forked from roboav8r/marmot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nuscenes_to_mcap.py
executable file
·635 lines (541 loc) · 25.7 KB
/
nuscenes_to_mcap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
#!/usr/bin/env python3
import argparse
import os
import math
import json
from typing import Dict, Tuple
from pathlib import Path
import numpy as np
from PIL import Image
from pyquaternion import Quaternion as PyQuaternion
from nuscenes.nuscenes import NuScenes
from nuscenes.map_expansion.map_api import NuScenesMap
import nuscenes.utils.splits as nuscenes_splits
from nuscenes.eval.common.utils import quaternion_yaw
import rosbag2_py
from rclpy.serialization import serialize_message
from builtin_interfaces.msg import Time
from foxglove_msgs.msg import SceneUpdate, SceneEntity, PoseInFrame, LocationFix, Grid, PackedElementField, CubePrimitive, LinePrimitive, FrameTransform, KeyValuePair, ModelPrimitive
from geometry_msgs.msg import Point, Vector3, Quaternion
EARTH_RADIUS_METERS = 6.378137e6
REFERENCE_COORDINATES = {
"boston-seaport": [42.336849169438615, -71.05785369873047],
"singapore-onenorth": [1.2882100868743724, 103.78475189208984],
"singapore-hollandvillage": [1.2993652317780957, 103.78217697143555],
"singapore-queenstown": [1.2782562240223188, 103.76741409301758],
}
class NuScenesToMcap():
def __init__(self,args):
self.nuscenes_dir = args.nuscenes_dir
self.mcap_dir = args.mcap_dir
self.lidar_detector = args.lidar_det
self.dataset = args.dataset
self.split_name = args.split
self.lidar_det_string = "-" + self.lidar_detector if self.lidar_detector else ""
# Map detection classes to nuScenes tracking classes to get color scheme
self.lidar_class_map = {'car': 'vehicle.car',
'truck': 'vehicle.truck',
'construction_vehicle': 'vehicle.construction',
'trailer': 'vehicle.trailer',
'bus': 'vehicle.bus.rigid',
'barrier': 'movable_object.barrier',
'bicycle': 'vehicle.bicycle',
'motorcycle': 'vehicle.motorcycle',
'pedestrian': 'human.pedestrian.adult',
'traffic_cone': 'movable_object.trafficcone'}
# Create nuscenes objects
self.nusc = NuScenes(version=self.dataset, dataroot=self.nuscenes_dir, verbose=True)
self.split = eval('nuscenes_splits.' + self.split_name)
# Load lidar detections for this split
if self.split_name in ['val', 'mini_val', 'train', 'mini_train']:
train_det_path = os.path.join(self.nuscenes_dir,'detection-' + self.lidar_detector, self.lidar_detector + '_train.json')
self.lidar_dets = json.load(open(train_det_path))['results']
val_det_path = os.path.join(self.nuscenes_dir,'detection-' + self.lidar_detector, self.lidar_detector + '_val.json')
self.lidar_dets.update(json.load(open(val_det_path))['results'])
elif self.split_name in ['test']:
train_det_path = os.path.join(self.nuscenes_dir,'detection-' + self.lidar_detector, self.lidar_detector + '_test.json')
self.lidar_dets = json.load(open(train_det_path))['results']
# If output directory doesn't exist, create it
if not os.path.exists(self.mcap_dir):
os.mkdir(self.mcap_dir)
# Member functions
def get_translation(self,data):
return Vector3(x=data["translation"][0], y=data["translation"][1], z=data["translation"][2])
def get_rotation(self, data):
return Quaternion(x=data["rotation"][1], y=data["rotation"][2], z=data["rotation"][3], w=data["rotation"][0])
def get_time(self, data):
t = Time()
t.sec, msecs = divmod(data["timestamp"], 1_000_000)
t.nanosec = msecs * 1000
return t
def get_ego_tf(self, ego_pose, stamp):
ego_tf = FrameTransform()
ego_tf.parent_frame_id = "map"
ego_tf.timestamp = stamp
ego_tf.child_frame_id = "base_link"
ego_tf.translation = self.get_translation(ego_pose)
ego_tf.rotation = self.get_rotation(ego_pose)
return ego_tf
def load_bitmap(self, dataroot: str, map_name: str, layer_name: str) -> np.ndarray:
"""render bitmap map layers. Currently these are:
- semantic_prior: The semantic prior (driveable surface and sidewalks) mask from nuScenes 1.0.
