-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
236 lines (175 loc) · 8.12 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import functools
import operator
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Implementation of Deep Deterministic Policy Gradients (DDPG)
# Paper: https://arxiv.org/abs/1509.02971
class ActorDense(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(ActorDense, self).__init__()
state_dim = functools.reduce(operator.mul, state_dim, 1)
self.l1 = nn.Linear(state_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, action_dim)
self.max_action = max_action
self.tanh = nn.Tanh()
def forward(self, x):
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = self.max_action * self.tanh(self.l3(x))
return x
class ActorCNN(nn.Module):
def __init__(self, action_dim, max_action):
super(ActorCNN, self).__init__()
# ONLY TRU IN CASE OF DUCKIETOWN:
flat_size = 32 * 9 * 14
self.lr = nn.LeakyReLU()
self.tanh = nn.Tanh()
self.sigm = nn.Sigmoid()
self.conv1 = nn.Conv2d(3, 32, 8, stride=2)
self.conv2 = nn.Conv2d(32, 32, 4, stride=2)
self.conv3 = nn.Conv2d(32, 32, 4, stride=2)
self.conv4 = nn.Conv2d(32, 32, 4, stride=1)
self.bn1 = nn.BatchNorm2d(32)
self.bn2 = nn.BatchNorm2d(32)
self.bn3 = nn.BatchNorm2d(32)
self.bn4 = nn.BatchNorm2d(32)
self.dropout = nn.Dropout(.5)
self.lin1 = nn.Linear(flat_size, 512)
self.lin2 = nn.Linear(512, action_dim)
self.max_action = max_action
def forward(self, x):
x = self.bn1(self.lr(self.conv1(x)))
x = self.bn2(self.lr(self.conv2(x)))
x = self.bn3(self.lr(self.conv3(x)))
x = self.bn4(self.lr(self.conv4(x)))
x = x.view(x.size(0), -1) # flatten
x = self.dropout(x)
x = self.lr(self.lin1(x))
# this is the vanilla implementation
# but we're using a slightly different one
# x = self.max_action * self.tanh(self.lin2(x))
# because we don't want our duckie to go backwards
x = self.lin2(x)
x[:, 0] = self.max_action * self.sigm(x[:, 0]) # because we don't want the duckie to go backwards
x[:, 1] = self.tanh(x[:, 1])
return x
class CriticDense(nn.Module):
def __init__(self, state_dim, action_dim):
super(CriticDense, self).__init__()
state_dim = functools.reduce(operator.mul, state_dim, 1)
self.l1 = nn.Linear(state_dim, 400)
self.l2 = nn.Linear(400 + action_dim, 300)
self.l3 = nn.Linear(300, 1)
def forward(self, x, u):
x = F.relu(self.l1(x))
x = F.relu(self.l2(torch.cat([x, u], 1)))
x = self.l3(x)
return x
class CriticCNN(nn.Module):
def __init__(self, action_dim):
super(CriticCNN, self).__init__()
flat_size = 32 * 9 * 14
self.lr = nn.LeakyReLU()
self.conv1 = nn.Conv2d(3, 32, 8, stride=2)
self.conv2 = nn.Conv2d(32, 32, 4, stride=2)
self.conv3 = nn.Conv2d(32, 32, 4, stride=2)
self.conv4 = nn.Conv2d(32, 32, 4, stride=1)
self.bn1 = nn.BatchNorm2d(32)
self.bn2 = nn.BatchNorm2d(32)
self.bn3 = nn.BatchNorm2d(32)
self.bn4 = nn.BatchNorm2d(32)
self.dropout = nn.Dropout(.5)
self.lin1 = nn.Linear(flat_size, 256)
self.lin2 = nn.Linear(256 + action_dim, 128)
self.lin3 = nn.Linear(128, 1)
def forward(self, states, actions):
x = self.bn1(self.lr(self.conv1(states)))
x = self.bn2(self.lr(self.conv2(x)))
x = self.bn3(self.lr(self.conv3(x)))
x = self.bn4(self.lr(self.conv4(x)))
x = x.view(x.size(0), -1) # flatten
x = self.lr(self.lin1(x))
x = self.lr(self.lin2(torch.cat([x, actions], 1))) # c
x = self.lin3(x)
return x
class DDPG(object):
def __init__(self, state_dim, action_dim, max_action, net_type):
super(DDPG, self).__init__()
assert net_type in ["cnn", "dense"]
self.state_dim = state_dim
if net_type == "dense":
self.flat = True
self.actor = ActorDense(state_dim, action_dim, max_action).to(device)
self.actor_target = ActorDense(state_dim, action_dim, max_action).to(device)
else:
self.flat = False
self.actor = ActorCNN(action_dim, max_action).to(device)
self.actor_target = ActorCNN(action_dim, max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=1e-4)
if net_type == "dense":
self.critic = CriticDense(state_dim, action_dim).to(device)
self.critic_target = CriticDense(state_dim, action_dim).to(device)
else:
self.critic = CriticCNN(action_dim).to(device)
self.critic_target = CriticCNN(action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = torch.optim.Adam(self.critic.parameters())
def close(self):
# TODO: release resources
pass
def predict(self, state):
# just making sure the state has the correct format, otherwise the prediction doesn't work
assert state.shape[0] == 3
if self.flat:
state = torch.FloatTensor(state.reshape(1, -1)).to(device)
else:
state = torch.FloatTensor(np.expand_dims(state, axis=0)).to(device)
return self.actor(state).cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=64, discount=0.99, tau=0.001):
for it in range(iterations):
# Sample replay buffer
sample = replay_buffer.sample(batch_size, flat=self.flat)
state = torch.FloatTensor(sample["state"]).to(device)
action = torch.FloatTensor(sample["action"]).to(device)
next_state = torch.FloatTensor(sample["next_state"]).to(device)
done = torch.FloatTensor(1 - sample["done"]).to(device)
reward = torch.FloatTensor(sample["reward"]).to(device)
# Compute the target Q value
target_Q = self.critic_target(next_state, self.actor_target(next_state))
target_Q = reward + (done * discount * target_Q).detach()
# Get current Q estimate
current_Q = self.critic(state, action)
# Compute critic loss
critic_loss = F.mse_loss(current_Q, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Compute actor loss
actor_loss = -self.critic(state, self.actor(state)).mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update the frozen target models
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
def save(self, filename, directory):
torch.save(self.actor.state_dict(), '{}/{}_actor.pth'.format(directory, filename))
torch.save(self.critic.state_dict(), '{}/{}_critic.pth'.format(directory, filename))
def load(self, filename, directory, for_inference=False):
self.actor.load_state_dict(torch.load('{}/{}_actor.pth'.format(directory, filename), map_location=device))
self.critic.load_state_dict(torch.load('{}/{}_critic.pth'.format(directory, filename), map_location=device))
if for_inference:
# If we're not learning anymore, set model layers to
# test mode (this disables dropout and changes batchnorm).
# This does NOT affect autograd.
self.actor.eval()
self.critic.eval()