forked from aalhour/C-Sharp-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RedBlackTree.cs
664 lines (542 loc) · 24.6 KB
/
RedBlackTree.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
using DataStructures.Common;
using System;
using System.Collections.Generic;
namespace DataStructures.Trees
{
/// <summary>
/// THE NODE COLORS TYPE
/// </summary>
public enum RedBlackTreeColors
{
Red = 0,
Black = 1
};
/// <summary>
/// Red-Black Tree Data Structure.
/// </summary>
public class RedBlackTree<TKey> : BinarySearchTree<TKey> where TKey : IComparable<TKey>
{
/// <summary>
/// Root node accessors overriding
/// </summary>
public new RedBlackTreeNode<TKey> Root
{
get { return (RedBlackTreeNode<TKey>)base.Root; }
internal set { base.Root = value; }
}
private bool IsRoot(RedBlackTreeNode<TKey> node)
{
return node == this.Root;
}
/// <summary>
/// CONSTRUCTOR.
/// Allows duplicates by default.
/// </summary>
public RedBlackTree() : base() { }
/// <summary>
/// CONSTRUCTOR.
/// If allowDuplictes is set to false, no duplicate items will be inserted.
/// </summary>
public RedBlackTree(bool allowDuplicates) : base(allowDuplicates) { }
/*************************************************************************************************/
/***
* Safety Checks/Getters/Setters.
*
* The following are helper methods for safely checking, getting and updating possibly-null objects.
* These helpers make the algorithms of adjusting the tree after insertion and removal more readable.
*/
protected RedBlackTreeNode<TKey> _safeGetGrandParent(RedBlackTreeNode<TKey> node)
{
if (node == null || node.Parent == null)
return null;
return node.GrandParent;
}
protected RedBlackTreeNode<TKey> _safeGetParent(RedBlackTreeNode<TKey> node)
{
if (node == null || node.Parent == null)
return null;
return node.Parent;
}
protected RedBlackTreeNode<TKey> _safeGetSibling(RedBlackTreeNode<TKey> node)
{
if (node == null || node.Parent == null)
return null;
return node.Sibling;
}
protected RedBlackTreeNode<TKey> _safeGetLeftChild(RedBlackTreeNode<TKey> node)
{
if (node == null)
return null;
return node.LeftChild;
}
protected RedBlackTreeNode<TKey> _safeGetRightChild(RedBlackTreeNode<TKey> node)
{
if (node == null)
return null;
return node.RightChild;
}
protected virtual RedBlackTreeColors _safeGetColor(RedBlackTreeNode<TKey> node)
{
if (node == null)
return RedBlackTreeColors.Black;
return node.Color;
}
protected virtual void _safeUpdateColor(RedBlackTreeNode<TKey> node, RedBlackTreeColors color)
{
if (node == null)
return;
node.Color = color;
}
protected virtual bool _safeCheckIsBlack(RedBlackTreeNode<TKey> node)
{
return (node == null || (node != null && node.IsBlack));
}
protected virtual bool _safeCheckIsRed(RedBlackTreeNode<TKey> node)
{
return (node != null && node.IsRed);
}
/*************************************************************************************************/
/***
* Tree Rotations and Adjustements.
*
* The following are methods for rotating the tree (left/right) and for adjusting the
* ... tree after inserting or removing nodes.
*/
/// <summary>
/// Rotates a node to the left in the Red-Black Tree.
