-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_cifar_split.py
647 lines (568 loc) · 25.6 KB
/
main_cifar_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
### This file is modified from : https://github.com/sahagobinda/GPM
# Copyright (c) THUNLP, Tsinghua University. All rights reserved.
# # See LICENSE file in the project root for license information.
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import sys
import os
import os.path
from collections import OrderedDict
import logging
import numpy as np
import random
import argparse,time
from copy import deepcopy
from layers import Linear, Conv2d
## Define AlexNet model
def compute_conv_output_size(Lin,kernel_size,stride=1,padding=0,dilation=1):
return int(np.floor((Lin+2*padding-dilation*(kernel_size-1)-1)/float(stride)+1))
class AlexNet(nn.Module):
def __init__(self,taskcla):
super(AlexNet, self).__init__()
self.act=OrderedDict()
self.map =[]
self.ksize=[]
self.in_channel =[]
self.map.append(32)
self.conv1 = Conv2d(3, 64, 4, bias=False)
self.bn1 = nn.BatchNorm2d(64, track_running_stats=False)
s=compute_conv_output_size(32,4)
s=s//2
self.ksize.append(4)
self.in_channel.append(3)
self.map.append(s)
self.conv2 = Conv2d(64, 128, 3, bias=False)
self.bn2 = nn.BatchNorm2d(128, track_running_stats=False)
s=compute_conv_output_size(s,3)
s=s//2
self.ksize.append(3)
self.in_channel.append(64)
self.map.append(s)
self.conv3 = Conv2d(128, 256, 2, bias=False)
self.bn3 = nn.BatchNorm2d(256, track_running_stats=False)
s=compute_conv_output_size(s,2)
s=s//2
self.smid=s
self.ksize.append(2)
self.in_channel.append(128)
self.map.append(256*self.smid*self.smid)
self.maxpool=torch.nn.MaxPool2d(2)
self.relu=torch.nn.ReLU()
self.drop1=torch.nn.Dropout(0.2)
self.drop2=torch.nn.Dropout(0.5)
self.fc1 = Linear(256*self.smid*self.smid,2048, bias=False)
self.bn4 = nn.BatchNorm1d(2048, track_running_stats=False)
self.fc2 = Linear(2048,2048, bias=False)
self.bn5 = nn.BatchNorm1d(2048, track_running_stats=False)
self.map.extend([2048])
self.taskcla = taskcla
self.fc3=torch.nn.ModuleList()
for t,n in self.taskcla:
self.fc3.append(torch.nn.Linear(2048,n,bias=False))
def forward(self, x, space=[None, None, None, None, None]):
bsz = deepcopy(x.size(0))
self.act['conv1']=x
x = self.conv1(x, space=space[0])
x = self.maxpool(self.drop1(self.relu(self.bn1(x))))
self.act['conv2']=x
x = self.conv2(x, space=space[1])
x = self.maxpool(self.drop1(self.relu(self.bn2(x))))
self.act['conv3']=x
x = self.conv3(x, space=space[2])
x = self.maxpool(self.drop2(self.relu(self.bn3(x))))
x=x.view(bsz,-1)
self.act['fc1']=x
x = self.fc1(x, space=space[3])
x = self.drop2(self.relu(self.bn4(x)))
self.act['fc2']=x
x = self.fc2(x, space=space[4])
x = self.drop2(self.relu(self.bn5(x)))
y=[]
for t,i in self.taskcla:
y.append(self.fc3[t](x))
return y
def consolidate(self, space = [None, None, None, None, None]):
self.conv1.consolidate(space=space[0])
self.conv2.consolidate(space=space[1])
self.conv3.consolidate(space=space[2])
self.fc1.consolidate(space=space[3])
self.fc2.consolidate(space=space[4])
def get_model(model):
return deepcopy(model.state_dict())
def set_model_(model,state_dict):
model.load_state_dict(deepcopy(state_dict))
return
def adjust_learning_rate(optimizer, epoch, args):
