-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombined_loss.py
29 lines (22 loc) · 916 Bytes
/
combined_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch
import lpips
import torch.nn as nn
from config import Config
c = Config.from_json("final_train_config.json")
class ReconstructionLoss(nn.Module):
def __init__(self, lambda_value=2.0):
super(ReconstructionLoss, self).__init__()
self.mse_loss = nn.MSELoss()
net = getattr(c, "lpips_net", None)
self.lpips_loss = lpips.LPIPS(net=net if net is not None else "alex")
self.lambda_value = lambda_value
def forward(self, predicted_images, target_images):
mse = self.mse_loss(predicted_images, target_images)
lpips_value = self.lpips_loss(predicted_images, target_images)
combined_loss = mse + self.lambda_value * lpips_value
return torch.mean(combined_loss)
if __name__ == "__main__":
x,y = torch.rand(4, 3, 128, 128), torch.rand(4, 3, 128, 128)
loss_fn = ReconstructionLoss()
loss = loss_fn(x,y)
print(loss)