-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmanifest.json
126 lines (126 loc) · 3.63 KB
/
manifest.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
{
"title": "DeepNAP",
"description": "Implementation of https://doi.org/10.1016/j.ins.2018.05.020",
"inputDimensionality": "multivariate",
"version": "0.3.0",
"authors": "Jingchu Liu, Bhaskar Krishnamachari, Sheng Zhou, Zhisheng Niu",
"language": "Python",
"type": "Detector",
"mainFile": "algorithm.py",
"learningType": "semi-supervised",
"trainingStep": {
"parameters": [
{
"name": "anomaly_window_size",
"type": "int",
"defaultValue": 15,
"optional": "true",
"description": "Size of the sliding windows"
},
{
"name": "partial_sequence_length",
"type": "int",
"defaultValue": 3,
"optional": "true",
"description": "Number of points taken from the beginning of the predicted window used to build a partial sequence (with neighboring points) that is passed through another linear network."
},
{
"name": "lstm_layers",
"type": "int",
"defaultValue": 2,
"optional": "true",
"description": "Number of LSTM layers within encoder and decoder"
},
{
"name": "rnn_hidden_size",
"type": "int",
"defaultValue": 200,
"optional": "true",
"description": "Number of neurons in LSTM hidden layer"
},
{
"name": "dropout",
"type": "float",
"defaultValue": 0.5,
"optional": "true",
"description": "Probability for a neuron to be zeroed for regularization"
},
{
"name": "linear_hidden_size",
"type": "int",
"defaultValue": 100,
"optional": "true",
"description": "Number of neurons in linear hidden layer"
},
{
"name": "batch_size",
"type": "int",
"defaultValue": 32,
"optional": "true",
"description": "Number of instances trained at the same time"
},
{
"name": "validation_batch_size",
"type": "int",
"defaultValue": 256,
"optional": "true",
"description": "Number of instances used for validation at the same time"
},
{
"name": "epochs",
"type": "int",
"defaultValue": 1,
"optional": "true",
"description": "Number of training iterations over entire dataset; recommended value: 256"
},
{
"name": "learning_rate",
"type": "float",
"defaultValue": 0.001,
"optional": "true",
"description": "Learning rate for Adam optimizer"
},
{
"name": "split",
"type": "float",
"defaultValue": 0.8,
"optional": "true",
"description": "Train-validation split for early stopping"
},
{
"name": "early_stopping_delta",
"type": "float",
"defaultValue": 0.05,
"optional": "true",
"description": "If 1 - (loss / last_loss) is less than `delta` for `patience` epochs, stop"
},
{
"name": "early_stopping_patience",
"type": "int",
"defaultValue": 10,
"optional": "true",
"description": "If 1 - (loss / last_loss) is less than `delta` for `patience` epochs, stop"
},
{
"name": "random_state",
"type": "int",
"defaultValue": 42,
"optional": "true",
"description": "Seed for the random number generator"
}
],
"modelInput": "none"
},
"executionStep": {
"parameters": [
{
"name": "random_state",
"type": "int",
"defaultValue": 42,
"optional": "true",
"description": "Seed for the random number generator"
}
],
"modelInput": "required"
}
}