-
Notifications
You must be signed in to change notification settings - Fork 4
/
benchmark_cpu_radix_partitioning_algorithms.py
executable file
·136 lines (114 loc) · 5.42 KB
/
benchmark_cpu_radix_partitioning_algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
#
# Copyright 2021-2022 Clemens Lutz
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Information
# ===========
#
# This script runs multiple CPU radix partitioning algorithms. The parameters
# are tuned for an IBM AC922 machine, which has two IBM POWER9 CPUs and two
# Nvidia V100 GPUs. The machine also has NVLink 2.0.
#
# There are three execution strategies:
#
# - Write output to main memory
# - Write output to GPU memory (NVLink only, not supported on PCI-e)
# - Write chunks to main memory and concurrently copy these to GPU memory
#
# Setup notes
# ===========
#
# Before running this benchmark, allocate huge pages by running:
#
# sudo bash -c 'echo 1 > /proc/sys/vm/compact_memory'
# sudo bash -c 'echo 63000 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages'
# sudo bash -c 'echo 10000 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_overcommit_hugepages'
#
# CPU radix partitioning is not affected by page fragmentation.
import subprocess
import socket
import itertools
import shlex
import tempfile
from os import path
import pandas
repeat = 10
data_bytes = 15 * 2**30
tuple_bytes = [ 16 ]
radix_bits = range(0, 12)
data_location = 0
cpu_morsel_bytes = 1 * 2**20
prefix_sum_algorithm = 'ChunkedSimd'
partition_algorithms = [ 'NC', 'SWWC', 'SwwcSimd' ]
page_type = [ 'Huge2MB' ]
execution_methods = [ ('CpuRadixPartition', 'Numa', 0), ('CpuRadixPartition', 'Numa', 255), ('CpuRadixPartitionWithTransfer', 'NumaLazyPinned', 0) ]
# Balancing workload across L2+L3 cache sub-systems (shared by a core-pair)
cpu_mapping_1s_no_smt = { 'sockets': 1, 'threads': 16, 'smt': 1, 'mapping': '0 8 16 24 32 40 48 56 4 12 20 28 36 44 52 60' }
cpu_mapping_1s_2way_smt = { 'sockets': 1, 'threads': 32, 'smt': 2, 'mapping': '0 8 16 24 32 40 48 56 4 12 20 28 36 44 52 60 1 9 17 25 33 41 49 57 5 13 21 29 37 45 53 61' }
cpu_mapping_1s_4way_smt = { 'sockets': 1, 'threads': 64, 'smt': 4, 'mapping': '0 8 16 24 32 40 48 56 4 12 20 28 36 44 52 60 1 9 17 25 33 41 49 57 5 13 21 29 37 45 53 61 2 10 18 26 34 42 50 58 6 14 22 30 38 46 54 62 3 11 19 27 35 43 51 59 7 15 23 31 39 47 55 63' }
cpu_mappings = [ cpu_mapping_1s_no_smt, cpu_mapping_1s_2way_smt, cpu_mapping_1s_4way_smt ]
hostname = socket.gethostname()
def main():
file_id = 0
file_list = []
out_dir = tempfile.mkdtemp()
out_csv = path.join(out_dir, f'benchmark_cpu_radix_partitioning_algorithms_{hostname}.csv')
cpu_affinity_file = path.join(out_dir, 'cpu_affinity.txt')
algos = ','.join(partition_algorithms)
print(f"Writing CSV file to {out_csv}")
for rb, tb, (em, ot, ol), cpum, pt in itertools.product(radix_bits, tuple_bytes, execution_methods, cpu_mappings, page_type):
print(f'Running { algos } with radix bits: {rb !s} tuple bytes: {tb !s} page type: {pt !s} execution method: { em } output type: { ot } output location: {ol !s}')
tuples = int(data_bytes / tb)
with open(cpu_affinity_file, mode='w') as file:
file.write(cpum['mapping'] + '\n')
for count in range(0, repeat):
print('.', end='', flush=True)
tmp_csv = path.join(out_dir, f'tmp_{file_id !s}.csv')
cmd = f'''
cargo bench \
--quiet \
--package sql-ops \
--bench cpu_radix_partition_operator \
-- \
--execution-methods { em } \
--prefix-sum-algorithms { prefix_sum_algorithm } \
--partition-algorithms { algos } \
--cpu-affinity {cpu_affinity_file} \
--cpu-morsel-bytes {cpu_morsel_bytes !s} \
--input-mem-type Numa \
--output-mem-type { ot } \
--input-location {data_location !s} \
--output-location {ol !s} \
--threads {cpum['threads'] !s} \
--tuples {tuples !s} \
--tuple-bytes Bytes{tb !s} \
--radix-bits {rb !s} \
--page-type { pt } \
--repeat 2 \
--csv {tmp_csv}
'''
cmdfuture = subprocess.run(shlex.split(cmd), check = False)
cmdfuture.check_returncode()
file_list.append(tmp_csv)
file_id += 1
print('')
csv_append(out_csv, file_list)
print(f"Finished CSV file at {out_csv}")
def csv_append(accumulator_file, append_files):
df_list = [pandas.read_csv(f) for f in append_files]
df = pandas.concat(df_list)
df.to_csv(accumulator_file, index = False)
if __name__ == "__main__":
main()