forked from zone117x/node-multi-hashing
-
Notifications
You must be signed in to change notification settings - Fork 43
/
timetravel.c
182 lines (162 loc) · 4.38 KB
/
timetravel.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define HASH_FUNC_BASE_TIMESTAMP 1389040865 // Machinecoin: Genesis Timestamp
#define HASH_FUNC_COUNT 8 // Machinecoin: HASH_FUNC_COUNT of 11
#define HASH_FUNC_COUNT_PERMUTATIONS 40320 // Machinecoin: HASH_FUNC_COUNT!
#include "sha3/sph_blake.h"
#include "sha3/sph_bmw.h"
#include "sha3/sph_groestl.h"
#include "sha3/sph_jh.h"
#include "sha3/sph_keccak.h"
#include "sha3/sph_skein.h"
#include "sha3/sph_luffa.h"
#include "sha3/sph_cubehash.h"
#if HASH_FUNC_COUNT > 8
#include "sha3/sph_shavite.h"
#include "sha3/sph_simd.h"
#include "sha3/sph_echo.h"
#endif
#define _ALIGN(x) __attribute__ ((aligned(x)))
// helpers
inline void swap(int *a, int *b) {
int c = *a;
*a = *b;
*b = c;
}
static void reverse(int *pbegin, int *pend) {
while ( (pbegin != pend) && (pbegin != --pend) )
swap(pbegin++, pend);
}
static void next_permutation(int *pbegin, int *pend) {
if (pbegin == pend)
return;
int *i = pbegin;
++i;
if (i == pend)
return;
i = pend;
--i;
while (1) {
int *j = i;
--i;
if (*i < *j) {
int *k = pend;
while (!(*i < *--k))
/* pass */;
swap(i, k);
reverse(j, pend);
return; // true
}
if (i == pbegin) {
reverse(pbegin, pend);
return; // false
}
}
}
// helpers
void timetravel_hash(const char* input, char* output, uint32_t len)
{
uint32_t _ALIGN(64) hash[16 * HASH_FUNC_COUNT];
uint32_t *hashA, *hashB;
uint32_t dataLen = 64;
uint32_t *work_data = (uint32_t *)input;
const uint32_t timestamp = work_data[17];
sph_blake512_context ctx_blake;
sph_bmw512_context ctx_bmw;
sph_groestl512_context ctx_groestl;
sph_skein512_context ctx_skein;
sph_jh512_context ctx_jh;
sph_keccak512_context ctx_keccak;
sph_luffa512_context ctx_luffa;
sph_cubehash512_context ctx_cubehash;
#if HASH_FUNC_COUNT > 8
sph_shavite512_context ctx_shavite;
sph_simd512_context ctx_simd;
sph_echo512_context ctx_echo;
#endif
// We want to permute algorithms. To get started we
// initialize an array with a sorted sequence of unique
// integers where every integer represents its own algorithm.
uint32_t permutation[HASH_FUNC_COUNT];
for (uint32_t i = 0; i < HASH_FUNC_COUNT; i++) {
permutation[i]=i;
}
// Compute the next permuation
uint32_t steps = (timestamp - HASH_FUNC_BASE_TIMESTAMP) % HASH_FUNC_COUNT_PERMUTATIONS;
for (uint32_t i = 0; i < steps; i++) {
next_permutation(permutation, permutation + HASH_FUNC_COUNT);
}
for (uint32_t i = 0; i < HASH_FUNC_COUNT; i++) {
if (i == 0) {
dataLen = len;
hashA = work_data;
} else {
dataLen = 64;
hashA = &hash[16 * (i - 1)];
}
hashB = &hash[16 * i];
switch(permutation[i]) {
case 0:
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hashA, dataLen);
sph_blake512_close(&ctx_blake, hashB);
break;
case 1:
sph_bmw512_init(&ctx_bmw);
sph_bmw512 (&ctx_bmw, hashA, dataLen);
sph_bmw512_close(&ctx_bmw, hashB);
break;
case 2:
sph_groestl512_init(&ctx_groestl);
sph_groestl512 (&ctx_groestl, hashA, dataLen);
sph_groestl512_close(&ctx_groestl, hashB);
break;
case 3:
sph_skein512_init(&ctx_skein);
sph_skein512 (&ctx_skein, hashA, dataLen);
sph_skein512_close(&ctx_skein, hashB);
break;
case 4:
sph_jh512_init(&ctx_jh);
sph_jh512 (&ctx_jh, hashA, dataLen);
sph_jh512_close(&ctx_jh, hashB);
break;
case 5:
sph_keccak512_init(&ctx_keccak);
sph_keccak512 (&ctx_keccak, hashA, dataLen);
sph_keccak512_close(&ctx_keccak, hashB);
break;
case 6:
sph_luffa512_init(&ctx_luffa);
sph_luffa512 (&ctx_luffa, hashA, dataLen);
sph_luffa512_close(&ctx_luffa, hashB);
break;
case 7:
sph_cubehash512_init(&ctx_cubehash);
sph_cubehash512 (&ctx_cubehash, hashA, dataLen);
sph_cubehash512_close(&ctx_cubehash, hashB);
break;
#if HASH_FUNC_COUNT > 8
case 8:
sph_shavite512_init(&ctx_shavite);
sph_shavite512(&ctx_shavite, hashA, dataLen);
sph_shavite512_close(&ctx_shavite, hashB);
break;
case 9:
sph_simd512_init(&ctx_simd);
sph_simd512 (&ctx_simd, hashA, dataLen);
sph_simd512_close(&ctx_simd, hashB);
break;
case 10:
sph_echo512_init(&ctx_echo);
sph_echo512 (&ctx_echo, hashA, dataLen);
sph_echo512_close(&ctx_echo, hashB);
break;
#endif
default:
break;
}
}
memcpy(output, &hash[16 * (HASH_FUNC_COUNT - 1)], 32);
}