From 090081f21f54d7a2999aebb6626cad18851f2ab3 Mon Sep 17 00:00:00 2001 From: Matthias Dellago Date: Wed, 26 Jul 2023 15:54:21 +0200 Subject: [PATCH] Scalar multiplication (#355) * Added tests for scalar multiplication for FactoredMatrix * Added __mul__ and __rmul__ to FactoredMatrix * Tests for errors when multiplying by non-scalar * Added scalar.shape to error message * Fixed imports to make isort happy * Black Formatting * Changed to random.random and randint * Implementation dependent test for factored matrix A. --- .../test_multiply_by_scalar.py | 59 +++++++++++++++++++ transformer_lens/FactoredMatrix.py | 16 +++++ 2 files changed, 75 insertions(+) create mode 100644 tests/unit/factored_matrix/test_multiply_by_scalar.py diff --git a/tests/unit/factored_matrix/test_multiply_by_scalar.py b/tests/unit/factored_matrix/test_multiply_by_scalar.py new file mode 100644 index 000000000..85d0bfbe7 --- /dev/null +++ b/tests/unit/factored_matrix/test_multiply_by_scalar.py @@ -0,0 +1,59 @@ +import random + +import pytest +import torch +from torch.testing import assert_close + +from transformer_lens import FactoredMatrix + + +# This test function is parametrized with different types of scalars, including non-scalar tensors and arrays, to check that the correct errors are raised. +# Considers cases with and without leading dimensions as well as left and right multiplication. +@pytest.mark.parametrize( + "scalar, error_expected", + [ + # Test cases with different types of scalar values. + (torch.rand(1), None), # 1-element Tensor. No error expected. + (random.random(), None), # float. No error expected. + (random.randint(-100, 100), None), # int. No error expected. + # Test cases with non-scalar values that are expected to raise errors. + ( + torch.rand(2, 2), + AssertionError, + ), # Non-scalar Tensor. AssertionError expected. + (torch.rand(2), AssertionError), # Non-scalar Tensor. AssertionError expected. + ], +) +@pytest.mark.parametrize("leading_dim", [False, True]) +@pytest.mark.parametrize("multiply_from_left", [False, True]) +def test_multiply(scalar, leading_dim, multiply_from_left, error_expected): + # Prepare a FactoredMatrix, with or without leading dimensions + if leading_dim: + a = torch.rand(6, 2, 3) + b = torch.rand(6, 3, 4) + else: + a = torch.rand(2, 3) + b = torch.rand(3, 4) + + fm = FactoredMatrix(a, b) + + if error_expected: + # If an error is expected, check that the correct exception is raised. + with pytest.raises(error_expected): + if multiply_from_left: + _ = fm * scalar + else: + _ = scalar * fm + else: + # If no error is expected, check that the multiplication results in the correct value. + # Use FactoredMatrix.AB to calculate the product of the two factor matrices before comparing with the expected value. + if multiply_from_left: + assert_close((fm * scalar).AB, (a @ b) * scalar) + else: + assert_close((scalar * fm).AB, scalar * (a @ b)) + # This next test is implementation dependant and can be broken and removed at any time! + # It checks that the multiplication is performed on the A factor matrix. + if multiply_from_left: + assert_close((fm * scalar).A, a * scalar) + else: + assert_close((scalar * fm).A, scalar * a) diff --git a/transformer_lens/FactoredMatrix.py b/transformer_lens/FactoredMatrix.py index cd357b779..3f589ebfd 100644 --- a/transformer_lens/FactoredMatrix.py +++ b/transformer_lens/FactoredMatrix.py @@ -82,6 +82,22 @@ def __rmatmul__( elif isinstance(other, FactoredMatrix): return other.A @ (other.B @ self) + def __mul__(self, scalar: Union[int, float, torch.Tensor]) -> FactoredMatrix: + """ + Left scalar multiplication. Scalar multiplication distributes over matrix multiplication, so we can just multiply one of the factor matrices by the scalar. + """ + if isinstance(scalar, torch.Tensor): + assert ( + scalar.numel() == 1 + ), f"Tensor must be a scalar for use with * but was of shape {scalar.shape}. For matrix multiplication, use @ instead." + return FactoredMatrix(self.A * scalar, self.B) + + def __rmul__(self, scalar: Union[int, float, torch.Tensor]) -> FactoredMatrix: + """ + Right scalar multiplication. For scalar multiplication from the right, we can reuse the __mul__ method. + """ + return self * scalar + @property @typeguard_ignore def AB(self) -> Float[torch.Tensor, "*leading_dims ldim rdim"]: