], "neural": [127, 278], "iconip": [127, 278, 279], "commun": [127, 278, 279], "1516": [127, 278], "92307": [127, 278], "5_83": [127, 278], "_lno": [127, 278], "removefalseposit": [127, 278], "plu": [127, 279], "upfp": [127, 279], "1792": [127, 279], "singapor": [127, 279], "981": [127, 279], "99": [127, 279], "1642": [127, 279], "9_16": [127, 279], "floot": [127, 129, 279, 282], "minw": [129, 282], "_weightedfrequentspatialpattern": [129, 282], "weight": [129, 131, 133, 135, 215, 281, 282, 283, 284, 285, 286, 287], "987": [129, 282], "996": [129, 282], "00143": [129, 282], "minweight": [129, 131, 282, 284], "weightfil": [129, 131, 282, 284], "weightfrequentneighbourhoodpattern": [129, 282], "wfile": [129, 131, 133, 135, 282, 284, 286], "_weightedfrequentpattern": [131, 135, 284], "wfminer": [131, 284], "yun": [131, 284], "leggett": [131, 284], "636": [131, 284], "640": [131, 284], "epub": [131, 284], "9781611972757": [131, 284], "76": [131, 284], "weightsampl": [131, 284], "weightfrequentpattern": [131, 284], "_wfile": [133, 286], "ws": [133, 286], "_weightedfrequentregularpattern": [133, 286], "wfri": [133, 286], "klangwisan": [133, 286], "9th": [133, 286], "smart": [133, 286], "kst": [133, 286], "66": [133, 286], "71": [133, 286], "7886090": [133, 286], "weightsupport": [133, 286], "expsup": 135, "expwsup": 135, "learn": 135, "recognit": 135, "book": [135, 191, 277, 281], "jerri": 135, "wensheng": 135, "gan": 135, "cyclic": [136, 139, 225, 238], "full": [136, 225], "follow": [136, 191, 197, 225, 256, 265, 277, 281], "strict": [136, 225], "still": [136, 225], "interesting": [136, 225], "mainten": [136, 140, 225, 248], "repeat": [137, 147, 149, 229, 283, 287], "exactli": [137, 229], "intermitt": [137, 229], "convent": [137, 229], "task": [138, 143, 144, 145, 146, 236, 264, 274, 275, 280], "sale": [138, 139, 236, 238], "observ": [139, 197, 238, 250, 251], "goal": [139, 140, 238, 248], "plai": [139, 238], "crucial": [139, 238], "role": [139, 238], "togeth": [142, 161, 255], "clickstream": [142, 255], "biolog": [142, 255], "log": [142, 255], "retent": [142, 255], "sppm": [143, 264], "success": [143, 264], "known": [143, 264], "spp": [143, 264], "reliabl": [143, 264], "adher": [143, 264], "stabil": [143, 264], "probabilist": [144, 145, 146, 274, 275, 277, 280], "determinist": [144, 146, 274, 280], "deal": [144, 146, 274, 280], "financ": [144, 274], "aris": [145, 275], "address": [146, 280], "pose": [146, 280], "neighborhood": [147, 197, 283], "assign": [147, 148, 149, 283, 285, 287], "proxim": [147, 283], "group": [147, 283], "cumul": [147, 148, 149, 283, 285, 287], "focu": [148, 285], "constitu": [149, 287], "contigu": [150, 215], "def": 150, "definit": 151, "pami": [152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "typic": 161, "done": 161, "dna": 161, "protein": 161, "lead": 161, "aprioribitset": 176, "logic": 191, "pleas": [191, 265], "lie": 191, "zero": [191, 277], "impli": 191, "chanc": 191, "bread": [191, 277, 281], "jam": [191, 277, 281], "butter": [191, 277, 281], "pen": [191, 277, 281], "bat": [191, 277, 281], "shown": [191, 224, 265, 266, 277, 281], "tabl": [191, 265, 277, 281], "ball": [191, 277, 281], "fuzzyitema": 191, "fuzzyitemb": 191, "fuzzyitemn": 191, "fuzzyvalu": 191, "fuzzyvaluea": 191, "fuzzyvalueb": 191, "fuzzyvaluen": 191, "choic": [191, 277, 281], "sinc": [191, 265, 266, 277, 281], "polygon": [191, 277, 281], "comma": [191, 224, 265, 266, 277, 281], "facilit": [191, 277, 281], "symbol": [191, 277, 281], "110": [191, 281], "gather": [197, 224], "sensor": 197, "phenomenon": 197, "topic": 197, "spatialitem1": 197, "spatialitem2": 197, "spatialitemn": 197, "price": [197, 277, 281], "40": 197, "utilitya": [197, 281], "utilityb": [197, 281], "utilityn": [197, 281], "162": 197, "140": 197, "70": 197, "With": [215, 266], "modul": [215, 220], "packag": 220, "subpackag": 220, "content": 220, "broadli": 224, "classifi": 224, "window": 224, "windowid": 224, "brace": 224, "left": 224, "hand": 224, "side": 224, "letter": 224, "pend": 229, "quantiti": [250, 251], "mathemat": [250, 251], "wherea": [250, 251], "suppos": [250, 251], "intrus": [250, 251], "sid": 256, "itema": [256, 277, 281], "itemb": [256, 277, 281], "itemc": 256, "gap": 265, "implicitli": 265, "thereaft": 265, "rather": 265, "absolut": 265, "especi": 265, "variant": 265, "work": 265, "properli": 265, "share": 265, "itemn": [265, 266, 277, 281], "directli": 266, "storag": 266, "perfect": 277, "hidden": 277, "now": 277, "9": 277, "abov": 277, "probabilitya": 277, "probabilityb": 277, "probabilityn": 277, "introduct": 277, "becaus": 281, "contrast": 281, "fact": 281, "henceforth": 281, "most": 281, "extern": 281, "supermarket": 281, "do": 281, "purchas": 281, "custom": 281, "seo": 281}, "objects": {"": [[20, 0, 0, "-", "PAMI"]], "PAMI": [[21, 0, 0, "-", "AssociationRules"], [23, 0, 0, "-", "correlatedPattern"], [25, 0, 0, "-", "coveragePattern"], [27, 0, 0, "-", "extras"], [42, 0, 0, "-", "faultTolerantFrequentPattern"], [44, 0, 0, "-", "frequentPattern"], [51, 0, 0, "-", "fuzzyCorrelatedPattern"], [53, 0, 0, "-", "fuzzyFrequentPattern"], [55, 0, 0, "-", "fuzzyGeoreferencedFrequentPattern"], [57, 0, 0, "-", "fuzzyGeoreferencedPeriodicFrequentPattern"], [59, 0, 0, "-", "fuzzyPartialPeriodicPatterns"], [61, 0, 0, "-", "fuzzyPeriodicFrequentPattern"], [63, 0, 0, "-", "geoReferencedPeriodicFrequentPattern"], [65, 0, 0, "-", "georeferencedFrequentPattern"], [67, 0, 0, "-", "georeferencedFrequentSequencePattern"], [68, 0, 0, "-", "georeferencedPartialPeriodicPattern"], [70, 0, 0, "-", "highUtilityFrequentPattern"], [72, 0, 0, "-", "highUtilityGeoreferencedFrequentPattern"], [74, 0, 0, "-", "highUtilityPattern"], [77, 0, 0, "-", "highUtilityPatternsInStreams"], [78, 0, 0, "-", "highUtilitySpatialPattern"], [81, 0, 0, "-", "localPeriodicPattern"], [83, 0, 0, "-", "multipleMinimumSupportBasedFrequentPattern"], [85, 0, 0, "-", "partialPeriodicFrequentPattern"], [87, 0, 0, "-", "partialPeriodicPattern"], [93, 0, 0, "-", "partialPeriodicPatternInMultipleTimeSeries"], [94, 0, 0, "-", "periodicCorrelatedPattern"], [96, 0, 0, "-", "periodicFrequentPattern"], [105, 0, 0, "-", "recurringPattern"], [107, 0, 0, "-", "relativeFrequentPattern"], [109, 0, 0, "-", "relativeHighUtilityPattern"], [111, 0, 0, "-", "sequence"], [112, 0, 0, "-", "sequentialPatternMining"], [115, 0, 0, "-", "stablePeriodicFrequentPattern"], [118, 0, 0, "-", "subgraphMining"], [121, 0, 0, "-", "uncertainFaultTolerantFrequentPattern"], [122, 0, 0, "-", "uncertainFrequentPattern"], [124, 0, 0, "-", "uncertainGeoreferencedFrequentPattern"], [126, 0, 0, "-", "uncertainPeriodicFrequentPattern"], [128, 0, 0, "-", "weightedFrequentNeighbourhoodPattern"], [130, 0, 0, "-", "weightedFrequentPattern"], [132, 0, 0, "-", "weightedFrequentRegularPattern"], [134, 0, 0, "-", "weightedUncertainFrequentPattern"]], "PAMI.AssociationRules": [[22, 0, 0, "-", "basic"]], "PAMI.AssociationRules.basic": [[22, 0, 0, "-", "abstract"]], "PAMI.correlatedPattern": [[24, 0, 0, "-", "basic"]], "PAMI.correlatedPattern.basic": [[152, 0, 0, "-", "CoMine"], [153, 0, 0, "-", "CoMinePlus"], [24, 0, 0, "-", "abstract"]], "PAMI.correlatedPattern.basic.CoMine": [[152, 1, 1, "", "CoMine"]], "PAMI.correlatedPattern.basic.CoMine.CoMine": [[152, 2, 1, "", "getMemoryRSS"], [152, 2, 1, "", "getMemoryUSS"], [152, 2, 1, "", "getPatterns"], [152, 2, 1, "", "getPatternsAsDataFrame"], [152, 2, 1, "", "getRuntime"], [152, 2, 1, "", "mine"], [152, 2, 1, "", "printResults"], [152, 2, 1, "", "recursive"], [152, 2, 1, "", "save"], [152, 2, 1, "", "startMine"]], "PAMI.correlatedPattern.basic.CoMinePlus": [[153, 1, 1, "", "CoMinePlus"]], "PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus": [[153, 2, 1, "", "getMemoryRSS"], [153, 2, 1, "", "getMemoryUSS"], [153, 2, 1, "", "getPatterns"], [153, 2, 1, "", "getPatternsAsDataFrame"], [153, 2, 1, "", "getRuntime"], [153, 2, 1, "", "mine"], [153, 2, 1, "", "printResults"], [153, 2, 1, "", "recursive"], [153, 2, 1, "", "save"], [153, 2, 1, "", "startMine"]], "PAMI.coveragePattern": [[26, 0, 0, "-", "basic"]], "PAMI.coveragePattern.basic": [[155, 0, 0, "-", "CMine"], [156, 0, 0, "-", "CPPG"], [26, 0, 0, "-", "abstract"]], "PAMI.coveragePattern.basic.CMine": [[155, 1, 1, "", "CMine"]], "PAMI.coveragePattern.basic.CMine.CMine": [[155, 2, 1, "", "creatingCoverageItems"], [155, 2, 1, "", "genPatterns"], [155, 2, 1, "", "generateAllPatterns"], [155, 2, 1, "", "getMemoryRSS"], [155, 2, 1, "", "getMemoryUSS"], [155, 2, 1, "", "getPatterns"], [155, 2, 1, "", "getPatternsAsDataFrame"], [155, 2, 1, "", "getRuntime"], [155, 2, 1, "", "mine"], [155, 2, 1, "", "printResults"], [155, 2, 1, "", "save"], [155, 2, 1, "", "startMine"], [155, 2, 1, "", "tidToBitset"]], "PAMI.coveragePattern.basic.CPPG": [[156, 1, 1, "", "CPPG"]], "PAMI.coveragePattern.basic.CPPG.CPPG": [[156, 2, 1, "", "getMemoryRSS"], [156, 2, 1, "", "getMemoryUSS"], [156, 2, 1, "", "getPatterns"], [156, 2, 1, "", "getPatternsAsDataFrame"], [156, 2, 1, "", "getRuntime"], [156, 2, 1, "", "mine"], [156, 2, 1, "", "printResults"], [156, 2, 1, "", "save"], [156, 2, 1, "", "startMine"]], "PAMI.extras": [[28, 0, 0, "-", "DF2DB"], [29, 0, 0, "-", "calculateMISValues"], [30, 0, 0, "-", "dbStats"], [31, 0, 0, "-", "fuzzyTransformation"], [32, 0, 0, "-", "generateDatabase"], [27, 0, 0, "-", "generateLatexGraphFile"], [33, 0, 0, "-", "graph"], [34, 0, 0, "-", "image2Database"], [35, 0, 0, "-", "imageProcessing"], [36, 0, 0, "-", "messaging"], [37, 0, 0, "-", "neighbours"], [38, 0, 0, "-", "sampleDatasets"], [27, 0, 0, "-", "scatterPlotSpatialPoints"], [39, 0, 0, "-", "stats"], [40, 0, 0, "-", "syntheticDataGenerator"], [27, 0, 0, "-", "topKPatterns"], [27, 0, 0, "-", "uncertaindb_convert"], [41, 0, 0, "-", "visualize"]], "PAMI.extras.DF2DB": [[28, 0, 0, "-", "DenseFormatDF"], [28, 0, 0, "-", "SparseFormatDF"], [28, 0, 0, "-", "createTDB"], [28, 0, 0, "-", "denseDF2DBPlus"], [28, 0, 0, "-", "denseDF2DB_dump"], [28, 0, 0, "-", "sparseDF2DBPlus"]], "PAMI.extras.DF2DB.DenseFormatDF": [[28, 1, 1, "", "DenseFormatDF"]], "PAMI.extras.DF2DB.DenseFormatDF.DenseFormatDF": [[28, 2, 1, "", "convert2MultipleTimeSeries"], [28, 2, 1, "", "convert2TemporalDatabase"], [28, 2, 1, "", "convert2TransactionalDatabase"], [28, 2, 1, "", "convert2UncertainTransactional"], [28, 2, 1, "", "convert2UtilityDatabase"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.SparseFormatDF": [[28, 1, 1, "", "SparseFormatDF"]], "PAMI.extras.DF2DB.SparseFormatDF.SparseFormatDF": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.createTDB": [[28, 1, 1, "", "createTDB"]], "PAMI.extras.DF2DB.createTDB.createTDB": [[28, 2, 1, "", "createTDB"], [28, 2, 1, "", "save"]], "PAMI.extras.DF2DB.denseDF2DBPlus": [[28, 1, 1, "", "DenseFormatDFPlus"]], "PAMI.extras.DF2DB.denseDF2DBPlus.DenseFormatDFPlus": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.denseDF2DB_dump": [[28, 1, 1, "", "DenseFormatDF"]], "PAMI.extras.DF2DB.denseDF2DB_dump.DenseFormatDF": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.sparseDF2DBPlus": [[28, 1, 1, "", "SparseFormatDFPlus"]], "PAMI.extras.DF2DB.sparseDF2DBPlus.SparseFormatDFPlus": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.calculateMISValues": [[29, 0, 0, "-", "usingBeta"], [29, 0, 0, "-", "usingSD"]], "PAMI.extras.calculateMISValues.usingBeta": [[29, 1, 1, "", "usingBeta"]], "PAMI.extras.calculateMISValues.usingBeta.usingBeta": [[29, 2, 1, "", "calculateMIS"], [29, 2, 1, "", "getMISDataFrame"], [29, 2, 1, "", "save"]], "PAMI.extras.calculateMISValues.usingSD": [[29, 1, 1, "", "usingSD"]], "PAMI.extras.calculateMISValues.usingSD.usingSD": [[29, 2, 1, "", "calculateMIS"], [29, 2, 1, "", "getDataFrame"], [29, 2, 1, "", "save"]], "PAMI.extras.dbStats": [[30, 0, 0, "-", "FuzzyDatabase"], [30, 0, 0, "-", "MultipleTimeSeriesFuzzyDatabaseStats"], [30, 0, 0, "-", "SequentialDatabase"], [30, 0, 0, "-", "TemporalDatabase"], [30, 0, 0, "-", "TransactionalDatabase"], [30, 0, 0, "-", "UncertainTemporalDatabase"], [30, 0, 0, "-", "UncertainTransactionalDatabase"], [30, 0, 0, "-", "UtilityDatabase"]], "PAMI.extras.dbStats.FuzzyDatabase": [[30, 1, 1, "", "FuzzyDatabase"]], "PAMI.extras.dbStats.FuzzyDatabase.FuzzyDatabase": [[30, 2, 1, "", "creatingItemSets"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getAverageUtility"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMaximumUtility"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getMinimumUtility"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSortedUtilityValuesOfItem"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTotalUtility"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.MultipleTimeSeriesFuzzyDatabaseStats": [[30, 1, 1, "", "MultipleTimeSeriesFuzzyDatabaseStats"]], "PAMI.extras.dbStats.MultipleTimeSeriesFuzzyDatabaseStats.MultipleTimeSeriesFuzzyDatabaseStats": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.SequentialDatabase": [[30, 1, 1, "", "SequentialDatabase"]], "PAMI.extras.dbStats.SequentialDatabase.SequentialDatabase": [[30, 2, 1, "", "getAverageItemPerSequenceLength"], [30, 2, 1, "", "getAverageItemPerSubsequenceLength"], [30, 2, 1, "", "getAverageSubsequencePerSequenceLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumSequenceLength"], [30, 2, 1, "", "getMaximumSubsequenceLength"], [30, 2, 1, "", "getMinimumSequenceLength"], [30, 2, 1, "", "getMinimumSubsequenceLength"], [30, 2, 1, "", "getSequenceSize"], [30, 2, 1, "", "getSequencialLengthDistribution"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getStandardDeviationSequenceLength"], [30, 2, 1, "", "getStandardDeviationSubsequenceLength"], [30, 2, 1, "", "getSubsequencialLengthDistribution"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getVarianceSequenceLength"], [30, 2, 1, "", "getVarianceSubsequenceLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"]], "PAMI.extras.dbStats.TemporalDatabase": [[30, 1, 1, "", "TemporalDatabase"]], "PAMI.extras.dbStats.TemporalDatabase.TemporalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageInterArrivalPeriod"], [30, 2, 1, "", "getAveragePeriodOfItem"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumInterArrivalPeriod"], [30, 2, 1, "", "getMaximumPeriodOfItem"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumInterArrivalPeriod"], [30, 2, 1, "", "getMinimumPeriodOfItem"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [30, 2, 1, "", "getPeriodsInRange"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationPeriod"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.TransactionalDatabase": [[30, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.dbStats.TransactionalDatabase.TransactionalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UncertainTemporalDatabase": [[30, 1, 1, "", "UncertainTemporalDatabase"]], "PAMI.extras.dbStats.UncertainTemporalDatabase.UncertainTemporalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAveragePeriod"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumPeriod"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumPeriod"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationPeriod"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UncertainTransactionalDatabase": [[30, 1, 1, "", "UncertainTransactionalDatabase"]], "PAMI.extras.dbStats.UncertainTransactionalDatabase.UncertainTransactionalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UtilityDatabase": [[30, 1, 1, "", "UtilityDatabase"]], "PAMI.extras.dbStats.UtilityDatabase.UtilityDatabase": [[30, 2, 1, "", "creatingItemSets"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getAverageUtility"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMaximumUtility"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getMinimumUtility"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSortedUtilityValuesOfItem"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTotalUtility"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.fuzzyTransformation": [[31, 0, 0, "-", "abstract"], [31, 0, 0, "-", "temporalToFuzzy"], [31, 0, 0, "-", "transactionalToFuzzy"]], "PAMI.extras.fuzzyTransformation.temporalToFuzzy": [[31, 1, 1, "", "temporalToFuzzy"]], "PAMI.extras.fuzzyTransformation.temporalToFuzzy.temporalToFuzzy": [[31, 2, 1, "", "startConvert"]], "PAMI.extras.fuzzyTransformation.transactionalToFuzzy": [[31, 1, 1, "", "transactionalToFuzzy"]], "PAMI.extras.fuzzyTransformation.transactionalToFuzzy.transactionalToFuzzy": [[31, 2, 1, "", "startConvert"]], "PAMI.extras.generateDatabase": [[32, 0, 0, "-", "generateSpatioTemporalDatabase"], [32, 0, 0, "-", "generateTemporalDatabase"], [32, 0, 0, "-", "generateTransactionalDatabase"]], "PAMI.extras.generateDatabase.generateSpatioTemporalDatabase": [[32, 1, 1, "", "generateTemporalDatabase"]], "PAMI.extras.generateDatabase.generateSpatioTemporalDatabase.generateTemporalDatabase": [[32, 2, 1, "", "createTemporalFile"], [32, 2, 1, "", "generateArray"], [32, 2, 1, "", "getDatabaseAsDataFrame"], [32, 2, 1, "", "getFileName"], [32, 2, 1, "", "getPoint"], [32, 2, 1, "", "performCoinFlip"], [32, 2, 1, "", "tuning"]], "PAMI.extras.generateDatabase.generateTemporalDatabase": [[32, 1, 1, "", "generateTemporalDatabase"]], "PAMI.extras.generateDatabase.generateTemporalDatabase.generateTemporalDatabase": [[32, 2, 1, "", "createTemporalFile"], [32, 2, 1, "", "generateArray"], [32, 2, 1, "", "getDatabaseAsDataFrame"], [32, 2, 1, "", "getFileName"], [32, 2, 1, "", "performCoinFlip"], [32, 2, 1, "", "tuning"]], "PAMI.extras.generateDatabase.generateTransactionalDatabase": [[32, 1, 1, "", "generateTransactionalDatabase"]], "PAMI.extras.generateDatabase.generateTransactionalDatabase.generateTransactionalDatabase": [[32, 2, 1, "", "create"], [32, 2, 1, "", "generateArray"], [32, 2, 1, "", "getTransactions"], [32, 2, 1, "", "save"], [32, 2, 1, "", "tuning"]], "PAMI.extras.generateLatexGraphFile": [[27, 3, 1, "", "generateLatexCode"], [27, 1, 1, "", "generateLatexGraphFile"]], "PAMI.extras.graph": [[33, 0, 0, "-", "DF2Fig"], [33, 0, 0, "-", "plotLineGraphFromDictionary"], [33, 0, 0, "-", "plotLineGraphsFromDataFrame"], [33, 0, 0, "-", "visualizeFuzzyPatterns"], [33, 0, 0, "-", "visualizePatterns"]], "PAMI.extras.graph.DF2Fig": [[33, 1, 1, "", "DF2Fig"]], "PAMI.extras.graph.DF2Fig.DF2Fig": [[33, 2, 1, "", "plot"]], "PAMI.extras.graph.plotLineGraphFromDictionary": [[33, 1, 1, "", "plotLineGraphFromDictionary"]], "PAMI.extras.graph.plotLineGraphsFromDataFrame": [[33, 1, 1, "", "plotGraphsFromDataFrame"]], "PAMI.extras.graph.plotLineGraphsFromDataFrame.plotGraphsFromDataFrame": [[33, 2, 1, "", "plotGraphsFromDataFrame"]], "PAMI.extras.graph.visualizeFuzzyPatterns": [[33, 1, 1, "", "visualizeFuzzyPatterns"]], "PAMI.extras.graph.visualizeFuzzyPatterns.visualizeFuzzyPatterns": [[33, 2, 1, "", "visualize"]], "PAMI.extras.graph.visualizePatterns": [[33, 1, 1, "", "visualizePatterns"]], "PAMI.extras.graph.visualizePatterns.visualizePatterns": [[33, 2, 1, "", "visualize"]], "PAMI.extras.imageProcessing": [[35, 0, 0, "-", "imagery2Databases"]], "PAMI.extras.imageProcessing.imagery2Databases": [[35, 1, 1, "", "createDatabase"]], "PAMI.extras.imageProcessing.imagery2Databases.createDatabase": [[35, 2, 1, "", "getDataFrame"], [35, 2, 1, "", "saveAsTemporalDB"], [35, 2, 1, "", "saveAsTransactionalDB"], [35, 2, 1, "", "saveAsUncertainTemporalDB"], [35, 2, 1, "", "saveAsUncertainTransactionalDB"], [35, 2, 1, "", "saveAsUtilityTemporalDB"], [35, 2, 1, "", "saveAsUtilityTransactionalDB"]], "PAMI.extras.messaging": [[36, 0, 0, "-", "discord"], [36, 0, 0, "-", "gmail"]], "PAMI.extras.messaging.discord": [[36, 1, 1, "", "discord"]], "PAMI.extras.messaging.discord.discord": [[36, 2, 1, "", "send"]], "PAMI.extras.messaging.gmail": [[36, 1, 1, "", "gmail"]], "PAMI.extras.messaging.gmail.gmail": [[36, 2, 1, "", "send"]], "PAMI.extras.neighbours": [[37, 0, 0, "-", "findNeighborsUsingEuclideanDistanceforPointInfo"], [37, 0, 0, "-", "findNeighboursUsingEuclidean"]], "PAMI.extras.neighbours.findNeighborsUsingEuclideanDistanceforPointInfo": [[37, 1, 1, "", "createNeighborhoodFileUsingEuclideanDistance"]], "PAMI.extras.neighbours.findNeighborsUsingEuclideanDistanceforPointInfo.createNeighborhoodFileUsingEuclideanDistance": [[37, 2, 1, "", "getFileName"]], "PAMI.extras.neighbours.findNeighboursUsingEuclidean": [[37, 1, 1, "", "createNeighborhoodFileUsingEuclideanDistance"]], "PAMI.extras.neighbours.findNeighboursUsingEuclidean.createNeighborhoodFileUsingEuclideanDistance": [[37, 2, 1, "", "getFileName"]], "PAMI.extras.scatterPlotSpatialPoints": [[27, 1, 1, "", "scatterPlotSpatialPoints"]], "PAMI.extras.scatterPlotSpatialPoints.scatterPlotSpatialPoints": [[27, 2, 1, "", "scatterPlotSpatialPoints"]], "PAMI.extras.stats": [[39, 0, 0, "-", "TransactionalDatabase"], [39, 0, 0, "-", "graphDatabase"], [39, 0, 0, "-", "sequentialDatabase"], [39, 0, 0, "-", "temporalDatabase"], [39, 0, 0, "-", "utilityDatabase"]], "PAMI.extras.stats.TransactionalDatabase": [[39, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.stats.TransactionalDatabase.TransactionalDatabase": [[39, 2, 1, "", "convertDataIntoMatrix"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getDensity"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getNumberOfItems"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.stats.graphDatabase": [[39, 1, 1, "", "graphDatabase"]], "PAMI.extras.stats.graphDatabase.graphDatabase": [[39, 2, 1, "", "plotEdgeDistribution"], [39, 2, 1, "", "plotNodeDistribution"], [39, 2, 1, "", "printGraphDatabaseStatistics"], [39, 2, 1, "", "printIndividualGraphStats"]], "PAMI.extras.stats.sequentialDatabase": [[39, 1, 1, "", "sequentialDatabase"]], "PAMI.extras.stats.sequentialDatabase.sequentialDatabase": [[39, 2, 1, "", "getAverageItemPerSequenceLength"], [39, 2, 1, "", "getAverageItemPerSubsequenceLength"], [39, 2, 1, "", "getAverageSubsequencePerSequenceLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumSequenceLength"], [39, 2, 1, "", "getMaximumSubsequenceLength"], [39, 2, 1, "", "getMinimumSequenceLength"], [39, 2, 1, "", "getMinimumSubsequenceLength"], [39, 2, 1, "", "getSequenceSize"], [39, 2, 1, "", "getSequencialLengthDistribution"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getStandardDeviationSequenceLength"], [39, 2, 1, "", "getStandardDeviationSubsequenceLength"], [39, 2, 1, "", "getSubsequencialLengthDistribution"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getVarianceSequenceLength"], [39, 2, 1, "", "getVarianceSubsequenceLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"]], "PAMI.extras.stats.temporalDatabase": [[39, 1, 1, "", "temporalDatabase"]], "PAMI.extras.stats.temporalDatabase.temporalDatabase": [[39, 2, 1, "", "convertDataIntoMatrix"], [39, 2, 1, "", "getAverageInterArrivalPeriod"], [39, 2, 1, "", "getAveragePeriodOfItem"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getDensity"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumInterArrivalPeriod"], [39, 2, 1, "", "getMaximumPeriodOfItem"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMinimumInterArrivalPeriod"], [39, 2, 1, "", "getMinimumPeriodOfItem"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [39, 2, 1, "", "getPeriodsInRange"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationPeriod"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.stats.utilityDatabase": [[39, 1, 1, "", "utilityDatabase"]], "PAMI.extras.stats.utilityDatabase.utilityDatabase": [[39, 2, 1, "", "creatingItemSets"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getAverageUtility"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMaximumUtility"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getMinimumUtility"], [39, 2, 1, "", "getNumberOfItems"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSortedUtilityValuesOfItem"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTotalUtility"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator": [[40, 0, 0, "-", "TemporalDatabase"], [40, 0, 0, "-", "TransactionalDatabase"], [40, 0, 0, "-", "createSyntheticGeoreferentialTemporal"], [40, 0, 0, "-", "createSyntheticGeoreferentialTransactions"], [40, 0, 0, "-", "createSyntheticGeoreferentialUncertainTransaction"], [40, 0, 0, "-", "createSyntheticTemporal"], [40, 0, 0, "-", "createSyntheticTransactions"], [40, 0, 0, "-", "createSyntheticUncertainTemporal"], [40, 0, 0, "-", "createSyntheticUncertainTransactions"], [40, 0, 0, "-", "createSyntheticUtility"], [40, 0, 0, "-", "fuzzyDatabase"], [40, 0, 0, "-", "generateTemporal"], [40, 0, 0, "-", "generateTransactional"], [40, 0, 0, "-", "generateUncertainTemporal"], [40, 0, 0, "-", "generateUncertainTransactional"], [40, 0, 0, "-", "generateUtilityTemporal"], [40, 0, 0, "-", "generateUtilityTransactional"], [40, 0, 0, "-", "syntheticUtilityDatabase"], [40, 0, 0, "-", "temporalDatabaseGen"], [40, 0, 0, "-", "utilityDatabase"]], "PAMI.extras.syntheticDataGenerator.TemporalDatabase": [[40, 1, 1, "", "TemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.TemporalDatabase.TemporalDatabase": [[40, 2, 1, "", "create"], [40, 2, 1, "", "getDatabaseAsDataFrame"], [40, 2, 1, "", "getFileName"], [40, 2, 1, "", "performCoinFlip"], [40, 2, 1, "", "tuning"]], "PAMI.extras.syntheticDataGenerator.TransactionalDatabase": [[40, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.TransactionalDatabase.TransactionalDatabase": [[40, 2, 1, "", "create"], [40, 2, 1, "", "getTransactions"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTemporal": [[40, 1, 1, "", "createGeoreferentialTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTemporal.createGeoreferentialTemporalDatabase": [[40, 2, 1, "", "createGeoreferentialTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTransactions": [[40, 1, 1, "", "createSyntheticGeoreferentialTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTransactions.createSyntheticGeoreferentialTransaction": [[40, 2, 1, "", "createGeoreferentialTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialUncertainTransaction": [[40, 1, 1, "", "createSyntheticGeoreferentialUncertainTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialUncertainTransaction.createSyntheticGeoreferentialUncertainTransaction": [[40, 2, 1, "", "createGeoreferentialUncertainTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTemporal": [[40, 1, 1, "", "createSyntheticTemporal"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTemporal.createSyntheticTemporal": [[40, 2, 1, "", "createTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTransactions": [[40, 1, 1, "", "createSyntheticTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTransactions.createSyntheticTransaction": [[40, 2, 1, "", "createTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTemporal": [[40, 1, 1, "", "createSyntheticUncertainTemporal"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTemporal.createSyntheticUncertainTemporal": [[40, 2, 1, "", "createUncertainTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTransactions": [[40, 1, 1, "", "createSyntheticUncertainTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTransactions.createSyntheticUncertainTransaction": [[40, 2, 1, "", "createUncertainTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUtility": [[40, 1, 1, "", "createSyntheticUtility"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUtility.createSyntheticUtility": [[40, 2, 1, "", "createUtilityDatabase"]], "PAMI.extras.syntheticDataGenerator.generateTemporal": [[40, 1, 1, "", "generateTemporal"]], "PAMI.extras.syntheticDataGenerator.generateTemporal.generateTemporal": [[40, 2, 1, "", "createTemporalFile"], [40, 2, 1, "", "generateArray"], [40, 2, 1, "", "getFileName"], [40, 2, 1, "", "getTransactions"], [40, 2, 1, "", "performCoinFlip"], [40, 2, 1, "", "save"], [40, 2, 1, "", "tuning"]], "PAMI.extras.syntheticDataGenerator.generateTransactional": [[40, 1, 1, "", "generateTransactional"]], "PAMI.extras.syntheticDataGenerator.generateTransactional.generateTransactional": [[40, 2, 1, "", "create"], [40, 2, 1, "", "generateArray"], [40, 2, 1, "", "getTransactions"], [40, 2, 1, "", "save"], [40, 2, 1, "", "tuning"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTemporal": [[40, 1, 1, "", "generateUncertainTemporal"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTemporal.generateUncertainTemporal": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTransactional": [[40, 1, 1, "", "generateUncertainTransactional"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTransactional.generateUncertainTransactional": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTemporal": [[40, 1, 1, "", "generateUtilityTemporal"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTemporal.generateUtilityTemporal": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTransactional": [[40, 1, 1, "", "generateUtilityTransactional"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTransactional.generateUtilityTransactional": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.syntheticUtilityDatabase": [[40, 1, 1, "", "syntheticUtilityDatabase"]], "PAMI.extras.syntheticDataGenerator.syntheticUtilityDatabase.syntheticUtilityDatabase": [[40, 2, 1, "", "__init__"], [40, 4, 1, "", "avgTransactionLength"], [40, 2, 1, "id0", "createRandomNumbers"], [40, 2, 1, "id1", "createSyntheticUtilityDatabase"], [40, 4, 1, "", "maxUtilRange"], [40, 4, 1, "", "numOfItems"], [40, 2, 1, "id2", "save"], [40, 4, 1, "", "totalTransactions"]], "PAMI.extras.syntheticDataGenerator.temporalDatabaseGen": [[40, 1, 1, "", "CreateSyntheticTemporal"]], "PAMI.extras.syntheticDataGenerator.temporalDatabaseGen.CreateSyntheticTemporal": [[40, 4, 1, "", "avg_transaction_length"], [40, 2, 1, "id3", "create_temporal_database"], [40, 2, 1, "", "generate_random_numbers"], [40, 4, 1, "", "num_of_items"], [40, 4, 1, "", "total_transactions"]], "PAMI.extras.syntheticDataGenerator.utilityDatabase": [[40, 1, 1, "", "UtilityDataGenerator"]], "PAMI.extras.syntheticDataGenerator.utilityDatabase.UtilityDataGenerator": [[40, 2, 1, "", "Generate"], [40, 2, 1, "", "GenerateAndPrintItemPairs"], [40, 2, 1, "", "GenerateExternalUtilityData"], [40, 2, 1, "", "GetExternalUtilityData"], [40, 2, 1, "", "GetInternalUtilityData"], [40, 2, 1, "", "GetUtilityData"], [40, 2, 1, "", "Save"], [40, 2, 1, "", "SaveItemsInternalUtilityValues"], [40, 2, 1, "", "Saveitemsexternalutilityvalues"]], "PAMI.extras.topKPatterns": [[27, 1, 1, "", "topKPatterns"]], "PAMI.extras.topKPatterns.topKPatterns": [[27, 2, 1, "", "getTopKPatterns"], [27, 2, 1, "", "save"]], "PAMI.extras.uncertaindb_convert": [[27, 1, 1, "", "predictedClass2Transaction"]], "PAMI.extras.uncertaindb_convert.predictedClass2Transaction": [[27, 2, 1, "", "getBinaryTransaction"]], "PAMI.extras.visualize": [[41, 0, 0, "-", "graphs"]], "PAMI.extras.visualize.graphs": [[41, 1, 1, "", "graphDatabase"]], "PAMI.extras.visualize.graphs.graphDatabase": [[41, 2, 1, "", "plot"], [41, 2, 1, "", "savefig"]], "PAMI.faultTolerantFrequentPattern": [[43, 0, 0, "-", "basic"]], "PAMI.faultTolerantFrequentPattern.basic": [[158, 0, 0, "-", "FTApriori"], [159, 0, 0, "-", "FTFPGrowth"], [43, 0, 0, "-", "abstract"]], "PAMI.faultTolerantFrequentPattern.basic.FTApriori": [[158, 1, 1, "", "FTApriori"]], "PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori": [[158, 2, 1, "", "getMemoryRSS"], [158, 2, 1, "", "getMemoryUSS"], [158, 2, 1, "", "getPatterns"], [158, 2, 1, "", "getPatternsAsDataFrame"], [158, 2, 1, "", "getRuntime"], [158, 2, 1, "", "mine"], [158, 2, 1, "", "printResults"], [158, 2, 1, "", "save"], [158, 2, 1, "", "startMine"]], "PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth": [[159, 1, 1, "", "FTFPGrowth"]], "PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth": [[159, 2, 1, "", "getMemoryRSS"], [159, 2, 1, "", "getMemoryUSS"], [159, 2, 1, "", "getPatterns"], [159, 2, 1, "", "getPatternsAsDataFrame"], [159, 2, 1, "", "getRuntime"], [159, 2, 1, "", "mine"], [159, 2, 1, "", "printResults"], [159, 2, 1, "", "save"], [159, 2, 1, "", "startMine"]], "PAMI.frequentPattern": [[45, 0, 0, "-", "basic"], [46, 0, 0, "-", "closed"], [47, 0, 0, "-", "cuda"], [48, 0, 0, "-", "maximal"], [49, 0, 0, "-", "pyspark"], [50, 0, 0, "-", "topk"]], "PAMI.frequentPattern.basic": [[162, 0, 0, "-", "Apriori"], [163, 0, 0, "-", "Aprioribitset"], [164, 0, 0, "-", "ECLAT"], [165, 0, 0, "-", "ECLATDiffset"], [166, 0, 0, "-", "ECLATbitset"], [167, 0, 0, "-", "FPGrowth"], [45, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.basic.Apriori": [[162, 1, 1, "", "Apriori"]], "PAMI.frequentPattern.basic.Apriori.Apriori": [[162, 2, 1, "", "getMemoryRSS"], [162, 2, 1, "", "getMemoryUSS"], [162, 2, 1, "", "getPatterns"], [162, 2, 1, "", "getPatternsAsDataFrame"], [162, 2, 1, "", "getRuntime"], [162, 4, 1, "", "memorySaver"], [162, 2, 1, "", "mine"], [162, 2, 1, "", "printResults"], [162, 2, 1, "", "save"], [162, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.Aprioribitset": [[163, 1, 1, "", "Aprioribitset"]], "PAMI.frequentPattern.basic.Aprioribitset.Aprioribitset": [[163, 2, 1, "", "getMemoryRSS"], [163, 2, 1, "", "getMemoryUSS"], [163, 2, 1, "", "getPatterns"], [163, 2, 1, "", "getPatternsAsDataFrame"], [163, 2, 1, "", "getRuntime"], [163, 2, 1, "", "mine"], [163, 2, 1, "", "printResults"], [163, 2, 1, "", "save"], [163, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLAT": [[164, 1, 1, "", "ECLAT"]], "PAMI.frequentPattern.basic.ECLAT.ECLAT": [[164, 2, 1, "", "getMemoryRSS"], [164, 2, 1, "", "getMemoryUSS"], [164, 2, 1, "", "getPatterns"], [164, 2, 1, "", "getPatternsAsDataFrame"], [164, 2, 1, "", "getRuntime"], [164, 2, 1, "", "mine"], [164, 2, 1, "", "printResults"], [164, 2, 1, "", "save"], [164, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLATDiffset": [[165, 1, 1, "", "ECLATDiffset"]], "PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset": [[165, 2, 1, "", "getMemoryRSS"], [165, 2, 1, "", "getMemoryUSS"], [165, 2, 1, "", "getPatterns"], [165, 2, 1, "", "getPatternsAsDataFrame"], [165, 2, 1, "", "getRuntime"], [165, 2, 1, "", "mine"], [165, 2, 1, "", "printResults"], [165, 2, 1, "", "save"], [165, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLATbitset": [[166, 1, 1, "", "ECLATbitset"]], "PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset": [[166, 2, 1, "", "getMemoryRSS"], [166, 2, 1, "", "getMemoryUSS"], [166, 2, 1, "", "getPatterns"], [166, 2, 1, "", "getPatternsAsDataFrame"], [166, 2, 1, "", "getRuntime"], [166, 2, 1, "", "mine"], [166, 2, 1, "", "printResults"], [166, 2, 1, "", "save"], [166, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.FPGrowth": [[167, 1, 1, "", "FPGrowth"]], "PAMI.frequentPattern.basic.FPGrowth.FPGrowth": [[167, 2, 1, "", "getMemoryRSS"], [167, 2, 1, "", "getMemoryUSS"], [167, 2, 1, "", "getPatterns"], [167, 2, 1, "", "getPatternsAsDataFrame"], [167, 2, 1, "", "getRuntime"], [167, 2, 1, "", "mine"], [167, 2, 1, "", "printResults"], [167, 2, 1, "", "save"], [167, 2, 1, "", "startMine"]], "PAMI.frequentPattern.closed": [[182, 0, 0, "-", "CHARM"], [46, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.closed.CHARM": [[182, 1, 1, "", "CHARM"]], "PAMI.frequentPattern.closed.CHARM.CHARM": [[182, 2, 1, "", "getMemoryRSS"], [182, 2, 1, "", "getMemoryUSS"], [182, 2, 1, "", "getPatterns"], [182, 2, 1, "", "getPatternsAsDataFrame"], [182, 2, 1, "", "getRuntime"], [182, 2, 1, "", "mine"], [182, 2, 1, "", "printResults"], [182, 2, 1, "", "save"], [182, 2, 1, "", "startMine"]], "PAMI.frequentPattern.maximal": [[175, 0, 0, "-", "MaxFPGrowth"], [48, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.maximal.MaxFPGrowth": [[175, 1, 1, "", "MaxFPGrowth"]], "PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth": [[175, 2, 1, "", "getMemoryRSS"], [175, 2, 1, "", "getMemoryUSS"], [175, 2, 1, "", "getPatterns"], [175, 2, 1, "", "getPatternsAsDataFrame"], [175, 2, 1, "", "getRuntime"], [175, 2, 1, "", "mine"], [175, 2, 1, "", "printResults"], [175, 2, 1, "", "save"], [175, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark": [[49, 0, 0, "-", "abstract"], [177, 0, 0, "-", "parallelApriori"], [178, 0, 0, "-", "parallelECLAT"], [179, 0, 0, "-", "parallelFPGrowth"]], "PAMI.frequentPattern.pyspark.parallelApriori": [[177, 1, 1, "", "parallelApriori"]], "PAMI.frequentPattern.pyspark.parallelApriori.parallelApriori": [[177, 2, 1, "", "getMemoryRSS"], [177, 2, 1, "", "getMemoryUSS"], [177, 2, 1, "", "getPatterns"], [177, 2, 1, "", "getPatternsAsDataFrame"], [177, 2, 1, "", "getRuntime"], [177, 2, 1, "", "mine"], [177, 2, 1, "", "printResults"], [177, 2, 1, "", "save"], [177, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark.parallelECLAT": [[178, 1, 1, "", "parallelECLAT"]], "PAMI.frequentPattern.pyspark.parallelECLAT.parallelECLAT": [[178, 2, 1, "", "getMemoryRSS"], [178, 2, 1, "", "getMemoryUSS"], [178, 2, 1, "", "getPatterns"], [178, 2, 1, "", "getPatternsAsDataFrame"], [178, 2, 1, "", "getRuntime"], [178, 2, 1, "", "mine"], [178, 2, 1, "", "printResults"], [178, 2, 1, "", "save"], [178, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth": [[179, 1, 1, "", "Node"], [179, 1, 1, "", "Tree"], [179, 1, 1, "", "parallelFPGrowth"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth.Tree": [[179, 2, 1, "", "addNodeToNodeLink"], [179, 2, 1, "", "addTransaction"], [179, 2, 1, "", "generateConditionalTree"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth.parallelFPGrowth": [[179, 2, 1, "", "buildTree"], [179, 2, 1, "", "genAllFrequentPatterns"], [179, 2, 1, "", "genCondTransaction"], [179, 2, 1, "", "genFreqPatterns"], [179, 2, 1, "", "getMemoryRSS"], [179, 2, 1, "", "getMemoryUSS"], [179, 2, 1, "", "getPartitionId"], [179, 2, 1, "", "getPatterns"], [179, 2, 1, "", "getPatternsAsDataFrame"], [179, 2, 1, "", "getRuntime"], [179, 2, 1, "", "mine"], [179, 2, 1, "", "printResults"], [179, 2, 1, "", "save"], [179, 2, 1, "", "startMine"]], "PAMI.frequentPattern.topk": [[180, 0, 0, "-", "FAE"], [50, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.topk.FAE": [[180, 1, 1, "", "FAE"]], "PAMI.frequentPattern.topk.FAE.FAE": [[180, 2, 1, "", "getMemoryRSS"], [180, 2, 1, "", "getMemoryUSS"], [180, 2, 1, "", "getPatterns"], [180, 2, 1, "", "getPatternsAsDataFrame"], [180, 2, 1, "", "getRuntime"], [180, 2, 1, "", "mine"], [180, 2, 1, "", "printResults"], [180, 2, 1, "", "save"], [180, 2, 1, "", "startMine"]], "PAMI.fuzzyCorrelatedPattern": [[52, 0, 0, "-", "basic"]], "PAMI.fuzzyCorrelatedPattern.basic": [[184, 0, 0, "-", "FCPGrowth"], [52, 0, 0, "-", "abstract"]], "PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth": [[184, 1, 1, "", "Element"], [184, 1, 1, "", "FCPGrowth"], [184, 3, 1, "", "main"]], "PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth": [[184, 2, 1, "", "getMemoryRSS"], [184, 2, 1, "", "getMemoryUSS"], [184, 2, 1, "", "getPatterns"], [184, 2, 1, "", "getPatternsAsDataFrame"], [184, 2, 1, "", "getRuntime"], [184, 2, 1, "", "mine"], [184, 2, 1, "", "printResults"], [184, 2, 1, "", "save"], [184, 2, 1, "", "startMine"]], "PAMI.fuzzyFrequentPattern": [[54, 0, 0, "-", "basic"]], "PAMI.fuzzyFrequentPattern.basic": [[186, 0, 0, "-", "FFIMiner"], [54, 0, 0, "-", "FFIMiner_old"], [54, 0, 0, "-", "abstract"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner": [[186, 1, 1, "", "FFIMiner"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner": [[186, 2, 1, "", "getMemoryRSS"], [186, 2, 1, "", "getMemoryUSS"], [186, 2, 1, "", "getPatterns"], [186, 2, 1, "", "getPatternsAsDataFrame"], [186, 2, 1, "", "getRuntime"], [186, 2, 1, "", "mine"], [186, 2, 1, "", "printResults"], [186, 2, 1, "", "save"], [186, 2, 1, "", "startMine"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner_old": [[54, 1, 1, "", "FFIMiner"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner_old.FFIMiner": [[54, 2, 1, "", "getMemoryRSS"], [54, 2, 1, "", "getMemoryUSS"], [54, 2, 1, "", "getPatterns"], [54, 2, 1, "", "getPatternsAsDataFrame"], [54, 2, 1, "", "getRuntime"], [54, 2, 1, "", "mine"], [54, 2, 1, "", "printResults"], [54, 2, 1, "", "save"], [54, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedFrequentPattern": [[56, 0, 0, "-", "basic"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic": [[189, 0, 0, "-", "FFSPMiner"], [56, 0, 0, "-", "FFSPMiner_old"], [56, 0, 0, "-", "abstract"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner": [[189, 1, 1, "", "FFSPMiner"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner": [[189, 2, 1, "", "getMemoryRSS"], [189, 2, 1, "", "getMemoryUSS"], [189, 2, 1, "", "getPatterns"], [189, 2, 1, "", "getPatternsAsDataFrame"], [189, 2, 1, "", "getRuntime"], [189, 2, 1, "", "mine"], [189, 2, 1, "", "printResults"], [189, 2, 1, "", "save"], [189, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner_old": [[56, 1, 1, "", "FFSPMiner"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner_old.FFSPMiner": [[56, 2, 1, "", "getMemoryRSS"], [56, 2, 1, "", "getMemoryUSS"], [56, 2, 1, "", "getPatterns"], [56, 2, 1, "", "getPatternsAsDataFrame"], [56, 2, 1, "", "getRuntime"], [56, 2, 1, "", "mine"], [56, 2, 1, "", "printResults"], [56, 2, 1, "", "save"], [56, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern": [[58, 0, 0, "-", "basic"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic": [[190, 0, 0, "-", "FGPFPMiner"], [58, 0, 0, "-", "FGPFPMiner_old"], [58, 0, 0, "-", "abstract"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner": [[190, 1, 1, "", "FGPFPMiner"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner": [[190, 2, 1, "", "getMemoryRSS"], [190, 2, 1, "", "getMemoryUSS"], [190, 2, 1, "", "getPatterns"], [190, 2, 1, "", "getPatternsAsDataFrame"], [190, 2, 1, "", "getRuntime"], [190, 2, 1, "", "mine"], [190, 2, 1, "", "printResults"], [190, 2, 1, "", "save"], [190, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner_old": [[58, 1, 1, "", "FGPFPMiner"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner_old.FGPFPMiner": [[58, 2, 1, "", "generateGraphs"], [58, 2, 1, "", "generateLatexCode"], [58, 2, 1, "", "getMemoryRSS"], [58, 2, 1, "", "getMemoryUSS"], [58, 2, 1, "", "getPatterns"], [58, 2, 1, "", "getPatternsAsDataFrame"], [58, 2, 1, "", "getPatternsAsDataframe"], [58, 2, 1, "", "getRuntime"], [58, 2, 1, "", "mine"], [58, 2, 1, "", "printResults"], [58, 2, 1, "", "save"], [58, 2, 1, "", "startMine"]], "PAMI.fuzzyPartialPeriodicPatterns": [[60, 0, 0, "-", "basic"]], "PAMI.fuzzyPartialPeriodicPatterns.basic": [[60, 0, 0, "-", "F3PMiner"], [60, 0, 0, "-", "abstract"]], "PAMI.fuzzyPartialPeriodicPatterns.basic.F3PMiner": [[60, 1, 1, "", "F3PMiner"]], "PAMI.fuzzyPartialPeriodicPatterns.basic.F3PMiner.F3PMiner": [[60, 2, 1, "", "getMemoryRSS"], [60, 2, 1, "", "getMemoryUSS"], [60, 2, 1, "", "getPatterns"], [60, 2, 1, "", "getPatternsAsDataFrame"], [60, 2, 1, "", "getRuntime"], [60, 2, 1, "", "mine"], [60, 2, 1, "", "printResults"], [60, 2, 1, "", "save"], [60, 2, 1, "", "startMine"]], "PAMI.fuzzyPeriodicFrequentPattern": [[62, 0, 0, "-", "basic"]], "PAMI.fuzzyPeriodicFrequentPattern.basic": [[193, 0, 0, "-", "FPFPMiner"], [62, 0, 0, "-", "FPFPMiner_old"], [62, 0, 0, "-", "abstract"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner": [[193, 1, 1, "", "FPFPMiner"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner": [[193, 2, 1, "", "getMemoryRSS"], [193, 2, 1, "", "getMemoryUSS"], [193, 2, 1, "", "getPatterns"], [193, 2, 1, "", "getPatternsAsDataFrame"], [193, 2, 1, "", "getRuntime"], [193, 2, 1, "", "mine"], [193, 2, 1, "", "printResults"], [193, 2, 1, "", "save"], [193, 2, 1, "", "startMine"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner_old": [[62, 1, 1, "", "FPFPMiner"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner_old.FPFPMiner": [[62, 2, 1, "", "getMemoryRSS"], [62, 