- basemap: The HD lidar basemap used for localization and as general context.
:param dataroot: Path of the nuScenes dataset.
:param map_name: Which map out of `singapore-onenorth`, `singepore-hollandvillage`, `singapore-queenstown` and
'boston-seaport'.
:param layer_name: The type of bitmap map, `semanitc_prior` or `basemap.
"""
# Load bitmap.
if layer_name == "basemap":
map_path = os.path.join(dataroot, "maps", "basemap", map_name + ".png")
elif layer_name == "semantic_prior":
map_hashes = {
"singapore-onenorth": "53992ee3023e5494b90c316c183be829",
"singapore-hollandvillage": "37819e65e09e5547b8a3ceaefba56bb2",
"singapore-queenstown": "93406b464a165eaba6d9de76ca09f5da",
"boston-seaport": "36092f0b03a857c6a3403e25b4b7aab3",
}
map_hash = map_hashes[map_name]
map_path = os.path.join(dataroot, "maps", map_hash + ".png")
else:
raise Exception("Error: Invalid bitmap layer: %s" % layer_name)
# Convert to numpy.
if os.path.exists(map_path):
image = np.array(Image.open(map_path).convert("L"))
else:
raise Exception("Error: Cannot find %s %s! Please make sure that the map is correctly installed." % (layer_name, map_path))
# Invert semantic prior colors.
if layer_name == "semantic_prior":
image = image.max() - image
return image
def get_scene_map(self, scene, image, stamp):
x, y, w, h = self.scene_bounding_box(scene)
img_x = int(x * 10)
img_y = int(y * 10)
img_w = int(w * 10)
img_h = int(h * 10)
img = np.flipud(image)[img_y : img_y + img_h, img_x : img_x + img_w]
# img values are 0-255
# convert to a color scale, 0=white and 255=black, in packed RGBA format: 0xFFFFFF00 to 0x00000000
img = (255 - img) * 0x01010100
# set alpha to 0xFF for all cells except those that are completely black
img[img != 0x00000000] |= 0x000000FF
msg = Grid()
msg.timestamp = stamp
msg.frame_id = "map"
msg.cell_size.x = 0.1
msg.cell_size.y = 0.1
msg.column_count = img_w
msg.row_stride = img_w * 4
msg.cell_stride = 4
a_field = PackedElementField()
a_field.name = 'alpha'
a_field.offset = 0
a_field.type = 2
b_field = PackedElementField()
b_field.name = 'blue'
b_field.offset = 1
b_field.type = 2
g_field = PackedElementField()
g_field.name = 'green'
g_field.offset = 2
g_field.type = 2
r_field = PackedElementField()
r_field.name = 'red'
r_field.offset = 3
r_field.type = 2
msg.fields.append(a_field)
msg.fields.append(b_field)
msg.fields.append(g_field)
msg.fields.append(r_field)
msg.pose.position.x = x
msg.pose.position.y = y
msg.pose.orientation.w = 1.0
msg.data = img.astype("<u4").tobytes()
return msg
def scene_bounding_box(self, scene, padding=75.0):
box = [np.inf, np.inf, -np.inf, -np.inf]
cur_sample = self.nusc.get("sample", scene["first_sample_token"])
while cur_sample is not None:
sample_lidar = self.nusc.get("sample_data", cur_sample["data"]["LIDAR_TOP"])
ego_pose = self.nusc.get("ego_pose", sample_lidar["ego_pose_token"])
x, y = ego_pose["translation"][:2]
box[0] = min(box[0], x)
box[1] = min(box[1], y)
box[2] = max(box[2], x)
box[3] = max(box[3], y)
cur_sample = self.nusc.get("sample", cur_sample["next"]) if cur_sample.get("next") != "" else None
box[0] = max(box[0] - padding, 0.0)
box[1] = max(box[1] - padding, 0.0)
box[2] = min(box[2] + padding, self.nusc_map.canvas_edge[0]) - box[0]