for param_group in optimizer.param_groups:
if (epoch ==1):
param_group['lr']=args.lr
else:
param_group['lr'] /= args.lr_factor
def train(args, model, device, x,y, optimizer,criterion, task_id):
model.train()
r=np.arange(x.size(0))
np.random.shuffle(r)
r=torch.LongTensor(r).to(device)
# Loop batches
for i in range(0,len(r),args.batch_size_train):
if i+args.batch_size_train<=len(r): b=r[i:i+args.batch_size_train]
else: b=r[i:]
data = x[b]
data, target = data.to(device), y[b].to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output[task_id], target)
loss.backward()
optimizer.step()
def train_projected(args,model,device,x,y,optimizer,criterion,feature_mat,task_id, space=[None,None,None,None,None]):
model.train()
r=np.arange(x.size(0))
np.random.shuffle(r)
r=torch.LongTensor(r).to(device)
identical_mat = []
for k, (m,params) in enumerate(model.named_parameters()):
if 'scale' in m:
identical_mat.append(torch.eye(params.size(0)).to(device))
# Loop batches
for i in range(0,len(r),args.batch_size_train):
if i+args.batch_size_train<=len(r): b=r[i:i+args.batch_size_train]
else: b=r[i:]
data = x[b]
data, target = data.to(device), y[b].to(device)
optimizer.zero_grad()
output = model(data, space=space)
loss = criterion(output[task_id], target)
ly = 0
for k, (m,params) in enumerate(model.named_parameters()):
if 'scale' in m:
if space[ly] is not None:
penalty = (params - identical_mat[ly]) ** 2
loss += penalty.sum() * args.weight
ly += 1
loss.backward()
# Gradient Projections
kk = 0
for k, (m,params) in enumerate(model.named_parameters()):
if k<20 and len(params.size())!=1 and 'weight' in m:
sz = params.grad.data.size(0)
params.grad.data = params.grad.data - torch.mm(params.grad.data.view(sz,-1),\
feature_mat[kk]).view(params.size())
kk +=1
elif (k<20 and len(params.size())==1) and task_id !=0 and 'scale' not in m:
params.grad.data.fill_(0)
optimizer.step()
def test(args, model, device, x, y, criterion, task_id, space=[None,None,None,None,None]):
model.eval()
total_loss = 0
total_num = 0
correct = 0
r=np.arange(x.size(0))
np.random.shuffle(r)
r=torch.LongTensor(r).to(device)
with torch.no_grad():
# Loop batches
for i in range(0,len(r),args.batch_size_test):
if i+args.batch_size_test<=len(r): b=r[i:i+args.batch_size_test]
else: b=r[i:]
data = x[b]
data, target = data.to(device), y[b].to(device)
output = model(data, space=space)
loss = criterion(output[task_id], target)
pred = output[task_id].argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
total_loss += loss.data.cpu().numpy().item()*len(b)
total_num += len(b)
acc = 100. * correct / total_num
final_loss = total_loss / total_num
return final_loss, acc
def get_representation_matrix (net, device, criterion, task_id, x, y=None):
# Collect activations by forward pass
r=np.arange(x.size(0))
np.random.shuffle(r)
r=torch.LongTensor(r).to(device)
b=r[0:125] # Take 125 random samples
example_data = x[b].to(device)
example_out = net(example_data)
target = y[b].to(device)
loss = criterion(example_out[task_id], target)
loss.backward()
mat_list = []
for k, (m,params) in enumerate(net.named_parameters()):
if k<20 and len(params.size())!=1 and 'weight' in m:
sz = params.grad.data.size(0)
mat = deepcopy(params.grad.data).view(sz,-1)
mat = mat.cpu().numpy()
mat_list.append(mat.transpose())