2, 1, "", "getMemoryUSS"], [62, 2, 1, "", "getPatterns"], [62, 2, 1, "", "getPatternsAsDataFrame"], [62, 2, 1, "", "getRuntime"], [62, 2, 1, "", "mine"], [62, 2, 1, "", "printResults"], [62, 2, 1, "", "save"], [62, 2, 1, "", "startMine"]], "PAMI.geoReferencedPeriodicFrequentPattern": [[64, 0, 0, "-", "basic"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic": [[199, 0, 0, "-", "GPFPMiner"], [64, 0, 0, "-", "abstract"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner": [[199, 1, 1, "", "GPFPMiner"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner": [[199, 2, 1, "", "getMemoryRSS"], [199, 2, 1, "", "getMemoryUSS"], [199, 2, 1, "", "getPatterns"], [199, 2, 1, "", "getPatternsAsDataFrame"], [199, 2, 1, "", "getRuntime"], [199, 2, 1, "", "mapNeighbours"], [199, 2, 1, "", "mine"], [199, 2, 1, "", "printResults"], [199, 2, 1, "", "save"], [199, 2, 1, "", "startMine"]], "PAMI.georeferencedFrequentPattern": [[66, 0, 0, "-", "basic"]], "PAMI.georeferencedFrequentPattern.basic": [[201, 0, 0, "-", "SpatialECLAT"], [66, 0, 0, "-", "abstract"]], "PAMI.georeferencedFrequentPattern.basic.SpatialECLAT": [[201, 1, 1, "", "SpatialECLAT"]], "PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT": [[201, 2, 1, "", "getMemoryRSS"], [201, 2, 1, "", "getMemoryUSS"], [201, 2, 1, "", "getPatterns"], [201, 2, 1, "", "getPatternsAsDataFrame"], [201, 2, 1, "", "getRuntime"], [201, 2, 1, "", "mine"], [201, 2, 1, "", "printResults"], [201, 2, 1, "", "save"], [201, 2, 1, "", "startMine"]], "PAMI.georeferencedFrequentSequencePattern": [[67, 0, 0, "-", "abstract"]], "PAMI.georeferencedPartialPeriodicPattern": [[69, 0, 0, "-", "basic"]], "PAMI.georeferencedPartialPeriodicPattern.basic": [[202, 0, 0, "-", "STEclat"], [69, 0, 0, "-", "abstract"]], "PAMI.georeferencedPartialPeriodicPattern.basic.STEclat": [[202, 1, 1, "", "STEclat"]], "PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat": [[202, 2, 1, "", "getMemoryRSS"], [202, 2, 1, "", "getMemoryUSS"], [202, 2, 1, "", "getPatterns"], [202, 2, 1, "", "getPatternsAsDataFrame"], [202, 2, 1, "", "getRuntime"], [202, 2, 1, "", "mapNeighbours"], [202, 2, 1, "", "mine"], [202, 2, 1, "", "printResults"], [202, 2, 1, "", "save"], [202, 2, 1, "", "startMine"]], "PAMI.highUtilityFrequentPattern": [[71, 0, 0, "-", "basic"]], "PAMI.highUtilityFrequentPattern.basic": [[203, 0, 0, "-", "HUFIM"], [71, 0, 0, "-", "abstract"]], "PAMI.highUtilityFrequentPattern.basic.HUFIM": [[203, 1, 1, "", "HUFIM"]], "PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM": [[203, 2, 1, "", "getMemoryRSS"], [203, 2, 1, "", "getMemoryUSS"], [203, 2, 1, "", "getPatterns"], [203, 2, 1, "", "getPatternsAsDataFrame"], [203, 2, 1, "", "getRuntime"], [203, 2, 1, "", "mine"], [203, 2, 1, "", "printResults"], [203, 2, 1, "", "save"], [203, 2, 1, "", "startMine"]], "PAMI.highUtilityGeoreferencedFrequentPattern": [[73, 0, 0, "-", "basic"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic": [[206, 0, 0, "-", "SHUFIM"], [73, 0, 0, "-", "abstract"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM": [[206, 1, 1, "", "SHUFIM"], [206, 3, 1, "", "main"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM": [[206, 2, 1, "", "getMemoryRSS"], [206, 2, 1, "", "getMemoryUSS"], [206, 2, 1, "", "getPatterns"], [206, 2, 1, "", "getPatternsAsDataFrame"], [206, 2, 1, "", "getRuntime"], [206, 2, 1, "", "mine"], [206, 2, 1, "", "printResults"], [206, 2, 1, "", "save"], [206, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern": [[75, 0, 0, "-", "basic"], [76, 0, 0, "-", "parallel"]], "PAMI.highUtilityPattern.basic": [[207, 0, 0, "-", "EFIM"], [208, 0, 0, "-", "HMiner"], [209, 0, 0, "-", "UPGrowth"], [75, 0, 0, "-", "abstract"], [75, 0, 0, "-", "efimParallel"]], "PAMI.highUtilityPattern.basic.EFIM": [[207, 1, 1, "", "EFIM"]], "PAMI.highUtilityPattern.basic.EFIM.EFIM": [[207, 2, 1, "", "getMemoryRSS"], [207, 2, 1, "", "getMemoryUSS"], [207, 2, 1, "", "getPatterns"], [207, 2, 1, "", "getPatternsAsDataFrame"], [207, 2, 1, "", "getRuntime"], [207, 2, 1, "", "mine"], [207, 2, 1, "", "printResults"], [207, 2, 1, "", "save"], [207, 2, 1, "", "sort_transaction"], [207, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.HMiner": [[208, 1, 1, "", "HMiner"]], "PAMI.highUtilityPattern.basic.HMiner.HMiner": [[208, 2, 1, "", "getMemoryRSS"], [208, 2, 1, "", "getMemoryUSS"], [208, 2, 1, "", "getPatterns"], [208, 2, 1, "", "getPatternsAsDataFrame"], [208, 2, 1, "", "getRuntime"], [208, 2, 1, "", "mine"], [208, 2, 1, "", "printResults"], [208, 2, 1, "", "save"], [208, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.UPGrowth": [[209, 1, 1, "", "UPGrowth"]], "PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth": [[209, 2, 1, "", "PrintStats"], [209, 2, 1, "", "getMemoryRSS"], [209, 2, 1, "", "getMemoryUSS"], [209, 2, 1, "", "getPatterns"], [209, 2, 1, "", "getPatternsAsDataFrame"], [209, 2, 1, "", "getRuntime"], [209, 2, 1, "", "mine"], [209, 2, 1, "", "printResults"], [209, 2, 1, "", "save"], [209, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.efimParallel": [[75, 1, 1, "", "efimParallel"]], "PAMI.highUtilityPattern.basic.efimParallel.efimParallel": [[75, 2, 1, "", "getMemoryRSS"], [75, 2, 1, "", "getMemoryUSS"], [75, 2, 1, "", "getPatterns"], [75, 2, 1, "", "getPatternsAsDataFrame"], [75, 2, 1, "", "getRuntime"], [75, 2, 1, "", "mine"], [75, 2, 1, "", "printResults"], [75, 2, 1, "", "save"], [75, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.parallel": [[76, 0, 0, "-", "abstract"], [76, 0, 0, "-", "efimparallel"]], "PAMI.highUtilityPattern.parallel.efimparallel": [[76, 1, 1, "", "efimParallel"]], "PAMI.highUtilityPattern.parallel.efimparallel.efimParallel": [[76, 2, 1, "", "getMemoryRSS"], [76, 2, 1, "", "getMemoryUSS"], [76, 2, 1, "", "getPatterns"], [76, 2, 1, "", "getPatternsAsDataFrame"], [76, 2, 1, "", "getRuntime"], [76, 2, 1, "", "mine"], [76, 2, 1, "", "printResults"], [76, 2, 1, "", "save"], [76, 2, 1, "", "startMine"]], "PAMI.highUtilityPatternsInStreams": [[77, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern": [[78, 0, 0, "-", "abstract"], [79, 0, 0, "-", "basic"], [80, 0, 0, "-", "topk"]], "PAMI.highUtilitySpatialPattern.abstract": [[78, 1, 1, "", "utilityPatterns"]], "PAMI.highUtilitySpatialPattern.abstract.utilityPatterns": [[78, 2, 1, "", "endTime"], [78, 2, 1, "", "finalPatterns"], [78, 2, 1, "", "getMemoryRSS"], [78, 2, 1, "", "getMemoryUSS"], [78, 2, 1, "", "getPatterns"], [78, 2, 1, "", "getPatternsAsDataFrame"], [78, 2, 1, "", "getRuntime"], [78, 2, 1, "", "iFile"], [78, 2, 1, "", "memoryRSS"], [78, 2, 1, "", "memoryUSS"], [78, 2, 1, "", "minUtil"], [78, 2, 1, "", "nFile"], [78, 2, 1, "", "oFile"], [78, 2, 1, "", "save"], [78, 2, 1, "", "startMine"], [78, 2, 1, "", "startTime"]], "PAMI.highUtilitySpatialPattern.basic": [[211, 0, 0, "-", "HDSHUIM"], [212, 0, 0, "-", "SHUIM"], [79, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern.basic.HDSHUIM": [[211, 1, 1, "", "HDSHUIM"]], "PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM": [[211, 2, 1, "", "getMemoryRSS"], [211, 2, 1, "", "getMemoryUSS"], [211, 2, 1, "", "getPatterns"], [211, 2, 1, "", "getPatternsAsDataFrame"], [211, 2, 1, "", "getRuntime"], [211, 2, 1, "", "mine"], [211, 2, 1, "", "printResults"], [211, 2, 1, "", "save"], [211, 2, 1, "", "startMine"]], "PAMI.highUtilitySpatialPattern.basic.SHUIM": [[212, 1, 1, "", "SHUIM"]], "PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM": [[212, 2, 1, "", "getMemoryRSS"], [212, 2, 1, "", "getMemoryUSS"], [212, 2, 1, "", "getPatterns"], [212, 2, 1, "", "getPatternsAsDataFrame"], [212, 2, 1, "", "getRuntime"], [212, 2, 1, "", "mine"], [212, 2, 1, "", "printResults"], [212, 2, 1, "", "save"], [212, 2, 1, "", "startMine"]], "PAMI.highUtilitySpatialPattern.topk": [[214, 0, 0, "-", "TKSHUIM"], [80, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM": [[214, 1, 1, "", "Dataset"], [214, 1, 1, "", "TKSHUIM"], [214, 1, 1, "", "Transaction"], [214, 3, 1, "", "main"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Dataset": [[214, 2, 1, "", "createTransaction"], [214, 2, 1, "", "getMaxItem"], [214, 2, 1, "", "getTransactions"], [214, 4, 1, "", "maxItem"], [214, 4, 1, "", "transactions"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM": [[214, 4, 1, "", "Neighbours"], [214, 2, 1, "", "additemset"], [214, 2, 1, "", "backtrackingEFIM"], [214, 2, 1, "", "calculateNeighbourIntersection"], [214, 4, 1, "", "candidateCount"], [214, 4, 1, "", "endTime"], [214, 4, 1, "", "finalPatterns"], [214, 2, 1, "", "getMemoryRSS"], [214, 2, 1, "", "getMemoryUSS"], [214, 2, 1, "", "getPatterns"], [214, 2, 1, "", "getPatternsAsDataFrame"], [214, 2, 1, "", "getRuntime"], [214, 4, 1, "", "heapList"], [214, 4, 1, "", "iFile"], [214, 4, 1, "", "intTostr"], [214, 2, 1, "", "intersection"], [214, 2, 1, "", "is_equal"], [214, 4, 1, "", "maxMemory"], [214, 4, 1, "", "memoryRSS"], [214, 4, 1, "", "memoryUSS"], [214, 4, 1, "", "minUtil"], [214, 2, 1, "", "mine"], [214, 4, 1, "", "nFile"], [214, 4, 1, "", "newNamesToOldNames"], [214, 4, 1, "", "oFile"], [214, 4, 1, "", "oldNamesToNewNames"], [214, 2, 1, "", "output"], [214, 2, 1, "", "printResults"], [214, 2, 1, "", "save"], [214, 4, 1, "", "sep"], [214, 2, 1, "", "sortDatabase"], [214, 2, 1, "", "sort_transaction"], [214, 2, 1, "", "startMine"], [214, 4, 1, "", "startTime"], [214, 4, 1, "", "strToint"], [214, 4, 1, "", "temp"], [214, 2, 1, "", "useUtilityBinArrayToCalculateLocalUtilityFirstTime"], [214, 2, 1, "", "useUtilityBinArrayToCalculateSubtreeUtilityFirstTime"], [214, 2, 1, "", "useUtilityBinArraysToCalculateUpperBounds"], [214, 4, 1, "", "utilityBinArrayLU"], [214, 4, 1, "", "utilityBinArraySU"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction": [[214, 2, 1, "", "getItems"], [214, 2, 1, "", "getLastPosition"], [214, 2, 1, "", "getPmus"], [214, 2, 1, "", "getUtilities"], [214, 2, 1, "", "insertionSort"], [214, 4, 1, "", "offset"], [214, 4, 1, "", "prefixUtility"], [214, 2, 1, "", "projectTransaction"], [214, 2, 1, "", "removeUnpromisingItems"]], "PAMI.highUtilitySpatialPattern.topk.abstract": [[80, 1, 1, "", "utilityPatterns"]], "PAMI.highUtilitySpatialPattern.topk.abstract.utilityPatterns": [[80, 2, 1, "", "endTime"], [80, 2, 1, "", "finalPatterns"], [80, 2, 1, "", "getMemoryRSS"], [80, 2, 1, "", "getMemoryUSS"], [80, 2, 1, "", "getPatterns"], [80, 2, 1, "", "getPatternsAsDataFrame"], [80, 2, 1, "", "getRuntime"], [80, 2, 1, "", "iFile"], [80, 2, 1, "", "memoryRSS"], [80, 2, 1, "", "memoryUSS"], [80, 2, 1, "", "nFile"], [80, 2, 1, "", "oFile"], [80, 2, 1, "", "printResults"], [80, 2, 1, "", "save"], [80, 2, 1, "", "startMine"], [80, 2, 1, "", "startTime"]], "PAMI.localPeriodicPattern": [[82, 0, 0, "-", "basic"]], "PAMI.localPeriodicPattern.basic": [[217, 0, 0, "-", "LPPGrowth"], [218, 0, 0, "-", "LPPMBreadth"], [219, 0, 0, "-", "LPPMDepth"], [82, 0, 0, "-", "abstract"]], "PAMI.localPeriodicPattern.basic.LPPGrowth": [[217, 1, 1, "", "LPPGrowth"], [217, 1, 1, "", "Node"], [217, 1, 1, "", "Tree"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth": [[217, 2, 1, "", "getMemoryRSS"], [217, 2, 1, "", "getMemoryUSS"], [217, 2, 1, "", "getPatterns"], [217, 2, 1, "", "getPatternsAsDataFrame"], [217, 2, 1, "", "getRuntime"], [217, 2, 1, "", "mine"], [217, 2, 1, "", "printResults"], [217, 2, 1, "", "save"], [217, 2, 1, "", "startMine"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.Node": [[217, 2, 1, "", "getChild"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.Tree": [[217, 2, 1, "", "addTransaction"], [217, 2, 1, "", "createPrefixTree"], [217, 2, 1, "", "deleteNode"], [217, 2, 1, "", "fixNodeLinks"]], "PAMI.localPeriodicPattern.basic.LPPMBreadth": [[218, 1, 1, "", "LPPMBreadth"]], "PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth": [[218, 2, 1, "", "getMemoryRSS"], [218, 2, 1, "", "getMemoryUSS"], [218, 2, 1, "", "getPatterns"], [218, 2, 1, "", "getPatternsAsDataFrame"], [218, 2, 1, "", "getRuntime"], [218, 2, 1, "", "mine"], [218, 2, 1, "", "printResults"], [218, 2, 1, "", "save"], [218, 2, 1, "", "startMine"]], "PAMI.localPeriodicPattern.basic.LPPMDepth": [[219, 1, 1, "", "LPPMDepth"]], "PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth": [[219, 2, 1, "", "getMemoryRSS"], [219, 2, 1, "", "getMemoryUSS"], [219, 2, 1, "", "getPatterns"], [219, 2, 1, "", "getPatternsAsDataFrame"], [219, 2, 1, "", "getRuntime"], [219, 2, 1, "", "mine"], [219, 2, 1, "", "printResults"], [219, 2, 1, "", "save"], [219, 2, 1, "", "startMine"]], "PAMI.multipleMinimumSupportBasedFrequentPattern": [[84, 0, 0, "-", "basic"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic": [[221, 0, 0, "-", "CFPGrowth"], [222, 0, 0, "-", "CFPGrowthPlus"], [84, 0, 0, "-", "abstract"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth": [[221, 1, 1, "", "CFPGrowth"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth": [[221, 2, 1, "", "Mine"], [221, 2, 1, "", "getMemoryRSS"], [221, 2, 1, "", "getMemoryUSS"], [221, 2, 1, "", "getPatterns"], [221, 2, 1, "", "getPatternsAsDataFrame"], [221, 2, 1, "", "getRuntime"], [221, 2, 1, "", "printResults"], [221, 2, 1, "", "save"], [221, 2, 1, "", "startMine"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus": [[222, 1, 1, "", "CFPGrowthPlus"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus": [[222, 2, 1, "", "Mine"], [222, 2, 1, "", "getMemoryRSS"], [222, 2, 1, "", "getMemoryUSS"], [222, 2, 1, "", "getPatterns"], [222, 2, 1, "", "getPatternsAsDataFrame"], [222, 2, 1, "", "getRuntime"], [222, 2, 1, "", "printResults"], [222, 2, 1, "", "save"], [222, 2, 1, "", "startMine"]], "PAMI.partialPeriodicFrequentPattern": [[86, 0, 0, "-", "basic"]], "PAMI.partialPeriodicFrequentPattern.basic": [[226, 0, 0, "-", "GPFgrowth"], [227, 0, 0, "-", "PPF_DFS"], [86, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth": [[226, 1, 1, "", "GPFgrowth"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth": [[226, 2, 1, "", "getMemoryRSS"], [226, 2, 1, "", "getMemoryUSS"], [226, 2, 1, "", "getPatterns"], [226, 2, 1, "", "getPatternsAsDataFrame"], [226, 2, 1, "", "getRuntime"], [226, 2, 1, "", "mine"], [226, 2, 1, "", "printResults"], [226, 4, 1, "", "runTime"], [226, 2, 1, "", "save"], [226, 2, 1, "", "startMine"]], "PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS": [[227, 1, 1, "", "PPF_DFS"]], "PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS": [[227, 2, 1, "", "getMemoryRSS"], [227, 2, 1, "", "getMemoryUSS"], [227, 2, 1, "", "getPatterns"], [227, 2, 1, "", "getPatternsAsDataFrame"], [227, 2, 1, "", "getRuntime"], [227, 2, 1, "", "mine"], [227, 2, 1, "", "printResults"], [227, 2, 1, "", "save"], [227, 2, 1, "", "startMine"]], "PAMI.partialPeriodicFrequentPattern.basic.abstract": [[86, 1, 1, "", "partialPeriodicPatterns"]], "PAMI.partialPeriodicFrequentPattern.basic.abstract.partialPeriodicPatterns": [[86, 2, 1, "", "getMemoryRSS"], [86, 2, 1, "", "getMemoryUSS"], [86, 2, 1, "", "getPatterns"], [86, 2, 1, "", "getPatternsAsDataFrame"], [86, 2, 1, "", "getRuntime"], [86, 2, 1, "", "printResults"], [86, 2, 1, "", "save"], [86, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern": [[88, 0, 0, "-", "basic"], [89, 0, 0, "-", "closed"], [90, 0, 0, "-", "maximal"], [91, 0, 0, "-", "pyspark"], [92, 0, 0, "-", "topk"]], "PAMI.partialPeriodicPattern.basic": [[230, 0, 0, "-", "GThreePGrowth"], [88, 0, 0, "-", "Gabstract"], [231, 0, 0, "-", "PPPGrowth"], [232, 0, 0, "-", "PPP_ECLAT"], [88, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.basic.GThreePGrowth": [[230, 1, 1, "", "GThreePGrowth"]], "PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth": [[230, 2, 1, "", "getMemoryRSS"], [230, 2, 1, "", "getMemoryUSS"], [230, 2, 1, "", "getPatterns"], [230, 2, 1, "", "getPatternsAsDataFrame"], [230, 2, 1, "", "getRuntime"], [230, 2, 1, "", "mine"], [230, 2, 1, "", "printResults"], [230, 2, 1, "", "save"]], "PAMI.partialPeriodicPattern.basic.PPPGrowth": [[231, 1, 1, "", "PPPGrowth"]], "PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth": [[231, 2, 1, "", "getMemoryRSS"], [231, 2, 1, "", "getMemoryUSS"], [231, 2, 1, "", "getPatterns"], [231, 2, 1, "", "getPatternsAsDataFrame"], [231, 2, 1, "", "getRuntime"], [231, 2, 1, "", "mine"], [231, 2, 1, "", "printResults"], [231, 2, 1, "", "save"], [231, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.basic.PPP_ECLAT": [[232, 1, 1, "", "PPP_ECLAT"]], "PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT": [[232, 2, 1, "", "getMemoryRSS"], [232, 2, 1, "", "getMemoryUSS"], [232, 2, 1, "", "getPatterns"], [232, 2, 1, "", "getPatternsAsDataFrame"], [232, 2, 1, "", "getRuntime"], [232, 2, 1, "", "mine"], [232, 2, 1, "", "printResults"], [232, 2, 1, "", "save"], [232, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.closed": [[233, 0, 0, "-", "PPPClose"], [89, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.closed.PPPClose": [[233, 1, 1, "", "PPPClose"]], "PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose": [[233, 2, 1, "", "getMemoryRSS"], [233, 2, 1, "", "getMemoryUSS"], [233, 2, 1, "", "getPatterns"], [233, 2, 1, "", "getPatternsAsDataFrame"], [233, 2, 1, "", "getRuntime"], [233, 2, 1, "", "mine"], [233, 2, 1, "", "printResults"], [233, 2, 1, "", "save"], [233, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.maximal": [[234, 0, 0, "-", "Max3PGrowth"], [90, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.maximal.Max3PGrowth": [[234, 1, 1, "", "Max3PGrowth"]], "PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth": [[234, 2, 1, "", "getMemoryRSS"], [234, 2, 1, "", "getMemoryUSS"], [234, 2, 1, "", "getPatterns"], [234, 2, 1, "", "getPatternsAsDataFrame"], [234, 2, 1, "", "getRuntime"], [234, 2, 1, "", "mine"], [234, 2, 1, "", "printResults"], [234, 2, 1, "", "save"]], "PAMI.partialPeriodicPattern.pyspark": [[91, 0, 0, "-", "abstract"], [91, 0, 0, "-", "parallel3PGrowth"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth": [[91, 1, 1, "", "Node"], [91, 1, 1, "", "Tree"], [91, 3, 1, "", "cond_trans"], [91, 3, 1, "", "getPF"], [91, 3, 1, "", "getps"], [91, 1, 1, "", "parallel3PGrowth"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.Node": [[91, 2, 1, "", "addChild"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.Tree": [[91, 2, 1, "", "add_transaction"], [91, 2, 1, "", "add_transaction_summ"], [91, 2, 1, "", "generate_patterns"], [91, 2, 1, "", "getTransactions"], [91, 2, 1, "", "get_condition_pattern"], [91, 2, 1, "", "get_ts"], [91, 2, 1, "", "merge"], [91, 2, 1, "", "remove_node"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.parallel3PGrowth": [[91, 2, 1, "", "cond_trans"], [91, 2, 1, "", "genCondTransactions"], [91, 2, 1, "", "getFrequentItems"], [91, 2, 1, "", "getFrequentItemsets"], [91, 2, 1, "", "getMemoryRSS"], [91, 2, 1, "", "getMemoryUSS"], [91, 2, 1, "", "getPF"], [91, 2, 1, "", "getPartitionId"], [91, 2, 1, "", "getPatterns"], [91, 2, 1, "", "getPatternsAsDataFrame"], [91, 2, 1, "", "getRuntime"], [91, 2, 1, "", "getps"], [91, 2, 1, "", "mine"], [91, 4, 1, "", "numPartitions"], [91, 2, 1, "", "printResults"], [91, 2, 1, "", "save"], [91, 2, 1, "", "setPartitions"], [91, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.topk": [[92, 0, 0, "-", "abstract"], [235, 0, 0, "-", "k3PMiner"]], "PAMI.partialPeriodicPattern.topk.abstract": [[92, 1, 1, "", "partialPeriodicPatterns"]], "PAMI.partialPeriodicPattern.topk.abstract.partialPeriodicPatterns": [[92, 2, 1, "", "getMemoryRSS"], [92, 2, 1, "", "getMemoryUSS"], [92, 2, 1, "", "getPatterns"], [92, 2, 1, "", "getPatternsAsDataFrame"], [92, 2, 1, "", "getRuntime"], [92, 2, 1, "", "printResults"], [92, 2, 1, "", "save"], [92, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.topk.k3PMiner": [[235, 1, 1, "", "k3PMiner"]], "PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner": [[235, 2, 1, "", "getMemoryRSS"], [235, 2, 1, "", "getMemoryUSS"], [235, 2, 1, "", "getPatterns"], [235, 2, 1, "", "getPatternsAsDataFrame"], [235, 2, 1, "", "getRuntime"], [235, 2, 1, "", "mine"], [235, 2, 1, "", "printResults"], [235, 2, 1, "", "save"], [235, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries": [[228, 0, 0, "-", "PPGrowth"], [93, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth": [[228, 1, 1, "", "PPGrowth"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth": [[228, 2, 1, "", "Mine"], [228, 2, 1, "", "getMemoryRSS"], [228, 2, 1, "", "getMemoryUSS"], [228, 2, 1, "", "getPatterns"], [228, 2, 1, "", "getPatternsAsDataFrame"], [228, 2, 1, "", "getRuntime"], [228, 2, 1, "", "printResults"], [228, 2, 1, "", "save"], [228, 2, 1, "", "startMine"]], "PAMI.periodicCorrelatedPattern": [[95, 0, 0, "-", "basic"]], "PAMI.periodicCorrelatedPattern.basic": [[237, 0, 0, "-", "EPCPGrowth"], [95, 0, 0, "-", "abstract"]], "PAMI.periodicCorrelatedPattern.basic.EPCPGrowth": [[237, 1, 1, "", "EPCPGrowth"]], "PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth": [[237, 2, 1, "", "getMemoryRSS"], [237, 2, 1, "", "getMemoryUSS"], [237, 2, 1, "", "getPatterns"], [237, 2, 1, "", "getPatternsAsDataFrame"], [237, 2, 1, "", "getRuntime"], [237, 2, 1, "", "printResults"], [237, 2, 1, "", "save"], [237, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern": [[97, 0, 0, "-", "basic"], [98, 0, 0, "-", "closed"], [99, 0, 0, "-", "cuda"], [100, 0, 0, "-", "maximal"], [101, 0, 0, "-", "pyspark"], [102, 0, 0, "-", "topk"]], "PAMI.periodicFrequentPattern.basic": [[239, 0, 0, "-", "PFECLAT"], [240, 0, 0, "-", "PFPGrowth"], [241, 0, 0, "-", "PFPGrowthPlus"], [242, 0, 0, "-", "PFPMC"], [243, 0, 0, "-", "PSGrowth"], [97, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.basic.PFECLAT": [[239, 1, 1, "", "PFECLAT"]], "PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT": [[239, 2, 1, "", "getMemoryRSS"], [239, 2, 1, "", "getMemoryUSS"], [239, 2, 1, "", "getPatterns"], [239, 2, 1, "", "getPatternsAsDataFrame"], [239, 2, 1, "", "getRuntime"], [239, 2, 1, "", "mine"], [239, 2, 1, "", "printResults"], [239, 2, 1, "", "save"], [239, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPGrowth": [[240, 1, 1, "", "PFPGrowth"]], "PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth": [[240, 2, 1, "", "getMemoryRSS"], [240, 2, 1, "", "getMemoryUSS"], [240, 2, 1, "", "getPatterns"], [240, 2, 1, "", "getPatternsAsDataFrame"], [240, 2, 1, "", "getRuntime"], [240, 2, 1, "", "mine"], [240, 2, 1, "", "printResults"], [240, 2, 1, "", "save"], [240, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPGrowthPlus": [[241, 1, 1, "", "PFPGrowthPlus"]], "PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus": [[241, 2, 1, "", "getMemoryRSS"], [241, 2, 1, "", "getMemoryUSS"], [241, 2, 1, "", "getPatterns"], [241, 2, 1, "", "getPatternsAsDataFrame"], [241, 2, 1, "", "getRuntime"], [241, 2, 1, "", "mine"], [241, 2, 1, "", "printResults"], [241, 2, 1, "", "save"], [241, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPMC": [[242, 1, 1, "", "PFPMC"]], "PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC": [[242, 2, 1, "", "getMemoryRSS"], [242, 2, 1, "", "getMemoryUSS"], [242, 2, 1, "", "getPatterns"], [242, 2, 1, "", "getPatternsAsDataFrame"], [242, 2, 1, "", "getRuntime"], [242, 2, 1, "", "mine"], [242, 2, 1, "", "printResults"], [242, 2, 1, "", "save"], [242, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PSGrowth": [[243, 1, 1, "", "Node"], [243, 1, 1, "", "PSGrowth"], [243, 3, 1, "", "conditionalTransactions"], [243, 3, 1, "", "getPeriodAndSupport"]], "PAMI.periodicFrequentPattern.basic.PSGrowth.Node": [[243, 2, 1, "", "addChild"]], "PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth": [[243, 2, 1, "", "getMemoryRSS"], [243, 2, 1, "", "getMemoryUSS"], [243, 2, 1, "", "getPatterns"], [243, 2, 1, "", "getPatternsAsDataFrame"], [243, 2, 1, "", "getRuntime"], [243, 2, 1, "", "mine"], [243, 2, 1, "", "printResults"], [243, 2, 1, "", "save"], [243, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.closed": [[244, 0, 0, "-", "CPFPMiner"], [98, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.closed.CPFPMiner": [[244, 1, 1, "", "CPFPMiner"]], "PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner": [[244, 2, 1, "", "Mine"], [244, 2, 1, "", "getMemoryRSS"], [244, 2, 1, "", "getMemoryUSS"], [244, 2, 1, "", "getPatterns"], [244, 2, 1, "", "getPatternsAsDataFrame"], [244, 2, 1, "", "getRuntime"], [244, 2, 1, "", "printResults"], [244, 2, 1, "", "save"], [244, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.maximal": [[245, 0, 0, "-", "MaxPFGrowth"], [100, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.maximal.MaxPFGrowth": [[245, 1, 1, "", "MaxPFGrowth"]], "PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth": [[245, 2, 1, "", "Mine"], [245, 2, 1, "", "getMemoryRSS"], [245, 2, 1, "", "getMemoryUSS"], [245, 2, 1, "", "getPatterns"], [245, 2, 1, "", "getPatternsAsDataFrame"], [245, 2, 1, "", "getRuntime"], [245, 2, 1, "", "printResults"], [245, 2, 1, "", "save"], [245, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.pyspark": [[101, 0, 0, "-", "abstract"], [101, 0, 0, "-", "parallelPFPGrowth"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth": [[101, 1, 1, "", "Node"], [101, 1, 1, "", "PFPTree"], [101, 1, 1, "", "Summary"], [101, 1, 1, "", "parallelPFPGrowth"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.Node": [[101, 2, 1, "", "addChild"], [101, 2, 1, "", "toString"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.PFPTree": [[101, 2, 1, "", "add"], [101, 2, 1, "", "extract"], [101, 2, 1, "", "getTransactions"], [101, 2, 1, "", "merge"], [101, 2, 1, "", "project"], [101, 2, 1, "", "satisfyPer"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.parallelPFPGrowth": [[101, 2, 1, "", "Mine"], [101, 2, 1, "", "func1"], [101, 2, 1, "", "func2"], [101, 2, 1, "", "func3"], [101, 2, 1, "", "genCondTransactions"], [101, 2, 1, "", "getFrequentItems"], [101, 2, 1, "", "getFrequentItemsets"], [101, 2, 1, "", "getMemoryRSS"], [101, 2, 1, "", "getMemoryUSS"], [101, 2, 1, "", "getPartitionId"], [101, 2, 1, "", "getPatterns"], [101, 2, 1, "", "getPatternsAsDataFrame"], [101, 2, 1, "", "getRuntime"], [101, 2, 1, "", "printResults"], [101, 2, 1, "", "save"], [101, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.topk": [[103, 0, 0, "-", "TopkPFP"], [104, 0, 0, "-", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.TopkPFP": [[246, 0, 0, "-", "TopkPFP"], [103, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP": [[246, 1, 1, "", "TopkPFPGrowth"]], "PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth": [[246, 2, 1, "", "Mine"], [246, 2, 1, "", "getMemoryRSS"], [246, 2, 1, "", "getMemoryUSS"], [246, 2, 1, "", "getPatterns"], [246, 2, 1, "", "getPatternsAsDataFrame"], [246, 2, 1, "", "getRuntime"], [246, 2, 1, "", "printResults"], [246, 2, 1, "", "save"], [246, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner": [[104, 0, 0, "-", "abstract"], [247, 0, 0, "-", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner": [[247, 1, 1, "", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner": [[247, 2, 1, "", "getMemoryRSS"], [247, 2, 1, "", "getMemoryUSS"], [247, 2, 1, "", "getPatterns"], [247, 2, 1, "", "getPatternsAsDataFrame"], [247, 2, 1, "", "getPer_Sup"], [247, 2, 1, "", "getRuntime"], [247, 4, 1, "", "lno"], [247, 2, 1, "", "printResults"], [247, 2, 1, "", "save"], [247, 2, 1, "", "startMine"]], "PAMI.recurringPattern": [[106, 0, 0, "-", "basic"]], "PAMI.recurringPattern.basic": [[249, 0, 0, "-", "RPGrowth"], [106, 0, 0, "-", "abstract"]], "PAMI.recurringPattern.basic.RPGrowth": [[249, 1, 1, "", "RPGrowth"]], "PAMI.recurringPattern.basic.RPGrowth.RPGrowth": [[249, 2, 1, "", "Mine"], [249, 2, 1, "", "getMemoryRSS"], [249, 2, 1, "", "getMemoryUSS"], [249, 2, 1, "", "getPatterns"], [249, 2, 1, "", "getPatternsAsDataFrame"], [249, 2, 1, "", "getRuntime"], [249, 2, 1, "", "printResults"], [249, 2, 1, "", "save"], [249, 2, 1, "", "startMine"]], "PAMI.relativeFrequentPattern": [[108, 0, 0, "-", "basic"]], "PAMI.relativeFrequentPattern.basic": [[252, 0, 0, "-", "RSFPGrowth"], [108, 0, 0, "-", "abstract"]], "PAMI.relativeFrequentPattern.basic.RSFPGrowth": [[252, 1, 1, "", "RSFPGrowth"]], "PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth": [[252, 2, 1, "", "Mine"], [252, 2, 1, "", "getMemoryRSS"], [252, 2, 1, "", "getMemoryUSS"], [252, 2, 1, "", "getPatterns"], [252, 2, 1, "", "getPatternsAsDataFrame"], [252, 2, 1, "", "getRuntime"], [252, 2, 1, "", "printResults"], [252, 2, 1, "", "save"], [252, 2, 1, "", "startMine"]], "PAMI.relativeHighUtilityPattern": [[110, 0, 0, "-", "basic"]], "PAMI.relativeHighUtilityPattern.basic": [[253, 0, 0, "-", "RHUIM"], [110, 0, 0, "-", "abstract"]], "PAMI.relativeHighUtilityPattern.basic.RHUIM": [[253, 1, 1, "", "RHUIM"]], "PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM": [[253, 2, 1, "", "getMemoryRSS"], [253, 2, 1, "", "getMemoryUSS"], [253, 2, 1, "", "getPatterns"], [253, 2, 1, "", "getPatternsAsDataFrame"], [253, 2, 1, "", "getRuntime"], [253, 2, 1, "", "printResults"], [253, 2, 1, "", "save"], [253, 2, 1, "", "sortDatabase"], [253, 2, 1, "", "sort_transaction"], [253, 2, 1, "", "startMine"]], "PAMI.sequentialPatternMining": [[113, 0, 0, "-", "basic"], [114, 0, 0, "-", "closed"]], "PAMI.stablePeriodicFrequentPattern": [[116, 0, 0, "-", "basic"], [117, 0, 0, "-", "topK"]], "PAMI.stablePeriodicFrequentPattern.basic": [[261, 0, 0, "-", "SPPEclat"], [262, 0, 0, "-", "SPPGrowth"], [116, 0, 0, "-", "abstract"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPEclat": [[261, 1, 1, "", "SPPEclat"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat": [[261, 2, 1, "", "getMemoryRSS"], [261, 2, 1, "", "getMemoryUSS"], [261, 2, 1, "", "getPatterns"], [261, 2, 1, "", "getPatternsAsDataFrame"], [261, 2, 1, "", "getRuntime"], [261, 2, 1, "", "mine"], [261, 2, 1, "", "printResults"], [261, 2, 1, "", "save"], [261, 2, 1, "", "startMine"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth": [[262, 1, 1, "", "SPPGrowth"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth": [[262, 4, 1, "", "SPPList"], [262, 2, 1, "", "getMemoryRSS"], [262, 2, 1, "", "getMemoryUSS"], [262, 2, 1, "", "getPatterns"], [262, 2, 1, "", "getPatternsAsDataFrame"], [262, 2, 1, "", "getRuntime"], [262, 2, 1, "", "mine"], [262, 2, 1, "", "printResults"], [262, 2, 1, "", "save"], [262, 2, 1, "", "startMine"]], "PAMI.stablePeriodicFrequentPattern.topK": [[263, 0, 0, "-", "TSPIN"], [117, 0, 0, "-", "abstract"]], "PAMI.stablePeriodicFrequentPattern.topK.TSPIN": [[263, 1, 1, "", "TSPIN"]], "PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN": [[263, 2, 1, "", "getMemoryRSS"], [263, 2, 1, "", "getMemoryUSS"], [263, 2, 1, "", "getPatterns"], [263, 2, 1, "", "getPatternsAsDataFrame"], [263, 2, 1, "", "getRuntime"], [263, 2, 1, "", "printResults"], [263, 2, 1, "", "save"], [263, 2, 1, "", "startMine"]], "PAMI.subgraphMining": [[119, 0, 0, "-", "basic"], [120, 0, 0, "-", "topK"]], "PAMI.subgraphMining.basic": [[119, 0, 0, "-", "abstract"], [119, 0, 0, "-", "dfsCode"], [119, 0, 0, "-", "edge"], [119, 0, 0, "-", "extendedEdge"], [119, 0, 0, "-", "frequentSubgraph"], [119, 0, 0, "-", "graph"], [119, 0, 0, "-", "gspan"], [119, 0, 0, "-", "sparseTriangularMatrix"], [119, 0, 0, "-", "vertex"]], "PAMI.subgraphMining.basic.dfsCode": [[119, 1, 1, "", "DFSCode"]], "PAMI.subgraphMining.basic.dfsCode.DFSCode": [[119, 2, 1, "", "add"], [119, 2, 1, "", "containEdge"], [119, 2, 1, "", "copy"], [119, 2, 1, "", "getAllVLabels"], [119, 2, 1, "", "getAt"], [119, 2, 1, "", "getEeList"], [119, 2, 1, "", "getRightMost"], [119, 2, 1, "", "getRightMostPath"], [119, 2, 1, "", "isEmpty"], [119, 2, 1, "", "notPreOfRm"], [119, 2, 1, "", "onRightMostPath"]], "PAMI.subgraphMining.basic.edge": [[119, 1, 1, "", "Edge"]], "PAMI.subgraphMining.basic.edge.Edge": [[119, 2, 1, "", "another"], [119, 2, 1, "", "getEdgeLabel"]], "PAMI.subgraphMining.basic.extendedEdge": [[119, 1, 1, "", "ExtendedEdge"]], "PAMI.subgraphMining.basic.extendedEdge.ExtendedEdge": [[119, 2, 1, "", "getEdgeLabel"], [119, 2, 1, "", "getV1"], [119, 2, 1, "", "getV2"], [119, 2, 1, "", "getVLabel1"], [119, 2, 1, "", "getVLabel2"], [119, 2, 1, "", "pairSmallerThan"], [119, 2, 1, "", "smallerThan"], [119, 2, 1, "", "smallerThanOriginal"]], "PAMI.subgraphMining.basic.frequentSubgraph": [[119, 1, 1, "", "FrequentSubgraph"]], "PAMI.subgraphMining.basic.graph": [[119, 1, 1, "", "Graph"]], "PAMI.subgraphMining.basic.graph.Graph": [[119, 4, 1, "", "emptyIntegerArray"], [119, 4, 1, "", "emptyVertexList"], [119, 2, 1, "", "findAllWithLabel"], [119, 2, 1, "", "getAllNeighbors"], [119, 2, 1, "", "getAllVertices"], [119, 2, 1, "", "getEdge"], [119, 2, 1, "", "getEdgeCount"], [119, 2, 1, "", "getEdgeLabel"], [119, 2, 1, "", "getId"], [119, 2, 1, "", "getNonPrecalculatedAllVertices"], [119, 2, 1, "", "getVLabel"], [119, 2, 1, "", "isNeighboring"], [119, 2, 1, "", "precalculateLabelsToVertices"], [119, 2, 1, "", "precalculateVertexList"], [119, 2, 1, "", "precalculateVertexNeighbors"], [119, 2, 1, "", "removeInfrequentLabel"]], "PAMI.subgraphMining.basic.gspan": [[119, 1, 1, "", "GSpan"]], "PAMI.subgraphMining.basic.gspan.GSpan": [[119, 1, 1, "", "Pair"], [119, 4, 1, "", "edge_count_pruning"], [119, 4, 1, "", "eliminate_infrequent_edge_labels"], [119, 4, 1, "", "eliminate_infrequent_vertex_pairs"], [119, 4, 1, "", "eliminate_infrequent_vertices"], [119, 2, 1, "", "findAllOnlyOneVertex"], [119, 2, 1, "", "gSpan"], [119, 2, 1, "", "getFrequentSubgraphs"], [119, 2, 1, "", "getMemoryRSS"], [119, 2, 1, "", "getMemoryUSS"], [119, 2, 1, "", "getRuntime"], [119, 2, 1, "", "getSubgraphGraphMapping"], [119, 2, 1, "", "gspanDFS"], [119, 2, 1, "", "isCanonical"], [119, 2, 1, "", "mine"], [119, 2, 1, "", "readGraphs"], [119, 2, 1, "", "removeInfrequentVertexPairs"], [119, 2, 1, "", "rightMostPathExtensions"], [119, 2, 1, "", "rightMostPathExtensionsFromSingle"], [119, 2, 1, "", "save"], [119, 2, 1, "", "saveSubgraphsByGraphId"], [119, 2, 1, "", "subgraphIsomorphisms"]], "PAMI.subgraphMining.basic.sparseTriangularMatrix": [[119, 1, 1, "", "SparseTriangularMatrix"]], "PAMI.subgraphMining.basic.sparseTriangularMatrix.SparseTriangularMatrix": [[119, 2, 1, "", "getSupportForItems"], [119, 2, 1, "", "incrementCount"], [119, 2, 1, "", "removeInfrequentEntriesFromMatrix"], [119, 2, 1, "", "setSupport"]], "PAMI.subgraphMining.basic.vertex": [[119, 1, 1, "", "Vertex"]], "PAMI.subgraphMining.basic.vertex.Vertex": [[119, 2, 1, "", "addEdge"], [119, 2, 1, "", "getEdgeList"], [119, 2, 1, "", "getId"], [119, 2, 1, "", "getLabel"], [119, 2, 1, "", "removeEdge"]], "PAMI.subgraphMining.topK": [[120, 0, 0, "-", "DFSCode"], [120, 0, 0, "-", "DFSThread"], [120, 0, 0, "-", "abstract"], [120, 0, 0, "-", "edge"], [120, 0, 0, "-", "extendedEdge"], [120, 0, 0, "-", "frequentSubgraph"], [120, 0, 0, "-", "graph"], [120, 0, 0, "-", "sparseTriangularMatrix"], [120, 0, 0, "-", "tkg"], [120, 0, 0, "-", "vertex"]], "PAMI.subgraphMining.topK.DFSCode": [[120, 1, 1, "", "DfsCode"]], "PAMI.subgraphMining.topK.DFSCode.DfsCode": [[120, 2, 1, "", "add"], [120, 2, 1, "", "containEdge"], [120, 2, 1, "", "copy"], [120, 2, 1, "", "getAllVLabels"], [120, 2, 1, "", "getAt"], [120, 2, 1, "", "getEeList"], [120, 2, 1, "", "getRightMost"], [120, 2, 1, "", "getRightMostPath"], [120, 2, 1, "", "isEmpty"], [120, 2, 1, "", "notPreOfRm"], [120, 2, 1, "", "onRightMostPath"]], "PAMI.subgraphMining.topK.DFSThread": [[120, 1, 1, "", "DfsThread"]], "PAMI.subgraphMining.topK.DFSThread.DfsThread": [[120, 2, 1, "", "run"]], "PAMI.subgraphMining.topK.edge": [[120, 1, 1, "", "Edge"]], "PAMI.subgraphMining.topK.edge.Edge": [[120, 2, 1, "", "another"], [120, 2, 1, "", "getEdgeLabel"]], "PAMI.subgraphMining.topK.extendedEdge": [[120, 1, 1, "", "ExtendedEdge"]], "PAMI.subgraphMining.topK.extendedEdge.ExtendedEdge": [[120, 2, 1, "", "getEdgeLabel"], [120, 2, 1, "", "getV1"], [120, 2, 1, "", "getV2"], [120, 2, 1, "", "getVLabel1"], [120, 2, 1, "", "getVLabel2"], [120, 2, 1, "", "pairSmallerThan"], [120, 2, 1, "", "smallerThan"], [120, 2, 1, "", "smallerThanOriginal"]], "PAMI.subgraphMining.topK.frequentSubgraph": [[120, 1, 1, "", "FrequentSubgraph"]], "PAMI.subgraphMining.topK.graph": [[120, 1, 1, "", "Graph"]], "PAMI.subgraphMining.topK.graph.Graph": [[120, 4, 1, "id0", "EMPTY_INTEGER_ARRAY"], [120, 4, 1, "id1", "EMPTY_VERTEX_LIST"], [120, 2, 1, "", "findAllWithLabel"], [120, 2, 1, "", "getAllNeighbors"], [120, 2, 1, "", "getAllVertices"], [120, 2, 1, "", "getEdge"], [120, 2, 1, "", "getEdgeCount"], [120, 2, 1, "", "getEdgeLabel"], [120, 2, 1, "", "getId"], [120, 2, 1, "", "getNonPrecalculatedAllVertices"], [120, 2, 1, "", "getVLabel"], [120, 2, 1, "", "isNeighboring"], [120, 2, 1, "", "precalculateLabelsToVertices"], [120, 2, 1, "", "precalculateVertexList"], [120, 2, 1, "", "precalculateVertexNeighbors"], [120, 2, 1, "", "removeInfrequentLabel"]], "PAMI.subgraphMining.topK.sparseTriangularMatrix": [[120, 1, 1, "", "SparseTriangularMatrix"]], "PAMI.subgraphMining.topK.sparseTriangularMatrix.SparseTriangularMatrix": [[120, 2, 1, "", "getSupportForItems"], [120, 2, 1, "", "incrementCount"], [120, 4, 1, "", "matrix"], [120, 2, 1, "", "removeInfrequentEntriesFromMatrix"], [120, 2, 1, "", "setSupport"]], "PAMI.subgraphMining.topK.tkg": [[120, 1, 1, "", "TKG"]], "PAMI.subgraphMining.topK.tkg.TKG": [[120, 4, 1, "", "DYNAMIC_SEARCH"], [120, 4, 1, "", "EDGE_COUNT_PRUNING"], [120, 4, 1, "", "ELIMINATE_INFREQUENT_EDGE_LABELS"], [120, 4, 1, "", "ELIMINATE_INFREQUENT_VERTEX_PAIRS"], [120, 4, 1, "", "ELIMINATE_INFREQUENT_VERTICES"], [120, 1, 1, "", "Pair"], [120, 4, 1, "", "THREADED_DYNAMIC_SEARCH"], [120, 2, 1, "", "findAllOnlyOneVertex"], [120, 2, 1, "", "gSpan"], [120, 2, 1, "", "getKSubgraphs"], [120, 2, 1, "", "getMemoryRSS"], [120, 2, 1, "", "getMemoryUSS"], [120, 2, 1, "", "getMinSupport"], [120, 2, 1, "", "getQueueSize"], [120, 2, 1, "", "getRuntime"], [120, 2, 1, "", "getSubgraphsList"], [120, 2, 1, "", "gspanDfs"], [120, 2, 1, "", "gspanDynamicDFS"], [120, 2, 1, "", "isCanonical"], [120, 2, 1, "", "mine"], [120, 2, 1, "", "readGraphs"], [120, 2, 1, "", "registerAsCandidate"], [120, 2, 1, "", "removeInfrequentVertexPairs"], [120, 2, 1, "", "rightMostPathExtensions"], [120, 2, 1, "", "rightMostPathExtensionsFromSingle"], [120, 2, 1, "", "save"], [120, 2, 1, "", "savePattern"], [120, 2, 1, "", "startThreads"], [120, 2, 1, "", "subgraphIsomorphisms"]], "PAMI.subgraphMining.topK.vertex": [[120, 1, 1, "", "Vertex"]], "PAMI.subgraphMining.topK.vertex.Vertex": [[120, 2, 1, "", "addEdge"], [120, 4, 1, "", "eList"], [120, 2, 1, "", "getEdgeList"], [120, 2, 1, "", "getId"], [120, 2, 1, "", "getLabel"], [120, 4, 1, "", "id"], [120, 2, 1, "", "removeEdge"], [120, 4, 1, "", "vLabel"]], "PAMI.uncertainFaultTolerantFrequentPattern": [[121, 0, 0, "-", "VBFTMine"], [121, 0, 0, "-", "abstract"]], "PAMI.uncertainFaultTolerantFrequentPattern.VBFTMine": [[121, 1, 1, "", "VBFTMine"]], "PAMI.uncertainFaultTolerantFrequentPattern.VBFTMine.VBFTMine": [[121, 2, 1, "", "getMemoryRSS"], [121, 2, 1, "", "getMemoryUSS"], [121, 2, 1, "", "getPatterns"], [121, 2, 1, "", "getPatternsAsDataFrame"], [121, 2, 1, "", "getRuntime"], [121, 2, 1, "", "mine"], [121, 2, 1, "", "printResults"], [121, 2, 1, "", "save"], [121, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern": [[123, 0, 0, "-", "basic"]], "PAMI.uncertainFrequentPattern.basic": [[267, 0, 0, "-", "CUFPTree"], [268, 0, 0, "-", "PUFGrowth"], [269, 0, 0, "-", "TUFP"], [270, 0, 0, "-", "TubeP"], [271, 0, 0, "-", "TubeS"], [273, 0, 0, "-", "UVECLAT"], [123, 0, 0, "-", "abstract"]], "PAMI.uncertainFrequentPattern.basic.CUFPTree": [[267, 1, 1, "", "CUFPTree"]], "PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree": [[267, 2, 1, "", "getMemoryRSS"], [267, 2, 1, "", "getMemoryUSS"], [267, 2, 1, "", "getPatterns"], [267, 2, 1, "", "getPatternsAsDataFrame"], [267, 2, 1, "", "getRuntime"], [267, 2, 1, "", "mine"], [267, 2, 1, "", "printResults"], [267, 2, 1, "", "save"], [267, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.PUFGrowth": [[268, 1, 1, "", "PUFGrowth"]], "PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth": [[268, 2, 1, "", "getMemoryRSS"], [268, 2, 1, "", "getMemoryUSS"], [268, 2, 1, "", "getPatterns"], [268, 2, 1, "", "getPatternsAsDataFrame"], [268, 2, 1, "", "getRuntime"], [268, 2, 1, "", "mine"], [268, 2, 1, "", "printResults"], [268, 2, 1, "", "save"], [268, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TUFP": [[269, 1, 1, "", "TUFP"]], "PAMI.uncertainFrequentPattern.basic.TUFP.TUFP": [[269, 2, 1, "", "getMemoryRSS"], [269, 2, 1, "", "getMemoryUSS"], [269, 2, 1, "", "getPatterns"], [269, 2, 1, "", "getPatternsAsDataFrame"], [269, 2, 1, "", "getRuntime"], [269, 2, 1, "", "mine"], [269, 2, 1, "", "printResults"], [269, 2, 1, "", "save"], [269, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TubeP": [[270, 1, 1, "", "TUFP"]], "PAMI.uncertainFrequentPattern.basic.TubeP.TUFP": [[270, 2, 1, "", "getMemoryRSS"], [270, 2, 1, "", "getMemoryUSS"], [270, 2, 1, "", "getPatterns"], [270, 2, 1, "", "getPatternsAsDataFrame"], [270, 2, 1, "", "getRuntime"], [270, 2, 1, "", "mine"], [270, 2, 1, "", "printResults"], [270, 2, 1, "", "save"], [270, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TubeS": [[271, 3, 1, "", "Second"], [271, 1, 1, "", "TubeS"], [271, 3, 1, "", "printTree"]], "PAMI.uncertainFrequentPattern.basic.TubeS.TubeS": [[271, 2, 1, "", "getMemoryRSS"], [271, 2, 1, "", "getMemoryUSS"], [271, 2, 1, "", "getPatterns"], [271, 2, 1, "", "getPatternsAsDataFrame"], [271, 2, 1, "", "getRuntime"], [271, 2, 1, "", "mine"], [271, 2, 1, "", "printResults"], [271, 2, 1, "", "save"], [271, 2, 1, "", "updateTransactions"]], "PAMI.uncertainFrequentPattern.basic.UVECLAT": [[273, 1, 1, "", "UVEclat"]], "PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat": [[273, 2, 1, "", "getMemoryRSS"], [273, 2, 1, "", "getMemoryUSS"], [273, 2, 1, "", "getPatterns"], [273, 2, 1, "", "getPatternsAsDataFrame"], [273, 2, 1, "", "getRuntime"], [273, 2, 1, "", "mine"], [273, 2, 1, "", "printResults"], [273, 2, 1, "", "save"]], "PAMI.uncertainGeoreferencedFrequentPattern": [[125, 0, 0, "-", "basic"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic": [[276, 0, 0, "-", "GFPGrowth"], [125, 0, 0, "-", "abstract"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth": [[276, 1, 1, "", "GFPGrowth"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth": [[276, 2, 1, "", "getMemoryRSS"], [276, 2, 1, "", "getMemoryUSS"], [276, 2, 1, "", "getPatterns"], [276, 2, 1, "", "getPatternsAsDataFrame"], [276, 2, 1, "", "getRuntime"], [276, 2, 1, "", "mine"], [276, 2, 1, "", "printResults"], [276, 2, 1, "", "save"], [276, 2, 1, "", "startMine"]], "PAMI.uncertainPeriodicFrequentPattern": [[127, 0, 0, "-", "basic"]], "PAMI.uncertainPeriodicFrequentPattern.basic": [[278, 0, 0, "-", "UPFPGrowth"], [279, 0, 0, "-", "UPFPGrowthPlus"], [127, 0, 0, "-", "abstract"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth": [[278, 1, 1, "", "UPFPGrowth"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth": [[278, 2, 1, "", "getMemoryRSS"], [278, 2, 1, "", "getMemoryUSS"], [278, 2, 1, "", "getPatterns"], [278, 2, 1, "", "getPatternsAsDataFrame"], [278, 2, 1, "", "getRuntime"], [278, 2, 1, "", "mine"], [278, 2, 1, "", "printResults"], [278, 2, 1, "", "save"], [278, 2, 1, "", "startMine"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus": [[279, 1, 1, "", "UPFPGrowthPlus"], [279, 3, 1, "", "printTree"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus": [[279, 2, 1, "", "getMemoryRSS"], [279, 2, 1, "", "getMemoryUSS"], [279, 2, 1, "", "getPatterns"], [279, 2, 1, "", "getPatternsAsDataFrame"], [279, 2, 1, "", "getRuntime"], [279, 2, 1, "", "mine"], [279, 2, 1, "", "printResults"], [279, 2, 1, "", "save"], [279, 2, 