-
Notifications
You must be signed in to change notification settings - Fork 967
/
Copy pathcli_demo.py
237 lines (209 loc) · 10.8 KB
/
cli_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""
This script demonstrates how to generate a video using the CogVideoX model with the Hugging Face `diffusers` pipeline.
The script supports different types of video generation, including text-to-video (t2v), image-to-video (i2v),
and video-to-video (v2v), depending on the input data and different weight.
- text-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b
- video-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b
- image-to-video: THUDM/CogVideoX-5b-I2V or THUDM/CogVideoX1.5-5b-I2V
Running the Script:
To run the script, use the following command with appropriate arguments:
```bash
$ python cli_demo.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX1.5-5b --generate_type "t2v"
```
You can change `pipe.enable_sequential_cpu_offload()` to `pipe.enable_model_cpu_offload()` to speed up inference, but this will use more GPU memory
Additional options are available to specify the model path, guidance scale, number of inference steps, video generation type, and output paths.
"""
import argparse
import logging
from typing import Literal, Optional
import torch
from diffusers import (
CogVideoXDPMScheduler,
CogVideoXImageToVideoPipeline,
CogVideoXPipeline,
CogVideoXVideoToVideoPipeline,
)
from diffusers.utils import export_to_video, load_image, load_video
logging.basicConfig(level=logging.INFO)
# Recommended resolution for each model (width, height)
RESOLUTION_MAP = {
# cogvideox1.5-*
"cogvideox1.5-5b-i2v": (768, 1360),
"cogvideox1.5-5b": (768, 1360),
# cogvideox-*
"cogvideox-5b-i2v": (480, 720),
"cogvideox-5b": (480, 720),
"cogvideox-2b": (480, 720),
}
def generate_video(
prompt: str,
model_path: str,
lora_path: str = None,
lora_rank: int = 128,
num_frames: int = 81,
width: Optional[int] = None,
height: Optional[int] = None,
output_path: str = "./output.mp4",
image_or_video_path: str = "",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bfloat16,
generate_type: str = Literal["t2v", "i2v", "v2v"], # i2v: image to video, v2v: video to video
seed: int = 42,
fps: int = 16,
):
"""
Generates a video based on the given prompt and saves it to the specified path.
Parameters:
- prompt (str): The description of the video to be generated.
- model_path (str): The path of the pre-trained model to be used.
- lora_path (str): The path of the LoRA weights to be used.
- lora_rank (int): The rank of the LoRA weights.
- output_path (str): The path where the generated video will be saved.
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
- num_frames (int): Number of frames to generate. CogVideoX1.0 generates 49 frames for 6 seconds at 8 fps, while CogVideoX1.5 produces either 81 or 161 frames, corresponding to 5 seconds or 10 seconds at 16 fps.
- width (int): The width of the generated video, applicable only for CogVideoX1.5-5B-I2V
- height (int): The height of the generated video, applicable only for CogVideoX1.5-5B-I2V
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- dtype (torch.dtype): The data type for computation (default is torch.bfloat16).
- generate_type (str): The type of video generation (e.g., 't2v', 'i2v', 'v2v').·
- seed (int): The seed for reproducibility.
- fps (int): The frames per second for the generated video.
"""
# 1. Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16).
# add device_map="balanced" in the from_pretrained function and remove the enable_model_cpu_offload()
# function to use Multi GPUs.
image = None
video = None
model_name = model_path.split("/")[-1].lower()
desired_resolution = RESOLUTION_MAP[model_name]
if width is None or height is None:
height, width = desired_resolution
logging.info(f"\033[1mUsing default resolution {desired_resolution} for {model_name}\033[0m")
elif (height, width) != desired_resolution:
if generate_type == "i2v":
# For i2v models, use user-defined width and height
logging.warning(
f"\033[1;31mThe width({width}) and height({height}) are not recommended for {model_name}. The best resolution is {desired_resolution}.\033[0m"
)
else:
# Otherwise, use the recommended width and height
logging.warning(
f"\033[1;31m{model_name} is not supported for custom resolution. Setting back to default resolution {desired_resolution}.\033[0m"
)
height, width = desired_resolution
if generate_type == "i2v":
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_path, torch_dtype=dtype)
image = load_image(image=image_or_video_path)
elif generate_type == "t2v":
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype)
else:
pipe = CogVideoXVideoToVideoPipeline.from_pretrained(model_path, torch_dtype=dtype)
video = load_video(image_or_video_path)
# If you're using with lora, add this code
if lora_path:
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
pipe.fuse_lora(components=["transformer"], lora_scale=1 / lora_rank)
