-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.1
157 lines (117 loc) · 3.76 KB
/
test.1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy
import cv2
import cv2
import numpy as np
from math import pi
import matplotlib as mpl
mpl.use('Agg')
import scipy as sp
import matplotlib.pyplot as plt
from Normalisation import *
from poincare_index import *
from direction_field import *
import pandas as pd
from openpyxl.workbook import Workbook
from LSE import *
w1 = 16
I_3 = cv2.imread("107_7.tif");
#Read the image
I_2 = cv2.imread("107_7.tif");
#I = cv2.cvtColor(I_2, cv2.COLOR_BGR2GRAY)
I_2 = cv2.cvtColor(I_2, cv2.COLOR_BGR2GRAY)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
I = cv2.dilate(I_2,kernel,iterations = 1)
G = cv2.GaussianBlur(I,(5,5),0)
#Sobel Operator
Gx = cv2.Sobel(G,cv2.CV_64F,1,0,ksize=3)
Gy = cv2.Sobel(G,cv2.CV_64F,0,1,ksize=3)
J1 = 2*(np.multiply(Gx, Gy))
J2 = np.multiply(Gx, Gx) - np.multiply(Gy, Gy)
J3 = np.multiply(Gx, Gx) + np.multiply(Gy, Gy)
Gradient = np.sqrt(J3)
anisotropy_filter = np.ones((16,16))
sigma_J1 = cv2.filter2D(J1,-1,anisotropy_filter)
sigma_J2 = cv2.filter2D(J2,-1,anisotropy_filter)
sigma_J3 = cv2.filter2D(J3,-1,anisotropy_filter)
anisotropy_filter_0 = np.ones((10,10))
sigma_J3_0 = cv2.filter2D(J3,-1,anisotropy_filter_0)
cv2.imshow('i',sigma_J3)
cv2.waitKey(0)
theta_bar = 0.5 * np.arctan(np.divide(sigma_J1, sigma_J2))
for i,j in np.argwhere(sigma_J2 == 0):
if (sigma_J1[i,j] > 0):
theta_bar[i,j] = 0.25*pi
elif (sigma_J1[i,j] < 0):
theta_bar[i,j] = (-0.25)*pi
else:
theta_bar[i,j] = 0
theta_dash = (pi/2) + theta_bar
gt = 0.10
Grad_max = np.amax(Gradient)
Grad_min = np.amin(Gradient)
Gth = gt * (abs(Grad_max) - abs(Grad_min)) + abs(Grad_min)
## threshold matrix
block_coherence = np.sqrt(np.multiply(sigma_J1, sigma_J1) + np.multiply(sigma_J2, sigma_J2))
block_coherence = np.divide(block_coherence, sigma_J3)
for i,j in np.argwhere(sigma_J3 < Gth*Gth*(w1*w1)):
block_coherence[i,j] = (-1)
a = np.zeros(sigma_J1.shape)
for i,j in np.argwhere(block_coherence > 0):
a[i,j] = 1
for i,j in np.argwhere(block_coherence < 0):
a[i,j] = -1
cv2.imshow('i', block_coherence)
cv2.waitKey(0)
cv2.imshow('i', a)
cv2.waitKey(0)
theta = theta(1)
print('theta shape', theta.shape)
print('a shape', a.shape)
cv2.waitKey(0)
poincare_image = np.zeros(a.shape)
for i,j in np.argwhere(a != -1):
#print('i=', i, 'j=', j)
store = np.zeros([3,3])
if ((i-1 >= 0) and (i+1 <= a.shape[0]-1) and (j-1 >= 0) and (j+1 <= a.shape[1]-1)):
store[0,0] = theta[i-1,j] - theta[i-1, j-1]
store[0,1] = theta[i-1, j+1] - theta[i-1, j]
store[0,2] = theta[i,j+1] - theta[i-1, j+1]
store[1,2] = theta[i+1, j+1] - theta[i, j+1]
store[2,2] = theta[i+1,j] - theta[i+1, j+1]
store[2,1] = theta[i+1, j-1] - theta[i+1, j]
store[2,0] = theta[i, j-1] - theta[i+1, j-1]
store[1,0] = theta[i-1, j-1] - theta[i, j-1]
for x,y in np.argwhere(store > pi/2):
store[x,y] = pi - store[x,y]
#print('1')
for x,y in np.argwhere(store < (-0.5)*pi):
store[x,y] = pi + store[x,y]
poincare_image[i,j] = store.sum()/(2*pi)
f = 0
delta_image = np.zeros(I_2.shape)
# for x,y in np.argwhere(poincare_image == 0.5):
# I_3[x,y] = [0,0,255]
# I_3[x+1, y] = [0,0,255]
# I_3[x, y+1] = [0,0,255]
# I_3[x+1, y+1] = [0,0,255]
print('abcbbcbcbbbbbbbbbbbbbbbbbbbb')
index_1, index_2 = [0,0]
max_gradient = 0
for x,y in np.argwhere(poincare_image == 0.5):
if(sigma_J3_0[x,y] > max_gradient):
index_1,index_2 = x,y
max_gradient = sigma_J3_0[x,y]
# for x,y in np.argwhere(poincare_image == -0.5):
# I_3[x,y] = [0,255,0]
# I_3[x+1, y] = [0,255,0]
# I_3[x, y+1] = [0,255,0]
# I_3[x+1, y+1] = [0,255,0]
I_3[index_1,index_2] = [0,0,255]
I_3[index_1+1, index_2] = [0,0,255]
I_3[index_1, index_2+1] = [0,0,255]
I_3[index_1+1, index_2+1] = [0,0,255]
# cv2.imshow('i',I_3)
# cv2.waitKey(0)
print('index_1 = ', index_1)
print('index_2 = ', index_2)
cv2.imwrite('singularity_found.png', I_3)