net.zero_grad()
logging.info('-'*30)
logging.info('Representation Matrix')
logging.info('-'*30)
for i in range(len(mat_list)):
logging.info ('Layer {} : {}'.format(i+1,mat_list[i].shape))
logging.info('-'*30)
return mat_list
def update_GPM (model, mat_list, threshold, feature_list=[],):
logging.info ('Threshold: ' + str(threshold))
if not feature_list:
# After First Task
for i in range(len(mat_list)):
activation = mat_list[i]
U,S,Vh = np.linalg.svd(activation, full_matrices=False)
sval_total = (S**2).sum()
sval_ratio = (S**2)/sval_total
r = np.sum(np.cumsum(sval_ratio)<threshold[i]) #+1
feature_list.append(U[:,0:r])
else:
for i in range(len(mat_list)):
activation = mat_list[i]
U1,S1,Vh1=np.linalg.svd(activation, full_matrices=False)
sval_total = (S1**2).sum()
act_hat = activation - np.dot(np.dot(feature_list[i],feature_list[i].transpose()),activation)
U,S,Vh = np.linalg.svd(act_hat, full_matrices=False)
sval_hat = (S**2).sum()
sval_ratio = (S**2)/sval_total
accumulated_sval = (sval_total-sval_hat)/sval_total
r = 0
for ii in range (sval_ratio.shape[0]):
if accumulated_sval < threshold[i]:
accumulated_sval += sval_ratio[ii]
r += 1
else:
break
if r == 0:
logging.info ('Skip Updating GPM for layer: {}'.format(i+1))
continue
# update GPM
Ui=np.hstack((feature_list[i],U[:,0:r]))
if Ui.shape[1] > Ui.shape[0] :
feature_list[i]=Ui[:,0:Ui.shape[0]]
else:
feature_list[i]=Ui
logging.info('-'*40)
logging.info('Gradient Constraints Summary')
logging.info('-'*40)
for i in range(len(feature_list)):
logging.info ('Layer {} : {}/{}'.format(i+1,feature_list[i].shape[1], feature_list[i].shape[0]))
logging.info('-'*40)
return feature_list
def update_space(net, x, y, task_id, device, optimizer, criterion, rest_space=None, space=None):
thresholds = [0.97, 0.97, 0.97, 0.99, 0.99]
space_thresholds = [0.95, 0.95, 0.95, 0.9, 0.9]
r=np.arange(x.size(0))
np.random.shuffle(r)
r=torch.LongTensor(r).to(device)
b=r[0:125]
example_data = x[b].to(device)
target = y[b].to(device)
grad_list=[]
for i in range(1):
optimizer.zero_grad()
example_out = net(example_data,space=space)
loss = criterion(example_out[task_id], target)
loss.backward()
k_linear = 0
for k, (m,params) in enumerate(net.named_parameters()):
if 'weight' in m and 'bn' not in m:
if len(params.shape) == 4:
grad = params.grad.data.detach()
gr = grad.view(grad.size(0), -1)
grad_list.append(gr)
else:
if 'fc3' in m and k_linear == task_id:
grad = params.grad.data.detach()
grad_list.append(grad)
k_linear += 1
elif 'fc3' not in m:
grad = params.grad.data.detach()
grad_list.append(grad)
rest = []
up = False
for i in range(len(grad_list)):
frozen_space = deepcopy(rest_space[i])
current_grad = grad_list[i].transpose(0,1)
logging.info (f'Frozen Space Size : {frozen_space.size(0)}, {frozen_space.size(1)}')
U,S,Vh = torch.linalg.svd(current_grad, full_matrices=False)
sval_total = (S**2).sum()
sval_ratio = (S**2)/sval_total
r = 1
while torch.sum(sval_ratio[:r]) < thresholds[i]:
r += 1
U = U[:,0:r]
logging.info (f'Compress Representation Size ({current_grad.size(0)}, {current_grad.size(1)}) to ({U.size(0)}, {U.size(1)})')
threshold = space_thresholds[i]
trusts = []
importance = 0
UU = torch.mm(U, U.transpose(0,1))
while importance < threshold:
representation = torch.mm(frozen_space.transpose(0,1), torch.mm(UU, frozen_space))
