diff --git a/README.md b/README.md index 9f4ff2b..6cc6e15 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,69 @@ -# pyQSARplus -Library of tools for the analysis of QSAR/QSPR datasets and models. +# qsarify -# What is included? ------------------ +qsarify is a library of tools for the analysis of QSAR/QSPR datasets and models. This library is intended to be used to produce models which relate a set of calculated chemical descriptors to a given numeric endpoint. Many great tools will take the geometry or string data of a given chemical and compute **descriptors**, which are numeric measures of the properties of these, but you can generate some of these with another one of my scripts, [Free Descriptors](https://github.com/StephenSzwiec/free_descriptors). -- Data preprocessing: `data_tools` +# Dependencies + +- Python 3 +- [numpy](https://numpy.org/) +- [pandas](https://pandas.pydata.org/) +- [scikit-learn](https://scikit-learn.org) +- [matplotlib](https://matplotlib.org) + + +# Installation + +`pip install qsarify` + +# What is included right now? + +- Data preprocessing tools: `data_tools` - Dimensionality reduction via clustering: `clustering` +- Feature selection: + - Single threaded: `feature_selection_single` + - Multi-threaded: `feature_selection_multi` +- Model Export and Visualization: `model_export` +- Cross Valiidation: `cross_validation` + +# How to use + +The best way to learn how to use this library is to look at the example notebook in the `examples` folder. This notebook will walk you through the workflow of using this library to build a QSAR model. + +# Future Plans + +- Massively parallel feature selection methods: + - CUDA acceleration + - MPI acceleration +- Include Shannon Entropy as a dimensionality reduction metric in clustering +- Embedded kernel methods +- More visualization tools +- More cross validation tools +- Feature selection tools for categorical data + +# Contributing + + +If you would like to contribute to this project, please feel free to fork this repository and submit a pull request. Otherwise, you may also submit an issue. I will try to respond to issues as quickly as possible. + +# License + + +This project is licensed under the GNU GPLv3 license. See the LICENSE file for more details. + +# Citation + +If you use this library in your work, please cite it as follows: + +Szwiec, Stephen. (2023). qsarify: A high performance library for QSAR model development. + +BibTex: +``` +@misc{szwiec2023qsarify, + author = {Szwiec, Stephen}, + title = {qsarify: A high performance library for QSAR model development}, + year = {2023}, + publisher = {GitHub}, + journal = {GitHub repository}, + howpublished = {\url{https://github.com/stephenszwiec/qsarify}}, + } +``` diff --git a/Untitled.ipynb b/Untitled.ipynb deleted file mode 100644 index 4ba45b3..0000000 --- a/Untitled.ipynb +++ /dev/null @@ -1,1780 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "2a56c28f-2cc5-4baa-b30b-4e85453affcb", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# basic toolkit for the workflow\n", - "import pandas as pd\n", - "import data_tools as dt\n", - "import clustering as cl\n", - "import feature_selection_single as fss\n", - "import feature_selection_multi as fsm\n", - "import cross_validation as cv\n", - "import export_model as em" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "70cd653c-efdc-405b-989a-a50d40f5b9a5", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# in this example, the last column is the response variable (log10 of LD50)\n", - "# we use pandas to manipulate the data\n", - "dfx = pd.DataFrame(pd.read_csv('28BenzeneDescriptors.csv')).iloc[:,:-1]\n", - "dfy = pd.DataFrame(pd.read_csv('28BenzeneDescriptors.csv')).iloc[:,-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "9992350f-1431-49d3-9f57-1cef849eb4cc", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
No.AMWSpMvMeMsnBMARRRBNRBF...PCWTeLDIHyAMRMLOGPMLOGP2ALOGPGVWAI-80Infective-80BLTD48
016.5108.2840.6490.9712.00061.00000.000...10.1000.062-0.92126.0582.2555.0852.04700-3.46
126.14310.0450.6260.9691.95260.85710.067...11.3710.057-0.93631.0992.6086.8022.51400-3.80
238.7949.4380.6581.0373.07480.88910.071...2.2090.144-0.63633.3831.7973.2292.00000-3.03
348.06811.1990.6361.0242.93380.80020.118...2.4410.130-0.67238.4242.1504.6232.46700-3.36
458.06811.1990.6361.0242.93380.80020.118...2.3130.123-0.67238.4242.1504.6232.46700-3.36
\n", - "

5 rows × 676 columns

\n", - "
" - ], - "text/plain": [ - " No. AMW Sp Mv Me Ms nBM ARR RBN RBF ... \\\n", - "0 1 6.510 8.284 0.649 0.971 2.000 6 1.000 0 0.000 ... \n", - "1 2 6.143 10.045 0.626 0.969 1.952 6 0.857 1 0.067 ... \n", - "2 3 8.794 9.438 0.658 1.037 3.074 8 0.889 1 0.071 ... \n", - "3 4 8.068 11.199 0.636 1.024 2.933 8 0.800 2 0.118 ... \n", - "4 5 8.068 11.199 0.636 1.024 2.933 8 0.800 2 0.118 ... \n", - "\n", - " PCWTe LDI Hy AMR MLOGP MLOGP2 ALOGP GVWAI-80 Infective-80 \\\n", - "0 10.100 0.062 -0.921 26.058 2.255 5.085 2.047 0 0 \n", - "1 11.371 0.057 -0.936 31.099 2.608 6.802 2.514 0 0 \n", - "2 2.209 0.144 -0.636 33.383 1.797 3.229 2.000 0 0 \n", - "3 2.441 0.130 -0.672 38.424 2.150 4.623 2.467 0 0 \n", - "4 2.313 0.123 -0.672 38.424 2.150 4.623 2.467 0 0 \n", - "\n", - " BLTD48 \n", - "0 -3.46 \n", - "1 -3.80 \n", - "2 -3.03 \n", - "3 -3.36 \n", - "4 -3.36 \n", - "\n", - "[5 rows x 676 columns]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dfx.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "daf17e1a-182a-43c3-9b92-68f76eec6b74", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(28, 676)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dfx.shape " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "bd7cbef0-6a23-4430-a582-d7c6f9970097", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(28, 676)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# we can use various data tools to reshape x \n", - "dfx = dt.rm_constant(dfx)\n", - "dfx = dt.rm_nan(dfx)\n", - "dfx = dt.train_scale(dfx)\n", - "dfx.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "09a250cf-a5c9-465c-ae07-d96f210c413f", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAGWCAYAAAAOmUbIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9f1zX9bn/f9fEyMSwpLBJYUca80jDFoVb7MSSpqfY8nziFKdYYxubrtiJLbY431jxmX7SFVssPEWNJSecOiWjMCUlJWVCSoJKQYhKiIKC+lZIUPDx/eN6vt/kZzs/lvYpt/d1u70y3u/X+/W6ntfzx/V8Xtfjuq5hkoSf/OQnP/nJT3+lNPzTZsBPfvKTn/zkp0+S/IrOT37yk5/89FdNfkXnJz/5yU9++qsmv6Lzk5/85Cc//VWTX9H5yU9+8pOf/qrJr+j85Cc/+clPf9XkV3R+8pOf/OSnv2ryKzo/+clPfvLTXzX5FZ2f/OQnP/npr5r8is5PfvKTn/z0V01+RecnP/nJT376s/TWW2+RmJjIlVdeybBhw3jllVf+299s2LCB66+/ngsvvJBJkyaxaNGiP7ln4cKFhIeHExgYyE033cTbb7997pn/CPkVnZ/85Cc/+enPUm9vL1/84hdZuHDh/+j+PXv2cPvttxMfH09dXR0PPfQQ3/ve9ygvL/fds2zZMn784x/z2GOP8c477/DFL36Rr3/96xw8ePCTagbD/Emd/eQnP/nJT/8dDRs2jJUrV3LnnXf+p/f87Gc/Y9WqVezcudP32T333MPRo0dZs2YNADfddBMxMTHk5+cDcPr0acLCwkhPT+eRRx75RHj3n+j85Cc/+clP54Q2b97M9OnTz/js61//Ops3bwbg5MmT1NbWnnHP8OHDmT59uu+eT4JGfGJP9pOf/OQnP50T6uvr4+TJk+fkWZIYNmzYGZ9deOGFXHjhhWf97I6ODq644oozPrviiis4duwYJ06c4MiRIwwODv7ZexobG8/6/f8Z+RWdn/zkJz99hqmvr4+Qiy6i5xw9b/To0fT0nPm0xx57jMcff/wcveGzR35F5yc/+clPn2E6efIkPcBPgLM9c/UDuT09tLW1MWbMGN/n5+I0BxAaGkpnZ+cZn3V2djJmzBguuugiLrjgAi644II/e09oaOg54eHPkd9H5yc/+clP5wFdBIw6y+si96wxY8accZ0rRTdt2jQqKirO+Gzt2rVMmzYNgJEjR/KlL33pjHtOnz5NRUWF755PgvyKzk9+8pOf/PRnqaenh7q6Ourq6gALH6irq+ODDz4AICsri29961u++2fPns3u3bv56U9/SmNjI//+7//OH/7wBzIyMnz3/PjHP+aFF16gqKiI9957jzlz5tDb20tqauon1g6/6dJPfvKTn84DGs7Zn0z+0t9v3bqV+Ph4398//vGPAbj//vtZtGgRBw4c8Ck9gIkTJ7Jq1SoyMjLIy8tjwoQJ/Pa3v+XrX/+67567776bQ4cO8fOf/5yOjg6io6NZs2bNnwBUziX54+j85Cc/+ekzTMeOHeOSSy7hcSDwLJ/VBzwOeDyeM3x0f+3kN136yU9+8pOf/qrJb7r0k5/85KfzgD4N0+VfC/kVnZ/85Cc/nQfkV3Qfn/5W2+0nP/nJT376GyH/ic5PfvKTn84D8p/oPj75FZ2f/OQnP50H5Fd0H5/+VtvtJz/5yU9++hsh/4nOT37yk5/OAxrG2Z9Mhv33t/xV0nl5ovt/XYb9P6P/rsy8JH7+858zfvx4LrroIqZPn05zc/MZ9xw+fJh7772XMWPGEBwczHe/+90/ySx+LuiJJ54gJiaGoKAgLr/8cu68806amprOuKevr48HHniAyy67jNGjR/O//tf/+pPkqx988AG33347o0aN4vLLLyczM5OBgYFzzu+zzz7Ldddd58vFN23aNFavXv2Z5PXP0fz58xk2bBgPPfTQZ5Lnxx9/nGHDhp1xRUZGfiZ59VJ7ezv33Xcfl112GRdddBFRUVFs3brV9/1nab59EjTsHF1/i3TeKbpPowz7f0b/XZn5X/7yl/zmN7/hueeeo6amhosvvpivf/3r9PX1+e659957aWhoYO3atZSVlfHWW2/x/e9//5zzWllZyQMPPEB1dTVr167l1KlT3HbbbfT29vruycjI4LXXXmP58uVUVlayf/9+/umf/sn3/eDgILfffjsnT57kj3/8I0VFRSxatIif//zn55zfCRMmMH/+fGpra9m6dStf+9rX+OY3v0lDQ8Nnjtf/m7Zs2UJBQQHXXXfdGZ9/1nj++7//ew4cOOC7Nm3a9Jnl9ciRI3zlK18hICCA1atX8+6775Kbm8vYsWN993yW5tsnQReco+tvknSe0Y033qgHHnjA9/fg4KCuvPJKPfHEE58iVxKglStX+v4+ffq0QkND9eSTT/o+O3r0qC688EItWbJEkvTuu+8K0JYtW3z3rF69WsOGDVN7e/snyu/BgwcFqLKy0sdbQECAli9f7rvnvffeE6DNmzdLkl5//XUNHz5cHR0dvnueffZZjRkzRv39/Z8ov5I0duxY/fa3v/1M83r8+HFFRERo7dq1+od/+Af967/+q6TPnnwfe+wxffGLX/yz333WeJWkn/3sZ7r55pv/0+8/6/PtbMjj8QhQLujfz/LKBQHyeDyfdrP+n9J5daL7tMqwfxzas2cPHR0dZ/B6ySWXcNNNN/l43bx5M8HBwdxwww2+e6ZPn87w4cOpqan5RPnzeDwAXHrppQDU1tZy6tSpM/iNjIzkqquuOoPfqKioM5Kvfv3rX+fYsWO+k9YnQYODgyxdupTe3l6mTZv2meb1gQce4Pbbbz+DN/hsyre5uZkrr7ySa665hnvvvdeXnPezyOurr77KDTfcQFJSEpdffjlTp07lhRde8H3/WZ9v54KGn6Prb5HOq3Z3dXX9p2XYOzo6PiWu/jx5+fmveO3o6ODyyy8/4/sRI0Zw6aWXfqLtOX36NA899BBf+cpXmDJlio+XkSNHEhwc/F/y++fa4/3uXNOOHTsYPXo0F154IbNnz2blypVMnjz5M8krwNKlS3nnnXd44okn/uS7zxrPN910E4sWLWLNmjU8++yz7Nmzh7i4OI4fP/6Z4xVg9+7dPPvss0RERFBeXs6cOXP40Y9+RFFR0Rnv/CzOt3NFfkX38cmPuvwbpAceeICdO3ee4ZP5LNLnP/956urq8Hg8rFixgvvvv5/KyspPm60/S21tbfzrv/4ra9euJTDwbHPMf/I0c+ZM3/9fd9113HTTTVx99dX84Q9/4KKLLvovfvnp0OnTp7nhhhv4P//n/wAwdepUdu7cyXPPPcf999//KXPnp886nVcKfty4cZ9KGfaPQ15+/iteQ0ND/wREMzAwwOHDhz+x9jz44IOUlZWxfv16JkyYcAa/J0+e5OjRo/8lv3+uPd7vzjWNHDmSSZMm8aUvfYknnniCL37xi+Tl5X0mea2treXgwYNcf/31jBgxghEjRlBZWclvfvMbRowYwRVXXPGZ4/mjFBwczLXXXsuuXbs+k/IdP348kydPPuOzL3zhCz5z62d1vp1L8p/oPj6dV+3+tMqwfxyaOHEioaGhZ/B67NgxampqfLxOmzaNo0ePUltb67vnzTff5PTp09x0003nlB9JPPjgg6xcuZI333yTiRMnnvH9l770JQICAs7gt6mpiQ8++OAMfnfs2HHGYrF27VrGjBnzJ4vQJ0GnT5+mv7//M8nrrbfeyo4dO3zVmOvq6rjhhhu49957ff//WeP5o9TT00NLSwvjx4//TMr3K1/5yp+Ew7z//vtcffXVwGdvvn0S5Fd0Z0GfNhrmL6WlS5fqwgsv1KJFi/Tuu+/q+9//voKDg89Af/2/ouPHj2vbtm3atm2bAP3qV7/Stm3b1NraKkmaP3++goODVVpaqu3bt+ub3/ymJk6cqBMnTvieMWPGDE2dOlU1NTXatGmTIiIilJycfM55nTNnji655BJt2LBBBw4c8F0ffvih757Zs2frqquu0ptvvqmtW7dq2rRpmjZtmu/7gYEBTZkyRbfddpvq6uq0Zs0ahYSEKCsr65zz+8gjj6iyslJ79uzR9u3b9cgjj2jYsGF64403PnO8/mf0UdTlZ43nn/zkJ9qwYYP27NmjqqoqTZ8+XePGjdPBgwc/c7xK0ttvv60RI0Zo3rx5am5u1uLFizVq1CgVFxf77vkszbdzSV7U5ULQ787yWvg3iro87xSdJD3zzDO66qqrNHLkSN14442qrq7+VPhYv369cAPno9f9998vySDP2dnZuuKKK3ThhRfq1ltvVVNT0xnP6O7uVnJyskaPHq0xY8YoNTVVx48fP+e8/jk+Ab344ou+e06cOKEf/vCHGjt2rEaNGqVZs2bpwIEDZzxn7969mjlzpi666CKNGzdOP/nJT3Tq1Klzzu93vvMdXX311Ro5cqRCQkJ06623+pTcZ43X/4z+b0X3WeL57rvv1vjx4zVy5Eh97nOf0913361du3Z9Jnn10muvvaYpU6bowgsvVGRkpJ5//vkzvv8szbdzSV5F9yxo0Vlez/6NKrphkvTJnxv95Cc/+clPH4eOHTvGJZdcQgFwtjChE8APsPCiMWPGnD1z5wn9zZps/eQnP/nJT38b5A8v8JOf/OSn84DORa7Kv9Vcl35F5yc/+clP5wEN5+xzVf6tmvD+VtvtJz/5yU9++hsh/4nOT37yk5/OA/JXGP/45Fd0fvKTn/x0HpBf0X188is6P/nJT346D8iv6D4+fart/riVwvv7+3n88cfp7+//hDk8N+Tn95MlP7+fLPn59dP5Tp9awPiyZcv41re+xXPPPcdNN93E008/zfLly2lqavqTUhr/N3kDKM+XoEc/v58s+fn9ZMnP76dL3vYUA6PO8lkfAvfhDxj/f0a/+tWvSEtLIzU1lcmTJ/Pcc88xatQofve7331aLPnJT37y02eW/EmdPz59Ku0+nyqF+8lPfvKTn85v+lTAKP9VpfDGxsY/ub+/v/8Me7u3TpbH4/lE+TxXdOzYsTP+/ayTn99Plvz8frL0WeFXEsePH+fKK69k+PCzP1P4wSgfn84L1OUTTzxBTk7On3x+1VVXfQrcfHwKCwv7tFn4i8jP7ydLfn4/Wfqs8NvW1nZGkeOPS/4UYB+fPhUF/5dWCs/KysLj8fgub1XhthUreAT43Oc8PP64h18BhUA3UAPAuzwNLAdWAC8Dnvvv5wX3WaW779AhD2+4761s4x+BLDyXXQa8636dRTuwDPh3oA2AJ4iI8LAFgCY8o0fjufBCPPHxLAcWA54nn2SXe1cr4JkxA8/rr+OJjyc728P993vw7NlDRIQHz9NPcwCAGvLzPXh27uSppzx4GhuBl6kCPD/4AZ6nn8bz0kt42tq45hoPuwDPgQP2rBtu8LVni+O80f0O9rDdK4f4eH74Qw