forked from lvyilin/BaikeNRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_process_cnn.py
131 lines (117 loc) · 5.12 KB
/
data_process_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import mxnet as mx
from gensim.models import KeyedVectors
import numpy as np
import os
CWD = os.getcwd()
WORDVEC = os.path.join(CWD, "wordvectors.kv")
CORPUS_TRAIN = os.path.join(CWD, "corpus_train2.txt")
CORPUS_TEST = os.path.join(CWD, "corpus_test2.txt")
DIMENSION = 100
POS_DIMENSION = 5
FIXED_WORD_LENGTH = 60
wordvec = KeyedVectors.load(WORDVEC, mmap='r')
PLACEHOLDER = np.zeros(DIMENSION)
POS_VECTOR = np.random.random((FIXED_WORD_LENGTH * 2, POS_DIMENSION))
for corpus, save_filename in ((CORPUS_TRAIN, "data_train_cnn.npy"),
(CORPUS_TEST, "data_test_cnn.npy")):
output_entity_pos = []
output_relative_pos = []
output_sentence = []
output_relation = []
with open(corpus, "r", encoding="utf8") as f:
for line in f:
content = line.strip().split()
entity_a = content[0]
entity_b = content[1]
relation = int(content[2])
sentence = content[3:]
sentence_vector = []
entity_pos = []
relative_pos = []
entity_a_pos_list = [] # 取实体a与实体b最接近的位置
entity_b_pos_list = []
entity_a_pos = -1
entity_b_pos = -1
for i in range(len(sentence)):
if sentence[i] == entity_a:
entity_a_pos_list.append(i)
# entity_a_pos = i
if sentence[i] == entity_b:
entity_b_pos_list.append(i)
# entity_b_pos = i
if sentence[i] not in wordvec:
word_vector = PLACEHOLDER
else:
word_vector = wordvec[sentence[i]]
sentence_vector.append(word_vector)
d_pos = FIXED_WORD_LENGTH
for i in entity_a_pos_list:
for j in entity_b_pos_list:
if abs(i - j) < d_pos:
d_pos = abs(i - j)
entity_a_pos = i
entity_b_pos = j
exception_flag = False
if entity_a_pos == -1 or entity_b_pos == -1:
print(
"entity not found: (%s, %d) (%s, %d) @%s" % (
entity_a, entity_a_pos, entity_b, entity_b_pos, sentence))
exception_flag = True
if entity_a_pos < entity_b_pos:
entity_pos.append([entity_a_pos, entity_b_pos])
elif entity_a_pos > entity_b_pos:
entity_pos.append([entity_b_pos, entity_a_pos])
else:
print(
"entity equal: (%s, %d) (%s, %d) @%s" % (entity_a, entity_a_pos, entity_b, entity_b_pos, sentence))
exception_flag = True
# exit(1)
if exception_flag:
if relation == -1:
continue
print(line)
exit(1)
for i in range(len(sentence)):
relative_vector_entity_a = POS_VECTOR[i - entity_a_pos, :]
relative_vector_entity_b = POS_VECTOR[i - entity_b_pos, :]
pos_vec = np.concatenate((relative_vector_entity_a, relative_vector_entity_b))
relative_pos.append(pos_vec)
if len(sentence_vector) < FIXED_WORD_LENGTH:
for i in range(FIXED_WORD_LENGTH - len(sentence_vector)):
sentence_vector.append(PLACEHOLDER)
pos_vec = np.concatenate((POS_VECTOR[FIXED_WORD_LENGTH, :], POS_VECTOR[FIXED_WORD_LENGTH, :]))
relative_pos.append(pos_vec)
output_sentence.append(sentence_vector)
output_relation.append(relation)
output_entity_pos.append(entity_pos)
output_relative_pos.append(relative_pos)
print("length of output_sentence: %d" % len(output_sentence))
np_sentence = np.array(output_sentence, dtype=float)
np_relation = np.array(output_relation, dtype=int)
np_entity_pos = np.array(output_entity_pos, dtype=int)
np_relative_pos = np.array(output_relative_pos, dtype=float)
print(np_sentence.shape)
print(np_relative_pos.shape)
print(np_entity_pos.shape)
np_sentence_matrix = np.concatenate((np_sentence, np_relative_pos), axis=2)
print(np_sentence_matrix.shape)
sentence_vec = np_sentence_matrix.reshape(np_sentence_matrix.shape[0],
(DIMENSION + 2 * POS_DIMENSION) * FIXED_WORD_LENGTH)
entity_pos_vec = np_entity_pos.reshape(np_entity_pos.shape[0], 2)
# relation + entity position + sentence_vec
conc = np.concatenate((np.expand_dims(np_relation, axis=1),
entity_pos_vec,
sentence_vec), axis=1)
print(conc.shape)
tag_0 = conc[conc[:, 0] == 0]
tag_1 = conc[conc[:, 0] == 1]
tag_2 = conc[conc[:, 0] == 2]
tag_3 = conc[conc[:, 0] == 3]
tag_4 = conc[conc[:, 0] == 4]
tag_5 = conc[conc[:, 0] == 5]
tag_6 = conc[conc[:, 0] == 6]
filter = np.concatenate((
tag_0, tag_1, tag_2, tag_3, tag_4, tag_5, tag_6), axis=0)
print(filter.shape)
np.random.shuffle(filter)
np.save(save_filename, filter)