-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmanifest.json
119 lines (119 loc) · 3.32 KB
/
manifest.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
{
"title": "ImageEmbeddingCAE",
"description": "Implementation of http://arxiv.org/abs/2009.02040",
"inputDimensionality": "univariate",
"version": "0.3.0",
"authors": "Gabriel Rodriguez Garcia, Gabriel Michau, Melanie Ducoffe, Jayant Sen Gupta",
"language": "Python",
"type": "Detector",
"learningType": "Semi-Supervised",
"mainFile": "algorithm.py",
"trainingStep": {
"parameters": [
{
"name": "anomaly_window_size",
"type": "int",
"defaultValue": 512,
"optional": "true",
"description": "length of one time series chunk (tumbling window)"
},
{
"name": "kernel_size",
"type": "int",
"defaultValue": 2,
"optional": "true",
"description": "width, height of each convolution kernel (stride is equal to this value)"
},
{
"name": "num_kernels",
"type": "int",
"defaultValue": 64,
"optional": "true",
"description": "number of convolution kernels used in each layer"
},
{
"name": "latent_size",
"type": "int",
"defaultValue": 100,
"optional": "true",
"description": "number of neurons used in the embedding layer"
},
{
"name": "leaky_relu_alpha",
"type": "float",
"defaultValue": 0.03,
"optional": "true",
"description": "alpha value used for leaky relu activation function"
},
{
"name": "batch_size",
"type": "int",
"defaultValue": 32,
"optional": "true",
"description": "number of simultaneously trained data instances"
},
{
"name": "test_batch_size",
"type": "int",
"defaultValue": 128,
"optional": "true",
"description": "number of simultaneously trained data instances"
},
{
"name": "learning_rate",
"type": "float",
"defaultValue": 0.001,
"optional": "true",
"description": "Gradient factor for backpropagation"
},
{
"name": "epochs",
"type": "int",
"defaultValue": 30,
"optional": "true",
"description": "number of training iterations over entire dataset"
},
{
"name": "split",
"type": "float",
"defaultValue": 0.8,
"optional": "true",
"description": "train-validation split"
},
{
"name": "early_stopping_delta",
"type": "float",
"defaultValue": 0.05,
"optional": "true",
"description": "If 1 - (loss / last_loss) is less than `delta` for `patience` epochs, stop"
},
{
"name": "early_stopping_patience",
"type": "int",
"defaultValue": 10,
"optional": "true",
"description": "If 1 - (loss / last_loss) is less than `delta` for `patience` epochs, stop"
},
{
"name": "random_state",
"type": "int",
"defaultValue": 42,
"optional": "true",
"description": "Seed for the random number generator"
}
],
"modelInput": "none"
},
"executionStep": {
"parameters": [
{
"name": "random_state",
"type": "int",
"defaultValue": 42,
"optional": "true",
"description": "Seed for the random number generator"
}
],
"modelInput": "required"
}
}