/wR6ZN8+D56U/xNDZSBbwEvOFa3uja+ipQV+fB8+STeK65Bs8ll+C56irKgM2AJyoKzx130ArsAjYCnueew7NkCZ7rr6cQaAfKgFeAI0c8rAMgDfhXKsCe+eij7ARr31VX4YmIADLx1NayBThwwLUX7L4f/MDe/eSTeHbuZA/gmTyZTtd+z6FDbHdt8Vx1FQcOeHgHOAS+9sISYCuwFU9lJS8A8Ac8M2Zw990ePJMnUwfAU3QC06d7qAE8997Lyy97+NGPPECb8eL654UXPHjmzaMb8Eyfjqeqirg4D54RI3jHte/OOz3AfqATaGIzsGCBB8/o0UA9rcB113nYA0A+sJp58zwsceMY9jNjhgdPfDxvvOHhuuvs/z2AZ9cu66drrqGqyoOnthbPyy/j+fGP8Rw5gmfaNDz338+rr3psPB44wKFDHuqA3e5tNa6/6uo8eHbtogZ4380Bz4IF1kc7d+KpqcFz99147ryT+HjXP08+SRvgmTcPT2WlyeCNN/BkZeG56iqTf3w8bW029g4d8lDrxponJwfPq6/a79raaGz04FmyhJ07PTYv3niDBQs8BAd7fGPs9dc9tLpxtduNE09cnI2/uDg8bW14pk+3OTRjhn1fV2dymTePWsBz/fV4KiooA2A/niVL2A3s3Onh0CEPnueft37euZNGd08VUOTu2QjUAffe62HePA9tX/wiAEFBQfjpU6ZPqz7QjTfeqAcffND39+DgoD73uc/piSee+G9/663PBPsVFiY9BsrJkWJiJGjUjBkSbFJpqQTbBYWCUsFvBB5Bg+CEYL+g011lGj9egnVaBqoHwRNKT5eqqiRVVgqeU0CABHWCRikgQCosFHRJ4J5z2D37ecFLmj1bgqWCtxUUJMETysiQ2tslLVum9nbjeQ8oO1tauFBScbFqayXYLIWESJGRUlaWCgulhgapBQTlglqpqUlNTZJKSoyfigpBj2tzmwICpGHDJFVUSDExgkWC5xUTI2lwUAoLk8cjzZsnac4cweuCJwQPuDb8xv29Tr29klpaBA2aPVuKijJ5jR8vpaZK6enS/PlybW5WYqKUnCzV11t/wOtauFCCciUlmVyUlaUaEHQpPl6CpwRvS6CFC6WICKkX1NRk948dK0GpUlNNNPCyVFMj5ecLulRdLRUWSklJxg90KivLxJORYeMhN9fumTpVys2VBFJ4uFRVpdpaa1c/qLBQUliYSkqk8nJJKSkCj7KzZbJISRH0SFVVKi+XYEALF0pLl0qzZhkPys1VQICUlSWlpUnwlsLCJMXHKzHR9XdOjn3Z2upk93spPNzGVWqq0tJk/LW2anBQys6WqqutS62NJwQnpc5OZWfbPOjulhvPNu5UWio4qfp6+112tvESFWWygZNSUZFyc+XmRbOgwXitr5daWhQUJDenXldlpTR2rH1VVWV9npYmqdPkDXtdn9dp2jQbX9Al2O3GoMf19YBgk3tvl2C9cnKMx+Rk7+9sfsbFSZmZ1ne1tSbbefOkxEQ5+Z9UZqY9JzdXysuzqRMYKDcvf+PWiEc1dao0ceJQv8ybJ02bZrKLjLSxAc8rMND60/uMUnDPanbjtkezZ0uLF1tfLFxoz4GTio/3nJPab971bgXo9bO8VvyN1qP71BTd2VQKH1J0Hs2fb+vEYyB1dtqi19oqVVZKZWWmUGpqTBk0NNjN3tnZ0iJ1d2vWLLtHVVVSYaHKy00HqLJS6uyUxyNpcFANDbIVvaVFys9XR4e0FkzBJCdL7e3qBLW0yN7X3y+Fh2sQpNhY7QEpLEzdoIYGKSVFUmenmkAlJbLnREVJycnq75eOgKZNM94KC21hWbjQmqCCAjU0eBeCk9LgoJpACg3V0qWyFam01Nq8bJm6u60Nqq+XentVXS2pvd3a2dtrK3Nnp616ra1SS4vx1N5uq0hLi14AdYO2gRQRYe0qKpIiI7UFTDbBweoHKSZGL4FeBKmgwARSUGDvaGoyXpygq6qcrCoq7N+ZMwVvqaND2gjq6DA+amutSQoPlyIjdQLUCbYyRUaa7HJypOhok3VoqHJyrBs1OKhaUH+/6+usLB0HKT9fixdL4FEbKCzMmnEEBD93G55Ngt1SYKDi4iTNnGltKSlRbq7k8dhCl5DgXXDLNHasNUdVVaqvl1Rfr6YmyQMm69hYFRZaf64E9YJSU23xVU6O4uNNWU2cKCkuzvjOz9cJcMptr5SZqYQE2whUghQXJwUHy+OxIZqeLikpSQ2gigpT9Cork8dj4lJ0tBYvlm/MtbYaP51uLvX3y5hoaXEbjROm4AsLbdzn5mq12xS+BqqvtzGqtDRFRJhSqqoytmC5Zsyw76uqpBOg1lbbrFRUSIqNVVSUKSeodZu1w1JAgDIzpVWrjLeYGKnIyTAzU6p0c6m62lg1hblXmjtX0KCpU00OMTFuPqenS+3tGj/eFJKSkmwcpKQoMdEUX3q6bCdQViaFhSkiwhT5/Pk2dGNirF88Hps6qalOTvX1Skx0m6CGBnnq6s6poisBrTnLq8Sv6P7f08etFO7t+OZmj54FG8SdnXoM9CRoI6gcFBcnrQetB631LgaxscoD5YJNmKAgrVolLQf92jcQtgseVb87NcI6wc91xP2mxC3kUKamJmkz2Ilo7lxb5Csrh96XkaEqx0Ml2NYwJ0eaO1cFBbYIKCPDdt3JyeoFwQmbbDk5diqorRWU6xTYIl1eLs2dq44O23lq5kzV2uFOnaDqalMQy0HPgFaDW7gPa7OTjcLC1NFhu3potgU4OVltoFJQi7unF7TH2+aiIikwUDucjGvcIlcFOgAadPeVe9saFSXFxOg9rLJxCygPVAsaHPSeTP9J8COtB51wsvN+r+xs1YKgUA0N0gHXtnLXpsVOyXWCFB8vlZVplXvPKtBLbhFcDdrs3tvRIS1xfysnR0UgyHGnizatWmWbl2HDTO4NDZKWLZOCguykGRuroCCpFqToaM2fbycK2GSrdEGBWlvtM82dq26vHJYt09SpUpVXltnZioy0U/v8+Xb6es+N2QMgWOjks04VIPipYJ3U3a1VILW3OwV8whR/Q4NmzJAUGKh67DTs2zg1NUlz56qlRVJBgfLyZJowNVWZmbLNTUODlJ2ttU62BU6GC0Hl5XaqUUSEBFqGKWb199uqn5hofdDSInhbG0HyeOye3FzbVHk8pjibmqSwMFOUM2cqO1tScbFpjdhYeUCVlbZxyM2VVF+vggJJVVW+E76Sk5WS4k7zUVFqanKn59hYe15iom1OPR77Nz3dnpGUZBuvOXM0b55rU0ODlJZma0FTk0pLpVawjU15uVaBZsywoS+PR7BbDQ3SKRC06ZQb6zk50g43vzMy7P73z5FS8Su6s6dPFYTz4IMP0traSn9/PzU1Ndx0001/0e8vr1hCMLBlSxPs3ctooAc4DOwDHngATgNd7u8OYKC6mmNY4ORBgFOn+MfRb/EBMIB5TMxH18kmIDV1POPH3wp8lbcx9M4AwPHjwMX09MBIL0ODg/bv8ePs9j6/p4cPgD53y9t9fdDVBeHhTJgA4eHAb3/L8eN7YMQIRkVEEBgYyOc+B+Tns3Ur1Jy6Hvg8I8LCIDCQV/tug7lzuWLZb5gwAZgyheZmKC6Gy2NiuKn3Tfa79/cBR/EGml7A+8Be4HBbG1cM7gcGgTH0AISHcwz4APPT7GtroxF4x8mOCRMgJob9mFy9chwNBLrPxgCXeuVx6hQcP85Id+8u9/0xYPjO7RwF4PNAF8e8MnrqKQ5jbWHKFE46vo8fN//QTRdtZ7d712mgo7GRyyMj4Y47oLSUca6PRgLjgMk7/8CA+/9RwBXLfsMorzzWrXO8nnK/uIi+PmuLdAz27WPNGiA0FOuQQGhpYdIkiAZIT+dnc44xbhyMHfsVePFFGDeOceNg9mygspJLZ87k4I4dsHUrDz1ksj8J8MgjPP44TJwYC8DAAFyF/a4OgF52A9D1EUf652HnTpN16JXAlaSlBUJ7OyxdasMvKIiDQEcH7D51ipM7dsDy5RAQwDVH34Fx4+xRo0fD6tV873vu5cXF8JF+7XPjpA84cgT27gWamyE6mmNe+e3bB4GBMDBgqLbwcGCcyfSpp9gJ8Mwz3DT+A+joYOQLCyE/n51tbTYnV6/moYeA/Hx71t69NDpxBwdDbCzQ1cX3p++GRx7h29+Ge+6xG/r6MEle8JHCNQEBXHwxsGEDY/oOwsAAY3b+Edas4fv3HOPY8uUAfPjss3z725CU5ATV12c8jxhBeLiNn4SEifDoo/QBX/gCfOuuD2HRImAdkxtfZhcAWxgOhAKTJkE4QFQU8+fDt6a84/zt544+rTi6vySD1S233MKwYcP+5Lr99tt993z729/+k+9nzJjxMTj7n9P5jTb1eLgLmDHj8xAaSixwPbYwXwnc3fs7vpaQwD8CXwPuAEYEBXEzNigDATo7oaODcGyhmQTAN4DvEAr84Afw1FMQGXkr44C7gH8OC+N0w3vk5NzC9bzD9YmJ/Fvsm7x+w88ZWVjIq4O381V3LzffzM3AjLAwvhoQYJNhyhROJ9/LP075gI4OGDh+nMDAifD5z8OKFTz+OLS0AIGBjB4NHg9kZl4Nv/0tx8KvY+tWGHAK8+mn4fT8X9LUZAsE99wDAwN8Dbgcm4RTMKjF0qVjmAT8I6b4yc9n6tRbgLc4DfDb3zI5KYl/BKaHhTEhLY3rw8K4Cviq45vAQCIxxTEOiE1I4LrkZIJnzWKXk98NISF8NTYW7rsPZs5kHzDd9cnlwC2xsRAYyPUpKU5KD/E1IDg2Fu680/4/GH6175+5Fpg27X7q6+GrQUFw9CiRmFqaAoRGRcG0abaABwbizakzGbgRoKeHD11/RwYGwvHjQ4ru+HGuBeB24Fagh54eU2KpqWMgOJhJkzCl8IUvkJgYBVOmsG3bAYaXlJhy3biRKVPgllvci0eMYNeuj/x9zz22EdqwgW/Fvs9Vju83q0dxyy1w112QmGiL+qjoaKZM8W5KLsZweqe4HoBbiIiYADt2cC1gETad9p758yE4mOBgYPZs9gO/+EU3e4GR+fkQEQH5+fyx73r2x/4TTz8N//zg5TBvHnv3wsk7/xnCw+n4xS/oAGLdXAl2V0MDLFwI5OXB4sU2FqKi+GPHNSabnh4uDQ/n3x4dDlzF5OBgmDCBS4HTe/dyLPgqPpxwrc210aO51I2DMa6fGT+ew6GTISuLYKC6GnbtsoubbzY5njrl06vceisdHQBXwBe+wNKl9htWrKCpCZgxg+0dl1PTfKltzu64g9OjxzAmNJRJwKiICI4ehZ074dgNX4O77uIa4PfV17B6NVyZnm46OzSUSBwfgYEwfToQAQcOuA3S5QzPzeXa4GCqq2F0Sgrcdx8jN70JmzdzgnNLn4aiW7ZsGT/+8Y957LHHeOedd/jiF7/I17/+dQ4ePPhn73/55Zc5cOCA79q5cycXXHABSUlJZ9w3Y8aMM+5bsmTJX8jZX0bnt6Jbu5b3gTVrqmDvXj7ETm+xQDXAlCm8u3Ytb7nPXwZWHD/uO+UA8OCD8MorNGIL9zsA/BKooA64aepJ+vqgv9+Qe9uBrrY2hn9lGlu3wvujr+fD117jjYGv8Y/7nodHHuEbHc9TDbwOnLznW7wF7G5rY+epU7wFcM89DN/wJv9edhV33GHowb6+1RAWBosWMX48REbCzrY2dux4h8BAePppoK6OMdVv8NxzbtdfV0d+PgzvOcb06bBuHTBiBDQ28nu8p1NT6F+OiKCgwN71DqYAefBBtm07RWTkXUyIiIAXX2Tn8uW8Baxra+PgCy+wqa2NrdgZlxEj4J57aMR2+0eB7WvXwooVsHMnkbNm8SFw8tAh3qmuNm29dy83YKe51zEF1FhdDUePsvellxyHZYwODIS0NA5/97scw9r74+nbOQhs3ryBe+6Bw8ePw4YNdGCnogHg9I4dcOed7L75Wxx85hlOAlclJdGHOyE+/jiRwIjkZAD6Hn2U0cCkxER219U5xbgR2AFOtewHNm0CBgZsAQW49VY7Rezcyfz542FggNe3Xg5FRYAptr66OoiMZNIkGNX1AafXroU777STTWgodHXxATbpNm2CkBBbh7u63IkJ63dbQsbyLgAT3OnhXZqbT0FAACddV0RGxvJ3f4edSl54waf0hgPDhl1mk7upCV55BYAvj3ibK7u2A/Dtb9v4uW3SbkZ27YeHHyY0JobJ2Fw55q5A4Mknoa3tGDzxBDz0kPF1wQV8uetVa0BjI+zdyze/CXCQjqNHYelSurA5M6bjfUat+A/r1OJiGl3fvAMMX/cG769caSw+/DADwLfuOcns2fCtWz7g9XUj4ZVXOFhdTXg4REdbm2wj0QxlZb5DKg89RGgofLh8OevWwU2dr8JDD8GuXQwve5V1HR2MBrY3NzN5xPtc1/gHVq/GTpTYviU8HAaeeYY77oDdr71GH/isKzYofg9FRe7UvQR+8QsYHOTxx4G+PpuEmzbBb3/LXwP9pRmsLr30UkJDQ33X2rVrGTVq1J8ougsvvPCM+8aOHfvJNuTTtp1+HPLarD2f+5ygzQAKZYbKWrpUBsuqqdFjINir+fPN5l9YKCk7W7m5DrVVUyOoM79aS4s9x+Mx4MbcuVJamlaDVuIAGJmZDn3VI/DYZ6mpCgmRBp1fx7ks1NBgTup588wdEhPjUGlz5mjxYgcGiIoyUENwsMrLvUCGUvO5VFRIoaEqLDSQQxsoKMiLLH3d/C8hIdoDgmZNnep15A9IMTE+IERpqQxQUlhoz8zPN6BMcrL5qVpaDCCSmSnl5Sk+3vioqDDgR3W1yaK318AA8+bJHO+dnVJLi0M+dmnaNHPZLF0qzZhheIvCQnP/DA46f0tRkTIznV+yrExTp5rclJqq+fNNFMrJUVaWF/V2WFVVUrvzk9TWypwxnZ1Sb6/5oTo7BQMKCLA2FRTYe3NyzG3XC9LgoLKyrIlHnJ9v3jxJiYmaPdt48QJlurudfy0/X+rt1eLFQyhKhYWZL6m2VvCcoNF8mfX15l9MTjbgyeCgjamsLMFyQzhkZJhfr7ZW8+cb+tMDascAMaqv19ixTh5z55ovtqFBvb0GgtCyZdb2rCwlJ5tcVVSkXrBxFR8vFRebjyorS9AlzZxpPrisLBtEra0aP95kGxJiAA+lpio52ck1KEgaHNTixQ6oUVGh9nZrO3Q5v9h+H55r/nwH2uru1uLF5mdUcbHJNjNTWrDAEK3t7fauwEBDYCUk2A9jYqToaCk5WYWFBvhQXp4KCtxYGBw0f2JEhPWj66f58639/f02z4qKDAAybZrx1d9vYzgtzcaT1w+nnBwD36Sn21VWptxcE8/8+a6Pe3sVF2eoW0VHq77egZlSUqSqKmVnG5BGpaXKzjaRhYXJoYkHNH68+ezrQZ4f//ic+uheA715ltdrzkfX1tYmj8fju/r6+v7kvf39/brgggu0cuXKMz7/1re+pW984xv/I96nTJmitLS0Mz67//77dckllygkJETXXnutZs+era6uro8tn/8Jnd+K7umnVYCBR9rbDXhSAVJCghqcknvMOc/X4hCAERFa74AJh9x3XgBEG2gLCH4vmKsjboE1OPF6dTpnbiE4mPETCgmxgQ1vaQcGhDjk7lvonPG1zsG/BwxQUlgoxcQoIsI5ufPzFRgoKTdX9eCNEpCys5WSIgcaedmADaGhpojnzHGhDQ028fLyzCGfni5VVGgJhpD0giY8HvmADhUYGAIOa+JEt6j09ysrS1qMgTiWYKCSclArBjzxolpPYaAexcToGQyYooAAW6AdGnO9U2DeBabULer97vlqbdWLIAv7eEgHwDRMQIB2gKFlAwOlkBDBXdKcOebsLy9XKwbwOARScLAtqpWVtqhFRUmpqRp07VdJie0qEhLs3+JiW+VnzrT/B8FmQZsSEiR1drr+rJNycgypmJEhhYYa4CQoSC0tpjBVWip5PFq82EC3Sk42hVRSYiCWuXNNAcXESC0tysmRjjt5qr1dpaWmX2JibLFUQIAqKmwhhcM6BIqP9yJAN2nYMGtmM0jFxcrKcn3nlG1GhuxBsbHWtlmzTAZVVbZhSUuzdpeVmZwCAgwckpMj5eebgoqMVBsGZDrg+szjkVRZqRrH+0ocMMkLdCkrs+fGxBgCMThYSkqycZKePtQveXnW4MBAUyRBQQbBjIqSamtVhQNrJSaazDMz5dsBZmRIVVWmWPPypMFBA6FlZEgFBaquNhCJampsLLW22rOyskyDFRToOAai6Xf3KStrSBZBQVJoqFRRoXqwzUVcnLWhttb6NS1N0CyVlqobCycqBUM7z5mjI6DjoFWrTI97fvCDc6roVoE2nOW1yim6//t67LHH/uS97e3tAvTHP/7xjM8zMzN14403/rd819TUCFBNTc0Zny9ZskSlpaXavn27Vq5cqS984QuKiYnRwMDAWcnpv6Lz23S5e7czNm3hyn3mID0MfLh2LR8A8+dfzWTMfHLSezU3cxQDVzTiQAXV1ex2vzVz336gl0bMxDNjxljgevZijupLMX8exHDPPWbigasYjgE5jmIgjVHgM7UNx8w12wHKymD2bB5+2FlDcnLo6xuE557jupAQ7rrLfT5/PuvWQW0twNVcGhMDaWnMnw+nn30WqqtJSppMYHY2fPvbDAxgPpOdOzkJzuQF++vqGLPhVTZuHGS7azuvvUZJyVj27Gk1P9Sjj/Lgg9a2HsdrIOYL+wAzVdLYCD09vA9QW8vJLVu4FgOjEBwMBQWcbm7msGsvW7cayGDnTh/I5UP3XF56Ccudbv89CtDXR9epU+zFWX6Sk+k6dAiIh9BQu2fFChqBkzt2sB/YffSotXncOAODXHwxbN7MYdcONmwwvidMMFPqsmXm4Nq3D8rLnQn7FHCM4GA4Fng5wWBchoZy4gTQ0wMBAYSEfIWe48dpbITgiAizo61YwdatzpW0Z4/dO24cl12G+cbuvNP3vrvuMtPxQeDdo1cyfbqZy770JddR06cTHIwzWe7hNLB5s9e/cJrp081NGgzQ20tXF8yY4WT33HPcfTcwZQoD1dUwaxasXGlj85VXCAvDTJxf+QpERcHNN9Nx6pQNtOBgqKrinnvgZGOjz+Td6Pps3TqoufCrTAKuiomxcdXRATt2QF2dXZs2wbhxdHVhpsuODnvO8uXWP7Gxdl9zMx/09bEb2Hv8OHR0GGCmp4dA4P2+PmtkeLj12b599ruyMjhyhOFHD9u42rmTffvcmOzro7fXmaoPHTJgzIgRhjZpbDRnnGtXIwZqoqPD+qW7m5M7dtBx/LjJ5cQJTmI/Hdi40czOo0fbc/btA9bDhg3OvFxFLM7gnZ/PaGB0QAD/eMNBhq/4Ayxdyrmkc+mja2trOyMJR1ZW1jnlFaCwsJCoqChuvPHGMz6/5557+MY3vkFUVBR33nknZWVlbNmyhQ0bNpxzHrx0fiu6V15xDRjH+8E3MoAtbl2YszsszBbuG4G3MR/cyIwMn+LxocdWriQQm9Rm7o8EjnAYm29xcRASMobD7vvDwHUA7Ka62p4/duzVTI6J4ZaYGCalp3MUQ7AxYgSXu/d4QRSMGwf33MP37/uQW2/FVitOw/e+BzffzJIl73DHHUBsLA8/bPMlJOR6Dm/ZAp//PJddBsPDwmDLFnPOz5/P65vGsHLlMXOYv/IKk7CJ753cVFczduwFfOjaTUMDXqDTPfcAS5cybpwpcC96soMh1OYYYHvwV2H0aPPv/d3fcRqT7wSwlT48nOFhYYwLDzf53Hmn8bNlC0dd+3fhUKvt7U7FXQBcwB+BXWvXcqnrm+nT7ZnjQkOBCbx7189NAYwezUlgZECAD+lJbKwtbDk50NvLQGMj4wIDja99+9gKHH3xRbsvOJiOU6fo2rED7rvPKboeIILlywcZE3jS8dUEL77I4sXApEmcbmvj0CFTHMXFbmDs2wcDA+zdC5ddBl3V1faODRu4ovVtU7KBgRxrbrb3dtim4EPsq1Fb3yI8HBYvhra2Xti1i+sHvIi2CewD+voGTV7sY+9euLTnA1MgsbGsWAFXBR+zjcaMGYYivOUWW4RHjKDD9R2TJtkmaMMGSEiwx/f12UagsdEcg5GRXDPhJLvcWO1wY+cg8E/Tj3FT1Ic2jqZMYTKYz7GqypRkVpbBRR95hEmTIDQmhr6NG3kbzBH5yis+dOZAXR3vYnI4CLB1KyODg2HjRsLd+CA83HYAN9xgDsx160yGJSWGDFm0iG88eh1HjmC+sxtuYGAAro2OhpkzOYyNZ265BSIj2d/cDLt2caWT7CgwJT0wAHV1jCwpsXkfHQ2Dg0xwYhkREmL3DgxATw+nV68GroDGRoei/jyX4lC0wIi4OJtMGzZARwc9n+FcvGPGjDnjuvDCC//knr80g9VHqbe3l6VLl/Ld7373v+XlmmuuYdy4cezateu/vffj0vmt6K6+2jWglWsH3mUkNojHYbvivj5DF+7DFNN2YP+vf80EbLENdN8xfjxdwLW4kwvrAFtgwsNt43f0qA3oY9jivgmASKZMcae4o3B4yxb2btnCyWee8YU18N3v0ogtHHXe599xB2zdyo8eGUV3Nxx96SWgFk6d4vTKlURFXU9zM+zduJGf/GSQv/97OHSoikvDw6GmhmXLYH9bG/T1GVjinnv40pcgImKM7V5Hj2bTR9oYC3DXXXhzaAcDTJ9uABcm8MgjwEMPsWKFgU4+xBa5kViYwTFMFVw3bj+MHs0uoKexkcNOpvvAdty33GI75fZ2A/Vs2ABr1kBMDCOADa4fujCBNQKmQo8wHZiUns4mx3NZGQZo6OgAapm89T9sgW1sNAj8qVOcxg3g4GA+CLyWgfvvh6NHGZGayuG+PlPo773HZCA4Lc0QH8uXMwYYl5wMDz9sKFh6gbdJSrqAd3eN5EMAJsEdd5jCDQ1leHIy8A0uB379a/fOCV+G6mpuuAGCgtzZtKMD/u7vTAFs3QpTphgfO3bwtVtO0+XG6IAbXD09cO+9mLTDw2HKFLeIHnB89DqLgSFw6ekxAM3o0cyeDR+OGGPKvqyM++4DfvYzhgOHe0YyCtvwcegQV4WeNCXsPd1+6Us2DiZMMF6rq/mgYyTXuv6f4Mb5lcC/F4/hzepR9qziYlO0e/eauaOnBx5/3JRZYyMbNsDJLVsIDA8nHDt5c9999t4dOxgRFMQoN55OAwQGsvvoUY6l/3/sxUH09+6155WV2W+9YSYPPminvSeeoLgY+voOmoIdPZrqarNc0NHBaWD79B/bjqSxkSuDgiA0lHdcmw4CjB8PPT2cnP8rs4aALRg33ECHdQ0fHDoEQOdlkyEwkOGxDubW1eU2SCvYj5tPZWUWcrR2LQBUV5vl4hzSsHN0/U9p5MiRfOlLX6KiosL32enTp6moqGDatGn/5W+XL19Of38/991333/7nn379tHd3c348eP/