/// </summary>
protected virtual void _rotateLeftAt(RedBlackTreeNode<TKey> currentNode)
{
// We check the right child because it's going to be a pivot node for the rotation
if (currentNode == null || currentNode.HasRightChild == false)
return;
// Pivot on *right* child
RedBlackTreeNode<TKey> pivotNode = currentNode.RightChild;
// Parent of currentNode
RedBlackTreeNode<TKey> parent = currentNode.Parent;
// Check if currentNode is it's parent's left child.
bool isLeftChild = currentNode.IsLeftChild;
// Check if currentNode is the Root
bool isRootNode = (currentNode == this.Root);
// Perform the rotation
currentNode.RightChild = pivotNode.LeftChild;
pivotNode.LeftChild = currentNode;
// Update parents references
currentNode.Parent = pivotNode;
pivotNode.Parent = parent;
if (currentNode.HasRightChild)
currentNode.RightChild.Parent = currentNode;
//Update the entire tree's Root if necessary
if (isRootNode)
this.Root = pivotNode;
// Update the original parent's child node
if (isLeftChild)
parent.LeftChild = pivotNode;
else if (parent != null)
parent.RightChild = pivotNode;
}
/// <summary>
/// Rotates a node to the right in the Red-Black Tree.
/// </summary>
protected virtual void _rotateRightAt(RedBlackTreeNode<TKey> currentNode)
{
// We check the right child because it's going to be a pivot node for the rotation
if (currentNode == null || currentNode.HasLeftChild == false)
return;
// Pivot on *left* child
var pivotNode = currentNode.LeftChild;
// Parent of currentNode
var parent = currentNode.Parent;
// Check if currentNode is it's parent's left child.
bool isLeftChild = currentNode.IsLeftChild;
// Check if currentNode is the Root
bool isRootNode = (currentNode == this.Root);
// Perform the rotation
currentNode.LeftChild = pivotNode.RightChild;
pivotNode.RightChild = currentNode;
// Update parents references
currentNode.Parent = pivotNode;
pivotNode.Parent = parent;
if (currentNode.HasLeftChild)
currentNode.LeftChild.Parent = currentNode;
// Update the entire tree's Root if necessary
if (isRootNode)
this.Root = pivotNode;
// Update the original parent's child node
if (isLeftChild)
parent.LeftChild = pivotNode;
else if (parent != null)
parent.RightChild = pivotNode;
}
/// <summary>
/// After insertion tree-adjustement helper.
/// </summary>
protected virtual void _adjustTreeAfterInsertion(RedBlackTreeNode<TKey> currentNode)
{
//
// STEP 1:
// Color the currentNode as red
_safeUpdateColor(currentNode, RedBlackTreeColors.Red);
//
// STEP 2:
// Fix the double red-consecutive-nodes problems, if there exists any.
if (currentNode != null && currentNode != Root && _safeCheckIsRed(_safeGetParent(currentNode)))
{
//
// STEP 2.A:
// This is the simplest step: Basically recolor, and bubble up to see if more work is needed.
if (_safeCheckIsRed(_safeGetSibling(currentNode.Parent)))
{
// If it has a sibling and it is black, then then it has a parent
currentNode.Parent.Color = RedBlackTreeColors.Black;
// Color sibling of parent as black
_safeUpdateColor(_safeGetSibling(currentNode.Parent), RedBlackTreeColors.Black);
// Color grandparent as red
_safeUpdateColor(_safeGetGrandParent(currentNode), RedBlackTreeColors.Red);
// Adjust on the grandparent of currentNode
_adjustTreeAfterInsertion(_safeGetGrandParent(currentNode));
}
//
// STEP 2.B:
// Restructure the tree if the parent of currentNode is a left child to the grandparent of currentNode
// (parent is a left child to its own parent).
// If currentNode is also a left child, then do a single right rotation; otherwise, a left-right rotation.
//
// using the safe methods to check: currentNode.Parent.IsLeftChild == true
else if (_safeGetParent(currentNode) == _safeGetLeftChild(_safeGetGrandParent(currentNode)))
{
if (currentNode.IsRightChild)
{
currentNode = _safeGetParent(currentNode);
_rotateLeftAt(currentNode);
}
// Color parent as black
_safeUpdateColor(_safeGetParent(currentNode), RedBlackTreeColors.Black);
// Color grandparent as red
_safeUpdateColor(_safeGetGrandParent(currentNode), RedBlackTreeColors.Red);
// Right Rotate tree around the currentNode's grand parent
_rotateRightAt(_safeGetGrandParent(currentNode));
}
//
// STEP 2.C:
// Restructure the tree if the parent of currentNode is a right child to the grandparent of currentNode
// (parent is a right child to its own parent).