1, "", "startMine"]], "PAMI.weightedFrequentNeighbourhoodPattern": [[129, 0, 0, "-", "basic"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic": [[282, 0, 0, "-", "SWFPGrowth"], [129, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth": [[282, 1, 1, "", "SWFPGrowth"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth": [[282, 2, 1, "", "getMemoryRSS"], [282, 2, 1, "", "getMemoryUSS"], [282, 2, 1, "", "getPatterns"], [282, 2, 1, "", "getPatternsAsDataFrame"], [282, 2, 1, "", "getRuntime"], [282, 2, 1, "", "mine"], [282, 2, 1, "", "printResults"], [282, 2, 1, "", "save"], [282, 2, 1, "", "startMine"]], "PAMI.weightedFrequentPattern": [[131, 0, 0, "-", "basic"]], "PAMI.weightedFrequentPattern.basic": [[284, 0, 0, "-", "WFIM"], [131, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentPattern.basic.WFIM": [[284, 1, 1, "", "WFIM"]], "PAMI.weightedFrequentPattern.basic.WFIM.WFIM": [[284, 2, 1, "", "getMemoryRSS"], [284, 2, 1, "", "getMemoryUSS"], [284, 2, 1, "", "getPatterns"], [284, 2, 1, "", "getPatternsAsDataFrame"], [284, 2, 1, "", "getRuntime"], [284, 2, 1, "", "mine"], [284, 2, 1, "", "printResults"], [284, 2, 1, "", "save"], [284, 2, 1, "", "startMine"]], "PAMI.weightedFrequentRegularPattern": [[133, 0, 0, "-", "basic"]], "PAMI.weightedFrequentRegularPattern.basic": [[286, 0, 0, "-", "WFRIMiner"], [133, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentRegularPattern.basic.WFRIMiner": [[286, 1, 1, "", "WFRIMiner"]], "PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner": [[286, 2, 1, "", "getMemoryRSS"], [286, 2, 1, "", "getMemoryUSS"], [286, 2, 1, "", "getPatterns"], [286, 2, 1, "", "getPatternsAsDataFrame"], [286, 2, 1, "", "getRuntime"], [286, 2, 1, "", "mine"], [286, 2, 1, "", "printResults"], [286, 2, 1, "", "save"], [286, 2, 1, "", "startMine"]], "PAMI.weightedUncertainFrequentPattern": [[135, 0, 0, "-", "basic"]], "PAMI.weightedUncertainFrequentPattern.basic": [[135, 0, 0, "-", "WUFIM"], [135, 0, 0, "-", "abstract"]], "PAMI.weightedUncertainFrequentPattern.basic.WUFIM": [[135, 1, 1, "", "WUFIM"]], "PAMI.weightedUncertainFrequentPattern.basic.WUFIM.WUFIM": [[135, 2, 1, "", "getMemoryRSS"], [135, 2, 1, "", "getMemoryUSS"], [135, 2, 1, "", "getPatterns"], [135, 2, 1, "", "getPatternsAsDataFrame"], [135, 2, 1, "", "getRuntime"], [135, 2, 1, "", "mine"], [135, 2, 1, "", "printResults"], [135, 2, 1, "", "save"], [135, 2, 1, "", "startMine"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"contigu": [0, 151], "frequent": [0, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 136, 139, 142, 144, 145, 146, 147, 148, 149, 161, 250], "pattern": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 161, 191, 197, 250, 281], "correl": [1, 5, 138], "mine": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 161, 191, 197, 281], "coverag": 2, "fault": 3, "toler": 3, "With": 4, "multipl": [4, 19, 224], "minimum": 4, "support": 4, "fuzzi": [5, 6, 7, 8, 9, 191], "geo": [7, 8, 10, 11, 12, 13, 15, 145, 197], "referenc": [7, 8, 10, 11, 12, 13, 15, 145, 197], "period": [8, 9, 12, 13, 18, 19, 136, 137, 138, 139, 143, 146], "sequenc": [11, 111], "partial": [12, 19, 136, 137], "high": [14, 15, 16, 17, 141], "util": [14, 15, 16, 17, 141, 281], "spatial": 17, "local": 18, "pami": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 215, 220], "packag": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "subpackag": [20, 21, 23, 25, 27, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 78, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134], "modul": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "content": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "associationrul": [21, 22], "basic": [22, 24, 26, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 84, 86, 88, 95, 97, 106, 108, 110, 113, 116, 119, 123, 125, 127, 129, 131, 133, 135, 154, 157, 160, 176, 181, 183, 185, 187, 188, 192, 194, 196, 198, 204, 205, 210, 213, 216, 223, 225, 229, 236, 238, 248, 251, 254, 255, 264, 274, 275, 280, 283, 285, 287], "submodul": [22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 76, 77, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110, 113, 114, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135], "arwithconfid": 22, "arwithleverag": 22, "arwithlift": 22, "rulemin": 22, "abstract": [22, 24, 26, 31, 43, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 76, 77, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110, 113, 114, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135], "correlatedpattern": [23, 24], "comin": [24, 152], "comineplu": [24, 153], "coveragepattern": [25, 26], "cmine": [26, 155], "cppg": [26, 156], "extra": [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], "convertmultitsintofuzzi": 27, "generatelatexgraphfil": 27, "plotpointonmap": 27, "plotpointonmap_dump": 27, "scatterplotspatialpoint": 27, "topkpattern": 27, "uncertaindb_convert": 27, "df2db": 28, "df2dbplu": 28, "denseformatdf": 28, "sparseformatdf": 28, "createtdb": 28, "densedf2dbplu": 28, "densedf2db_dump": 28, "sparsedf2dbplu": 28, "calculatemisvalu": 29, "usingbeta": 29, "usingsd": 29, "dbstat": 30, "fuzzydatabas": [30, 40], "multipletimeseriesfuzzydatabasestat": 30, "sequentialdatabas": [30, 39], "temporaldatabas": [30, 39, 40], "transactionaldatabas": [30, 39, 40], "uncertaintemporaldatabas": 30, "uncertaintransactionaldatabas": 30, "utilitydatabas": [30, 39, 40], "fuzzytransform": 31, "temporaltofuzzi": 31, "transactionaltofuzzi": 31, "utilitytofuzzi": 31, "generatedatabas": 32, "generatespatiotemporaldatabas": 32, "generatetemporaldatabas": 32, "generatetransactionaldatabas": 32, "graph": [33, 41, 119, 120], "df2fig": 33, "df2tex": 33, "plotlinegraphfromdictionari": 33, "plotlinegraphsfromdatafram": 33, "visualizefuzzypattern": 33, "visualizepattern": 33, "image2databas": 34, "imageprocess": 35, "imagery2databas": 35, "messag": 36, "discord": 36, "gmail": 36, "neighbour": 37, "findneighborsusingeuclideandistanceforpointinfo": 37, "findneighboursusingeuclidean": 37, "findneighboursusinggeodes": 37, "sampledataset": 38, "stat": 39, "graphdatabas": 39, "syntheticdatagener": 40, "createsyntheticgeoreferentialtempor": 40, "createsyntheticgeoreferentialtransact": 40, "createsyntheticgeoreferentialuncertaintransact": 40, "createsynthetictempor": 40, "createsynthetictransact": 40, "createsyntheticuncertaintempor": 40, "createsyntheticuncertaintransact": 40, "createsyntheticutil": 40, "generatetempor": 40, "generatetransact": 40, "generateuncertaintempor": 40, "generateuncertaintransact": 40, "generateutilitytempor": 40, "generateutilitytransact": 40, "georeferencedtemporaldatabas": 40, "georeferencedtransactionaldatabas": 40, "syntheticutilitydatabas": 40, "temporaldatabasegen": 40, "visual": 41, "faulttolerantfrequentpattern": [42, 43], "ftapriori": [43, 158], "ftfpgrowth": [43, 159], "frequentpattern": [44, 45, 46, 47, 48, 49, 50], "apriori": [45, 162], "eclat": [45, 164], "eclatdiffset": [45, 165], "eclatbitset": [45, 166], "fpgrowth": [45, 167], "close": [46, 89, 98, 114, 176, 229, 238, 255], "charm": [46, 182], "cuda": [47, 99, 176, 229], "cuapriori": [47, 168], "cuaprioribit": [47, 169], "cueclat": [47, 172], "cueclatbit": [47, 173], "cudaapriorigct": [47, 170], "cudaaprioritid": [47, 171], "cudaeclatgct": [47, 174], "maxim": [48, 90, 100, 176, 229, 238], "maxfpgrowth": [48, 175], "pyspark": [49, 91, 101, 176], "parallelapriori": [49, 177], "paralleleclat": [49, 178], "parallelfpgrowth": [49, 179], "topk": [50, 80, 92, 102, 103, 104, 117, 120, 229, 264], "fae": [50, 180], "fuzzycorrelatedpattern": [51, 52], "fcpgrowth": [52, 184], "fuzzyfrequentpattern": [53, 54], "ffimin": [54, 186], "ffiminer_old": 54, "fuzzygeoreferencedfrequentpattern": [55, 56], "ffspminer": [56, 189], "ffspminer_old": 56, "fuzzygeoreferencedperiodicfrequentpattern": [57, 58], "fgpfpminer": [58, 190], "fgpfpminer_old": 58, "fuzzypartialperiodicpattern": [59, 60], "f3pminer": 60, "fuzzyperiodicfrequentpattern": [61, 62], "fpfpminer": [62, 193], "fpfpminer_old": 62, "georeferencedperiodicfrequentpattern": [63, 64], "gpfpminer": [64, 199], "georeferencedfrequentpattern": [65, 66], "fspgrowth": [66, 200], "spatialeclat": [66, 201], "georeferencedfrequentsequencepattern": 67, "georeferencedpartialperiodicpattern": [68, 69], "steclat": [69, 202], "highutilityfrequentpattern": [70, 71], "hufim": [71, 203], "highutilitygeoreferencedfrequentpattern": [72, 73], "shufim": [73, 206], "highutilitypattern": [74, 75, 76], "efim": [75, 207], "hminer": [75, 208], "upgrowth": [75, 209], "efimparallel": [75, 76], "parallel": 76, "highutilitypatternsinstream": 77, "hupm": 77, "shugrowth": 77, "highutilityspatialpattern": [78, 79, 80], "hdshuim": [79, 211], "shuim": [79, 212], "tkshuim": [80, 214], "localperiodicpattern": [81, 82], "lppgrowth": [82, 217], "lppmbreadth": [82, 218], "lppmdepth": [82, 219], "multipleminimumsupportbasedfrequentpattern": [83, 84], "cfpgrowth": [84, 221], "cfpgrowthplu": [84, 222], "partialperiodicfrequentpattern": [85, 86], "gpfgrowth": [86, 226], "ppf_df": [86, 227], "partialperiodicpattern": [87, 88, 89, 90, 91, 92], "gthreepgrowth": [88, 230], "gabstract": 88, "pppgrowth": [88, 231], "ppp_eclat": [88, 232], "pppclose": [89, 233], "max3pgrowth": [90, 234], "parallel3pgrowth": 91, "k3pminer": [92, 235], "partialperiodicpatterninmultipletimeseri": 93, "ppgrowth": [93, 228], "periodiccorrelatedpattern": [94, 95], "epcpgrowth": [95, 237], "periodicfrequentpattern": [96, 97, 98, 99, 100, 101, 102, 103, 104], "pfeclat": [97, 239], "pfpgrowth": [97, 240], "pfpgrowthplu": [97, 241], "pfpmc": [97, 242], "psgrowth": [97, 243], "parallelpfpgrowth": [97, 101], "cpfpminer": [98, 244], "cugpfmin": 99, "gpfminerbit": 99, "maxpfgrowth": [100, 245], "topkpfp": [103, 246], "kpfpminer": [104, 247], "recurringpattern": [105, 106], "rpgrowth": [106, 249], "relativefrequentpattern": [107, 108], "rsfpgrowth": [108, 252], "relativehighutilitypattern": [109, 110], "rhuim": [110, 253], "sequentialpatternmin": [112, 113, 114], "spade": [113, 257], "spam": [113, 258], "prefixspan": [113, 259], "bide": [114, 260], "stableperiodicfrequentpattern": [115, 116, 117], "sppeclat": [116, 261], "sppgrowth": [116, 262], "sppgrowthdump": 116, "tspin": [117, 263], "subgraphmin": [118, 119, 120], "dfscode": [119, 120], "edg": [119, 120], "extendededg": [119, 120], "frequentsubgraph": [119, 120], "gspan": 119, "sparsetriangularmatrix": [119, 120], "vertex": [119, 120], "dfsthread": 120, "tkg": 120, "uncertainfaulttolerantfrequentpattern": 121, "vbftmine": 121, "uncertainfrequentpattern": [122, 123], "cufptre": [123, 267], "pufgrowth": [123, 268], "tufp": [123, 269], "tubep": [123, 270], "tube": [123, 271], "ufgrowth": [123, 272], "uveclat": [123, 273], "uncertaingeoreferencedfrequentpattern": [124, 125], "gfpgrowth": [125, 276], "uncertainperiodicfrequentpattern": [126, 127], "upfpgrowth": [127, 278], "upfpgrowthplu": [127, 279], "weightedfrequentneighbourhoodpattern": [128, 129], "swfpgrowth": [129, 282], "weightedfrequentpattern": [130, 131], "wfim": [131, 284], "weightedfrequentregularpattern": [132, 133], "wfrimin": [133, 286], "weighteduncertainfrequentpattern": [134, 135], "wufim": 135, "recur": 140, "rel": [141, 250], "sequenti": [142, 256], "stabl": 143, "uncertain": [144, 145, 146, 277], "weight": [147, 148, 149], "neighbourhood": 147, "regular": 149, "aprioribitset": 163, "top": [176, 213, 238], "k": [176, 213, 238], "welcom": 215, "s": 215, "document": 215, "indic": 215, "tabl": 215, "timeseri": 224, "databas": [256, 265, 266, 277], "tempor": 265, "transact": 266}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["ContiguousFrequentPatterns1", "CorrelatedPatternMining1", "CoveragePatternMining1", "FaultTolerantPatternMining1", "FrequentPatternWithMultipleMinimumSupport1", "FuzzyCorrelatedPatternMining1", "FuzzyFrequentPatternMining1", "FuzzyGeoReferencedFrequentPatternMining1", "FuzzyGeoReferencedPeriodicFrequentPatternMining1", "FuzzyPeriodicFrequentPatternMining1", "GeoReferencedFrequentPatternMining1", "GeoReferencedFrequentSequencePatternMining1", "GeoReferencedPartialPeriodicPatternMining1", "GeoReferencedPeriodicFrequentPatternMining1", "HighUtilityFrequentPatternMining1", "HighUtilityGeo-referencedFrequentPatternMining1", "HighUtilityPatternMining1", "HighUtilitySpatialPatternMining1", "LocalPeriodicPatternMining1", "MultiplePartialPeriodicPatternMining1", "PAMI", "PAMI.AssociationRules", "PAMI.AssociationRules.basic", "PAMI.correlatedPattern", "PAMI.correlatedPattern.basic", "PAMI.coveragePattern", "PAMI.coveragePattern.basic", "PAMI.extras", "PAMI.extras.DF2DB", "PAMI.extras.calculateMISValues", "PAMI.extras.dbStats", "PAMI.extras.fuzzyTransformation", "PAMI.extras.generateDatabase", "PAMI.extras.graph", "PAMI.extras.image2Database", "PAMI.extras.imageProcessing", "PAMI.extras.messaging", "PAMI.extras.neighbours", "PAMI.extras.sampleDatasets", "PAMI.extras.stats", "PAMI.extras.syntheticDataGenerator", "PAMI.extras.visualize", "PAMI.faultTolerantFrequentPattern", "PAMI.faultTolerantFrequentPattern.basic", "PAMI.frequentPattern", "PAMI.frequentPattern.basic", "PAMI.frequentPattern.closed", "PAMI.frequentPattern.cuda", "PAMI.frequentPattern.maximal", "PAMI.frequentPattern.pyspark", "PAMI.frequentPattern.topk", "PAMI.fuzzyCorrelatedPattern", "PAMI.fuzzyCorrelatedPattern.basic", "PAMI.fuzzyFrequentPattern", "PAMI.fuzzyFrequentPattern.basic", "PAMI.fuzzyGeoreferencedFrequentPattern", "PAMI.fuzzyGeoreferencedFrequentPattern.basic", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic", "PAMI.fuzzyPartialPeriodicPatterns", "PAMI.fuzzyPartialPeriodicPatterns.basic", "PAMI.fuzzyPeriodicFrequentPattern", "PAMI.fuzzyPeriodicFrequentPattern.basic", "PAMI.geoReferencedPeriodicFrequentPattern", "PAMI.geoReferencedPeriodicFrequentPattern.basic", "PAMI.georeferencedFrequentPattern", "PAMI.georeferencedFrequentPattern.basic", "PAMI.georeferencedFrequentSequencePattern", "PAMI.georeferencedPartialPeriodicPattern", "PAMI.georeferencedPartialPeriodicPattern.basic", "PAMI.highUtilityFrequentPattern", "PAMI.highUtilityFrequentPattern.basic", "PAMI.highUtilityGeoreferencedFrequentPattern", "PAMI.highUtilityGeoreferencedFrequentPattern.basic", "PAMI.highUtilityPattern", "PAMI.highUtilityPattern.basic", "PAMI.highUtilityPattern.parallel", "PAMI.highUtilityPatternsInStreams", "PAMI.highUtilitySpatialPattern", "PAMI.highUtilitySpatialPattern.basic", "PAMI.highUtilitySpatialPattern.topk", "PAMI.localPeriodicPattern", "PAMI.localPeriodicPattern.basic", "PAMI.multipleMinimumSupportBasedFrequentPattern", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic", "PAMI.partialPeriodicFrequentPattern", "PAMI.partialPeriodicFrequentPattern.basic", "PAMI.partialPeriodicPattern", "PAMI.partialPeriodicPattern.basic", "PAMI.partialPeriodicPattern.closed", "PAMI.partialPeriodicPattern.maximal", "PAMI.partialPeriodicPattern.pyspark", "PAMI.partialPeriodicPattern.topk", "PAMI.partialPeriodicPatternInMultipleTimeSeries", "PAMI.periodicCorrelatedPattern", "PAMI.periodicCorrelatedPattern.basic", "PAMI.periodicFrequentPattern", "PAMI.periodicFrequentPattern.basic", "PAMI.periodicFrequentPattern.closed", "PAMI.periodicFrequentPattern.cuda", "PAMI.periodicFrequentPattern.maximal", "PAMI.periodicFrequentPattern.pyspark", "PAMI.periodicFrequentPattern.topk", "PAMI.periodicFrequentPattern.topk.TopkPFP", "PAMI.periodicFrequentPattern.topk.kPFPMiner", "PAMI.recurringPattern", "PAMI.recurringPattern.basic", "PAMI.relativeFrequentPattern", "PAMI.relativeFrequentPattern.basic", "PAMI.relativeHighUtilityPattern", "PAMI.relativeHighUtilityPattern.basic", "PAMI.sequence", "PAMI.sequentialPatternMining", "PAMI.sequentialPatternMining.basic", "PAMI.sequentialPatternMining.closed", "PAMI.stablePeriodicFrequentPattern", "PAMI.stablePeriodicFrequentPattern.basic", "PAMI.stablePeriodicFrequentPattern.topK", "PAMI.subgraphMining", "PAMI.subgraphMining.basic", "PAMI.subgraphMining.topK", "PAMI.uncertainFaultTolerantFrequentPattern", "PAMI.uncertainFrequentPattern", "PAMI.uncertainFrequentPattern.basic", "PAMI.uncertainGeoreferencedFrequentPattern", "PAMI.uncertainGeoreferencedFrequentPattern.basic", "PAMI.uncertainPeriodicFrequentPattern", "PAMI.uncertainPeriodicFrequentPattern.basic", "PAMI.weightedFrequentNeighbourhoodPattern", "PAMI.weightedFrequentNeighbourhoodPattern.basic", "PAMI.weightedFrequentPattern", "PAMI.weightedFrequentPattern.basic", "PAMI.weightedFrequentRegularPattern", "PAMI.weightedFrequentRegularPattern.basic", "PAMI.weightedUncertainFrequentPattern", "PAMI.weightedUncertainFrequentPattern.basic", "PartialPeriodicFrequentPatternMining1", "PartialPeriodicPatternMining1", "PeriodicCorrelatedPatternMining1", "PeriodicFrequentPatternMining1", "RecurringPatternMining1", "RelativeHighUtilityPatternMining1", "SequentialFrequentPatternMining1", "StablePeriodicPatternMining1", "UncertainFrequentPatternMining1", "UncertainGeoReferencedFrequentPatternMining1", "UncertainPeriodicFrequentPatternMining1", "WeightedFrequentNeighbourhoodPatternMining1", "WeightedFrequentPatternMining1", "WeightedFrequentRegularPatternMining1", "contiguousFrequentPatterns", "contiguousPatternMining", "correlatedPatternBasicCoMine", "correlatedPatternBasicCoMinePlus", "correlatedPatternMining", "coveragePatternBasicCMine", "coveragePatternBasicCPPG", "coveragePatternMining", "faultTolerantFrequentPatternBasicFTApriori", "faultTolerantFrequentPatternBasicFTFPGrowth", "faultTolerantPatternMining", "frequent1", "frequentPatternBasicApriori", "frequentPatternBasicAprioribitset", "frequentPatternBasicECLAT", "frequentPatternBasicECLATDiffset", "frequentPatternBasicECLATbitset", "frequentPatternBasicFPGrowth", "frequentPatternCUDAcuApriori", "frequentPatternCUDAcuAprioriBit", "frequentPatternCUDAcuAprioriGCT", "frequentPatternCUDAcuAprioriTID", "frequentPatternCUDAcuECLAT", "frequentPatternCUDAcuECLATBit", "frequentPatternCUDAcuECLATGCT", "frequentPatternMaximalmaxFPGrowth", "frequentPatternMining", "frequentPatternPysparkParallelApriori", "frequentPatternPysparkParallelECLAT", "frequentPatternPysparkParallelFPGrowth", "frequentPatternTopkFAE", "frequentPatternWithMultipleMinimumSupport", "frequentPatternclosedCHARM", "fuzzyCorrelatedPatternMining", "fuzzyCorrelatedPatternbasicFCPGrowth", "fuzzyFrequentPatternMining", "fuzzyFrequentPatternbasicFFIMiner", "fuzzyGeoReferencedFrequentPatternMining", "fuzzyGeoReferencedPeriodicFrequentPatternMining", "fuzzyGeoreferencedFrequentPatternbasicFFSPMiner", "fuzzyGeoreferencedPeriodicFrequentPatternbasicFGPFPMiner", "fuzzyPatternMining", "fuzzyPeriodicFrequentPatternMining", "fuzzyPeriodicFrequentPatternbasicFPFPMiner", "geoReferencedFrequentPatternMining", "geoReferencedFrequentSequencePatternMining", "geoReferencedPartialPeriodicPatternMining", "geoReferencedPatternMining", "geoReferencedPeriodicFrequentPatternMining", "geoReferencedPeriodicFrequentPatternbasicGPFPMiner", "georeferencedFrequentPatternbasicFSPGrowth", "georeferencedFrequentPatternbasicSpatialECLAT", "georeferencedPartialPeriodicPatternbasicSTEclat", "highUtilityFrequentPatternBasicHUFIM", "highUtilityFrequentPatternMining", "highUtilityGeo-referencedFrequentPatternMining", "highUtilityGeoreferencedFrequentPatternBasicSHUFIM", "highUtilityPatternBasicEFIM", "highUtilityPatternBasicHMiner", "highUtilityPatternBasicUPGrowth", "highUtilityPatternMining", "highUtilitySpatialPatternBasicHDSHUIM", "highUtilitySpatialPatternBasicSHUIM", "highUtilitySpatialPatternMining", "highUtilitySpatialPatternTopkTKSHUIM", "index", "localPeriodicPatternMining", "localPeriodicPatternbasicLPPGrowth", "localPeriodicPatternbasicLPPMBreadth", "localPeriodicPatternbasicLPPMDepth", "modules", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowth", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowthPlus", "multiplePartialPeriodicPatternMining", "multipleTimeseriesPatternMining", "partialPeriodicFrequentPatternMining", "partialPeriodicFrequentPatternbasicGPFgrowth", "partialPeriodicFrequentPatternbasicPPF_DFS", "partialPeriodicPatternInMultipleTimeSeriesPPGrowth", "partialPeriodicPatternMining", "partialPeriodicPatternbasicGThreePGrowth", "partialPeriodicPatternbasicPPPGrowth", "partialPeriodicPatternbasicPPP_ECLAT", "partialPeriodicPatternclosedPPPClose", "partialPeriodicPatternmaximalMax3PGrowth", "partialPeriodicPatterntopkk3PMiner", "periodicCorrelatedPatternMining", "periodicCorrelatedPatternbasicEPCPGrowth", "periodicFrequentPatternMining", "periodicFrequentPatternbasicPFECLAT", "periodicFrequentPatternbasicPFPGrowth", "periodicFrequentPatternbasicPFPGrowthPlus", "periodicFrequentPatternbasicPFPMC", "periodicFrequentPatternbasicPSGrowth", "periodicFrequentPatternclosedCPFPMiner", "periodicFrequentPatternmaximalMaxPFGrowth", "periodicFrequentPatterntopkTopkPFPTopkPFP", "periodicFrequentPatterntopkkPFPMinerkPFPMiner", "recurringPatternMining", "recurringPatternbasicRPGrowth", "relativeFrequent", "relativeFrequentPattern", "relativeFrequentPatternBasicRSFPGrowth", "relativeHighUtilityPatternBasicRHUIM", "relativeHighUtilityPatternMining", "sequentialFrequentPatternMining", "sequentialPatternMining", "sequentialPatternMiningBasicSPADE", "sequentialPatternMiningBasicSPAM", "sequentialPatternMiningBasicprefixSpan", "sequentialPatternMiningClosedbide", "stablePeriodicFrequentPatternbasicSPPEclat", "stablePeriodicFrequentPatternbasicSPPGrowth", "stablePeriodicFrequentPatterntopKTSPIN", "stablePeriodicPatternMining", "temporalPatternMining", "transactionalPatternMining", "uncertainFrequentPatternBasicCUFPTree", "uncertainFrequentPatternBasicPUFGrowth", "uncertainFrequentPatternBasicTUFP", "uncertainFrequentPatternBasicTubeP", "uncertainFrequentPatternBasicTubeS", "uncertainFrequentPatternBasicUFGrowth", "uncertainFrequentPatternBasicUVECLAT", "uncertainFrequentPatternMining", "uncertainGeoReferencedFrequentPatternMining", "uncertainGeoreferencedFrequentPatternBasicGFPGrowth", "uncertainPatternMining", "uncertainPeriodicFrequentPatternBasicUPFPGrowth", "uncertainPeriodicFrequentPatternBasicUPFPGrowthPlus", "uncertainPeriodicFrequentPatternMining", "utilityPatternMining", "weightedFrequentNeighbourhoodPatternBasicSWFPGrowth", "weightedFrequentNeighbourhoodPatternMining", "weightedFrequentPatternBasicWFIM", "weightedFrequentPatternMining", "weightedFrequentRegularPatternBasicWFRIMiner", "weightedFrequentRegularPatternMining"], "filenames": ["ContiguousFrequentPatterns1.rst", "CorrelatedPatternMining1.rst", "CoveragePatternMining1.rst", "FaultTolerantPatternMining1.rst", "FrequentPatternWithMultipleMinimumSupport1.rst", "FuzzyCorrelatedPatternMining1.rst", "FuzzyFrequentPatternMining1.rst", "FuzzyGeoReferencedFrequentPatternMining1.rst", "FuzzyGeoReferencedPeriodicFrequentPatternMining1.rst", "FuzzyPeriodicFrequentPatternMining1.rst", "GeoReferencedFrequentPatternMining1.rst", "GeoReferencedFrequentSequencePatternMining1.rst", "GeoReferencedPartialPeriodicPatternMining1.rst", "GeoReferencedPeriodicFrequentPatternMining1.rst", "HighUtilityFrequentPatternMining1.rst", "HighUtilityGeo-referencedFrequentPatternMining1.rst", "HighUtilityPatternMining1.rst", "HighUtilitySpatialPatternMining1.rst", "LocalPeriodicPatternMining1.rst", "MultiplePartialPeriodicPatternMining1.rst", "PAMI.rst", "PAMI.AssociationRules.rst", "PAMI.AssociationRules.basic.rst", "PAMI.correlatedPattern.rst", "PAMI.correlatedPattern.basic.rst", "PAMI.coveragePattern.rst", "PAMI.coveragePattern.basic.rst", "PAMI.extras.rst", "PAMI.extras.DF2DB.rst", "PAMI.extras.calculateMISValues.rst", "PAMI.extras.dbStats.rst", "PAMI.extras.fuzzyTransformation.rst", "PAMI.extras.generateDatabase.rst", "PAMI.extras.graph.rst", "PAMI.extras.image2Database.rst", "PAMI.extras.imageProcessing.rst", "PAMI.extras.messaging.rst", "PAMI.extras.neighbours.rst", "PAMI.extras.sampleDatasets.rst", "PAMI.extras.stats.rst", "PAMI.extras.syntheticDataGenerator.rst", "PAMI.extras.visualize.rst", "PAMI.faultTolerantFrequentPattern.rst", "PAMI.faultTolerantFrequentPattern.basic.rst", "PAMI.frequentPattern.rst", "PAMI.frequentPattern.basic.rst", "PAMI.frequentPattern.closed.rst", "PAMI.frequentPattern.cuda.rst", "PAMI.frequentPattern.maximal.rst", "PAMI.frequentPattern.pyspark.rst", "PAMI.frequentPattern.topk.rst", "PAMI.fuzzyCorrelatedPattern.rst", "PAMI.fuzzyCorrelatedPattern.basic.rst", "PAMI.fuzzyFrequentPattern.rst", "PAMI.fuzzyFrequentPattern.basic.rst", "PAMI.fuzzyGeoreferencedFrequentPattern.rst", "PAMI.fuzzyGeoreferencedFrequentPattern.basic.rst", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.rst", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.rst", "PAMI.fuzzyPartialPeriodicPatterns.rst", "PAMI.fuzzyPartialPeriodicPatterns.basic.rst", "PAMI.fuzzyPeriodicFrequentPattern.rst", "PAMI.fuzzyPeriodicFrequentPattern.basic.rst", "PAMI.geoReferencedPeriodicFrequentPattern.rst", "PAMI.geoReferencedPeriodicFrequentPattern.basic.rst", "PAMI.georeferencedFrequentPattern.rst", "PAMI.georeferencedFrequentPattern.basic.rst", "PAMI.georeferencedFrequentSequencePattern.rst", "PAMI.georeferencedPartialPeriodicPattern.rst", "PAMI.georeferencedPartialPeriodicPattern.basic.rst", "PAMI.highUtilityFrequentPattern.rst", "PAMI.highUtilityFrequentPattern.basic.rst", "PAMI.highUtilityGeoreferencedFrequentPattern.rst", "PAMI.highUtilityGeoreferencedFrequentPattern.basic.rst", "PAMI.highUtilityPattern.rst", "PAMI.highUtilityPattern.basic.rst", "PAMI.highUtilityPattern.parallel.rst", "PAMI.highUtilityPatternsInStreams.rst", "PAMI.highUtilitySpatialPattern.rst", "PAMI.highUtilitySpatialPattern.basic.rst", "PAMI.highUtilitySpatialPattern.topk.rst", "PAMI.localPeriodicPattern.rst", "PAMI.localPeriodicPattern.basic.rst", "PAMI.multipleMinimumSupportBasedFrequentPattern.rst", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.rst", "PAMI.partialPeriodicFrequentPattern.rst", "PAMI.partialPeriodicFrequentPattern.basic.rst", "PAMI.partialPeriodicPattern.rst", "PAMI.partialPeriodicPattern.basic.rst", "PAMI.partialPeriodicPattern.closed.rst", "PAMI.partialPeriodicPattern.maximal.rst", "PAMI.partialPeriodicPattern.pyspark.rst", "PAMI.partialPeriodicPattern.topk.rst", "PAMI.partialPeriodicPatternInMultipleTimeSeries.rst", "PAMI.periodicCorrelatedPattern.rst", "PAMI.periodicCorrelatedPattern.basic.rst", "PAMI.periodicFrequentPattern.rst", "PAMI.periodicFrequentPattern.basic.rst", "PAMI.periodicFrequentPattern.closed.rst", "PAMI.periodicFrequentPattern.cuda.rst", "PAMI.periodicFrequentPattern.maximal.rst", "PAMI.periodicFrequentPattern.pyspark.rst", "PAMI.periodicFrequentPattern.topk.rst", "PAMI.periodicFrequentPattern.topk.TopkPFP.rst", "PAMI.periodicFrequentPattern.topk.kPFPMiner.rst", "PAMI.recurringPattern.rst", "PAMI.recurringPattern.basic.rst", "PAMI.relativeFrequentPattern.rst", "PAMI.relativeFrequentPattern.basic.rst", "PAMI.relativeHighUtilityPattern.rst", "PAMI.relativeHighUtilityPattern.basic.rst", "PAMI.sequence.rst", "PAMI.sequentialPatternMining.rst", "PAMI.sequentialPatternMining.basic.rst", "PAMI.sequentialPatternMining.closed.rst", "PAMI.stablePeriodicFrequentPattern.rst", "PAMI.stablePeriodicFrequentPattern.basic.rst", "PAMI.stablePeriodicFrequentPattern.topK.rst", "PAMI.subgraphMining.rst", "PAMI.subgraphMining.basic.rst", "PAMI.subgraphMining.topK.rst", "PAMI.uncertainFaultTolerantFrequentPattern.rst", "PAMI.uncertainFrequentPattern.rst", "PAMI.uncertainFrequentPattern.basic.rst", "PAMI.uncertainGeoreferencedFrequentPattern.rst", "PAMI.uncertainGeoreferencedFrequentPattern.basic.rst", "PAMI.uncertainPeriodicFrequentPattern.rst", "PAMI.uncertainPeriodicFrequentPattern.basic.rst", "PAMI.weightedFrequentNeighbourhoodPattern.rst", "PAMI.weightedFrequentNeighbourhoodPattern.basic.rst", "PAMI.weightedFrequentPattern.rst", "PAMI.weightedFrequentPattern.basic.rst", "PAMI.weightedFrequentRegularPattern.rst", "PAMI.weightedFrequentRegularPattern.basic.rst", "PAMI.weightedUncertainFrequentPattern.rst", "PAMI.weightedUncertainFrequentPattern.basic.rst", "PartialPeriodicFrequentPatternMining1.rst", "PartialPeriodicPatternMining1.rst", "PeriodicCorrelatedPatternMining1.rst", "PeriodicFrequentPatternMining1.rst", "RecurringPatternMining1.rst", "RelativeHighUtilityPatternMining1.rst", "SequentialFrequentPatternMining1.rst", "StablePeriodicPatternMining1.rst", "UncertainFrequentPatternMining1.rst", "UncertainGeoReferencedFrequentPatternMining1.rst", "UncertainPeriodicFrequentPatternMining1.rst", "WeightedFrequentNeighbourhoodPatternMining1.rst", "WeightedFrequentPatternMining1.rst", "WeightedFrequentRegularPatternMining1.rst", "contiguousFrequentPatterns.rst", "contiguousPatternMining.rst", "correlatedPatternBasicCoMine.rst", "correlatedPatternBasicCoMinePlus.rst", "correlatedPatternMining.rst", "coveragePatternBasicCMine.rst", "coveragePatternBasicCPPG.rst", "coveragePatternMining.rst", "faultTolerantFrequentPatternBasicFTApriori.rst", "faultTolerantFrequentPatternBasicFTFPGrowth.rst", "faultTolerantPatternMining.rst", "frequent1.rst", "frequentPatternBasicApriori.rst", "frequentPatternBasicAprioribitset.rst", "frequentPatternBasicECLAT.rst", "frequentPatternBasicECLATDiffset.rst", "frequentPatternBasicECLATbitset.rst", "frequentPatternBasicFPGrowth.rst", "frequentPatternCUDAcuApriori.rst", "frequentPatternCUDAcuAprioriBit.rst", "frequentPatternCUDAcuAprioriGCT.rst", "frequentPatternCUDAcuAprioriTID.rst", "frequentPatternCUDAcuECLAT.rst", "frequentPatternCUDAcuECLATBit.rst", "frequentPatternCUDAcuECLATGCT.rst", "frequentPatternMaximalmaxFPGrowth.rst", "frequentPatternMining.rst", "frequentPatternPysparkParallelApriori.rst", "frequentPatternPysparkParallelECLAT.rst", "frequentPatternPysparkParallelFPGrowth.rst", "frequentPatternTopkFAE.rst", "frequentPatternWithMultipleMinimumSupport.rst", "frequentPatternclosedCHARM.rst", "fuzzyCorrelatedPatternMining.rst", "fuzzyCorrelatedPatternbasicFCPGrowth.rst", "fuzzyFrequentPatternMining.rst", "fuzzyFrequentPatternbasicFFIMiner.rst", "fuzzyGeoReferencedFrequentPatternMining.rst", "fuzzyGeoReferencedPeriodicFrequentPatternMining.rst", "fuzzyGeoreferencedFrequentPatternbasicFFSPMiner.rst", "fuzzyGeoreferencedPeriodicFrequentPatternbasicFGPFPMiner.rst", "fuzzyPatternMining.rst", "fuzzyPeriodicFrequentPatternMining.rst", "fuzzyPeriodicFrequentPatternbasicFPFPMiner.rst", "geoReferencedFrequentPatternMining.rst", "geoReferencedFrequentSequencePatternMining.rst", "geoReferencedPartialPeriodicPatternMining.rst", "geoReferencedPatternMining.rst", "geoReferencedPeriodicFrequentPatternMining.rst", "geoReferencedPeriodicFrequentPatternbasicGPFPMiner.rst", "georeferencedFrequentPatternbasicFSPGrowth.rst", "georeferencedFrequentPatternbasicSpatialECLAT.rst", "georeferencedPartialPeriodicPatternbasicSTEclat.rst", "highUtilityFrequentPatternBasicHUFIM.rst", "highUtilityFrequentPatternMining.rst", "highUtilityGeo-referencedFrequentPatternMining.rst", "highUtilityGeoreferencedFrequentPatternBasicSHUFIM.rst", "highUtilityPatternBasicEFIM.rst", "highUtilityPatternBasicHMiner.rst", "highUtilityPatternBasicUPGrowth.rst", "highUtilityPatternMining.rst", "highUtilitySpatialPatternBasicHDSHUIM.rst", "highUtilitySpatialPatternBasicSHUIM.rst", "highUtilitySpatialPatternMining.rst", "highUtilitySpatialPatternTopkTKSHUIM.rst", "index.rst", "localPeriodicPatternMining.rst", "localPeriodicPatternbasicLPPGrowth.rst", "localPeriodicPatternbasicLPPMBreadth.rst", "localPeriodicPatternbasicLPPMDepth.rst", "modules.rst", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowth.rst", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowthPlus.rst", "multiplePartialPeriodicPatternMining.rst", "multipleTimeseriesPatternMining.rst", "partialPeriodicFrequentPatternMining.rst", "partialPeriodicFrequentPatternbasicGPFgrowth.rst", "partialPeriodicFrequentPatternbasicPPF_DFS.rst", "partialPeriodicPatternInMultipleTimeSeriesPPGrowth.rst", "partialPeriodicPatternMining.rst", "partialPeriodicPatternbasicGThreePGrowth.rst", "partialPeriodicPatternbasicPPPGrowth.rst", "partialPeriodicPatternbasicPPP_ECLAT.rst", "partialPeriodicPatternclosedPPPClose.rst", "partialPeriodicPatternmaximalMax3PGrowth.rst", "partialPeriodicPatterntopkk3PMiner.rst", "periodicCorrelatedPatternMining.rst", "periodicCorrelatedPatternbasicEPCPGrowth.rst", "periodicFrequentPatternMining.rst", "periodicFrequentPatternbasicPFECLAT.rst", "periodicFrequentPatternbasicPFPGrowth.rst", "periodicFrequentPatternbasicPFPGrowthPlus.rst", "periodicFrequentPatternbasicPFPMC.rst", "periodicFrequentPatternbasicPSGrowth.rst", "periodicFrequentPatternclosedCPFPMiner.rst", "periodicFrequentPatternmaximalMaxPFGrowth.rst", "periodicFrequentPatterntopkTopkPFPTopkPFP.rst", "periodicFrequentPatterntopkkPFPMinerkPFPMiner.rst", "recurringPatternMining.rst", "recurringPatternbasicRPGrowth.rst", "relativeFrequent.rst", "relativeFrequentPattern.rst", "relativeFrequentPatternBasicRSFPGrowth.rst", "relativeHighUtilityPatternBasicRHUIM.rst", "relativeHighUtilityPatternMining.rst", "sequentialFrequentPatternMining.rst", "sequentialPatternMining.rst", "sequentialPatternMiningBasicSPADE.rst", "sequentialPatternMiningBasicSPAM.rst", "sequentialPatternMiningBasicprefixSpan.rst", "sequentialPatternMiningClosedbide.rst", "stablePeriodicFrequentPatternbasicSPPEclat.rst", "stablePeriodicFrequentPatternbasicSPPGrowth.rst", "stablePeriodicFrequentPatterntopKTSPIN.rst", "stablePeriodicPatternMining.rst", "temporalPatternMining.rst", "transactionalPatternMining.rst", "uncertainFrequentPatternBasicCUFPTree.rst", "uncertainFrequentPatternBasicPUFGrowth.rst", "uncertainFrequentPatternBasicTUFP.rst", "uncertainFrequentPatternBasicTubeP.rst", "uncertainFrequentPatternBasicTubeS.rst", "uncertainFrequentPatternBasicUFGrowth.rst", "uncertainFrequentPatternBasicUVECLAT.rst", "uncertainFrequentPatternMining.rst", "uncertainGeoReferencedFrequentPatternMining.rst", "uncertainGeoreferencedFrequentPatternBasicGFPGrowth.rst", "uncertainPatternMining.rst", "uncertainPeriodicFrequentPatternBasicUPFPGrowth.rst", "uncertainPeriodicFrequentPatternBasicUPFPGrowthPlus.rst", "uncertainPeriodicFrequentPatternMining.rst", "utilityPatternMining.rst", "weightedFrequentNeighbourhoodPatternBasicSWFPGrowth.rst", "weightedFrequentNeighbourhoodPatternMining.rst", "weightedFrequentPatternBasicWFIM.rst", "weightedFrequentPatternMining.rst", "weightedFrequentRegularPatternBasicWFRIMiner.rst", "weightedFrequentRegularPatternMining.rst"], "titles": ["Contiguous Frequent Patterns", "Correlated Pattern Mining", "Coverage Pattern Mining", "Fault-Tolerant Frequent Pattern Mining", "Frequent pattern With Multiple Minimum Support", "Fuzzy Correlated Pattern Mining", "Fuzzy Frequent Pattern Mining", "Fuzzy Geo-referenced Frequent Pattern Mining", "Fuzzy Geo-referenced Periodic Frequent Pattern Mining", "Fuzzy Periodic Frequent Pattern Mining", "Geo-referenced Frequent Pattern Mining", "Geo-referenced Frequent Sequence Pattern mining", "Geo-referenced Partial Periodic Pattern Mining", "Geo-referenced Periodic Frequent Pattern Mining", "High-Utility Frequent Pattern Mining", "High-Utility Geo-referenced Frequent Pattern Mining", "High-Utility Pattern mining", "High-Utility Spatial Pattern Mining", "Local Periodic Pattern Mining", "Multiple Partial Periodic Pattern Mining", "PAMI package", "PAMI.AssociationRules package", "PAMI.AssociationRules.basic package", "PAMI.correlatedPattern package", "PAMI.correlatedPattern.basic package", "PAMI.coveragePattern package", "PAMI.coveragePattern.basic package", "PAMI.extras package", "PAMI.extras.DF2DB package", "PAMI.extras.calculateMISValues package", "PAMI.extras.dbStats package", "PAMI.extras.fuzzyTransformation package", "PAMI.extras.generateDatabase package", "PAMI.extras.graph package", "PAMI.extras.image2Database package", "PAMI.extras.imageProcessing package", "PAMI.extras.messaging package", "PAMI.extras.neighbours package", "PAMI.extras.sampleDatasets package", "PAMI.extras.stats package", "PAMI.extras.syntheticDataGenerator package", "PAMI.extras.visualize package", "PAMI.faultTolerantFrequentPattern package", "PAMI.faultTolerantFrequentPattern.basic package", "PAMI.frequentPattern package", "PAMI.frequentPattern.basic package", "PAMI.frequentPattern.closed package", "PAMI.frequentPattern.cuda package", "PAMI.frequentPattern.maximal package", "PAMI.frequentPattern.pyspark package", "PAMI.frequentPattern.topk package", "PAMI.fuzzyCorrelatedPattern package", "PAMI.fuzzyCorrelatedPattern.basic package", "PAMI.fuzzyFrequentPattern package", "PAMI.fuzzyFrequentPattern.basic package", "PAMI.fuzzyGeoreferencedFrequentPattern package", "PAMI.fuzzyGeoreferencedFrequentPattern.basic package", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern package", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic package", "PAMI.fuzzyPartialPeriodicPatterns package", "PAMI.fuzzyPartialPeriodicPatterns.basic package", "PAMI.fuzzyPeriodicFrequentPattern package", "PAMI.fuzzyPeriodicFrequentPattern.basic package", "PAMI.geoReferencedPeriodicFrequentPattern package", "PAMI.geoReferencedPeriodicFrequentPattern.basic package", "PAMI.georeferencedFrequentPattern package", "PAMI.georeferencedFrequentPattern.basic package", "PAMI.georeferencedFrequentSequencePattern package", "PAMI.georeferencedPartialPeriodicPattern package", "PAMI.georeferencedPartialPeriodicPattern.basic package", "PAMI.highUtilityFrequentPattern package", "PAMI.highUtilityFrequentPattern.basic package", "PAMI.highUtilityGeoreferencedFrequentPattern package", "PAMI.highUtilityGeoreferencedFrequentPattern.basic package", "PAMI.highUtilityPattern package", "PAMI.highUtilityPattern.basic package", "PAMI.highUtilityPattern.parallel package", "PAMI.highUtilityPatternsInStreams package", "PAMI.highUtilitySpatialPattern package", "PAMI.highUtilitySpatialPattern.basic package", "PAMI.highUtilitySpatialPattern.topk package", "PAMI.localPeriodicPattern package", "PAMI.localPeriodicPattern.basic package", "PAMI.multipleMinimumSupportBasedFrequentPattern package", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic package", "PAMI.partialPeriodicFrequentPattern package", "PAMI.partialPeriodicFrequentPattern.basic package", "PAMI.partialPeriodicPattern package", "PAMI.partialPeriodicPattern.basic package", "PAMI.partialPeriodicPattern.closed package", "PAMI.partialPeriodicPattern.maximal package", "PAMI.partialPeriodicPattern.pyspark package", "PAMI.partialPeriodicPattern.topk package", "PAMI.partialPeriodicPatternInMultipleTimeSeries package", "PAMI.periodicCorrelatedPattern package", "PAMI.periodicCorrelatedPattern.basic package", "PAMI.periodicFrequentPattern package", "PAMI.periodicFrequentPattern.basic package", "PAMI.periodicFrequentPattern.closed package", "PAMI.periodicFrequentPattern.cuda package", "PAMI.periodicFrequentPattern.maximal package", "PAMI.periodicFrequentPattern.pyspark package", "PAMI.periodicFrequentPattern.topk package", "PAMI.periodicFrequentPattern.topk.TopkPFP package", "PAMI.periodicFrequentPattern.topk.kPFPMiner package", "PAMI.recurringPattern package", "PAMI.recurringPattern.basic package", "PAMI.relativeFrequentPattern package", "PAMI.relativeFrequentPattern.basic package", "PAMI.relativeHighUtilityPattern package", "PAMI.relativeHighUtilityPattern.basic package", "PAMI.sequence package", "PAMI.sequentialPatternMining package", "PAMI.sequentialPatternMining.basic package", "PAMI.sequentialPatternMining.closed package", "PAMI.stablePeriodicFrequentPattern package", "PAMI.stablePeriodicFrequentPattern.basic package", "PAMI.stablePeriodicFrequentPattern.topK package", "PAMI.subgraphMining package", "PAMI.subgraphMining.basic package", "PAMI.subgraphMining.topK package", "PAMI.uncertainFaultTolerantFrequentPattern package", "PAMI.uncertainFrequentPattern package", "PAMI.uncertainFrequentPattern.basic package", "PAMI.uncertainGeoreferencedFrequentPattern package", "PAMI.uncertainGeoreferencedFrequentPattern.basic package", "PAMI.uncertainPeriodicFrequentPattern package", "PAMI.uncertainPeriodicFrequentPattern.basic package", "PAMI.weightedFrequentNeighbourhoodPattern package", "PAMI.weightedFrequentNeighbourhoodPattern.basic package", "PAMI.weightedFrequentPattern package", "PAMI.weightedFrequentPattern.basic package", "PAMI.weightedFrequentRegularPattern package", "PAMI.weightedFrequentRegularPattern.basic package", "PAMI.weightedUncertainFrequentPattern package", "PAMI.weightedUncertainFrequentPattern.basic package", "Partial Periodic Frequent Pattern Mining", "Partial Periodic Pattern Mining", "Periodic correlated pattern mining", "Periodic Frequent Pattern Mining", "Recurring Pattern Mining", "Relative High-Utility Pattern Mining", "Sequential Frequent Pattern mining", "Stable Periodic Pattern Mining", "Uncertain Frequent Pattern mining", "Uncertain Geo-Referenced Frequent Pattern mining", "Uncertain Periodic Frequent Pattern mining", "Weighted Frequent Neighbourhood Pattern Mining", "Weighted Frequent Pattern Mining", "Weighted Frequent Regular Pattern Mining", "<no title>", "Contiguous Patterns", "CoMine", "CoMinePlus", "Basic", "CMine", "CPPG", "Basic", "FTApriori", "FTFPGrowth", "Basic", "Frequent Pattern mining", "Apriori", "Aprioribitset", "ECLAT", "ECLATDiffset", "ECLATbitset", "FPGrowth", "cuApriori", "cuAprioriBit", "cudaAprioriGCT", "cudaAprioriTID", "cuEclat", "cuEclatBit", "cudaEclatGCT", "MaxFPGrowth", "Basic", "parallelApriori", "parallelECLAT", "parallelFPGrowth", "FAE", "Basic", "CHARM", "Basic", "FCPGrowth", "Basic", "FFIMiner", "Basic", "Basic", "FFSPMiner", "FGPFPMiner", "Fuzzy Pattern Mining", "Basic", "FPFPMiner", "Basic", "<no title>", "Basic", "Geo-referenced Pattern Mining", "Basic", "GPFPMiner", "FSPGrowth", "SpatialECLAT", "STEclat", "HUFIM", "Basic", "Basic", "SHUFIM", "EFIM", "HMiner", "UPGrowth", "Basic", "HDSHUIM", "SHUIM", "Basic", "TKSHUIM", "Welcome to PAMI\u2019s documentation!", "Basic", "LPPGrowth", "LPPMBreadth", "LPPMDepth", "PAMI", "CFPGrowth", "CFPGrowthPlus", "Basic", "Multiple Timeseries", "Basic", "GPFgrowth", "PPF_DFS", "PPGrowth", "Basic", "GThreePGrowth", "PPPGrowth", "PPP_ECLAT", "PPPClose", "Max3PGrowth", "k3PMiner", "Basic", "EPCPGrowth", "Basic", "PFECLAT", "PFPGrowth", "PFPGrowthPlus", "PFPMC", "PSGrowth", "CPFPMiner", "MaxPFGrowth", "TopkPFP", "kPFPMiner", "Basic", "RPGrowth", "Relative Frequent Pattern", "Basic", "RSFPGrowth", "RHUIM", "Basic", "Basic", "Sequential Database", "SPADE", "SPAM", "prefixSpan", "bide", "SPPEclat", "SPPGrowth", "TSPIN", "Basic", "Temporal Database", "Transactional Database", "CUFPTree", "PUFGrowth", "TUFP", "TubeP", "TubeS", "UFGrowth", "UVECLAT", "Basic", "Basic", "GFPGrowth", "Uncertain Database", "UPFPGrowth", "UPFPGrowthPlus", "Basic", "Utility Pattern mining", "SWFPGrowth", "Basic", "WFIM", "Basic", "WFRIMiner", "Basic"], "terms": {"ar": [1, 2, 6, 7, 8, 9, 11, 14, 15, 18, 46, 54, 56, 58, 62, 71, 73, 75, 79, 80, 82, 88, 90, 91, 97, 100, 110, 116, 119, 120, 123, 125, 127, 135, 136, 138, 142, 147, 148, 149, 154, 157, 182, 185, 186, 187, 188, 189, 190, 191, 192, 193, 195, 197, 203, 204, 205, 206, 207, 212, 214, 216, 217, 218, 219, 224, 225, 230, 231, 232, 234, 236, 239, 241, 242, 243, 245, 253, 255, 256, 261, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 283, 285, 287], "specif": [1, 13, 119, 120, 136, 138, 139, 140, 143, 154, 198, 225, 236, 238, 248, 264], "type": [1, 5, 24, 26, 28, 29, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 154, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 183, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "regular": [1, 13, 18, 19, 133, 136, 137, 139, 147, 154, 198, 215, 216, 223, 225, 229, 238, 265, 281, 283, 286, 287], "associ": [1, 5, 8, 10, 15, 45, 66, 75, 84, 120, 139, 144, 145, 146, 154, 161, 162, 163, 164, 166, 183, 188, 194, 201, 