Skip to content

Latest commit

 

History

History
 
 

benchmarks

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Benchmarks Performance

Here are the results of each benchmark model running on Qlib's Alpha360 and Alpha158 dataset with China's A shared-stock & CSI300 data respectively. The values of each metric are the mean and std calculated based on 20 runs.

The numbers shown below demonstrate the performance of the entire workflow of each model. We will update the workflow as well as models in the near future for better results.

Alpha360 dataset

Model Name Dataset IC ICIR Rank IC Rank ICIR Annualized Return Information Ratio Max Drawdown
Linear Alpha360 0.0150±0.00 0.1049±0.00 0.0284±0.00 0.1970±0.00 -0.0659±0.00 -0.7072±0.00 -0.2955±0.00
CatBoost (Liudmila Prokhorenkova, et al.) Alpha360 0.0397±0.00 0.2878±0.00 0.0470±0.00 0.3703±0.00 0.0342±0.00 0.4092±0.00 -0.1057±0.00
XGBoost (Tianqi Chen, et al.) Alpha360 0.0400±0.00 0.3031±0.00 0.0461±0.00 0.3862±0.00 0.0528±0.00 0.6307±0.00 -0.1113±0.00
LightGBM (Guolin Ke, et al.) Alpha360 0.0399±0.00 0.3075±0.00 0.0492±0.00 0.4019±0.00 0.0323±0.00 0.4370±0.00 -0.0917±0.00
MLP Alpha360 0.0285±0.00 0.1981±0.02 0.0402±0.00 0.2993±0.02 0.0073±0.02 0.0880±0.22 -0.1446±0.03
GRU (Kyunghyun Cho, et al.) Alpha360 0.0490±0.01 0.3787±0.05 0.0581±0.00 0.4664±0.04 0.0726±0.02 0.9817±0.34 -0.0902±0.03
LSTM (Sepp Hochreiter, et al.) Alpha360 0.0443±0.01 0.3401±0.05 0.0536±0.01 0.4248±0.05 0.0627±0.03 0.8441±0.48 -0.0882±0.03
ALSTM (Yao Qin, et al.) Alpha360 0.0493±0.01 0.3778±0.06 0.0585±0.00 0.4606±0.04 0.0513±0.03 0.6727±0.38 -0.1085±0.02
GATs (Petar Velickovic, et al.) Alpha360 0.0475±0.00 0.3515±0.02 0.0592±0.00 0.4585±0.01 0.0876±0.02 1.1513±0.27 -0.0795±0.02

Alpha158 dataset

Model Name Dataset IC ICIR Rank IC Rank ICIR Annualized Return Information Ratio Max Drawdown
Linear Alpha158 0.0393±0.00 0.2980±0.00 0.0475±0.00 0.3546±0.00 0.0795±0.00 1.0712±0.00 -0.1449±0.00
CatBoost (Liudmila Prokhorenkova, et al.) Alpha158 0.0503±0.00 0.3586±0.00 0.0483±0.00 0.3667±0.00 0.1080±0.00 1.1561±0.00 -0.0787±0.00
XGBoost (Tianqi Chen, et al.) Alpha158 0.0481±0.00 0.3659±0.00 0.0495±0.00 0.4033±0.00 0.1111±0.00 1.2915±0.00 -0.0893±0.00
LightGBM (Guolin Ke, et al.) Alpha158 0.0475±0.00 0.3979±0.00 0.0485±0.00 0.4123±0.00 0.1143±0.00 1.2744±0.00 -0.0800±0.00
MLP Alpha158 0.0358±0.00 0.2738±0.03 0.0425±0.00 0.3221±0.01 0.0836±0.02 1.0323±0.25 -0.1127±0.02
TFT (Bryan Lim, et al.) Alpha158 (with selected 20 features) 0.0343±0.00 0.2071±0.02 0.0107±0.00 0.0660±0.02 0.0623±0.02 0.5818±0.20 -0.1762±0.01
GRU (Kyunghyun Cho, et al.) Alpha158 (with selected 20 features) 0.0311±0.00 0.2418±0.04 0.0425±0.00 0.3434±0.02 0.0330±0.02 0.4805±0.30 -0.1021±0.02
LSTM (Sepp Hochreiter, et al.) Alpha158 (with selected 20 features) 0.0312±0.00 0.2394±0.04 0.0418±0.00 0.3324±0.03 0.0298±0.02 0.4198±0.33 -0.1348±0.03
ALSTM (Yao Qin, et al.) Alpha158 (with selected 20 features) 0.0385±0.01 0.3022±0.06 0.0478±0.00 0.3874±0.04 0.0486±0.03 0.7141±0.45 -0.1088±0.03
GATs (Petar Velickovic, et al.) Alpha158 (with selected 20 features) 0.0349±0.00 0.2511±0.01 0.0457±0.00 0.3537±0.01 0.0578±0.02 0.8221±0.25 -0.0824±0.02
  • The selected 20 features are based on the feature importance of a lightgbm-based model.