-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathalgorithm.py
executable file
·83 lines (67 loc) · 2.57 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python3
import argparse
import json
import sys
import numpy as np
import pandas as pd
from typing import Optional
from dataclasses import dataclass
from pyod.models.iforest import IForest
@dataclass
class CustomParameters:
n_trees: float = 100
max_samples: Optional[float] = None
max_features: float = 1.
bootstrap: bool = False
random_state: int = 42
verbose: int = 0
n_jobs: int = 1
class AlgorithmArgs(argparse.Namespace):
@staticmethod
def from_sys_args() -> 'AlgorithmArgs':
args: dict = json.loads(sys.argv[1])
custom_parameter_keys = dir(CustomParameters())
filtered_parameters = dict(filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items()))
args["customParameters"] = CustomParameters(**filtered_parameters)
return AlgorithmArgs(**args)
def set_random_state(config: AlgorithmArgs) -> None:
seed = config.customParameters.random_state
import random
random.seed(seed)
np.random.seed(seed)
def load_data(config: AlgorithmArgs) -> np.ndarray:
df = pd.read_csv(config.dataInput)
data = df.iloc[:, 1:-1].values
labels = df.iloc[:, -1].values
contamination = labels.sum() / len(labels)
# Use smallest positive float as contamination if there are no anomalies in dataset
contamination = np.nextafter(0, 1) if contamination == 0. else contamination
return data, contamination
def main(config: AlgorithmArgs):
set_random_state(config)
data, contamination = load_data(config)
clf = IForest(
contamination=contamination,
n_estimators=config.customParameters.n_trees,
max_samples=config.customParameters.max_samples or "auto",
max_features=config.customParameters.max_features,
bootstrap=config.customParameters.bootstrap,
random_state=config.customParameters.random_state,
verbose=config.customParameters.verbose,
n_jobs=config.customParameters.n_jobs,
)
clf.fit(data)
scores = clf.decision_scores_
np.savetxt(config.dataOutput, scores, delimiter=",")
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Wrong number of arguments specified; expected a single json-string!")
exit(1)
config = AlgorithmArgs.from_sys_args()
print(f"Config: {config}")
if config.executionType == "train":
print("Nothing to train, finished!")
elif config.executionType == "execute":
main(config)
else:
raise ValueError(f"Unknown execution type '{config.executionType}'; expected either 'train' or 'execute'!")