forked from PAIR-code/lit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickstart_sst_demo.py
59 lines (42 loc) · 1.74 KB
/
quickstart_sst_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Lint as: python3
r"""Quick-start demo for a sentiment analysis model.
This demo fine-tunes a small Transformer (BERT-tiny) on the Stanford Sentiment
Treebank (SST-2), and starts a LIT server.
To run locally:
python -m lit_nlp.examples.quickstart_sst_demo --port=5432
Training should take less than 5 minutes on a single GPU. Once you see the
ASCII-art LIT logo, navigate to localhost:5432 to access the demo UI.
"""
import tempfile
from absl import app
from absl import flags
from absl import logging
from lit_nlp import dev_server
from lit_nlp import server_flags
from lit_nlp.examples.datasets import glue
from lit_nlp.examples.models import glue_models
# NOTE: additional flags defined in server_flags.py
FLAGS = flags.FLAGS
flags.DEFINE_string(
"encoder_name", "google/bert_uncased_L-2_H-128_A-2",
"Encoder name to use for fine-tuning. See https://huggingface.co/models.")
flags.DEFINE_string("model_path", None, "Path to save trained model.")
def run_finetuning(train_path):
"""Fine-tune a transformer model."""
train_data = glue.SST2Data("train")
val_data = glue.SST2Data("validation")
model = glue_models.SST2Model(FLAGS.encoder_name, for_training=True)
model.train(train_data.examples, validation_inputs=val_data.examples)
model.save(train_path)
def main(_):
model_path = FLAGS.model_path or tempfile.mkdtemp()
logging.info("Working directory: %s", model_path)
run_finetuning(model_path)
# Load our trained model.
models = {"sst": glue_models.SST2Model(model_path)}
datasets = {"sst_dev": glue.SST2Data("validation")}
# Start the LIT server. See server_flags.py for server options.
lit_demo = dev_server.Server(models, datasets, **server_flags.get_flags())
lit_demo.serve()
if __name__ == "__main__":
app.run(main)