-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
105 lines (77 loc) · 4.16 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
### This file is modified from : https://github.com/sahagobinda/GPM
# Copyright (c) THUNLP, Tsinghua University. All rights reserved.
# # See LICENSE file in the project root for license information.
import torch
import torch.nn as nn
import torch.nn.functional as F
# Define specifc conv layer
class Conv2d(nn.Conv2d):
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding=0,
stride=1,
dilation=1,
groups=1,
bias=True):
super(Conv2d, self).__init__(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, bias=bias)
size = self.weight.size(1) * self.weight.size(2) * self.weight.size(3)
scale = self.weight.data.new(size, size)
scale.fill_(0.)
scale.fill_diagonal_(1.)
self.scale = nn.Parameter(scale.float(), requires_grad=True)
def forward(self, input, space=None):
if space is not None:
sz = self.weight.grad.data.size(0)
real_scale = self.scale[:space.size(1), :space.size(1)]
norm_project = torch.mm(torch.mm(space, real_scale), space.transpose(1, 0))
proj_weight = torch.mm(self.weight.view(sz,-1),norm_project).view(self.weight.size())
diag_weight = torch.mm(self.weight.view(sz,-1),torch.mm(space, space.transpose(1,0))).view(self.weight.size())
masked_weight = proj_weight + self.weight - diag_weight
else:
masked_weight = self.weight
return F.conv2d(input, masked_weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
def consolidate(self, space=None):
if space is not None:
sz = self.weight.grad.data.size(0)
real_scale = self.scale[:space.size(1), :space.size(1)].float()
norm_project = torch.mm(torch.mm(space, real_scale), space.transpose(1, 0))
proj_weight = torch.mm(self.weight.view(sz,-1),norm_project).view(self.weight.size())
diag_weight = torch.mm(self.weight.view(sz,-1),torch.mm(space, space.transpose(1,0))).view(self.weight.size())
masked_weight = proj_weight + self.weight - diag_weight
else:
masked_weight = self.weight
self.weight.data = masked_weight.data
# Define specific linear layer
class Linear(nn.Linear):
def __init__(self, in_features, out_features, bias=True):
super(Linear, self).__init__(in_features, out_features, bias=bias)
scale = self.weight.data.new(self.weight.size(1), self.weight.size(1))
scale.fill_(0.)
scale.fill_diagonal_(1.)
self.scale = nn.Parameter(scale, requires_grad=True)
def forward(self, input, space=None):
if space is not None:
sz = self.weight.grad.data.size(0)
real_scale = self.scale[:space.size(1), :space.size(1)]
norm_project = torch.mm(torch.mm(space, real_scale), space.transpose(1, 0))
proj_weight = torch.mm(self.weight.view(sz,-1),norm_project).view(self.weight.size())
diag_weight = torch.mm(self.weight.view(sz,-1),torch.mm(space, space.transpose(1,0))).view(self.weight.size())
masked_weight = proj_weight + self.weight - diag_weight
else:
masked_weight = self.weight
return F.linear(input, masked_weight, self.bias)
def consolidate(self, space=None):
if space is not None:
sz = self.weight.grad.data.size(0)
real_scale = self.scale[:space.size(1), :space.size(1)]
norm_project = torch.mm(torch.mm(space, real_scale), space.transpose(1, 0))
proj_weight = torch.mm(self.weight.view(sz,-1),norm_project).view(self.weight.size())
diag_weight = torch.mm(self.weight.view(sz,-1),torch.mm(space, space.transpose(1,0))).view(self.weight.size())
masked_weight = proj_weight + self.weight - diag_weight
else:
masked_weight = self.weight
self.weight.data = masked_weight.data