-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathalgorithm.py
87 lines (70 loc) · 2.34 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python3
import argparse
import json
import sys
import numpy as np
import pandas as pd
import torch
from dataclasses import dataclass, asdict
from deepnap.model import DeepNAP
@dataclass
class CustomParameters:
anomaly_window_size: int = 15
partial_sequence_length: int = 3
lstm_layers: int = 2
rnn_hidden_size: int = 200
dropout: float = 0.5
linear_hidden_size: int = 100
batch_size: int = 32
epochs: int = 1
learning_rate: float = 0.001
split: float = 0.8
early_stopping_delta: float = 0.05
early_stopping_patience: int = 10
validation_batch_size: int = 256
random_state: int = 42
class AlgorithmArgs(argparse.Namespace):
@property
def ts(self) -> np.ndarray:
return self.df.iloc[:, 1:-1].values
@property
def df(self) -> pd.DataFrame:
return pd.read_csv(self.dataInput)
@staticmethod
def from_sys_args() -> 'AlgorithmArgs':
args: dict = json.loads(sys.argv[1])
custom_parameter_keys = dir(CustomParameters())
filtered_parameters = dict(
filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items()))
args["customParameters"] = CustomParameters(**filtered_parameters)
return AlgorithmArgs(**args)
def train(args: AlgorithmArgs):
ts = args.ts
input_size = ts.shape[1]
deepnap = DeepNAP(input_size=input_size, **asdict(args.customParameters))
deepnap.fit(ts, args)
deepnap.save(args)
def execute(args: AlgorithmArgs):
ts = args.ts
deepnap = DeepNAP.load(args)
anomaly_scores = deepnap.anomaly_detection(ts)
anomaly_scores.tofile(args.dataOutput, sep="\n")
def set_random_state(config: AlgorithmArgs) -> None:
seed = config.customParameters.random_state
import random
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Wrong number of arguments specified; expected a single json-string!")
exit(1)
args = AlgorithmArgs.from_sys_args()
set_random_state(args)
print(f"AlgorithmArgs: {args}")
if args.executionType == "train":
train(args)
elif args.executionType == "execute":
execute(args)
else:
raise ValueError(f"Unknown execution type '{args.executionType}'; expected either 'train' or 'execute'!")