try:
Ux,Sx,Vhx = torch.linalg.svd(representation, full_matrices=False)
x = Ux[:, 0:1]
except:
Ux,Sx,Vhx = np.linalg.svd(representation.cpu().numpy(), full_matrices=False)
x = torch.Tensor(Ux[:, 0:1]).to(device)
if torch.sum(x) == 0: break
u = torch.mm(frozen_space, x)
u /= torch.linalg.norm(u)
replace = False
for idx in range(len(x)):
if x[idx] != 0:
if idx > 0 and idx < len(x) - 1:
frozen_space = torch.cat([u, frozen_space[:, :idx], frozen_space[:, idx+1:]], dim=1)
elif idx == 0:
frozen_space = torch.cat([u, frozen_space[:, 1:]], dim=1)
else:
frozen_space = torch.cat([u, frozen_space[:, :idx]], dim=1)
replace = True
break
assert replace == True
q, _ = torch.linalg.qr(frozen_space)
trust = q[:, 0:1]
projection = torch.mm(UU, trust)
score = torch.linalg.norm(projection) / torch.linalg.norm(trust)
if score < threshold: break
frozen_space = q[:, 1:]
trusts.append(trust)
if len(trusts) == 0: common_space = None
else:
common_space = torch.cat(trusts, dim=1)
if space[i] is None:
new_space = common_space
if common_space is None: logging.info ('Keep Relaxing Space as None')
else: logging.info (f'Initiate Relaxing Space as ({new_space.size(0)}, {new_space.size(1)})')
else:
exist_space = space[i]
if common_space is None:
new_space = exist_space
logging.info (f'Keep Relaxing Space as Previous ({new_space.size(0)}, {new_space.size(1)})')
else:
new_space = torch.cat((exist_space, common_space), dim=1)
logging.info (f'Expand Relaxing Space from ({exist_space.size(0)}, {exist_space.size(1)}) to ({new_space.size(0)}, {new_space.size(1)})')
if common_space is not None: up = True
if new_space is not None: space[i] = new_space.detach()
rest.append(frozen_space)
return rest, up, space
def main(args):
tstart=time.time()
## Device Setting
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(args.seed)
np.random.seed(args.seed)
## Load CIFAR100 DATASET
from dataloader import cifar100 as cf100
data,taskcla,inputsize=cf100.get(seed=args.seed, pc_valid=args.pc_valid)
acc_matrix=np.zeros((10,10))
criterion = torch.nn.CrossEntropyLoss()
task_id = 0
task_list = []
for k,ncla in taskcla:
# specify threshold hyperparameter
threshold = np.array([0.97] * 5) + task_id*np.array([0.003] * 5)
logging.info('*'*100)
logging.info('Task {:2d} ({:s})'.format(k,data[k]['name']))
logging.info('*'*100)
xtrain=data[k]['train']['x']
ytrain=data[k]['train']['y']
xvalid=data[k]['valid']['x']
yvalid=data[k]['valid']['y']
xtest =data[k]['test']['x']
ytest =data[k]['test']['y']
task_list.append(k)
lr = args.lr
best_loss=np.inf
logging.info ('-'*40)
logging.info ('Task ID :{} | Learning Rate : {}'.format(task_id, lr))
logging.info ('-'*40)
if task_id==0:
model = AlexNet(taskcla).to(device)
logging.info ('Model parameters ---')
for k_t, (m, param) in enumerate(model.named_parameters()):
logging.info (str(k_t) + '\t' + str(m) + '\t' + str(param.shape))
logging.info ('-'*40)
best_model=get_model(model)
feature_list =[]
optimizer = optim.SGD(model.parameters(), lr=lr)
for epoch in range(1, args.n_epochs+1):
# Train
clock0=time.time()
train(args, model, device, xtrain, ytrain, optimizer, criterion, k)
clock1=time.time()
tr_loss,tr_acc = test(args, model, device, xtrain, ytrain, criterion, k)
