Skip to content

Latest commit

 

History

History
125 lines (85 loc) · 2.68 KB

README.md

File metadata and controls

125 lines (85 loc) · 2.68 KB

SVM classifier

This project contains SVM based classifier for binary classification task

Requires

  • Java 8
  • Maven (newer 3.x)
  • Stanford CoreNLP (Downloaded using maven)

Input data

The expected format :

{
    "extracted_text": : ".....",
    "class" : 0/1,
    "cluster_id" : "cluster id of the document"
}

// NOTE: this one merges documents which belongs to same cluster, // The classifier learns to classify cluster of documents, not individual document

Pre-process input data

This one is for DARPA MEMEX summer workshop's Challenge problem 1 dataset:

$ cat CP1_train_ads.json | jq -c '. + {"class": 1, "cluster_id": ("p"+.cluster_id)}' >> CP1_merged.jsonl

$ cat cp1_negative_train.json | jq -c '. + {"class": 0, "cluster_id": ("n"+.cluster_id)}' >> CP1_merged.jsonl

Steps :

1. Build the jar

$ mvn clean compile package

2. Build Dictionary

$ java -jar target/svm-classifier-1.0-SNAPSHOT-jar-with-dependencies.jar \
 -task build-dict \
 -input CP1_merged.jsonl \
 -dict dictionary-all.txt

NOTE: to anonymize names add -generalize option to the CLI arguments

3. Transform dataset to vectors

This step generates vectors file in SVM lite format.

 $ java -jar target/svm-classifier-1.0-SNAPSHOT-jar-with-dependencies.jar \
   -task vectorize \
   -input CP1_merged.jsonl \
   -dict dictionary-all.txt \
   -vector vector-all.dat

NOTE: to anonymize names add -generalize option to the CLI arguments

4. Split the dataset

# Shuffle the vectors
$ cat vector-all.data  | sort -R  | sort -R > vectors-shuffled.dat

# Stats on dataset
$ wc -l vectors-shuffled.dat
  645 vectors-shuffled.dat

# Split the data set
$ split -l 500 vectors-shuffled.dat vectors-split
$ wc -l vectors-split*
     500 vectors-splitaa
     145 vectors-splitab
     645 total
$ mv vectors-splitaa vectors-train.dat
$ mv vectors-splitab vectors-test.dat

# Check the distribution
$ cat vectors-train.dat | awk '{print $1}' | sort | uniq -c
    141 0
    359 1
$ cat vectors-test.dat | awk '{print $1}' | sort | uniq -c
     54 0
     91 1

5. Train and evaluate model

java -cp target/svm-classifier-1.0-SNAPSHOT-jar-with-dependencies.jar \
 edu.usc.irds.ml.svm.SVMTrainer \
 -model model.dat \
  -train vectors-train.dat -test vectors-test.dat

6. Predict

For predicting the class of new clusters, we need to transform the input data to vectors using the same set of features.

Rerun step 3 to obtain vectors eval-vectors.dat.

java -jar target/svm-classifier-1.0-SNAPSHOT-jar-with-dependencies.jar \
  -task predict -vector eval-vectors.dat \
  -model model.dat \
  -predictions data/eval/predicts.csv