forked from lvyilin/BaikeNRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_process_cnssnn_freq.py
245 lines (222 loc) · 8.86 KB
/
data_process_cnssnn_freq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import mxnet as mx
from gensim.models import KeyedVectors
import numpy as np
import os
import sqlite3
CWD = os.getcwd()
WORDVEC = CWD + "\\wordvectors.kv"
CORPUS = CWD + "\\separated_corpus_with_label_patch.txt"
DIMENSION = 100
POS_DIMENSION = 5
FIXED_WORD_LENGTH = 60
TRAIN_RADIO = 0.7
conn = sqlite3.connect('baike.db')
c = conn.cursor()
entityvec_key = []
entityvec_value = np.load('entity2vec_value.npy')
with open("entity2vec_key.txt", "r", encoding="utf8") as f:
for line in f:
entityvec_key.append(line.strip())
def get_entity_vec(entity_name):
try:
idx = entityvec_key.index(entity_name)
return entityvec_value[idx]
except ValueError:
return np.zeros(entityvec_value[0].shape)
def get_freq(en1, en2):
c.execute(
'''
select sum(number)
from (select count(*) as number from Data where entity_a=?
or entity_b=?
union
select count(*) as number from Data3 where entity_a=?
or entity_b=?)
''',
(en1, en1, en1, en1))
total_degree1 = c.fetchall()[0][0]
c.execute(
'''
select sum(number)
from (select count(*) as number from Data where entity_a=?
or entity_b=?
union
select count(*) as number from Data3 where entity_a=?
or entity_b=?)
''',
(en2, en2, en2, en2))
total_degree2 = c.fetchall()[0][0]
c.execute(
'''
select sum(number)
from (select count(*) as number
from Data
where (entity_a = ? and entity_b = ?)
or (entity_b = ? and entity_a = ?)
union
select count(*) as number
from Data3
where (entity_a = ? and entity_b = ?)
or (entity_b = ? and entity_a = ?))
''',
(en1, en2, en1, en2, en1, en2, en1, en2))
pair_degree = c.fetchall()[0][0]
print("(%f, %f)" % (float(pair_degree / total_degree1), float(pair_degree / total_degree2)))
return float(pair_degree / total_degree1), float(pair_degree / total_degree2)
wordvec = KeyedVectors.load(WORDVEC, mmap='r')
wordvec['UNK'] = np.zeros(DIMENSION)
wordvec['BLANK'] = np.zeros(DIMENSION)
POS_VECTOR = np.random.random((FIXED_WORD_LENGTH * 2, POS_DIMENSION))
output_entity_pos = []
output_relative_pos = []
output_sentence = []
output_relation = []
output_en1_vec = []
output_en2_vec = []
output_frequency = []
with open(CORPUS, "r", encoding="utf8") as f:
for line in f:
content = line.strip().split()
entity_a = content[0]
entity_b = content[1]
relation = content[2]
sentence = content[3:]
sentence_vector = []
entity_pos = []
relative_pos = []
entity_a_pos_list = [] # 取实体a与实体b最接近的位置
entity_b_pos_list = []
entity_a_pos = -1
entity_b_pos = -1
for i in range(len(sentence)):
if sentence[i] == entity_a:
entity_a_pos_list.append(i)
# entity_a_pos = i
if sentence[i] == entity_b:
entity_b_pos_list.append(i)
# entity_b_pos = i
if sentence[i] not in wordvec:
word_vector = wordvec['UNK']
else:
word_vector = wordvec[sentence[i]]
sentence_vector.append(word_vector)
d_pos = FIXED_WORD_LENGTH
for i in entity_a_pos_list:
for j in entity_b_pos_list:
if abs(i - j) < d_pos:
d_pos = abs(i - j)
entity_a_pos = i
entity_b_pos = j
exception_flag = False
if entity_a_pos == -1 or entity_b_pos == -1:
print(
"entity not found: (%s, %d) (%s, %d) @%s" % (entity_a, entity_a_pos, entity_b, entity_b_pos, sentence))
exception_flag = True
if entity_a_pos < entity_b_pos:
entity_pos.append([entity_a_pos, entity_b_pos])
elif entity_a_pos > entity_b_pos:
entity_pos.append([entity_b_pos, entity_a_pos])
else:
print("entity equal: (%s, %d) (%s, %d) @%s" % (entity_a, entity_a_pos, entity_b, entity_b_pos, sentence))
exception_flag = True
# exit(1)
if exception_flag:
exit(1)
for i in range(len(sentence)):
relative_vector_entity_a = POS_VECTOR[i - entity_a_pos, :]
relative_vector_entity_b = POS_VECTOR[i - entity_b_pos, :]
pos_vec = np.concatenate((relative_vector_entity_a, relative_vector_entity_b))
relative_pos.append(pos_vec)
if len(sentence_vector) < FIXED_WORD_LENGTH:
for i in range(FIXED_WORD_LENGTH - len(sentence_vector)):
sentence_vector.append(wordvec['BLANK'])
pos_vec = np.concatenate((POS_VECTOR[FIXED_WORD_LENGTH, :], POS_VECTOR[FIXED_WORD_LENGTH, :]))
relative_pos.append(pos_vec)
output_sentence.append(sentence_vector)
output_relation.append(relation)
output_entity_pos.append(entity_pos)
output_relative_pos.append(relative_pos)
output_en1_vec.append(get_entity_vec(entity_a))
output_en2_vec.append(get_entity_vec(entity_b))
output_frequency.append(get_freq(entity_a, entity_b))
print("length of output_sentence: %d" % len(output_sentence))
np_sentence = np.array(output_sentence, dtype=float)
np_relation = np.array(output_relation, dtype=int)
np_entity_pos = np.array(output_entity_pos, dtype=int)
np_relative_pos = np.array(output_relative_pos, dtype=float)
np_en1_vec = np.array(output_en1_vec, dtype=float)
np_en2_vec = np.array(output_en2_vec, dtype=float)
np_freq = np.array(output_frequency, dtype=float)
print(np_sentence.shape)
print(np_relative_pos.shape)
print(np_entity_pos.shape)
print(np_en1_vec.shape)
print(np_en2_vec.shape)
np_entity_vec = np.concatenate((np_en1_vec, np_en2_vec), axis=1)
np_sentence_matrix = np.concatenate((np_sentence, np_relative_pos), axis=2)
print(np_sentence_matrix.shape)
sentence_vec = np_sentence_matrix.reshape(np_sentence_matrix.shape[0],
(DIMENSION + 2 * POS_DIMENSION) * FIXED_WORD_LENGTH)
entity_pos_vec = np_entity_pos.reshape(np_entity_pos.shape[0], 2)
np_freq = np_freq.reshape(np_freq.shape[0], 2)
print(np_freq)
# relation + entity position + sentence_vec
conc = np.concatenate(
(np.expand_dims(np_relation, axis=1), entity_pos_vec, np_freq, sentence_vec, np_entity_vec),
axis=1)
print(conc.shape)
tag_1 = conc[conc[:, 0] == 1]
tag_2 = conc[conc[:, 0] == 2]
tag_3 = conc[conc[:, 0] == 3]
tag_4 = conc[conc[:, 0] == 4]
tag_5 = conc[conc[:, 0] == 5]
tag_6 = conc[conc[:, 0] == 6]
tag_7 = conc[conc[:, 0] == 7]
tag_8 = conc[conc[:, 0] == 8]
tag_9 = conc[conc[:, 0] == 9]
tag_10 = conc[conc[:, 0] == 10]
tag_1[:, 0] = 0
tag_3[:, 0] = 1
tag_4[:, 0] = 2
tag_6[:, 0] = 3
tag_7[:, 0] = 4
tag_9[:, 0] = 5
tag_1_train = tag_1[:int(TRAIN_RADIO * len(tag_1))]
tag_1_test = tag_1[int(TRAIN_RADIO * len(tag_1)):]
# tag_2_train = tag_2[:int(TRAIN_RADIO * len(tag_2))]
# tag_2_test = tag_2[int(TRAIN_RADIO * len(tag_2)):]
tag_3_train = tag_3[:int(TRAIN_RADIO * len(tag_3))]
tag_3_test = tag_3[int(TRAIN_RADIO * len(tag_3)):]
tag_4_train = tag_4[:int(TRAIN_RADIO * len(tag_4))]
tag_4_test = tag_4[int(TRAIN_RADIO * len(tag_4)):]
# tag_5_train = tag_5[:int(TRAIN_RADIO * len(tag_5))]
# tag_5_test = tag_5[int(TRAIN_RADIO * len(tag_5)):]
tag_6_train = tag_6[:int(TRAIN_RADIO * len(tag_6))]
tag_6_test = tag_6[int(TRAIN_RADIO * len(tag_6)):]
tag_7_train = tag_7[:int(TRAIN_RADIO * len(tag_7))]
tag_7_test = tag_7[int(TRAIN_RADIO * len(tag_7)):]
# tag_8_train = tag_8[:int(TRAIN_RADIO * len(tag_8))]
# tag_8_test = tag_8[int(TRAIN_RADIO * len(tag_8)):]
tag_9_train = tag_9[:int(TRAIN_RADIO * len(tag_9))]
tag_9_test = tag_9[int(TRAIN_RADIO * len(tag_9)):]
# tag_10_train = tag_10[:int(TRAIN_RADIO * len(tag_10))]
# tag_10_test = tag_10[int(TRAIN_RADIO * len(tag_10)):]
filter_train = np.concatenate((
tag_1_train, tag_3_train, tag_4_train, tag_6_train, tag_7_train,
tag_9_train), axis=0)
filter_test = np.concatenate((
tag_1_test, tag_3_test, tag_4_test, tag_6_test, tag_7_test,
tag_9_test), axis=0)
#
# filter_train = np.concatenate((
# tag_1_train, tag_2_train, tag_3_train, tag_4_train, tag_5_train, tag_6_train, tag_7_train,
# tag_8_train, tag_9_train, tag_10_train), axis=0)
# filter_test = np.concatenate((
# tag_1_test, tag_2_test, tag_3_test, tag_4_test, tag_5_test, tag_6_test, tag_7_test,
# tag_8_test, tag_9_test, tag_10_test), axis=0)
print(filter_train.shape)
print(filter_test.shape)
np.random.shuffle(filter_train)
np.random.shuffle(filter_test)
np.save('data_train_cnssnn_freq.npy', filter_train)
np.save('data_test_cnssnn_freq.npy', filter_test)