box[3] = min(box[3] + padding, self.nusc_map.canvas_edge[1]) - box[1]
return box
def rectContains(self,rect, point):
a, b, c, d = rect
x, y = point[:2]
return a <= x < a + c and b <= y < b + d
def get_centerline_markers(self, scene, stamp):
pose_lists = self.nusc_map.discretize_centerlines(1)
bbox = self.scene_bounding_box(scene)
contained_pose_lists = []
for pose_list in pose_lists:
new_pose_list = []
for pose in pose_list:
if self.rectContains(bbox, pose):
new_pose_list.append(pose)
if len(new_pose_list) > 1:
contained_pose_lists.append(new_pose_list)
scene_update = SceneUpdate()
for i, pose_list in enumerate(contained_pose_lists):
entity = SceneEntity()
entity.frame_id = "map"
entity.timestamp = stamp
entity.id = f"{i}"
entity.frame_locked = True
line = LinePrimitive()
line.type = 0
line.thickness = 0.1
line.color.r = 51.0 / 255.0
line.color.g = 160.0 / 255.0
line.color.b = 44.0 / 255.0
line.color.a = 1.0
line.pose.orientation.w = 1.0
for pose in pose_list:
pt = Point()
pt.x = float(pose[0])
pt.y = float(pose[1])
pt.z = 0.
line.points.append(pt)
entity.lines.append(line)
scene_update.entities.append(entity)
return scene_update
def write_drivable_area(self, writer, nusc_map, ego_pose, stamp):
translation = ego_pose["translation"]
rotation = PyQuaternion(ego_pose["rotation"])
yaw_radians = quaternion_yaw(rotation)
yaw_degrees = yaw_radians / np.pi * 180
patch_box = (translation[0], translation[1], 32, 32)
canvas_size = (patch_box[2] * 10, patch_box[3] * 10)
drivable_area = nusc_map.get_map_mask(patch_box, yaw_degrees, ["drivable_area"], canvas_size)[0]
msg = Grid()
msg.timestamp = stamp
msg.frame_id = "map"
msg.cell_size.x = 0.1
msg.cell_size.y = 0.1
msg.column_count = drivable_area.shape[1]
msg.row_stride = drivable_area.shape[1]
msg.cell_stride = 1
area_field = PackedElementField()
area_field.name = 'drivable_area'
area_field.offset = 0
area_field.type=2
msg.fields.append(area_field)
msg.pose.position.x = translation[0] - (16 * math.cos(yaw_radians)) + (16 * math.sin(yaw_radians))
msg.pose.position.y = translation[1] - (16 * math.sin(yaw_radians)) - (16 * math.cos(yaw_radians))
msg.pose.position.z = 0.01 # Drivable area sits 1cm above the map
q = PyQuaternion(axis=(0, 0, 1), radians=yaw_radians)
msg.pose.orientation.x = q.x
msg.pose.orientation.y = q.y
msg.pose.orientation.z = q.z
msg.pose.orientation.w = q.w
msg.data = drivable_area.astype(np.uint8).tobytes()
writer.write("/driveable_area", serialize_message(msg), stamp.sec*10**9 + stamp.nanosec)
def get_coordinate(self, ref_lat: float, ref_lon: float, bearing: float, dist: float) -> Tuple[float, float]:
"""
Using a reference coordinate, extract the coordinates of another point in space given its distance and bearing
to the reference coordinate. For reference, please see: https://www.movable-type.co.uk/scripts/latlong.html.
:param ref_lat: Latitude of the reference coordinate in degrees, ie: 42.3368.
:param ref_lon: Longitude of the reference coordinate in degrees, ie: 71.0578.
:param bearing: The clockwise angle in radians between target point, reference point and the axis pointing north.
:param dist: The distance in meters from the reference point to the target point.
:return: A tuple of lat and lon.