Au7+QvrEjKKfIPl8dPfe6+zmHvMDxMaaTT0oSMudH0oREWaTz8hQO1gGlfh4tTtfmqqqhoAZ8fHO97ZQYWFSPZhDvbdXFRXONxIWZo6R1FTzens80qxZ5jsoLzefTEGBL4B64UL3nORk9TtfV3m5pNxcxcdL8hioBbrsGWVlUlaWOjosgBhekjweZWaaT92CcjvNn5GZqXnzXGaGhgZz3Hs8Uk2NVoHe8/oE58yRKiq0apW1oR/zVXpTfzU02Hs7OiQFBOgQWAB5bKxOOD9fPQ640turPR99Ng48kZJivgyXWqTbK7uUFPOphIfrGedbUkqKgWRcwDAcljwelZc7R39RkaBR6u7WICgkxLXL5e464u27mBgpOVkdHdaO9R9pl6KipJQU43HBAgOJpKdbHyYkqLVVFrhdVuZ8sIdVUOAAGhERam215lRXm7tn8WKZ42XuXF+2k5gYu1ctLfadAy/Mny9DRQQFGRgJzDeVmqoG57fKytIQ8Km01JdxxJvhBk74MrUI89vOmiV7f1KSKisNE9TbK6m93TLBNDVJAQFqc/6jfgyI0+v1oToZwoC9v7XVxn9xsflgk5LsioyUsrOtD0NCZAkU3rL5lJZmz0tOtr/z8y1YPCJC5eUuk0tsrDGbkGA+4qoqqbTUMpDExGjQ+f9a3Xiox9LfKT7e/Igej/mDi4qMT0sFI7W3W99mZjq/9V4dAs2ebS5YFRWZr3TmTAM/FRebv7ClRSoqsv6eM0fvef1uCxbYex2CrKpqCBCl0lKbY/Hx9qz4eKm1VfB7KTZWx8EC1qOjzV+Zl2d+v2XLpMRE9bs5xDn00a0F/fEsr7V/IU//XQarlJQUPfLII3/yu5tvvll33333n3x+/PhxPfzww9q8ebP27NmjdevW6frrr1dERMSfBcScKzq/Fd3zz2sxCBqk+nrlgX6BASFWg3JzbfFbiWXmeM0N3MewjCHPYs5jVVbqBSxbij1vqeABVYFmzfLmDCzXRgy8UoBl5IBCVVRIW9xkU0aGoebKyvSie6/Cw/Wae3ct2EIXFycVFqq62qUBi4kRnLDFITJS0GUI0fh4zZolX4oqBQVJra2GPoyMlObO9SHmcnNt3VFCgrRsmdY6Xp/FgXACAwV7fSAZD95MFpYDcY9TWC3uNxWgZtAODJDygpOT4uJUhYFutmBo1FonxxPusy048EpEhA808mv3rBdd/6imxgF/HhV8R8+65yglxbKrlEsqKnIpuH6vigrLXqP6ehW6dyxxPCoszIAL+flqdTLe6Ca1ampUgSnqZtc3G7FsLsrKcs753zgA0oDKy73gojapqMhkWlHhMqOsk8LCFBPjUnnl5Ki/3/AQY8daf3nRmt7cmN7NgrKztXChVOr4VmurKipMH6enGz5GoNJSS2sFv3F8vO5k8JRla2lpMd77+wVtysiQKaT8fMuSExurBgxZ6nH9pNxc282UlUlFRZYhxSmelhbZhqSgQKqoUA0GRHkCywJUgGWpaW21bCCaOdOyiISE2DMTE6XMTGtjS4vgpCmwrCzrz/h4GzetrQbecZuNUix9W3+/bKe2YIEUFqaNGBBp1SqXYzY72zYNiYlSa6spoqwshwCtNYXb329AmpgYQ6OGhEgFBbZxbGkxJdnaKrnx1+/e298vGzfp6TYmHdilDQzYNXOmVuJynvb3u1ywpYZGxQGWMDBKQYEDKMXFGZCqs9Nl9Tm/FZ30X2ew+od/+Afdf//9Z9zf2NgoQG+88cafPOvDDz/UbbfdppCQEAUEBOjqq69WWlra/yj149nQ+W26DA52wIFroKfH+TLMlLYLs6SNwUxw4e67/evXMw4znx0FRickQHAwR919HYCZsgI5jVl2AgMBxvhMZVPAgAbMIjra3pGUBMTGMjwgAMaP95lRefhh+jBzqhfkwV13wYQJeDxm6Tq5ZQvQaSak4GDi4y+zmLhNm3jlFefC44iZno4epbERMwV94Qv09NjzpkwxXtm7F2JjfcCaY5j5an9fH2FhV9Pn/vbKyjKTtBqv9fWMwPwnXsBNoOP5NJhpxpkEtzNk3gx23wc6+Y3wPvrii339McL1yXB3P6GhLoZtOHCRBftHRoLrq8ZGIDLSme0u5uKLLRmA2e8MUHDa8cjFF1vjS0p438n6Q5zvZO9ejmKmuNMAdXXsw0xyPPusY/QgXo/Uzp3G0fjxEyA62uK2goMd2uQWn69tTGgoTJnCyJ7DLngbOHECYmLYvmsUXV2YDy8szEy1PT1MmGD9MdK1v7HR+n/GDPPxHcZcUObzOWY+NA44cMgBpHdh82b6MNMkdJvfLiYGmpqYMgVoaOBdICPDTOrXxMaaefHhh2HmTAgN5YEH4J0J32D0rFkcOoT5purq4PHH2cfQfOnB5sgDD5iVckREhKVJwWIlGTfOsqW89JKZsXuuAarNRxYebu3cuZPTN3/V5NPWBsHBDHfPHu7t523b+PDBn0JwMOMYiik8ehTjOzIS+vrYfvQqtm4Furps3LMeVq/m+UUjzQwfHW3xeMHBvHvz9xne96E9bNYsOi+8yjLyuPZt3WqWSubOhb176QL2h3+Zp5+2+bxrF762vvIKnB4x0jmzD8CJE25c7oDQUEZhLuLggAA4dYorQ09DYyNnerbOnj6NgHH4rzNYbdiwgUWLFp1x/+c//3kkkeD1B3+ELrroIsrLyzl48CAnT55k7969PP/8839Sm/Rc0/mt6MrLDRjBEQgNZRy22B51X18/8DZXYQP3NKZ4RmKLrncB5+ab4ZVXGMCEYYv0BYCBT+6809wEEEUHlvljHMAddxAWNpbRo+EabC5yyy0wYwano68H3IIeEMAYLEA7HFuAGT0aJk1i+nRbK2xB6zUHf1oawcHmI+g7dYpx42yiTZ16tb1k0iQ2bHB+hhUrLIXTpEmsW2eTl7vugtdeO0P59GHvGBjwvsv5Cpcs8UrBFqeODq50MhjB0KLgXSCIj4fwcEYztIGYAFwTGMiYqChOYkr0SpwCiomB6GiG45CZrg8ud+8yRRcBjDfF290N+/YxGls4jkXe6MBBX6Shwcmurs73nEtdG4mPt34cMYJQx3uo441Nm3x9GwpQX88ob3uCglyGi8uwXjzC5z5nz+7qAqqrDf3a0+NWReN7YABISTEN9corjBsHN93keGtsZMoU+Je7Tpq/9JvftEVx0ya+ccsxRrhx8eqakdxzj40vl/2KS8PCuPde7/gNdApvpNukjWXYsMkQFEQw3s1XIHfdhW831tMD3HILxzAFst+1keBga1BPD0yfTm+va19gIOPH45MdjY0MuL4dhcl7OHDRRe7+yy6DpCQuBUaGhXF4xOUwcSJMncqVAQGmHPi89evWrbZ1OHTIkJIAFRXmC3RjZx9wXfAHQzINDWUvNk69YFoCA83Xu3Yt4eHm/mT6dPeucRAXx+jRbpM3aZIFj3d0EBgIxwZG2YPee48renfT59p1FNszjh7tFNj06YzDujgyEsYEBnLDDUBLC4GOheF7dzut3AWrVtl84QhERTEapxgjI00eq1fDunUc59zSMM5eyf2t1qM7v02Xb7zh4uU6zWERFGSxMx6PK6FSp2XOtNCGS+RbVWXmyoQEKSfHfHY1NUMR3TExsrIg26W4OM2bZ5bGgABJM2fqPWcSLHJmt4gIuaDtdVrr3tOCxR+txWLDjmCm1FNYTJvmzJGSk4fi6CorzUSWn+/8dR4z2xQWqqjIXDfQaGbRhIQhf05enmC3mUxaWsw3VFAgZWeb+aiw0ExHCxZo9mwXCJ2ZqW5wpXM6zfTZ1KSqKvOvlGD+txpn/lvvNT+Fhprpqb/f/m5pkZYt03JcAmfMh+KNqWpzZhzNnOlLNu2t5bPKmbYKwVca6QjORxQQoG1YMuYmzBcEv5ZSUszsu2CBmUQbGqSYGPNDFRfb5a1jVFhocV1xcUMmu9JSe39NjZkiCwpszMydq/h4FyDd26vWVkkhIZZku6zMgtKrqpzZ6rD5yCoqzE/louE7OpxvLy/PzGxlZeb3rK0182VWlrq7ne8uMdHGaG2tPB57xOzZZkFTWpr5ElNTzXQWHe3zXXkD8Ftb7XO1t6ujw5rXivmcvGbwjg4zvw0OWnJvK9HjMbkFB+s4FmPY4Ey5iolxZaje8s2jetdHysmRFixQvxvb/W4+qaVFrV7TY3u7twaSBVdnZ5s9NjPTGE5NtXa3tNjzMjPts5QU65fs7KH+zcoye25srP1m1izr25IS+21Rkc/cWF9vc0YpKVJ7u/GVnm5jdcECM+9XVg7FWkZE2PNCQ02Y2dlSUpKNobw8Wz/y8tTgZKekJLs/Pd34DAoyX2BTk5SSotmznewTEmy8xcdL8fGqrHTu+3NcveBN0Ntneb15jsyp5xud14ruMTfRoFOzZrnFprLSHMIO/KHKShv0Xgd5crJ9Vl9vE8dlUNGsWaZAsrMFA5b9wSmozRjAZQsWDKqWFl8pG2+lgYULJTU1mfO8oMAW/qQkA4hUVKijw5X/CAgYysyyYIFN1LQ0paWZnh071h6vZcuk2FhVVJgi8C0UlZWCQjXhsvcXFPh8F5bh/jkLgk9JsUWhqcmXld1bNkjR0baYFBcbAKWsTNXVLpNEcbFN2PBwNTnlfAQc6Ge7oFa9vZYtpL5eUk2N0tKGMDoxMfKVqImJsSwpCxe69iQkmI+loMCUfX6+NGeOZbNZtswyWrhFNC9vqIZce7s1/YRTwCoo0OLFTnFkZwuWC8ql5GQlJNgaGh9vinuh28jMnm2bleWYHywlRVJJiZKSnK8mI8NAB6WlUk2Nxo/3bmAKjd+yMvPVREY6UEKt4GXlglRRoS2YH7alRUNB8YGBglKfn6zGjUcrefMdveTGV1iYfNlOluP8Xy0tphBd1pHWVkmFhTZGm5p8mVOWYP44LVum+fOdnzYjQ/X1zme0bJmNg/5+1YJtoHp7fQv9ZicPRUaaHKqqLFmBF21TX6/Fi21ueTBflI3BE1KZlSNKSzM/dlWVpPh4JSdLueCrclGJgU8KMT/4WlB3t1WRyHUyaG2VFBioA97xFhysBtDSpdICzKe+BfMXw37bILa2WsUGLyjMZQDa6N10RURoG5ao4Rmn2FetsjH2kuOjqcm6PCFBPqCUiop0wH1fXW18lbpNH+zVAsyfPGyYpM5OU+5ZWZo40QGX3Nz0/PCH51TRbQBtPctrg1/RnT/kO9FNm6YqEJRJNTVa7iZOCWieWzBrMef6a5gjejMGrHgSc7grJkaaNUuPYSCBX4DgR4KfqBAr65Kba8VLC9zE3YKdVtzGXIfAl+FEISFScbGecXyotFQvYaCNHbhMLKWlVlJmlW1gDWW33hRfZqZmz7YNpi20ncrNdWCH9HSptlaRkbL0Y1FRVpuutlYFBba4q6BASk/Xs1hJnAI3QRUSorFjpTzX/ianAKBBEye6lEdFRWpwvyvFwBvr3d+5YAvkggVa7Rav9a5dvThASGSkGvhIRpakJCkxUccdH97FqtYt+HYaf13wgO3m4+N1xMkpJUVSfb3vHm85JGVnq8AtQhVuAVV+vvr7LX1Wm+PlPce/oqPtd5GRvmwcm91C6s1SYiV6lgpOqKREDiRzQioosBNvZaWUmmqneleGRTk5tllJTVVBgfVjr7dvPR6pqclO8A0NBh6JiZFqavQiBoTxImRzc20jMHasXMXXfpcx5jdagmWO2QGCX/pOmTuwDd7YsS5FW2ysFB9vgKjwcC3Hyv1U4gBBqanWF+XlUk2NUlNd4d/oaEM3eqvNpqZqs5NrKQYgegGUnOxOvAEBUkqKKfGYGDsNzpnjzUvncB89ltYsOlrluFNjRYUpkdBQKThYr7k5uRpTxO1ung3iSkj199sGrLPTTlY5OdbP7e2mVPLy3AFyqRQVpYoKp6gSE5WXZ+CcpiaZ5vUifQoLfeW6atzYV3m5bRySkuwE6/H4NghLl9ppbT1WgkeFhVJ6usCsPgZi+okUGKhesLEQE2OM5OVJM2eq7BwpFe969xbonbO83jpHPJ1vdH776F54gR5g/PjbYWCAfZjPZgCLHXt15zVcDi5DPXwZiI2P9yWrHQMQHc2HxS8TiQVWTwbgh8AEpmNut4cfBmkVX8M8WscA7ryTvr4dXD/pGMewMh3EWwaPwzPvZYr3vfn5TGIIoHEbWBLk/n7zKwDXzpwJfMUcNdXVLFpk5v7wlBSSki7noYecY37DBk5OuZ73Gk4TPWuWPQfglVe45BJ49FFg7lxOPvUbbsF8QR9i/rj3Dx3iyJE+rsV8VZeCAQk4yJ49FZYBYu5cJgcGMgnLGDMpIoJbnNyuAYsV+tnPfKVwwPyOh4EP29rY3djIbiz2bpT3+W1tbHd/34HF6U0AiI3FoCcbgPHsAurWrye4pobTGABiqEzP1axcab7R/bP/N8GYr7EDCA0IoO/BBxl51zcYXlXFLqC6rY19GGDlZM02OoDXGxstbq+jgw+AV48eZXRmJht8g6kX6GLcOON1/PhAiI3lwQcx/9W6dZw69S6Eh/P009Dz2GNcP/+fefO+37FhAzzxxD5GpafD0aO8s2sM/2fFtYzIyIBbb+XLYWEwYwY/XXEjoZh/9Ud/t4p/mz+Gn/ykj9Gjrb9P7tjBvz0+0iUjGOQG9695B09w/PgBCApygJaTHDmyhTlzsMHx3e/S3Q2EhXEp5uOd7G3aLbdAaCidX7wNRo9m9GhXNWDiRJ5/5XI4cMASNu/b5yvt1IXJ+xjwyCPm+rWgQhs/x7Zs4Y9jb4eVK2HSJI7inskx86UWFjIJmJySwv7Ir7E96l5L8VNSwi1u/MwICWGZ/pkrCwq4ouFNhmdncw3wf54aSXo6fP/Ryxle9irv3/NzQhcs4J2OK22M79tnyZgZCxMmWNmkaCAy0nydaWlcu/cNXu36Mp3/32/gnnt4M/w73JKQwD7gxpkz+d3OG3m55zZGlf0B7rnHSiI5oFNwWBgZGXBVXh49WNKXP0Z+xxJE8xNOV7/NPwYEAFkQEcFurMLJwS1bYMIE3pzyI3bnv84nnKbYT38Bnd+K7plnCAYOHKiAxkYfSnAMVr3gG7ccowNb6C/FStW8un49oQxlv6eujlHzf84uhoLK4RngFH/EkjE8/DDArbyDKdLLAV54gZCQKDpPjGE4hp5jzRoGduzg0tWLLcURwMMPs9O96zAWis7dd8O+fSxdamCUd1evBmpttRs3jgULXD2xl15i+fItbNkC0iDcdRcjOz7gyzcPp27lSpg/35zgDz1EUJALsv72txm5fDFvYMpgDJaR5NrISMaPD2Q/5ow/CaaYuZqpU2/l+oAAmD+fnX197MNSVe1vbuaPfCTQfcIEyMriA2wBPI0pk0BsIF0TFUWok89+gIAA6O4m1n2/ArjFyQG8KcpuAQ4SC0TPmsXpm25iNJCWBqxb5xb5XSQm2vuuXPcf9GBghsuBrlOnLAXaokUc/spXuBKIjYwkGAPEjLzjNiYD/xgbawo2PJxJwDfCwnj/ySeZ4RtMvYSFTWDfPpNbaCi+QGTCw+FnPyMiYjIEBJCfD6PnzOH9uX/ga5v+N9/+NqSlTbB6ZVOm0Ndnsc3k50NJCVvb2mDTJn754AfswxT9W0G3c999kJ4eSHS0vWJkeDh33eVSVHHKNh/eccpYu3btIhjYvW8kU6fG2HtCQuDBB5kyBfo2bqQPw8F04Bry1FOwdy9XeN6HdevYu9eBJ/r6rIpBezun77gDJk1iEkOoywEMWPTgg/Dcc+6hzc10YICNL+/6D5g2jZNLlnASL15n0NCWc+fSB+x66SWu7HiH646+BbffDo88QqMbm9WHDnF31Lsc/MEPOBz9NZg/n9NYDPjcufD80x9ycsY3uHbT7zj9s59xfeSHVudv3z4bH3TTs3o1mzc7IFZjo4FaXniBDyJv4xsT3uGKBT+Gxka+xpu8sXYtk4B3Vq/mO3cd45/C37ESRb/4hcsINJyuLuhra+O3v4W9//qvBGPT8su7/sOVB3mB4d/7DltPnQKe46Qrm/TrX8PlUVFw9Chf6/oD1zz6L38VZXr+aujTPlJ+HPIe5UeM8Ai2axm4zP/bZVnl9wseUne3ZPFRTwnKBA8JFjozVaFgkQOeDDhzZaPgAT2GN/npA0PZ/5OS3O/fclebOa9zcwVdUnKyy7h/wllyHhDMVVWVBD+XVSnfLvip1xJmfreaGsEmbcMc+enpMr9Kba1gs5mB0tKk2Fhfhv8jWCA5HJaSksyn19BgTvfeXle5OsW104AIVVWSZs4U/FLwczPD1debOam83Mwz5eVOLj8SZAmed7z/SPBTS1TrkXtmp7sKBScUGWm8RUTIvb9Uycnmo8vKkuN3tqKiLCbRfI+/l4KC9JIzFdp9vxc0SCEhDoTTqUpnGoKX3e9/LQvy3ivYbEHX5eWCOiUkeF2kAxo71oLRJ040q11cnI2RsDAvwKdNSUlmBm7H+TVLSgR1UmCg+eTi4tTU5ALGo6IUFSVpcNBMaHPmmDnRVXOALtXWmp8mN9fFPtbXC36vmBi54PiFvvGSmyvzLxUWSomJmjfPLJ+Q44udOwSCHgtydr43GLB3FhaqqcmsjoGBkoqKXBHw7VJBgaDBW+RC5eXWvMxMWeLiejPHe7P3Q6c8HrNAw9tuvD4veNuXYBnaXCWDX2vePLPUlZRYH0dFWfJxxcU5Hva6Z7zsiwOH3W6OLXLz0YBAsFzt7RYX5624XlRkc6S7W65iyFtKTTXf8MKFklpadASsP1papIwMC1ZvaBDUqbXV2B4/3tppY/IBgUfwcyUlmZWxpcXuiYiQD0QCnW49sarzvb3m7w0KMtM/nBQs0jLMtRAXZ/x680dbxfkTgnfPiZnQu979EbT9LK8/+k2X5x9Z6qSVROK1qvwBqAVagXFc+uw8zJDWDZRhu/YfYvXH3nX3dZKTcwEQAKwGrvblxoQYvtHxPNxzD/uXL8eMQW8DbwCDbDp+3CV6fRe2bXOxPScsoS8ngd2202QsVn3rGPAVNm92ZsZHH4XiYsLCvsIY7ABQXAzH7r4bli4lMDCWK2fNgthYdlVXk5VlO9fg3FzCwu4jJWUsNDebWSkwECIi+NbsURbTx0Rgj5NHle3IN21yfPWZ2fToUQ52dMAPfsCKFZhpCxyfY7GggCuwM8gYjh71hp5djBm3mjBD11t0dtqJsrm5icbGViCAI0cs09ITT/QCK4FvsGPHCuBVV9B6H2uOH3dxYstYuRJgBlABZWUukuAYB/FalY7YCYRj7t0bgXE8/TTUXHIbKSlfZO3aVv71XwF2cuTIRjIzx7JnzzJmzICNG0+RlhZFW9urfPe7fWRnT2D58lfZ7Vpz8qWXnP3tJNv7+uz948axbp2davbu2MGOHb3w7W/zve/BW/f8u+Xtvf12ePRRxo69jH37DA3/44dOk5Q0hn9beh3wZR55BP73TauwM/Yy+N73+PHsD/EmM9332mv84hfwjZsPA593O+8r3Il2C1uxAWJyWMPuo5cy8N3vcm3zKnbsOGU5OV95xX1/wJXnvoBTp/awdKkd7C6+2LLPER7O1q0gHeGGGyx8pqDgcnbtgra2N9zcWIGduV+1MIoZM4CDbjwfYNcuS81aVzeUCaylBdi4kebmJuLjrwZaiYqaxYMPmlgzMycSE/N5zAYQANzKE09AYOBdLlxiLLCHqChLc/n442bNLyyEgIA4Hn0U7v7CdptfixaxHzOpnpxwDXR12VQMDgYCuYoPuOIKN8+A7GyAnwNLgDQefdR+OzBg72purmDXLhjZdwzYwW2v/JCIiJ8AGxhV90eWLDEL8FVAenoAcLGL4Q1g48ZdfOuOwzz3nPV9fj4sXhyIJQv302eCPm1N+3HIu8OpBZei6AmpslL9zpHegEMkpqXpCAZAWeUc7PUODLDR/a24ONVjiLBWcACABwSLDI0ZFyfl51vGICwDSCcGnHDZvqT4eNvxe6HOeXl61utYLy/Xa+ArKfNrHBze41F7u+3+LQPG27albGpSXp59XulOOoGBrpZecbE76b2sZa79hYWSPB53itmr0lL5ygmtdffsweDTaWlSoZNNGwYtnzjRdqKKiVF3t8HSXwJfNpcS0AIHHqivtx12LZberBMHBpk5044Kc+fa/3szxHhh5snJWo8D4kRGGkgkO1t7wJ0QFtmJatYslTt+vRmrFBAgOKyGBllYguujftcXm0EVFeb/P4SDl2dk2BY+KWkILLNsmZSRYYi8sDApK8uymyQnC7YrMNDwGiUlkkJD7aSWleUt0SaVlBjgITRUVVV2gE5IMMBCfb2ksjJtBgM31NRICQk6ggEZVnpllJCgUjcWoMcQsAUF3gOdvTw5WS9gNQbtxLDbyaDBAE/Z2VJIiMrLHcLSFfjrB+vHzEzVglW1cXKS62uFhUkNDdbG/n5DNzpQyQEsXKLfzYP3sBCabeBLM+cBX/YUX9orL+x/zhytWuWQu+np2uL6ezWY1SA72xe28ox77gKQAgJsnlRV6ZT3/pISA8i4WnLNrs8VGWmDtbNTOTlWI085OaqocJaQnJyhMkZVVdbmkBAdwLL2FLp/vZmNFBFh70lPtw7o7zfAVWSklJOjl3ClnjwenXL/D9/We3gtPr+0fs3Ntfd1dkpVVTqAga42n6PTk3e924wBtc7mOlc8nW90Xis6Q8e12SDv7BTsV2qqQ6L192s1Vk9u6VL7rKND0oIFvtCYigrLkbgaQ31FRtoCVloq02BxcXrMTcgikObM0cSJVriyvNxQYg0NZtJQYaFWrXKwdTdhvHOovd1ipeLj5YPYJyYaL0pOliIi1NDgDUU6bF/m50sBASopMSTbCdcWg6bn6LhbjJSRoRkzrC1WBPVlNbkFt7LSVw7OZJSUJNXXGyKtocFWyuRkKTXVCypTdbXLfdnbawtZcbGUm6uqKmsD7PeFQ5WU2BwPDPSllpSZgZs1Y4Z8JqiUFLtfVVWCTltoU1NVWSlfzs6MDLvvkFPeYWFDZckUH+9D4bVh0PT0dOsHFRfLzNVvS1FRgpOKjPSa4Jq11ikbaNawYQYtN/PnCYei22vIwagoKStLra2uNlxlpVRWpuRk22TExclQir29TjnmCH5vC3B+vqVZCwiw/i8qMlRsVpbgUbNnNTRovesXk+Mvh9LJ1dQ42QzY74qLreMqK6Xycus7E640Z45iYpz5LibG6iMWypCXrjCo+vtNxnl5JrdZsyx0IDhYubm2WSkpkVRRoW248IKQEKm/Xzk5JvNp0+w5GRnWh/PmSfJ4NHGi/f+0aSajnBxb42fMcGN/1iwFBFjdQ1/hVZeSq8WrOKKiVFRk88ebPq611Y258nLbMLm4t/Jy+TZsJ9yYnzXLxoKWLdPChfYTbypU1dZKubnWXpdvVHPnWi3D8HAreBwQoFbHy6pV3uxgXSYTFyJU6hT+7Nkm+yansDMz3ZjNzVVenk0fqHPhN79XSIiFtBSAPC