-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmodel.py
52 lines (45 loc) · 2.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import tensorflow as tf
from tensorflow import keras
from keras import Input
from keras.layers import Dense
import numpy as np
import os
import shutil
class AutoEn():
def __init__(self, latent_size = 32, epochs = 10, learning_rate = 0.005, noise_ratio = 0.1, early_stopping_patience: int = 10, early_stopping_delta: float = 1e-2, split: float = 0.8):
super(AutoEn, self).__init__()
self.encoder_dim = latent_size
self.epochs = epochs
self.lr = learning_rate
self.noise_ratio = noise_ratio
self.early_stopping_patience = early_stopping_patience
self.early_stopping_delta = early_stopping_delta
self.validation_split = 1 - split
def get_models(self):
self.inp = Input(shape= (self.features,))
self.fc = Dense(self.encoder_dim)(self.inp)
self.d1 = Dense(self.features)(self.fc)
self.autoencoder = tf.keras.Model(inputs = self.inp, outputs = self.d1)
def fit(self, xtr, model_path):
self.features = xtr.shape[1]
noise = int(xtr.shape[0]*self.noise_ratio)
ii = np.random.permutation(xtr.shape[0])[:noise]
noise_xtr = xtr.copy()
noise_xtr[ii] = 0
opt = keras.optimizers.Adam(learning_rate= self.lr)
self.get_models()
self.autoencoder.compile(optimizer = opt, loss = 'mse')
self.autoencoder.fit(noise_xtr, xtr, epochs = self.epochs, validation_split=self.validation_split,
callbacks=[
tf.keras.callbacks.EarlyStopping(patience=self.early_stopping_patience, min_delta=self.early_stopping_delta),
tf.keras.callbacks.ModelCheckpoint("check", save_best_only=True),
tf.keras.callbacks.LambdaCallback(
on_epoch_end=lambda x, y: AutoEn._create_archive("check", model_path) if os.path.exists("check") else None
)
])
def save(self, path):
self.autoencoder.save(path)
@staticmethod
def _create_archive(tmp_path, model_path):
shutil.make_archive(model_path, root_dir=tmp_path, format="zip")
shutil.move(f"{model_path}.zip", model_path)