logging.info('Epoch {:3d} | Train: loss={:.3f}, acc={:5.1f}% | time={:5.1f}ms |'.format(epoch,\
tr_loss,tr_acc, 1000*(clock1-clock0)))
# Validate
valid_loss,valid_acc = test(args, model, device, xvalid, yvalid, criterion, k)
logging.info(' Valid: loss={:.3f}, acc={:5.1f}% |'.format(valid_loss, valid_acc))
# Adapt lr
if valid_loss<best_loss:
best_loss=valid_loss
best_model=get_model(model)
patience=args.lr_patience
logging.info(' *')
else:
patience-=1
if patience<=0:
lr/=args.lr_factor
logging.info(' lr={:.1e}'.format(lr))
if lr<args.lr_min:
logging.info('\t')
break
patience=args.lr_patience
adjust_learning_rate(optimizer, epoch, args)
logging.info('\t')
set_model_(model,best_model)
# Test
logging.info ('-'*40)
test_loss, test_acc = test(args, model, device, xtest, ytest, criterion, k)
logging.info('Test: loss={:.3f} , acc={:5.1f}%'.format(test_loss,test_acc))
# Memory Update
mat_list = get_representation_matrix (model, device, criterion, k, xtrain, ytrain)
feature_list = update_GPM (model, mat_list, threshold, feature_list)
else:
normal_param = [param for name, param in model.named_parameters() if not 'scale' in name]
scale_param = [param for name, param in model.named_parameters() if 'scale' in name]
optimizer = torch.optim.SGD([{'params': normal_param},{'params': scale_param, 'weight_decay': 0, 'lr':args.lr}],lr=args.lr)
feature_mat = []
# Projection Matrix Precomputation
for i in range(len(model.act)):
Uf=torch.Tensor(np.dot(feature_list[i],feature_list[i].transpose())).to(device)
logging.info('Layer {} - Projection Matrix shape: {}'.format(i+1,Uf.shape))
feature_mat.append(Uf)
space = [None, None, None, None, None]
rest = [torch.Tensor(f).to(device) for f in feature_list]
count = 0
up = True
for epoch in range(1, args.n_epochs+1):
# Train
clock0=time.time()
train_projected(args, model,device,xtrain, ytrain,optimizer,criterion,feature_mat,k, space=space)
clock1=time.time()
tr_loss, tr_acc = test(args, model, device, xtrain, ytrain,criterion,k, space=space)
logging.info('Epoch {:3d} | Train: loss={:.3f}, acc={:5.1f}% | time={:5.1f}ms |'.format(epoch,\
tr_loss, tr_acc, 1000*(clock1-clock0)))
# Validate
valid_loss,valid_acc = test(args, model, device, xvalid, yvalid, criterion,k, space=space)
logging.info(' Valid: loss={:.3f}, acc={:5.1f}% |'.format(valid_loss, valid_acc))
# Adapt lr
if valid_loss<best_loss:
best_loss=valid_loss
best_model=get_model(model)
patience=args.lr_patience
logging.info(' *')
else:
patience-=1
if patience<=0:
lr/=args.lr_factor
logging.info(' lr={:.1e}'.format(lr))
if lr<args.lr_min:
logging.info('\t')
break
patience=args.lr_patience
adjust_learning_rate(optimizer, epoch, args)
if lr <= 5e-4 and up == True and count < 2:
rest, up, space = update_space(model, xtrain, ytrain, task_id, device, optimizer, criterion, rest, space)
if up == True:
lr = args.lr
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
count += 1
logging.info('\t')
# rounds.append(count)
set_model_(model,best_model)
model.consolidate(space=space)
space=[None, None, None, None, None]
for k_t, (m, params) in enumerate(model.named_parameters()):
if 'scale' in m:
mask = torch.eye(params.size(0), params.size(1)).to(device)
params.data = mask
# Test
test_loss, test_acc = test(args, model, device, xtest, ytest, criterion,k, space=space)
