forked from lvyilin/BaikeNRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_cnnssnn_att.py
115 lines (96 loc) · 4.2 KB
/
eval_cnnssnn_att.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import numpy as np
from mxnet import nd
from mxnet.gluon import nn, rnn
from sklearn.metrics import precision_recall_fscore_support
CWD = os.getcwd()
MODEL_PARAMS_PATH = os.path.join(CWD, "net_params", "cnssnn_att", "net_cnssnn_att_epoch80.params")
WORD_DIMENSION = 100
POS_DIMENSION = 5
DIMENSION = WORD_DIMENSION + 2 * POS_DIMENSION
FIXED_WORD_LENGTH = 60
MAX_ENTITY_DEGREE = 50
ENTITY_DEGREE = MAX_ENTITY_DEGREE + 1
MASK_LENGTH = ENTITY_DEGREE
ENTITY_EDGE_VEC_LENGTH = ENTITY_DEGREE * (WORD_DIMENSION * 2)
VEC_LENGTH = DIMENSION * FIXED_WORD_LENGTH + ENTITY_EDGE_VEC_LENGTH * 2
input_test = np.load('data_test_cnssnn.npy')
x_test = input_test[:, 3:]
y_test = input_test[:, 0]
print(x_test.shape)
print(y_test.shape)
x_test = x_test.astype(np.float32)
y_test = y_test.astype(np.float32)
x_all = x_test
y_all = y_test
x_all = x_all.astype(np.float32)
y_all = y_all.astype(np.int)
print(x_all.shape, y_all.shape)
class Network(nn.Block):
def __init__(self, **kwargs):
super(Network, self).__init__(**kwargs)
with self.name_scope():
self.gru = rnn.GRU(100, num_layers=1, bidirectional=True)
self.att = nn.Sequential()
self.att.add(nn.Dense(1, flatten=False,
activation="sigmoid"))
self.att_out = nn.Sequential()
self.att_out.add(nn.Dense(200, activation="relu"))
self.center_att = nn.Sequential()
self.center_att.add(nn.Dense(1, in_units=200, flatten=False,
activation="sigmoid"))
self.center_out = nn.Sequential()
self.center_out.add(nn.Dense(200, activation="relu"))
self.output = nn.Sequential()
self.output.add(nn.Dropout(0.5))
self.output.add(nn.Dense(11))
def forward(self, input_data):
e1_vec_start = FIXED_WORD_LENGTH * DIMENSION
x = input_data[:, :e1_vec_start].reshape(
(input_data.shape[0], FIXED_WORD_LENGTH, DIMENSION)) # (m, 60, 110)
e1neimask = input_data[:, e1_vec_start:e1_vec_start + MASK_LENGTH] # (m, 51)
e1edge = input_data[:, e1_vec_start + MASK_LENGTH:e1_vec_start + MASK_LENGTH + ENTITY_EDGE_VEC_LENGTH].reshape(
(input_data.shape[0], ENTITY_DEGREE, WORD_DIMENSION * 2)) # (m, 51, 200)
e1neigh = e1edge[:, :, :WORD_DIMENSION]
e2_vec_start = e1_vec_start + MASK_LENGTH + ENTITY_EDGE_VEC_LENGTH
e2neimask = input_data[:, e2_vec_start:e2_vec_start + MASK_LENGTH] # (m, 51)
e2edge = input_data[:, e2_vec_start + MASK_LENGTH:e2_vec_start + MASK_LENGTH + ENTITY_EDGE_VEC_LENGTH].reshape(
(input_data.shape[0], ENTITY_DEGREE, WORD_DIMENSION * 2)) # (m, 51,200)
e2neigh = e2edge[:, :, :WORD_DIMENSION]
x = nd.transpose(x, axes=(1, 0, 2))
h = nd.transpose(self.gru(x), axes=(1, 0, 2))
h = nd.tanh(h)
g = self.att(h)
g = nd.softmax(g, axis=1)
gt = nd.transpose(g, axes=(0, 2, 1)) # (m,1,60)
n = nd.batch_dot(gt, h)
y1 = self.att_out(n)
att = self.center_att
e1edge = nd.tanh(e1edge)
e1g = att(e1edge) # (m,51,1)
e1g = e1g * e1neimask.expand_dims(2)
e1g = nd.softmax(e1g, axis=1)
e1gt = nd.transpose(e1g, axes=(0, 2, 1)) # (m,1,151)
e1n = nd.batch_dot(e1gt, e1neigh) # (m,1,100)
e1n = e1n.reshape((e1n.shape[0], 100)) # (m,100)
e2edge = nd.tanh(e2edge)
e2g = att(e2edge) # (m,51,1)
e2g = e2g * e2neimask.expand_dims(2)
e2g = nd.softmax(e2g, axis=1)
e2gt = nd.transpose(e2g, axes=(0, 2, 1)) # (m,1,151)
e2n = nd.batch_dot(e2gt, e2neigh) # (m,1,100)
e2n = e2n.reshape((e2n.shape[0], 100)) # (m,100)
center_y = nd.concat(e1n, e2n, dim=1) # (m,200)
center_out = self.center_out
center_y = center_out(center_y)
out = self.output
y4 = nd.concat(y1, center_y, dim=1)
y5 = out(y4)
return y5
net = Network()
net.load_parameters(MODEL_PARAMS_PATH)
print(net)
label_list = y_all.tolist()
y_hat = net(nd.array(x_all))
predict_list = y_hat.argmax(axis=1).asnumpy().astype(np.int).tolist()
print(precision_recall_fscore_support(label_list, predict_list, average='macro'))