"""
lat, lon = math.radians(ref_lat), math.radians(ref_lon)
angular_distance = dist / EARTH_RADIUS_METERS
target_lat = math.asin(math.sin(lat) * math.cos(angular_distance) + math.cos(lat) * math.sin(angular_distance) * math.cos(bearing))
target_lon = lon + math.atan2(
math.sin(bearing) * math.sin(angular_distance) * math.cos(lat),
math.cos(angular_distance) - math.sin(lat) * math.sin(target_lat),
)
return math.degrees(target_lat), math.degrees(target_lon)
def derive_latlon(self, location: str, pose: Dict[str, float]):
"""
For each pose value, extract its respective lat/lon coordinate and timestamp.
This makes the following two assumptions in order to work:
1. The reference coordinate for each map is in the south-western corner.
2. The origin of the global poses is also in the south-western corner (and identical to 1).
:param location: The name of the map the poses correspond to, ie: 'boston-seaport'.
:param poses: All nuScenes egopose dictionaries of a scene.
:return: A list of dicts (lat/lon coordinates and timestamps) for each pose.
"""
assert location in REFERENCE_COORDINATES.keys(), f"Error: The given location: {location}, has no available reference."
reference_lat, reference_lon = REFERENCE_COORDINATES[location]
x, y = pose["translation"][:2]
bearing = math.atan(x / y)
distance = math.sqrt(x**2 + y**2)
lat, lon = self.get_coordinate(reference_lat, reference_lon, bearing, distance)
return lat, lon
def get_car_scene_update(self, stamp) -> SceneUpdate:
scene_update = SceneUpdate()
entity = SceneEntity()
entity.frame_id = "base_link"
entity.timestamp = stamp
entity.id = "car"
entity.frame_locked = True
model = ModelPrimitive()
model.pose.position.x = 1.
model.pose.orientation.w = 1.
model.scale.x = 1.
model.scale.y = 1.
model.scale.z = 1.
model.url = "https://assets.foxglove.dev/NuScenes_car_uncompressed.glb"
model = entity.models.append(model)
scene_update.entities.append(entity)
return scene_update
# Conversion functions
def convert_split(self):
for scene in self.split: # for scene in split
print("Converting %s" % (scene))
file_root = "%s%s" % (scene, self.lidar_det_string)
# Check if file exists
if os.path.exists(os.path.join(self.mcap_dir, file_root, file_root + '_0.mcap')):
print('%s MCAP already exists. Continuing.' % scene)
continue
else:
self.write_scene_to_mcap(scene,file_root)
def write_scene_to_mcap(self,scene_name,file_root):
# Create MCAP writer and topics
writer = rosbag2_py.SequentialWriter()
writer.open(
rosbag2_py.StorageOptions(uri= os.path.join(self.mcap_dir, file_root), storage_id="mcap"),
rosbag2_py.ConverterOptions(
input_serialization_format="cdr", output_serialization_format="cdr"
),
)
writer.create_topic(
rosbag2_py.TopicMetadata(
name="/map", type="foxglove_msgs/msg/Grid", serialization_format="cdr"
)
)
writer.create_topic(
rosbag2_py.TopicMetadata(
name="/semantic_map", type="foxglove_msgs/msg/SceneUpdate", serialization_format="cdr"
)
)
writer.create_topic(
rosbag2_py.TopicMetadata(
name="/driveable_area", type="foxglove_msgs/msg/Grid", serialization_format="cdr"
)
)
writer.create_topic(
rosbag2_py.TopicMetadata(
name="/annotations", type="foxglove_msgs/msg/SceneUpdate", serialization_format="cdr"
)
)
writer.create_topic(
rosbag2_py.TopicMetadata(
name="/detections", type="foxglove_msgs/msg/SceneUpdate", serialization_format="cdr"
)
)
writer.create_topic(
rosbag2_py.TopicMetadata(
name="/markers/car", type="foxglove_msgs/msg/SceneUpdate", serialization_format="cdr"
)
)
writer.create_topic(
rosbag2_py.TopicMetadata(