4V1rlSdG+D3j3L6+2/UUV3XpsuLwFgh9WEC7wceJc1a8yE8rvikfQBa9YcYdEiS8qQmws8+CDV1WZm8ybXD8ZKpTQ1GZ7gGzfsNxvi3Xf7MkT0ANx+O3v2vMu2bb3k55uzf8IEOH68HrZu5bXX7GdvbhrJy2tG8fTTZnLLz7cyaOvXHzFPOy6zxdatZju57z4mB+83QAtbhlJDfO97/NMMS2ZVB7S3Gx4AohkdG2uo0RUr6O21z8PDAfYxCpg/30CZa9YYqC40FDh6lPcDrzPQyrhxJoCuLujr4+KLDbmWl2cy+P0ro+C++ziWeC/cdx+vvGLvhwsoLjb5lZXB009DX189O3YccWCEJqCVNWuOUVNj1tK9e00u20d/GThiZtQJE3juOZfhZdEiOjrM6jQuLo5168wU3dho7+hav56mJtg/cDmXWpNZuxa2beu1tFYEAOPMlkYz/f3Q1nYAaOIavCmlApD2MBnYsWMQGBxK6bRyJYd37IC+PsaNg7a2PvtRby+jR7v0TsEmv3f3jnJpcI4AYwyY1N1tKNTYWEPfHj9uGVvCw423m2+2Mi9Y9ZjycnCQJrtv9GiHZjpoIKGEBKir48Mbvgp1dWbmXbPGwCV///fs2OFMuQZztDExcyYEBlJWBn/cOtIyhEyZQn09cPPNls0qKop9++DS0ScZMcI+dxZsnx1v1y6T+ebNg7y5aSQbNpgVNDoa3tk1hj17DrBokfXNydivsnevDaMNG8x8yfr1nDq1yzLaxMYa4Ck4GCIjuRK4NCAAZsygrAyGJyQQCIyOj2fcOHhr6yiDL4eF2b+TJhlCFEP9esEUW7e68VtWxrp1JosxHe+bZb6vD26+mZEdH3Ay8jqzN7psMsyZQ2PjKbjrLoYDlwYHExrqBS83mxz27WPrVjOuXhUayoYN9szLAUJC+N73XM/NmMH3vuf9bZcz7R7h0KE+X/q8wxee22z8fjDKWdCnrWk/Dvni6OLjBTm28x0clBf0ERlpzuNtWHwaeBQSIl/lbiiXVZXuMVBGUJCGDZNzkJ+QkpLUjgEgirAkyI9hsXLwsqBMcXEWb6XeXoF5+lNT7fS1apWcQ35AaWnek9Z2wduqrbXdeFiY7JgQHe3LHmE7/TrbhWZmGrMNDUpLs7ZERHjBCid8Zi7FxiomxsxrBrDYJCUk+JLEeCtTJyRICghQcrJ9vnSppJwcM+tFRyslxU5gQUFDgJqSEjv02Ymox1dpwHsisna1OXm2+YAmBjypVWKisWigkO0+M+WwYZJKShQYaM59A14YaETFxRo2zN5pMuzxBTp7K6jbaa1T8JZWrfICXbzAj3UKCLB2w0IpNNT17WY79UVEyMAWzS4x8stqdicGhYY6y0Cp9U1vr+rr7WA7dqydUrzJtmGuYL+Z87Kz7WRXXGwnv/p6M3V1S1DoC0o+4jtNdgp2a4fXJJeb606JjfJgJsgWMMBSaKjghJrcCUMLFghqtXixxT5WuZO+1zTrTf7h8dhJJytLlom/SlJysp0O29u1apWd3g9hFTaUn/8R4MdeQakDVzXK47GDkvW/R9CgoCCzVKSkeC0RPZo923iCdVJGhp0UKyttLHd3280LFqi3V4KT9oDgYKm01JdQYf58DSV9SE8360xAgJ264+N1HKxqRE2NFBys+HhngSgvtxN+RYW1dXDQYgXnzDGwVni4A5qst/fGxEjx8aqo8LbrJevbpiZBj53a8vPtxJ+aamOjuNgGQ1SU3btggQyYUuhO708JGrUNM+v/8Ieec3qi2wpqPMtr69/oie68VnTrnNkDnlNDgy0k5W7ResmZxDoxv8BqhoKgvdkalmG+ky3O1NDsPjN05fPmQ5gzRyorU1GRzGcXHOzzBc2Y4UyCaWlmNlm2zCZCQYEWYv5Cb9D6KZASEuyd7e1SVZX6+21OtzuFrJYWDQ7aulBfb/4fL2qspERmCiorE7ytVW6Ra2mRVFPjJut65eba81YyFBzbhpk4ExKkF51stoFDGA4YEm/mTGlw0ILfMf9cBeaLeNLJJTPTTKfe8i2+rCkZGUMmJ28m+pAQu7m21syUXnmHhpo/Li9PneAW00U+1ON6rLLC7NmuBE1CguCwWlrMRzfo2qWgICk4WN3gTYpvi2ZGhnw2pTlzVO8WHeXm+qohKCTEeA0Pd6niGh0q76R6e02hwXYpLEzQaLa7WbM0bJgFhRcWmpKYOtX8Qa2tkhoaLEC7pMS0S3CwmrEKGsvBZ9/dgvnMYL9p8mXLNG2aKQrl59siivnmrJKGR4qLE9SZEmhttUoB3d1mKvSm2kpJseD2ggJVgtLS3HujokwmCxaY8u7vN19fU5PZ6tPSzAcZGirl5+sA5tfbgfm0apziTU21caWyMhs7LS2mvQcHbRCXlKipyfms09N9iRmW4/xh8fGqcn33azcmF7jxsxYz6Xa6sae5c208pab6/MZLMB+u5s5Vba1ZdocNk1RZqY4O63Klp6u93Xzb3kBzBQWpxY2pJW4e+qovREUNldeaNcvaYTBpqaJCr3nnbW+vFBjoyu58WzWubZBlMo2PN3eFd2eBbUo2niOl4l3v3gG9f5bXO+eIp/ONzmtF9+qrHr2GAReUmqoiDGjRj/nvAgMtd2OpUwqrMSDCMjcBt2E2/1Wr5CvrYimG3hI8peOgiRMlaBC8LAUH6zGnKKwEx3Oqr5deAPO/ud8rOVmV7r2KjdUSx1cRDsYeFSXl5Cg+3oUZREfb72NitB47uWVmSoqKspNffb3gl7Yw5+fb4pKW5nwLlvpKtbVSf7+VqXHAjVqnqPZgJ4G4ODspbMROIampNt+nTZM5xDwebXS/qcd8GM0Y4KQS83EoLEyrnOw2YwrVBzoIC9N6J4PX3Hubsc3IS27yV7rv1N2t1XizkjxkGTQcaOE1t7hq1iytBMFPhwATvb2+/iwC3yKmqChp5kzVO36XuKujw6XCCg01BdnUNKT8YmNdWqfnBb9UXp4toMcxRVtSYrLv7ZWUl2cnzqwsLVzoat+Fhys3106aQUGSSkvV0GAn9sBADSmlxES1t9s9qxjy9yYkOAXX26vFi43PYcPkFtTlbhO32Sm83wsOSwsW6D3shBsRYf3X5pRATo7zjQUH+xb6dmyDpcFBGyPR0XbSaWmRByuJo4gIac4ceTzmN1vs+qvB9VdLiwMGhYSoF8swdADb7A26+bYRnJ9xnSnC9nZTApWVUm+vBgddirD+fikhwcZLUpJtUObOtY1IZKSUmKiWFtOjS5dKysy0U11NjTo6TGd7wI399T7LS1yctWPePNkRraLCLCWuhmBFhX3vBaAVFLiN1Ny5avfO2+5u5eVZ/8+aZfJ7DdvYNDXJpT7bb2kAZ840wBTmm1V7u+XQjY9XQYHd77nssnOq6LaBdp3ltY2/TUV3Xpts/yGwhi7g1Kl6ePRRy3qPZVYPB/r6ejmK+UEacXn6H32Uo1gg7CgsQPwfI3f7gp6v9D39KB/idYNcDYyk6+hRJjFUbgbWk59v9vj167s5jMuGsmsXh7HA7NPV1UzAQP3X47KxHD0KXV3cfLPznaWkWHb4CRO4Cmhu3mLhEnfdxUMPwcu7rgNupcv5jejrg3HjuGrN88Ct9C1Zwv7Q6/nf80dyVUICk3f+gWC8QQHOvxgdzcaN3YzEBXO7sjGHDjVZpvYRI/jg6BhfVowPsKDxDj5S0mfuXLjrLqKB6NhYYp1sR2CZVJg0iZsxf8qlQHhwMJMiIhidlGQldQICfNnjWb3aytcwBjhFNbCzowM2beIwzt22cydW4GUkTJxoWUx27iQY+HJoKJMcb2MiI82J9PDDXBcZySjgRixQ/oqLjjEKONbRYWV+goOZ7PqDggLX35OB29i509D+HwDPPdfEP/X8B/+n7DpGrXsVfvYz9uxZAevXg2sfcXFMn24uuPBwYMMGJm/9D354y7sUFtrfgUFBcPQoV3a8wx132Pi4EmDGDB55BOLiLuYb94xi/nwIDg6muNhbpucaV2E8iq8BMIGYmLEcm/1ThgNfDt/POOeWPAjw0EOsWQOh0dEQH8/wB38IXV3UAdx3H//26HCL+h4/niuf/inceiu7wUrKhIfDXXfx+OMwPDSUUIZKMF0KXLPuecY88kP2HjrEqIAAAoHQlBQ4epThubmMLC/n5pAQyM8nIeFWK2P19NN8uHGj+Trz8xle/B98OXy/OY83brR5smEDv5n/IQwOwpo1dDU2cvi117im7mWuYTd3x+2HjRu5KeAd2LSJK6pe5uGHYcycOfT1wdSpt3BlVhbXb17Ib38Lh5ub+bdv74dnnjFH84YN5vt89FG+xptw6pT517Zs4ft3HmTUru2wYgVXxsTY2Pje9/jRlDfZhcu0sm8f4cB3Zuzn2uCD8LOfASP5xxsOwubNjBtnyQ8+OHUKRoyw9WXfPi65xM2Xa705mfz0qdOnrWk/Dvl8dHv2uN1vo510YmKkyEjbzcbGCjwqdbuYQe+pJDXVt3NUQYHtrltbbUvodpXmd9orxcervNxujYuTlJ6uWve8x7AcjElJ8uXbLHAnm9fAZ0ZVbq5asNNiK/hQYGY2PGE7xcxMM0Pl5qrSnSZaWiQlJBg6s7fXTpQxMdLMmbY7ddBraDDEndcnMmeOVFNju+qcHGO+qkoxMRoqBhoUpLw8C9CtqpJUX6+FC83/VuhOYptdOyvdyUcxMUNV1YODzV8xd65edLv5Q+605IWU7sCZ60JCpMFBM3fGxkolJWbOSkzUs5h/Cd62U2l5ue3WMTPpIXD98bw9JzTUjrrh4WZOjI4201JZmTUuOtqOYd6M0rGx9nlrq23fExPNhFdebrZhVwEiKspVxq6oMH9PcrKSkw2l294uO5XU1vrg+8rIsLaVlkq9vUNVBcrK7N/OTi1e7H7r4KkLFzp/WXS0ya++Xg0Nxmp1tXxV572mv/R0SRkZZmYMC9OsWc4s2NlpfdzQINXUqKHBmZIzMuzUFRRkx6+ICPX2Wr5Upacb2tAbzR8XJ8XG2njMyLATX0aGmUk9HikgwHy32dk2JzweKSdHJ7BQjR0glZebGbay0hiLjZUCA82EP2eOrxq8WlttvKelmUC84QjJyfbulhYzmxcWGj8VFUO+61mzfOZ6X3LqsjJfUvLFi2Vmw6wstbdbEnZlZlo/V1Zae718FBQM+b7Dwux4OXOmVFBg4Qjeage1tRaS0dBgz05KMjnk5UmpqRag3tkpZWZqxgwnX++YdBUzmpoktbbKc+TIOT3R1YN2n+VV/zd6oju/Fd2BA4JfSwEB6ujwgknW+9Z3O6Y/oaEsD285AEKh4LADNTwqtbQ4J/x2q/QcFKSNmDlyEDM3bvEtys8J7ha8bj675GTBcrU5hQvNzt/ztiwDxGGnOH8t2KvERJtv6enyVcXu7bX/T0oyU2S9m2itrbLFoalJLVhsVVaWmcY6OmyNMEW/3e4tLVVMjDcEoctlAmkTeEz5BwU5n9g6S0JrN/ig0ub/K3dyfEsG6Gh0vzmshQuN5fHjbf0wcMlLsgrdnUpNlbu3TVCrsDDTN5YlZKnzIzYKFjpQzULV4I1J+rXgLc2fb5+3t5suGT9evorjsNyBjvYrPd0L8OnU+PEu1KCz06Hwe2SgiUapvNz5wA4LTkrl5a7Ze51JuE39OF9MYaEbH13y4CpVlJZq1SrjZTPm+7KyN7835ZidbZus8HCvq8qUZXa2G5P7bUHu7pZCQhyA5y3rf+eTU2KilJRkz3NlgxQQYKCLuDgFBFjlBm+YAnTZRiglRUpNFZRb/86cqcREX0F0Nw6e81Wknz3bzNQG8vHYfPB47D2Dg1J4uANUvS34qTPbD/gqCxlIZUDwureyjpYuNT3ofa6yshQVZXJISJDPHFhSIqmy0pdneexYFwfY0qKmJrlyTSc1darps4YGe+7YscZaR4d8WYrS02UbrrlztXSphWsY8McqCcyYYeOusFBSa6tiYoYqBEGzuQv6+9Xaau3yzsmoKMuAAw1SRoYqK23cVFRYO5KTZQq6qspcC7m5bjzvd5l72kyWqanS3Ln63e/OLRhlB2jvWV47/Iru/CFvx8Mm26kWFvpKbtTWSqqttV1VaqpCQmxieQ8k8nhUUWETo7/fO+lP2O88Hos7ys2VMjJUUDA04dTbq/R0OwikpTkEYHKyr55dDeZb07JlCgqyzWFUlEwzlJfbiWLWLNvhzpypxYtt8jU0SIqNtd1/XJwv51FVlaS8PFtsFyxwi+smO1n29qqhQb6s6lCmpUtlvq+ICMXHO+d8d7e1p7bWt3v2BvVWV8t2rN4yI0FBUnS0D3hgyqBO8fG2cJaWGsp0C+aHUGKilJDgq56gyEiTW1SU7bjr63XInWy9fq3ubkmdnUpMtHYnJ8uEsGCBLUqDg9a+wUGlproTUECABVqXWl9FRcl29d6SSyUltlqFhg4FGScn2w47KUkBAa6tDQ06jkMy1tTYfWlpvhp7SUnyIViTkuQ2FoUuVnO34KR6QdBlv+/ulsrLTSl1dzt/237nx3ldU6e6sVhaan2RkmIDzgU8KzhYGRnWjPWYf9OVM5M8HmVlaSjesqnJTigu2HDqVAfEqKmxf/Pz7YcRETZWnPxyclwppawsN37KVV0tt5locH6uw1J5uW2U0tNtLKSmav58U2IdHZJaW50FYK5PadViKOQtbpPQ6TYBEyfK1Ulcr4gIud+9LfiJU/KbrU3JyS5VVqMPbQtL3QYmR1Z6aanvpBkX50UEWwC5KiqUmyudwgA/JSUmYtt8/Ubq7nab3Dr3u7fMf1dS4u6pE5Ta3Fy2zKU42+9Lp9bR4RTl3Lluw9cm6HF8Hja5lZT4YkSTkiTV1ysjQz5+znU9Or+i+/h0Xiu6++/36D3v4hMQoM04mHhionpBISG2Cy93C2692xVvAV+ttT2g9HQzk7W4v6HLdrvx8W6S1AnKpbQ0veCeZ+bK5b56dkFBhsB7BgMpHMec+Ufc/csxEEI/LlNHQYHi412QbWyskpLMBLUeC3CeN09SfLxvYYfnbMGqqTFlWVCgigoHeigpMYVRWKgdWImRBgwE4s0KoZYWexYOhekCkcPCXB7HlBS1tko7nJyaMYDHKczc6s2C4sHQmJ0YkGe9a9tK99029/9eVOgWDOG2GUMbduPq+zU1ORm+Llhk5jeH/CvHBerGx6sUbMGbO9fAEL1SjeNvOWbmbPH+Nj5e3Y6Ple77wkLZ6hcdrZUY5N/XB6mpzpRTK1joTR8pRUR4LVWmbRxK1gecaGkxRG1IiK+mKJw0xVZT44B3J7RqlS3Eamnx1QWuYQjYYyf/Hp8J0oq7djm053YpI0NBQXKLU5cBJFpbfeV1qqrsmfXezUd/v/V1VpYpRo/H+johwRRYf7+tyK2tUlOTjuDq00VFSQUFdurKzNRyHLgkJMQ2Kt3dNr4ctL7UK/PoaHkwt8BreK0bXQaCWiUT5uCgVq2yU1pOjnwZhDaDVFxsoRGukKkyMqScHC1davfl5EiKjtb8+cbCqlV2WvNC/8eOdcV5i4utHTi0ZWenVFCgpibbpKmhwRCrrgyRMjI0e7arXxkXp07vmCwttU1tdLRtTkpLVeHGUGGhyW/iRJf9pcxCjA5hJnqPxxW5DQ1VXJxtJjzf/e45VXQNoA/O8mrwK7rzh7wdb3Eq+838lpysefOcgqio8GUuMRPcXo0da7vgwUEzdVRUyCWSXaeFC20iVlU5E0tyshQZaZOysNB8Dikpys2VS0LbJShTGwa/DgqS89k96hav551ZtEuLF9uhwXuKaWiwSbtwoWwxamiwXXh7u1pa3CknOtpOP/X1dhJ0CZtht9LSbF1obXUnhqIiQbPxHRjo8w/FxfnWZ9uVR0ZKmZnKy7P/1eCg3Z+fbzJLTHQxUCecmarBtxteuNAtOgsW2Orf2mpyKS8XeJSWJl8mFpWWqrfXZTSpqfFV9/YC8Myct9vF/DX4MmB4K2hPnepz1xmatqZGx8FnXpo1yyHgSkvV3y+fj9GLeFRNjQmmoUEdHcZ7f7/zodXW2uLW3e2rLt7QoCGYfFGRoqKMhxYMcaugIMFbhn4NCBA0auFC0xfV1e79+flqabHFrbTU+K6tlVRQYP96q2wvWGCo0VJJDQ0aHLSubQdp5kzl5g75Bb3jJC3NWRRKSkzRhIa6bBybfZlpCgtlp5KyMru5pkYwoP5+51uurXVhGntVUOA1L29SUpJZOlpb5asHNzjoq1nqc2U2NcmdWDf5iux6wy0UH28mk/JywTqlptpvpk2zj1tavOXqdmvxYuu/efMktbRo/vyhAt4NDWa2N/P227KkyD1qabEhUlQ0lKnL6y+dP19uE7jbzcvt7uTlTcpcq5gY06HejC4tLfbOhARbDwoLXV8NDsrM8PsFJ9Xebn3pPfXOmuXM487Mn5Aglzjb1pb5873m1/3WV+Xl8rzxxjlVdO+6TerZXO/6Fd35Qz4fXW2tW4g6bXbOnSvl5NhiVlCgYcNsN9wAlsvRnWSUkWELQ2enD3Ku/Hybbbm5mjrV+Rvy87VqlSnG1FTZb9yppADzyUVE2EkOHtVjbrf+a+w01OrdXcfG2s44Lk4+m1Rpqc9nrtZWAx3k5uo4aP58t5iXlNjn7e2CvebsTkszJVhZKXV32y4/Ls6nxFRaKlcB02ZpRYXk8Vjm9TwZiCQuTvPm2WmitFS+CufQaTvbgAC1YL7JI273rMxMadky2yHn56ujw5TbNu89SUlSVZXtqPPz7f0OlLBqlWy1y8+X+vvtBJKQ4Du9BgXJHDa1td7oepWXO5BFcbFgtwEEvHbFvDyTQWHh0AmlwZRmR8dQbkrl5/tOS16wiEpL1d5uvHs3E97ip6qv9xXrnDpVvuraio2V8vJsYY2Pt/ETG+vrA2++UTU1meyLilRf7xb0oiK1t1u3+2Its7Kklha1t8sXN1lSIqncqjqovNwUsPPPatkyFRWZYi0ocPKNi7P2t7SYmdYBZlRQoFWrzKdXX+8K6paWmowDAkxeLv5Q3n7LzHSmzd3m+8vKslNeVZW93xsZHhAgxcfrEFZ5u8K9o7fXxlUtLqwgL8/morccQHq6ya21dQhQUlNj/JeUmDYvKvLlqDzl5c0bTlNUZG3zpgbLzLQxV1srFRdbG/PztRGzYmjmTJsHXvDJsmU2FmfNsvngTVIbHu6NFpfq6+30a8fzoX5atszGpItVzMqy+aq8PF8ogtLTrQ3R0VJoqG8KvvHGufXR+RXdx6fzWtHde69HCgwUHFYnZhbsx4EKQkLMCY2rsB0TYwip+HhLOBwQICUmqg0Xs+UCSE+5Uw0cllJSlJIil1mjR8rL8yUdthiwZmnZMj0Dioy0QNXH3PeKiLCJExCg9Zgpb8lHeSwu1tixzg8VHKwZM8wMsh6LW8rOlhQaarvnggJBqW/Ra22VlJen6mpXmbq/3yZudrYOgPn/cCjHqChp1izV17vTYkKCFBSkpib7OzlZvryBJSVm6j3CUOJqBQbabwIDTUGFhpoytGOfNmImwlWYKesIZrJchZmzvDF7PtPkrFmWozM/XzUgAzfUDiXHzcjQZiyQXFFRqsBiyRQZaYuty3epgABtwUyXJ7zPjoiwxSYy0mc2XbpUPifjRjBZpaTYguZQFtbfr0vLlpnc58xRba3bwaen24m4v9/8qDU1Ummp8ZCaqtxc66uEBKesGhqUnGxr7OLFMp48HvX3m6yb3QZCMTFKTnbvyMszRVlWZqek6GgbfwUF9nM3vpYulSmP3Fx1d5uSjIkxf5mCg6W5c23hLS+XiorU0WFB2IqIMCXd2elDvqqyUt24OLrgYCknxwAWlZWq9G5eUlKk2FhTZN3d9u7ISFU4hdKCmf8H3XxQRISGDTMkYnm5fBXCKyuN94IC14aaGl9S8dRUmVKaM8d2k25j4rMQxMT4EKzezcNrmDl9xgzbaHnnQqdTlL29ksrK5PEMGUWWLpU0c6bFvaWmKjvbbXSSkrQWhxouLjZ5eNs8d672YHF61dWSBgc1bZqLcW1ttU1mUJDP/30Ec42kpzvL8YsvnlNF1wTaf5ZXk1/RnT/kO9E9+aQzyZywnahLxOtNypyYaMqj2e26+jHfmMrKpNpaDQ46hVBQIBUX28AvLlZMjPkClJcn9ferokK+U6KSk6WYGL3mFp+gIEnh4YLn9Wun5B5zSsKDoSc1Z47tHhcs8Pl4vAmDOzoktbTYiaKkRIqN9Zn4VFzsOy2EhclXl27VKtlOs7zcTgnOUeRF//tgd729UmenamvN3FRe7t4xZ46ys01XNTRIio/3ARy2YafRTrfY9eN2twsWSB6P+c5qa30y8S6kKiuT+vttcersNMXkfIc5OTIZ5OWpqsr5NcLDfYHPCQmSGhrU0ODQhV6fkoPKBwa6092cOXaSqaqytnR3SwsWqLrahWNkZ3utRnaqa2+XFixQRYXtfXp75TvxL11qP+/oGDJjq7XV2pqTY/5Mr1k3KkrKzLTTVlycL9l1S4t8p34VF/vqCCozU2ppscW1u1uDgzZ0PB7J6ziqqjI5qrRUqanutNfaakxVVFg/ek/k3d3euGs7lVdWmkJ3CbeVmmodmZ8vlRvgRBER1g8xMVJDgyIj3enOQeG7nbL1hWS4LDm+cAqvP9gBn7RsmQ2YmTM1iFVHKMUqG1RW2hjdgp0eVV5uJ8XycuM/KclOaV7T97JlPkWi1FSTr8djVREqK9WE+X/bcSfE9HQ71WVkyBsn0+4dly0tPsRsOc7/HBoqDQ7a/4eH29iMijIl70WgJSebYmposHCKXufvmznT5JSdbW1ob7cx6awJ6ekymaenm8LzFjdMS7P2efPxNTVp+fJze6JrBnWc5dXsV3T/M6qsrNQdd9yh8ePHC9DKlSvP+P706dPKzs5WaGioAgMDdeutt+r9998/457u7m79y7/8i4KCgnTJJZfoO9/5jo4fP/4/5sHb8e14oenPq6nJspwXuEnyIpYhpATL8vAMKA8DVLyIZX9Y7J1M7vv14NIvPSBI07Mg9faqpMTmxkLMNLnSKQF4W5GRZr4IC5NNpogIKT5ej+FMmGVleg3z5R3HOe0dDr28XD7fGmz3pT0KCnIJJbAUYF6rkdxiERnpJmVAgCnkhARVVxuCTZ2dUkSEnnV8luDinhYsUFiYZXH5tePF4OedtjNNTlZ7u5mj5oGedXJ60f1/AfgUSLNTgN0Y0OY4zgSWkWGLTHS08ZeXJ69jc6Hjpw2XFiovT6/hBYJ8x05bkZGqx05iOTmyhTswULBQGhy0tG6xsSoBX7xdGwaWqK7WUOmVpCRblAMCfBnvlZAgJSWpF3dadamb7AT/e59vpqNDLuvNOheLedIXYwW1OoCZljV3rr0zJkZ5eXZy2IEzFy9YYIufSwhZ5ZVFa6sqMcDOrFnync4t/2WPLZqlpQ6AU+fS0XW5FHGFFvrS1GQKpanJlHFDgymrjAyDticmqtb11RY+