// If currentNode is a right-child in it's parent, then do a single left rotation; otherwise a right-left rotation.
//
// using the safe methods to check: currentNode.Parent.IsRightChild == true
else if (_safeGetParent(currentNode) == _safeGetRightChild(_safeGetGrandParent(currentNode)))
{
if (currentNode.IsLeftChild)
{
currentNode = _safeGetParent(currentNode);
_rotateRightAt(currentNode);
}
// Color parent as black
_safeUpdateColor(_safeGetParent(currentNode), RedBlackTreeColors.Black);
// Color grandparent as red
_safeUpdateColor(_safeGetGrandParent(currentNode), RedBlackTreeColors.Red);
// Left Rotate tree around the currentNode's grand parent
_rotateLeftAt(_safeGetGrandParent(currentNode));
}
}
// STEP 3:
// Color the root node as black
_safeUpdateColor(Root, RedBlackTreeColors.Black);
}
/// <summary>
/// After removal tree-adjustement helper.
/// </summary>
protected virtual void _adjustTreeAfterRemoval(RedBlackTreeNode<TKey> currentNode)
{
while (currentNode != null && currentNode != Root && currentNode.IsBlack)
{
if (currentNode.IsLeftChild)
{
// Get sibling of currentNode
// Safe equivalent of currentNode.Sibling or currentNode.Parent.RightChild
var sibling = _safeGetRightChild(_safeGetParent(currentNode));
// Safely check sibling.IsRed property
if (_safeCheckIsRed(sibling))
{
// Color currentNode.Sibling as black
_safeUpdateColor(sibling, RedBlackTreeColors.Black);
// Color currentNode.Parent as red
_safeUpdateColor(_safeGetParent(currentNode), RedBlackTreeColors.Red);
// Left Rotate on currentNode's parent
_rotateLeftAt(_safeGetParent(currentNode));
// Update sibling reference
// Might end be being set to null
sibling = _safeGetRightChild(_safeGetParent(currentNode));
}
// Check if the left and right children of the sibling node are black
// Use the safe methods to check for: (sibling.LeftChild.IsBlack && sibling.RightChild.IsBlack)
if (_safeCheckIsBlack(_safeGetLeftChild(sibling)) && _safeCheckIsBlack(_safeGetRightChild(sibling)))
{
// Color currentNode.Sibling as red
_safeUpdateColor(sibling, RedBlackTreeColors.Red);
// Assign currentNode.Parent to currentNode
currentNode = _safeGetParent(currentNode);
}
else
{
if (_safeCheckIsBlack(_safeGetRightChild(sibling)))
{
// Color currentNode.Sibling.LeftChild as black
_safeUpdateColor(_safeGetLeftChild(sibling), RedBlackTreeColors.Black);
// Color currentNode.Sibling as red
_safeUpdateColor(sibling, RedBlackTreeColors.Red);
// Right Rotate on sibling
_rotateRightAt(sibling);
// Update sibling reference
// Might end be being set to null
sibling = _safeGetRightChild(_safeGetParent(currentNode));
}
// Color the Sibling node as currentNode.Parent.Color
_safeUpdateColor(sibling, _safeGetColor(_safeGetParent(currentNode)));
// Color currentNode.Parent as black
_safeUpdateColor(_safeGetParent(currentNode), RedBlackTreeColors.Black);
// Color Sibling.RightChild as black
_safeUpdateColor(_safeGetRightChild(sibling), RedBlackTreeColors.Black);
// Rotate on currentNode's parent
_rotateLeftAt(_safeGetParent(currentNode));
currentNode = Root;
}
}
else
{
// Get sibling of currentNode
// Safe equivalent of currentNode.Sibling or currentNode.Parent.LeftChild