205, 209, 221, 238, 274, 275, 277, 280], "exist": [1, 19, 46, 80, 154, 182, 191, 214, 223, 265, 277, 281], "within": [1, 2, 12, 18, 24, 26, 52, 82, 86, 97, 98, 100, 101, 103, 108, 119, 120, 136, 137, 138, 139, 140, 143, 152, 153, 154, 155, 156, 157, 161, 184, 191, 196, 216, 217, 218, 219, 224, 225, 226, 227, 229, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 252, 264, 277, 281], "dataset": [1, 2, 3, 4, 10, 11, 12, 14, 15, 17, 18, 19, 30, 39, 43, 71, 73, 75, 79, 80, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 110, 116, 117, 123, 125, 127, 129, 131, 133, 135, 137, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 154, 157, 159, 160, 161, 181, 194, 195, 196, 203, 204, 205, 206, 207, 212, 213, 214, 216, 221, 222, 223, 228, 229, 230, 231, 234, 235, 237, 238, 240, 241, 243, 245, 246, 247, 248, 249, 252, 253, 254, 255, 262, 263, 267, 268, 269, 270, 271, 273, 274, 275, 276, 278, 279, 280, 282, 283, 284, 285, 286, 287], "where": [1, 2, 4, 8, 9, 11, 12, 14, 15, 17, 19, 82, 88, 91, 97, 110, 119, 120, 123, 125, 127, 129, 135, 136, 137, 139, 141, 142, 144, 145, 146, 147, 148, 149, 154, 157, 181, 188, 191, 192, 195, 196, 204, 205, 213, 217, 218, 219, 223, 225, 229, 230, 231, 238, 241, 250, 251, 253, 254, 255, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 285, 287], "occurr": [1, 2, 5, 8, 9, 12, 136, 138, 143, 145, 154, 157, 183, 188, 191, 192, 196, 225, 236, 250, 251, 264, 275, 277], "certain": [1, 3, 18, 119, 154, 160, 216], "item": [1, 4, 6, 14, 15, 17, 24, 26, 27, 28, 29, 30, 31, 32, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 145, 146, 148, 149, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 185, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 275, 276, 277, 278, 279, 280, 281, 282, 284, 285, 286, 287], "attribut": [1, 7, 8, 9, 10, 24, 26, 27, 28, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 144, 145, 146, 152, 153, 154, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 187, 188, 189, 190, 192, 193, 194, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 274, 275, 276, 278, 279, 280, 282, 284, 286], "statist": [1, 88, 91, 154, 230, 231], "other": [1, 10, 12, 71, 82, 106, 110, 116, 120, 141, 147, 148, 154, 194, 196, 197, 203, 217, 218, 219, 224, 249, 250, 251, 253, 254, 261, 265, 266, 283, 285], "These": [1, 2, 7, 8, 9, 13, 14, 15, 17, 119, 136, 137, 138, 141, 143, 148, 154, 157, 187, 188, 192, 198, 204, 205, 213, 225, 229, 236, 254, 264, 285], "repres": [1, 15, 19, 24, 28, 43, 45, 46, 48, 52, 54, 56, 58, 60, 62, 80, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 136, 139, 141, 148, 152, 153, 154, 159, 167, 175, 182, 184, 186, 189, 190, 191, 193, 197, 205, 214, 217, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 234, 237, 238, 239, 240, 241, 242, 243, 245, 249, 250, 251, 252, 254, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 285, 286], "meaning": [1, 5, 16, 140, 154, 183, 210, 248], "relationship": [1, 5, 7, 8, 9, 10, 138, 154, 183, 187, 188, 192, 194, 236], "depend": [1, 32, 40, 71, 73, 75, 79, 80, 110, 154, 203, 206, 207, 212, 214, 224, 253], "between": [1, 5, 6, 7, 8, 9, 24, 30, 39, 45, 46, 56, 75, 76, 82, 86, 97, 108, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 138, 143, 152, 153, 154, 162, 163, 164, 165, 166, 167, 182, 183, 185, 187, 188, 189, 191, 192, 217, 218, 219, 226, 227, 236, 239, 240, 252, 264, 265, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "differ": [1, 4, 18, 147, 148, 149, 154, 181, 216, 250, 251, 283, 285, 287], "set": [1, 14, 24, 26, 28, 29, 31, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 204, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "discoveri": [1, 3, 8, 15, 43, 45, 75, 97, 108, 116, 123, 139, 141, 143, 144, 145, 146, 147, 148, 149, 154, 159, 160, 165, 167, 188, 205, 209, 238, 239, 241, 252, 254, 262, 264, 268, 274, 275, 277, 280, 283, 285, 287], "can": [1, 2, 24, 26, 27, 29, 31, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 140, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "provid": [1, 2, 119, 139, 140, 154, 157, 238, 248], "valuabl": [1, 154], "insight": [1, 2, 139, 140, 154, 157, 161, 238, 248], "underli": [1, 140, 154, 248], "structur": [1, 24, 82, 119, 120, 123, 141, 147, 149, 152, 153, 154, 161, 217, 254, 268, 283, 287], "behavior": [1, 13, 18, 82, 136, 137, 138, 139, 140, 143, 154, 198, 216, 217, 218, 219, 225, 229, 236, 238, 248, 264], "data": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 19, 24, 27, 28, 29, 30, 31, 33, 35, 39, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 104, 106, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 140, 141, 142, 143, 144, 145, 146, 149, 152, 153, 154, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 201, 202, 203, 206, 208, 209, 211, 212, 214, 217, 218, 219, 223, 224, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 247, 248, 249, 253, 254, 255, 261, 262, 263, 264, 267, 268, 269, 270, 271, 273, 274, 275, 276, 278, 279, 280, 281, 282, 284, 286, 287], "applic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 79, 116, 121, 123, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 154, 157, 160, 161, 181, 183, 185, 187, 188, 192, 194, 195, 196, 198, 204, 205, 210, 211, 213, 216, 223, 225, 229, 236, 238, 248, 250, 251, 254, 255, 261, 264, 267, 274, 275, 280, 281, 283, 285, 287], "fraud": [1, 14, 154, 204], "detect": [1, 14, 18, 24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 137, 140, 152, 153, 154, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 204, 206, 208, 211, 212, 216, 217, 218, 219, 226, 227, 228, 229, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "suppli": [1, 154, 250, 251], "chain": [1, 154, 250, 251], "manag": [1, 12, 13, 17, 18, 136, 145, 154, 196, 198, 213, 216, 225, 275], "healthcar": [1, 2, 4, 5, 7, 14, 19, 137, 138, 139, 142, 144, 146, 148, 149, 154, 157, 181, 183, 187, 204, 223, 229, 236, 238, 255, 274, 280, 285, 287], "analysi": [1, 2, 3, 4, 5, 6, 8, 9, 14, 19, 50, 137, 138, 139, 141, 143, 148, 149, 154, 157, 160, 180, 181, 183, 185, 188, 192, 204, 223, 229, 236, 238, 250, 251, 254, 264, 285, 287], "retail": [1, 2, 4, 7, 138, 139, 141, 149, 154, 157, 181, 187, 236, 238, 254, 287], "market": [1, 4, 5, 7, 14, 19, 141, 142, 143, 148, 154, 181, 183, 187, 204, 223, 250, 251, 254, 255, 264, 285], "basic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 28, 42, 44, 48, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 78, 81, 83, 85, 87, 89, 91, 93, 94, 96, 98, 100, 101, 105, 107, 109, 112, 115, 117, 118, 121, 122, 124, 126, 128, 130, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 167, 175, 184, 186, 189, 190, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 237, 239, 240, 241, 242, 243, 244, 245, 249, 250, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "techniqu": [2, 3, 11, 12, 19, 24, 45, 46, 54, 56, 58, 62, 84, 137, 142, 152, 153, 157, 160, 162, 182, 186, 189, 190, 193, 195, 196, 222, 223, 229, 255], "focus": [2, 11, 12, 19, 119, 138, 139, 142, 143, 157, 195, 196, 223, 236, 238, 255, 264], "identifi": [2, 7, 12, 19, 119, 120, 139, 142, 143, 157, 161, 187, 191, 196, 223, 238, 255, 256, 264, 266, 277, 281], "cover": [2, 12, 19, 157, 196, 223], "substanti": [2, 157], "portion": [2, 157], "irrespect": [2, 157], "frequenc": [2, 5, 24, 30, 39, 43, 45, 46, 48, 84, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 147, 149, 152, 153, 157, 158, 159, 166, 167, 175, 182, 183, 221, 222, 225, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 249, 250, 251, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 283, 284, 286, 287], "unlik": [2, 3, 4, 6, 18, 136, 137, 138, 139, 143, 144, 146, 157, 160, 181, 185, 216, 225, 229, 236, 238, 264, 274, 280], "tradit": [2, 3, 4, 6, 18, 24, 52, 137, 138, 139, 143, 144, 146, 152, 153, 157, 160, 181, 184, 185, 216, 229, 236, 238, 264, 274, 280], "frequent": [2, 12, 17, 26, 28, 29, 31, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 143, 150, 151, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 215, 217, 218, 219, 221, 222, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 255, 256, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287], "which": [2, 3, 4, 6, 14, 18, 26, 27, 54, 56, 58, 62, 64, 66, 71, 75, 82, 86, 88, 97, 98, 100, 101, 103, 108, 110, 116, 119, 120, 123, 136, 138, 139, 144, 146, 148, 155, 156, 157, 160, 181, 185, 186, 189, 190, 193, 199, 201, 203, 204, 207, 216, 217, 218, 219, 225, 226, 227, 232, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 252, 253, 261, 271, 274, 280, 285], "priorit": [2, 157], "high": [2, 48, 52, 54, 56, 62, 71, 73, 75, 76, 79, 80, 110, 148, 157, 175, 184, 191, 193, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 253, 254, 281, 285], "emphas": [2, 157], "have": [2, 18, 49, 75, 79, 80, 82, 116, 119, 120, 144, 146, 148, 157, 179, 191, 207, 211, 212, 214, 216, 217, 218, 219, 250, 251, 256, 261, 262, 265, 274, 277, 280, 281, 285], "wide": [2, 157], "across": [2, 18, 157, 216], "consid": [2, 4, 5, 8, 18, 26, 40, 43, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 84, 97, 98, 100, 101, 106, 108, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 156, 157, 158, 159, 175, 177, 178, 179, 180, 181, 183, 184, 186, 188, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 216, 221, 222, 236, 238, 239, 240, 241, 242, 243, 244, 245, 249, 252, 253, 261, 262, 263, 267, 276, 278, 279, 282, 284, 286], "signific": [2, 4, 17, 40, 147, 148, 149, 157, 181, 213, 283, 285, 287], "thei": [2, 119, 157], "overal": [2, 14, 157, 204], "characterist": [2, 4, 157, 181], "trend": [2, 13, 116, 139, 157, 198, 238, 262], "present": [2, 120, 142, 157, 250, 251, 255], "understand": [2, 157], "broad": [2, 157], "inform": [2, 3, 6, 11, 24, 26, 43, 45, 46, 48, 82, 84, 88, 90, 91, 93, 95, 97, 100, 101, 103, 106, 108, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 152, 153, 156, 157, 159, 160, 167, 175, 182, 185, 195, 217, 218, 219, 221, 222, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 246, 249, 252, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "decis": [2, 16, 157, 210], "make": [2, 6, 16, 137, 143, 157, 185, 210, 229, 264], "process": [2, 4, 7, 9, 10, 24, 26, 31, 35, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 142, 143, 149, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 186, 187, 189, 190, 192, 193, 194, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 255, 261, 262, 263, 264, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286, 287], "optim": [2, 4, 142, 143, 149, 157, 181, 255, 264, 287], "oper": [2, 43, 45, 75, 79, 84, 108, 119, 131, 157, 159, 167, 208, 211, 212, 221, 222, 252, 284], "improv": [2, 97, 157, 241], "effici": [2, 24, 26, 46, 54, 56, 58, 62, 66, 71, 75, 76, 97, 108, 116, 121, 127, 135, 152, 153, 155, 157, 182, 186, 189, 190, 193, 201, 203, 207, 209, 239, 241, 243, 252, 262, 279], "effect": [2, 43, 45, 49, 97, 121, 131, 133, 157, 158, 159, 162, 167, 177, 178, 179, 191, 241, 277, 281, 284, 286], "web": [2, 14, 138, 142, 157, 204, 236, 250, 251, 255], "usag": [2, 14, 24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 86, 97, 100, 101, 106, 108, 110, 116, 120, 121, 123, 125, 127, 129, 131, 133, 135, 138, 152, 153, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 204, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 226, 227, 236, 239, 240, 242, 245, 249, 250, 251, 252, 253, 261, 262, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "manufactur": [2, 4, 6, 9, 143, 149, 157, 181, 185, 192, 250, 251, 264, 287], "social": [2, 157], "network": [2, 4, 9, 49, 137, 139, 148, 157, 177, 181, 192, 229, 238, 250, 251, 285], "approach": [3, 4, 5, 43, 45, 88, 91, 97, 121, 123, 143, 159, 160, 167, 181, 183, 230, 231, 232, 239, 241, 242, 264, 267], "aim": [3, 12, 16, 26, 73, 79, 80, 116, 138, 143, 155, 160, 196, 206, 210, 212, 214, 236, 261, 262, 264], "discov": [3, 7, 10, 11, 12, 14, 16, 24, 26, 43, 45, 46, 48, 49, 50, 52, 56, 60, 62, 66, 69, 73, 75, 76, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 140, 143, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 166, 167, 175, 177, 178, 179, 180, 182, 184, 187, 189, 193, 194, 195, 196, 201, 202, 204, 206, 210, 211, 212, 214, 221, 226, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 243, 244, 245, 246, 247, 248, 249, 253, 261, 263, 264, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "larg": [3, 45, 56, 66, 79, 80, 90, 97, 98, 100, 104, 110, 160, 161, 162, 189, 201, 211, 214, 234, 241, 244, 245, 247, 253], "contain": [3, 10, 33, 71, 73, 75, 76, 79, 80, 110, 119, 120, 144, 145, 146, 160, 194, 197, 203, 206, 207, 212, 214, 224, 253, 265, 266, 274, 275, 280, 281], "both": [3, 12, 80, 138, 139, 160, 196, 214, 236, 238], "uncertain": [3, 6, 40, 84, 121, 123, 125, 127, 135, 160, 185, 215, 221, 222, 267, 268, 269, 270, 271, 273, 274, 275, 276, 278, 279, 280], "record": [3, 24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "reli": [3, 5, 160, 183], "exact": [3, 6, 160, 185], "match": [3, 6, 32, 40, 160, 185], "base": [3, 4, 7, 10, 15, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 145, 147, 148, 149, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 186, 187, 189, 190, 193, 194, 199, 201, 202, 203, 205, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 275, 276, 278, 279, 282, 283, 284, 285, 286, 287], "support": [3, 16, 24, 29, 45, 46, 49, 52, 54, 56, 58, 60, 62, 71, 73, 78, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 103, 106, 108, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 160, 162, 163, 164, 165, 166, 167, 179, 181, 182, 184, 186, 189, 190, 193, 203, 206, 210, 215, 221, 222, 226, 227, 228, 230, 231, 232, 234, 237, 238, 239, 240, 241, 242, 243, 245, 246, 249, 252, 261, 262, 263, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "confid": [3, 24, 152, 153, 160], "valu": [3, 14, 15, 24, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 86, 91, 93, 95, 97, 101, 106, 110, 116, 117, 119, 120, 123, 125, 127, 129, 135, 144, 152, 153, 160, 162, 163, 164, 165, 166, 167, 179, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 224, 226, 227, 228, 237, 240, 249, 253, 262, 263, 267, 268, 269, 270, 271, 273, 274, 276, 277, 278, 279, 281, 282], "emploi": [3, 43, 45, 46, 49, 78, 80, 86, 92, 101, 121, 131, 133, 158, 159, 160, 162, 167, 177, 178, 179, 182, 284, 286], "approxim": [3, 160], "find": [3, 24, 27, 37, 45, 46, 52, 54, 56, 58, 60, 62, 71, 75, 76, 79, 80, 82, 84, 101, 108, 119, 120, 123, 125, 127, 129, 131, 135, 152, 153, 160, 161, 162, 182, 184, 186, 189, 190, 193, 203, 208, 211, 214, 217, 221, 222, 252, 267, 276, 278, 279, 282, 284], "therebi": [3, 160], "accommod": [3, 6, 160, 185], "error": [3, 121, 160], "miss": [3, 160], "chang": [3, 13, 160, 198], "thi": [3, 4, 5, 24, 26, 27, 28, 29, 30, 31, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 183, 184, 186, 189, 190, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "allow": [3, 4, 6, 12, 82, 160, 181, 185, 196, 217, 218, 219], "even": [3, 160], "presenc": [3, 138, 160, 236], "uncertainti": [3, 6, 7, 8, 9, 144, 145, 146, 160, 185, 187, 188, 192, 274, 275, 280], "geo": [3, 40, 64, 66, 69, 71, 73, 125, 160, 187, 188, 191, 194, 195, 196, 198, 199, 201, 202, 203, 206, 215, 256, 275, 276, 277, 281], "spatial": [3, 7, 8, 10, 11, 12, 13, 15, 52, 54, 56, 58, 60, 62, 66, 69, 73, 75, 79, 80, 129, 147, 160, 184, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 198, 201, 202, 205, 206, 209, 211, 212, 213, 214, 215, 277, 281, 282, 283], "remot": [3, 160], "sens": [3, 160], "imag": [3, 160], "weather": [3, 160], "forecast": [3, 5, 18, 139, 140, 146, 160, 183, 216, 238, 248, 280], "refer": [4, 7, 9, 24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 140, 145, 147, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 186, 187, 189, 190, 192, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 275, 276, 278, 279, 282, 283, 284, 286], "occur": [4, 7, 11, 12, 13, 14, 15, 17, 19, 137, 139, 140, 142, 147, 148, 149, 161, 181, 187, 195, 196, 198, 204, 205, 213, 223, 229, 238, 248, 255, 265, 283, 285, 287], "meet": [4, 24, 120, 152, 153, 181], "threshold": [4, 24, 27, 28, 29, 35, 75, 76, 79, 80, 84, 103, 110, 119, 120, 123, 125, 127, 129, 131, 135, 152, 153, 181, 211, 212, 214, 221, 222, 246, 253, 267, 276, 278, 279, 282, 284], "mine": [4, 20, 24, 26, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 151, 152, 153, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 193, 194, 195, 196, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287], "us": [4, 14, 15, 24, 26, 27, 29, 30, 31, 33, 35, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 137, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "singl": [4, 45, 71, 75, 80, 110, 119, 120, 166, 181, 203, 207, 214, 253], "uniform": [4, 181, 265], "all": [4, 24, 26, 28, 30, 35, 39, 49, 54, 56, 58, 60, 62, 71, 73, 75, 78, 79, 80, 82, 84, 86, 89, 90, 91, 92, 106, 108, 110, 116, 119, 120, 127, 152, 153, 155, 177, 179, 181, 186, 189, 190, 191, 193, 203, 206, 207, 208, 211, 212, 214, 217, 221, 222, 233, 234, 249, 250, 251, 252, 253, 261, 262, 265, 266, 277, 279], "vari": [4, 18, 136, 143, 145, 181, 216, 225, 264, 275, 281], "level": [4, 33, 101, 181], "By": [4, 45, 162, 181], "more": [4, 18, 66, 143, 181, 201, 216, 264, 265], "nuanc": [4, 181], "each": [4, 12, 14, 17, 19, 30, 39, 49, 73, 75, 79, 80, 82, 119, 120, 139, 141, 145, 146, 177, 178, 179, 181, 191, 196, 204, 206, 209, 211, 212, 213, 214, 217, 218, 219, 223, 238, 250, 251, 254, 256, 265, 266, 275, 277, 280, 281], "evalu": [4, 181], "individu": [4, 181, 191, 277, 281], "its": [4, 17, 29, 30, 39, 54, 56, 58, 62, 82, 119, 136, 147, 149, 181, 186, 189, 190, 193, 213, 217, 218, 219, 225, 266, 281, 283, 287], "import": [4, 14, 15, 17, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "context": [4, 14, 15, 17, 139, 181, 204, 205, 213, 238], "traffic": [4, 8, 9, 19, 136, 137, 139, 143, 148, 181, 188, 192, 223, 225, 229, 238, 264, 285], "involv": [5, 7, 8, 9, 10, 11, 14, 15, 17, 19, 79, 137, 139, 141, 142, 144, 145, 146, 147, 148, 149, 183, 187, 188, 192, 194, 195, 204, 205, 211, 213, 223, 229, 238, 254, 255, 274, 275, 280, 283, 285, 287], "explor": [5, 71, 110, 119, 183, 203, 253], "itemset": [5, 24, 45, 46, 48, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 86, 88, 91, 101, 110, 123, 129, 131, 133, 135, 141, 149, 152, 153, 166, 175, 182, 183, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 227, 230, 231, 253, 254, 256, 271, 273, 282, 284, 286, 287], "exhibit": [5, 7, 8, 9, 12, 136, 137, 138, 139, 143, 147, 149, 183, 187, 188, 192, 196, 225, 229, 236, 238, 264, 283, 287], "linear": [5, 183], "assess": [5, 183], "through": [5, 119, 123, 183, 271], "instead": [5, 183], "sole": [5, 138, 183, 236], "co": [5, 183], "strength": [5, 183], "uncov": [5, 183], "basket": [5, 14, 91, 101, 141, 148, 183, 204, 250, 251, 254, 285], "analyt": [5, 14, 104, 148, 149, 183, 204, 247, 285, 287], "financi": [5, 6, 9, 137, 140, 141, 143, 146, 183, 185, 192, 229, 248, 254, 264, 280], "ffp": [6, 185], "captur": [6, 8, 136, 185, 188, 225], "inher": [6, 185], "partial": [6, 60, 69, 86, 88, 89, 90, 91, 92, 101, 185, 196, 197, 202, 215, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 265], "event": [6, 8, 9, 10, 11, 12, 13, 15, 17, 19, 82, 136, 139, 142, 145, 147, 185, 188, 192, 194, 195, 196, 198, 205, 213, 217, 218, 219, 223, 224, 225, 238, 255, 275, 283], "requir": [6, 40, 73, 75, 136, 185, 206, 209, 225], "variat": [6, 12, 137, 185, 196, 229], "degre": [6, 136, 137, 185, 225, 229], "membership": [6, 54, 185, 186], "similar": [6, 185, 197], "them": [6, 119, 137, 143, 185, 229, 264], "suitabl": [6, 143, 185, 264], "imprecis": [6, 8, 9, 185, 188, 192], "medic": [6, 16, 185, 210], "qualiti": [6, 185], "control": [6, 26, 82, 86, 97, 98, 100, 101, 103, 108, 155, 156, 185, 217, 218, 219, 226, 227, 239, 240, 241, 242, 243, 244, 245, 246, 252], "geograph": [7, 8, 10, 11, 13, 145, 187, 188, 194, 195, 198, 275], "mai": [7, 9, 12, 13, 18, 19, 136, 137, 143, 145, 146, 187, 192, 196, 198, 216, 223, 225, 229, 264, 265, 275, 280], "object": [7, 27, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 41, 49, 52, 80, 82, 91, 97, 101, 116, 119, 120, 147, 179, 184, 187, 191, 214, 217, 243, 262, 277, 281, 283], "epidemiolog": [7, 8, 187, 188], "environment": [7, 8, 10, 11, 12, 13, 15, 136, 144, 146, 147, 187, 188, 194, 195, 196, 198, 205, 225, 274, 280, 283], "monitor": [7, 8, 10, 11, 12, 13, 15, 19, 136, 137, 138, 139, 142, 146, 147, 187, 188, 194, 195, 196, 198, 205, 223, 225, 229, 236, 238, 255, 280, 283], "recur": [8, 9, 12, 13, 19, 106, 136, 137, 138, 139, 188, 192, 196, 198, 215, 223, 225, 229, 236, 238, 248, 249, 265], "tempor": [8, 9, 10, 11, 12, 13, 18, 28, 31, 32, 40, 62, 79, 86, 88, 89, 90, 91, 92, 95, 97, 98, 100, 103, 104, 116, 127, 136, 138, 139, 188, 191, 192, 193, 194, 195, 196, 197, 198, 211, 215, 216, 224, 225, 226, 230, 231, 233, 234, 235, 236, 237, 238, 239, 241, 243, 244, 245, 246, 247, 261, 262, 277, 278, 279, 281], "locat": [8, 10, 15, 145, 188, 194, 197, 205, 275], "repetit": [8, 136, 143, 188, 225, 264], "natur": [8, 9, 123, 138, 145, 188, 192, 236, 269, 270, 275, 281], "phenomena": [8, 11, 13, 139, 188, 195, 198, 238], "over": [8, 18, 80, 119, 136, 138, 139, 142, 143, 188, 197, 214, 216, 224, 225, 236, 238, 255, 264], "time": [8, 9, 11, 12, 13, 18, 24, 26, 28, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 188, 189, 190, 192, 193, 195, 196, 197, 198, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 216, 217, 218, 219, 221, 222, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 255, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "space": [8, 12, 24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 188, 189, 190, 191, 193, 196, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "while": [8, 11, 43, 64, 66, 69, 75, 82, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 188, 195, 199, 201, 202, 209, 217, 218, 219, 228, 230, 231, 232, 233, 234, 237, 241, 242, 243, 244, 245, 249, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "entiti": [8, 188], "flow": [8, 143, 188, 264], "studi": [8, 188], "character": [9, 14, 15, 18, 138, 192, 204, 205, 216, 236], "seri": [9, 11, 18, 28, 30, 93, 97, 106, 137, 140, 192, 195, 216, 224, 228, 229, 243, 248, 249], "product": [9, 192, 281], "among": [10, 194], "It": [10, 11, 19, 24, 27, 28, 30, 35, 39, 40, 43, 45, 46, 49, 66, 79, 82, 86, 89, 90, 92, 97, 98, 101, 103, 104, 106, 119, 123, 131, 133, 135, 142, 152, 153, 159, 162, 167, 179, 182, 194, 195, 197, 201, 211, 217, 223, 226, 227, 233, 234, 235, 239, 240, 241, 244, 246, 247, 249, 255, 267, 268, 269, 270, 273, 281, 284, 286], "analyz": [10, 11, 19, 142, 161, 194, 195, 223, 255], "coordin": [10, 194], "timestamp": [10, 46, 82, 88, 97, 101, 116, 127, 139, 182, 191, 194, 197, 217, 224, 232, 238, 239, 242, 243, 261, 265, 277, 279, 281], "possibl": [10, 106, 194, 249], "relat": [10, 106, 119, 139, 147, 194, 238, 249, 283], "servic": [10, 15, 145, 194, 205, 275], "conserv": [10, 13, 194, 198], "tourism": [10, 194], "hospit": [10, 194], "sequenti": [11, 30, 39, 195, 215, 255], "preserv": [11, 195], "order": [11, 54, 60, 73, 79, 80, 119, 142, 186, 195, 206, 212, 214, 224, 255, 256, 265], "instanc": [11, 119, 120, 142, 195, 255], "transport": [11, 13, 147, 195, 198, 283], "urban": [11, 13, 15, 145, 147, 195, 198, 205, 275, 283], "plan": [11, 13, 15, 16, 145, 147, 195, 198, 205, 210, 275, 283], "alwai": [12, 196, 265], "entir": [12, 19, 196, 223, 281], "interest": [12, 78, 79, 80, 116, 196, 211, 261, 262], "In": [12, 24, 30, 39, 45, 75, 116, 119, 121, 123, 127, 131, 135, 139, 145, 147, 149, 152, 153, 162, 196, 197, 209, 224, 238, 262, 265, 271, 275, 278, 281, 283, 284, 287], "word": [12, 196, 197, 224, 265], "agricultur": [12, 17, 196, 213], "crop": [12, 196], "public": [12, 54, 186, 196], "health": [12, 196], "surveil": [12, 196], "disast": [12, 17, 145, 196, 213, 275], "describ": [13, 198, 277], "consist": [13, 14, 17, 18, 143, 191, 198, 204, 213, 216, 264, 277, 281], "activ": [13, 198], "area": [13, 198], "interv": [13, 18, 19, 28, 82, 136, 137, 138, 139, 140, 143, 198, 216, 217, 218, 219, 223, 225, 229, 236, 238, 248, 264], "reveal": [13, 198], "movement": [13, 198], "human": [13, 198], "logist": [13, 198], "infrastructur": [13, 198], "transact": [14, 24, 26, 27, 28, 29, 30, 31, 32, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 141, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 204, 206, 207, 208, 209, 211, 212, 214, 215, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 254, 255, 256, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "databas": [14, 16, 24, 26, 27, 28, 29, 30, 31, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 136, 138, 139, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 217, 221, 222, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 264, 267, 268, 269, 270, 271, 273, 276, 278, 279, 281, 282, 284, 286], "contribut": [14, 16, 17, 141, 204, 210, 213, 254], "significantli": [14, 17, 141, 204, 213, 254], "reflect": [14, 15, 17, 204, 205, 213], "domain": [14, 15, 17, 204, 205, 213], "georeferenc": [15, 205], "combin": [15, 45, 46, 66, 86, 88, 92, 103, 104, 108, 148, 166, 182, 197, 201, 205, 227, 232, 235, 246, 247, 252, 285], "distribut": [15, 17, 30, 39, 49, 101, 177, 205, 213], "lb": [15, 205], "develop": [15, 145, 205, 275], "The": [16, 24, 26, 27, 29, 30, 31, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 136, 139, 140, 148, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 210, 211, 212, 214, 217, 218, 219, 221, 222, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 285, 286], "hupm": [16, 20, 210, 220], "maxim": [16, 20, 44, 82, 87, 96, 137, 139, 161, 175, 210, 217, 218, 219, 234, 245], "from": [16, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 144, 145, 146, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 210, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 284, 286], "perspect": [16, 210], "diagnosi": [16, 210], "howev": [16, 24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 210, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "pai": [16, 210], "less": [16, 37, 116, 191, 210, 261, 262], "attent": [16, 210], "interpret": [16, 210], "explain": [16, 210], "scenario": [16, 210], "clinic": [16, 210], "drug": [16, 161, 210], "prescript": [16, 210], "therapi": [16, 210], "diseas": [16, 210], "predict": [16, 27, 136, 140, 143, 210, 225, 248, 264], "identif": [17, 137, 213, 229], "ha": [17, 46, 86, 97, 106, 141, 182, 213, 227, 242, 249, 254], "predefin": [17, 18, 82, 141, 213, 216, 217, 218, 219, 254], "measur": [17, 82, 110, 136, 141, 213, 217, 218, 219, 225, 253, 254], "resourc": [17, 18, 213, 216], "precis": [17, 144, 213, 274], "emerg": [17, 145, 213, 275], "respons": [17, 91, 101, 119, 145, 213, 275], "top": [17, 27, 50, 79, 80, 92, 103, 104, 117, 120, 123, 139, 161, 180, 211, 214, 235, 246, 247, 263, 269, 270], "k": [17, 24, 27, 50, 56, 69, 71, 79, 80, 92, 93, 97, 103, 104, 110, 117, 120, 123, 127, 129, 133, 139, 152, 153, 161, 180, 189, 202, 203, 211, 214, 228, 235, 243, 246, 247, 253, 263, 269, 270, 278, 282, 286], "lpp": [18, 216], "some": [18, 30, 39, 82, 106, 137, 216, 217, 218, 219, 229, 249, 265], "non": [18, 82, 106, 123, 125, 135, 191, 216, 217, 218, 219, 224, 249, 265, 267, 268, 269, 270, 271, 276, 277, 281], "A": [18, 20, 26, 40, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 91, 97, 101, 110, 120, 123, 127, 156, 159, 162, 167, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 216, 217, 218, 219, 224, 243, 253, 256, 265, 266, 268, 277, 278, 281], "said": [18, 82, 197, 216, 217, 218, 219], "appear": [18, 26, 82, 97, 98, 100, 101, 108, 110, 155, 156, 161, 216, 217, 218, 219, 241, 242, 243, 244, 245, 252, 253], "regularli": [18, 82, 216, 217, 218, 219], "continu": [18, 82, 120, 216, 217, 218, 219], "s": [18, 26, 33, 56, 71, 73, 75, 76, 79, 82, 88, 89, 90, 91, 92, 93, 97, 98, 100, 101, 103, 104, 108, 110, 116, 117, 120, 156, 189, 203, 206, 207, 208, 209, 211, 212, 216, 217, 218, 219, 228, 230, 231, 232, 233, 234, 235, 241, 242, 243, 244, 245, 246, 247, 252, 253, 262, 263], "demonstr": [18, 136, 140, 143, 216, 225, 248, 264], "one": [18, 24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 216, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "distinct": [18, 216, 265], "indic": [18, 119, 120, 216], "segment": [18, 216], "assum": [18, 216], "anomali": [18, 140, 216, 248], "sequenc": [19, 20, 30, 39, 71, 73, 82, 137, 141, 142, 149, 161, 195, 203, 206, 215, 217, 218, 219, 220, 223, 224, 229, 254, 255, 256, 287], "durat": [19, 82, 217, 218, 219, 223, 224], "cycl": [19, 223], "subset": [19, 148, 223, 285], "stock": [19, 223], "internet": [19, 223], "associationrul": [20, 220], "submodul": [20, 21, 23, 25, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134, 220], "arwithconfid": [20, 21], "arwithleverag": [20, 21], "arwithlift": [20, 21], "rulemin": [20, 21], "abstract": [20, 21, 23, 25, 27, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134, 220], "correlatedpattern": [20, 152, 153, 220], "comin": [20, 23, 153, 154], "comineplu": [20, 23, 154], "coveragepattern": [20, 155, 156, 220], "cmine": [20, 25, 157], "cppg": [20, 25, 157], "extra": [20, 220], "df2db": [20, 27], "df2dbplu": [20, 27], "denseformatdf": [20, 27], "sparseformatdf": [20, 27], "createtdb": [20, 27], "densedf2dbplu": [20, 27], "densedf2db_dump": [20, 27], "sparsedf2dbplu": [20, 27], "calculatemisvalu": [20, 27], "usingbeta": [20, 27], "usingsd": [20, 27], "dbstat": [20, 27, 39], "fuzzydatabas": [20, 27], "multipletimeseriesfuzzydatabasestat": [20, 27], "sequentialdatabas": [20, 27], "temporaldatabas": [20, 27, 32], "transactionaldatabas": [20, 27], "uncertaintemporaldatabas": [20, 27], "uncertaintransactionaldatabas": [20, 27], "utilitydatabas": [20, 27], "fuzzytransform": [20, 27], "temporaltofuzzi": [20, 27], "transactionaltofuzzi": [20, 27], "utilitytofuzzi": [20, 27], "generatedatabas": [20, 27, 40], "generatespatiotemporaldatabas": [20, 27], "generatetemporaldatabas": [20, 27, 40], "generatetransactionaldatabas": [20, 27], "graph": [20, 27, 30, 118], "df2fig": [20, 27], "df2tex": [20, 27], "plotlinegraphfromdictionari": [20, 27], "plotlinegraphsfromdatafram": [20, 27], "visualizefuzzypattern": [20, 27], "visualizepattern": [20, 27], "image2databas": [20, 27], "imageprocess": [20, 27], "imagery2databas": [20, 27], "messag": [20, 27], "discord": [20, 27], "gmail": [20, 27], "neighbour": [20, 27, 56, 58, 64, 66, 69, 73, 75, 79, 80, 189, 190, 199, 201, 202, 206, 209, 211, 212, 214], "findneighborsusingeuclideandistanceforpointinfo": [20, 27], "findneighboursusingeuclidean": [20, 27], "findneighboursusinggeodes": [20, 27], "sampledataset": [20, 27], "stat": [20, 27, 30, 49, 177], "graphdatabas": [20, 27, 41, 120], "syntheticdatagener": [20, 27], "createsyntheticgeoreferentialtempor": [20, 27], "createsyntheticgeoreferentialtransact": [20, 27], "createsyntheticgeoreferentialuncertaintransact": [20, 27], "createsynthetictempor": [20, 27], "createsynthetictransact": [20, 27], "createsyntheticuncertaintempor": [20, 27], "createsyntheticuncertaintransact": [20, 27], "createsyntheticutil": [20, 27], "generatetempor": [20, 27], "generatetransact": [20, 27], "generateuncertaintempor": [20, 27], "generateuncertaintransact": [20, 27], "generateutilitytempor": [20, 27], "generateutilitytransact": [20, 27], "georeferencedtemporaldatabas": [20, 27], "georeferencedtransactionaldatabas": [20, 27], "syntheticutilitydatabas": [20, 27], "temporaldatabasegen": [20, 27], "visual": [20, 27, 33], "convertmultitsintofuzzi": [20, 220], "generatelatexgraphfil": [20, 220], "plotpointonmap": [20, 220], "plotpointonmap_dump": [20, 220], "scatterplotspatialpoint": [20, 220], "topkpattern": [20, 220], "uncertaindb_convert": [20, 220], "faulttolerantfrequentpattern": [20, 121, 158, 159, 220], "ftapriori": [20, 42, 160], "ftfpgrowth": [20, 42, 160], "frequentpattern": [20, 24, 28, 79, 84, 108, 110, 123, 129, 131, 153, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 212, 220, 221, 222, 252, 253, 267, 268, 269, 270, 271, 273, 282, 284], "apriori": [20, 43, 44, 49, 66, 121, 158, 176, 177, 178, 201], "eclat": [20, 44, 66, 176, 201, 265], "eclatdiffset": [20, 44, 176], "eclatbitset": [20, 44, 176], "fpgrowth": [20, 28, 43, 44, 49, 159, 176, 179], "close": [20, 44, 75, 79, 86, 87, 96, 97, 112, 137, 139, 142, 161, 182, 191, 208, 211, 227, 233, 239, 242, 244], "charm": [20, 44, 176], "cuda": [20, 44, 96, 137, 161], "cuapriori": [20, 44, 176], "cuaprioribit": [20, 44, 176], "cueclat": [20, 44, 176], "cueclatbit": [20, 44, 176], "cudaapriorigct": [20, 44, 176], "cudaaprioritid": [20, 44, 176], "cudaeclatgct": [20, 44, 176], "maxfpgrowth": [20, 44, 176], "pyspark": [20, 44, 87, 96, 161, 177, 178, 179], "parallelapriori": [20, 44, 176], "paralleleclat": [20, 44, 176], "parallelfpgrowth": [20, 44, 176], "topk": [20, 33, 44, 78, 87, 96, 115, 116, 118, 137, 143, 180, 214, 235, 246, 247, 262, 263], "fae": [20, 44, 176], "fuzzycorrelatedpattern": [20, 184, 220], "fcpgrowth": [20, 51, 183], "fuzzyfrequentpattern": [20, 186, 220], "ffimin": [20, 53, 185], "ffiminer_old": [20, 53], "fuzzygeoreferencedfrequentpattern": [20, 189, 220], "ffspminer": [20, 55, 58, 187, 190], "ffspminer_old": [20, 55], "fuzzygeoreferencedperiodicfrequentpattern": [20, 190, 220], "fgpfpminer": [20, 57, 188], "fgpfpminer_old": [20, 57], "fuzzypartialperiodicpattern": [20, 220], "f3pminer": [20, 59], "fuzzyperiodicfrequentpattern": [20, 193, 220], "fpfpminer": [20, 61, 192], "fpfpminer_old": [20, 61], "georeferencedperiodicfrequentpattern": [20, 199, 220], "gpfpminer": [20, 63, 198], "georeferencedfrequentpattern": [20, 201, 220], "fspgrowth": [20, 65, 194], "spatialeclat": [20, 65, 194], "georeferencedfrequentsequencepattern": [20, 220], "georeferencedpartialperiodicpattern": [20, 202, 220], "steclat": [20, 68, 196], "highutilityfrequentpattern": [20, 203, 220], "hufim": [20, 70, 204], "highutilitygeoreferencedfrequentpattern": [20, 79, 206, 211, 220], "shufim": [20, 72, 205], "highutilitypattern": [20, 207, 208, 209, 220], "efim": [20, 74, 76, 254], "hminer": [20, 74, 254], "upgrowth": [20, 74, 254], "efimparallel": [20, 74], "parallel": [20, 49, 74, 101, 106, 177, 178, 179, 249], "highutilitypatternsinstream": [20, 220], "shugrowth": [20, 220], "highutilityspatialpattern": [20, 211, 212, 214, 220], "hdshuim": [20, 78, 213], "shuim": [20, 78, 211, 213], "tkshuim": [20, 78, 213], "localperiodicpattern": [20, 217, 218, 219, 220], "lppgrowth": [20, 81, 216], "lppmbreadth": [20, 81, 216], "lppmdepth": [20, 81, 216], "multipleminimumsupportbasedfrequentpattern": [20, 220, 221, 222], "cfpgrowth": [20, 83, 181], "cfpgrowthplu": [20, 83, 181], "partialperiodicfrequentpattern": [20, 220, 226, 227], "gpfgrowth": [20, 85, 225], "ppf_df": [20, 85, 225], "partialperiodicpattern": [20, 86, 220, 226, 227, 230, 231, 232, 233, 234, 235], "gthreepgrowth": [20, 87, 229], "gabstract": [20, 87], "pppgrowth": [20, 87, 229, 230], "ppp_eclat": [20, 87, 229], "pppclose": [20, 87, 229], "max3pgrowth": [20, 87, 229], "parallel3pgrowth": [20, 87], "k3pminer": [20, 87, 229], "partialperiodicpatterninmultipletimeseri": [20, 220, 228], "ppgrowth": [20, 220, 223], "periodiccorrelatedpattern": [20, 220, 237], "epcpgrowth": [20, 94, 236], "periodicfrequentpattern": [20, 62, 88, 89, 90, 93, 106, 127, 193, 220, 228, 230, 231, 232, 233, 234, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 278, 279], "pfeclat": [20, 96, 238], "pfpgrowth": [20, 95, 96, 237, 238, 241], "pfpgrowthplu": [20, 96, 238], "pfpmc": [20, 96, 238], "psgrowth": [20, 96, 238], "parallelpfpgrowth": [20, 96], "cpfpminer": [20, 96, 238], "cugpfmin": [20, 96], "gpfminerbit": [20, 96], "maxpfgrowth": [20, 96, 238], "recurringpattern": [20, 220, 249], "rpgrowth": [20, 105, 248], "relativefrequentpattern": [20, 220, 252], "rsfpgrowth": [20, 107, 251], "relativehighutilitypattern": [20, 220, 253], "rhuim": [20, 109, 210], "sequentialpatternmin": [20, 220], "spade": [20, 112, 255], "spam": [20, 112, 255], "prefixspan": [20, 112, 255], "bide": [20, 112, 255], "stableperiodicfrequentpattern": [20, 220, 261, 262, 263], "sppeclat": [20, 115, 264], "sppgrowth": [20, 115, 264], "sppgrowthdump": [20, 115], "tspin": [20, 115, 264], "subgraphmin": [20, 220], "dfscode": [20, 118], "edg": [20, 118], "extendededg": [20, 118], "frequentsubgraph": [20, 118], "gspan": [20, 118, 120], "sparsetriangularmatrix": [20, 118], "vertex": [20, 118], "dfsthread": [20, 118], "tkg": [20, 118], "uncertainfaulttolerantfrequentpattern": [20, 220], "vbftmine": [20, 220], "uncertainfrequentpattern": [20, 220, 267, 268, 269, 270, 271, 273], "cufptre": [20, 122, 274], "pufgrowth": [20, 122, 274], "tufp": [20, 122, 270, 274], "tubep": [20, 122, 274], "tube": [20, 122, 274], "ufgrowth": [20, 122, 274], "uveclat": [20, 122, 274], "uncertaingeoreferencedfrequentpattern": [20, 220, 276], "gfpgrowth": [20, 124, 275], "uncertainperiodicfrequentpattern": [20, 220, 278, 279], "upfpgrowth": [20, 126, 280], "upfpgrowthplu": [20, 126, 280], "weightedfrequentneighbourhoodpattern": [20, 220, 282], "swfpgrowth": [20, 128, 283], "weightedfrequentpattern": [20, 220, 284], "wfim": [20, 130, 285], "weightedfrequentregularpattern": [20, 220, 286], "wfrimin": [20, 132, 287], "weighteduncertainfrequentpattern": [20, 220], "wufim": [20, 134], "pattern": [20, 24, 26, 27, 28, 29, 31, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 196, 198, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 254, 255, 256, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287], "python": [20, 24, 26, 45, 46, 50, 56, 58, 86, 88, 92, 97, 98, 101, 103, 116, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 167, 180, 182, 189, 190, 226, 227, 232, 235, 239, 240, 244, 246, 261, 267, 268, 269, 270, 271, 276, 278, 279, 282, 284, 286], "librari": 20, "class": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "ifil": [24, 26, 27, 29, 30, 31, 33, 37, 39, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "union": [24, 28, 30, 39, 43, 62, 71, 82, 88, 100, 101, 108, 129, 152, 153, 159, 193, 203, 218, 219, 230, 245, 252, 282], "str": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "datafram": [24, 26, 27, 28, 29, 30, 32, 33, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "minsup": [24, 26, 33, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 71, 73, 75, 79, 84, 86, 93, 95, 97, 98, 100, 101, 103, 108, 110, 116, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 203, 206, 208, 211, 212, 221, 222, 226, 227, 228, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 252, 253, 261, 262, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "int": [24, 26, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "float": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "minallconf": [24, 52, 95, 152, 153, 184, 237], "sep": [24, 26, 27, 29, 30, 31, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "t": [24, 26, 27, 30, 31, 32, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "sourc": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "_correlatedpattern": [24, 152, 153], "about": [24, 26, 30, 39, 45, 46, 50, 86, 97, 119, 152, 153, 155, 162, 163, 164, 165, 166, 167, 180, 182, 226, 227, 239, 240], "algorithm": [24, 26, 33, 43, 45, 46, 48, 49, 50, 52, 54, 60, 64, 66, 69, 71, 75, 76, 78, 79, 80, 82, 84, 86, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 199, 201, 202, 203, 207, 208, 209, 211, 212, 217, 218, 219, 221, 222, 226, 227, 228, 233, 234, 235, 237, 239, 240, 241, 243, 244, 245, 246, 247, 249, 252, 253, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 279, 282, 284, 286], "descript": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 281, 282, 284, 286], "fundament": [24, 43, 45, 48, 49, 69, 84, 88, 91, 93, 97, 100, 101, 106, 121, 123, 131, 133, 152, 153, 158, 159, 162, 163, 164, 166, 167, 175, 179, 202, 221, 228, 230, 231, 232, 239, 240, 241, 242, 243, 245, 249, 267, 268, 269, 270, 273, 284, 286], "correl": [24, 52, 86, 95, 152, 153, 154, 183, 184, 191, 215, 226, 227, 236, 237, 265, 266], "fp": [24, 28, 43, 45, 49, 131, 152, 153, 159, 167, 179, 284], "growth": [24, 48, 49, 75, 82, 90, 97, 100, 127, 152, 153, 175, 179, 209, 217, 234, 243, 245, 279], "depth": [24, 46, 82, 89, 98, 119, 152, 153, 182, 217, 218, 219, 233, 244], "first": [24, 45, 46, 49, 75, 80, 82, 89, 98, 110, 119, 120, 152, 153, 162, 179, 182, 207, 214, 217, 218, 219, 224, 233, 244, 253, 265, 277], "search": [24, 43, 45, 46, 49, 54, 56, 58, 62, 75, 76, 82, 84, 89, 98, 119, 121, 131, 133, 152, 153, 158, 159, 162, 167, 177, 178, 179, 182, 186, 189, 190, 193, 215, 217, 218, 219, 222, 233, 244, 284, 286], "lee": [24, 97, 127, 152, 153, 240, 278], "y": [24, 33, 43, 45, 71, 97, 104, 116, 117, 119, 120, 152, 153, 159, 167, 203, 239, 247, 262, 263], "kim": [24, 152, 153], "w": [24, 79, 116, 127, 152, 153, 212, 261, 278], "cao": [24, 152, 153], "d": [24, 152, 153, 256, 265, 266], "han": [24, 43, 45, 84, 152, 153, 158, 159, 167, 221], "j": [24, 43, 45, 46, 48, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 91, 97, 110, 116, 119, 120, 123, 127, 131, 152, 153, 159, 167, 175, 182, 203, 206, 207, 212, 214, 217, 218, 219, 221, 226, 232, 233, 241, 253, 261, 267, 278, 284], "2003": [24, 45, 152, 153, 165], "icdm": [24, 123, 152, 153, 271], "pp": [24, 45, 49, 56, 62, 69, 79, 80, 93, 97, 110, 116, 129, 131, 133, 152, 153, 162, 177, 189, 193, 202, 211, 214, 228, 243, 253, 261, 282, 284, 286], "581": [24, 152, 153], "584": [24, 152, 153], "paramet": [24, 26, 27, 28, 29, 31, 32, 33, 35, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "name": [24, 26, 27, 28, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "input": [24, 26, 27, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "file": [24, 26, 27, 28, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "complet": [24, 26, 28, 29, 30, 31, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "ofil": [24, 26, 27, 28, 29, 30, 31, 35, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "output": [24, 26, 27, 28, 29, 30, 31, 32, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "store": [24, 26, 27, 29, 30, 31, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "user": [24, 26, 27, 28, 29, 31, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 255, 261, 262, 263, 264, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "specifi": [24, 29, 32, 33, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "either": [24, 29, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 281, 282, 284, 286], "count": [24, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "proport": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 225, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "size": [24, 29, 30, 33, 39, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "If": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 208, 211, 212, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 282, 284, 286], "program": [24, 26, 29, 30, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "integ": [24, 29, 30, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 217, 224, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "treat": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "express": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "rang": [24, 30, 39, 40, 52, 84, 123, 125, 127, 129, 131, 135, 152, 153, 184, 221, 222, 267, 276, 277, 278, 279, 282, 284], "0": [24, 26, 27, 30, 33, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 64, 66, 69, 75, 76, 80, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 189, 191, 197, 199, 201, 202, 207, 214, 217, 218, 219, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "1": [24, 30, 39, 43, 45, 46, 52, 56, 62, 75, 76, 79, 82, 84, 86, 88, 91, 97, 108, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 162, 