name="/sample_token", type="foxglove_msgs/msg/SceneUpdate", serialization_format="cdr"
)
)
writer.create_topic(
rosbag2_py.TopicMetadata(
name="/tf", type="foxglove_msgs/msg/FrameTransform", serialization_format="cdr"
)
)
writer.create_topic(
rosbag2_py.TopicMetadata(
name="/pose", type="foxglove_msgs/msg/PoseInFrame", serialization_format="cdr"
)
)
writer.create_topic(
rosbag2_py.TopicMetadata(
name="/gps", type="foxglove_msgs/msg/LocationFix", serialization_format="cdr"
)
)
# Lookup scene information
for idx in range(len(self.nusc.scene)):
if self.nusc.scene[idx]["name"]==scene_name:
scene = self.nusc.scene[idx]
log = self.nusc.get("log", scene["log_token"])
location = log["location"]
self.nusc_map = NuScenesMap(dataroot=self.nuscenes_dir, map_name=location)
image = self.load_bitmap(self.nusc_map.dataroot, self.nusc_map.map_name, "basemap")
cur_sample = self.nusc.get("sample", scene["first_sample_token"])
stamp = self.get_time(
self.nusc.get("ego_pose",self.nusc.get("sample_data", cur_sample["data"]["LIDAR_TOP"])["ego_pose_token"],
)
)
map_msg = self.get_scene_map(scene, image, stamp)
centerlines_msg = self.get_centerline_markers(scene,stamp)
writer.write("/map", serialize_message(map_msg), stamp.sec*10**9 + stamp.nanosec)
writer.write("/semantic_map", serialize_message(centerlines_msg), stamp.sec*10**9 + stamp.nanosec)
# Populate MCAP file
det_count = 0
while cur_sample is not None:
sample_lidar = self.nusc.get("sample_data", cur_sample["data"]["LIDAR_TOP"])
ego_pose = self.nusc.get("ego_pose", sample_lidar["ego_pose_token"])
stamp = self.get_time(ego_pose)
# publish /tf
writer.write("/tf", serialize_message(self.get_ego_tf(ego_pose, stamp)), stamp.sec*10**9 + stamp.nanosec)
# /driveable_area occupancy grid
self.write_drivable_area(writer, self.nusc_map, ego_pose, stamp)
# publish /pose
pose_in_frame = PoseInFrame()
pose_in_frame.timestamp = stamp
pose_in_frame.frame_id = "base_link"
pose_in_frame.pose.orientation.w = 1.
writer.write("/pose", serialize_message(pose_in_frame), stamp.sec*10**9 + stamp.nanosec)
# publish /gps
lat, lon = self.derive_latlon(location, ego_pose)
gps = LocationFix()
gps.latitude = lat
gps.longitude = lon
gps.altitude = self.get_translation(ego_pose).z
writer.write("/gps", serialize_message(gps), stamp.sec*10**9 + stamp.nanosec)
# publish /markers/annotations
scene_update = SceneUpdate()
for annotation_id in cur_sample["anns"]:
ann = self.nusc.get("sample_annotation", annotation_id)
marker_id = ann["instance_token"][:4]
c = np.array(self.nusc.explorer.get_color(ann["category_name"])) / 255.0
entity = SceneEntity()
entity.frame_id = "map"
entity.timestamp = stamp
entity.id = marker_id
entity.frame_locked = True
category_metadata = KeyValuePair()
category_metadata.key = "category"
category_metadata.value = ann["category_name"]
attribute_metadata = KeyValuePair()
attribute_metadata.key = "attribute_token"
attribute_metadata.value = next(iter(ann["attribute_tokens"])) if ann["attribute_tokens"] else ''
visibility_metadata = KeyValuePair()
visibility_metadata.key = "visibility_token"
visibility_metadata.value = ann["visibility_token"]
sample_metadata = KeyValuePair()
sample_metadata.key = "sample_token"
sample_metadata.value = ann["sample_token"]
cube = CubePrimitive()
cube.pose.position.x = ann["translation"][0]
cube.pose.position.y = ann["translation"][1]
cube.pose.position.z = ann["translation"][2]
cube.pose.orientation.w = ann["rotation"][0]
cube.pose.orientation.x = ann["rotation"][1]
cube.pose.orientation.y = ann["rotation"][2]
cube.pose.orientation.z = ann["rotation"][3]
cube.size.x = ann["size"][1]
cube.size.y = ann["size"][0]
cube.size.z = ann["size"][2]
cube.color.r = c[0]
cube.color.g = c[1]
cube.color.b = c[2]
cube.color.a = 0.5
entity.metadata.append(category_metadata)
entity.metadata.append(attribute_metadata)
entity.metadata.append(visibility_metadata)
entity.metadata.append(sample_metadata)
entity.cubes.append(cube)
scene_update.entities.append(entity)
writer.write("/annotations", serialize_message(scene_update), stamp.sec*10**9 + stamp.nanosec)
# publish detections
scene_update = SceneUpdate()
for det in self.lidar_dets[cur_sample['token']]:
c = np.array(self.nusc.explorer.get_color(self.lidar_class_map[det["detection_name"]])) / 255.0
entity = SceneEntity()
entity.frame_id = "map"
entity.timestamp = stamp
entity.id = str(det_count)
entity.frame_locked = True
entity.lifetime.nanosec = 450000000 # just under half a second so detections clear before 2Hz
category_metadata = KeyValuePair()
category_metadata.key = "detection_name"
category_metadata.value = det["detection_name"]
score_metadata = KeyValuePair()
score_metadata.key = "detection_score"
score_metadata.value = str(det["detection_score"])
attribute_metadata = KeyValuePair()
attribute_metadata.key = "attribute_name"
attribute_metadata.value = det["attribute_name"] if det["attribute_name"] else ''
sample_metadata = KeyValuePair()
sample_metadata.key = "sample_token"
sample_metadata.value = cur_sample['token']
cube = CubePrimitive()
cube.pose.position.x = det["translation"][0]
cube.pose.position.y = det["translation"][1]
cube.pose.position.z = det["translation"][2]
cube.pose.orientation.w = det["rotation"][0]
cube.pose.orientation.x = det["rotation"][1]
cube.pose.orientation.y = det["rotation"][2]
cube.pose.orientation.z = det["rotation"][3]
cube.size.x = det["size"][1]
cube.size.y = det["size"][0]
cube.size.z = det["size"][2]
cube.color.r = c[0]
cube.color.g = c[1]
cube.color.b = c[2]
cube.color.a = det["detection_score"]
entity.metadata.append(category_metadata)
entity.metadata.append(score_metadata)
entity.metadata.append(attribute_metadata)
entity.metadata.append(sample_metadata)
entity.cubes.append(cube)
scene_update.entities.append(entity)
det_count +=1
writer.write("/detections", serialize_message(scene_update), stamp.sec*10**9 + stamp.nanosec)
# publish /markers/car
writer.write("/markers/car", serialize_message(self.get_car_scene_update(stamp)), stamp.sec*10**9 + stamp.nanosec)
# move to the next sample
cur_sample = self.nusc.get("sample", cur_sample["next"]) if cur_sample.get("next") != "" else None
# Close writer
del writer
print("Finished writing %s" % os.path.join(self.mcap_dir, file_root))
def main(args=None):
parser = argparse.ArgumentParser()
home_dir = Path.home()
parser.add_argument(
"--nuscenes-dir",
"-n",
default=home_dir / "nuscenes",
help="Path to nuscenes data directory (input)",
)
parser.add_argument(
"--mcap-dir",
"-m",
default=home_dir / "nuscenes/mcap",
help="Path to mcap directory (output)",
)
parser.add_argument(
"--lidar-det",
"-l",
default="megvii",
help="3D LiDAR detector name, if used",
)
parser.add_argument(
"--dataset",
"-d",
default="v1.0-mini",
help="NuScenes dataset: v1.0-mini, v1.0-trainval, v1.0-test",
)
parser.add_argument(
"--split",
"-s",
default="mini_train",
help="NuScenes dataset split: mini_train, mini_val, train, val, test",
)
args = parser.parse_args()
# Initialize converter object
nuscenes_to_mcap = NuScenesToMcap(args)
# Run conversion routine
nuscenes_to_mcap.convert_split()
if __name__ == "__main__":
main()