forked from aalhour/C-Sharp-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AugmentedBinarySearchTree.cs
316 lines (262 loc) · 9.88 KB
/
AugmentedBinarySearchTree.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
using System;
using System.Collections.Generic;
namespace DataStructures.Trees
{
/// <summary>
/// Binary Search Tree node.
/// This node extends the vanilla BSTNode class and adds an extra field to it for augmentation.
/// The BST now augments the subtree-sizes on insert, delete and get-height.
/// </summary>
public class BSTRankedNode<T> : BSTNode<T> where T : IComparable<T>
{
private int _subtreeSize = 0;
public BSTRankedNode() : this(default(T), 0, null, null, null) { }
public BSTRankedNode(T value) : this(value, 0, null, null, null) { }
public BSTRankedNode(T value, int subtreeSize, BSTRankedNode<T> parent, BSTRankedNode<T> left, BSTRankedNode<T> right)
{
base.Value = value;
SubtreeSize = subtreeSize;
Parent = parent;
LeftChild = left;
RightChild = right;
}
// Size of subtrees
public virtual int SubtreeSize
{
get { return this._subtreeSize; }
set { this._subtreeSize = value; }
}
public new BSTRankedNode<T> Parent
{
get { return (BSTRankedNode<T>)base.Parent; }
set { base.Parent = value; }
}
public new BSTRankedNode<T> LeftChild
{
get { return (BSTRankedNode<T>)base.LeftChild; }
set { base.LeftChild = value; }
}
public new BSTRankedNode<T> RightChild
{
get { return (BSTRankedNode<T>)base.RightChild; }
set { base.RightChild = value; }
}
}
/******************************************************************************/
/// <summary>
/// Binary Search Tree Data Structure.
/// This is teh augmented version of BST. It is augmented to keep track of the nodes subtrees-sizes.
/// </summary>
public class AugmentedBinarySearchTree<T> : BinarySearchTree<T> where T : IComparable<T>
{
/// <summary>
/// Override the Root node accessors.
/// </summary>
public new BSTRankedNode<T> Root
{
get { return (BSTRankedNode<T>)base.Root; }
set { base.Root = value; }
}
/// <summary>
/// CONSTRUCTOR.
/// Allows duplicates by default.
/// </summary>
public AugmentedBinarySearchTree() : base() { }
/// <summary>
/// CONSTRUCTOR.
/// If allowDuplictes is set to false, no duplicate items will be inserted.
/// </summary>
public AugmentedBinarySearchTree(bool allowDuplicates) : base(allowDuplicates) { }
/// <summary>
/// Returns the height of the tree.
/// </summary>
/// <returns>Hight</returns>
public override int Height
{
get
{
if (IsEmpty)
return 0;
var currentNode = this.Root;
return this._getTreeHeight(currentNode);
}
}
/// <summary>
/// Returns the Subtrees size for a tree node if node exists; otherwise 0 (left and right nodes of leafs).
/// This is used in the recursive function UpdateSubtreeSize.
/// </summary>
/// <returns>The size.</returns>
/// <param name="node">BST Node.</param>
protected int _subtreeSize(BSTRankedNode<T> node)
{
if (node == null)
return 0;
return node.SubtreeSize;
}
/// <summary>
/// Updates the Subtree Size of a tree node.
/// Used in recusively calculating the Subtrees Sizes of nodes.
/// </summary>
/// <param name="node">BST Node.</param>
protected void _updateSubtreeSize(BSTRankedNode<T> node)
{
if (node == null)
return;
node.SubtreeSize = _subtreeSize(node.LeftChild) + _subtreeSize(node.RightChild) + 1;
_updateSubtreeSize(node.Parent);
}
/// <summary>
/// Remove the specified node.