163, 164, 165, 166, 167, 182, 184, 189, 191, 193, 197, 212, 217, 218, 219, 221, 224, 226, 227, 230, 231, 239, 240, 243, 252, 256, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "variabl": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 137, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "distinguish": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "anoth": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "default": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "seper": [24, 26, 27, 29, 31, 32, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "tab": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "overrid": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "separ": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "memoryuss": [24, 26, 43, 45, 46, 48, 49, 50, 64, 66, 69, 75, 76, 78, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 199, 201, 202, 214, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "To": [24, 26, 28, 29, 30, 33, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "total": [24, 26, 28, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 250, 251, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "amount": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "uss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "memori": [24, 26, 28, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "consum": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "memoryrss": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "rss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "starttim": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "start": [24, 26, 33, 43, 45, 46, 48, 49, 50, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "endtim": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "given": [24, 27, 28, 29, 32, 33, 40, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 86, 90, 108, 110, 119, 120, 152, 153, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 226, 227, 234, 250, 251, 252, 253], "minimum": [24, 26, 27, 29, 30, 39, 43, 50, 54, 56, 58, 60, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 97, 98, 100, 101, 106, 108, 110, 116, 119, 120, 121, 123, 125, 127, 129, 131, 135, 139, 152, 153, 155, 156, 158, 180, 181, 186, 189, 190, 206, 209, 211, 212, 214, 215, 217, 218, 219, 221, 222, 230, 231, 232, 233, 234, 235, 238, 241, 242, 243, 244, 245, 249, 252, 253, 261, 262, 266, 267, 276, 278, 279, 282, 284], "ratio": [24, 52, 136, 152, 153, 184, 225], "should": [24, 52, 119, 152, 153, 184], "list": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 221, 222, 228, 230, 231, 232, 234, 235, 237, 239, 240, 241, 242, 243, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "mapsupport": [24, 43, 45, 46, 48, 84, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 167, 175, 182, 221, 222, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "dictionari": [24, 26, 27, 30, 31, 39, 43, 45, 46, 48, 49, 50, 54, 64, 66, 69, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 186, 199, 201, 202, 206, 212, 214, 217, 221, 222, 226, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "maintain": [24, 43, 45, 46, 48, 49, 82, 84, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 167, 175, 179, 182, 217, 221, 222, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "lno": [24, 43, 48, 49, 84, 88, 90, 91, 93, 95, 97, 100, 101, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 175, 177, 178, 179, 221, 222, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 279, 282, 284, 286], "tree": [24, 43, 45, 46, 48, 49, 71, 73, 75, 79, 80, 82, 84, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 110, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 167, 175, 179, 182, 203, 206, 207, 209, 212, 214, 217, 221, 222, 228, 230, 231, 232, 234, 237, 239, 240, 241, 242, 243, 245, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "itemsetcount": [24, 46, 48, 90, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 135, 152, 153, 175, 182, 228, 234, 237, 239, 240, 241, 242, 243, 245, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 279], "finalpattern": [24, 26, 31, 43, 45, 46, 48, 49, 50, 64, 66, 69, 78, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 199, 201, 202, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "dict": [24, 26, 27, 30, 31, 33, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "itemsetbuff": [24, 54, 56, 58, 60, 62, 108, 152, 153, 186, 189, 190, 252], "maxpatternlength": [24, 108, 152, 153, 252], "constraint": [24, 73, 79, 101, 108, 110, 116, 139, 143, 152, 153, 206, 212, 238, 252, 253, 261, 262, 264], "length": [24, 27, 30, 32, 39, 40, 43, 75, 79, 82, 108, 121, 123, 125, 127, 135, 152, 153, 158, 208, 211, 217, 218, 219, 252, 267, 268, 269, 270, 271, 273, 276, 279], "execut": [24, 30, 39, 45, 46, 50, 58, 80, 82, 86, 89, 91, 92, 97, 100, 101, 103, 106, 152, 153, 162, 163, 164, 165, 166, 167, 180, 182, 190, 217, 218, 219, 226, 227, 233, 239, 240, 245, 246, 249], "method": [24, 26, 27, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 159, 162, 163, 164, 165, 166, 167, 177, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "termin": [24, 26, 45, 46, 50, 56, 86, 93, 97, 98, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 167, 180, 182, 189, 226, 227, 228, 239, 240, 244, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "command": [24, 26, 45, 46, 50, 56, 86, 93, 97, 98, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 167, 180, 182, 189, 226, 227, 228, 239, 240, 244, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "format": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "venv": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 91, 93, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 231, 232, 233, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "python3": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "py": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "inputfil": [24, 26, 27, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "outputfil": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "exampl": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 256, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "sampletdb": [24, 26, 48, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 86, 89, 90, 93, 95, 97, 98, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 152, 153, 155, 156, 175, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 226, 227, 228, 233, 234, 237, 241, 242, 243, 244, 245, 249, 253, 261, 262, 263, 267, 276, 278, 279], "txt": [24, 26, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "25": [24, 86, 152, 153, 226, 227], "2": [24, 40, 48, 50, 52, 54, 56, 58, 60, 62, 69, 73, 79, 80, 88, 89, 91, 97, 98, 100, 106, 108, 116, 121, 127, 129, 152, 153, 175, 180, 184, 186, 189, 190, 191, 193, 197, 202, 206, 212, 214, 224, 230, 231, 233, 241, 242, 243, 244, 245, 249, 252, 261, 265, 266, 277, 278, 279, 281, 282], "call": [24, 26, 45, 46, 50, 56, 58, 78, 80, 82, 86, 97, 98, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 167, 180, 182, 189, 190, 219, 226, 227, 239, 240, 244, 267, 268, 269, 270, 271, 276, 277, 278, 279, 282, 284, 286], "alg": [24, 26, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "obj": [24, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getpattern": [24, 26, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "print": [24, 26, 28, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "number": [24, 26, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 281, 282, 284, 286], "len": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "savepattern": [24, 45, 46, 48, 75, 76, 84, 101, 104, 106, 110, 117, 120, 125, 127, 131, 152, 153, 165, 167, 175, 182, 222, 247, 249, 253, 263, 276, 279, 284], "df": [24, 26, 28, 43, 45, 46, 48, 49, 50, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getpatternsasdatafram": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "memuss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getmemoryuss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "memrss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getmemoryrss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "run": [24, 26, 28, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getruntim": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "executiontim": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "second": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "credit": [24, 40, 45, 46, 50, 86, 97, 103, 152, 153, 162, 163, 164, 165, 166, 167, 180, 182, 226, 227, 239, 240, 246], "wa": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "written": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "b": [24, 52, 54, 56, 58, 62, 66, 75, 79, 88, 108, 121, 152, 153, 184, 186, 189, 190, 193, 201, 208, 211, 224, 232, 252, 256, 265, 266], "sai": [24, 40, 52, 54, 56, 58, 62, 66, 75, 79, 108, 152, 153, 184, 186, 189, 190, 193, 201, 208, 211, 212, 252], "chitra": [24, 52, 54, 56, 58, 62, 66, 75, 79, 108, 152, 153, 184, 186, 189, 190, 193, 201, 208, 211, 252], "revis": [24, 45, 46, 50, 86, 97, 152, 153, 162, 163, 164, 165, 166, 167, 180, 182, 226, 227, 239, 240], "tarun": [24, 45, 46, 50, 75, 86, 97, 152, 153, 162, 163, 164, 165, 166, 167, 180, 182, 226, 227, 239, 240], "sreepada": [24, 45, 46, 50, 75, 86, 97, 152, 153, 162, 163, 164, 165, 166, 167, 180, 182, 226, 227, 239, 240], "under": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "supervis": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "professor": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "rage": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "udai": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "kiran": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "retriev": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "function": [24, 26, 30, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "return": [24, 26, 27, 28, 29, 30, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "tupl": [24, 26, 43, 49, 82, 97, 100, 152, 153, 155, 158, 179, 218, 219, 240, 241, 243, 245], "send": [24, 26, 36, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "after": [24, 26, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "final": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "pd": [24, 26, 29, 32, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "calcul": [24, 26, 29, 30, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "runtim": [24, 26, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "taken": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "none": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 39, 40, 43, 45, 52, 54, 56, 62, 71, 75, 79, 80, 82, 84, 88, 95, 97, 100, 101, 108, 110, 117, 119, 120, 123, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 184, 186, 189, 193, 203, 207, 209, 211, 212, 214, 217, 218, 219, 221, 222, 230, 231, 232, 237, 239, 240, 241, 242, 243, 245, 252, 253, 263, 267, 268, 269, 270, 278, 282, 284, 286], "main": [24, 26, 31, 43, 45, 52, 73, 75, 79, 80, 84, 86, 88, 90, 91, 92, 97, 100, 103, 104, 108, 120, 123, 125, 127, 131, 148, 152, 153, 155, 159, 167, 184, 206, 208, 211, 212, 214, 221, 222, 227, 230, 231, 232, 234, 235, 241, 245, 246, 247, 252, 267, 268, 269, 270, 271, 273, 276, 278, 279, 284, 285], "printresult": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "result": [24, 26, 27, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 106, 108, 110, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "recurs": [24, 71, 73, 75, 79, 80, 86, 88, 97, 110, 116, 119, 123, 152, 153, 203, 206, 207, 209, 212, 214, 227, 232, 239, 242, 253, 261, 271], "node": [24, 49, 75, 82, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 152, 153, 177, 178, 179, 209, 217, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "root": [24, 49, 82, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 152, 153, 179, 217, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "build": [24, 49, 75, 152, 153, 179, 209], "ani": [24, 26, 82, 86, 97, 98, 100, 101, 103, 148, 152, 153, 155, 156, 217, 218, 219, 226, 227, 239, 240, 241, 242, 243, 244, 245, 246, 265, 285], "current": [24, 80, 152, 153, 214, 277], "being": [24, 152, 153, 265], "_node": [24, 152, 153], "save": [24, 26, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "outfil": [24, 26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279, 282, 284, 286], "an": [24, 26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 62, 64, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 92, 95, 97, 98, 108, 110, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 197, 199, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 224, 226, 227, 230, 232, 235, 237, 238, 239, 240, 241, 242, 243, 244, 250, 251, 252, 253, 256, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "startmin": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 276, 278, 279, 282, 284, 286], "code": [24, 29, 35, 56, 78, 80, 86, 88, 92, 97, 101, 103, 116, 119, 120, 153, 163, 226, 227, 232, 235, 239, 240, 246, 261], "minrf": [26, 155, 156], "minc": [26, 155, 156], "maxor": [26, 155, 156], "_coveragepattern": [26, 155, 156], "coverag": [26, 155, 156, 157, 215, 266], "bhargav": [26, 155, 156], "sripada": [26, 155], "polep": [26, 155], "krishna": [26, 69, 84, 86, 88, 89, 93, 101, 129, 155, 156, 202, 222, 226, 228, 232, 233, 282], "reddi": [26, 69, 71, 84, 86, 88, 93, 97, 101, 110, 129, 155, 156, 202, 203, 222, 226, 228, 232, 243, 253, 282], "banner": [26, 155], "advertis": [26, 155], "placement": [26, 155], "www": [26, 54, 88, 89, 95, 106, 155, 186, 232, 233, 237, 249], "companion": [26, 155], "volum": [26, 86, 123, 155, 226, 267], "2011": [26, 84, 123, 155, 222, 267, 273], "131": [26, 155], "132": [26, 155], "__http": [26, 155], "dl": [26, 92, 155, 235], "acm": [26, 45, 49, 75, 92, 123, 155, 165, 179, 209, 235, 273], "org": [26, 43, 45, 46, 50, 75, 76, 84, 86, 88, 90, 91, 92, 97, 98, 100, 104, 116, 117, 121, 123, 125, 127, 131, 155, 159, 162, 163, 164, 165, 166, 167, 180, 182, 207, 209, 221, 222, 226, 230, 231, 234, 235, 240, 241, 243, 244, 245, 247, 262, 263, 267, 269, 270, 271, 273, 276, 278, 279, 284], "doi": [26, 43, 45, 46, 49, 50, 52, 56, 62, 69, 71, 75, 76, 79, 80, 82, 84, 86, 88, 91, 92, 93, 97, 104, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 159, 162, 165, 167, 177, 180, 182, 184, 189, 193, 202, 203, 207, 209, 211, 214, 217, 218, 219, 221, 222, 226, 228, 230, 231, 235, 240, 241, 243, 247, 253, 262, 263, 267, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "10": [26, 27, 37, 40, 43, 45, 46, 49, 50, 52, 54, 56, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 177, 178, 179, 180, 182, 184, 186, 189, 191, 193, 197, 199, 201, 202, 203, 206, 207, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 281, 282, 284, 286], "1145": [26, 45, 75, 84, 88, 91, 123, 155, 162, 165, 209, 222, 230, 231, 273], "1963192": [26, 155], "1963259": [26, 155], "everi": [26, 78, 80, 82, 86, 92, 97, 98, 100, 101, 108, 155, 156, 217, 241, 242, 243, 244, 245, 252, 265, 277, 281], "must": [26, 78, 80, 86, 92, 97, 98, 100, 101, 108, 110, 155, 156, 191, 224, 241, 242, 243, 244, 245, 252, 253, 265, 266, 277, 281], "least": [26, 108, 155, 156, 252], "maximum": [26, 30, 32, 39, 40, 62, 71, 73, 75, 76, 79, 80, 82, 86, 90, 97, 98, 100, 101, 103, 106, 110, 116, 117, 127, 129, 139, 155, 156, 193, 203, 206, 207, 209, 211, 212, 214, 217, 218, 219, 226, 227, 234, 238, 239, 240, 241, 242, 243, 244, 245, 246, 249, 253, 261, 262, 263, 278, 279, 282], "two": [26, 40, 71, 73, 75, 79, 80, 82, 86, 97, 98, 100, 101, 103, 110, 120, 155, 156, 203, 206, 207, 209, 212, 214, 217, 218, 219, 224, 226, 227, 239, 240, 241, 242, 243, 244, 245, 246, 253, 265, 277], "reappear": [26, 82, 86, 97, 98, 100, 101, 103, 155, 156, 217, 218, 219, 226, 227, 239, 240, 241, 242, 243, 244, 245, 246], "4": [26, 52, 58, 69, 82, 88, 89, 90, 93, 95, 97, 98, 100, 101, 106, 116, 117, 123, 127, 131, 155, 156, 184, 190, 191, 197, 202, 217, 218, 219, 224, 228, 232, 233, 234, 237, 241, 242, 243, 244, 245, 249, 261, 262, 263, 265, 267, 277, 278, 279, 281, 284], "7": [26, 86, 155, 156, 191, 226, 227, 265, 277, 281], "5": [26, 40, 64, 66, 69, 82, 91, 97, 101, 116, 123, 133, 155, 156, 191, 197, 199, 201, 202, 217, 218, 219, 224, 242, 261, 269, 270, 277, 281, 286], "p": [26, 40, 43, 45, 46, 48, 50, 52, 56, 64, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 156, 158, 159, 162, 167, 175, 180, 182, 184, 189, 199, 202, 203, 206, 207, 211, 212, 214, 217, 218, 219, 221, 222, 226, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "likhitha": [26, 40, 43, 45, 46, 48, 50, 60, 69, 84, 88, 89, 90, 92, 93, 95, 97, 98, 100, 103, 104, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 156, 158, 159, 162, 167, 175, 180, 182, 202, 221, 222, 228, 230, 231, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "creatingcoverageitem": [26, 155], "creat": [26, 28, 29, 32, 35, 37, 40, 49, 75, 79, 80, 82, 119, 120, 155, 179, 191, 197, 208, 211, 214, 217, 218, 219, 224, 256, 265, 266, 277, 281], "_databas": [26, 155], "coveragetiddata": [26, 155], "tid": [26, 32, 40, 52, 54, 56, 58, 60, 62, 82, 91, 101, 104, 155, 184, 186, 189, 190, 191, 193, 197, 217, 247, 265, 266, 277, 281], "genpattern": [26, 155], "prefix": [26, 46, 49, 52, 54, 56, 58, 60, 62, 75, 79, 80, 82, 86, 88, 91, 97, 108, 116, 155, 179, 182, 184, 186, 189, 190, 193, 208, 211, 214, 217, 227, 232, 239, 242, 252, 261], "tiddata": [26, 155], "gener": [26, 32, 40, 43, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 75, 78, 79, 80, 82, 86, 88, 91, 92, 97, 103, 104, 116, 119, 127, 155, 159, 167, 179, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 209, 211, 217, 218, 219, 227, 232, 235, 239, 242, 246, 247, 261, 265, 277, 278, 281], "string": [26, 54, 60, 80, 82, 106, 120, 155, 186, 214, 217, 249, 265, 266], "generateallpattern": [26, 155], "coverageitem": [26, 155], "load": [26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "tidtobitset": [26, 155], "item_set": [26, 155], "convert": [26, 27, 30, 31, 33, 52, 54, 56, 58, 60, 62, 64, 66, 69, 93, 95, 97, 101, 106, 116, 117, 123, 125, 127, 135, 155, 184, 186, 189, 190, 193, 199, 201, 202, 228, 237, 240, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "bitset": [26, 45, 121, 155, 166], "gowtham": [26, 156], "sriniva": [26, 156], "trinath": [26, 156], "v": [26, 119, 120, 156], "r": [26, 45, 56, 62, 69, 71, 82, 84, 86, 88, 89, 90, 93, 97, 100, 101, 104, 108, 110, 127, 129, 156, 162, 189, 193, 202, 203, 217, 218, 219, 222, 226, 228, 232, 233, 234, 239, 241, 243, 245, 247, 252, 253, 278, 282], "2015": [26, 54, 97, 156, 186, 241], "journal": [26, 54, 86, 97, 156, 186, 226, 241], "intellig": [26, 49, 54, 79, 97, 116, 156, 177, 186, 212, 243, 261, 262], "system": [26, 49, 54, 56, 62, 86, 97, 116, 121, 123, 141, 156, 179, 186, 189, 193, 226, 241, 254, 261, 267], "45": [26, 156], "3": [26, 29, 33, 43, 45, 48, 49, 54, 56, 58, 62, 64, 69, 71, 73, 79, 82, 88, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 116, 117, 121, 123, 125, 127, 131, 135, 156, 158, 163, 164, 166, 175, 177, 178, 179, 189, 190, 191, 193, 197, 199, 202, 203, 206, 211, 217, 218, 219, 224, 228, 232, 233, 234, 235, 237, 240, 241, 243, 244, 245, 246, 247, 249, 261, 262, 263, 265, 266, 267, 268, 273, 276, 277, 278, 279, 281, 284], "423": [26, 156], "439": [26, 156], "http": [26, 43, 45, 46, 48, 50, 52, 54, 75, 76, 84, 86, 88, 89, 90, 92, 95, 97, 98, 100, 103, 104, 106, 108, 116, 117, 121, 123, 125, 127, 131, 156, 159, 162, 163, 164, 165, 166, 167, 175, 180, 182, 184, 186, 207, 209, 221, 222, 226, 232, 233, 234, 235, 237, 240, 241, 243, 244, 245, 246, 247, 249, 252, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 284], "link": [26, 82, 103, 123, 156, 217, 246, 268], "springer": [26, 103, 104, 116, 121, 123, 127, 156, 246, 247, 261, 262, 268, 269, 270, 278, 279], "com": [26, 103, 123, 156, 246, 268], "articl": [26, 88, 91, 156, 230, 231], "1007": [26, 71, 73, 75, 76, 79, 92, 97, 103, 104, 116, 117, 121, 123, 125, 127, 156, 203, 206, 207, 212, 235, 240, 246, 247, 262, 263, 268, 269, 270, 276, 278, 279], "s10844": [26, 156], "014": [26, 156], "0318": [26, 156], "percentag": [26, 30, 32, 39, 40, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 97, 98, 100, 101, 106, 108, 116, 117, 156, 175, 177, 178, 179, 184, 186, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 239, 240, 241, 242, 243, 244, 245, 249, 252, 261, 262, 263], "period": [26, 30, 39, 56, 58, 60, 62, 64, 69, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 116, 117, 127, 129, 135, 140, 156, 188, 189, 190, 191, 192, 193, 196, 197, 198, 199, 202, 215, 216, 217, 218, 219, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 261, 262, 263, 264, 265, 277, 278, 279, 280, 282], "generatelatexcod": [27, 58], "latexgraphfil": 27, "fuz": 27, "idf": [27, 28, 33], "plot": [27, 30, 33, 39, 41], "point": [27, 33, 191, 197, 277, 281], "plt": [27, 33], "path": [27, 30, 37, 39, 40, 41, 64, 66, 69, 75, 76, 78, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 199, 201, 202, 217, 218, 219, 221, 222, 228, 230, 231, 232, 233, 234, 235, 237, 241, 242, 243, 244, 245, 246, 247, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "rank": [27, 49, 50, 91, 101, 123, 179, 180, 271], "gettopkpattern": 27, "storetopkpattern": 27, "get": [27, 28, 29, 30, 32, 39, 40, 49, 64, 66, 69, 75, 76, 82, 101, 179, 199, 201, 202, 217], "defin": [27, 28, 78, 80, 82, 86, 92, 139, 143, 217, 218, 219, 238, 264], "patternid": 27, "predictedclass2transact": 27, "predicted_class": 27, "minthreshold": 27, "8": [27, 43, 45, 56, 62, 97, 159, 167, 189, 191, 193, 243, 265], "dens": [27, 28], "un": 27, "getbinarytransact": 27, "inputdf": 28, "param": [28, 29, 30, 32, 33, 37, 39, 40, 43, 49, 75, 76, 80, 86, 91, 97, 101, 103, 110, 119, 120, 123, 159, 177, 178, 179, 207, 208, 209, 214, 241, 246, 253, 271], "condit": [28, 45, 49, 75, 91, 97, 101, 108, 119, 120, 166, 179, 209, 243, 252], "judg": 28, "thresholdvalu": 28, "db": [28, 29, 30, 31, 32, 35, 37, 39, 40], "iddf": 28, "16": [28, 29, 35], "convert2transactionaldatabas": 28, "outputfilenam": [28, 29, 40], "convert2temporaldatabas": 28, "convert2multipletimeseri": 28, "multipl": [28, 29, 30, 60, 84, 119, 181, 215, 221, 222, 223, 265, 266], "timeseri": [28, 60, 215], "convert2utilitydatabas": 28, "util": [28, 30, 39, 40, 52, 71, 73, 75, 76, 79, 80, 110, 184, 191, 197, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 253, 254, 277], "getfilenam": [28, 32, 37, 40], "write": [28, 119, 120], "break": 28, "convert2uncertaintransact": 28, "createtransact": [28, 80, 214], "createtempor": 28, "createutil": 28, "csv": [28, 29, 32, 40, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 86, 88, 90, 91, 95, 97, 98, 100, 101, 116, 123, 125, 127, 129, 131, 133, 135, 159, 165, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 226, 227, 230, 231, 234, 237, 239, 240, 241, 242, 243, 244, 245, 261, 262, 267, 268, 273, 276, 278, 279, 282, 284, 286], "denseformatdfplu": 28, "thresholdconditiondf": 28, "denseformatdf_dump": 28, "sparseformatdfplu": 28, "beta": [29, 75, 76], "calculatemi": 29, "getmisdatafram": 29, "respect": [29, 45, 62, 82, 97, 101, 108, 127, 166, 193, 217, 243, 252, 279], "rtype": [29, 30, 32, 39, 40, 48, 49, 64, 73, 75, 76, 80, 110, 116, 175, 177, 178, 179, 199, 206, 207, 208, 209, 214, 253, 261], "sd": 29, "getdatafram": [29, 35], "readdatabas": [30, 39], "read": [30, 39, 75, 76, 119, 120], "getdatabases": [30, 39], "getminimumtransactionlength": [30, 39], "getaveragetransactionlength": [30, 39], "averag": [30, 32, 39, 40], "sum": [30, 32, 39, 40, 52, 54, 56, 58, 60, 62, 80, 184, 186, 189, 190, 191, 193, 214, 277], "divid": [30, 39], "getmaximumtransactionlength": [30, 39], "getstandarddeviationtransactionlength": [30, 39], "standard": [30, 39], "deviat": [30, 39], "getsortedlistofitemfrequ": [30, 39], "sort": [30, 39, 54, 60, 71, 73, 75, 79, 80, 88, 90, 91, 93, 95, 97, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 186, 203, 206, 207, 212, 214, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 253, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "getsortedlistoftransactionlength": [30, 39], "getminimumutil": [30, 39], "getaverageutil": [30, 39], "getmaximumutil": [30, 39], "getsortedutilityvaluesofitem": [30, 39], "fuzzydatabasestat": 30, "printstat": [30, 39, 75, 209], "creatingitemset": [30, 39, 43, 64, 66, 69, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 199, 201, 202, 221, 222, 228, 230, 231, 234, 235, 237, 240, 241, 245, 246, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "getfrequenciesinrang": [30, 39], "max": [30, 39], "min": 30, "getnumberofitem": [30, 39], "kei": [30, 33, 39, 66, 71, 75, 91, 101, 110, 119, 201, 203, 207, 253], "getspars": [30, 39], "sparsiti": [30, 39], "gettotalnumberofitem": [30, 39], "gettotalutil": [30, 39], "gettransanctionallengthdistribut": [30, 39], "getvariancetransactionlength": [30, 39], "varianc": [30, 39], "plotgraph": [30, 39], "multipletimeseriesdatabasestat": 30, "fuzzi": [30, 31, 52, 54, 56, 58, 60, 62, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 215], "convertdataintomatrix": [30, 39], "matrix": [30, 80, 120, 214], "form": [30, 45, 71, 86, 88, 108, 110, 166, 203, 227, 232, 252, 253, 281], "densiti": 30, "getdens": [30, 39], "disctribut": 30, "ndarrai": [30, 39], "like": [30, 39, 281], "avarag": [30, 39], "minimun": [30, 39], "so": [30, 32, 39, 40, 82, 217, 218, 219], "subsequ": [30, 39, 142, 255], "self": [30, 39, 49, 52, 71, 73, 75, 79, 80, 88, 91, 110, 119, 179, 184, 203, 206, 207, 212, 214, 230, 232, 253], "getminimumsequencelength": [30, 39], "getaveragesubsequencepersequencelength": [30, 39], "per": [30, 32, 39, 40, 91], "getaverageitempersubsequencelength": [30, 39], "getmaximumsequencelength": [30, 39], "getstandarddeviationsubsequencelength": [30, 39], "getvariancesequencelength": [30, 39], "getsequences": [30, 39], "getminimumsubsequencelength": [30, 39], "getaverageitempersequencelength": [30, 39], "getmaximumsubsequencelength": [30, 39], "getvariancesubsequencelength": [30, 39], "getsequenciallengthdistribut": [30, 39], "getsubsequenciallengthdistribut": [30, 39], "statu": [30, 39], "sampledb": [30, 39, 43, 45, 46, 48, 49, 50, 82, 84, 88, 91, 92, 97, 103, 104, 108, 116, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 217, 218, 219, 221, 222, 230, 231, 232, 235, 239, 240, 242, 246, 247, 252, 261, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "_ap": [30, 39], "shota": [30, 39], "suzuki": [30, 39], "getstandarddeviationsequencelength": [30, 39], "getminimumperiod": [30, 39], "getaverageperiod": [30, 39], "getmaximumperiod": [30, 39], "getstandarddeviationperiod": [30, 39], "getnumberoftransactionspertimestamp": [30, 39], "stamp": [30, 39, 82, 217, 218, 219], "getaverageinterarrivalperiod": [30, 39], "inter": [30, 39], "arriv": [30, 39], "getaverageperiodofitem": [30, 39], "getmaximuminterarrivalperiod": [30, 39], "getmaximumperiodofitem": [30, 39], "getminimuminterarrivalperiod": [30, 39], "getminimumperiodofitem": [30, 39], "getperiodsinrang": [30, 39], "And": [30, 39], "uncertaintemporaldatabasestat": 30, "fuzfil": [31, 54, 58, 186, 190], "_convert": 31, "startconvert": 31, "numoftransact": [32, 40], "avglenoftransact": [32, 40], "numitem": [32, 40], "x1": [32, 119, 120], "y1": [32, 119, 120], "x2": [32, 119, 120], "y2": [32, 119, 120], "50": [32, 40], "typeoffil": [32, 40], "frame": [32, 40, 78, 80, 86, 92], "cointoss": [32, 40], "correspond": [32, 40, 73, 79, 80, 119, 191, 206, 212, 214, 281], "filenam": [32, 40, 90, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 135, 228, 234, 237, 240, 241, 245, 249, 252, 262, 263, 267, 268, 269, 270, 271, 273, 276, 279], "createtemporalfil": [32, 40], "getdatabaseasdatafram": [32, 40], "performcoinflip": [32, 40], "perform": [32, 40, 46, 48, 49, 75, 76, 86, 88, 119, 120, 175, 177, 178, 179, 182, 227, 232], "coin": [32, 40], "flip": [32, 40], "probabl": [32, 40, 79, 80, 123, 127, 144, 145, 146, 211, 214, 271, 274, 275, 277, 279, 280], "tune": [32, 40, 84, 123, 125, 127, 129, 131, 135, 221, 222, 267, 276, 278, 279, 282, 284], "arraylength": [32, 40], "100": [32, 33, 40, 191, 197, 281], "15": [32, 40], "avgtransactionlength": [32, 40], "6": [32, 40, 54, 60, 89, 97, 98, 100, 117, 123, 186, 191, 224, 233, 241, 243, 244, 245, 263, 269], "outfilenam": [32, 40], "temporal_ot": [32, 40], "percent": [32, 40], "75": [32, 40], "frameorbas": [32, 40], "you": [32, 40], "want": [32, 40], "temporaldb": [32, 40], "generatearrai": [32, 40], "num": [32, 40, 91], "avg": [32, 40], "maxitem": [32, 40, 80, 214], "sumr": [32, 40], "random": [32, 40], "arrai": [32, 40, 73, 75, 76, 79, 80, 120, 206, 212, 214], "n": [32, 40, 49, 52, 86, 88, 89, 116, 127, 177, 184, 226, 232, 233, 250, 251, 262, 278], "whose": [32, 37, 40, 73, 206], "m": [32, 40, 60, 69, 71, 82, 93, 97, 110, 116, 127, 129, 202, 203, 217, 218, 219, 228, 243, 253, 262, 278, 282], "getpoint": 32, "bool": [32, 40, 45, 80, 88, 120, 162, 214, 230], "true": [32, 40, 45, 91, 101, 119, 120, 162, 163, 164, 166], "fals": [32, 40, 119, 120, 123, 125, 127, 135, 267, 268, 269, 270, 271, 273, 276, 278, 279], "otherwis": [32, 40, 43, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 162, 163, 164, 167, 177, 178, 179, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 208, 211, 212, 228, 230, 231, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 249, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "equal": [32, 37, 40, 75, 207], "numlin": [32, 40], "avgitemsperlin": [32, 40], "line": [32, 33, 40, 80, 82, 97, 108, 191, 214, 217, 241, 252, 256, 277, 281], "gettransact": [32, 40, 80, 91, 101, 214], "dataframeintofigur": 33, "figur": 33, "column": [33, 224, 265], "xcolumn": 33, "x": [33, 75, 79, 91, 101, 119, 120, 121, 208, 211], "axi": 33, "ycolumn": 33, "fig": 33, "plotgraphsfromdatafram": 33, "end": [33, 45, 78, 80, 82, 97, 101, 165, 166, 217, 218, 219, 243], "titl": 33, "xlabel": 33, "ylabel": 33, "plotlinegraph": 33, "draw": 33, "idict": 33, "plotlinegraphfromdatafram": 33, "plotlinegraphfromdatfram": 33, "produc": [33, 121, 281], "miner": [33, 54, 56, 58, 62, 71, 75, 79, 186, 189, 190, 193, 203, 208, 212], "take": [33, 40, 119], "viz": 33, "markers": 33, "20": [33, 71, 73, 84, 97, 110, 197, 203, 206, 222, 239, 240, 253], "zoom": 33, "width": 33, "1500": 33, "height": 33, "1000": 33, "marker": 33, "screen": 33, "createdatabas": 35, "detected_object": 35, "appli": [35, 79, 116, 123, 212, 261, 273], "detected_obj": 35, "saveastemporaldb": 35, "saveastransactionaldb": 35, "saveasuncertaintemporaldb": 35, "saveasuncertaintransactionaldb": 35, "saveasutilitytemporaldb": 35, "saveasutilitytransactionaldb": 35, "url": [36, 45, 46, 50, 97, 162, 163, 164, 165, 166, 167, 180, 182, 239, 240], "usernam": 36, "password": 36, "toaddress": 36, "subject": 36, "bodi": 36, "createneighborhoodfileusingeuclideandist": 37, "maxeuclediandist": 37, "neighbourhood": [37, 52, 64, 66, 69, 78, 79, 80, 129, 184, 199, 201, 202, 211, 214, 215, 281, 282], "euclid": 37, "distanc": [37, 73, 79, 206, 212], "pf": 37, "maxeuclideandist": 37, "pair": [37, 71, 75, 110, 119, 120, 203, 207, 253], "euclidean": 37, "than": [37, 73, 75, 79, 80, 116, 120, 206, 207, 212, 214, 261, 262, 265], "maxeuclediandistac": 37, "plotedgedistribut": 39, "plotnodedistribut": 39, "printgraphdatabasestatist": 39, "printindividualgraphstat": 39, "transanct": 39, "e": [40, 71, 73, 75, 79, 80, 110, 191, 203, 206, 207, 212, 214, 253, 256, 265, 266, 277, 281], "g": [40, 48, 60, 119, 120, 175, 265], "wai": 40, "text": [40, 119], "randomli": 40, "target": [40, 139, 143, 238, 264], "databases": 40, "avgitemspertransact": 40, "collect": [40, 75, 76, 224, 256, 265], "onli": [40, 71, 73, 75, 79, 80, 110, 140, 147, 149, 203, 206, 207, 212, 214, 248, 253, 283, 287], "ignor": [40, 265, 266], "metadata": 40, "creategeoreferentialtemporaldatabas": 40, "avgtransact": 40, "synthet": 40, "referenti": [40, 197], "totaltransact": 40, "No": [40, 88, 91, 230, 231], "noofitem": 40, "creategeoreferentialtransactiondatabas": 40, "creategeoreferentialtransactionaldatabas": 40, "creategeoreferentialuncertaintransactiondatabas": 40, "creategeoreferentialuncertaintransactionaldatabas": 40, "createtemporalldatabas": 40, "createtemporaldatabas": 40, "createtransactionaldatabas": 40, "createuncertaintemporaldatabas": 40, "createuncertaintransactionaldatabas": 40, "maxutilrang": 40, "createutilitydatabas": 40, "transactions": 40, "numofitem": 40, "minutilityvalu": 40, "maxutilityvalu": 40, "minnumoftimesanitem": 40, "maxnumoftimesanitem": 40, "__init__": 40, "constructor": 40, "initi": [40, 73, 79, 80, 206, 212, 214], "createsyntheticutilitydatabas": 40, "createrandomnumb": 40, "targetsum": 40, "hemanth": 40, "sree": 40, "normal": 40, "multipli": 40, "total_transact": 40, "num_of_item": 40, "avg_transaction_length": 40, "create_temporal_databas": 40, "output_fil": 40, "generate_random_numb": 40, "target_sum": 40, "utilitydatagener": 40, "numberofitem": 40, "averagelengthoftransact": 40, "minimuminternalutilityvalu": 40, "maximuminternalutilityvalu": 40, "minimumexternalutilityvalu": 40, "maximumexternalutilityvalu": 40, "generateandprintitempair": 40, "generateexternalutilitydata": 40, "getexternalutilitydata": 40, "getinternalutilitydata": 40, "getutilitydata": 40, "saveitemsinternalutilityvalu": 40, "saveitemsexternalutilityvalu": 40, "savefig": 41, "itemsup": [43, 116, 121, 158, 159, 261], "minlength": [43, 121, 158, 159], "faulttoler": [43, 121, 158, 159], "_faulttolerantfrequentpattern": [43, 121, 158, 159], "ft": [43, 158], "fault": [43, 121, 158, 159, 160, 215, 266], "toler": [43, 121, 158, 159, 160, 215, 266], "properti": [43, 45, 46, 49, 90, 97, 121, 131, 133, 148, 158, 159, 162, 167, 177, 178, 179, 182, 234, 239, 242, 284, 285, 286], "downward": [43, 45, 49, 121, 131, 133, 148, 158, 159, 162, 167, 177, 178, 179, 284, 285, 286], "closur": [43, 45, 49, 121, 131, 133, 148, 158, 159, 162, 167, 177, 178, 179, 284, 285, 286], "reduc": [43, 45, 49, 54, 56, 58, 62, 84, 121, 131, 133, 158, 159, 162, 167, 177, 178, 179, 186, 189, 190, 193, 222, 284, 286], "pei": [43, 45, 54, 135, 158, 159, 167, 186], "jian": [43, 158], "tung": [43, 158], "anthoni": [43, 158], "jiawei": [43, 158], "2001": [43, 158], "problem": [43, 54, 56, 58, 62, 158, 186, 189, 190, 193], "challeng": [43, 54, 56, 58, 62, 137, 146, 158, 186, 189, 190, 193, 229, 280], "falut": [43, 158, 159], "here": [43, 45, 46, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 150, 151, 158, 159, 162, 163, 164, 165, 166, 177, 178, 179, 180, 182, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "csvfile": [43, 45, 46, 48, 49, 50, 158, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182], "compress": [43, 45, 49, 131, 133, 159, 167, 179, 284, 286], "decreas": [43, 45, 49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 131, 133, 135, 159, 167, 179, 228, 230, 231, 234, 237, 240, 241, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279, 284, 286], "extract": [43, 45, 46, 49, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 165, 167, 179, 182, 221, 222, 227, 228, 230, 231, 232, 234, 237, 240, 241, 245, 249, 252, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "yin": [43, 45, 159, 167], "et": [43, 45, 49, 62, 75, 76, 79, 80, 98, 116, 117, 159, 167, 179, 193, 207, 211, 214, 244, 262, 263], "al": [43, 45, 49, 62, 75, 76, 79, 80, 98, 116, 117, 159, 167, 179, 193, 207, 211, 214, 244, 262, 263], "without": [43, 45, 103, 120, 121, 159, 167, 246], "candid": [43, 45, 71, 73, 75, 79, 80, 110, 120, 159, 167, 203, 206, 207, 208, 209, 211, 212, 214, 253], "knowledg": [43, 45, 75, 123, 133, 159, 165, 167, 209, 268, 277, 286], "53": [43, 45, 79, 159, 167, 212], "87": [43, 45, 159, 167], "2004": [43, 45, 84, 159, 167, 221], "1023": [43, 45, 159, 167], "scan": [43, 45, 73, 79, 80, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 166, 206, 212, 214, 221, 222, 228, 230, 231, 232, 234, 235, 237, 239, 240, 241, 242, 243, 245, 246, 247, 249, 252, 261, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 284, 286], "frequentoneitem": [43, 64, 66, 69, 84, 92, 103, 104, 108, 123, 125, 129, 131, 133, 135, 159, 199, 201, 202, 221, 222, 235, 246, 247, 252, 267, 268, 269, 270, 271, 273, 276, 282, 284, 286], "getpatternindatafram": [43, 45, 49, 50, 84, 92, 103, 104, 121, 133, 159, 162, 163, 164, 165, 166, 167, 177, 178, 179, 180, 221, 222, 235, 246, 247, 286], "_frequentpattern": [45, 46, 48, 49, 50, 84, 108, 123, 125, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 221, 222, 252, 267, 268, 269, 270, 271, 273, 276], "breadth": [45, 82, 162, 218], "agraw": [45, 162], "imi": [45, 162], "nski": [45, 162], "swami": [45, 162], "rule": [45, 52, 66, 84, 162, 184, 191, 197, 201, 221, 224, 256, 265, 266, 277, 281], "sigmod": [45, 162], "207": [45, 162], "216": [45, 162], "1993": [45, 162], "170035": [45, 162], "170072": [45, 162], "also": [45, 46, 97, 121, 123, 125, 127, 129, 131, 133, 135, 147, 148, 149, 162, 163, 164, 165, 166, 167, 182, 239, 240, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279, 282, 283, 284, 285, 286, 287], "memorysav": [45, 162, 163, 164, 166], "enabl": [45, 143, 162, 264], "disabl": [45, 162], "mode": [45, 162], "delet": [45, 82, 162, 217], "intermedi": [45, 162], "moham": [45, 46, 163, 164, 166, 182], "jave": [45, 163, 164, 166], "zaki": [45, 46, 163, 164, 166, 182], "scalabl": [45, 66, 163, 164, 166, 201], "ieee": [45, 50, 56, 62, 69, 79, 80, 90, 97, 98, 100, 110, 123, 163, 164, 166, 180, 189, 193, 202, 211, 214, 234, 243, 244, 245, 253, 271], "tran": [45, 49, 75, 163, 164, 166, 179, 207], "knowl": [45, 75, 76, 163, 164, 166, 207], "eng": [45, 163, 164, 166], "12": [45, 163, 164, 166], "372": [45, 163, 164, 166], "390": [45, 163, 164, 166], "2000": [45, 163, 164, 166], "ieeexplor": [45, 50, 90, 98, 100, 163, 164, 166, 180, 234, 244, 245], "document": [45, 50, 90, 98, 100, 163, 164, 166, 180, 234, 244, 245], "846291": [45, 163, 164, 166], "kundai": [45, 58, 164, 165], "diffset": [45, 165], "kdd": [45, 75, 165, 209], "03": [45, 165], "proceed": [45, 46, 75, 88, 91, 123, 131, 165, 182, 209, 230, 231, 271, 273, 284], "ninth": [45, 165], "sigkdd": [45, 75, 165, 209], "intern": [45, 49, 56, 62, 69, 75, 79, 80, 88, 91, 93, 98, 103, 110, 116, 123, 129, 131, 133, 165, 177, 189, 193, 202, 209, 211, 214, 228, 230, 231, 244, 246, 253, 261, 271, 281, 282, 284, 286], "confer": [45, 49, 56, 62, 69, 75, 79, 80, 88, 91, 93, 98, 103, 110, 123, 129, 131, 133, 165, 177, 179, 189, 193, 202, 209, 211, 214, 228, 230, 231, 244, 246, 253, 268, 271, 282, 284, 286], "august": [45, 165], "page": [45, 86, 88, 91, 123, 165, 215, 226, 230, 231, 267, 273], "326": [45, 165], "335": [45, 165], "956750": [45, 165], "956788": [45, 165], "yudai": [45, 49, 163, 166, 177, 178, 179], "masu": [45, 49, 163, 166, 177, 178, 179], "implement": [45, 49, 86, 88, 97, 116, 166, 177, 227, 232, 239, 242, 261], "we": [45, 54, 56, 58, 62, 166, 186, 189, 190, 193, 250, 251, 266, 277], "check": [45, 46, 71, 73, 75, 79, 80, 90, 91, 97, 108, 110, 119, 120, 166, 182, 203, 206, 207, 212, 214, 234, 239, 241, 242, 252, 253], "superset": [46, 73, 182, 206], "same": [46, 49, 52, 54, 56, 58, 60, 62, 179, 182, 184, 186, 189, 190, 193, 197, 265], "origin": [46, 80, 120, 123, 125, 127, 135, 182, 214, 267, 268, 269, 270, 271, 273, 276, 278, 279], "ching": [46, 182], "jui": [46, 182], "hsiao": [46, 182], "2002": [46, 182], "siam": [46, 131, 182, 284], "sdm": [46, 182], "457": [46, 182], "473": [46, 182], "1137": [46, 131, 182, 284], "9781611972726": [46, 182], "27": [46, 182], "tidlist": [46, 66, 82, 88, 92, 97, 103, 104, 116, 182, 201, 217, 232, 235, 239, 242, 246, 247, 261], "hash": [46, 97, 182, 239, 242], "equival": [46, 64, 66, 86, 88, 97, 116, 123, 182, 199, 201, 227, 232, 239, 242, 261, 273], "maxfp": [48, 175], "grahn": [48, 175], "zhu": [48, 175], "enc": [48, 175], "concordia": [48, 175], "ca": [48, 175], "paper": [48, 106, 175, 249], "hpdm03": [48, 175], "pdf": [48, 52, 88, 89, 95, 106, 108, 131, 175, 184, 232, 233, 237, 249, 252, 284], "maxper": [48, 52, 54, 56, 58, 60, 62, 64, 66, 75, 79, 82, 86, 93, 95, 97, 98, 100, 101, 103, 106, 108, 116, 117, 127, 129, 131, 139, 175, 184, 186, 189, 190, 193, 199, 201, 208, 211, 212, 217, 218, 219, 226, 227, 228, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 249, 252, 261, 262, 263, 278, 279, 282, 284], "functon": [48, 175], "numwork": [49, 91, 101, 177, 178, 179], "li": [49, 54, 177, 179, 186, 277], "l": [49, 121, 177], "zeng": [49, 177], "q": [49, 177], "he": [49, 177], "z": [49, 75, 79, 177, 208, 211], "shi": [49, 177], "mapreduc": [49, 177], "2012": [49, 123, 177, 267], "13th": [49, 177], "aci": [49, 177], "softwar": [49, 86, 97, 177, 226, 241], "engin": [49, 116, 177, 261], "artifici": [49, 116, 177, 262], "comput": [49, 75, 97, 104, 116, 121, 123, 127, 177, 209, 243, 247, 262, 271, 278, 279], "kyoto": [49, 177], "japan": [49, 177], "236": [49, 177], "241": [49, 177], "1109": [49, 50, 56, 62, 69, 79, 80, 93, 97, 110, 123, 129, 133, 177, 180, 189, 193, 202, 211, 214, 228, 243, 253, 271, 282, 286], "snpd": [49, 177], "31": [49, 177], "numpartit": [49, 91, 177, 178, 179], "partit": [49, 91, 101, 177, 178, 179], "On": [49, 177, 178, 179], "worker": [49, 101, 177, 178, 179], "executor": [49, 177, 178, 179], "unit": [49, 177, 178, 179], "children": [49, 82, 91, 97, 101, 179, 217, 243], "null": [49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 179, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 253, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "nodelink": [49, 82, 179, 217], "addtransact": [49, 82, 179, 217], "addnodetonodelink": [49, 179], "add": [49, 80, 82, 91, 101, 119, 120, 179, 214, 217], "generateconditionaltre": [49, 179], "haoyuan": [49, 179], "pfp": [49, 179], "queri": [49, 179], "recommend": [49, 106, 141, 179, 249, 254], "2008": [49, 179], "static": [49, 139, 179, 238], "buildtre": [49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 179, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "genallfrequentpattern": [49, 179], "tree_tupl": [49, 179], "id": [49, 52, 75, 76, 101, 119, 120, 179, 184], "gencondtransact": [49, 91, 101, 179], "genfreqpattern": [49, 179], "new": [49, 71, 73, 75, 79, 80, 84, 88, 89, 95, 106, 110, 119, 123, 179, 203, 206, 207, 209, 212, 214, 221, 232, 233, 237, 249, 253, 267], "getpartitionid": [49, 91, 101, 179], "zhi": [50, 180], "hong": [50, 54, 135, 180, 186], "deng": [50, 180], "guo": [50, 180], "dong": [50, 180], "fang": [50, 180], "icmlc": [50, 180], "2007": [50, 52, 180, 184], "4370261": [50, 180], "xplore": [50, 180], "topkfrequentpattern": [50, 180], "element": [52, 54, 56, 58, 60, 62, 66, 75, 79, 80, 119, 120, 141, 184, 186, 189, 190, 193, 201, 208, 211, 214, 254, 277], "iutil": [52, 184], "rutil": [52, 184], "keep": [52, 54, 56, 58, 60, 62, 71, 73, 75, 79, 80, 110, 184, 186, 189, 190, 193, 203, 206, 207, 208, 211, 212, 214, 253], "tact": [52, 184], "rest": [52, 184], "_corelatedfuzzyfrequentpattern": [52, 184], "lin": [52, 54, 75, 76, 116, 123, 135, 184, 186, 207, 261, 267], "chueh": [52, 184], "h": [52, 60, 116, 184, 262], "citeseerx": [52, 184], "ist": [52, 184], "psu": [52, 184], "edu": [52, 184], "viewdoc": [52, 184], "download": [52, 184], "416": [52, 184], "6053": [52, 184], "rep": [52, 184], "rep1": [52, 184], "starttimetim": [52, 184], "itemscnt": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "mapitemslowsum": [52, 54, 56, 62, 184, 193], "map": [52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 110, 119, 120, 184, 186, 189, 190, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 253], "track": [52, 54, 56, 58, 60, 62, 75, 79, 184, 186, 189, 190, 193, 208, 211], "low": [52, 54, 56, 62, 80, 184, 191, 193, 214], "region": [52, 54, 56, 58, 60, 62, 184, 189, 