# 2. Set Scheduler.
# Can be changed to `CogVideoXDPMScheduler` or `CogVideoXDDIMScheduler`.
# We recommend using `CogVideoXDDIMScheduler` for CogVideoX-2B.
# using `CogVideoXDPMScheduler` for CogVideoX-5B / CogVideoX-5B-I2V.
# pipe.scheduler = CogVideoXDDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# 3. Enable CPU offload for the model.
# turn off if you have multiple GPUs or enough GPU memory(such as H100) and it will cost less time in inference
# and enable to("cuda")
# pipe.to("cuda")
# pipe.enable_model_cpu_offload()
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
# 4. Generate the video frames based on the prompt.
# `num_frames` is the Number of frames to generate.
if generate_type == "i2v":
video_generate = pipe(
height=height,
width=width,
prompt=prompt,
image=image,
# The path of the image, the resolution of video will be the same as the image for CogVideoX1.5-5B-I2V, otherwise it will be 720 * 480
num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt
num_inference_steps=num_inference_steps, # Number of inference steps
num_frames=num_frames, # Number of frames to generate
use_dynamic_cfg=True, # This id used for DPM scheduler, for DDIM scheduler, it should be False
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed), # Set the seed for reproducibility
).frames[0]
elif generate_type == "t2v":
video_generate = pipe(
height=height,
width=width,
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
num_inference_steps=num_inference_steps,
num_frames=num_frames,
use_dynamic_cfg=True,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
).frames[0]
else:
video_generate = pipe(
height=height,
width=width,
prompt=prompt,
video=video, # The path of the video to be used as the background of the video
num_videos_per_prompt=num_videos_per_prompt,
num_inference_steps=num_inference_steps,
num_frames=num_frames,
use_dynamic_cfg=True,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed), # Set the seed for reproducibility
).frames[0]
export_to_video(video_generate, output_path, fps=fps)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
parser.add_argument(
"--image_or_video_path",
type=str,
default=None,
help="The path of the image to be used as the background of the video",
)
parser.add_argument(
"--model_path", type=str, default="THUDM/CogVideoX1.5-5B", help="Path of the pre-trained model use"
)
parser.add_argument("--lora_path", type=str, default=None, help="The path of the LoRA weights to be used")
parser.add_argument("--lora_rank", type=int, default=128, help="The rank of the LoRA weights")
parser.add_argument("--output_path", type=str, default="./output.mp4", help="The path save generated video")
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps")
parser.add_argument("--num_frames", type=int, default=81, help="Number of steps for the inference process")
parser.add_argument("--width", type=int, default=None, help="The width of the generated video")
parser.add_argument("--height", type=int, default=None, help="The height of the generated video")
parser.add_argument("--fps", type=int, default=16, help="The frames per second for the generated video")
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
parser.add_argument("--generate_type", type=str, default="t2v", help="The type of video generation")
parser.add_argument("--dtype", type=str, default="bfloat16", help="The data type for computation")
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
args = parser.parse_args()
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
generate_video(
prompt=args.prompt,
model_path=args.model_path,
lora_path=args.lora_path,
lora_rank=args.lora_rank,
output_path=args.output_path,
num_frames=args.num_frames,
width=args.width,
height=args.height,
image_or_video_path=args.image_or_video_path,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
num_videos_per_prompt=args.num_videos_per_prompt,
dtype=dtype,
generate_type=args.generate_type,
seed=args.seed,
fps=args.fps,
)