/// </summary>
/// <param name="node">Node.</param>
/// <returns>>True if removed successfully; false if node wasn't found.</returns>
protected bool _remove(BSTRankedNode<T> node)
{
if (node == null)
return false;
var parent = node.Parent;
if (node.ChildrenCount == 2) // if both children are present
{
var successor = _findNextLarger(node);
node.Value = successor.Value;
return (true && _remove(successor));
}
if (node.HasLeftChild) // if the node has only a LEFT child
{
base._replaceNodeInParent(node, node.LeftChild);
_updateSubtreeSize(parent);
_count--;
}
else if (node.HasRightChild) // if the node has only a RIGHT child
{
base._replaceNodeInParent(node, node.RightChild);
_updateSubtreeSize(parent);
_count--;
}
else //this node has no children
{
base._replaceNodeInParent(node, null);
_updateSubtreeSize(parent);
_count--;
}
return true;
}
/// <summary>
/// Calculates the tree height from a specific node, recursively.
/// </summary>
/// <param name="node">Node</param>
/// <returns>Height of node's longest subtree</returns>
protected int _getTreeHeight(BSTRankedNode<T> node)
{
if (node == null || node.HasChildren == false)
return 0;
if (node.ChildrenCount == 2) // it has both a right child and a left child
{
if (node.LeftChild.SubtreeSize > node.RightChild.SubtreeSize)
return (1 + _getTreeHeight(node.LeftChild));
return (1 + _getTreeHeight(node.RightChild));
}
if (node.HasLeftChild)
{
return (1 + _getTreeHeight(node.LeftChild));
}
if (node.HasRightChild)
{
return (1 + _getTreeHeight(node.RightChild));
}
// return-functions-fix
return 0;
}
/// <summary>
/// Inserts an element to the tree
/// </summary>
/// <param name="item">Item to insert</param>
public override void Insert(T item)
{
var newNode = new BSTRankedNode<T>(item);
// Invoke the super BST insert node method.
// This insert node recursively starting from the root and checks for success status (related to allowDuplicates flag).
// The functions increments count on its own.
var success = base._insertNode(newNode);
if (success == false && _allowDuplicates == false)
throw new InvalidOperationException("Tree does not allow inserting duplicate elements.");
// Update the subtree-size for the newNode's parent.
_updateSubtreeSize(newNode.Parent);
}
/// <summary>
/// Inserts an array of elements to the tree.
/// </summary>
public override void Insert(T[] collection)
{
if (collection == null)
throw new ArgumentNullException();
if (collection.Length > 0)
for (int i = 0; i < collection.Length; ++i)
this.Insert(collection[i]);
}
/// <summary>
/// Inserts a list of elements to the tree.
/// </summary>
public override void Insert(List<T> collection)
{
if (collection == null)
throw new ArgumentNullException();
if (collection.Count > 0)
for (int i = 0; i < collection.Count; ++i)
this.Insert(collection[i]);
}
/// <summary>
/// Deletes an element from the tree
/// </summary>
/// <param name="item">item to remove.</param>
public override void Remove(T item)
{
if (IsEmpty)
throw new Exception("Tree is empty.");
var node = (BSTRankedNode<T>)base._findNode(this.Root, item);
bool status = _remove(node);
this._updateSubtreeSize(node.Parent);
// If the element was found, remove it.
if (status == false)
throw new Exception("Item was not found.");
}
/// <summary>
/// Removes the min value from tree.
/// </summary>
public override void RemoveMin()
{
if (IsEmpty)
throw new Exception("Tree is empty.");
var node = (BSTRankedNode<T>)_findMinNode(this.Root);
var parent = node.Parent;
this._remove(node);
// Update the subtrees-sizes
this._updateSubtreeSize(parent);
}
/// <summary>
/// Removes the max value from tree.
/// </summary>
public override void RemoveMax()
{
if (IsEmpty)
throw new Exception("Tree is empty.");
var node = (BSTRankedNode<T>)_findMaxNode(this.Root);
var parent = node.Parent;
this._remove(node);
// Update the subtrees-sizes
this._updateSubtreeSize(parent);
}
/// <summary>
/// Returns the rank of the specified element
/// </summary>
/// <param name="item">Tree element</param>
/// <returns>Rank(item) if found; otherwise throws an exception.</returns>
public virtual int Rank(T item)
{
var node = (BSTRankedNode<T>)base._findNode(this.Root, item);
if (node == null)
throw new Exception("Item was not found.");
return (this._subtreeSize(node.LeftChild) + 1);
}
}
}