forked from meta-llama/llama-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
56 lines (53 loc) · 2.04 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
from dataclasses import dataclass
from typing import Optional
@dataclass
class train_config:
model_name: str = ""
tokenizer_name: str = ""
enable_fsdp: bool = False
low_cpu_fsdp: bool = False
run_validation: bool = True
batch_size_training: int = 4
gradient_accumulation_steps: int = 1
clip_grad_norm: float = 1.0
num_epochs: int = 1
num_workers_dataloader: int = 1
lr: float = 1e-4
lr_min: float = 1e-5
lr_decay: float = 0.80 # ratio of decay
lr_warmup: float = 0.002 # ratio of warmup
lr_decay_style: str = "cosine"
use_sequence_length_schedule: bool = False
sequence_length: int = 4096
sequence_length_warmup_min: int = 8
sequence_length_warmup: float = 0.15
weight_decay: float = 0.1
gamma: float = 0.85
adamw_eps: float = 1e-5
adamw_betas: tuple[float, float] = (0.9, 0.95)
seed: int = 42
use_fp16: bool = False
mixed_precision: bool = True
val_batch_size: int = 1
dataset: str = ""
peft_method: str = "lora" # None , llama_adapter, prefix
use_peft: bool = False
output_dir: str = "PATH/to/save/PEFT/model"
freeze_layers: bool = False
num_freeze_layers: int = 1
quantization: bool = False
one_gpu: bool = False
save_model: bool = True
save_checkpoint_path: str = ""
save_optimizer: bool = True # will be used if using FSDP
load_checkpoint_path: str = ""
save_interval_iteration: int = 10
use_fast_kernels: bool = True # Enable using SDPA from PyTorch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
use_mpi: bool = True
use_streaming_datasets: bool = True
streaming_datasets_train_path: str = ""
streaming_datasets_val_path: str = "/p/home/jusers/nakamura2/juwels/nakamura2/ABCI-llama-recipes/sample_datasets2"
wandb_name: Optional[str] = None
estimated_total_iterations: int = 17000