193], "mapitemsmidsum": [52, 54, 56, 60, 62, 184, 193], "middl": [52, 54, 56, 62, 184, 193], "mapitemshighsum": [52, 54, 56, 62, 184, 193], "mapitemsum": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "mapitemregion": [52, 54, 56, 58, 60, 62, 184, 189, 193], "jointcnt": [52, 54, 62, 184, 193], "ffi": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "construct": [52, 54, 56, 58, 60, 62, 75, 79, 88, 91, 97, 119, 120, 123, 125, 127, 135, 184, 186, 189, 190, 193, 208, 209, 211, 224, 230, 231, 241, 265, 266, 267, 268, 269, 270, 271, 273, 276, 278, 279], "buffers": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "buffer": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "itembuff": [52, 54, 62, 184, 193], "starttimemin": [52, 184], "getratio": [52, 184], "prefixlen": [52, 54, 56, 58, 60, 62, 75, 79, 184, 186, 189, 190, 193, 208, 211], "ration": [52, 184], "fsfimin": [52, 54, 56, 58, 62, 184, 186, 189, 190, 193], "fsfim": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "px": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "findelementwithtid": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "ulist": [52, 54, 56, 58, 60, 62, 75, 79, 184, 186, 189, 190, 193, 208, 211], "writeout": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "sumiutil": [52, 54, 56, 58, 60, 62, 184, 186, 189, 190, 193], "patten": [52, 54, 56, 58, 60, 62, 82, 184, 186, 189, 190, 193, 217, 218, 219], "correlatedfuzzyfrequentpattern": [52, 184], "_fuzzyfrequentpattenr": [54, 186], "desir": [54, 56, 58, 62, 186, 189, 190, 193], "trivial": [54, 56, 58, 62, 186, 189, 190, 193], "huge": [54, 56, 58, 62, 186, 189, 190, 193], "prune": [54, 56, 58, 62, 186, 189, 190, 193], "chun": [54, 123, 135, 186, 267], "wei": [54, 75, 101, 123, 135, 186, 209, 267], "ting": [54, 186], "fournier": [54, 66, 71, 75, 76, 82, 89, 93, 110, 116, 117, 127, 135, 186, 201, 203, 207, 217, 218, 219, 228, 233, 253, 261, 262, 263, 279], "viger": [54, 66, 71, 75, 76, 82, 93, 110, 116, 117, 127, 135, 186, 201, 203, 207, 217, 218, 219, 228, 253, 261, 262, 263, 279], "philipp": [54, 66, 89, 103, 127, 135, 186, 201, 233, 246, 279], "tzung": [54, 123, 135, 186, 267], "fast": [54, 75, 76, 123, 186, 207, 271], "29": [54, 186], "2373": [54, 186], "2379": [54, 186], "3233": [54, 186], "IFS": [54, 186], "151936": [54, 186], "researchg": [54, 186], "net": [54, 186], "286510908_a_fast_algorithm_for_mining_fuzzy_frequent_itemset": [54, 186], "fmfile": [54, 186], "joinscnt": [54, 56, 58, 60, 62, 186, 189, 190], "compareitem": [54, 60, 186], "o1": [54, 60, 186], "o2": [54, 60, 186], "ascend": [54, 60, 186], "ffiminermin": 54, "fuzzymembership": 54, "nfile": [56, 58, 64, 66, 69, 71, 73, 78, 79, 80, 125, 129, 189, 190, 199, 201, 202, 203, 206, 211, 212, 214, 276, 282], "_fuzzyspatialfrequentpattern": [56, 58, 189, 190], "veena": [56, 79, 125, 127, 189, 212, 276, 279], "chithra": [56, 189], "u": [56, 62, 71, 80, 82, 88, 89, 95, 97, 104, 106, 110, 116, 131, 189, 193, 203, 214, 217, 218, 219, 232, 233, 237, 243, 247, 249, 253, 261, 284], "agarw": [56, 189], "zettsu": [56, 66, 69, 79, 90, 93, 97, 100, 101, 125, 127, 129, 189, 201, 202, 212, 228, 234, 239, 245, 276, 278, 279, 282], "quantit": [56, 60, 62, 79, 80, 189, 193, 211, 214, 281], "spatiotempor": [56, 66, 69, 73, 79, 80, 129, 189, 201, 202, 206, 211, 212, 214, 282], "2021": [56, 79, 80, 97, 110, 127, 189, 211, 214, 239, 253, 278], "fuzz": [56, 62, 189, 193], "fuzz45933": [56, 189], "9494594": [56, 189], "neighbor": [56, 58, 75, 79, 119, 120, 147, 189, 190, 208, 211, 283], "intersect": [56, 58, 73, 79, 80, 189, 190, 206, 212, 214], "neighbourx": [56, 58, 189, 190], "neighbouri": [56, 58, 189, 190], "common": [56, 58, 64, 66, 69, 73, 79, 80, 189, 190, 199, 201, 202, 206, 212, 214, 265], "samplen": [56, 58, 64, 66, 69, 73, 75, 79, 80, 189, 190, 199, 201, 202, 206, 209, 211, 212, 214], "fuzzyspatialfrequentpattern": [56, 189], "block": [56, 88, 92, 101, 103, 116, 232, 235, 246, 261], "consol": 56, "kwangwari": 58, "generategraph": 58, "_fuzzypartialperiodicpattern": 60, "irregulat": 60, "mapitemsgsum": 60, "mapitemshsum": 60, "f3pmine": 60, "palla": [60, 92, 125, 127, 235, 276, 279], "_fuzzyperiodicfrequentpattern": [62, 193], "2020": [62, 66, 82, 90, 98, 100, 101, 123, 193, 201, 217, 218, 219, 234, 244, 245, 269, 270], "glasgow": [62, 193], "uk": [62, 193], "fuzz48607": [62, 193], "9177579": [62, 193], "maxtid": [62, 193], "lasttid": [62, 193], "last": [62, 80, 82, 119, 120, 193, 214, 217, 218, 219], "itemstoregion": [62, 193], "il": 62, "_georeferencedperiodicfrequentpattern": [64, 199], "extens": [64, 66, 119, 199, 201, 250, 251], "\u00e9clat": [64, 199], "stand": [64, 66, 199, 201], "cluster": [64, 66, 199, 201], "bottom": [64, 66, 199, 201], "up": [64, 66, 75, 199, 201, 209], "lattic": [64, 66, 199, 201], "travers": [64, 66, 119, 199, 201], "referenc": [64, 66, 69, 71, 73, 125, 187, 188, 191, 194, 195, 196, 198, 199, 201, 202, 203, 206, 215, 256, 275, 276, 277, 281], "avail": [64, 66, 69, 199, 201, 202], "ifilenam": [64, 66, 69, 199, 201, 202], "getneighbouritem": [64, 66, 69, 199, 201, 202], "keyset": [64, 66, 69, 199, 201, 202], "mapneighbour": [64, 66, 69, 199, 201, 202], "neighbourfil": [64, 66, 69, 199, 201, 202], "georeferencedperidicfrequentpattern": [64, 199], "ravikumar": [64, 79, 88, 97, 104, 199, 212, 232, 239, 247], "_spatialfrequentpattern": [66, 201], "popular": [66, 201], "version": [66, 97, 201, 241], "koji": [66, 79, 90, 97, 100, 101, 125, 127, 201, 212, 234, 239, 245, 276, 279], "toyoda": [66, 69, 71, 86, 90, 100, 101, 106, 110, 127, 129, 201, 202, 203, 226, 234, 245, 249, 253, 279, 282], "masashi": [66, 86, 88, 89, 90, 100, 101, 106, 127, 201, 226, 232, 233, 234, 245, 249, 279], "kitsuregawa": [66, 69, 71, 86, 89, 90, 93, 100, 101, 106, 108, 129, 201, 202, 203, 226, 228, 233, 234, 245, 249, 252, 282], "masaru": [66, 86, 88, 89, 90, 100, 101, 106, 108, 201, 226, 232, 233, 234, 245, 249, 252], "veri": [66, 79, 80, 90, 97, 98, 100, 104, 110, 201, 211, 214, 234, 241, 244, 245, 247, 253], "dictkeystoint": [66, 201], "ilist": [66, 201], "eclatgener": [66, 92, 103, 104, 201, 235, 246, 247], "clist": [66, 201], "generatespatialfrequentpattern": [66, 201], "spatialfrequentpattern": [66, 201], "minp": [69, 88, 91, 92, 106, 108, 202, 230, 231, 232, 249, 252], "maxiat": [69, 202], "_partialperiodicspatialpattern": [69, 202], "georeferenec": [69, 202], "c": [69, 88, 93, 106, 116, 119, 120, 121, 129, 202, 224, 228, 232, 249, 256, 261, 265, 266, 282], "saideep": [69, 93, 101, 106, 202, 228, 249], "2019": [69, 71, 93, 116, 129, 202, 203, 228, 261, 282], "big": [69, 79, 80, 92, 98, 101, 104, 110, 116, 202, 211, 214, 235, 244, 247, 253, 262], "233": [69, 202], "238": [69, 202], "bigdata47090": [69, 202], "9005693": [69, 202], "partialperiodicspatialpattern": [69, 202], "minutil": [71, 73, 75, 76, 78, 79, 80, 110, 203, 206, 207, 208, 209, 211, 212, 214, 253], "_utilitypattern": [71, 73, 75, 76, 79, 110, 203, 206, 207, 208, 209, 211, 212, 253], "help": [71, 110, 203, 253], "hufi": [71, 203], "cutoff": [71, 203], "suffix": [71, 203], "pakdd": [71, 89, 97, 123, 125, 203, 233, 240, 268, 276], "978": [71, 73, 92, 97, 103, 104, 116, 123, 125, 127, 203, 206, 235, 240, 246, 247, 262, 268, 276, 278, 279], "030": [71, 73, 127, 203, 206, 278], "16145": [71, 203], "3_15": [71, 203], "candidatecount": [71, 73, 75, 79, 80, 110, 203, 206, 207, 209, 212, 214, 253], "maxmemori": [71, 73, 75, 76, 79, 80, 110, 203, 206, 207, 209, 212, 214, 253], "highutilityfrequentitemset": [71, 203], "utilitybinarraylu": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "hold": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "local": [71, 73, 75, 79, 80, 82, 110, 203, 206, 207, 212, 214, 215, 216, 217, 218, 219, 253, 265], "utilitybinarraysu": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "subtre": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "oldnamestonewnam": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "old": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "newnamestooldnam": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "singleitemsetssupport": [71, 203], "singleitemsetsutil": [71, 203], "patterncount": [71, 73, 75, 79, 110, 203, 206, 207, 212, 253], "rhui": [71, 110, 203, 253], "itemstokeep": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "promis": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "i": [71, 110, 119, 120, 123, 191, 203, 253, 265, 271, 277, 281], "extend": [71, 73, 75, 79, 80, 110, 119, 120, 203, 206, 207, 212, 214, 253], "itemstoexplor": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "need": [71, 110, 119, 203, 253, 256], "backtrackinghufim": [71, 203], "transactionsofp": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "prefixlength": [71, 73, 75, 79, 80, 108, 110, 203, 206, 207, 212, 214, 252, 253], "useutilitybinarraystocalculateupperbound": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "transactionsp": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "sub": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "tempposit": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "rel": [71, 108, 110, 148, 203, 215, 251, 252, 253, 254, 265, 266, 281, 285], "what": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "chose": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "isequ": [71, 73, 203, 206], "transaction1": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "transaction2": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "ident": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "useutilitybinarraytocalculatesubtreeutilityfirsttim": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "sortdatabas": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "sorttransact": [71, 73, 203, 206], "trans1": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "trans2": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "useutilitybinarraytocalculatelocalutilityfirsttim": [71, 73, 75, 79, 80, 110, 203, 206, 207, 212, 214, 253], "35": [71, 73, 75, 79, 80, 110, 203, 206, 207, 208, 209, 211, 212, 214, 253], "pradeep": [71, 73, 75, 79, 80, 110, 203, 206, 207, 209, 212, 214, 253], "pallikila": [71, 73, 75, 79, 80, 110, 203, 206, 207, 209, 211, 212, 214, 253], "satisfi": [73, 79, 101, 139, 148, 206, 212, 238, 285], "37188": [73, 206], "3_17": [73, 206], "highutilityfrequentspatialitemset": [73, 206], "pmu": [73, 79, 80, 206, 211, 212, 214], "shufi": [73, 206], "ie": [73, 75, 79, 80, 206, 207, 212, 214], "subtreeutil": [73, 75, 79, 80, 206, 207, 212, 214], "grater": [73, 79, 80, 206, 212, 214], "calculateneighbourintersect": [73, 79, 80, 206, 212, 214], "backtrackingefim": [73, 75, 79, 80, 206, 207, 212, 214], "shui": [73, 79, 206, 212], "neighbourhoodlist": [73, 79, 80, 206, 212, 214], "av": [73, 79, 80, 206, 212, 214], "lst1": [73, 79, 80, 206, 212, 214], "lst2": [73, 79, 80, 206, 212, 214], "bin": [73, 79, 80, 206, 212, 214], "fastest": [75, 76, 123, 207, 271], "zida": [75, 76, 207], "cw": [75, 76, 207], "inf": [75, 76, 119, 120, 207], "syst": [75, 76, 84, 207, 221], "51": [75, 76, 207], "595": [75, 76, 207], "625": [75, 76, 207], "2017": [75, 76, 86, 88, 91, 133, 207, 226, 230, 231, 286], "s10115": [75, 76, 207], "016": [75, 76, 207], "0986": [75, 76, 207], "highutilityitemset": [75, 79, 207, 212], "hui": [75, 79, 207, 208, 211], "greater": [75, 116, 207, 261, 262], "is_equ": [75, 80, 110, 207, 214, 253], "sort_transact": [75, 79, 80, 110, 207, 212, 214, 253], "_pd": [75, 207], "_transact": [75, 110, 207, 253], "ifile1": [75, 208], "hmier": [75, 208], "mapfmap": [75, 79, 208, 211], "euc": [75, 79, 208, 211], "fhm": [75, 79, 208, 211], "genet": [75, 161, 208], "huicnt": [75, 79, 208, 211], "nighbou": [75, 208], "explore_searchtre": [75, 79, 208, 211], "updateclos": [75, 79, 208, 211], "cul": [75, 79, 208, 211], "st": [75, 79, 208, 211], "excul": [75, 79, 208, 211], "newt": [75, 79, 208, 211], "ex": [75, 79, 208, 211], "ey_t": [75, 208], "updat": [75, 79, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 119, 123, 125, 127, 135, 208, 211, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "saveitemset": [75, 79, 108, 208, 211, 252], "updateel": [75, 79, 208, 211], "duppo": [75, 208], "vale": [75, 79, 208, 211], "duplic": [75, 79, 208, 211], "construccul": [75, 208], "exnighbor": [75, 208], "phase": [75, 209], "vincent": [75, 209], "tseng": [75, 209], "cheng": [75, 101, 209], "wu": [75, 101, 209], "bai": [75, 123, 209, 269, 270], "en": [75, 209], "shie": [75, 209], "philip": [75, 209], "yu": [75, 209], "2010": [75, 209], "16th": [75, 209], "machineri": [75, 209], "york": [75, 209], "ny": [75, 209], "usa": [75, 79, 80, 110, 123, 209, 211, 214, 253, 271], "253": [75, 209], "262": [75, 110, 209, 253], "1835804": [75, 209], "1835839": [75, 209], "numberofnod": [75, 209], "parentnumberofnod": [75, 209], "parent": [75, 82, 91, 97, 101, 127, 209, 217, 243, 279], "mapitemtominimumutil": [75, 209], "phui": [75, 209], "mapitemtotwu": [75, 209], "twu": [75, 79, 80, 209, 212, 214], "createlocaltre": [75, 209], "alpha": [75, 91, 209], "thread": [75, 76, 120], "renam": [75, 76], "resid": [75, 76], "byte": [75, 76], "uniqu": [75, 76, 265], "read_fil": [75, 76], "filter": [75, 76], "primari": [75, 76, 80, 214], "secondari": [75, 76, 80, 214], "binarysearch": [75, 76], "arr": [75, 76], "binari": [75, 76, 191, 224, 277, 281], "project": [75, 76, 80, 101, 214], "file_data": [75, 76], "utilitypattern": [78, 80, 214], "abc": [78, 80, 86, 92], "actual": [78, 80, 250, 251], "model": [79, 143, 211, 264], "mani": [79, 211], "real": [79, 211, 281], "world": [79, 211, 281], "spatio": [79, 211], "orlando": [79, 80, 110, 211, 214, 253], "fl": [79, 80, 110, 211, 214, 253], "4925": [79, 80, 211, 214], "4935": [79, 80, 211, 214], "bigdata52589": [79, 80, 110, 211, 214, 253], "9671912": [79, 80, 211, 214], "mapofpmu": [79, 211], "constructcul": [79, 211], "compactulist": [79, 211], "exneighbour": [79, 211], "eyt": [79, 211], "duprevpo": [79, 211], "pamalla": [79, 125, 212, 276], "penugonda": [79, 212], "raj": [79, 212], "bathala": [79, 212], "dao": [79, 116, 127, 212, 262, 278], "minh": [79, 212], "bommisetti": [79, 212], "2023": [79, 106, 125, 127, 212, 249, 276, 279], "hdshui": [79, 212], "novel": [79, 84, 212, 222], "dimension": [79, 212], "26": [79, 212], "s10489": [79, 117, 123, 212, 263, 269, 270], "022": [79, 212], "04436": [79, 212], "when": [79, 80, 82, 120, 212, 214, 217, 218, 219], "_isequ": [79, 212], "datasetpath": [80, 214], "largest": [80, 214], "getmaxitem": [80, 214], "tkshui": [80, 214], "additemset": [80, 214], "prioriti": [80, 214], "queue": [80, 120, 214], "ad": [80, 82, 86, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 214, 217, 227, 228, 234, 237, 240, 241, 242, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 276, 278, 279], "numpi": [80, 214], "heaplist": [80, 214], "inttostr": [80, 214], "item1": [80, 214, 256, 265, 266], "item2": [80, 214, 256, 265, 266], "whether": [80, 119, 120, 214], "posit": [80, 108, 120, 127, 214, 252, 278], "strtoint": [80, 214], "temp": [80, 214], "transactionutil": [80, 214], "utilit": [80, 214], "prefixutil": [80, 214], "offset": [80, 214], "pointer": [80, 214], "projectedtransact": [80, 214], "till": [80, 214], "getitem": [80, 214], "getutil": [80, 214], "getpmu": [80, 214], "getlastposit": [80, 214], "removeunpromisingitem": [80, 214], "remov": [80, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 119, 120, 123, 125, 127, 135, 214, 228, 230, 231, 234, 237, 240, 241, 243, 245, 249, 262, 263, 267, 268, 269, 270, 271, 273, 276, 278, 279], "insertionsort": [80, 214], "projecttransact": [80, 214], "nams": [80, 214], "maxsop": [82, 217, 218, 219], "mindur": [82, 217, 218, 219], "_localperiodicpattern": [82, 217, 218, 219], "spillov": [82, 217, 218, 219], "minim": [82, 217, 218, 219], "ensur": [82, 148, 217, 218, 219, 285], "those": [82, 217, 218, 219], "yang": [82, 116, 117, 217, 218, 219, 261, 263], "ventura": [82, 217, 218, 219], "luna": [82, 110, 217, 218, 219, 253], "discret": [82, 217, 218, 219], "scienc": [82, 104, 116, 121, 123, 127, 144, 217, 218, 219, 247, 262, 269, 270, 274, 278, 279], "elsevi": [82, 217, 218, 219], "ppt": [82, 217, 218, 219], "1016": [82, 84, 86, 97, 123, 217, 218, 219, 221, 226, 241, 267], "ins": [82, 217, 218, 219], "09": [82, 84, 123, 217, 218, 219, 221, 267], "044": [82, 217, 218, 219], "consecut": [82, 217, 218, 219], "tsmin": [82, 217, 218, 219], "date": [82, 217, 218, 219], "tsmax": [82, 217, 218, 219], "ptl": [82, 217, 218, 219], "tslist": [82, 217, 218, 219], "bit": [82, 121, 217, 218, 219], "vector": [82, 121, 217, 218, 219], "whole": [82, 217], "findsepar": [82, 217], "split": [82, 217, 224], "cretelpplist": [82, 217], "createtslist": [82, 217, 218, 219], "generatelpp": [82, 217, 218, 219], "createlpptre": [82, 217], "lpptree": [82, 217], "patterngrowth": [82, 217], "prefixpflist": [82, 217], "calculateptl": [82, 217, 218, 219], "calculateptlbit": [82, 217], "getlocalperiodicpattern": [82, 217, 218, 219], "lppmgrowth": [82, 217], "minsop": [82, 217, 218, 219], "f": [82, 217, 218, 219, 250, 251, 256, 265, 266], "nakamura": [82, 86, 217, 218, 219, 226, 227], "localperiodicpatterntre": [82, 217], "child": [82, 91, 217], "next": [82, 217], "getchild": [82, 217], "itemnam": [82, 97, 101, 217, 243], "don": [82, 217], "frequentpatterngrowth": [82, 217], "firstnodelink": [82, 217], "branch": [82, 97, 101, 217, 243], "frequentpatterntre": [82, 97, 101, 108, 217, 243, 252], "fixnodelink": [82, 217], "newnod": [82, 217], "deletenod": [82, 217], "createprefixtre": [82, 217], "timestamplist": [82, 217], "fix": [82, 197, 217], "lppmbreathsearch": [82, 218], "extensionofp": [82, 218, 219], "lppbreadth": [82, 218], "lppmdepthsearch": [82, 219], "mi": [84, 221, 222], "ya": [84, 221], "hu": [84, 221], "yen": [84, 221], "liang": [84, 221], "chen": [84, 221], "2006": [84, 221], "mechan": [84, 221], "deci": [84, 221], "42": [84, 197, 221], "octob": [84, 221], "24": [84, 221], "dss": [84, 221], "007": [84, 221], "were": [84, 123, 125, 127, 129, 131, 135, 221, 222, 267, 276, 278, 279, 282, 284], "appropri": [84, 123, 125, 127, 129, 131, 135, 221, 222, 267, 276, 278, 279, 282, 284], "limit": [84, 123, 125, 127, 129, 131, 135, 221, 222, 267, 276, 278, 279, 282, 284], "misfil": [84, 221, 222], "note": [84, 97, 98, 100, 101, 104, 106, 108, 110, 116, 121, 191, 197, 221, 222, 241, 242, 243, 244, 245, 247, 249, 252, 253, 261, 262, 265, 277], "11": [84, 86, 123, 222, 226, 273], "edbt": [84, 222], "1951365": [84, 222], "1951370": [84, 222], "minpr": [86, 226, 227], "venkatesh": [86, 226], "125": [86, 226], "170": [86, 226], "182": [86, 226], "issn": [86, 226], "0164": [86, 226], "1212": [86, 226], "jss": [86, 97, 226, 241], "2016": [86, 97, 226, 241, 243], "035": [86, 97, 226, 241], "storepatternsinfil": [86, 123, 226, 227, 269, 270, 273], "ouputfil": [86, 226, 227], "300": [86, 226, 227], "getpatternindf": [86, 88, 90, 91, 226, 227, 230, 231, 234], "tidset": [86, 227], "equibal": [86, 227], "getpartialperiodicpattern": [86, 227], "userspecifi": 86, "term": [86, 250, 251], "getfrequentpattern": [86, 90, 108, 234, 252], "relativep": [88, 230], "_partialperiodicpattern": [88, 89, 90, 91, 93, 228, 230, 231, 232, 233, 234], "3pgrowth": [88, 230, 231], "ssdbm": [88, 91, 230, 231], "17": [88, 91, 230, 231], "29th": [88, 91, 230, 231], "scientif": [88, 91, 230, 231], "managementjun": [88, 91, 230, 231], "30": [88, 91, 197, 230, 231], "6http": [88, 91, 230, 231], "3085504": [88, 91, 230, 231], "3085535": [88, 91, 230, 231], "partialperiodiconeitem": [88, 91, 230, 231], "updatetransact": [88, 91, 123, 125, 127, 135, 230, 231, 267, 268, 269, 270, 271, 276, 278], "aperiod": [88, 90, 91, 93, 95, 97, 100, 101, 116, 117, 127, 228, 230, 231, 234, 237, 240, 241, 245, 262, 263, 278, 279], "constrcut": [88, 91, 230, 231], "descripit": [88, 232], "3peclat": [88, 232], "kirana": [88, 232], "venkateshd": [88, 232], "toyodaa": [88, 232], "kitsuregawaa": [88, 232], "tkl": [88, 89, 95, 106, 232, 233, 237, 249], "ii": [88, 89, 95, 106, 232, 233, 237, 249], "tokyo": [88, 89, 95, 106, 232, 233, 237, 249], "ac": [88, 89, 95, 106, 232, 233, 237, 249], "jp": [88, 89, 95, 106, 232, 233, 237, 249], "upload": [88, 89, 95, 106, 232, 233, 237, 249], "publication_fil": [88, 89, 95, 106, 232, 233, 237, 249], "774": [88, 232], "jss_2017": [88, 232], "creatingoneitemset": [88, 97, 232, 239, 242], "getperiodandsupport": [88, 97, 232, 239, 242, 243], "periodicsupport": [89, 90, 91, 93, 228, 233, 234], "kiran1": [89, 233], "venkatesh2": [89, 233], "viger3": [89, 233], "toyoda1": [89, 233], "reddy2": [89, 233], "799": [89, 233], "max3p": [90, 234], "IS": [90, 234], "3p": [90, 234], "yutaka": [90, 100, 234, 245], "watanob": [90, 97, 100, 104, 234, 239, 245, 247], "bhaskar": [90, 100, 234, 245], "chaudhuri": [90, 100, 234, 245], "9260063": [90, 100, 234, 245], "maximaltre": [90, 234], "periodicfrequentoneitem": [90, 93, 95, 97, 100, 101, 116, 117, 127, 228, 234, 237, 240, 241, 245, 262, 263, 278, 279], "updatedatabas": [90, 93, 95, 97, 100, 101, 106, 116, 117, 127, 228, 234, 237, 240, 241, 245, 249, 262, 263, 279], "max3prowth": [90, 234], "threepgrowth": [90, 234], "_gettransact": 91, "addchild": [91, 97, 101, 243], "summari": [91, 101], "info": 91, "add_transact": 91, "add_transaction_summ": 91, "tid_summ": 91, "get_condition_pattern": 91, "remove_nod": 91, "node_v": 91, "get_t": 91, "ts": [91, 277], "merg": [91, 101], "generate_pattern": 91, "glist": 91, "isrespons": [91, 101], "lambda": [91, 101], "cond_tran": 91, "cond_pat": 91, "cond_tid": 91, "getpf": 91, "tid_list": 91, "getp": 91, "4pgrowth": 91, "me": 91, "npartit": [91, 101], "getfrequentitem": [91, 101], "getfrequentitemset": [91, 101], "perfreqitem": 91, "psinfo": 91, "setpartit": 91, "031": [92, 104, 116, 125, 235, 247, 262, 276], "39847": [92, 235], "6_28": [92, 235], "candidatelist": [92, 103, 104, 235, 246, 247], "generatefrequentpattern": [92, 103, 104, 235, 246, 247], "topk_pppgrowth": [92, 235], "irregular": [93, 137, 228, 229, 265], "workshop": [93, 129, 228, 282], "icdmw": [93, 129, 228, 282], "1020": [93, 228], "1028": [93, 228], "00147": [93, 228], "remain": [93, 95, 97, 101, 106, 116, 117, 123, 125, 127, 135, 224, 228, 237, 240, 249, 262, 263, 265, 267, 268, 269, 270, 271, 276, 278, 279], "maxperallconf": [95, 237], "_periodiccorrelatedpattern": [95, 237], "897": [95, 237], "venkatesh2018_chapter_discoveringperiod": [95, 237], "maaxperallconf": [95, 237], "thr": [95, 237], "topkpfp": [96, 102, 238], "kpfpminer": [96, 102, 238], "_periodicfrequentpattern": [97, 98, 100, 101, 103, 104, 127, 239, 240, 241, 242, 243, 244, 245, 246, 247, 278, 279], "toward": [97, 108, 116, 239, 252, 262], "columnar": [97, 116, 239, 262], "iea": [97, 101, 116, 239, 261, 262], "aie": [97, 101, 116, 239, 261, 262], "sy": [97, 123, 240, 268], "khairuzzaman": [97, 123, 240, 268], "tanbeer": [97, 123, 240, 268], "chowdhuri": [97, 240], "farhan": [97, 240], "byeong": [97, 240], "soo": [97, 240], "jeong": [97, 240], "young": [97, 240], "koo": [97, 240], "2009": [97, 240], "642": [97, 103, 123, 240, 246, 268], "01307": [97, 240], "2_24": [97, 240], "metho": [97, 240], "greedi": [97, 241], "udaykiran": [97, 241], "masarukitsuregawa": [97, 241], "krishnareddyd": [97, 241], "februari": [97, 241], "delimit": [97, 108, 241, 252], "pfpgorwthplu": [97, 241], "append": [97, 119, 243], "detail": [97, 123, 243, 271], "ps": [97, 243], "anirudh": [97, 243], "kitsuregawai": [97, 243], "symposium": [97, 123, 243, 273], "ssci": [97, 243], "7849926": [97, 243], "getconditionalpatternsindatafram": [97, 243], "onelengthitem": [97, 243], "conditionaltransact": [97, 243], "_interv": [97, 243], "fail": [97, 121, 243], "9378215": [98, 244], "maxpf": [100, 245], "maxpfrowth": [100, 245], "tostr": 101, "pfptree": 101, "itemid": 101, "satisfyp": 101, "numtran": 101, "mincount": 101, "framework": 101, "807": 101, "819": 101, "machin": [101, 135], "nowork": 101, "func1": 101, "ps1": 101, "func2": 101, "ps2": 101, "func3": 101, "endt": 101, "freqitem": 101, "topkpfpgrowth": [103, 246], "komat": [103, 246], "amphawan": [103, 133, 246, 286], "lenca": [103, 246], "athasit": [103, 246], "surarerk": [103, 246], "advanc": [103, 116, 121, 246, 262], "technolog": [103, 133, 246, 286], "chapter": [103, 123, 246, 268], "10392": [103, 246], "6_3": [103, 246], "sampl": [103, 191, 246, 265, 266, 277, 281], "2022": [104, 116, 117, 127, 247, 262, 263, 279], "bda": [104, 247], "lectur": [104, 116, 121, 247, 262], "vol": [104, 116, 121, 127, 247, 262, 278, 279], "13773": [104, 247], "cham": [104, 116, 127, 247, 262, 278], "24094": [104, 247], "2_14": [104, 247], "getper_sup": [104, 247], "minrec": [106, 249], "_recurringpattern": [106, 249], "haichuan": [106, 249], "shang": [106, 249], "693": [106, 249], "could": [106, 249], "potenti": [106, 140, 248, 249], "numer": [106, 249], "oneitem": [106, 249], "minr": [108, 252], "comad": [108, 252], "comad2012": [108, 252], "saveallcombin": [108, 252], "tempbuff": [108, 252], "frequentpatterngrowthgener": [108, 252], "port": [108, 252], "particular": [108, 197, 224, 252, 256, 265], "__mapsupport": [108, 252], "__minratio": [108, 252], "23": [108, 252], "minur": [110, 253], "invari": [110, 253], "252": [110, 253], "9672064": [110, 253], "relativehighutilityitemset": [110, 253], "backtrackingrhuim": [110, 253], "maxla": [116, 117, 261, 262, 263], "_stableperiodicfrequentpattern": [116, 117, 261, 263], "stabl": [116, 117, 215, 261, 262, 263, 264, 265], "dicov": [116, 261, 262], "three": [116, 261, 262], "contraint": [116, 261, 262], "labil": [116, 261, 262], "proc": [116, 261], "32nd": [116, 261], "conf": [116, 261], "industri": [116, 261], "lnai": [116, 261], "230": [116, 261], "244": [116, 261], "loss": [116, 261], "calculatela": [116, 261], "pfpeclat": [116, 261], "fujita": [116, 262], "ali": [116, 262], "wang": [116, 117, 262, 263], "ed": [116, 121, 127, 262, 278], "theori": [116, 262], "practic": [116, 262], "13343": [116, 262], "08530": [116, 262], "7_70": [116, 262], "includ": [116, 117, 119, 262, 263], "spplist": [116, 262], "appl": [117, 263], "intel": [117, 263], "52": [117, 263], "6917": [117, 263], "6938": [117, 263], "020": [117, 263], "02181": [117, 263], "ee": [119, 120], "rightmost": [119, 120], "containedg": [119, 120], "v1": [119, 120], "v2": [119, 120], "copi": [119, 120], "getallvlabel": [119, 120], "label": [119, 120], "getat": [119, 120], "index": [119, 120, 123, 215, 271], "geteelist": [119, 120], "getrightmost": [119, 120], "getrightmostpath": [119, 120], "isempti": [119, 120], "notpreofrm": [119, 120], "rightmostpath": 119, "onrightmostpath": [119, 120], "edgelabel": [119, 120], "getedgelabel": [119, 120], "vlabel1": [119, 120], "vlabel2": [119, 120], "getv1": [119, 120], "getv2": [119, 120], "getvlabel1": [119, 120], "getvlabel2": [119, 120], "pairsmallerthan": [119, 120], "smallerthan": [119, 120], "smallerthanorigin": [119, 120], "setofgraphsid": [119, 120], "vmap": [119, 120], "emptyintegerarrai": 119, "emptyvertexlist": 119, "findallwithlabel": [119, 120], "targetlabel": [119, 120], "getallneighbor": [119, 120], "getallvertic": [119, 120], "getedg": [119, 120], "getedgecount": [119, 120], "getid": [119, 120], "getnonprecalculatedallvertic": [119, 120], "getvlabel": [119, 120], "isneighbor": [119, 120], "precalculatelabelstovertic": [119, 120], "precalcul": [119, 120], "precalculatevertexlist": [119, 120], "vertic": [119, 120], "iter": 119, "precalculatevertexneighbor": [119, 120], "cach": [119, 120], "removeinfrequentlabel": [119, 120], "accordingli": 119, "minsupport": 119, "outputsinglevertic": [119, 120], "maxnumberofedg": [119, 120], "outputgraphid": [119, 120], "_gspan": 119, "edge_count_prun": [119, 120], "eliminate_infrequent_edge_label": [119, 120], "eliminate_infrequent_vertex_pair": [119, 120], "eliminate_infrequent_vertic": [119, 120], "findallonlyonevertex": [119, 120], "graphdb": [119, 120], "outputfrequentvertic": [119, 120], "option": 119, "infrequ": [119, 120], "boolean": [119, 120], "flag": 119, "determin": [119, 120, 136, 147, 149, 225, 283, 287], "getfrequentsubgraph": 119, "getsubgraphgraphmap": 119, "subgraph": [119, 120], "belong": 119, "fid": 119, "clabel": 119, "gid": 119, "gspandf": [119, 120], "subgraphid": [119, 120], "snippet": 119, "_ab": [119, 120], "itself": 119, "doe": 119, "modifi": 119, "found": 119, "dure": 119, "iscanon": [119, 120], "canon": 119, "compar": [119, 141, 254], "readgraph": [119, 120], "pars": 119, "removeinfrequentvertexpair": [119, 120], "rightmostpathextens": [119, 120], "graphid": [119, 120], "seem": 119, "rightmostpathextensionsfromsingl": [119, 120], "design": [119, 161], "outputpath": 119, "savesubgraphsbygraphid": 119, "flat": 119, "row": [119, 265, 266], "subgraphisomorph": [119, 120], "isomorph": 119, "try": 119, "valid": 119, "getsupportforitem": [119, 120], "incrementcount": [119, 120], "removeinfrequententriesfrommatrix": [119, 120], "setsupport": [119, 120], "vlabel": [119, 120], "addedg": [119, 120], "getedgelist": [119, 120], "getlabel": [119, 120], "removeedg": [119, 120], "edgetoremov": [119, 120], "deep": 120, "empti": 120, "tkginstanc": 120, "dynam": 120, "invok": 120, "loop": 120, "suffici": 120, "gspandynamicdf": 120, "until": 120, "insuffici": 120, "encount": 120, "smaller": 120, "compos": 120, "empty_vertex_list": 120, "empty_integer_arrai": 120, "been": 120, "spars": 120, "triangular": 120, "increment": 120, "entri": 120, "below": [120, 191, 224, 265, 266, 277, 281], "_tkg": 120, "dynamic_search": 120, "threaded_dynamic_search": 120, "getksubgraph": 120, "correct": 120, "newlin": 120, "getminsupport": 120, "getqueues": 120, "getsubgraphslist": 120, "metric": 120, "registerascandid": 120, "startthread": 120, "elist": 120, "connect": 120, "represent": 121, "koh": 121, "jl": 121, "yo": 121, "pw": 121, "2005": [121, 131, 284], "zhou": 121, "ooi": 121, "meng": 121, "dasfaa": 121, "3453": 121, "berlin": 121, "heidelberg": 121, "11408079_51": 121, "frequentfrequ": 121, "abil": 121, "handl": 121, "inconsist": 121, "incorrect": 121, "cufp": [123, 267], "peihong": [123, 267], "expert": [123, 267], "39": [123, 267], "issu": [123, 267], "march": [123, 267], "4084": [123, 267], "4093": [123, 267], "eswa": [123, 267], "087": [123, 267], "puf": [123, 135, 268, 273], "carson": [123, 268, 271, 273], "kai": [123, 268, 271, 273], "sang": [123, 268, 271, 273], "leung": [123, 268, 271, 273], "compact": [123, 268], "pacif": [123, 268], "asia": [123, 268], "2013": [123, 268], "37453": [123, 268], "1_2": [123, 268], "cup": [123, 269, 270], "tuong": [123, 269, 270], "le": [123, 269, 270], "vo": [123, 269, 270], "van": [123, 269, 270], "nam": [123, 269, 270], "huynh": [123, 269, 270], "ngoc": [123, 269, 270], "thanh": [123, 269, 270], "nguyen": [123, 269, 270], "sung": [123, 269, 270], "wook": [123, 269, 270], "baik": [123, 269, 270], "busi": [123, 269, 270], "media": [123, 269, 270], "llc": [123, 269, 270], "part": [123, 269, 270], "019": [123, 269, 270], "01622": [123, 269, 270], "getpatternsindatafram": [123, 269, 270, 273], "richard": [123, 271], "kyle": [123, 271], "mackinnon": [123, 271], "2014": [123, 271], "14": [123, 271], "societi": [123, 271], "893": [123, 271], "898": [123, 271], "146": [123, 271], "dict1": [123, 271], "printtre": [123, 127, 271, 279], "lije": [123, 273], "sun": [123, 273], "transform": [123, 273], "sac": [123, 273], "computingmarch": [123, 273], "983": [123, 273], "984": [123, 273], "1982185": [123, 273], "1982399": [123, 273], "gfp": [125, 276], "33380": [125, 276], "4_3": [125, 276], "neighborfil": [125, 276], "sampleneighbor": [125, 276], "ms": [127, 278], "zhang": [127, 278], "mantoro": [127, 278], "ayu": [127, 278], "wong": [127, 278], "hidayanto": [127, 278], "neural": [127, 278], "iconip": [127, 278, 279], "commun": [127, 278, 279], "1516": [127, 278], "92307": [127, 278], "5_83": [127, 278], "_lno": [127, 278], "removefalseposit": [127, 278], "plu": [127, 279], "upfp": [127, 279], "1792": [127, 279], "singapor": [127, 279], "981": [127, 279], "99": [127, 279], "1642": [127, 279], "9_16": [127, 279], "floot": [127, 129, 279, 282], "minw": [129, 282], "_weightedfrequentspatialpattern": [129, 282], "weight": [129, 131, 133, 135, 215, 281, 282, 283, 284, 285, 286, 287], "987": [129, 282], "996": [129, 282], "00143": [129, 282], "minweight": [129, 131, 282, 284], "weightfil": [129, 131, 282, 284], "weightfrequentneighbourhoodpattern": [129, 282], "wfile": [129, 131, 133, 135, 282, 284, 286], "_weightedfrequentpattern": [131, 135, 284], "wfminer": [131, 284], "yun": [131, 284], "leggett": [131, 284], "636": [131, 284], "640": [131, 284], "epub": [131, 284], "9781611972757": [131, 284], "76": [131, 284], "weightsampl": [131, 284], "weightfrequentpattern": [131, 284], "_wfile": [133, 286], "ws": [133, 286], "_weightedfrequentregularpattern": [133, 286], "wfri": [133, 286], "klangwisan": [133, 286], "9th": [133, 286], "smart": [133, 286], "kst": [133, 286], "66": [133, 286], "71": [133, 286], "7886090": [133, 286], "weightsupport": [133, 286], "expsup": 135, "expwsup": 135, "learn": 135, "recognit": 135, "book": [135, 191, 277, 281], "jerri": 135, "wensheng": 135, "gan": 135, "cyclic": [136, 139, 225, 238], "full": [136, 225], "follow": [136, 191, 197, 225, 256, 265, 277, 281], "strict": [136, 225], "still": [136, 225], "interesting": [136, 225], "mainten": [136, 140, 225, 248], "repeat": [137, 147, 149, 229, 283, 287], "exactli": [137, 229], "intermitt": [137, 229], "convent": [137, 229], "task": [138, 143, 144, 145, 146, 236, 264, 274, 275, 280], "sale": [138, 139, 236, 238], "observ": [139, 197, 238, 250, 251], "goal": [139, 140, 238, 248], "plai": [139, 238], "crucial": [139, 238], "role": [139, 238], "togeth": [142, 161, 255], "clickstream": [142, 255], "biolog": [142, 255], "log": [142, 255], "retent": [142, 255], "sppm": [143, 264], "success": [143, 264], "known": [143, 264], "spp": [143, 264], "reliabl": [143, 264], "adher": [143, 264], "stabil": [143, 264], "probabilist": [144, 145, 146, 274, 275, 277, 280], "determinist": [144, 146, 274, 280], "deal": [144, 146, 274, 280], "financ": [144, 274], "aris": [145, 275], "address": [146, 280], "pose": [146, 280], "neighborhood": [147, 197, 283], "assign": [147, 148, 149, 283, 285, 287], "proxim": [147, 283], "group": [147, 283], "cumul": [147, 148, 149, 283, 285, 287], "focu": [148, 285], "constitu": [149, 287], "contigu": [150, 215], "def": 150, "definit": 151, "pami": [152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 167, 175, 177, 178, 179, 180, 182, 184, 186, 189, 190, 191, 193, 199, 201, 202, 203, 206, 207, 208, 209, 211, 212, 214, 217, 218, 219, 221, 222, 226, 227, 228, 230, 231, 232, 233, 234, 235, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 252, 253, 261, 262, 263, 266, 267, 268, 269, 270, 271, 273, 276, 277, 278, 279, 281, 282, 284, 286], "typic": 161, "done": 161, "dna": 161, "protein": 161, "lead": 161, "aprioribitset": 176, "logic": 191, "pleas": [191, 265], "lie": 191, "zero": [191, 277], "impli": 191, "chanc": 191, "bread": [191, 277, 281], "jam": [191, 277, 281], "butter": [191, 277, 281], "pen": [191, 277, 281], "bat": [191, 277, 281], "shown": [191, 224, 265, 266, 277, 281], "tabl": [191, 265, 277, 281], "ball": [191, 277, 281], "fuzzyitema": 191, "fuzzyitemb": 191, "fuzzyitemn": 191, "fuzzyvalu": 191, "fuzzyvaluea": 191, "fuzzyvalueb": 191, "fuzzyvaluen": 191, "choic": [191, 277, 281], "sinc": [191, 265, 266, 277, 281], "polygon": [191, 277, 281], "comma": [191, 224, 265, 266, 277, 281], "facilit": [191, 277, 281], "symbol": [191, 277, 281], "110": [191, 281], "gather": [197, 224], "sensor": 197, "phenomenon": 197, "topic": 197, "spatialitem1": 197, "spatialitem2": 197, "spatialitemn": 197, "price": [197, 277, 281], "40": 197, "utilitya": [197, 281], "utilityb": [197, 281], "utilityn": [197, 281], "162": 197, "140": 197, "70": 197, "With": [215, 266], "modul": [215, 220], "packag": 220, "subpackag": 220, "content": 220, "broadli": 224, "classifi": 224, "window": 224, "windowid": 224, "brace": 224, "left": 224, "hand": 224, "side": 224, "letter": 224, "pend": 229, "quantiti": [250, 251], "mathemat": [250, 251], "wherea": [250, 251], "suppos": [250, 251], "intrus": [250, 251], "sid": 256, "itema": [256, 277, 281], "itemb": [256, 277, 281], "itemc": 256, "gap": 265, "implicitli": 265, "thereaft": 265, "rather": 265, "absolut": 265, "especi": 265, "variant": 265, "work": 265, "properli": 265, "share": 265, "itemn": [265, 266, 277, 281], "directli": 266, "storag": 266, "perfect": 277, "hidden": 277, "now": 277, "9": 277, "abov": 277, "probabilitya": 277, "probabilityb": 277, "probabilityn": 277, "introduct": 277, "becaus": 281, "contrast": 281, "fact": 281, "henceforth": 281, "most": 281, "extern": 281, "supermarket": 281, "do": 281, "purchas": 281, "custom": 281, "seo": 281}, "objects": {"": [[20, 0, 0, "-", "PAMI"]], "PAMI": [[21, 0, 0, "-", "AssociationRules"], [23, 0, 0, "-", "correlatedPattern"], [25, 0, 0, "-", "coveragePattern"], [27, 0, 0, "-", "extras"], [42, 0, 0, "-", "faultTolerantFrequentPattern"], [44, 0, 0, "-", "frequentPattern"], [51, 0, 0, "-", "fuzzyCorrelatedPattern"], [53, 0, 0, "-", "fuzzyFrequentPattern"], [55, 0, 0, "-", "fuzzyGeoreferencedFrequentPattern"], [57, 0, 0, "-", "fuzzyGeoreferencedPeriodicFrequentPattern"], [59, 0, 0, "-", "fuzzyPartialPeriodicPatterns"], [61, 0, 0, "-", "fuzzyPeriodicFrequentPattern"], [63, 0, 0, "-", "geoReferencedPeriodicFrequentPattern"], [65, 0, 0, "-", "georeferencedFrequentPattern"], [67, 0, 0, "-", "georeferencedFrequentSequencePattern"], [68, 0, 0, "-", "georeferencedPartialPeriodicPattern"], [70, 0, 0, "-", "highUtilityFrequentPattern"], [72, 0, 0, "-", "highUtilityGeoreferencedFrequentPattern"], [74, 0, 0, "-", "highUtilityPattern"], [77, 0, 0, "-", "highUtilityPatternsInStreams"], [78, 0, 0, "-", "highUtilitySpatialPattern"], [81, 0, 0, "-", "localPeriodicPattern"], [83, 0, 0, "-", "multipleMinimumSupportBasedFrequentPattern"], [85, 0, 0, "-", "partialPeriodicFrequentPattern"], [87, 0, 0, "-", "partialPeriodicPattern"], [93, 0, 0, "-", "partialPeriodicPatternInMultipleTimeSeries"], [94, 0, 0, "-", "periodicCorrelatedPattern"], [96, 0, 0, "-", "periodicFrequentPattern"], [105, 0, 0, "-", "recurringPattern"], [107, 0, 0, "-", "relativeFrequentPattern"], [109, 0, 0, "-", "relativeHighUtilityPattern"], [111, 0, 0, "-", "sequence"], [112, 0, 0, "-", "sequentialPatternMining"], [115, 0, 0, "-", "stablePeriodicFrequentPattern"], [118, 0, 0, "-", "subgraphMining"], [121, 0, 0, "-", "uncertainFaultTolerantFrequentPattern"], [122, 0, 0, "-", "uncertainFrequentPattern"], [124, 0, 0, "-", "uncertainGeoreferencedFrequentPattern"], [126, 0, 0, "-", "uncertainPeriodicFrequentPattern"], [128, 0, 0, "-", "weightedFrequentNeighbourhoodPattern"], [130, 0, 0, "-", "weightedFrequentPattern"], [132, 0, 0, "-", "weightedFrequentRegularPattern"], [134, 0, 0, "-", "weightedUncertainFrequentPattern"]], "PAMI.AssociationRules": [[22, 0, 0, "-", "basic"]], "PAMI.AssociationRules.basic": [[22, 0, 0, "-", "abstract"]], "PAMI.correlatedPattern": [[24, 0, 0, "-", "basic"]], "PAMI.correlatedPattern.basic": [[152, 0, 0, "-", "CoMine"], [153, 0, 0, "-", "CoMinePlus"], [24, 0, 0, "-", "abstract"]], "PAMI.correlatedPattern.basic.CoMine": [[152, 1, 1, "", "CoMine"]], "PAMI.correlatedPattern.basic.CoMine.CoMine": [[152, 2, 1, "", "getMemoryRSS"], [152, 2, 1, "", "getMemoryUSS"], [152, 2, 1, "", "getPatterns"], [152, 2, 1, "", "getPatternsAsDataFrame"], [152, 2, 1, "", "getRuntime"], [152, 2, 1, "", "mine"], [152, 2, 1, "", "printResults"], [152, 2, 1, "", "recursive"], [152, 2, 1, "", "save"], [152, 2, 1, "", "startMine"]], "PAMI.correlatedPattern.basic.CoMinePlus": [[153, 1, 1, "", "CoMinePlus"]], "PAMI.correlatedPattern.basic.CoMinePlus.CoMinePlus": [[153, 2, 1, "", "getMemoryRSS"], [153, 2, 1, "", "getMemoryUSS"], [153, 2, 1, "", "getPatterns"], [153, 2, 1, "", "getPatternsAsDataFrame"], [153, 2, 1, "", "getRuntime"], [153, 2, 1, "", "mine"], [153, 2, 1, "", "printResults"], [153, 2, 1, "", "recursive"], [153, 2, 1, "", "save"], [153, 2, 1, "", "startMine"]], "PAMI.coveragePattern": [[26, 0, 0, "-", "basic"]], "PAMI.coveragePattern.basic": [[155, 0, 0, "-", "CMine"], [156, 0, 0, "-", "CPPG"], [26, 0, 0, "-", "abstract"]], "PAMI.coveragePattern.basic.CMine": [[155, 1, 1, "", "CMine"]], "PAMI.coveragePattern.basic.CMine.CMine": [[155, 2, 1, "", "creatingCoverageItems"], [155, 2, 1, "", "genPatterns"], [155, 2, 1, "", "generateAllPatterns"], [155, 2, 1, "", "getMemoryRSS"], [155, 2, 1, "", "getMemoryUSS"], [155, 2, 1, "", "getPatterns"], [155, 2, 1, "", "getPatternsAsDataFrame"], [155, 2, 1, "", "getRuntime"], [155, 2, 1, "", "mine"], [155, 2, 1, "", "printResults"], [155, 2, 1, "", "save"], [155, 2, 1, "", "startMine"], [155, 2, 1, "", "tidToBitset"]], "PAMI.coveragePattern.basic.CPPG": [[156, 1, 1, "", "CPPG"]], "PAMI.coveragePattern.basic.CPPG.CPPG": [[156, 2, 1, "", "getMemoryRSS"], [156, 2, 1, "", "getMemoryUSS"], [156, 2, 1, "", "getPatterns"], [156, 2, 1, "", "getPatternsAsDataFrame"], [156, 2, 1, "", "getRuntime"], [156, 2, 1, "", "mine"], [156, 2, 1, "", "printResults"], [156, 2, 1, "", "save"], [156, 2, 1, "", "startMine"]], "PAMI.extras": [[28, 0, 0, "-", "DF2DB"], [29, 0, 0, "-", "calculateMISValues"], [30, 0, 0, "-", "dbStats"], [31, 0, 0, "-", "fuzzyTransformation"], [32, 0, 0, "-", "generateDatabase"], [27, 0, 0, "-", "generateLatexGraphFile"], [33, 0, 0, "-", "graph"], [34, 0, 0, "-", "image2Database"], [35, 0, 0, "-", "imageProcessing"], [36, 0, 0, "-", "messaging"], [37, 0, 0, "-", "neighbours"], [38, 0, 0, "-", "sampleDatasets"], [27, 0, 0, "-", "scatterPlotSpatialPoints"], [39, 0, 0, "-", "stats"], [40, 0, 0, "-", "syntheticDataGenerator"], [27, 0, 0, "-", "topKPatterns"], [27, 0, 0, "-", "uncertaindb_convert"], [41, 0, 0, "-", "visualize"]], "PAMI.extras.DF2DB": [[28, 0, 0, "-", "DenseFormatDF"], [28, 0, 0, "-", "SparseFormatDF"], [28, 0, 0, "-", "createTDB"], [28, 0, 0, "-", "denseDF2DBPlus"], [28, 0, 0, "-", "denseDF2DB_dump"], [28, 0, 0, "-", "sparseDF2DBPlus"]], "PAMI.extras.DF2DB.DenseFormatDF": [[28, 1, 1, "", "DenseFormatDF"]], "PAMI.extras.DF2DB.DenseFormatDF.DenseFormatDF": [[28, 2, 1, "", "convert2MultipleTimeSeries"], [28, 2, 1, "", "convert2TemporalDatabase"], [28, 2, 1, "", "convert2TransactionalDatabase"], [28, 2, 1, "", "convert2UncertainTransactional"], [28, 2, 1, "", "convert2UtilityDatabase"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.SparseFormatDF": [[28, 1, 1, "", "SparseFormatDF"]], "PAMI.extras.DF2DB.SparseFormatDF.SparseFormatDF": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.createTDB": [[28, 1, 1, "", "createTDB"]], "PAMI.extras.DF2DB.createTDB.createTDB": [[28, 2, 1, "", "createTDB"], [28, 2, 1, "", "save"]], "PAMI.extras.DF2DB.denseDF2DBPlus": [[28, 1, 1, "", "DenseFormatDFPlus"]], "PAMI.extras.DF2DB.denseDF2DBPlus.DenseFormatDFPlus": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.denseDF2DB_dump": [[28, 1, 1, "", "DenseFormatDF"]], "PAMI.extras.DF2DB.denseDF2DB_dump.DenseFormatDF": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.sparseDF2DBPlus": [[28, 1, 1, "", "SparseFormatDFPlus"]], "PAMI.extras.DF2DB.sparseDF2DBPlus.SparseFormatDFPlus": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.calculateMISValues": [[29, 0, 0, "-", "usingBeta"], [29, 0, 0, "-", "usingSD"]], "PAMI.extras.calculateMISValues.usingBeta": [[29, 1, 1, "", "usingBeta"]], "PAMI.extras.calculateMISValues.usingBeta.usingBeta": [[29, 2, 1, "", "calculateMIS"], [29, 2, 1, "", "getMISDataFrame"], [29, 2, 1, "", "save"]], "PAMI.extras.calculateMISValues.usingSD": [[29, 1, 1, "", "usingSD"]], "PAMI.extras.calculateMISValues.usingSD.usingSD": [[29, 