var sibling = _safeGetLeftChild(_safeGetParent(currentNode));
if (_safeCheckIsRed(sibling))
{
// Color currentNode.Sibling as black
_safeUpdateColor(sibling, RedBlackTreeColors.Black);
// Color currentNode.Parent as red
_safeUpdateColor(_safeGetParent(currentNode), RedBlackTreeColors.Red);
// Right Rotate tree around the parent of currentNode
_rotateRightAt(_safeGetParent(currentNode));
// Update sibling reference
// Might end be being set to null
sibling = _safeGetLeftChild(_safeGetParent(currentNode));
}
// Check if the left and right children of the sibling node are black
// Use the safe methods to check for: (sibling.LeftChild.IsBlack && sibling.RightChild.IsBlack)
if (_safeCheckIsBlack(_safeGetLeftChild(sibling)) && _safeCheckIsBlack(_safeGetRightChild(sibling)))
{
_safeUpdateColor(sibling, RedBlackTreeColors.Red);
// Assign currentNode.Parent to currentNode
currentNode = _safeGetParent(currentNode);
}
else
{
// Check if sibling.LeftChild.IsBlack == true
if (_safeCheckIsBlack(_safeGetLeftChild(sibling)))
{
// Color currentNode.Sibling.RightChild as black
_safeUpdateColor(_safeGetRightChild(sibling), RedBlackTreeColors.Black);
// Color currentNode.Sibling as red
_safeUpdateColor(sibling, RedBlackTreeColors.Red);
// Left rotate on sibling
_rotateLeftAt(sibling);
// Update sibling reference
// Might end be being set to null
sibling = _safeGetLeftChild(_safeGetParent(currentNode));
}
// Color the Sibling node as currentNode.Parent.Color
_safeUpdateColor(sibling, _safeGetColor(_safeGetParent(currentNode)));
// Color currentNode.Parent as black
_safeUpdateColor(_safeGetParent(currentNode), RedBlackTreeColors.Black);
// Color Sibling.RightChild as black
_safeUpdateColor(_safeGetLeftChild(sibling), RedBlackTreeColors.Black);
// Right rotate on the parent of currentNode
_rotateRightAt(_safeGetParent(currentNode));
currentNode = Root;
}
}
}
// Color currentNode as black
_safeUpdateColor(currentNode, RedBlackTreeColors.Black);
}
/// <summary>
/// Remove node helpers.
/// </summary>
protected override bool _remove(BSTNode<TKey> nodeToDelete)
{
return this._remove((RedBlackTreeNode<TKey>)nodeToDelete);
}
/// <summary>
/// The internal remove helper.
/// Separated from the overriden version to avoid casting the objects from BSTNode to RedBlackTreeNode.
/// This is called from the overriden _remove(BSTNode nodeToDelete) helper.
/// </summary>
protected bool _remove(RedBlackTreeNode<TKey> nodeToDelete)
{
if (nodeToDelete == null)
{
return false;
}
if (IsRoot(nodeToDelete) && !nodeToDelete.HasChildren)
{
Root = null;
}
else
{
// X is the node we will replace with the nodeToDelete in the tree once we remove it.
RedBlackTreeNode<TKey> x;
if (!nodeToDelete.HasChildren)
{
x = nodeToDelete;
Transplant(nodeToDelete, null);
}
else if (nodeToDelete.HasOnlyRightChild)
{
x = nodeToDelete.RightChild;
Transplant(nodeToDelete, nodeToDelete.RightChild);
}
else if (nodeToDelete.HasOnlyLeftChild)
{
x = nodeToDelete.LeftChild;
Transplant(nodeToDelete, nodeToDelete.LeftChild);
}
else
{
// Y is the node we will replace with the X in the tree once we move it to the nodeToDelete position.