logging.info('Test: loss={:.3f} , acc={:5.1f}%'.format(test_loss,test_acc))
# Memory Update
mat_list = get_representation_matrix (model, device, criterion, k, xtrain, ytrain)
feature_list = update_GPM (model, mat_list, threshold, feature_list)
# save accuracy
jj = 0
ids = task_id + 2
if ids > len(task_list): ids = task_id + 1
for ii in np.array(task_list)[0:ids]:
xtest =data[ii]['test']['x']
ytest =data[ii]['test']['y']
space = [None, None, None, None, None]
_, acc_matrix[task_id,jj] = test(args, model, device, xtest, ytest,criterion,ii, space=space)
jj +=1
logging.info('Accuracies =')
for i_a in range(task_id+1):
logging.info('\t')
for j_a in range(acc_matrix.shape[1]):
logging.info('{:5.1f}% '.format(acc_matrix[i_a,j_a]))
logging.info('\t')
# update task id
task_id +=1
logging.info('-'*50)
logging.info ('Task Order : {}'.format(np.array(task_list)))
logging.info ('Final Avg Accuracy: {:5.2f}%'.format(acc_matrix[-1].mean()))
bwt=np.mean((acc_matrix[-1]-np.diag(acc_matrix))[:-1])
logging.info ('Backward transfer: {:5.2f}%'.format(bwt))
omega = np.mean(np.diag(acc_matrix)[1:])
logging.info ('Forward Knowledge Transfer (\Omega_{new}): {:5.2f}%'.format(omega))
logging.info('[Elapsed time = {:.1f} ms]'.format((time.time()-tstart)*1000))
logging.info('-'*50)
def set_logger(filepath):
global logger
logger = logging.getLogger('')
logger.setLevel(logging.INFO)
fh = logging.FileHandler(filepath)
fh.setLevel(logging.INFO)
ch = logging.StreamHandler(sys.stdout)
ch.setLevel(logging.INFO)
_format = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(_format)
ch.setFormatter(_format)
logger.addHandler(fh)
logger.addHandler(ch)
return
if __name__ == "__main__":
# Training parameters
parser = argparse.ArgumentParser(description='CIFAR100-Split with ROGO')
parser.add_argument('--batch_size_train', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--batch_size_test', type=int, default=64, metavar='N',
help='input batch size for testing (default: 64)')
parser.add_argument('--n_epochs', type=int, default=200, metavar='N',
help='number of training epochs/task (default: 200)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--pc_valid',default=0.05,type=float,
help='fraction of training data used for validation')
# Optimizer parameters
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--lr_min', type=float, default=1e-5, metavar='LRM',
help='minimum lr rate (default: 1e-5)')
parser.add_argument('--lr_patience', type=int, default=6, metavar='LRP',
help='hold before decaying lr (default: 6)')
parser.add_argument('--lr_factor', type=int, default=2, metavar='LRF',
help='lr decay factor (default: 2)')
parser.add_argument('--weight', type=float, default=1, metavar='W',
help='weight for regularization (\beta) (default: 1)')
parser.add_argument('--savename', type=str, default='save/CIFAR100_split/',
help='save path')
parser.add_argument('--log_path', type=str, default='save/CIFAR100_split/train.log',
help='log path')
args = parser.parse_args()
if not os.path.exists(args.savename):
os.makedirs(args.savename)
if args.log_path:
log_path = args.log_path
set_logger(log_path)
logging.info('='*100)
logging.info('Arguments =')
for arg in vars(args):
logging.info('\t'+str(arg)+':'+str(getattr(args,arg)))
logging.info('='*100)
main(args)