2, 1, "", "calculateMIS"], [29, 2, 1, "", "getDataFrame"], [29, 2, 1, "", "save"]], "PAMI.extras.dbStats": [[30, 0, 0, "-", "FuzzyDatabase"], [30, 0, 0, "-", "MultipleTimeSeriesFuzzyDatabaseStats"], [30, 0, 0, "-", "SequentialDatabase"], [30, 0, 0, "-", "TemporalDatabase"], [30, 0, 0, "-", "TransactionalDatabase"], [30, 0, 0, "-", "UncertainTemporalDatabase"], [30, 0, 0, "-", "UncertainTransactionalDatabase"], [30, 0, 0, "-", "UtilityDatabase"]], "PAMI.extras.dbStats.FuzzyDatabase": [[30, 1, 1, "", "FuzzyDatabase"]], "PAMI.extras.dbStats.FuzzyDatabase.FuzzyDatabase": [[30, 2, 1, "", "creatingItemSets"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getAverageUtility"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMaximumUtility"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getMinimumUtility"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSortedUtilityValuesOfItem"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTotalUtility"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.MultipleTimeSeriesFuzzyDatabaseStats": [[30, 1, 1, "", "MultipleTimeSeriesFuzzyDatabaseStats"]], "PAMI.extras.dbStats.MultipleTimeSeriesFuzzyDatabaseStats.MultipleTimeSeriesFuzzyDatabaseStats": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.SequentialDatabase": [[30, 1, 1, "", "SequentialDatabase"]], "PAMI.extras.dbStats.SequentialDatabase.SequentialDatabase": [[30, 2, 1, "", "getAverageItemPerSequenceLength"], [30, 2, 1, "", "getAverageItemPerSubsequenceLength"], [30, 2, 1, "", "getAverageSubsequencePerSequenceLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumSequenceLength"], [30, 2, 1, "", "getMaximumSubsequenceLength"], [30, 2, 1, "", "getMinimumSequenceLength"], [30, 2, 1, "", "getMinimumSubsequenceLength"], [30, 2, 1, "", "getSequenceSize"], [30, 2, 1, "", "getSequencialLengthDistribution"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getStandardDeviationSequenceLength"], [30, 2, 1, "", "getStandardDeviationSubsequenceLength"], [30, 2, 1, "", "getSubsequencialLengthDistribution"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getVarianceSequenceLength"], [30, 2, 1, "", "getVarianceSubsequenceLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"]], "PAMI.extras.dbStats.TemporalDatabase": [[30, 1, 1, "", "TemporalDatabase"]], "PAMI.extras.dbStats.TemporalDatabase.TemporalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageInterArrivalPeriod"], [30, 2, 1, "", "getAveragePeriodOfItem"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumInterArrivalPeriod"], [30, 2, 1, "", "getMaximumPeriodOfItem"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumInterArrivalPeriod"], [30, 2, 1, "", "getMinimumPeriodOfItem"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [30, 2, 1, "", "getPeriodsInRange"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationPeriod"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.TransactionalDatabase": [[30, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.dbStats.TransactionalDatabase.TransactionalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UncertainTemporalDatabase": [[30, 1, 1, "", "UncertainTemporalDatabase"]], "PAMI.extras.dbStats.UncertainTemporalDatabase.UncertainTemporalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAveragePeriod"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumPeriod"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumPeriod"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationPeriod"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UncertainTransactionalDatabase": [[30, 1, 1, "", "UncertainTransactionalDatabase"]], "PAMI.extras.dbStats.UncertainTransactionalDatabase.UncertainTransactionalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UtilityDatabase": [[30, 1, 1, "", "UtilityDatabase"]], "PAMI.extras.dbStats.UtilityDatabase.UtilityDatabase": [[30, 2, 1, "", "creatingItemSets"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getAverageUtility"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMaximumUtility"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getMinimumUtility"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSortedUtilityValuesOfItem"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTotalUtility"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.fuzzyTransformation": [[31, 0, 0, "-", "abstract"], [31, 0, 0, "-", "temporalToFuzzy"], [31, 0, 0, "-", "transactionalToFuzzy"]], "PAMI.extras.fuzzyTransformation.temporalToFuzzy": [[31, 1, 1, "", "temporalToFuzzy"]], "PAMI.extras.fuzzyTransformation.temporalToFuzzy.temporalToFuzzy": [[31, 2, 1, "", "startConvert"]], "PAMI.extras.fuzzyTransformation.transactionalToFuzzy": [[31, 1, 1, "", "transactionalToFuzzy"]], "PAMI.extras.fuzzyTransformation.transactionalToFuzzy.transactionalToFuzzy": [[31, 2, 1, "", "startConvert"]], "PAMI.extras.generateDatabase": [[32, 0, 0, "-", "generateSpatioTemporalDatabase"], [32, 0, 0, "-", "generateTemporalDatabase"], [32, 0, 0, "-", "generateTransactionalDatabase"]], "PAMI.extras.generateDatabase.generateSpatioTemporalDatabase": [[32, 1, 1, "", "generateTemporalDatabase"]], "PAMI.extras.generateDatabase.generateSpatioTemporalDatabase.generateTemporalDatabase": [[32, 2, 1, "", "createTemporalFile"], [32, 2, 1, "", "generateArray"], [32, 2, 1, "", "getDatabaseAsDataFrame"], [32, 2, 1, "", "getFileName"], [32, 2, 1, "", "getPoint"], [32, 2, 1, "", "performCoinFlip"], [32, 2, 1, "", "tuning"]], "PAMI.extras.generateDatabase.generateTemporalDatabase": [[32, 1, 1, "", "generateTemporalDatabase"]], "PAMI.extras.generateDatabase.generateTemporalDatabase.generateTemporalDatabase": [[32, 2, 1, "", "createTemporalFile"], [32, 2, 1, "", "generateArray"], [32, 2, 1, "", "getDatabaseAsDataFrame"], [32, 2, 1, "", "getFileName"], [32, 2, 1, "", "performCoinFlip"], [32, 2, 1, "", "tuning"]], "PAMI.extras.generateDatabase.generateTransactionalDatabase": [[32, 1, 1, "", "generateTransactionalDatabase"]], "PAMI.extras.generateDatabase.generateTransactionalDatabase.generateTransactionalDatabase": [[32, 2, 1, "", "create"], [32, 2, 1, "", "generateArray"], [32, 2, 1, "", "getTransactions"], [32, 2, 1, "", "save"], [32, 2, 1, "", "tuning"]], "PAMI.extras.generateLatexGraphFile": [[27, 3, 1, "", "generateLatexCode"], [27, 1, 1, "", "generateLatexGraphFile"]], "PAMI.extras.graph": [[33, 0, 0, "-", "DF2Fig"], [33, 0, 0, "-", "plotLineGraphFromDictionary"], [33, 0, 0, "-", "plotLineGraphsFromDataFrame"], [33, 0, 0, "-", "visualizeFuzzyPatterns"], [33, 0, 0, "-", "visualizePatterns"]], "PAMI.extras.graph.DF2Fig": [[33, 1, 1, "", "DF2Fig"]], "PAMI.extras.graph.DF2Fig.DF2Fig": [[33, 2, 1, "", "plot"]], "PAMI.extras.graph.plotLineGraphFromDictionary": [[33, 1, 1, "", "plotLineGraphFromDictionary"]], "PAMI.extras.graph.plotLineGraphsFromDataFrame": [[33, 1, 1, "", "plotGraphsFromDataFrame"]], "PAMI.extras.graph.plotLineGraphsFromDataFrame.plotGraphsFromDataFrame": [[33, 2, 1, "", "plotGraphsFromDataFrame"]], "PAMI.extras.graph.visualizeFuzzyPatterns": [[33, 1, 1, "", "visualizeFuzzyPatterns"]], "PAMI.extras.graph.visualizeFuzzyPatterns.visualizeFuzzyPatterns": [[33, 2, 1, "", "visualize"]], "PAMI.extras.graph.visualizePatterns": [[33, 1, 1, "", "visualizePatterns"]], "PAMI.extras.graph.visualizePatterns.visualizePatterns": [[33, 2, 1, "", "visualize"]], "PAMI.extras.imageProcessing": [[35, 0, 0, "-", "imagery2Databases"]], "PAMI.extras.imageProcessing.imagery2Databases": [[35, 1, 1, "", "createDatabase"]], "PAMI.extras.imageProcessing.imagery2Databases.createDatabase": [[35, 2, 1, "", "getDataFrame"], [35, 2, 1, "", "saveAsTemporalDB"], [35, 2, 1, "", "saveAsTransactionalDB"], [35, 2, 1, "", "saveAsUncertainTemporalDB"], [35, 2, 1, "", "saveAsUncertainTransactionalDB"], [35, 2, 1, "", "saveAsUtilityTemporalDB"], [35, 2, 1, "", "saveAsUtilityTransactionalDB"]], "PAMI.extras.messaging": [[36, 0, 0, "-", "discord"], [36, 0, 0, "-", "gmail"]], "PAMI.extras.messaging.discord": [[36, 1, 1, "", "discord"]], "PAMI.extras.messaging.discord.discord": [[36, 2, 1, "", "send"]], "PAMI.extras.messaging.gmail": [[36, 1, 1, "", "gmail"]], "PAMI.extras.messaging.gmail.gmail": [[36, 2, 1, "", "send"]], "PAMI.extras.neighbours": [[37, 0, 0, "-", "findNeighborsUsingEuclideanDistanceforPointInfo"], [37, 0, 0, "-", "findNeighboursUsingEuclidean"]], "PAMI.extras.neighbours.findNeighborsUsingEuclideanDistanceforPointInfo": [[37, 1, 1, "", "createNeighborhoodFileUsingEuclideanDistance"]], "PAMI.extras.neighbours.findNeighborsUsingEuclideanDistanceforPointInfo.createNeighborhoodFileUsingEuclideanDistance": [[37, 2, 1, "", "getFileName"]], "PAMI.extras.neighbours.findNeighboursUsingEuclidean": [[37, 1, 1, "", "createNeighborhoodFileUsingEuclideanDistance"]], "PAMI.extras.neighbours.findNeighboursUsingEuclidean.createNeighborhoodFileUsingEuclideanDistance": [[37, 2, 1, "", "getFileName"]], "PAMI.extras.scatterPlotSpatialPoints": [[27, 1, 1, "", "scatterPlotSpatialPoints"]], "PAMI.extras.scatterPlotSpatialPoints.scatterPlotSpatialPoints": [[27, 2, 1, "", "scatterPlotSpatialPoints"]], "PAMI.extras.stats": [[39, 0, 0, "-", "TransactionalDatabase"], [39, 0, 0, "-", "graphDatabase"], [39, 0, 0, "-", "sequentialDatabase"], [39, 0, 0, "-", "temporalDatabase"], [39, 0, 0, "-", "utilityDatabase"]], "PAMI.extras.stats.TransactionalDatabase": [[39, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.stats.TransactionalDatabase.TransactionalDatabase": [[39, 2, 1, "", "convertDataIntoMatrix"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getDensity"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getNumberOfItems"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.stats.graphDatabase": [[39, 1, 1, "", "graphDatabase"]], "PAMI.extras.stats.graphDatabase.graphDatabase": [[39, 2, 1, "", "plotEdgeDistribution"], [39, 2, 1, "", "plotNodeDistribution"], [39, 2, 1, "", "printGraphDatabaseStatistics"], [39, 2, 1, "", "printIndividualGraphStats"]], "PAMI.extras.stats.sequentialDatabase": [[39, 1, 1, "", "sequentialDatabase"]], "PAMI.extras.stats.sequentialDatabase.sequentialDatabase": [[39, 2, 1, "", "getAverageItemPerSequenceLength"], [39, 2, 1, "", "getAverageItemPerSubsequenceLength"], [39, 2, 1, "", "getAverageSubsequencePerSequenceLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumSequenceLength"], [39, 2, 1, "", "getMaximumSubsequenceLength"], [39, 2, 1, "", "getMinimumSequenceLength"], [39, 2, 1, "", "getMinimumSubsequenceLength"], [39, 2, 1, "", "getSequenceSize"], [39, 2, 1, "", "getSequencialLengthDistribution"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getStandardDeviationSequenceLength"], [39, 2, 1, "", "getStandardDeviationSubsequenceLength"], [39, 2, 1, "", "getSubsequencialLengthDistribution"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getVarianceSequenceLength"], [39, 2, 1, "", "getVarianceSubsequenceLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"]], "PAMI.extras.stats.temporalDatabase": [[39, 1, 1, "", "temporalDatabase"]], "PAMI.extras.stats.temporalDatabase.temporalDatabase": [[39, 2, 1, "", "convertDataIntoMatrix"], [39, 2, 1, "", "getAverageInterArrivalPeriod"], [39, 2, 1, "", "getAveragePeriodOfItem"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getDensity"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumInterArrivalPeriod"], [39, 2, 1, "", "getMaximumPeriodOfItem"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMinimumInterArrivalPeriod"], [39, 2, 1, "", "getMinimumPeriodOfItem"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [39, 2, 1, "", "getPeriodsInRange"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationPeriod"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.stats.utilityDatabase": [[39, 1, 1, "", "utilityDatabase"]], "PAMI.extras.stats.utilityDatabase.utilityDatabase": [[39, 2, 1, "", "creatingItemSets"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getAverageUtility"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMaximumUtility"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getMinimumUtility"], [39, 2, 1, "", "getNumberOfItems"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSortedUtilityValuesOfItem"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTotalUtility"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator": [[40, 0, 0, "-", "TemporalDatabase"], [40, 0, 0, "-", "TransactionalDatabase"], [40, 0, 0, "-", "createSyntheticGeoreferentialTemporal"], [40, 0, 0, "-", "createSyntheticGeoreferentialTransactions"], [40, 0, 0, "-", "createSyntheticGeoreferentialUncertainTransaction"], [40, 0, 0, "-", "createSyntheticTemporal"], [40, 0, 0, "-", "createSyntheticTransactions"], [40, 0, 0, "-", "createSyntheticUncertainTemporal"], [40, 0, 0, "-", "createSyntheticUncertainTransactions"], [40, 0, 0, "-", "createSyntheticUtility"], [40, 0, 0, "-", "fuzzyDatabase"], [40, 0, 0, "-", "generateTemporal"], [40, 0, 0, "-", "generateTransactional"], [40, 0, 0, "-", "generateUncertainTemporal"], [40, 0, 0, "-", "generateUncertainTransactional"], [40, 0, 0, "-", "generateUtilityTemporal"], [40, 0, 0, "-", "generateUtilityTransactional"], [40, 0, 0, "-", "syntheticUtilityDatabase"], [40, 0, 0, "-", "temporalDatabaseGen"], [40, 0, 0, "-", "utilityDatabase"]], "PAMI.extras.syntheticDataGenerator.TemporalDatabase": [[40, 1, 1, "", "TemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.TemporalDatabase.TemporalDatabase": [[40, 2, 1, "", "create"], [40, 2, 1, "", "getDatabaseAsDataFrame"], [40, 2, 1, "", "getFileName"], [40, 2, 1, "", "performCoinFlip"], [40, 2, 1, "", "tuning"]], "PAMI.extras.syntheticDataGenerator.TransactionalDatabase": [[40, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.TransactionalDatabase.TransactionalDatabase": [[40, 2, 1, "", "create"], [40, 2, 1, "", "getTransactions"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTemporal": [[40, 1, 1, "", "createGeoreferentialTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTemporal.createGeoreferentialTemporalDatabase": [[40, 2, 1, "", "createGeoreferentialTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTransactions": [[40, 1, 1, "", "createSyntheticGeoreferentialTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTransactions.createSyntheticGeoreferentialTransaction": [[40, 2, 1, "", "createGeoreferentialTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialUncertainTransaction": [[40, 1, 1, "", "createSyntheticGeoreferentialUncertainTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialUncertainTransaction.createSyntheticGeoreferentialUncertainTransaction": [[40, 2, 1, "", "createGeoreferentialUncertainTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTemporal": [[40, 1, 1, "", "createSyntheticTemporal"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTemporal.createSyntheticTemporal": [[40, 2, 1, "", "createTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTransactions": [[40, 1, 1, "", "createSyntheticTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTransactions.createSyntheticTransaction": [[40, 2, 1, "", "createTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTemporal": [[40, 1, 1, "", "createSyntheticUncertainTemporal"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTemporal.createSyntheticUncertainTemporal": [[40, 2, 1, "", "createUncertainTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTransactions": [[40, 1, 1, "", "createSyntheticUncertainTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTransactions.createSyntheticUncertainTransaction": [[40, 2, 1, "", "createUncertainTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUtility": [[40, 1, 1, "", "createSyntheticUtility"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUtility.createSyntheticUtility": [[40, 2, 1, "", "createUtilityDatabase"]], "PAMI.extras.syntheticDataGenerator.generateTemporal": [[40, 1, 1, "", "generateTemporal"]], "PAMI.extras.syntheticDataGenerator.generateTemporal.generateTemporal": [[40, 2, 1, "", "createTemporalFile"], [40, 2, 1, "", "generateArray"], [40, 2, 1, "", "getFileName"], [40, 2, 1, "", "getTransactions"], [40, 2, 1, "", "performCoinFlip"], [40, 2, 1, "", "save"], [40, 2, 1, "", "tuning"]], "PAMI.extras.syntheticDataGenerator.generateTransactional": [[40, 1, 1, "", "generateTransactional"]], "PAMI.extras.syntheticDataGenerator.generateTransactional.generateTransactional": [[40, 2, 1, "", "create"], [40, 2, 1, "", "generateArray"], [40, 2, 1, "", "getTransactions"], [40, 2, 1, "", "save"], [40, 2, 1, "", "tuning"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTemporal": [[40, 1, 1, "", "generateUncertainTemporal"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTemporal.generateUncertainTemporal": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTransactional": [[40, 1, 1, "", "generateUncertainTransactional"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTransactional.generateUncertainTransactional": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTemporal": [[40, 1, 1, "", "generateUtilityTemporal"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTemporal.generateUtilityTemporal": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTransactional": [[40, 1, 1, "", "generateUtilityTransactional"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTransactional.generateUtilityTransactional": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.syntheticUtilityDatabase": [[40, 1, 1, "", "syntheticUtilityDatabase"]], "PAMI.extras.syntheticDataGenerator.syntheticUtilityDatabase.syntheticUtilityDatabase": [[40, 2, 1, "", "__init__"], [40, 4, 1, "", "avgTransactionLength"], [40, 2, 1, "id0", "createRandomNumbers"], [40, 2, 1, "id1", "createSyntheticUtilityDatabase"], [40, 4, 1, "", "maxUtilRange"], [40, 4, 1, "", "numOfItems"], [40, 2, 1, "id2", "save"], [40, 4, 1, "", "totalTransactions"]], "PAMI.extras.syntheticDataGenerator.temporalDatabaseGen": [[40, 1, 1, "", "CreateSyntheticTemporal"]], "PAMI.extras.syntheticDataGenerator.temporalDatabaseGen.CreateSyntheticTemporal": [[40, 4, 1, "", "avg_transaction_length"], [40, 2, 1, "id3", "create_temporal_database"], [40, 2, 1, "", "generate_random_numbers"], [40, 4, 1, "", "num_of_items"], [40, 4, 1, "", "total_transactions"]], "PAMI.extras.syntheticDataGenerator.utilityDatabase": [[40, 1, 1, "", "UtilityDataGenerator"]], "PAMI.extras.syntheticDataGenerator.utilityDatabase.UtilityDataGenerator": [[40, 2, 1, "", "Generate"], [40, 2, 1, "", "GenerateAndPrintItemPairs"], [40, 2, 1, "", "GenerateExternalUtilityData"], [40, 2, 1, "", "GetExternalUtilityData"], [40, 2, 1, "", "GetInternalUtilityData"], [40, 2, 1, "", "GetUtilityData"], [40, 2, 1, "", "Save"], [40, 2, 1, "", "SaveItemsInternalUtilityValues"], [40, 2, 1, "", "Saveitemsexternalutilityvalues"]], "PAMI.extras.topKPatterns": [[27, 1, 1, "", "topKPatterns"]], "PAMI.extras.topKPatterns.topKPatterns": [[27, 2, 1, "", "getTopKPatterns"], [27, 2, 1, "", "save"]], "PAMI.extras.uncertaindb_convert": [[27, 1, 1, "", "predictedClass2Transaction"]], "PAMI.extras.uncertaindb_convert.predictedClass2Transaction": [[27, 2, 1, "", "getBinaryTransaction"]], "PAMI.extras.visualize": [[41, 0, 0, "-", "graphs"]], "PAMI.extras.visualize.graphs": [[41, 1, 1, "", "graphDatabase"]], "PAMI.extras.visualize.graphs.graphDatabase": [[41, 2, 1, "", "plot"], [41, 2, 1, "", "savefig"]], "PAMI.faultTolerantFrequentPattern": [[43, 0, 0, "-", "basic"]], "PAMI.faultTolerantFrequentPattern.basic": [[158, 0, 0, "-", "FTApriori"], [159, 0, 0, "-", "FTFPGrowth"], [43, 0, 0, "-", "abstract"]], "PAMI.faultTolerantFrequentPattern.basic.FTApriori": [[158, 1, 1, "", "FTApriori"]], "PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori": [[158, 2, 1, "", "getMemoryRSS"], [158, 2, 1, "", "getMemoryUSS"], [158, 2, 1, "", "getPatterns"], [158, 2, 1, "", "getPatternsAsDataFrame"], [158, 2, 1, "", "getRuntime"], [158, 2, 1, "", "mine"], [158, 2, 1, "", "printResults"], [158, 2, 1, "", "save"], [158, 2, 1, "", "startMine"]], "PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth": [[159, 1, 1, "", "FTFPGrowth"]], "PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth": [[159, 2, 1, "", "getMemoryRSS"], [159, 2, 1, "", "getMemoryUSS"], [159, 2, 1, "", "getPatterns"], [159, 2, 1, "", "getPatternsAsDataFrame"], [159, 2, 1, "", "getRuntime"], [159, 2, 1, "", "mine"], [159, 2, 1, "", "printResults"], [159, 2, 1, "", "save"], [159, 2, 1, "", "startMine"]], "PAMI.frequentPattern": [[45, 0, 0, "-", "basic"], [46, 0, 0, "-", "closed"], [47, 0, 0, "-", "cuda"], [48, 0, 0, "-", "maximal"], [49, 0, 0, "-", "pyspark"], [50, 0, 0, "-", "topk"]], "PAMI.frequentPattern.basic": [[162, 0, 0, "-", "Apriori"], [163, 0, 0, "-", "Aprioribitset"], [164, 0, 0, "-", "ECLAT"], [165, 0, 0, "-", "ECLATDiffset"], [166, 0, 0, "-", "ECLATbitset"], [167, 0, 0, "-", "FPGrowth"], [45, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.basic.Apriori": [[162, 1, 1, "", "Apriori"]], "PAMI.frequentPattern.basic.Apriori.Apriori": [[162, 2, 1, "", "getMemoryRSS"], [162, 2, 1, "", "getMemoryUSS"], [162, 2, 1, "", "getPatterns"], [162, 2, 1, "", "getPatternsAsDataFrame"], [162, 2, 1, "", "getRuntime"], [162, 4, 1, "", "memorySaver"], [162, 2, 1, "", "mine"], [162, 2, 1, "", "printResults"], [162, 2, 1, "", "save"], [162, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.Aprioribitset": [[163, 1, 1, "", "Aprioribitset"]], "PAMI.frequentPattern.basic.Aprioribitset.Aprioribitset": [[163, 2, 1, "", "getMemoryRSS"], [163, 2, 1, "", "getMemoryUSS"], [163, 2, 1, "", "getPatterns"], [163, 2, 1, "", "getPatternsAsDataFrame"], [163, 2, 1, "", "getRuntime"], [163, 2, 1, "", "mine"], [163, 2, 1, "", "printResults"], [163, 2, 1, "", "save"], [163, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLAT": [[164, 1, 1, "", "ECLAT"]], "PAMI.frequentPattern.basic.ECLAT.ECLAT": [[164, 2, 1, "", "getMemoryRSS"], [164, 2, 1, "", "getMemoryUSS"], [164, 2, 1, "", "getPatterns"], [164, 2, 1, "", "getPatternsAsDataFrame"], [164, 2, 1, "", "getRuntime"], [164, 2, 1, "", "mine"], [164, 2, 1, "", "printResults"], [164, 2, 1, "", "save"], [164, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLATDiffset": [[165, 1, 1, "", "ECLATDiffset"]], "PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset": [[165, 2, 1, "", "getMemoryRSS"], [165, 2, 1, "", "getMemoryUSS"], [165, 2, 1, "", "getPatterns"], [165, 2, 1, "", "getPatternsAsDataFrame"], [165, 2, 1, "", "getRuntime"], [165, 2, 1, "", "mine"], [165, 2, 1, "", "printResults"], [165, 2, 1, "", "save"], [165, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLATbitset": [[166, 1, 1, "", "ECLATbitset"]], "PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset": [[166, 2, 1, "", "getMemoryRSS"], [166, 2, 1, "", "getMemoryUSS"], [166, 2, 1, "", "getPatterns"], [166, 2, 1, "", "getPatternsAsDataFrame"], [166, 2, 1, "", "getRuntime"], [166, 2, 1, "", "mine"], [166, 2, 1, "", "printResults"], [166, 2, 1, "", "save"], [166, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.FPGrowth": [[167, 1, 1, "", "FPGrowth"]], "PAMI.frequentPattern.basic.FPGrowth.FPGrowth": [[167, 2, 1, "", "getMemoryRSS"], [167, 2, 1, "", "getMemoryUSS"], [167, 2, 1, "", "getPatterns"], [167, 2, 1, "", "getPatternsAsDataFrame"], [167, 2, 1, "", "getRuntime"], [167, 2, 1, "", "mine"], [167, 2, 1, "", "printResults"], [167, 2, 1, "", "save"], [167, 2, 1, "", "startMine"]], "PAMI.frequentPattern.closed": [[182, 0, 0, "-", "CHARM"], [46, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.closed.CHARM": [[182, 1, 1, "", "CHARM"]], "PAMI.frequentPattern.closed.CHARM.CHARM": [[182, 2, 1, "", "getMemoryRSS"], [182, 2, 1, "", "getMemoryUSS"], [182, 2, 1, "", "getPatterns"], [182, 2, 1, "", "getPatternsAsDataFrame"], [182, 2, 1, "", "getRuntime"], [182, 2, 1, "", "mine"], [182, 2, 1, "", "printResults"], [182, 2, 1, "", "save"], [182, 2, 1, "", "startMine"]], "PAMI.frequentPattern.maximal": [[175, 0, 0, "-", "MaxFPGrowth"], [48, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.maximal.MaxFPGrowth": [[175, 1, 1, "", "MaxFPGrowth"]], "PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth": [[175, 2, 1, "", "getMemoryRSS"], [175, 2, 1, "", "getMemoryUSS"], [175, 2, 1, "", "getPatterns"], [175, 2, 1, "", "getPatternsAsDataFrame"], [175, 2, 1, "", "getRuntime"], [175, 2, 1, "", "mine"], [175, 2, 1, "", "printResults"], [175, 2, 1, "", "save"], [175, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark": [[49, 0, 0, "-", "abstract"], [177, 0, 0, "-", "parallelApriori"], [178, 0, 0, "-", "parallelECLAT"], [179, 0, 0, "-", "parallelFPGrowth"]], "PAMI.frequentPattern.pyspark.parallelApriori": [[177, 1, 1, "", "parallelApriori"]], "PAMI.frequentPattern.pyspark.parallelApriori.parallelApriori": [[177, 2, 1, "", "getMemoryRSS"], [177, 2, 1, "", "getMemoryUSS"], [177, 2, 1, "", "getPatterns"], [177, 2, 1, "", "getPatternsAsDataFrame"], [177, 2, 1, "", "getRuntime"], [177, 2, 1, "", "mine"], [177, 2, 1, "", "printResults"], [177, 2, 1, "", "save"], [177, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark.parallelECLAT": [[178, 1, 1, "", "parallelECLAT"]], "PAMI.frequentPattern.pyspark.parallelECLAT.parallelECLAT": [[178, 2, 1, "", "getMemoryRSS"], [178, 2, 1, "", "getMemoryUSS"], [178, 2, 1, "", "getPatterns"], [178, 2, 1, "", "getPatternsAsDataFrame"], [178, 2, 1, "", "getRuntime"], [178, 2, 1, "", "mine"], [178, 2, 1, "", "printResults"], [178, 2, 1, "", "save"], [178, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth": [[179, 1, 1, "", "Node"], [179, 1, 1, "", "Tree"], [179, 1, 1, "", "parallelFPGrowth"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth.Tree": [[179, 2, 1, "", "addNodeToNodeLink"], [179, 2, 1, "", "addTransaction"], [179, 2, 1, "", "generateConditionalTree"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth.parallelFPGrowth": [[179, 2, 1, "", "buildTree"], [179, 2, 1, "", "genAllFrequentPatterns"], [179, 2, 1, "", "genCondTransaction"], [179, 2, 1, "", "genFreqPatterns"], [179, 2, 1, "", "getMemoryRSS"], [179, 2, 1, "", "getMemoryUSS"], [179, 2, 1, "", "getPartitionId"], [179, 2, 1, "", "getPatterns"], [179, 2, 1, "", "getPatternsAsDataFrame"], [179, 2, 1, "", "getRuntime"], [179, 2, 1, "", "mine"], [179, 2, 1, "", "printResults"], [179, 2, 1, "", "save"], [179, 2, 1, "", "startMine"]], "PAMI.frequentPattern.topk": [[180, 0, 0, "-", "FAE"], [50, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.topk.FAE": [[180, 1, 1, "", "FAE"]], "PAMI.frequentPattern.topk.FAE.FAE": [[180, 2, 1, "", "getMemoryRSS"], [180, 2, 1, "", "getMemoryUSS"], [180, 2, 1, "", "getPatterns"], [180, 2, 1, "", "getPatternsAsDataFrame"], [180, 2, 1, "", "getRuntime"], [180, 2, 1, "", "mine"], [180, 2, 1, "", "printResults"], [180, 2, 1, "", "save"], [180, 2, 1, "", "startMine"]], "PAMI.fuzzyCorrelatedPattern": [[52, 0, 0, "-", "basic"]], "PAMI.fuzzyCorrelatedPattern.basic": [[184, 0, 0, "-", "FCPGrowth"], [52, 0, 0, "-", "abstract"]], "PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth": [[184, 1, 1, "", "Element"], [184, 1, 1, "", "FCPGrowth"], [184, 3, 1, "", "main"]], "PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth": [[184, 2, 1, "", "getMemoryRSS"], [184, 2, 1, "", "getMemoryUSS"], [184, 2, 1, "", "getPatterns"], [184, 2, 1, "", "getPatternsAsDataFrame"], [184, 2, 1, "", "getRuntime"], [184, 2, 1, "", "mine"], [184, 2, 1, "", "printResults"], [184, 2, 1, "", "save"], [184, 2, 1, "", "startMine"]], "PAMI.fuzzyFrequentPattern": [[54, 0, 0, "-", "basic"]], "PAMI.fuzzyFrequentPattern.basic": [[186, 0, 0, "-", "FFIMiner"], [54, 0, 0, "-", "FFIMiner_old"], [54, 0, 0, "-", "abstract"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner": [[186, 1, 1, "", "FFIMiner"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner": [[186, 2, 1, "", "getMemoryRSS"], [186, 2, 1, "", "getMemoryUSS"], [186, 2, 1, "", "getPatterns"], [186, 2, 1, "", "getPatternsAsDataFrame"], [186, 2, 1, "", "getRuntime"], [186, 2, 1, "", "mine"], [186, 2, 1, "", "printResults"], [186, 2, 1, "", "save"], [186, 2, 1, "", "startMine"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner_old": [[54, 1, 1, "", "FFIMiner"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner_old.FFIMiner": [[54, 2, 1, "", "getMemoryRSS"], [54, 2, 1, "", "getMemoryUSS"], [54, 2, 1, "", "getPatterns"], [54, 2, 1, "", "getPatternsAsDataFrame"], [54, 2, 1, "", "getRuntime"], [54, 2, 1, "", "mine"], [54, 2, 1, "", "printResults"], [54, 2, 1, "", "save"], [54, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedFrequentPattern": [[56, 0, 0, "-", "basic"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic": [[189, 0, 0, "-", "FFSPMiner"], [56, 0, 0, "-", "FFSPMiner_old"], [56, 0, 0, "-", "abstract"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner": [[189, 1, 1, "", "FFSPMiner"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner": [[189, 2, 1, "", "getMemoryRSS"], [189, 2, 1, "", "getMemoryUSS"], [189, 2, 1, "", "getPatterns"], [189, 2, 1, "", "getPatternsAsDataFrame"], [189, 2, 1, "", "getRuntime"], [189, 2, 1, "", "mine"], [189, 2, 1, "", "printResults"], [189, 2, 1, "", "save"], [189, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner_old": [[56, 1, 1, "", "FFSPMiner"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner_old.FFSPMiner": [[56, 2, 1, "", "getMemoryRSS"], [56, 2, 1, "", "getMemoryUSS"], [56, 2, 1, "", "getPatterns"], [56, 2, 1, "", "getPatternsAsDataFrame"], [56, 2, 1, "", "getRuntime"], [56, 2, 1, "", "mine"], [56, 2, 1, "", "printResults"], [56, 2, 1, "", "save"], [56, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern": [[58, 0, 0, "-", "basic"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic": [[190, 0, 0, "-", "FGPFPMiner"], [58, 0, 0, "-", "FGPFPMiner_old"], [58, 0, 0, "-", "abstract"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner": [[190, 1, 1, "", "FGPFPMiner"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner": [[190, 2, 1, "", "getMemoryRSS"], [190, 2, 1, "", "getMemoryUSS"], [190, 2, 1, "", "getPatterns"], [190, 2, 1, "", "getPatternsAsDataFrame"], [190, 2, 1, "", "getRuntime"], [190, 2, 1, "", "mine"], [190, 2, 1, "", "printResults"], [190, 2, 1, "", "save"], [190, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner_old": [[58, 1, 1, "", "FGPFPMiner"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner_old.FGPFPMiner": [[58, 2, 1, "", "generateGraphs"], [58, 2, 1, "", "generateLatexCode"], [58, 2, 1, "", "getMemoryRSS"], [58, 2, 1, "", "getMemoryUSS"], [58, 2, 1, "", "getPatterns"], [58, 2, 1, "", "getPatternsAsDataFrame"], [58, 2, 1, "", "getPatternsAsDataframe"], [58, 2, 1, "", "getRuntime"], [58, 2, 1, "", "mine"], [58, 2, 1, "", "printResults"], [58, 2, 1, "", "save"], [58, 2, 1, "", "startMine"]], "PAMI.fuzzyPartialPeriodicPatterns": [[60, 0, 0, "-", "basic"]], "PAMI.fuzzyPartialPeriodicPatterns.basic": [[60, 0, 0, "-", "F3PMiner"], [60, 0, 0, "-", "abstract"]], "PAMI.fuzzyPartialPeriodicPatterns.basic.F3PMiner": [[60, 1, 1, "", "F3PMiner"]], "PAMI.fuzzyPartialPeriodicPatterns.basic.F3PMiner.F3PMiner": [[60, 2, 1, "", "getMemoryRSS"], [60, 2, 1, "", "getMemoryUSS"], [60, 2, 1, "", "getPatterns"], [60, 2, 1, "", "getPatternsAsDataFrame"], [60, 2, 1, "", "getRuntime"], [60, 2, 1, "", "mine"], [60, 2, 1, "", "printResults"], [60, 2, 1, "", "save"], [60, 2, 1, "", "startMine"]], "PAMI.fuzzyPeriodicFrequentPattern": [[62, 0, 0, "-", "basic"]], "PAMI.fuzzyPeriodicFrequentPattern.basic": [[193, 0, 0, "-", "FPFPMiner"], [62, 0, 0, "-", "FPFPMiner_old"], [62, 0, 0, "-", "abstract"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner": [[193, 1, 1, "", "FPFPMiner"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner": [[193, 2, 1, "", "getMemoryRSS"], [193, 2, 1, "", "getMemoryUSS"], [193, 2, 1, "", "getPatterns"], [193, 2, 1, "", "getPatternsAsDataFrame"], [193, 2, 1, "", "getRuntime"], [193, 2, 1, "", "mine"], [193, 2, 1, "", "printResults"], [193, 2, 1, "", "save"], [193, 2, 1, "", "startMine"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner_old": [[62, 1, 1, "", "FPFPMiner"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner_old.FPFPMiner": [[62, 2, 1, "", "getMemoryRSS"], [62, 2, 1, "", "getMemoryUSS"], [62, 2, 1, "", "getPatterns"], [62, 2, 1, "", "getPatternsAsDataFrame"], [62, 2, 1, "", "getRuntime"], [62, 2, 1, "", "mine"], [62, 2, 1, "", "printResults"], [62, 2, 1, "", "save"], [62, 2, 1, "", "startMine"]], "PAMI.geoReferencedPeriodicFrequentPattern": [[64, 0, 0, "-", "basic"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic": [[199, 0, 0, "-", "GPFPMiner"], [64, 0, 0, "-", "abstract"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner": [[199, 1, 1, "", "GPFPMiner"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner": [[199, 2, 1, "", "getMemoryRSS"], [199, 2, 1, "", "getMemoryUSS"], [199, 2, 1, "", "getPatterns"], [199, 2, 1, "", "getPatternsAsDataFrame"], [199, 2, 1, "", "getRuntime"], [199, 2, 1, "", "mapNeighbours"], [199, 2, 1, "", "mine"], [199, 2, 1, "", "printResults"], [199, 2, 1, "", "save"], [199, 2, 1, "", "startMine"]], "PAMI.georeferencedFrequentPattern": [[66, 0, 0, "-", "basic"]], "PAMI.georeferencedFrequentPattern.basic": [[201, 0, 0, "-", "SpatialECLAT"], [66, 0, 0, "-", "abstract"]], "PAMI.georeferencedFrequentPattern.basic.SpatialECLAT": [[201, 1, 1, "", "SpatialECLAT"]], "PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT": [[201, 2, 1, "", "getMemoryRSS"], [201, 2, 1, "", "getMemoryUSS"], [201, 2, 1, "", "getPatterns"], [201, 2, 1, "", "getPatternsAsDataFrame"], [201, 2, 1, "", "getRuntime"], [201, 2, 1, "", "mine"], [201, 2, 1, "", "printResults"], [201, 2, 1, "", "save"], [201, 2, 1, "", "startMine"]], "PAMI.georeferencedFrequentSequencePattern": [[67, 0, 0, "-", "abstract"]], "PAMI.georeferencedPartialPeriodicPattern": [[69, 0, 0, "-", "basic"]], "PAMI.georeferencedPartialPeriodicPattern.basic": [[202, 0, 0, "-", "STEclat"], [69, 0, 0, "-", "abstract"]], "PAMI.georeferencedPartialPeriodicPattern.basic.STEclat": [[202, 1, 1, "", "STEclat"]], "PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat": [[202, 2, 1, "", "getMemoryRSS"], [202, 2, 1, "", "getMemoryUSS"], [202, 2, 1, "", "getPatterns"], [202, 2, 1, "", "getPatternsAsDataFrame"], [202, 2, 1, "", "getRuntime"], [202, 2, 1, "", "mapNeighbours"], [202, 2, 1, "", "mine"], [202, 2, 1, "", "printResults"], [202, 2, 1, "", "save"], [202, 2, 1, "", "startMine"]], "PAMI.highUtilityFrequentPattern": [[71, 0, 0, "-", "basic"]], "PAMI.highUtilityFrequentPattern.basic": [[203, 0, 0, "-", "HUFIM"], [71, 0, 0, "-", "abstract"]], "PAMI.highUtilityFrequentPattern.basic.HUFIM": [[203, 1, 1, "", "HUFIM"]], "PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM": [[203, 2, 1, "", "getMemoryRSS"], [203, 2, 1, "", "getMemoryUSS"], [203, 2, 1, "", "getPatterns"], [203, 2, 1, "", "getPatternsAsDataFrame"], [203, 2, 1, "", "getRuntime"], [203, 2, 1, "", "mine"], [203, 2, 1, "", "printResults"], [203, 2, 1, "", "save"], [203, 2, 1, "", "startMine"]], "PAMI.highUtilityGeoreferencedFrequentPattern": [[73, 0, 0, "-", "basic"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic": [[206, 0, 0, "-", "SHUFIM"], [73, 0, 0, "-", "abstract"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM": [[206, 1, 1, "", "SHUFIM"], [206, 3, 1, "", "main"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM": [[206, 2, 1, "", "getMemoryRSS"], [206, 2, 1, "", "getMemoryUSS"], [206, 2, 1, "", "getPatterns"], [206, 2, 1, "", "getPatternsAsDataFrame"], [206, 2, 1, "", "getRuntime"], [206, 2, 1, "", "mine"], [206, 2, 1, "", "printResults"], [206, 2, 1, "", "save"], [206, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern": [[75, 0, 0, "-", "basic"], [76, 0, 0, "-", "parallel"]], "PAMI.highUtilityPattern.basic": [[207, 0, 0, "-", "EFIM"], [208, 0, 0, "-", "HMiner"], [209, 0, 0, "-", "UPGrowth"], [75, 0, 0, "-", "abstract"], [75, 0, 0, "-", "efimParallel"]], "PAMI.highUtilityPattern.basic.EFIM": [[207, 1, 1, "", "EFIM"]], "PAMI.highUtilityPattern.basic.EFIM.EFIM": [[207, 2, 1, "", "getMemoryRSS"], [207, 2, 1, "", "getMemoryUSS"], [207, 2, 1, "", "getPatterns"], [207, 2, 1, "", "getPatternsAsDataFrame"], [207, 2, 1, "", "getRuntime"], [207, 2, 1, "", "mine"], [207, 2, 1, "", "printResults"], [207, 2, 1, "", "save"], [207, 2, 1, "", "sort_transaction"], [207, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.HMiner": [[208, 1, 1, "", "HMiner"]], "PAMI.highUtilityPattern.basic.HMiner.HMiner": [[208, 2, 1, "", "getMemoryRSS"], [208, 2, 1, "", "getMemoryUSS"], [208, 2, 1, "", "getPatterns"], [208, 2, 1, "", "getPatternsAsDataFrame"], [208, 2, 1, "", "getRuntime"], [208, 2, 1, "", "mine"], [208, 2, 1, "", "printResults"], [208, 2, 1, "", "save"], [208, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.UPGrowth": [[209, 1, 1, "", "UPGrowth"]], "PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth": [[209, 2, 1, "", "PrintStats"], [209, 2, 1, "", "getMemoryRSS"], [209, 2, 1, "", "getMemoryUSS"], [209, 2, 1, "", "getPatterns"], [209, 2, 1, "", "getPatternsAsDataFrame"], [209, 2, 1, "", "getRuntime"], [209, 2, 1, "", "mine"], [209, 2, 1, "", "printResults"], [209, 2, 1, "", "save"], [209, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.efimParallel": [[75, 1, 1, "", "efimParallel"]], "PAMI.highUtilityPattern.basic.efimParallel.efimParallel": [[75, 2, 1, "", "getMemoryRSS"], [75, 2, 1, "", "getMemoryUSS"], [75, 2, 1, "", "getPatterns"], [75, 2, 1, "", "getPatternsAsDataFrame"], [75, 2, 1, "", "getRuntime"], [75, 2, 1, "", "mine"], [75, 2, 1, "", "printResults"], [75, 2, 1, "", "save"], [75, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.parallel": [[76, 0, 0, "-", "abstract"], [76, 0, 0, "-", "efimparallel"]], "PAMI.highUtilityPattern.parallel.efimparallel": [[76, 1, 1, "", "efimParallel"]], "PAMI.highUtilityPattern.parallel.efimparallel.efimParallel": [[76, 2, 1, "", "getMemoryRSS"], [76, 2, 1, "", "getMemoryUSS"], [76, 2, 1, "", "getPatterns"], [76, 2, 1, "", "getPatternsAsDataFrame"], [76, 2, 1, "", "getRuntime"], [76, 2, 1, "", "mine"], [76, 2, 1, "", "printResults"], [76, 2, 1, "", "save"], [76, 2, 1, "", "startMine"]], "PAMI.highUtilityPatternsInStreams": [[77, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern": [[78, 0, 0, "-", "abstract"], [79, 0, 0, "-", "basic"], [80, 0, 0, "-", "topk"]], "PAMI.highUtilitySpatialPattern.abstract": [[78, 1, 1, "", "utilityPatterns"]], "PAMI.highUtilitySpatialPattern.abstract.utilityPatterns": [[78, 2, 1, "", "endTime"], [78, 2, 1, "", "finalPatterns"], [78, 2, 1, "", "getMemoryRSS"], [78, 2, 1, "", "getMemoryUSS"], [78, 2, 1, "", "getPatterns"], [78, 2, 1, "", "getPatternsAsDataFrame"], [78, 2, 1, "", "getRuntime"], [78, 2, 1, "", "iFile"], [78, 2, 1, "", "memoryRSS"], [78, 2, 1, "", "memoryUSS"], [78, 2, 1, "", "minUtil"], [78, 2, 1, "", "nFile"], [78, 2, 1, "", "oFile"], [78, 2, 1, "", "save"], [78, 2, 1, "", "startMine"], [78, 2, 1, "", "startTime"]], "PAMI.highUtilitySpatialPattern.basic": [[211, 0, 0, "-", "HDSHUIM"], [212, 0, 0, "-", "SHUIM"], [79, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern.basic.HDSHUIM": [[211, 1, 1, "", "HDSHUIM"]], "PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM": [[211, 2, 1, "", "getMemoryRSS"], [211, 2, 1, "", "getMemoryUSS"], [211, 2, 1, "", "getPatterns"], [211, 2, 1, "", "getPatternsAsDataFrame"], [211, 2, 1, "", "getRuntime"], [211, 2, 1, "", "mine"], [211, 2, 1, "", "printResults"], [211, 2, 1, "", "save"], [211, 2, 1, "", "startMine"]], "PAMI.highUtilitySpatialPattern.basic.SHUIM": [[212, 1, 1, "", "SHUIM"]], "PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM": [[212, 2, 1, "", "getMemoryRSS"], [212, 2, 1, "", "getMemoryUSS"], [212, 2, 1, "", "getPatterns"], [212, 2, 1, "", "getPatternsAsDataFrame"], [212, 2, 1, "", "getRuntime"], [212, 2, 1, "", "mine"], [212, 2, 1, "", "printResults"], [212, 2, 1, "", "save"], [212, 2, 1, "", "startMine"]], "PAMI.highUtilitySpatialPattern.topk": [[214, 0, 0, "-", "TKSHUIM"], [80, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM": [[214, 1, 1, "", "Dataset"], [214, 1, 1, "", "TKSHUIM"], [214, 1, 1, "", "Transaction"], [214, 3, 1, "", "main"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Dataset": [[214, 2, 1, "", "createTransaction"], [214, 2, 1, "", "getMaxItem"], [214, 2, 1, "", "getTransactions"], [214, 4, 1, "", "maxItem"], [214, 4, 1, "", "transactions"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM": [[214, 4, 1, "", "Neighbours"], [214, 2, 1, "", "additemset"], [214, 2, 1, "", "backtrackingEFIM"], [214, 2, 1, "", "calculateNeighbourIntersection"], [214, 4, 1, "", "candidateCount"], [214, 4, 1, "", "endTime"], [214, 4, 1, "", "finalPatterns"], [214, 2, 1, "", "getMemoryRSS"], [214, 2, 1, "", "getMemoryUSS"], [214, 2, 1, "", "getPatterns"], [214, 2, 1, "", "getPatternsAsDataFrame"], [214, 2, 1, "", "getRuntime"], [214, 4, 1, "", "heapList"], [214, 4, 1, "", "iFile"], [214, 4, 1, "", "intTostr"], [214, 2, 1, "", "intersection"], [214, 2, 1, "", "is_equal"], [214, 4, 1, "", "maxMemory"], [214, 4, 1, "", "memoryRSS"], [214, 4, 1, "", "memoryUSS"], [214, 4, 1, "", "minUtil"], [214, 2, 1, "", "mine"], [214, 4, 1, "", "nFile"], [214, 4, 1, "", "newNamesToOldNames"], [214, 4, 1, "", "oFile"], [214, 4, 1, "", "oldNamesToNewNames"], [214, 2, 1, "", "output"], [214, 2, 1, "", "printResults"], [214, 2, 1, "", "save"], [214, 4, 1, "", "sep"], [214, 2, 1, "", "sortDatabase"], [214, 2, 1, "", "sort_transaction"], [214, 2, 1, "", "startMine"], [214, 4, 1, "", "startTime"], [214, 4, 1, "", "strToint"], [214, 4, 1, "", "temp"], [214, 2, 1, "", "useUtilityBinArrayToCalculateLocalUtilityFirstTime"], [214, 2, 1, "", "useUtilityBinArrayToCalculateSubtreeUtilityFirstTime"], [214, 2, 1, "", "useUtilityBinArraysToCalculateUpperBounds"], [214, 4, 1, "", "utilityBinArrayLU"], [214, 4, 1, "", "utilityBinArraySU"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction": [[214, 2, 1, "", "getItems"], [214, 2, 1, "", "getLastPosition"], [214, 2, 1, "", "getPmus"], [214, 2, 1, "", "getUtilities"], [214, 2, 1, "", "insertionSort"], [214, 4, 1, "", "offset"], [214, 4, 1, "", "prefixUtility"], [214, 2, 1, "", "projectTransaction"], [214, 2, 1, "", "removeUnpromisingItems"]], "PAMI.highUtilitySpatialPattern.topk.abstract": [[80, 1, 1, "", "utilityPatterns"]], "PAMI.highUtilitySpatialPattern.topk.abstract.utilityPatterns": [[80, 2, 1, "", "endTime"], [80, 2, 1, "", "finalPatterns"], [80, 2, 1, "", "getMemoryRSS"], [80, 2, 1, "", "getMemoryUSS"], [80, 2, 1, "", "getPatterns"], [80, 2, 1, "", "getPatternsAsDataFrame"], [80, 2, 1, "", "getRuntime"], [80, 2, 1, "", "iFile"], [80, 2, 1, "", "memoryRSS"], [80, 2, 1, "", "memoryUSS"], [80, 2, 1, "", "nFile"], [80, 2, 1, "", "oFile"], [80, 2, 1, "", "printResults"], [80, 2, 1, "", "save"], [80, 2, 1, "", "startMine"], [80, 2, 1, "", "startTime"]], "PAMI.localPeriodicPattern": [[82, 0, 0, "-", "basic"]], "PAMI.localPeriodicPattern.basic": [[217, 0, 0, "-", "LPPGrowth"], [218, 0, 0, "-", "LPPMBreadth"], [219, 0, 0, "-", "LPPMDepth"], [82, 0, 0, "-", "abstract"]], "PAMI.localPeriodicPattern.basic.LPPGrowth": [[217, 1, 1, "", "LPPGrowth"], [217, 1, 1, "", "Node"], [217, 1, 1, "", "Tree"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth": [[217, 2, 1, "", "getMemoryRSS"], [217, 2, 1, "", "getMemoryUSS"], [217, 2, 1, "", "getPatterns"], [217, 2, 1, "", "getPatternsAsDataFrame"], [217, 2, 1, "", "getRuntime"], [217, 2, 1, "", "mine"], [217, 2, 1, "", "printResults"], [217, 2, 1, "", "save"], [217, 2, 1, "", "startMine"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.Node": [[217, 2, 1, "", "getChild"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.Tree": [[217, 2, 1, "", "addTransaction"], [217, 2, 1, "", "createPrefixTree"], [217, 2, 1, "", "deleteNode"], [217, 2, 1, "", "fixNodeLinks"]], "PAMI.localPeriodicPattern.basic.LPPMBreadth": [[218, 1, 1, "", "LPPMBreadth"]], "PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth": [[218, 2, 1, "", "getMemoryRSS"], [218, 2, 1, "", "getMemoryUSS"], [218, 2, 1, "", "getPatterns"], [218, 2, 1, "", "getPatternsAsDataFrame"], [218, 2, 1, "", "getRuntime"], [218, 2, 1, "", "mine"], [218, 2, 1, "", "printResults"], [218, 2, 1, "", "save"], [218, 2, 1, "", "startMine"]], "PAMI.localPeriodicPattern.basic.LPPMDepth": [[219, 1, 1, "", "LPPMDepth"]], "PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth": [[219, 2, 1, "", "getMemoryRSS"], [219, 2, 1, "", "getMemoryUSS"], [219, 2, 1, "", "getPatterns"], [219, 2, 1, "", "getPatternsAsDataFrame"], [219, 2, 1, "", "getRuntime"], [219, 2, 1, "", "mine"], [219, 2, 1, "", "printResults"], [219, 2, 1, "", "save"], [219, 2, 1, "", "startMine"]], "PAMI.multipleMinimumSupportBasedFrequentPattern": [[84, 0, 0, "-", "basic"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic": [[221, 0, 0, "-", "CFPGrowth"], [222, 0, 0, "-", "CFPGrowthPlus"], [84, 0, 0, "-", "abstract"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth": [[221, 1, 1, "", "CFPGrowth"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth": [[221, 2, 1, "", "Mine"], [221, 2, 1, "", "getMemoryRSS"], [221, 2, 1, "", "getMemoryUSS"], [221, 2, 1, "", "getPatterns"], [221, 2, 1, "", "getPatternsAsDataFrame"], [221, 2, 1, "", "getRuntime"], [221, 2, 1, "", "printResults"], [221, 2, 1, "", "save"], [221, 2, 1, "", "startMine"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus": [[222, 1, 1, "", "CFPGrowthPlus"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus": [[222, 2, 1, "", "Mine"], [222, 2, 1, "", "getMemoryRSS"], [222, 2, 1, "", "getMemoryUSS"], [222, 2, 1, "", "getPatterns"], [222, 2, 1, "", "getPatternsAsDataFrame"], [222, 2, 1, "", "getRuntime"], [222, 2, 1, "", "printResults"], [222, 2, 1, "", "save"], [222, 2, 1, "", "startMine"]], "PAMI.partialPeriodicFrequentPattern": [[86, 0, 0, "-", "basic"]], "PAMI.partialPeriodicFrequentPattern.basic": [[226, 0, 0, "-", "GPFgrowth"], [227, 0, 0, "-", "PPF_DFS"], [86, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth": [[226, 1, 1, "", "GPFgrowth"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth": [[226, 2, 1, "", "getMemoryRSS"], [226, 2, 1, "", "getMemoryUSS"], [226, 2, 1, "", "getPatterns"], [226, 2, 1, "", "getPatternsAsDataFrame"], [226, 2, 1, "", "getRuntime"], [226, 2, 1, "", "mine"], [226, 2, 1, "", "printResults"], [226, 4, 1, "", "runTime"], [226, 2, 1, "", "save"], [226, 2, 1, "", "startMine"]], "PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS": [[227, 1, 1, "", "PPF_DFS"]], "PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS": [[227, 2, 1, "", "getMemoryRSS"], [227, 2, 1, "", "getMemoryUSS"], [227, 2, 1, "", "getPatterns"], [227, 2, 1, "", "getPatternsAsDataFrame"], [227, 2, 1, "", "getRuntime"], [227, 2, 1, "", "mine"], [227, 2, 1, "", "printResults"], [227, 2, 1, "", "save"], [227, 2, 1, "", "startMine"]], "PAMI.partialPeriodicFrequentPattern.basic.abstract": [[86, 1, 1, "", "partialPeriodicPatterns"]], "PAMI.partialPeriodicFrequentPattern.basic.abstract.partialPeriodicPatterns": [[86, 2, 1, "", "getMemoryRSS"], [86, 2, 1, "", "getMemoryUSS"], [86, 2, 1, "", "getPatterns"], [86, 2, 1, "", "getPatternsAsDataFrame"], [86, 2, 1, "", "getRuntime"], [86, 2, 1, "", "printResults"], [86, 2, 1, "", "save"], [86, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern": [[88, 0, 0, "-", "basic"], [89, 0, 0, "-", "closed"], [90, 0, 0, "-", "maximal"], [91, 0, 0, "-", "pyspark"], [92, 0, 0, "-", "topk"]], "PAMI.partialPeriodicPattern.basic": [[230, 0, 0, "-", "GThreePGrowth"], [88, 0, 0, "-", "Gabstract"], [231, 0, 0, "-", "PPPGrowth"], [232, 0, 0, "-", "PPP_ECLAT"], [88, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.basic.GThreePGrowth": [[230, 1, 1, "", "GThreePGrowth"]], "PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth": [[230, 2, 1, "", "getMemoryRSS"], [230, 2, 1, "", "getMemoryUSS"], [230, 2, 1, "", "getPatterns"], [230, 2, 1, "", "getPatternsAsDataFrame"], [230, 2, 1, "", "getRuntime"], [230, 2, 1, "", "mine"], [230, 2, 1, "", "printResults"], [230, 2, 1, "", "save"]], "PAMI.partialPeriodicPattern.basic.PPPGrowth": [[231, 1, 1, "", "PPPGrowth"]], "PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth": [[231, 2, 1, "", "getMemoryRSS"], [231, 2, 1, "", "getMemoryUSS"], [231, 2, 1, "", "getPatterns"], [231, 2, 1, "", "getPatternsAsDataFrame"], [231, 2, 1, "", "getRuntime"], [231, 2, 1, "", "mine"], [231, 2, 1, "", "printResults"], [231, 2, 1, "", "save"], [231, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.basic.PPP_ECLAT": [[232, 1, 1, "", "PPP_ECLAT"]], "PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT": [[232, 2, 1, "", "getMemoryRSS"], [232, 2, 1, "", "getMemoryUSS"], [232, 2, 1, "", "getPatterns"], [232, 2, 1, "", "getPatternsAsDataFrame"], [232, 2, 1, "", "getRuntime"], [232, 2, 1, "", "mine"], [232, 2, 1, "", "printResults"], [232, 2, 1, "", "save"], [232, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.closed": [[233, 0, 0, "-", "PPPClose"], [89, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.closed.PPPClose": [[233, 1, 1, "", "PPPClose"]], "PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose": [[233, 2, 1, "", "getMemoryRSS"], [233, 2, 1, "", "getMemoryUSS"], [233, 2, 1, "", "getPatterns"], [233, 2, 1, "", "getPatternsAsDataFrame"], [233, 2, 1, "", "getRuntime"], [233, 2, 1, "", "mine"], [233, 2, 1, "", "printResults"], [233, 2, 1, "", "save"], [233, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.maximal": [[234, 0, 0, "-", "Max3PGrowth"], [90, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.maximal.Max3PGrowth": [[234, 1, 1, "", "Max3PGrowth"]], "PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth": [[234, 2, 1, "", "getMemoryRSS"], [234, 2, 1, "", "getMemoryUSS"], [234, 2, 1, "", "getPatterns"], [234, 2, 1, "", "getPatternsAsDataFrame"], [234, 2, 1, "", "getRuntime"], [234, 2, 1, "", "mine"], [234, 2, 1, "", "printResults"], [234, 2, 1, "", "save"]], "PAMI.partialPeriodicPattern.pyspark": [[91, 0, 0, "-", "abstract"], [91, 0, 0, "-", "parallel3PGrowth"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth": [[91, 1, 1, "", "Node"], [91, 1, 1, "", "Tree"], [91, 3, 1, "", "cond_trans"], [91, 3, 1, "", "getPF"], [91, 3, 1, "", "getps"], [91, 1, 1, "", "parallel3PGrowth"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.Node": [[91, 2, 1, "", "addChild"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.Tree": [[91, 2, 1, "", "add_transaction"], [91, 2, 1, "", "add_transaction_summ"], [91, 2, 1, "", "generate_patterns"], [91, 2, 1, "", "getTransactions"], [91, 2, 1, "", "get_condition_pattern"], [91, 2, 1, "", "get_ts"], [91, 2, 1, "", "merge"], [91, 2, 1, "", "remove_node"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.parallel3PGrowth": [[91, 2, 1, "", "cond_trans"], [91, 2, 1, "", "genCondTransactions"], [91, 2, 1, "", "getFrequentItems"], [91, 2, 1, "", "getFrequentItemsets"], [91, 2, 1, "", "getMemoryRSS"], [91, 2, 1, "", "getMemoryUSS"], [91, 2, 1, "", "getPF"], [91, 2, 1, "", "getPartitionId"], [91, 2, 1, "", "getPatterns"], [91, 2, 1, "", "getPatternsAsDataFrame"], [91, 2, 1, "", "getRuntime"], [91, 2, 1, "", "getps"], [91, 2, 1, "", "mine"], [91, 4, 1, "", "numPartitions"], [91, 2, 1, "", "printResults"], [91, 2, 1, "", "save"], [91, 2, 1, "", "setPartitions"], [91, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.topk": [[92, 0, 0, "-", "abstract"], [235, 0, 0, "-", "k3PMiner"]], "PAMI.partialPeriodicPattern.topk.abstract": [[92, 1, 1, "", "partialPeriodicPatterns"]], "PAMI.partialPeriodicPattern.topk.abstract.partialPeriodicPatterns": [[92, 2, 1, "", "getMemoryRSS"], [92, 2, 1, "", "getMemoryUSS"], [92, 2, 1, "", "getPatterns"], [92, 2, 1, "", "getPatternsAsDataFrame"], [92, 2, 1, "", "getRuntime"], [92, 2, 1, "", "printResults"], [92, 2, 1, "", "save"], [92, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.topk.k3PMiner": [[235, 1, 1, "", "k3PMiner"]], "PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner": [[235, 2, 1, "", "getMemoryRSS"], [235, 2, 1, "", "getMemoryUSS"], [235, 2, 1, "", "getPatterns"], [235, 2, 1, "", "getPatternsAsDataFrame"], [235, 2, 1, "", "getRuntime"], [235, 2, 1, "", "mine"], [235, 2, 1, "", "printResults"], [235, 2, 1, "", "save"], [235, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries": [[228, 0, 0, "-", "PPGrowth"], [93, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth": [[228, 1, 1, "", "PPGrowth"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth": [[228, 2, 1, "", "Mine"], [228, 2, 1, "", "getMemoryRSS"], [228, 2, 1, "", "getMemoryUSS"], [228, 2, 1, "", "getPatterns"], [228, 2, 1, "", "getPatternsAsDataFrame"], [228, 2, 1, "", "getRuntime"], [228, 2, 1, "", "printResults"], [228, 2, 1, "", "save"], [228, 2, 1, "", "startMine"]], "PAMI.periodicCorrelatedPattern": [[95, 0, 0, "-", "basic"]], "PAMI.periodicCorrelatedPattern.basic": [[237, 0, 0, "-", "EPCPGrowth"], [95, 0, 0, "-", "abstract"]], "PAMI.periodicCorrelatedPattern.basic.EPCPGrowth": [[237, 1, 1, "", "EPCPGrowth"]], "PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth": [[237, 2, 1, "", "getMemoryRSS"], [237, 2, 1, "", "getMemoryUSS"], [237, 2, 1, "", "getPatterns"], [237, 2, 1, "", "getPatternsAsDataFrame"], [237, 2, 1, "", "getRuntime"], [237, 2, 1, "", "printResults"], [237, 2, 1, "", "save"], [237, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern": [[97, 0, 0, "-", "basic"], [98, 0, 0, "-", "closed"], [99, 0, 0, "-", "cuda"], [100, 0, 0, "-", "maximal"], [101, 0, 0, "-", "pyspark"], [102, 0, 0, "-", "topk"]], "PAMI.periodicFrequentPattern.basic": [[239, 0, 0, "-", "PFECLAT"], [240, 0, 0, "-", "PFPGrowth"], [241, 0, 0, "-", "PFPGrowthPlus"], [242, 0, 0, "-", "PFPMC"], [243, 0, 0, "-", "PSGrowth"], [97, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.basic.PFECLAT": [[239, 1, 1, "", "PFECLAT"]], "PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT": [[239, 2, 1, "", "getMemoryRSS"], [239, 2, 1, "", "getMemoryUSS"], [239, 2, 1, "", "getPatterns"], [239, 2, 1, "", "getPatternsAsDataFrame"], [239, 2, 1, "", "getRuntime"], [239, 2, 1, "", "mine"], [239, 2, 1, "", "printResults"], [239, 2, 1, "", "save"], [239, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPGrowth": [[240, 1, 1, "", "PFPGrowth"]], "PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth": [[240, 2, 1, "", "getMemoryRSS"], [240, 2, 1, "", "getMemoryUSS"], [240, 2, 1, "", "getPatterns"], [240, 2, 1, "", "getPatternsAsDataFrame"], [240, 2, 1, "", "getRuntime"], [240, 2, 1, "", "mine"], [240, 2, 1, "", "printResults"], [240, 2, 1, "", "save"], [240, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPGrowthPlus": [[241, 1, 1, "", "PFPGrowthPlus"]], "PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus": [[241, 2, 1, "", "getMemoryRSS"], [241, 2, 1, "", "getMemoryUSS"], [241, 2, 1, "", "getPatterns"], [241, 2, 1, "", "getPatternsAsDataFrame"], [241, 2, 1, "", "getRuntime"], [241, 2, 1, "", "mine"], [241, 2, 1, "", "printResults"], [241, 2, 1, "", "save"], [241, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPMC": [[242, 1, 1, "", "PFPMC"]], "PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC": [[242, 2, 1, "", "getMemoryRSS"], [242, 2, 1, "", "getMemoryUSS"], [242, 2, 1, "", "getPatterns"], [242, 2, 1, "", "getPatternsAsDataFrame"], [242, 2, 1, "", "getRuntime"], [242, 2, 1, "", "mine"], [242, 2, 1, "", "printResults"], [242, 2, 1, "", "save"], [242, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PSGrowth": [[243, 1, 1, "", "Node"], [243, 1, 1, "", "PSGrowth"], [243, 3, 1, "", "conditionalTransactions"], [243, 3, 1, "", "getPeriodAndSupport"]], "PAMI.periodicFrequentPattern.basic.PSGrowth.Node": [[243, 2, 1, "", "addChild"]], "PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth": [[243, 2, 1, "", "getMemoryRSS"], [243, 2, 1, "", "getMemoryUSS"], [243, 2, 1, "", "getPatterns"], [243, 2, 1, "", "getPatternsAsDataFrame"], [243, 2, 1, "", "getRuntime"], [243, 2, 1, "", "mine"], [243, 2, 1, "", "printResults"], [243, 2, 1, "", "save"], [243, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.closed": [[244, 0, 0, "-", "CPFPMiner"], [98, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.closed.CPFPMiner": [[244, 1, 1, "", "CPFPMiner"]], "PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner": [[244, 2, 1, "", "Mine"], [244, 2, 1, "", "getMemoryRSS"], [244, 2, 1, "", "getMemoryUSS"], [244, 2, 1, "", "getPatterns"], [244, 2, 1, "", "getPatternsAsDataFrame"], [244, 2, 1, "", "getRuntime"], [244, 2, 1, "", "printResults"], [244, 2, 1, "", "save"], [244, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.maximal": [[245, 0, 0, "-", "MaxPFGrowth"], [100, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.maximal.MaxPFGrowth": [[245, 1, 1, "", "MaxPFGrowth"]], "PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth": [[245, 2, 1, "", "Mine"], [245, 2, 1, "", "getMemoryRSS"], [245, 2, 1, "", "getMemoryUSS"], [245, 2, 1, "", "getPatterns"], [245, 2, 1, "", "getPatternsAsDataFrame"], [245, 2, 1, "", "getRuntime"], [245, 2, 1, "", "printResults"], [245, 2, 1, "", "save"], [245, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.pyspark": [[101, 0, 0, "-", "abstract"], [101, 0, 0, "-", "parallelPFPGrowth"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth": [[101, 1, 1, "", "Node"], [101, 1, 1, "", "PFPTree"], [101, 1, 1, "", "Summary"], [101, 1, 1, "", "parallelPFPGrowth"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.Node": [[101, 2, 1, "", "addChild"], [101, 2, 1, "", "toString"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.PFPTree": [[101, 2, 1, "", "add"], [101, 2, 1, "", "extract"], [101, 2, 1, "", "getTransactions"], [101, 2, 1, "", "merge"], [101, 2, 1, "", "project"], [101, 2, 1, "", "satisfyPer"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.parallelPFPGrowth": [[101, 2, 1, "", "Mine"], [101, 2, 1, "", "func1"], [101, 2, 1, "", "func2"], [101, 2, 1, "", "func3"], [101, 2, 1, "", "genCondTransactions"], [101, 2, 1, "", "getFrequentItems"], [101, 2, 1, "", "getFrequentItemsets"], [101, 2, 1, "", "getMemoryRSS"], [101, 2, 1, "", "getMemoryUSS"], [101, 2, 1, "", "getPartitionId"], [101, 2, 1, "", "getPatterns"], [101, 2, 1, "", "getPatternsAsDataFrame"], [101, 2, 1, "", "getRuntime"], [101, 2, 1, "", "printResults"], [101, 2, 1, "", "save"], [101, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.topk": [[103, 0, 0, "-", "TopkPFP"], [104, 0, 0, "-", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.TopkPFP": [[246, 0, 0, "-", "TopkPFP"], [103, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP": [[246, 1, 1, "", "TopkPFPGrowth"]], "PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth": [[246, 2, 1, "", "Mine"], [246, 2, 1, "", "getMemoryRSS"], [246, 2, 1, "", "getMemoryUSS"], [246, 2, 1, "", "getPatterns"], [246, 2, 1, "", "getPatternsAsDataFrame"], [246, 2, 1, "", "getRuntime"], [246, 2, 1, "", "printResults"], [246, 2, 1, "", "save"], [246, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner": [[104, 0, 0, "-", "abstract"], [247, 0, 0, "-", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner": [[247, 1, 1, "", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner": [[247, 2, 1, "", "getMemoryRSS"], [247, 2, 1, "", "getMemoryUSS"], [247, 2, 1, "", "getPatterns"], [247, 2, 1, "", "getPatternsAsDataFrame"], [247, 2, 1, "", "getPer_Sup"], [247, 2, 1, "", "getRuntime"], [247, 4, 1, "", "lno"], [247, 2, 1, "", "printResults"], [247, 2, 1, "", "save"], [247, 2, 1, "", "startMine"]], "PAMI.recurringPattern": [[106, 0, 0, "-", "basic"]], "PAMI.recurringPattern.basic": [[249, 0, 0, "-", "RPGrowth"], [106, 0, 0, "-", "abstract"]], "PAMI.recurringPattern.basic.RPGrowth": [[249, 1, 1, "", "RPGrowth"]], "PAMI.recurringPattern.basic.RPGrowth.RPGrowth": [[249, 2, 1, "", "Mine"], [249, 2, 1, "", "getMemoryRSS"], [249, 2, 1, "", "getMemoryUSS"], [249, 2, 1, "", "getPatterns"], [249, 2, 1, "", "getPatternsAsDataFrame"], [249, 2, 1, "", "getRuntime"], [249, 2, 1, "", "printResults"], [249, 2, 1, "", "save"], [249, 2, 1, "", "startMine"]], "PAMI.relativeFrequentPattern": [[108, 0, 0, "-", "basic"]], "PAMI.relativeFrequentPattern.basic": [[252, 0, 0, "-", "RSFPGrowth"], [108, 0, 0, "-", "abstract"]], "PAMI.relativeFrequentPattern.basic.RSFPGrowth": [[252, 1, 1, "", "RSFPGrowth"]], "PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth": [[252, 2, 1, "", "Mine"], [252, 2, 1, "", "getMemoryRSS"], [252, 2, 1, "", "getMemoryUSS"], [252, 2, 1, "", "getPatterns"], [252, 2, 1, "", "getPatternsAsDataFrame"], [252, 2, 1, "", "getRuntime"], [252, 2, 1, "", "printResults"], [252, 2, 1, "", "save"], [252, 2, 1, "", "startMine"]], "PAMI.relativeHighUtilityPattern": [[110, 0, 0, "-", "basic"]], "PAMI.relativeHighUtilityPattern.basic": [[253, 0, 0, "-", "RHUIM"], [110, 0, 0, "-", "abstract"]], "PAMI.relativeHighUtilityPattern.basic.RHUIM": [[253, 1, 1, "", "RHUIM"]], "PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM": [[253, 2, 1, "", "getMemoryRSS"], [253, 2, 1, "", "getMemoryUSS"], [253, 2, 1, "", "getPatterns"], [253, 2, 1, "", "getPatternsAsDataFrame"], [253, 2, 1, "", "getRuntime"], [253, 2, 1, "", "printResults"], [253, 2, 1, "", "save"], [253, 2, 1, "", "sortDatabase"], [253, 2, 1, "", "sort_transaction"], [253, 2, 1, "", "startMine"]], "PAMI.sequentialPatternMining": [[113, 0, 0, "-", "basic"], [114, 0, 0, "-", "closed"]], "PAMI.stablePeriodicFrequentPattern": [[116, 0, 0, "-", "basic"], [117, 0, 0, "-", "topK"]], "PAMI.stablePeriodicFrequentPattern.basic": [[261, 0, 0, "-", "SPPEclat"], [262, 0, 0, "-", "SPPGrowth"], [116, 0, 0, "-", "abstract"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPEclat": [[261, 1, 1, "", "SPPEclat"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat": [[261, 2, 1, "", "getMemoryRSS"], [261, 2, 1, "", "getMemoryUSS"], [261, 2, 1, "", "getPatterns"], [261, 2, 1, "", "getPatternsAsDataFrame"], [261, 2, 1, "", "getRuntime"], [261, 2, 1, "", "mine"], [261, 2, 1, "", "printResults"], [261, 2, 1, "", "save"], [261, 2, 1, "", "startMine"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth": [[262, 1, 1, "", "SPPGrowth"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth": [[262, 4, 1, "", "SPPList"], [262, 2, 1, "", "getMemoryRSS"], [262, 2, 1, "", "getMemoryUSS"], [262, 2, 1, "", "getPatterns"], [262, 2, 1, "", "getPatternsAsDataFrame"], [262, 2, 1, "", "getRuntime"], [262, 2, 1, "", "mine"], [262, 2, 1, "", "printResults"], [262, 2, 1, "", "save"], [262, 2, 1, "", "startMine"]], "PAMI.stablePeriodicFrequentPattern.topK": [[263, 0, 0, "-", "TSPIN"], [117, 0, 0, "-", "abstract"]], "PAMI.stablePeriodicFrequentPattern.topK.TSPIN": [[263, 1, 1, "", "TSPIN"]], "PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN": [[263, 2, 1, "", "getMemoryRSS"], [263, 2, 1, "", "getMemoryUSS"], [263, 2, 1, "", "getPatterns"], [263, 2, 1, "", "getPatternsAsDataFrame"], [263, 2, 1, "", "getRuntime"], [263, 2, 1, "", "printResults"], [263, 2, 1, "", "save"], [263, 2, 1, "", "startMine"]], "PAMI.subgraphMining": [[119, 0, 0, "-", "basic"], [120, 0, 0, "-", "topK"]], "PAMI.subgraphMining.basic": [[119, 0, 0, "-", "abstract"], [119, 0, 0, "-", "dfsCode"], [119, 0, 0, "-", "edge"], [119, 0, 0, "-", "extendedEdge"], [119, 0, 0, "-", "frequentSubgraph"], [119, 0, 0, "-", "graph"], [119, 0, 0, "-", "gspan"], [119, 0, 0, "-", "sparseTriangularMatrix"], [119, 0, 0, "-", "vertex"]], "PAMI.subgraphMining.basic.dfsCode": [[119, 1, 1, "", "DFSCode"]], "PAMI.subgraphMining.basic.dfsCode.DFSCode": [[119, 2, 1, "", "add"], [119, 2, 1, "", "containEdge"], [119, 2, 1, "", "copy"], [119, 2, 1, "", "getAllVLabels"], [119, 2, 1, "", "getAt"], [119, 2, 1, "", "getEeList"], [119, 2, 1, "", "getRightMost"], [119, 2, 1, "", "getRightMostPath"], [119, 2, 1, "", "isEmpty"], [119, 2, 1, "", "notPreOfRm"], [119, 2, 1, "", "onRightMostPath"]], "PAMI.subgraphMining.basic.edge": [[119, 1, 1, "", "Edge"]], "PAMI.subgraphMining.basic.edge.Edge": [[119, 2, 1, "", "another"], [119, 2, 1, "", "getEdgeLabel"]], "PAMI.subgraphMining.basic.extendedEdge": [[119, 1, 1, "", "ExtendedEdge"]], "PAMI.subgraphMining.basic.extendedEdge.ExtendedEdge": [[119, 2, 1, "", "getEdgeLabel"], [119, 2, 1, "", "getV1"], [119, 2, 1, "", "getV2"], [119, 2, 1, "", "getVLabel1"], [119, 2, 1, "", "getVLabel2"], [119, 2, 1, "", "pairSmallerThan"], [119, 2, 1, "", "smallerThan"], [119, 2, 1, "", "smallerThanOriginal"]], "PAMI.subgraphMining.basic.frequentSubgraph": [[119, 1, 1, "", "FrequentSubgraph"]], "PAMI.subgraphMining.basic.graph": [[119, 1, 1, "", "Graph"]], "PAMI.subgraphMining.basic.graph.Graph": [[119, 4, 1, "", "emptyIntegerArray"], [119, 4, 1, "", "emptyVertexList"], [119, 2, 1, "", "findAllWithLabel"], [119, 2, 1, "", "getAllNeighbors"], [119, 2, 1, "", "getAllVertices"], [119, 2, 1, "", "getEdge"], [119, 2, 1, "", "getEdgeCount"], [119, 2, 1, "", "getEdgeLabel"], [119, 2, 1, "", "getId"], [119, 2, 1, "", "getNonPrecalculatedAllVertices"], [119, 2, 1, "", "getVLabel"], [119, 2, 1, "", "isNeighboring"], [119, 2, 1, "", "precalculateLabelsToVertices"], [119, 2, 1, "", "precalculateVertexList"], [119, 2, 1, "", "precalculateVertexNeighbors"], [119, 2, 1, "", "removeInfrequentLabel"]], "PAMI.subgraphMining.basic.gspan": [[119, 1, 1, "", "GSpan"]], "PAMI.subgraphMining.basic.gspan.GSpan": [[119, 1, 1, "", "Pair"], [119, 4, 1, "", "edge_count_pruning"], [119, 4, 1, "", "eliminate_infrequent_edge_labels"], [119, 4, 1, "", "eliminate_infrequent_vertex_pairs"], [119, 4, 1, "", "eliminate_infrequent_vertices"], [119, 2, 1, "", "findAllOnlyOneVertex"], [119, 2, 1, "", "gSpan"], [119, 2, 1, "", "getFrequentSubgraphs"], [119, 2, 1, "", "getMemoryRSS"], [119, 2, 1, "", "getMemoryUSS"], [119, 2, 1, "", "getRuntime"], [119, 2, 1, "", "getSubgraphGraphMapping"], [119, 2, 1, "", "gspanDFS"], [119, 2, 1, "", "isCanonical"], [119, 2, 1, "", "mine"], [119, 2, 1, "", "readGraphs"], [119, 2, 1, "", "removeInfrequentVertexPairs"], [119, 2, 1, "", "rightMostPathExtensions"], [119, 2, 1, "", "rightMostPathExtensionsFromSingle"], [119, 2, 1, "", "save"], [119, 2, 1, "", "saveSubgraphsByGraphId"], [119, 2, 1, "", "subgraphIsomorphisms"]], "PAMI.subgraphMining.basic.sparseTriangularMatrix": [[119, 1, 1, "", "SparseTriangularMatrix"]], "PAMI.subgraphMining.basic.sparseTriangularMatrix.SparseTriangularMatrix": [[119, 2, 1, "", "getSupportForItems"], [119, 2, 1, "", "incrementCount"], [119, 2, 1, "", "removeInfrequentEntriesFromMatrix"], [119, 2, 1, "", "setSupport"]], "PAMI.subgraphMining.basic.vertex": [[119, 1, 1, "", "Vertex"]], "PAMI.subgraphMining.basic.vertex.Vertex": [[119, 2, 1, "", "addEdge"], [119, 2, 1, "", "getEdgeList"], [119, 2, 1, "", "getId"], [119, 2, 1, "", "getLabel"], [119, 2, 1, "", "removeEdge"]], "PAMI.subgraphMining.topK": [[120, 0, 0, "-", "DFSCode"], [120, 0, 0, "-", "DFSThread"], [120, 0, 0, "-", "abstract"], [120, 0, 0, "-", "edge"], [120, 0, 0, "-", "extendedEdge"], [120, 0, 0, "-", "frequentSubgraph"], [120, 0, 0, "-", "graph"], [120, 0, 0, "-", "sparseTriangularMatrix"], [120, 0, 0, "-", "tkg"], [120, 0, 0, "-", "vertex"]], "PAMI.subgraphMining.topK.DFSCode": [[120, 1, 1, "", "DfsCode"]], "PAMI.subgraphMining.topK.DFSCode.DfsCode": [[120, 2, 1, "", "add"], [120, 2, 1, "", "containEdge"], [120, 2, 1, "", "copy"], [120, 2, 1, "", "getAllVLabels"], [120, 2, 1, "", "getAt"], [120, 2, 1, "", "getEeList"], [120, 2, 1, "", "getRightMost"], [120, 2, 1, "", "getRightMostPath"], [120, 2, 1, "", "isEmpty"], [120, 2, 1, "", "notPreOfRm"], [120, 2, 1, "", "onRightMostPath"]], "PAMI.subgraphMining.topK.DFSThread": [[120, 1, 1, "", "DfsThread"]], "PAMI.subgraphMining.topK.DFSThread.DfsThread": [[120, 2, 1, "", "run"]], "PAMI.subgraphMining.topK.edge": [[120, 1, 1, "", "Edge"]], "PAMI.subgraphMining.topK.edge.Edge": [[120, 2, 1, "", "another"], [120, 2, 1, "", "getEdgeLabel"]], "PAMI.subgraphMining.topK.extendedEdge": [[120, 1, 1, "", "ExtendedEdge"]], "PAMI.subgraphMining.topK.extendedEdge.ExtendedEdge": [[120, 2, 1, "", "getEdgeLabel"], [120, 2, 1, "", "getV1"], [120, 2, 1, "", "getV2"], [120, 2, 1, "", "getVLabel1"], [120, 2, 1, "", "getVLabel2"], [120, 2, 1, "", "pairSmallerThan"], [120, 2, 1, "", "smallerThan"], [120, 2, 1, "", "smallerThanOriginal"]], "PAMI.subgraphMining.topK.frequentSubgraph": [[120, 1, 1, "", "FrequentSubgraph"]], "PAMI.subgraphMining.topK.graph": [[120, 1, 1, "", "Graph"]], "PAMI.subgraphMining.topK.graph.Graph": [[120, 4, 1, "id0", "EMPTY_INTEGER_ARRAY"], [120, 4, 1, "id1", "EMPTY_VERTEX_LIST"], [120, 2, 1, "", "findAllWithLabel"], [120, 2, 1, "", "getAllNeighbors"], [120, 2, 1, "", "getAllVertices"], [120, 2, 1, "", "getEdge"], [120, 2, 1, "", "getEdgeCount"], [120, 2, 1, "", "getEdgeLabel"], [120, 2, 1, "", "getId"], [120, 2, 1, "", "getNonPrecalculatedAllVertices"], [120, 2, 1, "", "getVLabel"], [120, 2, 1, "", "isNeighboring"], [120, 2, 1, "", "precalculateLabelsToVertices"], [120, 2, 1, "", "precalculateVertexList"], [120, 2, 1, "", "precalculateVertexNeighbors"], [120, 2, 1, "", "removeInfrequentLabel"]], "PAMI.subgraphMining.topK.sparseTriangularMatrix": [[120, 1, 1, "", "SparseTriangularMatrix"]], "PAMI.subgraphMining.topK.sparseTriangularMatrix.SparseTriangularMatrix": [[120, 2, 1, "", "getSupportForItems"], [120, 2, 1, "", "incrementCount"], [120, 4, 1, "", "matrix"], [120, 2, 1, "", "removeInfrequentEntriesFromMatrix"], [120, 2, 1, "", "setSupport"]], "PAMI.subgraphMining.topK.tkg": [[120, 1, 1, "", "TKG"]], "PAMI.subgraphMining.topK.tkg.TKG": [[120, 4, 1, "", "DYNAMIC_SEARCH"], [120, 4, 1, "", "EDGE_COUNT_PRUNING"], [120, 4, 1, "", "ELIMINATE_INFREQUENT_EDGE_LABELS"], [120, 4, 1, "", "ELIMINATE_INFREQUENT_VERTEX_PAIRS"], [120, 4, 1, "", "ELIMINATE_INFREQUENT_VERTICES"], [120, 1, 1, "", "Pair"], [120, 4, 1, "", "THREADED_DYNAMIC_SEARCH"], [120, 2, 1, "", "findAllOnlyOneVertex"], [120, 2, 1, "", "gSpan"], [120, 2, 1, "", "getKSubgraphs"], [120, 2, 1, "", "getMemoryRSS"], [120, 2, 1, "", "getMemoryUSS"], [120, 2, 1, "", "getMinSupport"], [120, 2, 1, "", "getQueueSize"], [120, 2, 1, "", "getRuntime"], [120, 2, 1, "", "getSubgraphsList"], [120, 2, 1, "", "gspanDfs"], [120, 2, 1, "", "gspanDynamicDFS"], [120, 2, 1, "", "isCanonical"], [120, 2, 1, "", "mine"], [120, 2, 1, "", "readGraphs"], [120, 2, 1, "", "registerAsCandidate"], [120, 2, 1, "", "removeInfrequentVertexPairs"], [120, 2, 1, "", "rightMostPathExtensions"], [120, 2, 1, "", "rightMostPathExtensionsFromSingle"], [120, 2, 1, "", "save"], [120, 2, 1, "", "savePattern"], [120, 2, 1, "", "startThreads"], [120, 2, 1, "", "subgraphIsomorphisms"]], "PAMI.subgraphMining.topK.vertex": [[120, 1, 1, "", "Vertex"]], "PAMI.subgraphMining.topK.vertex.Vertex": [[120, 2, 1, "", "addEdge"], [120, 4, 1, "", "eList"], [120, 2, 1, "", "getEdgeList"], [120, 2, 1, "", "getId"], [120, 2, 1, "", "getLabel"], [120, 4, 1, "", "id"], [120, 2, 1, "", "removeEdge"], [120, 4, 1, "", "vLabel"]], "PAMI.uncertainFaultTolerantFrequentPattern": [[121, 0, 0, "-", "VBFTMine"], [121, 0, 0, "-", "abstract"]], "PAMI.uncertainFaultTolerantFrequentPattern.VBFTMine": [[121, 1, 1, "", "VBFTMine"]], "PAMI.uncertainFaultTolerantFrequentPattern.VBFTMine.VBFTMine": [[121, 2, 1, "", "getMemoryRSS"], [121, 2, 1, "", "getMemoryUSS"], [121, 2, 1, "", "getPatterns"], [121, 2, 1, "", "getPatternsAsDataFrame"], [121, 2, 1, "", "getRuntime"], [121, 2, 1, "", "mine"], [121, 2, 1, "", "printResults"], [121, 2, 1, "", "save"], [121, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern": [[123, 0, 0, "-", "basic"]], "PAMI.uncertainFrequentPattern.basic": [[267, 0, 0, "-", "CUFPTree"], [268, 0, 0, "-", "PUFGrowth"], [269, 0, 0, "-", "TUFP"], [270, 0, 0, "-", "TubeP"], [271, 0, 0, "-", "TubeS"], [273, 0, 0, "-", "UVECLAT"], [123, 0, 0, "-", "abstract"]], "PAMI.uncertainFrequentPattern.basic.CUFPTree": [[267, 1, 1, "", "CUFPTree"]], "PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree": [[267, 2, 1, "", "getMemoryRSS"], [267, 2, 1, "", "getMemoryUSS"], [267, 2, 1, "", "getPatterns"], [267, 2, 1, "", "getPatternsAsDataFrame"], [267, 2, 1, "", "getRuntime"], [267, 2, 1, "", "mine"], [267, 2, 1, "", "printResults"], [267, 2, 1, "", "save"], [267, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.PUFGrowth": [[268, 1, 1, "", "PUFGrowth"]], "PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth": [[268, 2, 1, "", "getMemoryRSS"], [268, 2, 1, "", "getMemoryUSS"], [268, 2, 1, "", "getPatterns"], [268, 2, 1, "", "getPatternsAsDataFrame"], [268, 2, 1, "", "getRuntime"], [268, 2, 1, "", "mine"], [268, 2, 1, "", "printResults"], [268, 2, 1, "", "save"], [268, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TUFP": [[269, 1, 1, "", "TUFP"]], "PAMI.uncertainFrequentPattern.basic.TUFP.TUFP": [[269, 2, 1, "", "getMemoryRSS"], [269, 2, 1, "", "getMemoryUSS"], [269, 2, 1, "", "getPatterns"], [269, 2, 1, "", "getPatternsAsDataFrame"], [269, 2, 1, "", "getRuntime"], [269, 2, 1, "", "mine"], [269, 2, 1, "", "printResults"], [269, 2, 1, "", "save"], [269, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TubeP": [[270, 1, 1, "", "TUFP"]], "PAMI.uncertainFrequentPattern.basic.TubeP.TUFP": [[270, 2, 1, "", "getMemoryRSS"], [270, 2, 1, "", "getMemoryUSS"], [270, 2, 1, "", "getPatterns"], [270, 2, 1, "", "getPatternsAsDataFrame"], [270, 2, 1, "", "getRuntime"], [270, 2, 1, "", "mine"], [270, 2, 1, "", "printResults"], [270, 2, 1, "", "save"], [270, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TubeS": [[271, 3, 1, "", "Second"], [271, 1, 1, "", "TubeS"], [271, 3, 1, "", "printTree"]], "PAMI.uncertainFrequentPattern.basic.TubeS.TubeS": [[271, 2, 1, "", "getMemoryRSS"], [271, 2, 1, "", "getMemoryUSS"], [271, 2, 1, "", "getPatterns"], [271, 2, 1, "", "getPatternsAsDataFrame"], [271, 2, 1, "", "getRuntime"], [271, 2, 1, "", "mine"], [271, 2, 1, "", "printResults"], [271, 2, 1, "", "save"], [271, 2, 1, "", "updateTransactions"]], "PAMI.uncertainFrequentPattern.basic.UVECLAT": [[273, 1, 1, "", "UVEclat"]], "PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat": [[273, 2, 1, "", "getMemoryRSS"], [273, 2, 1, "", "getMemoryUSS"], [273, 2, 1, "", "getPatterns"], [273, 2, 1, "", "getPatternsAsDataFrame"], [273, 2, 1, "", "getRuntime"], [273, 2, 1, "", "mine"], [273, 2, 1, "", "printResults"], [273, 2, 1, "", "save"]], "PAMI.uncertainGeoreferencedFrequentPattern": [[125, 0, 0, "-", "basic"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic": [[276, 0, 0, "-", "GFPGrowth"], [125, 0, 0, "-", "abstract"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth": [[276, 1, 1, "", "GFPGrowth"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth": [[276, 2, 1, "", "getMemoryRSS"], [276, 2, 1, "", "getMemoryUSS"], [276, 2, 1, "", "getPatterns"], [276, 2, 1, "", "getPatternsAsDataFrame"], [276, 2, 1, "", "getRuntime"], [276, 2, 1, "", "mine"], [276, 2, 1, "", "printResults"], [276, 2, 1, "", "save"], [276, 2, 1, "", "startMine"]], "PAMI.uncertainPeriodicFrequentPattern": [[127, 0, 0, "-", "basic"]], "PAMI.uncertainPeriodicFrequentPattern.basic": [[278, 0, 0, "-", "UPFPGrowth"], [279, 0, 0, "-", "UPFPGrowthPlus"], [127, 0, 0, "-", "abstract"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth": [[278, 1, 1, "", "UPFPGrowth"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth": [[278, 2, 1, "", "getMemoryRSS"], [278, 2, 1, "", "getMemoryUSS"], [278, 2, 1, "", "getPatterns"], [278, 2, 1, "", "getPatternsAsDataFrame"], [278, 2, 1, "", "getRuntime"], [278, 2, 1, "", "mine"], [278, 2, 1, "", "printResults"], [278, 2, 1, "", "save"], [278, 2, 1, "", "startMine"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus": [[279, 1, 1, "", "UPFPGrowthPlus"], [279, 3, 1, "", "printTree"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus": [[279, 2, 1, "", "getMemoryRSS"], [279, 2, 1, "", "getMemoryUSS"], [279, 2, 1, "", "getPatterns"], [279, 2, 1, "", "getPatternsAsDataFrame"], [279, 2, 1, "", "getRuntime"], [279, 2, 1, "", "mine"], [279, 2, 1, "", "printResults"], [279, 2, 1, "", "save"], [279, 2, 1, "", "startMine"]], "PAMI.weightedFrequentNeighbourhoodPattern": [[129, 0, 0, "-", "basic"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic": [[282, 0, 0, "-", "SWFPGrowth"], [129, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth": [[282, 1, 1, "", "SWFPGrowth"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth": [[282, 2, 1, "", "getMemoryRSS"], [282, 2, 1, "", "getMemoryUSS"], [282, 2, 1, "", "getPatterns"], [282, 2, 1, "", "getPatternsAsDataFrame"], [282, 2, 1, "", "getRuntime"], [282, 2, 1, "", "mine"], [282, 2, 1, "", "printResults"], [282, 2, 1, "", "save"], [282, 2, 1, "", "startMine"]], "PAMI.weightedFrequentPattern": [[131, 0, 0, "-", "basic"]], "PAMI.weightedFrequentPattern.basic": [[284, 0, 0, "-", "WFIM"], [131, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentPattern.basic.WFIM": [[284, 1, 1, "", "WFIM"]], "PAMI.weightedFrequentPattern.basic.WFIM.WFIM": [[284, 2, 1, "", "getMemoryRSS"], [284, 2, 1, "", "getMemoryUSS"], [284, 2, 1, "", "getPatterns"], [284, 2, 1, "", "getPatternsAsDataFrame"], [284, 2, 1, "", "getRuntime"], [284, 2, 1, "", "mine"], [284, 2, 1, "", "printResults"], [284, 2, 1, "", "save"], [284, 2, 1, "", "startMine"]], "PAMI.weightedFrequentRegularPattern": [[133, 0, 0, "-", "basic"]], "PAMI.weightedFrequentRegularPattern.basic": [[286, 0, 0, "-", "WFRIMiner"], [133, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentRegularPattern.basic.WFRIMiner": [[286, 1, 1, "", "WFRIMiner"]], "PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner": [[286, 2, 1, "", "getMemoryRSS"], [286, 2, 1, "", "getMemoryUSS"], [286, 2, 1, "", "getPatterns"], [286, 2, 1, "", "getPatternsAsDataFrame"], [286, 2, 1, "", "getRuntime"], [286, 2, 1, "", "mine"], [286, 2, 1, "", "printResults"], [286, 2, 1, "", "save"], [286, 2, 1, "", "startMine"]], "PAMI.weightedUncertainFrequentPattern": [[135, 0, 0, "-", "basic"]], "PAMI.weightedUncertainFrequentPattern.basic": [[135, 0, 0, "-", "WUFIM"], [135, 0, 0, "-", "abstract"]], "PAMI.weightedUncertainFrequentPattern.basic.WUFIM": [[135, 1, 1, "", "WUFIM"]], "PAMI.weightedUncertainFrequentPattern.basic.WUFIM.WUFIM": [[135, 2, 1, "", "getMemoryRSS"], [135, 2, 1, "", "getMemoryUSS"], [135, 2, 1, "", "getPatterns"], [135, 2, 1, "", "getPatternsAsDataFrame"], [135, 2, 1, "", "getRuntime"], [135, 2, 1, "", "mine"], [135, 2, 1, "", "printResults"], [135, 2, 1, "", "save"], [135, 2, 1, "", "startMine"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"contigu": [0, 151], "frequent": [0, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 136, 139, 142, 144, 145, 146, 147, 148, 149, 161, 250], "pattern": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 161, 191, 197, 250, 281], "correl": [1, 5, 138], "mine": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 161, 191, 197, 281], "coverag": 2, "fault": 3, "toler": 3, "With": 4, "multipl": [4, 19, 224], "minimum": 4, "support": 4, "fuzzi": [5, 6, 7, 8, 9, 191], "geo": [7, 8, 10, 11, 12, 13, 15, 145, 197], "referenc": [7, 8, 10, 11, 12, 13, 15, 145, 197], "period": [8, 9, 12, 13, 18, 19, 136, 137, 138, 139, 143, 146], "sequenc": [11, 111], "partial": [12, 19, 136, 137], "high": [14, 15, 16, 17, 141], "util": [14, 15, 16, 17, 141, 281], "spatial": 17, "local": 18, "pami": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 215, 220], "packag": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "subpackag": [20, 21, 23, 25, 27, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 78, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134], "modul": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "content": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "associationrul": [21, 22], "basic": [22, 24, 26, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 84, 86, 88, 95, 97, 106, 108, 110, 113, 116, 119, 123, 125, 127, 129, 131, 133, 135, 154, 157, 160, 176, 181, 183, 185, 187, 188, 192, 194, 196, 198, 204, 205, 210, 213, 216, 223, 225, 229, 236, 238, 248, 251, 254, 255, 264, 274, 275, 280, 283, 285, 287], "submodul": [22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 76, 77, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110, 113, 114, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135], "arwithconfid": 22, "arwithleverag": 22, "arwithlift": 22, "rulemin": 22, "abstract": [22, 24, 26, 31, 43, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 76, 77, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110, 113, 114, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135], "correlatedpattern": [23, 24], "comin": [24, 152], "comineplu": [24, 153], "coveragepattern": [25, 26], "cmine": [26, 155], "cppg": [26, 156], "extra": [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], "convertmultitsintofuzzi": 27, "generatelatexgraphfil": 27, "plotpointonmap": 27, "plotpointonmap_dump": 27, "scatterplotspatialpoint": 27, "topkpattern": 27, "uncertaindb_convert": 27, "df2db": 28, "df2dbplu": 28, "denseformatdf": 28, "sparseformatdf": 28, "createtdb": 28, "densedf2dbplu": 28, "densedf2db_dump": 28, "sparsedf2dbplu": 28, "calculatemisvalu": 29, "usingbeta": 29, "usingsd": 29, "dbstat": 30, "fuzzydatabas": [30, 40], "multipletimeseriesfuzzydatabasestat": 30, "sequentialdatabas": [30, 39], "temporaldatabas": [30, 39, 40], "transactionaldatabas": [30, 39, 40], "uncertaintemporaldatabas": 30, "uncertaintransactionaldatabas": 30, "utilitydatabas": [30, 39, 40], "fuzzytransform": 31, "temporaltofuzzi": 31, "transactionaltofuzzi": 31, "utilitytofuzzi": 31, "generatedatabas": 32, "generatespatiotemporaldatabas": 32, "generatetemporaldatabas": 32, "generatetransactionaldatabas": 32, "graph": [33, 41, 119, 120], "df2fig": 33, "df2tex": 33, "plotlinegraphfromdictionari": 33, "plotlinegraphsfromdatafram": 33, "visualizefuzzypattern": 33, "visualizepattern": 33, "image2databas": 34, "imageprocess": 35, "imagery2databas": 35, "messag": 36, "discord": 36, "gmail": 36, "neighbour": 37, "findneighborsusingeuclideandistanceforpointinfo": 37, "findneighboursusingeuclidean": 37, "findneighboursusinggeodes": 37, "sampledataset": 38, "stat": 39, "graphdatabas": 39, "syntheticdatagener": 40, "createsyntheticgeoreferentialtempor": 40, "createsyntheticgeoreferentialtransact": 40, "createsyntheticgeoreferentialuncertaintransact": 40, "createsynthetictempor": 40, "createsynthetictransact": 40, "createsyntheticuncertaintempor": 40, "createsyntheticuncertaintransact": 40, "createsyntheticutil": 40, "generatetempor": 40, "generatetransact": 40, "generateuncertaintempor": 40, "generateuncertaintransact": 40, "generateutilitytempor": 40, "generateutilitytransact": 40, "georeferencedtemporaldatabas": 40, "georeferencedtransactionaldatabas": 40, "syntheticutilitydatabas": 40, "temporaldatabasegen": 40, "visual": 41, "faulttolerantfrequentpattern": [42, 43], "ftapriori": [43, 158], "ftfpgrowth": [43, 159], "frequentpattern": [44, 45, 46, 47, 48, 49, 50], "apriori": [45, 162], "eclat": [45, 164], "eclatdiffset": [45, 165], "eclatbitset": [45, 166], "fpgrowth": [45, 167], "close": [46, 89, 98, 114, 176, 229, 238, 255], "charm": [46, 182], "cuda": [47, 99, 176, 229], "cuapriori": [47, 168], "cuaprioribit": [47, 169], "cueclat": [47, 172], "cueclatbit": [47, 173], "cudaapriorigct": [47, 170], "cudaaprioritid": [47, 171], "cudaeclatgct": [47, 174], "maxim": [48, 90, 100, 176, 229, 238], "maxfpgrowth": [48, 175], "pyspark": [49, 91, 101, 176], "parallelapriori": [49, 177], "paralleleclat": [49, 178], "parallelfpgrowth": [49, 179], "topk": [50, 80, 92, 102, 103, 104, 117, 120, 229, 264], "fae": [50, 180], "fuzzycorrelatedpattern": [51, 52], "fcpgrowth": [52, 184], "fuzzyfrequentpattern": [53, 54], "ffimin": [54, 186], "ffiminer_old": 54, "fuzzygeoreferencedfrequentpattern": [55, 56], "ffspminer": [56, 189], "ffspminer_old": 56, "fuzzygeoreferencedperiodicfrequentpattern": [57, 58], "fgpfpminer": [58, 190], "fgpfpminer_old": 58, "fuzzypartialperiodicpattern": [59, 60], "f3pminer": 60, "fuzzyperiodicfrequentpattern": [61, 62], "fpfpminer": [62, 193], "fpfpminer_old": 62, "georeferencedperiodicfrequentpattern": [63, 64], "gpfpminer": [64, 199], "georeferencedfrequentpattern": [65, 66], "fspgrowth": [66, 200], "spatialeclat": [66, 201], "georeferencedfrequentsequencepattern": 67, "georeferencedpartialperiodicpattern": [68, 69], "steclat": [69, 202], "highutilityfrequentpattern": [70, 71], "hufim": [71, 203], "highutilitygeoreferencedfrequentpattern": [72, 73], "shufim": [73, 206], "highutilitypattern": [74, 75, 76], "efim": [75, 207], "hminer": [75, 208], "upgrowth": [75, 209], "efimparallel": [75, 76], "parallel": 76, "highutilitypatternsinstream": 77, "hupm": 77, "shugrowth": 77, "highutilityspatialpattern": [78, 79, 80], "hdshuim": [79, 211], "shuim": [79, 212], "tkshuim": [80, 214], "localperiodicpattern": [81, 82], "lppgrowth": [82, 217], "lppmbreadth": [82, 218], "lppmdepth": [82, 219], "multipleminimumsupportbasedfrequentpattern": [83, 84], "cfpgrowth": [84, 221], "cfpgrowthplu": [84, 222], "partialperiodicfrequentpattern": [85, 86], "gpfgrowth": [86, 226], "ppf_df": [86, 227], "partialperiodicpattern": [87, 88, 89, 90, 91, 92], "gthreepgrowth": [88, 230], "gabstract": 88, "pppgrowth": [88, 231], "ppp_eclat": [88, 232], "pppclose": [89, 233], "max3pgrowth": [90, 234], "parallel3pgrowth": 91, "k3pminer": [92, 235], "partialperiodicpatterninmultipletimeseri": 93, "ppgrowth": [93, 228], "periodiccorrelatedpattern": [94, 95], "epcpgrowth": [95, 237], "periodicfrequentpattern": [96, 97, 98, 99, 100, 101, 102, 103, 104], "pfeclat": [97, 239], "pfpgrowth": [97, 240], "pfpgrowthplu": [97, 241], "pfpmc": [97, 242], "psgrowth": [97, 243], "parallelpfpgrowth": [97, 101], "cpfpminer": [98, 244], "cugpfmin": 99, "gpfminerbit": 99, "maxpfgrowth": [100, 245], "topkpfp": [103, 246], "kpfpminer": [104, 247], "recurringpattern": [105, 106], "rpgrowth": [106, 249], "relativefrequentpattern": [107, 108], "rsfpgrowth": [108, 252], "relativehighutilitypattern": [109, 110], "rhuim": [110, 253], "sequentialpatternmin": [112, 113, 114], "spade": [113, 257], "spam": [113, 258], "prefixspan": [113, 259], "bide": [114, 260], "stableperiodicfrequentpattern": [115, 116, 117], "sppeclat": [116, 261], "sppgrowth": [116, 262], "sppgrowthdump": 116, "tspin": [117, 263], "subgraphmin": [118, 119, 120], "dfscode": [119, 120], "edg": [119, 120], "extendededg": [119, 120], "frequentsubgraph": [119, 120], "gspan": 119, "sparsetriangularmatrix": [119, 120], "vertex": [119, 120], "dfsthread": 120, "tkg": 120, "uncertainfaulttolerantfrequentpattern": 121, "vbftmine": 121, "uncertainfrequentpattern": [122, 123], "cufptre": [123, 267], "pufgrowth": [123, 268], "tufp": [123, 269], "tubep": [123, 270], "tube": [123, 271], "ufgrowth": [123, 272], "uveclat": [123, 273], "uncertaingeoreferencedfrequentpattern": [124, 125], "gfpgrowth": [125, 276], "uncertainperiodicfrequentpattern": [126, 127], "upfpgrowth": [127, 278], "upfpgrowthplu": [127, 279], "weightedfrequentneighbourhoodpattern": [128, 129], "swfpgrowth": [129, 282], "weightedfrequentpattern": [130, 131], "wfim": [131, 284], "weightedfrequentregularpattern": [132, 133], "wfrimin": [133, 286], "weighteduncertainfrequentpattern": [134, 135], "wufim": 135, "recur": 140, "rel": [141, 250], "sequenti": [142, 256], "stabl": 143, "uncertain": [144, 145, 146, 277], "weight": [147, 148, 149], "neighbourhood": 147, "regular": 149, "aprioribitset": 163, "top": [176, 213, 238], "k": [176, 213, 238], "welcom": 215, "s": 215, "document": 215, "indic": 215, "tabl": 215, "timeseri": 224, "databas": [256, 265, 266, 277], "tempor": 265, "transact": 266}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file