var y = (RedBlackTreeNode<TKey>)_findMinNode(nodeToDelete.RightChild);
x = y.RightChild;
if (y.Parent == nodeToDelete)
{
if (x != null)
{
x.Parent = y;
}
}
else
{
Transplant(y, y.RightChild);
y.RightChild = nodeToDelete.RightChild;
y.RightChild.Parent = y;
}
Transplant(nodeToDelete, y);
y.LeftChild = nodeToDelete.LeftChild;
y.LeftChild.Parent = y;
y.Color = nodeToDelete.Color;
if (Root == nodeToDelete)
{
Root = y;
Root.Parent = null;
}
}
if (nodeToDelete.Color == RedBlackTreeColors.Black)
{
_adjustTreeAfterRemoval(x);
}
}
base._count--;
return true;
}
/// <summary>
/// Insert one subtree in the place of the other in his parent.
/// </summary>
/// <param name="replaced">Subtree of node will be replaced by <param name="replacement">.</param></param>
/// <param name="replacement">Subtree replaces <param name="replaced">.</param></param>
private void Transplant(RedBlackTreeNode<TKey> replaced, RedBlackTreeNode<TKey> replacement)
{
if (replaced.Parent == null)
{
this.Root = replacement;
}
else if (replaced == replaced.Parent.LeftChild)
{
replaced.Parent.LeftChild = replacement;
}
else
{
replaced.Parent.RightChild = replacement;
}
if (replacement != null)
{
replacement.Parent = replaced.Parent;
}
}
/*************************************************************************************************/
/// <summary>
/// Insert data item to tree
/// </summary>
public override void Insert(TKey item)
{
var newNode = new RedBlackTreeNode<TKey>(item);
// Invoke the super BST insert node method.
// This insert node recursively starting from the root and checks for success status (related to allowDuplicates flag).
// The functions increments count on its own.
var success = base._insertNode(newNode);
if (success == false && _allowDuplicates == false)
throw new InvalidOperationException("Tree does not allow inserting duplicate elements.");
// Adjust Red-Black Tree rules
if (!newNode.IsEqualTo(Root))
if (newNode.Parent.Color != RedBlackTreeColors.Black) // Case 0: Parent is not black and we have to restructure tree
_adjustTreeAfterInsertion(newNode);
// Always color root as black
Root.Color = RedBlackTreeColors.Black;
}
/// <summary>
/// Inserts an array of elements to the tree.
/// </summary>
public override void Insert(TKey[] collection)
{
if (collection == null)
throw new ArgumentNullException();
if (collection.Length > 0)
for (int i = 0; i < collection.Length; ++i)
this.Insert(collection[i]);
}
/// <summary>
/// Inserts a list of elements to the tree.
/// </summary>
public override void Insert(List<TKey> collection)
{
if (collection == null)
throw new ArgumentNullException();
if (collection.Count > 0)
for (int i = 0; i < collection.Count; ++i)
this.Insert(collection[i]);
}
/// <summary>
/// Removes an item from the tree.
/// </summary>
public override void Remove(TKey item)
{
if (IsEmpty)
throw new Exception("Tree is empty.");
// Get the node from the tree
var node = (RedBlackTreeNode<TKey>)base._findNode(Root, item);
// Invoke the internal remove node method.
bool status = this._remove(node);
if (status == false)
throw new Exception("Item was not found.");
}
/// <summary>
/// Removes the min value from tree.
/// </summary>
public override void RemoveMin()
{
if (IsEmpty)
throw new Exception("Tree is empty.");
// Get the node from the tree
var node = (RedBlackTreeNode<TKey>)base._findMinNode(Root);
// Invoke the internal remove node method.
this._remove(node);
}
/// <summary>
/// Removes the max value from tree.
/// </summary>
public override void RemoveMax()
{
if (IsEmpty)
throw new Exception("Tree is empty.");
// Get the node from the tree
var node = (RedBlackTreeNode<TKey>)base._findMaxNode(Root);
// Invoke the internal remove node method.
this._remove(node);
}
}
}