-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpairwisetensors.m
148 lines (124 loc) · 4.3 KB
/
pairwisetensors.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
% This function creates a a set of matrices (each member correspond to a
% particular pairwise coupling) for each nuclei for each electronic state.
% The full Hamiltonian (not used) would be the direct product over all
% nuclei and electronic states of the sum over all couplings.
% A cluster Hamiltonian, which is used, is the direct product over all
% nuclei in the cluster of the sum over all couplings in the cluster.
% CHANGES
% Hamiltonian -> zeros(3,3, N+1,N+1)
% Nuclei -> arrays Nuclei_g, Nuclei_Coordinates
% System -> magneticField, ge, muB, muN, mu0, hbar
%{
Nuclei_Coordinates = Nuclei.Coordinates;
Nuclei_g = Nuclei.Nuclear_g;
ge=System.gMatrix;
magneticField = System.magneticField;
muB = System.muB;
muN = System.muN;
mu0 = System.mu0;
hbar = System.hbar;
%}
function [tensors,zeroIndex] = pairwisetensors(...
Nuclei_g, Nuclei_Coordinates,Cluster,Atensor, magneticField, ge, geff,...
muB, muN, mu0, hbar,theory,B1x,B1y,nuRF)
zeroIndex = min(Cluster) - 1;
% Indices = fliplr(Cluster);
Indices = Cluster;
N = size(Cluster,2);
tensors = zeros(3,3, N+1,N+1); % nspins by nspins
% ENUM
useEZ = theory(1);
useNZ = theory(2);
useHF = any(theory(3:4));
useNucDD = any(theory(5:8));
% useRF = abs(B1x)>0 || abs(B1y) >0;
% Electron Zeeman
if useEZ
tensors(3,3,1,1) = constructElectronZeeman(magneticField,geff, muB, hbar);
end
inucleus = 0;
for i_index_nucleus = Indices
% inucleus = i_index_nucleus - zeroIndex;
inucleus = inucleus + 1;
% Nuclear Zeeman
if useNZ
tensors(3,3,1+inucleus,1+inucleus) = constructNuclearZeeman(...
Nuclei_g,i_index_nucleus,magneticField, muN, hbar);
end
% RF (rotatinge fram approximation)
if useNZ
% z
tensors(3,3,1+inucleus,1+inucleus) = constructNuclearZeemanRotatingFrame(...
Nuclei_g,i_index_nucleus,magneticField, muN, hbar,nuRF);
% x
tensors(1,1,1+inucleus,1+inucleus) = constructNuclearZeeman(...
Nuclei_g,i_index_nucleus,B1x, muN, hbar);
% y
tensors(2,2,1+inucleus,1+inucleus) = constructNuclearZeeman(...
Nuclei_g,i_index_nucleus,B1y, muN, hbar);
end
% Hyperfine
if useHF
hf_tensor = reshape( full( Atensor(i_index_nucleus,:))',3,3) ;
if any(hf_tensor~=0)
tensors(:,:,1,1+inucleus ) = hf_tensor;
else
tensors(:,:,1,1+inucleus )= constructHyperfine(...
Nuclei_g,Nuclei_Coordinates, i_index_nucleus,ge, muB, muN, mu0, hbar);
end
end
% Nucleus-Nucleus Coupling
if ~useNucDD, continue; end
jnucleus = 0;
for j_index_nucleus = Indices
% jnucleus = j_index_nucleus - zeroIndex;
jnucleus = jnucleus + 1;
if jnucleus <= inucleus, continue; end
% Dipole Coupling
tensors(:,:,1+inucleus,1+jnucleus) = ...
constructNuclearDipoleCoupling(Nuclei_g,Nuclei_Coordinates,...
i_index_nucleus,j_index_nucleus, muN, mu0, hbar);
end
end
end
function electronZeeman = constructElectronZeeman(magneticField,ge, muB, hbar)
electronZeeman = ge*muB*magneticField; % J.
electronZeeman = electronZeeman/(2*pi*hbar); % J -> Hz.
end
function NuclearZeeman = constructNuclearZeeman(Nuclei_g, i_index_nucleus, ...
magneticField, muN, hbar)
gn = Nuclei_g(i_index_nucleus);
NuclearZeeman = -gn*muN*magneticField; % J.
NuclearZeeman = NuclearZeeman/(2*pi*hbar); % J -> Hz
end
function NuclearZeeman = constructNuclearZeemanRotatingFrame(Nuclei_g, ...
i_index_nucleus, magneticField, muN, hbar,nuRF)
omega_n = Nuclei_g(i_index_nucleus)*muN*magneticField/hbar;
omegaRF = 2*pi*nuRF;
Omega = omega_n - omegaRF;
NuclearZeeman = -Omega; % J.
NuclearZeeman = NuclearZeeman/(2*pi); % rad/s -> Hz
end
function Hyperfine = constructHyperfine(Nuclei_g,Nuclei_Coordinates, ...
i_index_nucleus,ge, muB, muN, mu0, hbar)
gni = Nuclei_g(i_index_nucleus);
r = Nuclei_Coordinates(i_index_nucleus,:)';
n = r/norm(r);
nnt = n*n';
r3 = norm(r)^3;
Hhf = mu0/(4*pi)*ge*muB*gni*muN/r3*(3*nnt - eye(3));
Hyperfine = Hhf/(2*pi*hbar); % Hz.
return
end
function Hdd = constructNuclearDipoleCoupling(Nuclei_g,Nuclei_Coordinates, ...
i_index_nucleus,j_index_nucleus, muN, mu0, hbar)
gni = Nuclei_g(i_index_nucleus);
gnj = Nuclei_g(j_index_nucleus);
r = Nuclei_Coordinates(i_index_nucleus,:)' ...
- Nuclei_Coordinates(j_index_nucleus,:)';
n = r/norm(r);
nnt = n*n';
r3 = norm(r)^3;
Hdd = -mu0/(4*pi)*gni*gnj*muN^2/r3*(3*nnt - eye(3));
Hdd = Hdd/(2*pi*hbar); % Hz.
end