forked from illuhad/mandelgpu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kernel.hpp
95 lines (79 loc) · 2.16 KB
/
kernel.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
/*
* This file is part of mandelgpu, a free GPU accelerated fractal viewer,
* Copyright (C) 2016 Aksel Alpay
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef KERNEL_H
#define KERNEL_H
#include "performance.hpp"
#include <vector>
enum kernel_type
{
MANDELBROT,
JULIA
};
enum precision
{
HALF,
SINGLE,
DOUBLE
};
template<typename T>
struct simple_complex
{
simple_complex(T real_part, T imag_part)
: real(real_part), imag(imag_part)
{}
simple_complex(){}
T real;
T imag;
};
template<typename T>
std::ostream& operator<<(std::ostream& lhs, const simple_complex<T>& x)
{
lhs << x.real;
if(x.imag < 0.)
lhs << x.imag;
else
{
lhs << "+" << x.imag;
}
lhs << "*i";
return lhs;
}
class cuda_polynomial_coefficients
{
public:
cuda_polynomial_coefficients(int degree);
~cuda_polynomial_coefficients();
const std::vector<simple_complex<double> >& get_coefficients() const
{ return _coefficients; }
std::vector<simple_complex<double> >& get_coefficients()
{ return _coefficients; }
void commit();
private:
std::vector<simple_complex<double> > _coefficients;
std::vector<simple_complex<float> > _float_coefficients;
float* _device_float_coefficients;
double* _device_double_coefficients;
};
performance_estimator::result run_kernel(unsigned char* pixels,
std::size_t width, std::size_t height,
double size_x,
double center_x, double center_y,
double c0_x, double c0_y, // for julia
kernel_type kernel,
precision p);
#endif