kqKtqsqXr7G+XpZz0rt5qKgwuTU1qRnb9S92ff4aKC/P9EyFk/9iGIqHa2gYMg02NRn6MDxce9wzWrxKIipKJ9xCuxhzJyxx/bLN9eEWN581Z47JLyPDdgchIWZNcOn4vKhUaJPy8zU46CwgISFqb7d1QJ2dZqoMC/MpvNWubV7gjKKjbYc0Z45vbqmhQQ1Y5pUGnHXG5ca0sfKQ+vGW83pqaDNYX28TNT7enhcdre3nSKn4Fd3Z01+cGaW3t5cvfvGLLFy48M9+/8tf/pLf/OY3PPfcc9TU1HDxxRfz9a9/nT5LbQ/AvffeS0NDA2vXrqWsrIy33nqL73//+38pK4yOi3NZJC7i2vCTvkwOkViG8aeeGsrsMQrLjHI5lg19HDAJKzFJUhJXus8sp/x4YJBrgHcaR/HKK9DcPEgkltXjGN7CrO8SEGCZNNrauvlgxw72NTdzbP16gt299PdzEtgL7HPvpqsLRo9mzRrXkLAw+3fvXo6++CLHj/fS12c8T5gAd94Jp05V2z1r1nDLLXCtywK/Zs0pqKvjpqB3CQn5PCxfDjNmWCYSLO/INQB33EFoqLU5FBg9Zw5z50JQ0OWWcf/229mwAd7HMreDZT350D1nAnDbDYcZvnc3p4GRgYGMwrLE7AR45RVcxVlob7dsHWvWQHU1TJjgyzozBpMXGzawF4BB4LRlGomIYLiT27hxwG9/y8m+PqAZXnnF+mbqVMZgJWF9GVvq6rgp4jCEhFjWmMBAPuzr48NTpwiMj2cC7oHNzYyKjma09+9JkxiiI8THB9Dd7fqIsRAXR3x8gKXHCQ4GxnApEBUFlJdzU9SH8M1v0tEBu3bZuGPECMs0cscddq1ZY/K/5Rbe6brKx/ddd9lnW7fa7UFBFxvvM2a4bC3BhAIwxhVfHWkVLwYGGOXeM2kSHA6dzEBdHVx2GVOmmFwjgdvC3+cGLHMHl13GBxO+bM2sqeG6wPehrs7GZ3CwlT+44Qbe3HctV+EyCLlxE4qJ6c477bNj1dU2544etZIUXV1w6pQ9Y9Eiy/DT0UF4QACRwDWRkT45B86axST3eTBOXv/wDybvo5aJaAr2e1d11wobT59u906aZH38yiuuCMg4aGpieN07XHwxfHDoEFcOfGDjJDAQ9uyBW25hQlAQxMRwOTanQsEVpsVKLqxYYVUktm6F0aPpcc27Esv6w9GjcPPNjAgPByIZmZjIJCehg97hs2EDNDcbv3fdBTNncrUvRcq5IX/1grOgs9GScOaJ7vTp0woNDdWTTz7p++zo0aO68MILtWTJEknSu+9aefktW7b47lm9erWGDRum9vb2/9F7P4q6VH6+mdPCw20H6Bzb/f0ODJCba76YWbOksjIzEXqd3C5QyQfiSEiQystVVeVMRA6Cn5XlIMUtLVJsrPn4cnPNj+Ic44sXy24MCLBdblmZVFLiCypXeLjP7PVrnMmks9N24S4v33vgy2GZlyeps1Pd3bZZ9NbcKijQkJO/vV21tUMoTG8GivZ2DcVeeYOSOzvtmRUVtvN0sX05Oe63MTG2cy0rs516QYHt2quq7DcFBRr0nt7i4uxo5wXWBARoEOcrW7DAB3E/4L3fmZ08HllfzJ1r/DuY9+zZZs6sd6fMJlBJiTPfhoaaWa+yUoqKMpOfM5WecDvuE25XPTho5r3NOPNVSIidMHp7paQkHfeeFPv7zVfWLl+ttsxMWc20FvnAIPPmacgUXl6uwkIXlzY4aH6tOXOUmmp/pqQ486PzdaWnD/noFi+WVFJiz4uLs/6IjPQh9tXQIFVWqrraoVvz8nzdkZoqH+hFhYW++M+KCvs3J8fqKWrBAuvz/n5DEc6cqcpKC2cw2P8J6+eCAjvtlpToPVz4RViYL/bO52vC+fry8sz0Hxam6mpnpoyPNzNgYaH9vxf4UVxsZlwHqhkcdPLyeDR1qk1Pnwk3MFDq7VVensl+set7zZ2r7Gxrd0aGWVHq620IqazM+t/xr+5u+ZykZWUmx9pa5ebaqTw+3saW2tvtd729Ns7r61VQYO99yY1VZWebwJ1LQ/399vy4ODuJV9pzOjpsKSkqkpl2i4ulkhJrd0SEVFmptDR7nGfnznN6otsD6jrLa8/f6InunCq6lpYWAdq2bdsZ9331q1/Vj370I0lSYWGhgoODz/j+1KlTuuCCC/Tyyy//j97r89FVVakTi7MaxEAQSzBz1mIM1OFNbLwFM2HWO9PFcobi61RRoZfAl3Hdyv38Wq+5xTAry7Aqte75G51JBtqk8nKV44pXuiTBmjPHV53bG1ReiJkAn/UqispKTZtmE8YSSW/2IdoKC22RNCDG2w56vdsWlPp6RUYOpR4KDBzKHNHSIjPHlFk6slXues8p5oQEM+usxhzy3qKxKSmyhbu/X6VOdqudHFe5dpR4lUd0tBZgsXTeNq5yslRcnDZjZtqXGKrkruBgXyLtTlz1gfx8Z3ZuFPzU/Hbx8ep1z4X9Ul6eMyUvlVpbzQS1bJl+7Z7xkrtXM2dKCxaoHTNND2KJpte7disgwJdoW3FxZq4OClKz48ey3fx8yF8YHKx58xwS06X4Un+/KcMFC2yhjo0181hlpa9ordLSpMFBZWQ4JZeUJBUUmD8sM1Pt7dKTTl7yeNTS4hbi8nIzYbvAejNd/sYFqxe68VFq/ZSQIAUHKzPTlFxWlm0MWjBTfRNmjl+8WFJkpFpxQIuWFtNSLii8pcWNoe7uIYBWZ6cUEuKrvLHe9WFRkYPyO3PfS+593irqB7z9398v2GT9ZCXvbYPX2WkKr7BQys9Xp5tnbW5+KSjI7negp1WrTJHX18saWVHhix0sKnJ+4f5+QanqMQRofLykqCjrs8xMqabGV9lDmZmSx6PNrj3NOKXa3i4VFqoFM++3t7uNZFiYhaS4eZCZKfOn5uebGb2yUgoJEZT5xpYaGmxe5+cbv6mp2nWOlIp3vdsLOnyW195zxNP5Ruf0JNthlUO54oorzvj8iiuu8H3X0dHB5Zdffsb3I0aM4NJLL/Xd839Tf38/x44dO+MCaLtkCvsAuIbhsbGcxEwiE8LCiMXqah7EzA99mEnuuuRkwExx1wLVQOfff40pmDnsBgC+CpwiFvjFLywX7qFDO7gOM+ftAnYDsAJuvpljwG9/C0erqy0R7+rVXI4zrW3ezFWYuW4UEAtWtbKvj64uK4p6W0AAEAF79tAIPPqoWVS+FhBAYmIMAwMAzfaSFSsoLITwtDSIjaWvr4/hD/6QgAAzgQ3U1UFQEFcB12Gm3HEAn/88XV2WfPlygLlzWbrULG2BgUBMDJ1HRtKFmRe95suRTiaTwJLvHj3KZNeOazEz4/u4RMSjRztzm8l8wD3La5q9DTOF7gMoLjYTJvuAkfbZ5s2MCg9nP5CVNR6eesrMjnSDV7aTJhHu2hboZMr69bBkCVempHApZloe7fr82Pd+bAxt2mT/PvecJXk+fpxJGRnYSLocuJrAQJdku6+PNWtcYt+BAfv3ued45RXg4ovZtw/2VlfD44/zFl+lrs4KwXLXXbB6NXfc4Sxv990Hjz3GpQkJ8A//wNNPG98ALFrEzp1m8Tp8w232+6NH2bfPkn/DJGce+7yT6Vgz5953HwQE8KUv2djZutXG4zVJSdTVmbyvjIvjXwb+A1JTaQTGpaTwv4uvgePHYd8+vrpjIdds/QP7gf19l0JPD8OLi/lV8eUQGUkgltjb6wL41g3v8rOYN80U2NDACGz+0NhIcGAgoYmJvjEF19i491Zrzc+HESMID4fDd34HEhK4PCqKycCEmBgrGvv44yawvXshPJzp061e6ujR1m8fxn4NMjJg9GhGjLAxSXU1EMcU4KZhb3PzzbBvxw5++L2T9sPmZq4Zd4zd4260JOsDY4gNDuYkMCk0lCNH4NjoK2HTJk7jErpXv0xsLOxva2PFCrhq5kyGYxbo90dfb5WZmckH4V+1TN7cxoenTtnYCgzk5MaNUFnJm3wN8vMJmTYNP3026Lww2T7xxBNccsklvivMLZyPP25+hKCgGPZWVzMct/B1dPAhNs8iMR/TzdhifXLJEq7EFubhwHRg3jxni4ePLHxfZlxwME1NcOTIEaCPEQkJDGALv+UlnwX33ceHWFL24Lg4+/2cOUzGLWphYZzE+NyNUyAXXwyHDtHcPEh/v8t+TjD09tKH+Ra7uuDYqVO89lo31239HdBnDf72t23B6+nhnfB/Ano5+fS/c+mIYwz/3nd4B/iPvV9lFK5qAa5ttbVMmmQK4BqAri4mTTLl2NUF7NjBFe3vMNnJ6TpgQnIyN2DKMhDYeugQ7+/dy17gLWyBvco4ZxfAnj28jSk+r0LbDpzesYOrwOfPiAVYuND+ZRCYSHRwsFXJfvhhJmPuH6ZPZzsAEyE8nGtnzqTm1PVWZRpbjK8EGvv66Kurgw0bqMMU7Lvu/WVlWEXw0FDzJYaHc9T1/bFf/9r5ePuAjVwffdr0YUQEZWW2wHHPPaxYAYfv+xG/+AWQmkpwsFPs+/ZRVgaf+xw0Nh5k96TbIC6O22+HJ588Zlqzo8OE3NvLvn3G83CA3/6WRx+FxsYmLn3wX3g27yT09PDEE91uk7GL4IAAYJfbEATw3nuYLzQ0lIoKCAqCtWt3cQ1wcvly/uWe0+Zz7ujgnSnfguhobgF47TV+/uBhXu6/HY4e5Y9TH+D10f/MlwMCrNr73r1QU8OPZ38IgYH0YfUcgt3Y+ePRybwx8DVYuJCBU6e4FCgDuPlmqvv6qH7tNd4CU8Ks5CDwu63XWSmIiAj+d/6lPPSQVeP+3aZr4dvftjbddZf52sLDbbI+9hhkZXHXXfDQQ3YxaRKPPw6n7/sWC54ZxezZsAGw3V81K4C3+m5kwwZTnD96eCSdP/g5xMTw78VjbHOyaJFVwwgNNdknJpKebjqY2FiOurHyx9B/Yv58uDI+3qrSR0Zy2oYAxcXw/oO/ASbw1FPAd7/L2LEBjAoLg+hoPgx1Cn7KFKqr4YOuUdDZybkkv4/uLOhsjoPw/8Z02dfXJ4/H47va2trs+D15spSYKHjC/AyBgapx5qjlzoR4CksLtsOZuWowxFet16wWHS0FBGgZZsZcjtU/g1LzpbkAqdpaaZkzCx13pq/EREmtrep3ZiNlZRkCa+7coRiyvDw9y1Dtu8ccX729Q/G+Zi7dbHaorCzV15vZxoLSaxUX53w1vb0uePwlnxkwI8MH4jTTlsujuMy9/z0MHamyMmVnSyudWUphYVJ9veLjnYkuKspyb2J19NZiZt5SGCoi6zLJv+TMTt5Uaq6ktzlVgoN9wfL9uFpxiYna7MyJio+338yZox3gAtWX+n6/Hm/NrE1Sf7/7f4/U328m2LAwFbj3v+f6y5thxJv+TYmJZt4KDbX3h4fLmy9rm/fvjAzf/ZbirU4NDU7OaWnKyTHLVlGRmbNaW11S4fR0eSO9MzMlgS87S68ziVVVyRdovHjxkJ9M6ekqcDJLSJB1WFWVVFtroQjt7VJ5uYowk3UlVpDXCsF2DiFLU1I0e7bzl1VU+Oov1tZKCg3VHiw29Ijr+xY+ggqsqlJpqVnXWsDnXGwBM8/FxqrSjfO1mE9n/nw3tmbNkkpKzAcaFeWrcO+tU1dR4bKmxMdLQUF6z/WR5s61sRsUJAUF+Uzdy0BKTzdEZWmpNHOm2rAagh0dMp9jUdFQCrnsbGvHrFkuq1Gz5N6bnCwpM9P6yPnhPB7XX5GR0qxZWvyROe4NEVBlpfn8IiPV0ODMpSkp0pw5Wu76qrxcZh6PjBT8RAoOdibvhXZvfb0JtKlJ8nh0yq0x5xp1uQ907CyvfeeIp/ONPhEwylNPPeX7zOPx/FkwytatW333lJeXfywwyt13e6TKSmVkuDirnBwbvM7j7UvhNWuWL4FvebmGYqFceq/cXNlES0mRyspUWel8EsXFKiiwxy1cKFuIoqJsNs+dazF0M2eqF8uhqIICU3Ref0hJiSnLuDhz8oWHS3PmmLIbHByKS8vMlNrbzXc1a5bU3m7AheJi1dYOKbJVq1zGFI/HlwNs4UKXAsqbvWLWLItRcjFaKiiw93s8tlCWl9v7XGDtqlVucrtYJpWWmmxKS+3F3jReRUVD/h5vanyXt+uUW0C8GbSPYD6pbV5FWFBgRToHJV+2ZlfqZP58ly4sMFC9II/HlG1WljWhF4O3q6hISkqyhSwwUCos1CHMrzroVeZNTervNz/koOMzJcXJyxXY9MYl7sEBghITpcFB64fkZAMZOKBPQoKkjAwDtHg8vjg2bz5EZWcrPd3WcF9KqooKTZ1qolm61MZaba18VeoVGmqbgZiYodyaDtRTVeVAMZmZvjRtMTE2DtTZaeO7rEzt7bawt7fb/UtwfkoXt9baanzX1soXtgEnbTOWm2s8tLerBhdQ7wIqvdUE9ng3QmVlUm6u+TQTE7V0qQMuOV+aCgt9gerdbtxnZ1tbvWCi6moT5/jxNjXnzzf59YPU26usLGvWEjDFXVCg5GRzbyYlmU+zutqF4dTUqLRUvo1ba6tsXldVyYtE6ugwmRwAxcT43KYGFnGhN6qt1bx5Nu5ec5svZWaqtdVk6k0+rpYWKSLCm79b6u1VU5MNmdxck5WqqqTeXvMHzpkjDQ5q4UIHHjvHSZ39iu7j01+s6I4fP65t27Zp27ZtAvSrX/1K27ZtU2trqyRp/vz5Cg4OVmlpqbZv365vfvObmjhxok6cOOF7xowZMzR16lTV1NRo06ZNioiIUHJy8v+YB2/HNzZ6pIQEX25AzZ0rFRfbglpRYYuFt16HN9WCNzlgebm8ySW9C5E3n2BqqgN2eDzeCiq2U62qGlKmJSVDyLqCAlOEpaW2KHmfVV7uQ9SpvFwqLjYlNDjocmNuljo7fSXUWlokZWRYW2prh1KBtbZasHJZmS2Kc+eqv98WjNRUmRJYtkzq71dTk5NFTo5N2PJyX3HpggJ7t3JzpcrKIf7dItzUJJNNUZHdU19vTPX2Sjk5Qwlz29ullhbjNz3dflNaOpQ9w1t2u79fammxRaK/35eSy/Jd9vhyFubkyN5VUjKUUqq11Z7T0GDxYnP+f/b+P67r+t7/x68Z2CsDemlQLx24lw7qlZOGTho26UiThk1adGKLLXZii02XbLETW2yxooNLtljR8CQtKiYuOEXFwpIpKSUJ6UslpSDFIEVfJBgvhQQE798/7o/n81Xvc873s5W7nNPl9LpcXhcFXq/n8/F8/Lo/7vf77X67rRCpqdFC6oEBsWgvRkdFO6G21laitp7bIiq25Y7q6tTY+P3aD319dv9bBwmZmBBxudT4Dw/bRfdSVCQpKdodljKGtLXpd0pLZflyw5lYXBxg9aipEdvlzs7W/rJ4vwoL7Rroxkbze0PfJQ0NivItLdW+6+mRhgZtX1aW2NyoTU2m7wYGZGDAeJIlJWqI29v1PgMD2gF+vx4SgoP1eYqLpbPTsO7HxYn09tr81dLVJbYEd1+f/ltfr1Y+NVXnhyERb2kx8765WWTFigD9Wk+P/s0ijbQUPHp6tJ3NzYFxHB7Wnw3iWGpr7cJ6i1WmtlYCiEiLhNOCIZu5IyUlOjZm7KWsTGxpc79f16bhRZWGBp1n1uJrbQ3UP+bkBJDLlsTI6KgO8MSEjq3VrxbEcmBALWxpqeTk6NT1es9uwfgRkKFP+D7ymaH7215btmwRTGd9+P0v//IvIhIoGL/kkkvkvPPOk6997WvS2dn5kWsMDAxIRkaGhISESFhYmGRlZX2sgnH/z3+unk9NjWRm6tzesEFEenrscFxMjNngjcxOUlJA6HJiwnBaFhfbnk1+vuhibm3VyV5crLtBYqKMjur3lR7vlEhennR1GcRXU5Okpioll0VKnJsrIn19H9IAG7c9Ctgu96ASI3V1oqfkzk6BDpGJCSktNRtgUZFuZsYDMDSJukhN2Mrr1fVmIwVraiQ2VteeVSZhowVHR9UQZmWp1l6v2dwMjA/8smaNbqgtLfrrnh7dDxYuDJBerF6tfQ39hg1syC7kzctT7bLYWD3JS2+vLW9ksZVZ7O9SXq5GzOu1+atbWkSktFRSUgwKMjRUFi7UMRwe1rZUVurzVlfrcK1apf1YUCC2bE5GhphK50aZmDDj5PWqERsYkJwcEyIzPIWVldqewkIzj9LSNDxt8XAa1Yg1a5Q5p7ZWApt9bq5IWZka3sJCkRUrZMOGQGSrulpE6upk9WqbLES/k5oqq1fruHm9Oi5NTXrvykoRyc9Xo1dRIdLYGEDXGkMlCQmyerU+v43OnZhQg9HcHDCGxnjBuPT0fAj6n5sr06eb9uXnizQ0SF6emXvWgcDrlYEBMaQEQzb83+PR+TVvntjlA5KXp/ezDjyG7WViQttjsSRYMlJSUyNdXTovVq8WkRUrLJS/Pt/AgB1RsJhiLA055ec8ZR+MPB7RLxmUZ22tBGpz6uokL0/7qKFB1LD5/SKjoxIcrM/f0KD9VFoaoA2zNPCkqytg3IqKbKmm5OSAdFdpqQS8Zq9X/M8+e1YNnQ/kg0/49v0fNXR/d25y8eLFiBrIj7yffPJJAM455xzuu+8+fD4fIyMjbN68mUv/H0n5adOm8ec//5mTJ0/i9/t5/PHHCQkJ+XubArNn090NRxZ9iz898B5VVVBdDdfeNlNz1StXcvfdikyreWEKHg+8/PwJ1qxRwMcttyjCkQsuYNs2/W54OPrLqiq9hlW4evIkLS0G2TgOnZ0O+PznGRnRom7Cw7nzTli+HB58UFGTixbBlcsuZvly+MEPoLDwXBYvhhW/CEP6ZhNWIpz413P0nhs3csVNl1JbexkcOMDkn56jaL/kZC0unjuXoCD4TcordHSY5x8aYnJXF/PnjvFoyrN87WuKVeD0ae69F558UguZHz98Lddv+zlh+17jjY7J7N0Lf735cSaNjjJj85+YsWU9NV/+Lb8P+TVNTWFcdBE89BDMmwf//M+K7uvv124pKoKUFAgOVsRgQ8NF5ORAfv4FfP+OMEJC9J49PZ/nV7/SNty4cgZlZQpKjI7W/ns75hsKEHjkEXC5+OUz8wkKgjmOg+TkwF/cP6GgwCAf776bJUvg2Y1T6O9X0Or27fDqq3D55VqvPG5Xj8P1t04jPFwxFoSE8MPqa9izBy67DBgf55FH4FvLp/HwQ2fIzQWWLIHkZL6352dw7Bjd3XDdO2v4oOpZ/lJ1gpcX38fvt87XB77tNn6854e43XpfgoL4SueftINSU6muRkEYcXFct+A99u1TLMz55wMdHQQH6zxbvBidOG43v1j6Bj/uv0/HzuPR+QQsWAB0d+N2A+edB3v2cEnfGzz2GLy57OdceteNkJbG+efDLxe/xhzfy0jPufz72knMdI1Rc+gqxsfh11/ewBHHbPD5EP8wkZEwafNfFW0bFMSRnUf49jn/Qes3f8M1q69lZESBGr9+IIxrlkziuHs+ISHwlctPIE1etm3TAvInn4RLLoHbbtPn+f0d70J3N4cPo4CYxT/jhHMmPPUUkzre1D4KCuKDlBvZvFnvTUcHs4feoKMDUlPhYc+/M2PwTeLi4NLuv/Jw1TTwenXhPf887NlDaamCv9i2jepqB1M6dsG99/JW03t8EHkpZ8Iv5oq967kx7iB0d/OG61ro6OC3d5/gjjvgWs+7CpNdu5aa5yZz992wZg1cO/QsPPQQTidMWXwl3459k61bdQyoqtK9YOtWiIriTx1XwlNPUV+vgKdH+SE7d5px3bMHNm/mhzVf+3t3tM9e/6jX/6iZ/Zgv26Nbu9YILHZoLig3VyQ0VE6jgAZxOjV8EREhkpkp71u/j4+3KayssJLFc6d6TdskKsoUHsfEiFVV3YsBr5SUiOTl6UkyIUHfxcV62nM69fTncOh3Gxu1xig4WHrQ+iHJy5Pa2kDER8OYxwOcfmVlsn69SDEI6Am7pES9A03Cr9VrRkRIZaXNHCU2g25GhnSh9U3icqlbZKifjlr5l/R0kZoaqaj4UBHwwIBIVJRyBzqdIpmZchIF8IyaXI8UFUkNClLwQkAh2zyXpQsnERFyFMMzmpYmEhGhdWxWzrCgQCQ2NkBMbdS9rTo4eNYWe7U8Y8nOFklNlS0oGOWY1YbRUfH5jICpARIcAx0Xj0ckP1+9IDMG1rPXoaAElVfZL1JXpyHqgQGR1lb1upqbZeFC4x2WlNhhPMPWJuJ2q7fS2iqSmRnw1gxt1KpVSsosyckiSUnyNEqEnJsrOmeam3U8BgY0pDc6anT6uuUkKjM1garbS1+fPld7u7ZzYsLWp2sAbYPLJaOg3nJcnEhamj5zeblIX5/4/bpMYmO17VJXJ9LaGlCpKC62wUIWkCcrS6dyV5e277Q1H3Jy5BQBHcfcXI1aWP0rCQniRwu+V68WscIulibhIRQkcwpsoJUkJ9vR8OZmUdeyuFj8IMPDxts3zwqHZD9KAhAfLyKdneopdnbaArN2rtrrVdCLIVsfHtYx6u3VPLAkJ0tmZqDAXLKyZDcKpkpOFvUqGxsFnraVl6FepLNTvWETyt+wQefZWyAHz5L3ZO1374GMfML3e/9HPbpPtaH77nf9dvF0ba2lQHzQhNJelIYGi2R/XGBMYLuoltwpgW4BTcAr8m+L/ZndWAXhrwfkUrKyBLZIUpJuEpmZYhcBWxtbZaWGtNassbSx3hDp6fnQfcc1L9fbq6Gh5GSjg3Vc7kGRmxUVojGUvj7dNEpLdeMtK5PhYRNeiYuTlBQTiuvsDDA5FBTYIRd9Hq9Au8ybZ5gciorM7w7J6tUSSOYXF0turu41WsD9usAbJtzaL9AgcEj8fitceUTAb8CWKlWUmSk26k4VnI9IVpbYmmOqE/aK0VIbk6wssykmJUkPqvxdV6ehMYvRf8MGE/qMiJCGBg2dqjr2GwJD4nDo75qbRaSnR7KzdQ5Y1I3z5mk0ztJGS05W4xQcrP2claVjtwMjxBoXJ1JXpzp0UVG6aRUUiAwP63hlZ2to1EokGjCKVFaKFBfb6ERTly1wyBQ2DwkcNyHvDg1FlpToWNbVaWPcbvH7xXA4vmi4VL0iwcGSnGx4NA0SJifHtMHkMPPyNHTp81lzeZtBk/bJ6tUBJRwLZCNFRSIDAx8hkq6o0MupnqLfrJvXBfq0UcnJylSyRsfP0t6zUpCWTKEsXSpRUVY7Dgn4bRRxfLyla9du+mS/fT1papLMTJ1vVsTUUotYvVoJx60cZ2OjiDQ2yimwl4dUVEhyskYjU1NFpLlZenoCGpONjcrrqryiY4HQZmenrFmjenWdnSIyMaFre3RUYEwPYfX1drpjN5j5rKLPycnmfqOjUlAQgACkpYkkJp7dHF0/yNgnfPd/DENXVlYmn//85+W8886TK6+8UlpbW//bzz5hFBs+/D7vvPM+8pm/hQ/5bL8+1YZu2TK/SHm5bj4WQ0Fmpi7kykrdSEpKdNczygETE6Kz0EL/lZXpJlBcbDPsNzUZ42UQnRkZ5qRnqUimpYmUlOhnEhMVwt2l9zoGASBKebnCq5OS9PQcESGSny+brM9bxLw5OdLerp6dpKaKDAyoXIul5TYxYef9rByEDA+LTExIc7MBlAwMaEOdTvXQLKRDWZm2t7lZjWhZmfZPfb3NoNTWJvpcFqVRYaH+a22MVVUiZWVyyvISnU7dyd1uvYDTGUCVut3q+WZkBBCaJhclra36r8W2X1goGRlmE87MVC9gYkL85uAiTU0yjDLkW22urBS1poZ93pZccjptQMKA8ThOQSC/VVYmR63r5uer52kk2q38ozQ1qdHs7bXFuCU3V/uzrc32AKwN3aL7KijQA05uroiUlkpGhj1FRNLSdKzr6gJ0W1FRIkuXSmmpuUdxscjoqE0lJtnZ6sH19Ojfi4rUYzeyN9LXJ01N2qTUVMNwUlioY25YQaSrSz/rdIqUl0tpqcmNNjaKVFZqm1wu7VsDNPL5RKS+XsctOVnniqHUk/Z2bX9bm2UN9fcej0hhoX6nokK93NhYycsT2wPLz9f+MFJyOq9cLpmY0ClbUSHK4tIjNuoyK8ukrY2nuGGD2vmUlADqsrrarOW6OjsHaCNZDQI0J0eNX0GBrqNhEOntDUhUWc9qRIstIJOFX7Fo4z5cxpOREcjzS2WlSGWljk9EhEh5uWRl6YHA39r6qTd01dXVMnnyZHn88celvb1dsrOzxel0Sl9f33/5+SeeeELCwsLk6NGj9tvn833kM6tXr5YLL7xQnn/+eWlra5Prr7/+PwEWz/brU23oPvc5vwyDDTwZNqEJaWsTyc0ViyJIIiJE0tJ0U6yv18VpuPp2g57a8vI0pGb0pKZOFQMOOW48mj0yMaHhsS4wNU4NIgMDsgUkI0MXxRZMyCwrS8NB2dlyDK1p2wSBVZ+bK9ChG29lpS7O1FS5Bw1TNTaKSEmJbnwZGQKFdvmABSxRr+hhbbcxwDuszT04WI2DkYpubzcGsalJJC9PSkpUpXr9erHRdnV1ov3l8QS4Q63wVn6+DTs/aXk/Ri+uBq23k9xcGTXG0IvW4bVZz+xw6IYeF6chq+FheQuMx3hE72WO5+9bBikiwnDz/Vl39JoafYbYWJHYWDWoSUnyvjFq0tqqzx0TI21o2DQ9XdSAZmVJOwr+kaQkbX9ZmUyAiQRsF6mr09BXUZHIxIR6lm63tqW3VzdLgyTdgpZUTJ2qe11oqC3zJunpqm7d1KSlEtbmC+0ibrf0GA9S59YhG0Wpagl7ROrrFVhRUyPz5umYzJtnjHFenkhqqqxfr94KHNHxKC2Vnh4js9TXJ7JihR4KIiJEKipk1Srj+VjyPvX1IvHxOu+SkkS6ulRRoblZeq3+tFzBri41pBUV8hZaR2rPAWO4281YhIaKiNMpmZl6lsnJ0SYbqlJJSTGADcOdGREhAaRlSYkdzrdE7C0R3Px8PWzOm2e826wsycw0oXiLAzM0VIaHjedngCMGX6NeV1OTHSaeNct4dJa2YHBwAPWakSE5Oaa/IiJk9Wq9d22tRkKnTtVLtbSIhvlzc/UhHQ6RykqZPl3ngP/AgbNq6I6DjH/C9/G/09BdeeWVcvvtt9s/T0xMyIwZM+T+++//Lz//xBNPyIUXXvjfXu9v4UP+R7w+1Ybuj3/06+ZRVWUT1zocGt6qrBQRt9t29MCr3lN+vkC/JCWJHYKwOAcdDoNSrKkRP6Z+KzVVT++hoZKXZ6EnX5fly41RcDgUZRYXJ6tXB0rodPMcshfs9OlqaNraRKS3Vxe70a2ydMRkYEBSUtSzswpmKytF/+52C1TL+vWmjb29iqLMzhb4iW5E6elWhYQUFmo4KypKN8jSUhFJSJCcHA3TeL2iO4rbLZKUJBs26I+m1ldiYvTf2Fi9zvLlop1qiKQtMc1583TzamrS57RqiGyhz54eQ3t4XPx+DR/BcVtZfNhsMrDN1sebNUu73eMxm6DJtcIhaWzUTW/DBj2lNzQEZM8kK0uys9WTKi83CNqJCdEw9XH1zJqaJCLChH0LCvRA43Lph+Pjpa1N/3Ya1LDk5hoU6X7ZDhrWjIuTqVPNYai5WedHWZl6M1btmylYTkw0npQx8g0NJlQ3MaENLynRjnC7BU6JtLerp1JerrmhkhJJTDQ6fRERBrHboQYfrR2sqxOR9HTZYeZsdbWeiTZs0PtLbq5Iba0sXBgYt/h4NULNzRIoOamslNRUnSuwX5KTdXx9Pu0TK0ydmCiB0ovmZrt8JzdXREZHbU7wWbPEJnq2DE1lpa5HA2C1q29kYMDW1l29OsBbbs3zDRtM/eLEhH3wsvJmVlQiMVFs/lYL7S/NzQJH7MhIVJReq64uwAstfX22CK411pKRIdLcLKmpYmv0LVwoInV10tVlohC1tVJRYcRzGxulsPBDiM6qKnn88bMbuhwEOfMJ34N/h6EbHR2Vc8899z9JsX3ve9+T66+//r/8zhNPPCHnnnuuzJw5UyIjI+X666+Xffv22X//W0hF/hEvi/nqU/n61sRTTKr4Ebsun8Pc9O+SE650TF1digqkooKNKBWd1zuf/fuhb/FvqIiGzZsVyNXcHMbsnf/B5Zd/i7o6ZWwiOpqwvDyVJjn36yrTMXeuMhwBS5bEEx0Ns3PaeW1wDkFb4XjjbtL6FYl2++2KxBoZuYDnn1ck5733Knhr7lz4zZMz+GXKLh4um8/kn15G2HrhO3HvMSl8Gps3wxefFB5xncP1XuF7C97kTW5nTm8vclMM74YbhKHLRdjWl+Gmm5DbnBAZycsdM6heC/9x87P8xX0jPp8CABcsUKTfB43bubNfUXLh4cB4pCLatm/H4dBnv/9+7bv5riMQHs7Bw5MZGdG215z8HjUrFXVpIT8fekhBZnv2KEJy+3alenrgAah56WKiorT/CwunsmcPpKRcTEaGoi8XLYIpz+fAggW0XPZVvtJwH0TeweLFYdx1l6I3y8rgt8XFfGfrD7GoUPftUwDe+LiybFVVKV/njsseJ6RP1W46OnTY2LaN5cuv5pEVb/DL6qlcfedcW0Hn3QX3cesQ8OUHlK7p5pu54kcLWZm3naDVrbwWfpDjzt/zW+cZbrstmuho4eC2V+ChWTxWoGPJ/veV13FwkMfveIN3D1/B62Wvw979hIWEEBc3m7lz4eWRn3NNdDQdHbBqVTAvboTrhgZhaIgTh08Q9vyfKOx2wM6dxMydA890c+edwJM7SUkBxy3lilIMCaG09DK+s+hdSE7WiRb9M1i7lgUPPMCC8A8o/sMU/nTHLp7tnq8o0KHlvNZ/Ka+l3MeZRb9mUsebfPvmjRy/9WdMe2oNLMiGxYt5tns+TqeCI0tKohkZ0b6+pO8NXl5t4MW+Xfxw7Xye3TiF6GjY3HIVQUFX0X03/H7xX2DB3XQveINff3kDSzZ/g7HI73Ld8//Bdavngm+c70W/xs1PXsVPfwqPFJ/QibJ8OceZwdat0NamEkNHQi5l8qYN1Ax9g2/3r+G6xETY2AGnT/P46Hf5xk+v55Ls66n57l/4Wf8v4etP8EplJYyEc+JwNKxcyW9Xr4YD43R1TWf287+HJSuJi5vMdZ6D8NJLEBrKax3fY+3ai/H5YNein8DzG/ly9dtQo88bHQ0zul+DnTt5rSwE9g0ye8+zpKTcCP39fP+G9/jiFy+GzsPExSka9Np/3gHx8eys/Mfse2fjZfEFW6/zzjuP88477yO/6+/vZ2Ji4r/kLu6wod8ffV122WU8/vjjXHHFFfj9fh544AGuuuoq2tvbiYyM/Jv4kP8hr3+YCf0HvmzU5Q9+YIM93sfkKSIiRKKiNLzhcumxPzhYJDFR3oFAzsyIckpFhUhCgoblMjMNCGW7OByiKMHgYFucsgeDMiwsFElOVm+jtFSvZ2W3jbjlMOiJu69P6bOCg8WPillKVZVdTzUwYKErx/VUXVIi0tkpXq+FxmyQrCyxwRqjoyJwvzxnvMlVqwKhITuHFxcnb2FYTKxjcnu7tLWZfE5EhF27VllpkGymJlBQpJkfDQN3oYzvgubdpLNTXkIRq/utPk5PD+RBrUJDtzvAmJKTIxIcrFRYtbXqoaWniwQH2wBVKS+X4WH1ki3UZVub2EAV6e1VF9zplFYT+hOU2q2xUb2UJgzy01IsyM7W5zA5UElI0DYYKqwGFI2oqMvjInV1kpJiPIm+Ps1fDQxIVpZRJzCSLFJRYQMxTqOoQikoEImIkPx8CeSyUlNl+XLjtZrwaYNpe3y8BNqalGTXEEpvr+xFBXdPoSoOFvLP7zfj19SkHqlh37eQqDIwIBIRIRNoKF1iY0WWLlU6tLo6kaIiOwppK1YsXSri92v4zjChHEND7u+b+Z6cbFCapoB61FoHmZkiHo+cRHOia9YY9GNurvaHy2Wz3bS1iebCcnNlPwTWYkWF9GBy1vX1IkuXSnW1ft4mKMjKUiTo8LCOTVycQV2ekvdR5ZCMDBGpq7PZVaqrTdSitNQWAN4BIomJet/29kBBPooytVRDrNDGDjMXc3LM+JaWClTr/RMTBZ62JX+kvt5Ss5I+sKkIOYsenR8UlfMJ3n7+cw00IPfcc89/um9vb68A8tprr33k93l5eXLllVf+TW0fGxuTL3zhC3L33XeLiEhzc7MAcuTIkY98Lj09Xb71rW99vA76G16fakP34ota3CwREbJwoe6ds2ZZis1eqajQtTh9upic1LjAOklL03GPiLDriQX6TG7ldc39pKUJnNI4vtmFpk/XUKAlcSe9vbJhg9kEhodtqL8VqoyP170HXjcI/H4Bb6AY1hSeQoONMszMNGHX9naBBrkHIyliCsbF6xVBZVwaGkQ3y9xcDa8MDEhlpZgQ4esC4zJvnm7SXq+INDRYtH4aevH7bYi7BWiJiNDQT3CwhRwcM7mkU5KVZfWVV+C4BAfrc5rqAcnNFRuKD2OycKH2+fr1VujrWVmzxoRBOzt1sy4pEYmI0I2ur0+SkvS+m8zGBn79cl+frF9voT7HJTg4kPORgQGDUq22SFJsyimPJ1D0q+06IqtWWd1YqOOblibDlsHq6QkU8Wdna993dork5EhLSyAs6vNp2/PydLytMKWUlGg4uLbW1pKbN08PItp37Zp/s+K/fX2SkqIbbH6+mKL9cZGoKA2VRUVpSDM/XyQzU2Bcn9mSoentNSjbdQY1e0S/l54uGRl6C9hjc3euXy96ajIAipYWsb/f2KhhaquiJjbWFOybA1NXlxXaOyWzZuk4FxYqyhNO6Q2WLpXCQr2u5iXHbGaStDQdPx2HDpk1S/vNCgFbJAQW84nFTuP1mlKOxkaRqio7DSBxcQJb9PdlZbpuSktt/b/hYdN+Q9EFDQbV6g8w6NTXy/TpBkhkEtV1dVafdOh9MzL0YNDVJX5Utig7WzUU8/P1a01NASaywkKdsk7n2Q1d+oOCdGF+grc/KEgAOXTo0Ef4g0dGRv7TfT9O6PK/et10001y8803i8j/XOjyU23ooFVnmcejcXGv10ZDNTXpJPf5xDYgq1eLzYFpAQR0MW6WkhKdpC0torO4osJm/IDjkp2txlHa2gLGr7PTJjqW9nabxkn8fsnM1A23rU0CZLEVFZYUnUhPjxQW6t/y8kQbZMHQyspsguHOTvXsrM+sX691WVFRulHX1elnhs2pWkEO35GmJpv5SfNX7e0inZ22KGhsrDGoTU3i9RpvorLSQs1Lfr7YnI3z5okNlpHMTDWqRgRU/H7NIVr8lfn52idVVfo2STSLBUp6emw6zepqw+TS3CwpKdoe6NdntWoprN2js9Pk99o1J1pbK9Lbq/VkCQkiycnar4mJ6gnU1Ji83pi2vb5epLxcN1WvN5DjrKsTr1c3zuFhsdGPkpWlBsPlEhketineamslICCbmirglc5Oi9da+STnzVNmmNxcEXG7JSLCYtPx2/3wjvFa4ZDujAaSCIf0ANDXp5u0yYF1dZkD1cSEJoLb2swhar9UVxvDGxMjUlVls39kZQVybDY3a1OTrFqlUzUiQpeOtLWpQa+rExkeloEB7V4LwGLlhXNz9TqdnRKgmLNos8zpwKoPhCMSHKzzx5QyyqxZVmnKEZmYsMoPvJKeHqBlhVNSUqJrNj/fKjnZL7BdYmK0zZKdbROtS1GR+P1i68t5vdoNGzbou7ZW607hDcnIsA444wLbJDPTrHfD4tLVpWujulrbbF2ntNQql1CXFTo0L2fyeFJRoWsiO9uu74NDkp9/lg2dwyFy/vmf6O13OP6uNl155ZWycuVK++eJiQn53Oc+99+CUf7f1/j4uFx22WWSm5srIn8bH/I/4vWpNnT+H/9YvaH8fGOwGgS6JS9PN55D9mbilYgIPXnqidQv0G02pA6R1FSZOlUNGYyLJCTIfpQA+BRa3LobzKL5rfFonlXG97o6gbUiTqco6EGLjnXj227ABwdN2+psj6OxUdTly8pSJGBZmTnpFqpHkJ+vp8n4eMnLU2MXHGzjCnSRr1ghbcboWQl8eNbUy70hU6eq4cjNFZuXMiXFbG7Dw4oYM2UWFj8ivCJWnVxqqoYVrYLhefMspOdx8x4y/VstsN14rQfNQt8uoaH6ffWwXzH97RcrLAkvyg4UmZmaqu3Xje2ISFeXGbOD0gA2peDEhAX0OS7whuTmqveWlWUZk3ZJTNS+t077sbEW8KjbEAyo16On+z3Si7L/S2urSEODGrjy8o+EmNesEZGsLPvkr8/crycoU5huc2x6vRoubGoSOKIh7qws6QJzeKqT1FRVFxjGiI+WlwsckXdAQ2ExMerhJSUJPCnHUEUBNQb9ejAx4cHERAMqqaoS2CO5uXpw6enR5/b5AuK8Fjdme3ugZKapSWx+VR3DQwL7TT+OqyGbmDB96BVosIDMdhQFDirFGwi8IVJaql5xY6NIdrZNNyZlZdLYqF7cwICIJCSosTGUcD09IjI6qn9ratJQZVKSNjAuTiQmRuCUXjs0VOC4tr24WL1K4/lLQYGuK1MqInl5sn69PltLi2jItrfXgFX8AqpMLvX1YnnU1lyR3FyNvlgyCWa/kbg4C+QrnZ06LvHxYpNE33vvp9/QVVdXy3nnnSdPPvmkvPnmm/LDH/5QnE6nXTKQmZkpd911l/35wsJCaWhokK6uLvF6vXLzzTeLw+GQ9vZ2+zN/Cx/y2X59ug3dqlXSZgzS1KkG6hsVZXM7hoaampv4eP3X7dZFERqq7l5OjpYcWEc5k3+zClSlqkpSUvTXFiemuN2aw4iPNyfNbQbJeVAXT2endfzTfJfxGiQ11dDxD2t4xtSx+f26V9rF4JmZAppgsHiSZWBAgoNNnZ3Xqzv0xIS0tOhm9bS5z6xZel0ZGNAdaMUK3Rw+hCCTpUvVS+nrkzVrtBuys0V3wokJfViHw6q015/Ly0WWLrX5/Cw0nPj9ajXT0/X/Xq/e3/RBQ4PxGuvrtZ+9XhGnU3OjdghWQ6Bi+lS8XvVuiopEkpKkt1cPDXV1ojmlvr6AB11Xp17Y8LD09Bi+xqKiAGF3ebmtBn0K7EeUpUttKR6JjZXERLE3X8nJEXG51CiCeleGbQc2yyGTi5LgYJHkZGlu1vGrqxORpCQdb6dT59noqFrggQGJiTFzamDA9jotVQzoluBgLU/p6tKx8PlEDUxPj0hyss3e0tBgIPXx8ZKZaeZHT4/k5hri8a6ugLaQgd+uWWMiCjExtir6hJW3Ky2VlpYACFSSkuz6RVP1rPeorNQ8WXKySEKCRjUMU//y5SbkmJ2tDaqqUiMcE2OTHUhoqDaiqEgNh+U2trbaTCYTJp8qiYlikaZaUQCrNlB6e20icJv9xJK6iIoK5MctItvkZH3X1ATqHRob7XCnz/chQniHw1bfSEoyaMuaGrElTAoLdY41NIgkJKhBTUqSUTO3rNOYFbb179t3dg1dSIgtdfRx3/6QkL+7TX/4wx9k5syZMnnyZLnyyiulpaXF/ts//dM/2TzHIiJ33HGH/dlLLrlErrvuOtm1a9dHrve38CGf7denGnXJ5ZdzRU4OQQnKwRi0oBUcDk64ryAM5RicdsgFKSlM++lPobWVOY6DCiUbHIToaCZ1dMDhw3DrrYw98DCTfe8ydaMiE7n8ckpL9eNBQcC5X4Q77yR8eBi2biU/P5pt26LhhmCy+2cBkQo/3LsXioth40aqq+GHCW6FJDqdMDhIdPQUeLKZB5q/wW9SXmH16qvZtk3RZgwNsX79t3k3HFLmwuR9u/hzx3xWroR7b/Fy75e/zL0TExzsnsRXmn5LRsPPeSQ1lfELz+HONcJY8jeYvPo+cLs5s/q3TNqzi18+M58FPvjLvbsYm/sikw8f5ITjYm6/vQ1pHoboaGZHX8xtt8EvXS6Fap48CU1NirRbsACWLOGmAwGuz3HnDKYEjan657JljDnCaBmajztW/z775puJdht0p/NyJlVVQXg4J3reJ+y2byk0Mjsb7/KpbNoEH+QIjz0GP3nyJwqJNAreDocKRl//L1Ohrk6hmLGxnImcySS3mym+gxx3zsbpVN5LkrJ5w3cxV0SOqWLm4CA88wzPHr6arx2DS84/Affey198V7IoBFj2JPcOwjVxx6munsbxBQ8z7bbbyH3y8+Ap5/4vAf5nCKqvZ43na0QuamMRaDtcLq7atwvPQ/OZ5jwDrtWqil1aypzB18AXqX355JO8vfM2I5nthAceYONG+GH0y5xZfA1BQZ9n2zYIWVJJyOAueL6bS5YtgwMHGLvl+0x+8kmKNsL3b7qYV/aAq6YGFixguQ+mjaucbWSkEZnt7lbCxRde0H/7+xnfZ5C6P/2pcjxOn86ksjJtz9y5fCX2A17cOEU5KqurAZhSWakLKCREOTGdTi6NidF1l5/PYD9w7724E+7joosURUt0NCeCphEWFQWjo1BWxhnnNCadf35g4kRFwcKFHBycxuzISIX6+nwMBF3KpPh4VVv953+Gp56C1FTtMp9P58vgIOzbxy23fI85QYrMXLwYiLmTv2ybxvWLF0NoKFMyM/n3tZP4cXe3dooFwR0aUoLboSGFlg4P09wMN/Y/CtnZMDrK8TvuY1p/P2V3w4yRg7pmfT4lan3gAaZO1b4gLQ2nEwgJYXJ9PXguVSj36tVERMD3bzrBiRMXnrWtDtBN6JxzPtk1RP7ur6xcuZKVK1f+l3/bunXrR35+8MEHefDBB///Xs/iQ77vvvv+7rZ87Nc/1Iz+g16BHN1LIuXl0oWyF1i5IAOAE3jRrqdZvdrKnfTZOZnsbIv2qsLW/1q4UENKUlJiwnKFAsqSDq/buld2OMtIj3R2BsjNN2xQR2f5chFpahKPR0NLGt5YZ+ujWdx4sFY9LyOfUloqJnl+v42CtBk9bImfIgHN3Uh6egDNGBoqsFlmzVJnornZnOYNJVJoqH7coiqTiQnZsCEArigo0AOwlQ/R596jyXivVyQtTeLj9XaFhQYU0GpypcPD+v/yclvdpKFBbHo06BMpK5PycvWCVq0yaLmKCtvzhTVSXi6K6CzUHKSlBaeh3e3i8eiBvLdXD+EDYBCK2/QEbhVhVVQI/FafLSnJhKnu0EEqLhbYH+Cb7OzUtjY22iCR9nbRhlZVieTl2ewiubkaFveCQL4Zwz12yE5VBI7I1KlKLwYHTci8XqKiDEIWTDj7FQ1jGy5Pi55OGjQ8KIWFGqY2Od3YWNGONZRj4DX3a5eBgYBMoOTlWUQdcs45AYdHampsNQA7nOv1Crxh6Ybaecj4eJNPzswUWbpUvbayMluLLTdX509lpdj5Op9PTMh2v0kFPCsZGWLChi+K0re9aPrjURMKXWfzVHo8Omeqq81z9PSY7/1akpJMZKWvT+d9TY22yQifWkQ+iYlig1lCQ62w9RsaKRkdFXjSpBbGRerqNFRcVyfS1maHTmGzQJEd1oWDMn26GC7cJyU01AjX9vWJJCVpmDkqSiQnRyBfIFPi489y6NLpFLuA82O+/U7nWWnTp+31qTZ0b6JwdWjQFW3CD6etnIspDZgwIc1eDFTeUBj1ofDmTpODk7Q0o2i9TqKiVFH8JGgOprZWNqCwayt2Yoc9yst1gTQ1abiopiagvD06qpDw7GyRjAxVN+7pkdHRQM1tA4a0d3hYN3yjWfacQVdGRZmc3MSEMYBFcg8K7+/qUoNl1R3n5ytYZa/Vdo9HLC2RDRt0oR61/lZZKXl5JpFfWqr38HjkEAr/ft/kz14C6UGL2KurTTg4MVHs6uGmJhv8YWuJZWQEyBC9XhG3W17CQNjT0tSgxMVJT492k+Tni3R26rgtXSrwoho5EzJtatLQ9EmTq5KlS0VWrJBTYOeKXkULqKW9XeeCKYWQvDybxmsdBuo/PGwjOy3CGZ/PhKsKC/XznZ22rJ7Xazbz5GSR5mYbkbrd9KMkJ0szKmTa2SkiGRkygZYJ7ABb7X6/mU9wSA83SUkinZ1qIExo71WwOVynTxeRtDTJzTUHFlMu4vWKNsycOnabEL5JokpWlsLcJS9P+6uyUudxb6+UlBgQRlqazda8CXRMVqzQvs3KsknMY2NNgX12tkhvr6YI6uv1s36/Wt+iIpsZRnp65BhagvIS2Lm53SiRc7M5mNSgBNebzNyShAS9toWOysoSv1+fo8E8ixQV2bp0aWkikphoU3NJY6NN+uzziUhDg01GfgqkAkSKinQOJCaKJCYGcoder11WIqWlIi6Xfn7FCunpMX0ZGyuwVt4y6wH+LFJbq/dqbLQj5ntNezs4y+UFF12kp89P8PZfdNFnhu7T8rIGvgYMU4Sean0+0UlaUKA5MUN/ZOmNiccTWCwWaV1pqaw3k1g6Ow1583HJzBTxorU+FndjM9h8fNLebtckNTYaQzQwEFDxDg4Wm1YhL89GifWZhez3i36xrk4kIkI3kokJycqSwN8cDgNmKRRZsUKvXVwsUCH7QXN2tbXS2WnBvrcLeOUPliGwEKGmvqirS/TU6XarVWxoUG/CQDTz8/X6EhMj4nTanJGHQCQ1VRITDVy7qkrBD52dtgq6JT22apVhYTE8nBZ5vBQWisTF6TMUFOjmYtTgCwpELGv2ktlc1qz5iASZiN8vfdZYJCVZGpgiIOecE8ivpaSIzaRRWmqMTGOjjfDcCzZPpOVdWuoDXV1i65d5PGIARvvVoFRVqfdaWGg8IEXu1RjPU4KD9YRfVSWSnCwvoXWM0CddaD3WJvNsiiBdJ0+bDTM722aFs5UZamsVSbt+vXpDfr+IJCfL6Kg2p7NT29qJRh+ktFRKS40BM57/KWOopKrKVmZvahJdE/X1GgGIitK5a8onpK0toCUXHx/Idw4Pi6SmqkEpK1NvrrLSEkeX8nIzv/LzVdcXpcrbbeaQJCXJFmP4XkXzg3Ugz1lj2tQkkpSkbEOpqfoMhqG74UNG8aTpr5YWXW9r1ohOsq4u/beyUtdYa6teIy5O9pu+tzywLeYgaCmNDAyYXF9VlR4UKirkFErzZ+WMLRUPaLfbDMdFWlt1LpWW2tqNO4yh8//Lv5xdQ3fJJYq8+gRv/yWXfGboPi0ve+B/9zsNZXR2yqpVGppMTdU5n5trQbjbJT1doy8xMYFwWWqqhfA7aItt2oW06ekicXF6Qray/AkJdi2ObnLtWsBpyhCsUNDUqbpHpKToid/rtXAdp8RCQFrCpqMoEKayUp9BuQsf1k2/oUELlvPybA7K5csVcNLVZTaV2lq5B2zaLks9wKK5Ki8PqO9Yop1NTYbg1uuVVgxYpqpKrUphocCQzbu8cKHa/+pqmyHLrhVMTbVCie2iaNNukdFRSU7Ww/LUqWJKIMZk/Xr9rkUlds45YjzxU3bxvrVRNjeb8FxVla1G0ASSmWlCrT09kpKi97aowoyzLHV1AXJlGFNwTlub1NXpBhQTIyKjozatpkXYLYmJIi6XrSixYUNA7T09XXRSWGrWxrUDv4bICgtt4EtPj+hDFxRo4t+vP5aX6ziK02nqCf1aQpGTI5KWZiNmo6JExOVSo5SWZqNuYYseXJYuFY/H1A4mJOhES06WpCSxkbtwXDo7DQjI67UAgCINDbYkkiWcnZys9ismJgDqsEKclmBxQYHYnrzO6UMyb16AF8ASYI2IEDE1A3pg6uuz6bp8PoOmLCkRaW4Wv9+QMw9oHzQ3B1i9pK5O/H6xybXXr9e5a6t8NzVJfLw51MbGqsdrJuf69SKyYoV96K2o0GtYquTWurOMfU+PlSI4ooAs0yn5+SJSXi5tbWY/6OwU6e1V4FN9vUhxsXp/Xq8sXGjVyo7ZgrbS1CTi98uePWc5dPmZofvYr0+3oSsrkz4wua8x3Qzy8nSy+f0C+/VUa7GjZGbq5mHpZXm9mo/r6dENrKBAZGBAuroMf53fLykpAc5kaW0VycjQayYkmLh/vdm09+sHLaRdcrJIRIR0dprJv2KFtU51AVZW2uGnqCj9zPr1YhgXfiLS2qobVG6udHbq5vO0ddpNT5c1a3T9JSUZNGZfn7a5q0s3hpoasSXJ29oCCs6trSJ5edLZqc9knAFZvfpD7BVpafqv06n/N0i9jAztotpaPVHbqgcFBbppmc2gvV1EGhqkpMTA2U0eo7nZ9L3FgOx221yZ4nZrv3V1qVdp+B8twmSZmAgkcCYm1KMZHdV/h4dlYsKQHjc0BODpnZ1iy8InJIjXa9CB+fkitbXqteXk2Az3iYmi987I0NN6cLBudB6PCVW9KBIaqhuh2y0SFWXJ/2lfGHaZUyZ01tYmOieHhyU21hjtJlHGFr8Ok3rsh9TIBQfbeTbp6QkgBYuKJCkpQEYgZh5kZASeXQ9TWpZh99XAgEhRkcybZ7xsp1NvWlioc7iuzq4fy8sz6FsjB2UhGKWszD4l7EaRy1JYqB5dV5dkZmr3rlolgeJMk0OUzEydc0VFgYL8igqRqio1xF1dNoK2udmgphsaAqhoK0drSUaY8EB2thnHri7Ng2dk6H1NWc5pFAV52hwkLSl0q1ZUenu1Q7KyxOcz0RhLky81VU6aQ6XNcLNihe3RWqTeUlioxm7FigBauKxMpLRUqqt1nezbd5YN3ec+F1C/+Jhv/+c+93/S0J0j8jFgOP/DrxMnTnDhhRfyxz/6ue07QbBxI9xwA7v2TGL/fujsVNHolSth160Pw6238uK2ML78Zbhk4E1+v3EOc+cqSOq3yw/y6ObZAFx4oYIIr3O/CQ4Hj26eTXS0oi5XrlS+yvtu2MUR13xmPPAz3r3j92zfDt+OP8ize2ZzY8vPFX5WX0/rr/7CV0Lf5N2QOZx3nvJHTgs6wbObw7gx4Qhs28YPN3+LR1Oe5S9BN3J9ypiiwVJSFHV42228cmAG0dHg/Nw5/GG1sGIFTLnwHIJqa/l9t3JZrl0LJw68x72XXMK9zc0wMsLlt1/DW60n+HN9GG63qp4vXgwPj/yQX7sexe3WZ3rwwR3I0nvgrrs455+upLDQwa89/8Frkd/iC1+AS855jyPjF7NuHUyfDt8LeZaxZTeyb5+qa3d3w7f7HlbCSbebVrkSgIgImB30riLdQkLou2A27e0KGtu2DX5523u8vO9irok7rui38HCWfncasbGKdu3uVqBnf78CA598En7+q3P4cbbg8ejtPB69Xnc32nctLbztuprISAWMBgfr7Q8fVj7OJUsUzNfVpSC86Gh9j4zA7P7XFRE4NARxcTy77WJuDPkrL45fy3Udv2ds5c/Ytw/mj7/Oa+NXcpVjlyLvnE7+VD+N77lfYSzhajZuVLCox6PXjY6Ga05t4PG+bzA0pHM3Olqf6ep+HXePBy71vWL3Vc2xawD49vh6nj3/u9w49CdtfH8/7zqvYObQm4xFzwFg8s7XeI2ruGrBmLb/q1+F2lr+emA214a8xrO+q4iOhivCj/D20Azcbphc/6w24tVXeTPpduZEntDJ4HRSs3cObreO3/g47N6t/7/GfVDhs4cPw3PPcSTrV/T3wxWbf8+J237G0JCOyaTHHuWDW37I4cP6/NXV8M1vwleijkB3NwddV9HRYQu189xzEBurc3PK+Ak4cIDvPDCfPy9+VAfW44GUFN7wXczzz8Ov7zgRQE/W10NKCmfmXsGkweO83T+NSw+/DEFBvBl+NW43THngPoiL45xvxtLePguXS+fCokUKmv2x61mOL76RaVUP8/Lcn3ANL/OXIe3/xYv1VlVV8MuQh8Ht5tqy6/nrsod51PETAH54eg20tXHigUeZfOE5TBoVJo+c4PFnwnC5oKHhBA8/fCF+v5+wsLBPvN/5P/95wiZN+tjXAThx5gwX9vR84jZ96l7/05b247wCqMtv25I0ncazKyjQEFdamth6X5ZKQUxMIIVXXq4nWEWu/VySkvSwm5srevKNjxfologIPbBpQfoWm529rk5E6urkBRO+FIdDT80FBQYP0KHhHIOutNg2MjNF4yGjo7Jqlck1TExooywhs/R0+7QvAwMyavJKs2aZ8J3TaUvLNDYa77O5We4xOUXYIikp6k2tWWPa2t4u0txsF8bHxprQkdGAk9pakdxcK+pmQq3PihaFj0lyssgGUDmWujo9GZtwkJSVqUvR2BgAOHR2qiq0yb9kZpowkCk8LiyUQD4yO1uys8UUkavYrVVPZsflentFi9Hf0H6pqREpKZHOTkVodpo+kuJidU8SEgxzyYPqGff0mGLm7WIXsfX0qEfR1CR5eWIreaemisnHFMojIDAm06eLqaV7Xb3ihASjurDOUJWNCzxg1BJeFFin4+J0Chy3owSjo/pctSCK1DwiTSb3pOjNOrvkcurUD7Hhl5ZqPK+4WNLSTITBq8QFUlWlfZ+QIJKfb3t60G6z4vh8hkzA65WBAW2LEiBsEykqsvXasrO1b/Py9P6rV4vtpcFakYkJKS1VDtLOTv1XnE7xm59jY8XkkbMF/mye8WmBNQIPCnxf4GnT9nUCP1dPuaZGlErMK1AvSpf3rJGz+q3Aw6KiwA2ad83O1nVl+s3r1bmuJAA/Mc+/R7Sw3yuKhDxuUJzbzPUe1X7LyREpKrLrZePjrfD3EdNOv2lrg0H3/lxTDKGhUlKi962oEJGqKrsuEvrOPjPK5z+vm8AnePs///n/kx7dp9zQPaKLu7FRxOXSJPSH4nEwrpM4P18/YxSabfy8yaTDWt34rPyKQeJpDu9Zsyi2KeACUzS7YoVuNjExmtju6xOpq5OjEEBvWcKVcXFy2iSzpa9PJC1NOjvFLtiWpiYNFzmdssMAEdLTxZbpUVqvZ0Xq6/XaJnwG3kCRcGOjvAWm9GCP3nvp0kDBeGqqhpcMoq26WhdnQYHZNJOT1RJZ1CuGN1NGR7Vt5eWywyT1J1DE6vsoUnWvlbhPTJRGkEYUVdduwBbvY8A+Xq8W26emqoHLyRHYbsvRSGWlhjE9Hps00AsaUjRAHzglkpoqPQboIDU18oIx8DI8LDtQEMgmVCMP3tDnDw6WF1B2mQHzGWlslO1gGGQaRIaHFclXb4Wj/dIFNhjE59NptGGDSB2WJuGfJT5e58msWRrh0jCiispuQUtflGt1nUh8vPSZPlJqqt8GEqlLlwrcb9fhDwxot72FojA9HlEgVaFydC5frkw9EhdngzFGUYDSwIA5FFVV2RRqs2aJSEODNDSYUGZTk4aFrVCiOekdMmMpDQ167eFh8fnMd+LjRRISZIuZ514zHxrB5C6fNhD8F23lbthuSg02i1VaIA6HKffJV+NogCVahnLcfM9rSkTWmAPX6wJrdB319AickqPmgJOaqs9h8Zs2NuqUPuccMWwvayQ/X4vtlfHlYYGDGsaMiZEmlAggIkL7yCpjGQBRYohXBIbsZywoMIe00lKRtDRZs8YAzYqKREFh3eJft+7sGrrZs3Xf+gRv/+zZnxm6T8vLGvhnzWKDIamuNt6R5QqVluqitAxcUlJA5bqmRk/zZWUiBQWKnMvJUSNSVSUejxqAPuMpHDLGrRc0zl9TI9LaaufIqqtNfq2rK5A8j4kRyclRuLrxGiorRcTpDOSxampsLb3qas3fWOwjUlsrEhdnCJq/oxvcwIABjGwWPyi60rAFa8XEFoE9mrMrLNRn7ekRaW8PaG+lpQVycM3N2o7GRhkYMHV/NTXaT/HxCraxCGGLi2XWLJMv6+nRE+zEhEhrq01y6/WqrUxP17EoLdWNa/16UatqwfYLC9X45OaKFBbq3w1P4HaTU/V69XpWtYLPF2CFl4ICWb/ejHdMjDlxj4uUl9uaa6tX6xlnNwqttxg8ukCamw0cva1NQRyG+NQu7ejt1Xyfw6GneiOeVlkpNhTd6osXUIRfH6Z0YHhYJDRU25mQIDCkpRxFRXpIMmwgUCF1KPovMzNAkLzb5MFGR0UkKko6Ow3jy8SEHlxGR8XvN5tsW5vep7VVpK3Ntk022Wt8vBosU6P2jnl2KS21D4fHLE+4okLHYWJCow+1tZp/6uvTd2OjiMdjw/hTUvQzGRliC5NaNZ0FBSLN1mHC4dB8YEyMXVrQBlpyCbLBHIqkr08kOVn7Kj5eJ1JEhMjoqGwBeQFFXfai4CuvV0S8Xs2XtrcHCGXLy9XgWGSxqamyAVOeEBws4vfLW6hAspXL6+wUG0Uq6ekiRUUyag5z0t6ug+NwyHoU4WspUFgHG2t+W574DpQ20H/33WfX0F16qcjll3+it//SSz8zdJ+Wlz3wy5ZJMwhUiNTVyasoDPkYSCkq3/IUSKVZYMVmYW0yn2swHodkZsojxisoBYFMgV9LrVmQVjjvOfP9ZuNNQL+UlmptWmKiiGAgzKGh8gjIGrSuqxyFVTeZ+4rXK1JYKLGxup+oNNAWXWjBwXZoVMOQrxsOyzd0EeblyaxZRmV56VI9gdbU2MAZKSsTKSyUe0xbXzILWurrJTlZn6HWbMKrV38oPFVWJk1NIk+YPvijae8TIOtMH0prq0hzs2wyB4Au8/e3zMKXggLxm/s9BzY3oaSmylNWf2DUyGtqpAZMOGq5AixMrdVbqKK2ZGfLfrQ4Xmpr1ZBkZ8tzxqhYNYFSXy8+nxZxnwaR/HzpsTYqt1uvbQAuoxi5k7w83YidToEKgTpJT1dv7S2wCZALCkRDhmVl6lG5XLY3ahVTW2z3Ehysu/3oqBrPqCiR9nYN9xYUiPT2Sp15vspKsYuta2sNEMbQbVnF5PrvQdkLAtXqvdfXy1GzQVuk4BITI+J2K1m5GZuKCrGfT5KS9CYFBTaKV9ra1JDU1emcMcbGijy8auZOK1qnmJOj15swY/4RaabYWK1VbWwUh0Ps+s0uY5jsEh+XSyQiQnabNdQMIuXlshetB30Lrb2zeEalsFD7OjdXr2nVumVlmQPuHhFUwT0zUyMfnZ3qtXm9ogYqIcGGiD5t2rPFzBlZsUJ8PgUP+dHSkN5esWtGd5s5bvHKaunRvyqwCg1tW+tdKit1EC1ATnKyATCdRUM3Z45e/xO8/XPm/J80dJ8ss/k//YqPZxoA1wLgA/qBrebP1zhe41rAA4wDC4DZwHHgCLAPmFlRAUuWMAa8Dign2jeA8wkDdu7UpPTp0xACuIBoIK6wkMTEi/jJLceZiWFO6ulhdkIC+Hy4gAQAn49IYC5wMTAD4PBhjq/8NVu3as59CgBhSh92zz0EBSnrUDgA83G7YerUWAgP58zq37J4MbgBFi+mqAhYsoQ/14excCGwYQOkpHCleZ5uYDMwuGwZPp/+7AC6W1r4xfQ/8f77R7nrrgMcXLmSq6t+yHeASOAq4Gqnk+tMX04CBWAUFYHpuzeAGwFPcDBTYmLgySd5zfStB5Tuae5cdr3wAiPm+V8GrgBYsIDrAXgTmM17ADU1xCUm4tRH4sQDj6IYjn/hT0M3at8VFXHiQ892MUBDA5ecf4LI2FhagJH77+c4cBggNZUXgeO/+AXvnTzJ5NRUNgP9v/sd4cHBvDI4CLwHDPP000cJCdFxDgkBgoJwu1GkRV+fivkODqogalAQV889Dt/+NmVlCpjhc5+D7m5OjEzmONPgggtg3z5t98gI747PYMjMP7cbdu2ZxPPP670OHNBrDg7CZABO6LNxBJXIPMChQ+8bNVmdH0VFyvTFggWwcCEOB0xLSOBl4Ac/eI8OgPR0RVb84Adw110cXP5bbr0V/n3bFXDDDZxZdj3HM26H1FQ+uOQS6gFLkvMA8BoKTPnDHwYIT0tjUl4eM4Hxp59mV/Xb8Mgj4HQyBjzefQ0jI3t1LLOzOYL2Zd83vq+oqeRkuPlmRtC16gJO3PxD5sbEMDgInpwcDgKPB/2Q+7q+S81lv1bqspUrCXE4eG1kvlLzxcUp5RibITGRZ56BHTtgSlkZd98Nrvh4+vuh78E/6/MnJPDBXfexBNgDLAZaw7/BmbJ/x+8HR3k5O4E3Yr/Lxo0wMz6e3FyIi4nhIPDd76JUbnffDVwCixahMI4wZsfFMXTyJH/ie3DsmI6FywWLFrGfz17/W16fbkMXG0s3EBwcCdHR+IAPgBFgGvCX/qvoRo3XCeAMaqSOA2Pm91RVQUICDvN7BwDnA6eYZv78/PMwMtJMGLpA3wbYuZNXXz1M3+lpDKEGiwMHYHgYhoY4Y67H3r2AbrqDGOPl8zFt51+pqtLvuVwuvfMXvgCVlaxdq6i1cI+HefPOxemE998fgO3bmbRnF7fdBiEeD3zxi2pgH3gAt9vwSh49Ci4Xk9CNxIduNh+githu84xuYOzm73HOOdMBLy7TpYfRQwHA+OCg3WYHKOrunXdwmP51AAeB7tOnOb5/Pxw7RpDp5zHQhX/gAGPmZxdqnE4AjIygesJvAn34gPFXX4VFiziO7s1hg+9yBoA23G7Tn+PjBKHG4APMBH7hBVWqvuEGxlCzNWje3HQTH5h+GAK45RbGzHOyaBEjAJwyrRrhwAH97Ij+AZfVMVu3snfvYYiN5fnnzcSoquKDpG/gdEJjIzBrFqC2aNs29GDwwAP6DOPjbNyoh5rjwNVzj7NzpyJ/fT5F/H6wZQtbt1pz8B1j5N/RvuQEMADBwRw07Tt9ehdbtwLvvANf/SplZUBvL9OAxMSLcYLOv8hIWLqUsaApzB56g5QUpV6lv5/Nm2Hagddh8WKmJCYyYsb/sOnjM8ANN0BW1kUqH//qq6Y9Zr5NTMDp05xBjTec1vs6nYQBYfHxXBL6gXbKsmXgdjPDjJsLs27mzmV+9Ano7mYaCgrVa8G0kSPa/tRUIiNVSZ6TJ5VnkhAYGSEoSJcdAwP6d+DaJWe4ZOqYclQODuLzgTM4WOe2283EhII3L3W+B8eOMQm45BL9HYcO6fjNnctkYN48OBE+WweKy2DZMn1Gvgy9vRy3+qK7G3w+TiRcCzfdRDBn+RUUdHbe/wdfn25DFxLCFRjC2n37iEa9kTjUm7p+wRHmx8XhQjeYq4CgFStwoB5WJCicH7gUcAIK3F4MJDANXWPf+Aacc85XmWH+7gS46y4gjEt6d+FEbRQLFkB0NLsOX8yl5n6UlzMbNbAejAdSVcWZJdfyE89fdcOJjWXevDm6W5aV2TzKxMezaJF6lbm5F8Hll/PLZ+artxEVBRMTPPMMcPPNLF+ubeXyy2FoiCWoMVuCenRhwFNPqbEeRDf9yeFhiDyOw/FtqgE6OpidkYEb9XyD4uK4NC4Ot+k/xsfB4SDc/H02EJeczExgWmwsOBw4zfUjrTFyu21Pej5qNK8AcDhw68MDV/Mm6iGyZAmTMOeD8XHCgfj4b7BypXrr747PYJq5xjRzL1wu3aEWLCAO3agjrb6OjGQ2evgJAYiOZq75DAkJ+juuBuYTEzMLt1vH2O0GnE4lOjb1DOecEwmRkWr8XC4491wGB7Xfv/AF9CQxNER3t9mQk5NhyRKmud1w0UWEh2ubXAA+H9HROs7nnWcg9klJWk4CwFVcCsCXtL+4Go8nGsLDibb6lmglsu7qgs5OnUs33cQi7UbmBgdrvcO2bXDTTUw+fBDGx1m2DK6KfBf27dNn2bYNTp1Sg2P6aZoZs2jU0CUkABkZkJtrj+2+faYfli1jSnAwkZEQGjpfDft552n/R0fD0BA1m6ZppzqdTDPzYEqwMQU33KDu6S23MIIeLMvKoKEB/U9/P0RGMjPkuBqU4GBTrnEtLFnCkiVaNoDLpf2ekgL33ssPV05WC7R5s35v8WId94gIQkK0zIE774TkZBwoD/Xy5Xr9W27Rtp/Rqar2oaNDZ7HTSaTbjcORCCtX4kK5qHE64dZbCQv6AMLDuYiz/PrM0H381/907PTjvKyYdWur35bdGBhQMuZRK/YfE/MRsmBbysNQa/WaXMby5QZ+HxGhdEoejy29IqWlkpOjxbDJyaIZ6+JikYYGiY83JQOW2JvHYyuRREWJfq69XZPsJSWaEygs1H/9fo37FxfbaLHKSrHBIaWl+ljS3q6fM3Rj0tysYADD1NzUJDaZrfV5m6apvl7eNzmJkygaMzdXNG9WWmrL8cTEKBpuv8mh9fbqc9uyQRMT+owxMZp5d7mUg9DkNXp7JVCgHhurOZaMDP2dUZ3dgUHx5eXp2IyO2vyRcFzbZShO8vJEczper8Lkly6V0VGx81Nr1ohIfLzyh4aGBiq9i4tV+xYFQEhUlE15tQOD/ExM1GZZPzc2yjso6lI18/oUmZqdraANo6M0PKzjvGqVGCDJKza4prJSqxmiosTmgtuw4UOIx9xcnXtFRVrknJCgfdnaKoWFihC0xy85WVlUsrOVPWbpUoF+o6TtV3RsVZVITIzpu/qPcHSuWiVKMI7mjwXswv5TqOafltNouUhtrXZ7ZaUhADA5OUlNFUlLEz8KHFm9WttpCEJ0Hicman7YYmjJy5N587TrJT5e52ByskhdnSxfrl8xuCgFVkVEiLS2SlaW/q621uQ5ly6VefMUjxIVpTnTvDwRGR2VzEwl+FAyiHFFTTY22hUtdXVKGjA6qtdKTTXX7OyU1FTtp2MooCw7W1N3Rj5QekGSk8VWb4d+XV9Op63JaDHFtLWJSEGB5OSYvSMjQ+CQXbLS2an92Xq2c3Tz52vHfIK3f/78/5M5uk+1oWtu9uuCNlZHxTj9Ul1tSGgbG23xyKlTdbFqrVK3REXpoklNFZHRUQMxP6ULaelSkdBQrSlKT9cFGxxs01tBvxqB0FCRri6FRxt2+4wMXTxRUdqs0lL9+rx5eqmCAl0ERohcpLlZF05RkVRUGARXQoIMD5sF1dCgO0xOjrbV67UVErq6dPGuXi26cpubbVXo5GTdvJWma5vk5iqDisK2O2yar/tNAj84WJFzypl5ypLmkoICi/rpDZG+PqmrE5sEefly3cctNQMLTu5wKKx7/Xpb2FyCg/U6Fn2Y9PZKZqYCF7Q+bb/MmqVgQQtunppq0HBpaaY2a0yks1MWLgzct7RU3xMTIjI8LBkZ2o6MDB3v4WHtGocjUMdnyGVsNQdxOhW0YjT0IiJExOXSsTDjkpamxiIpSUQ6O+1NUvr69OCRlSWlpdonbW36mdpa7QMLcCK1tbZyRFOTBE40WVki8fHKItPTo/MuN1cNfXm5svk4nTovDQXW+vWiF66rk/x8Y4BMXeOaNWKTfWdl6cbv82kze3v15w8rzA8PG0qtri4pLVVjAcdl4cKAArnfr/MsP1/70lLY8Pm0T1et+rCROC69vTrOFRX6O+tg09QUmD95efrdtjb9Ny/P0LR1dekX29r0+j092td1dSKFhQHFgvJyaWnR+1rUmF5vQO5OenqkpydAWFRaqkY+P1/nl0UCPTCg89OiBoR+kcpKaWkx88M8bGOjiGRkSE+PQSinpUlOjiElT0uT4GBzwKmvF6mvl/nzz3IdXXy8Ds4nePvj4z8zdJ+W14eFCN9BZTOkrU22E0BYlhsU31EUXfmcee9HUYfrrc/k5Ym43VJqUGYVIFqgWqTs5W1tNhn/EwaFdQhFas6bZ6iIQEsCDKGv1NbKHy10V2OjbEKRoKdMGywaKxkdlbY2RYmBV9FvTU2Sk6Ob8DuoInVentlEjHcTGqpIT4uCSlpbpaDAEBsbKZ3nQB4092tEEZCzZqmxq8TUnZWUCPRJTIwqHkhNjZxEEZcbTF/tNtepMMg4aWqSHeb7uy20Wny8LZh5FEX69WKQhkVFMoEiNy0SY6voXJ/7oMADtjfdZ/o3I0NEJibEb7yT6mqt2ZL8fFlvPA0bddnZaXvlp9GavVHT34JRsggNtVns28Fmc+9D1SoU/Tkmw8NiftcnkpenXlRdnciKFTJrlo5VebmI1Ner15eUJCkpenjps8a2qko93JgYGRhQNKiUlCjvprl/erqINDTYhNyhoaJuT0ODbDDzQT0Cv+mnJ9XoNDcrwnVgQKMMvb12uUh5uYjk5kqtOdBsMX0qWVlqXVassOfywIDYdF4DA6InkMREW/G9GS1feQolUY6IELVw5eU6nzIzdQ5bJOnJyeL1mppMh0MkNFTWW/OsokL7IzhYTpv514pB3xYUSC+Gc9Xj0fVhRIXF79cDjFEVkcZGNeidnaYGb5t+v9dQzeXm2uoaw8Oip6yEBI1C5OVJm3k2r9kbpLBQn6G+XhGqXV268Nxu6ezU8dyNUYVYscJ4bneIBAfLJhR1afGkbtgg2s+FhWotY2KMjNNZNHQLF9qqCx/37V+48P+koft05+guvFCBIYyp6COai5mJ5kHeTr6dN9Hcju9Df/OhifZpwPHf/Q6cTqageRtFvA0BJ3AAbzuuoL5e6YqCUEThawDPP8/u3Y08/7wm7h95BCgv15zI5s0Mmfvw5JOMA++a+4eBIhAeeog3D0zmrbfAFRUFXKwJ+/p66uv1v+6ICNxuBR50dwO7dzP58EFSUrTtnHsumzcDzzyD220AeSYbfwbNO1o5ObKyeOedTmajABInaGKIPdxyC4QFBzN2w7c4Yj7fD3SYnrjYtN0S4AwhkKPrBgZ37FAgjsnffTA4SD9og/x+JqWlMW76ewwDKnG5eBfQ3nuHN4DjHR2KCMXkG8vKDDDjFWJjFTHH+DiTzb2tkaKjg2XLgEWLCDLioDYgJiFBUY8XXAATEzji4jTHdPo0LFpkrn8BcC5TpwbbLYIeOHxY0ZA+H2zfzjvvtBCGyQmvX695ubg4cnLA6zVje/q08maFh8PICNM6XtO8UHc3REfr99EcGk4nBw7olAkJAV56CcLDDRjolEE/Tpg2OhT1mZBAN9qm8XEYC5+h34uMpKVF+/xKNM/lAQ53dGj+8t57oaODS+t/z4MPwrR7f8Jgdze43Ux7ZBVcdBE8/zyzTfs60DyaE7j1VnjmGTgwMgLbtimq0u3W/NmSJWD6fP7RDXg8MD4ywgcnT3KxNc+ef17zW5/7HCMY5DFmrQ0NEQKEPfM4hzs69HfPP89XLj8Br77KpKfWw9GjzASor1cxVJ+PG24AuBJCQpgx+Kb251NPsXChzq8pVY/qPadPx+fzwZ49jKDz+AQY9AqaG2xuVmDaM8/Azp283d3NhRdqP0wCvn/LmM7ll14CIuGLXzRI6S/zwauvMujzaX50+3ZNqN90k4o989nrf83rf9rSfpzXR6Tlk5MlPt4UD0dFyYA5tfVhckUFBZqXCg7W0E9MjPjReh0vhmg2NlY6jdfVi7JnzJplTuImz1ZdbYp5jcRMaak6T7YsjwnfWDRkJ0FPgQ0NetLr7Q0k8JqbNYaTlaUhmfR0DT/W10tJickZ9IrIihWSnW1CecPDIn19NvP7SctL8XrtgldLaUCSk0USEjSPhdGei42V1FStVTqKkfjJzBQY19CYyyVSVCQDA4YMNyFBY37FxdJp+jMzU7RhGRl6dI+LE+nsFK/XhOtCQ/WkX1xs56p6ekQsRuIBTF2byatIX5+kpmpfi9Op3y0oECkuDuRJS0pk1SqjuBAcLFJTo+wfbrd6Mvn5MjBg2PuLizWGlZGhJ/byctu7s0XtEhLUyzF5KElNtevEYEy9D7dbPeisLPVQiotFsrI05BocLHl5OoSrV4v2wcSE+P1axyUVFXqf/HyRhASpqFCaKklM1Hlg5JssuSPp6pJVq8yzlpeLVFbaOnQTaF5NSkokPl4vOToq+uwNDTZdl0xMiNTUSHq6TpMutA7wLWv+muJw6emR2lqdJxs2iE5WE46WnBwRp1O94OxskagoaTfjbtVRS3Gx5owTE0Xq66WgwISM6+pEWlttonEpKRFJTJT9xoO353toqIjLZWs1dln3io9Xr7KiQnagObRVq2xZRpGcHJ3Dvb22WPE55xg9ut5eaW9XD3XDBpOnjIpSj2501M4nWpEbcbm0ZrC8XKS31w5pSkZGoFC+ocHWxxOPx1aGkMpKzQtGRRmv/5BePzlZ+7C8XNd7bq5IZqa8ebY9usREXUuf4O1PTPw/6dF9ug3dunW2yrH09urk7O0VK2mxHdWMqq3VDWDVKpMXs3Ruioo0RFVVpcXQVVUBg9TUpLH2ggJdKIWFIrW1kpWlvwKv/j4pSYEEDofAkEWiIJ2dZvMaHpb2dv1OZaWItLXJ8LDuKxMoMENqaqSnx5L72K4bg8XW7vdLZaUaH+XR26N5AMM12QqGgup1i+BDpLnZ5ii0KMPE4VCDZlnSzEy5B+yw224UoGFqnKWyUrsxL0/sjaqx0fSvyW+oYveYZGQYiZX6eu3HiQkLT6IbanOzhj37+kQaGnTzbmvTUFx7eyDUV1YmGzbYgtGSmqrjpjRM3donVvKyuVn7bmJC2tv1GXw+0QFua7MITvRzpaUBYJL13fp6O1Q1PCwiAwNSXa3faW83z9nVJXV1AWYWaW62c0mZmSZPVlOj9+np0WdvbNT7lJWJ1Nfr/GxuDsgDmBxrebkEdOEM4KW8XNSomvlg5aYaGkyosblZC9DbtemVlSJSVxcAKA0MaAivuFj7Ni8vkM/KzpaWFj0DZGWpkW5o0Odav14CiaqKChkeNgc4kwPcsEH3SQsM0tSk4zZvntg8mj09Zr77/fpDX58+X1GRtLUZOaT6ep0UJv8mVVUinZ0yOqpfS0sTkZwcSUrSw8/y5cZwtraKVFbKxISOTV1dQDGiqcmwpPT22muspUUMRZhf+62yMqBoUVenz9rbq2tldFSNeHOzro/eXjsdYKl2GFZAEb9fD3RGKFFVU04ZajoVCs7JER3nioqzr0eXlKSH2E/w9iclfWboPi0va+CfftqvIImoKCOF9YrAFhO/HxPp6jLgi27zHpdVq5Q4V3MyeyQjQwzhbbsohdZBmzdz1izRFZWcbPgmxyUiQsEczc1is0lERYlIWZm9ANvbFcEXGqr2MTRU82eWjteGDbq59PaKSGWlLrjsbCkpMZuO2x3gmiwutr2/5GT5yGbb2KgbREmJqLdaUyMFBXp/BdccMRyDFRITo8AT6BNLUy8lxUj8NDYKdNibmZLh9lsOjwQHG0Lg3l5Zs0YBA9Onq2eQnq6bkgW6UU5Cv8BxWbNGN1PleewwZNEdukEODEhKikgnllrzZoFx+7QunZ2Sm2tARQkJhhfzoEhfn8CQQUmOSXa2TToiPp+2LSVF/z3nHO0Lbf8hWbhQbEXzqVMtLtNDMmDl82JjjSZgn4jDoYYnP99yDGXAeFpSXGyDUWyPJi1N0tMDzrtFu2UBQlavFptbMjjYbOBlZfrHrCyRmBjd6Ds79R5RUfpvUpLExhqWk6go8/ynbM06qa2V5cvN5l5YKPn5Rq6op0cSE3X8enoCBsFqW1aWmTcNDeL36/ctUmbtr9fNXDmoBsqMh4KV9ktOjthSRBbbVk6OGG7KgzaQIydHbKHh2lq1ETEx+jcLIbl+vdioSjgutpJvc7O21+9Xr8so1tfWih6MMjNl/Xq9R22tzsnR0cABSbq6pL1d5+fAgCW+/rp660Ynqa1N+wcOSk6OxR96UKSkxPBudtvolro6EXG5pLlZbMJubXOfSFKSwJi2s63NiOse+szQ/S95faoNnd/rlcRE46UND4uSr/YJPK0n2r4+KS9XgxARoWtHjdCY+ex+Xd319cYgbtYJ3NAg4narl5KVpdYrLk7y8nRx5uSITuaSEmlq0oVqwdIt7TULVWaddC0V6TVrTJivvl4XcVWVzbpvgGS6u9fX6+bV3Kwn1vx8DVX19cmGDWajbGoSqaqyCXplYkJDbY2NBka+X6DakAxvls5O3WQs5QCLG/QeAgz9GzZoexsbdSMrL1fDYcHAp0+3DNqYwHFbc84StoUjkp6ufW0hMRXsMW4M3pOSnx9QAT+GglmSkgyQoaxM8vKMV1VQEAgdZmZqWLaqSqZPV48aTklDg45JYqIYxJ9XoMPCQ4g0NQk8KtCgIeDGRlE2/QajlrBNQ7VRUfqv0TuzCLTb20VkdFTngiHvPWQAGvHx2kbxeERiYvRg4vfr/MnPl5YWNRxG5lAkPd3uo8ZGCdQlDAyIlJbqgamw0FbkSE3VEDWc0lA8GDLvcZHmZqWBS0zUuTAwIJKQYPp7s0hwsJxzjvFEBwbsvrXKE2TpUjUGxqCoAe0QWGMfZPRw+KJOtuxsaWoKwP2t0KqlCJKTIxrGNZEH8Xpl3jxjcCoq9G1KTnJzdT1a2nzS1WUbnuXLzfyPjQ2QexcX63MUF2vqwa9j0IsqF0hamh4Oy8pEXC4bcSlFRSJVVXoYMXFdGNK/rVihE7e3V6SuTvs0L0+t5MSEhtlbWxUFGhWl16qrs8uLSku179rbA/Ng1SrD99naKtLUJOedd5ZRl0uW2AK8H/ftX7LkM0P3//X6zW9+IwsWLJCQkBCJiIiQb37zm9LR0fGRz5w6dUp+/OMfy7Rp0+SCCy6QG2+8UXw+30c+09PTI9ddd52cf/75EhERIXfeeaecPn36b26HNfCNjX57gll1P70YVGRMjE7c0dHAhmLq2d4xuYe3UJLblhZV+/aa3EFhocmLxcdLRYXmvTIzRSeLye2sWWNi+1ZeKjXVzpnMmydqHKuqdBU4nWodXC6bc66yUkTy8nTzTkrSEFd8vPT26mZibYQWRN/vF5GJCZk1y2xepaW6YCsrjVE7pZYlOVkXelmZdKEclBUogjI4WAJEzS6X4etUtOE9JnRpC5VauR+TVzwFIrm5NvP/MSv/YhENGkWINtOvVj5UEhI0R4byI7ZZeSwTI4QxmTdPN64BtO5LnE4pLdWNsA9MSPeUSHKyCnqbMd4L2qdRUdrmzk6ZMPc/at4NDWpMLd7Fri79eTeIFBXJfjAHgeNSUGAOLIZUesMGCRBYd3aq59HTo+Obny9SUWGLbEZFiR5ySkslO/tDMPPycjtsacnanDJ9YNV9iderm35Dg1RXqwGBbuMldIjEx0twsDkElZaKrFghq1bp1LPVxo1St5SVyQSmDCI1VccmP1+ktFRKSnQjLigwczcvTw1UQ4OOs8slo2auiMMhJ02/ycCA5Odrf/T2ikhiorxj8ocnQSQnR06D8YbGRBwObUtqqkhNjZSWBrzYri4RyczUPF1hoeTkmENbfr56mA6HKBL3dYEjItnZNjdnXZ2po1uxwqjX94vk5Ul5uT5Pe7tOuZYWMZ5lu45nWZmur9ZWReAaWaaYGFFvbXRU9qOcnpaKQ26ujrnyzQ7ZhxUr1G/VB/p8IpKdreOVmSnDw7qERkd1np1VQ2dpSH2Ctz8l5TND9//1+vrXvy5PPPGE7Nu3T/bs2SPXXXedzJw5U4aGhuzPLF++XKKioqSxsVF27twpCQkJctVVV9l/Hx8fl7lz58qSJUtk9+7d8uKLL0p4eLjk5+f/ze2wBr6gwK8rz2JZt5JFERG6yZSW2jVGVojE5xM9naWniyQmyqxZRlnZiql8KBk9MKAn1YoKE3qamBDx+02o47jeIy5OenrEaJ31SW2thsx6e01Ixtzc5xMRr1cXut+vi7uw0GbPHx4WkdZWqasTm12/q0v/Zqs2G8CLlJSI12vyYoWF0tYWgFdLZqYsX/6h03J2tkhioqwxG5HU1GjerqhI3jcb4vTpWmx/j/EYenv1eZOTzT0mJgJ5FbdbT7YJCSKJiXYxr3R26sk6KkqkuFhP0QbIM2FOxxZp8OrVAVJ4O8xUVSVSXKwGw0ixZ2aKnqBLSiQ0VO16crLY0H0r7yRJSfZGLhER+rNhrs/NNb9zOkWysnRjDw3Vdvr9tuRRfv6H6r7a2kTa2tSTrqqya7isjdoe+9xcW4k6NtZ46l6vlJeb+r++Ph0Yk4e1a99KSkRKSqyhseu5pKJCx7ezU8eqtVX/XlQk2dlmjOvqbCMJQ/bGa9UrTkyISHKybuKlpVJebuZCTIx4PHprjydQ02kRi1dUSAAsVFmp45WfLxIbK+vX61gtX24OYH6/SHq6Gp3UVL2AMfDp6WKHca36u/h4HbeSEr3k8LCI5OdLU5MaesuIWrmy0FAxKYJT0tiofWRxJoeGav+kpBgj394uJSU6X6urxQ7JNjXpNbKztV9mzTL9Fxsr+fmBa7W0mHpIh0PS0wPti4oy+0JGhoSGaj9lZoqtI2m4BOwyEXhdpLnZlnEqLZWzJonzmaH75K9PFLp87733BJCmpiYRERkcHJTg4GB5+umn7c+89dZbAsj27dtFROTFF1+USZMmfcTLe+SRRyQsLExGR0f/pvvaA792rbSh2ldSWyuHMDVS6emy12zi69H6uHa0PsxCe/Wghcq1IFJVpd9zOAxTfIVAhRwyHkZGhi6KYyir+yasersGyc8X851Tsh2V59iN1q49AiL19VJnPr+dDwmXVlQI+HUTiorSk3tVlbSZdre0iAhIRIQuPHhFV1tysiIQPR5TRD2ku4jJz0lurkhNjTyBssR0oejT3l51LE6ijDAWuX5mpvFcTHjuHrS+6Sm0DvCPpq/2gw1keQdTOxcTI8VorV4PWocniYl2PdQEWlMn5eXSZLUlIUHrE2Ni5HfmtAy/Vc+suFi60Lq35ctFJDjY5EbvF8nO1jBnfr62JTZW3jdeoFRV6ekgJkb7orhYhs342oeasjLdxDMztY1FRborJiUZ72G/6szVaWF4RISItLercTI5I49HdMPo7dUwnQlT2jJNGRm6qw4MqOdj6gjF7RbxeqWlRT1Xy0v1+22gpebnMjOls1NM7aBfjqGsLZYmWmamqAFyOkWGh2XDBt3Q3webzeV9y5uuqhLJzNR6xtxcNeBpafq3igqRrCztz5oaPShmZ2ufZ2TY9ZMnzRg2NorIwID0oZ78cyBSWqrjWVmpz2jq8JKTJdDPUVHaJ6Wl+rMV4zbozgmzPibQGrbdoOOXni52Vb/Xq2OXlqaD096uz1BQoJ51XJxIVZUadOMpS3CwLprERLVcK1ZomBGtn+zFIEEzM0U6O/U5YmP1usPD8hYq/3XS7BfS2mrPI3hdpLzceN37dS56PGoVExJ0XViyT2cbjLJsWUBm62O+/cuW/Z80dJ+ojs7v9wMwbZpWjHi9Xk6fPs2SJUvsz3g8HmbOnMn27dsB2L59O7GxsVxyySX2Z77+9a9z4sQJ2tvb/74G/Pa3HACgDRYsYBfKjn/w6afZidJRnkHrsrZi6sNOn+avwCvAMxhuy4oKNgMvjoxojRxtwKtsBUJDtabr5MkRXkRrcI4A1wBwGp8Pw4fnICE4GA8QZ1j0P9BOsWvRnCgjPN3dEBTEmjVhHD0K44cO6ZW7urjC42HnTggONjTDI7B6NUA07N8Pt9xCS4upj3rsMVJTL4CQEF6L/Jby/S1aBFVVnADqgZ3A6089xYxnHuZ3vxuhGvgLEHbROWzcCOvWtSkxdEoKK1cqH+UutJasH6112ojyZZ6542cwPo4POL5jB+/u389stF5rpssFZWV88OqrjHR04AQmpaZCUhI88QS7UC7LAy0tWiu1cqXhTGwGvLzs88E99zCO1kEFB+tnPgAgGB56iM0APh8tgG/vXg6gBM6EhjK24Co491x49VUlWzbXoaaG7qef1nqpwUHYtIkjr74KpaXw1lv0b9liP/Hy5UqTuA84dqwF1q7Vvt+2Daqr6ejYy5EXXuDFPTMgKooPgsLg+efp6tJxGnzqKa3d2rqVGf1vaP1YfDzd3d2wdSvz5mkfvI2qXYQNHSE8HJ56Sj9KRweXhhwx6hu72AO8//57WgdJI/X1gMvFvsFB6OjgsceUnDkMYGiItWvB6fHQ8dJLvBH7XbrXrdOavKEhvr/kXeWM/O53VU3AYk0eHNSH3rGDR0o+4MhTT+Ez8+ZZ4EXtcv66cxr9KNG4z8zh2dnZ2ufnn691irfcwrnnwlh3N6xbx4uHDnH8qaeUDDwoCKqqGFu3jvrBQfYAfwVoauIIOtEnAy9v2qS1effeq+0aGYGmJnzPPWeKS91w8808G3cfu3cPKOPy9OlERurc5ZZb2Hf6tDY6IQH27WPkkUegpYV+YOexY6rqsHOnFi8ePszstDT69+5V3s7Nm3XP6Nb5s+v0aU54roTeXlUX4S/wyCNmjF4iCOjv6ND2dnVpf7z0EuzcybHKSs7q6zOuy4/9+tiG7syZM9xxxx189atfZe7cuQD4fD4mT56MU6nF7dcll1yiRZvmMx82ctbfrb/9V6/R0VFOnDjxkTcAvb2Gdf8wjI8zF910Z0dFEYkZV5QN3mX+nYwWUs817xMA77yDmw8RPXMBMEdJnt0fEBcH8fEOJXlGC5+1pWEcOKCExyMjb3Lw9Gllz9+7l2kYImSXi2koUe7F1u/cbujvZ+dOWLoUgpxObPWCkRFcLpjvOgLoOh8ft9oEnDxJd7chJT52TMlqh4b4whfUGLN4Mfh8TDF9MRclQP7gtp/gcDiYYdoRlJDAzp0Akdx6K7B8OevWqXEOQQuxx8Au9J6pt+Fg+JXMAKbFxTEzKooxzEYbEwORkUxJTsaRlKQFuOHhunmsWMFs87nomBjtg5MnTWH0V4HZKjsUG0s/H2K1P3CA8KgoYCrs26fFx7t3MxtwxcYy17p3SoqyzY+MKPHwTTcRHhPDxR4P7N+P2+1Wg5uczBmfjxmxsVrUGxpKeHy86aU5pKTA5G0vG3mk88E8s5GYAC5hCLgu+m2YO1c5fvftw+1W4m/7dfhwQDUgIUHnlNvN5P4juFGi5MOH9brLlqkAQHQ0usEfOGDmdAIzURUCNwDxzJ0LREbqz3v2cPfdELbvNSZFRMDgoBYth4biCQ7misjjugbMQxwcn6mHgOBgLvG/Ddu26eLftk03/IEBnt04hRlxccxGCcE9qPEYGQGPJ/B400yf8/zzSlw9dy4sXAiPPUZeHkxOSOADM88mgRqdt96CQ4dscm2P1batW7XoPySEE5j1t3WrFl9bGkZ792rxv88HW7aAw8GNi94jI+MinWMPPcR17jfVYD70kM6rkRGtxN+7F0dwMLz6Kh+Y5zlh+s+6FkFBhCckcOaJJ+Chh5gCXNr9V06YdoZ1vK7tOXZMW9jdbebIxXyAUSTZskXnSEwM9PVBfz8Rc+ZwVl+fGbqP/frYhu72229n3759VFdXn832/Jev+++/nwsvvNB+R0VFAfD26KgyJvAlnt0zm9lRUaqDlpLCFegmZbGwW4z2YQm6gcxBJ/EY8HZ3N3OAmTExxAEwC5t//7HH+E7Kce66S41UJLq5KlvFJF59tY3o2FjgNA7g4qQkJhMwqoSHMxfd3KZlZCiju9MJS5bwox8ZtpHUVGJiYlU7Ky1N1UDCwwmLiWH5cti4EVJTw+zT7eCgeofHBwd1s92xg0vOeQ94iT/VT+PEjh1cCsxxOrkUcMTFsW0bZGerkZ8GEBtLRwekpV3EF78I3HQTjY1qZNzo5942/R9p+vDJJ5UMY2Z8PBQXw49+xExgRlQU3Habek1r10JREYucTqWCv/VWSElhBqoHyLJl2i9eLyFARsYFQKxOxPBwTqAb4Ve/ih4I7rwTCAeHQ9lW9uxR9v6778aRmckk4OG1k/WwHRurJ+slS9Sdv/tuDo+M6Kn/zjvhgQf0Gj/6kRq6m2+G5cuZOvWrFBRcrNIvcXG4HQ5gCNat4513OpU1ZHwcOMUMYMx9KSxbpkwkr77KggVwSd2jvAu84b5ejUdtLQQFsetAmB6KliyB7m7mOBy4QkN57DHgjjuY/NBvaWkx82BoCNauZQaQmelgHHVKJiUlERw8n5tuAgYHVXFh7lz6+1F5IpcLFi9WY79ypT7bI48QFBWlm7rTSVWV0WlsaVF38tVXVb9x3Tr1bhwONm4ELr+cGbGxtsLADKeTm2+Gmd2vsAtg3jw8wIvj18K55/Lstos5GH2thh1uuklVNwoL2WrWnAN4Y906+ltaGBwZ0WsAzuRkRoD+HTu0jRs3chw1fv1PPQX5+Zx44QXo7+eNjg6OA75f/ILxZcto/fy3ODJ+MV/6Enrf227joGOOsuU4ncpsU1/P+KuvMtTdzYHTp9nj8+EAJqWncwb44IkneLOjA3bv1vVYWMik+Hj42td0Lu7YwQgwJS0Nvv1tDu/Zw+uDg8B0jgwOGgklc4jJzNSF8dhjerhZt04X7cyZfPb63/H6WIZu5cqV1NfXs2XLFiIjI+3fu1wuxsbGGDTikNarr6/PaK7pZ/r6+v7T362//Vev/Px8/H6//T506BCgxkMfYIQbE47wwaFDGsrauJG3UX0p0NBiGBpyHGlpYQSl5DqCLsbZGNqn/fuVXonDwPt6irzoIk4ETWPPHqUPOm7uqT5lOElJX2J8715CQ7+knsr27YYeSD+Py8UbKKXS4FNP6fUdDggJobZW19nQunXs3z+goaXnnsPthoOHJ3Nw/37+8IfTuN2waRO6kUdGcuzYCO9iPK8hICmJI+MXA9fyvZvHCDOaZe8NDnLQtOXaJWdwOtVTcwJERzM+rvt3XR2wbx8LFmho1dL0m2n6yWeed/ly3UcP79ihC7u0lG7Ad+gQ3HOPntqfegq2bKF7cFA/s3o1PP88x00fsG+f9t3u3fgwyiccUePr8TBm7tXQgBr2Bx8EhmFwUKmjHA7tw7Vr4emnGUKjtXFx8MELL+gm09Ghf6+tVaPw1luq07d2rY5pQ4NSlq1dC/v28f7777B6tdrVV/ZNUxeLOMjJweO5DBIT4RvfYOrUzxPidDJ56Dj4fErb5XKpdxYXhwPjmX3zm+rxDA6qghCYsBd0jIzgO3mSL38ZNX5LlrB8uTF0QUFwww0MorbohHnMsS1bOH36PT0APfUU48CZBVeq7V22DA4d0o0V4P77lWJu6VI4dEjn4uHDJCSYg4bbrR2Wn48DCI+LU8FYyyN85x2OGw3FIWBocFAN6KJFGuZ/5x36getcu2BwkBvjDjJ72590nD0e1cTbsYP5qJE7A1wRF0d4bCxOE9qfBHywaZPe3+NRz27xYlzoOg1PSoIlSwgzUYIrzLVcaWkE5eXxldFXmBH0HjU16IHG46G+3kQ5oqPV4735ZoISEgiJiWEGEOdw6Lzbu5fJwJTEROY4HJCaqn23ebNGQ9LStM/i4nT9bt8OpaVERkUZ2aQeXFhUgTuw/aPYWE0tDA3B9OlKBWeNydl6nXvuJ/fmzj337LbpU/L6uwydiLBy5Uqee+45Xn75ZWYZoUnr9eUvf5ng4GAaGxvt33V2dvLuu++ycOFCABYuXMjevXt577337M9s2rSJsLAw5vw3rv55551HWFjYR96gCzEEgGHYt4/30HzczkOH2Ad8ZfMqO0Qyjm7wb6IG7k00T7c4KYkhNHey0/xes3nDmk/r6yNs5D2CgvRvIajHc3VCAvPmXcbdd0NQaCirV4OzrAwSE5lcU8OI+RwjI4ygHlIQxqAeOwYuFytX6vPpPb0a/igt5eabdY/3mafs7taIHCtXokJZnRxB81O/+hWwdi3r1gFM5oNxXYJBaA7kINCxZw/ceSc7duip/l3g7V/8gt/e8BobNyqPJ8uW8ZuiM1xLgJNzDqrttwf17nw+mN3/Ot3A4RdeYOexYySgis7Ex6vFLC6GhgYNKUZGamjp/vsZMs95ZtMm5gLk53MNJkRpxpIDB+xc5uHDMFb2qPIxEs/brqt1c/F4eBM4uGUL3SMjjKF794EDJidaWamhrx07YPduPgCOdHSo8vrOnZwABl94ATZv5viOHcpvyH5On36HtWvVORo5fRqYDE6nUiKq0BqXXAJnBgd50zcNli1jzx4Y9/k4fFgNzxlgSscuDV/t28fQq69qPhVUnbq+njfQKEJXF3rKiIwkMtIIvX7hC9DdzU7g9Ok23gNOnuwxQqd71YMzaYHDh9UR45JLtO9371YjGxvLX48dY+mv5vMKMDMiAg4d4tqtvyQkM5MzK3/CLzdfw7u3/prZDoeGHlNTGTl2jB/334evpYUjqIFqQZXc6+vh2pRJqouXlaXRjMceg6Ym7b+WFti3j5dDrleNt6YmHOjBZg/oPVaupN8ItO4zvz8IEBGh+nVuN/NdLs2RV1XR98izeo/wcHA69bOLF6vwW0gI37vzYnbv3guDg7wxcik+HziKivjL0DWEA2ciZ+pcjIxUwxUfzxnA19GhBnHuXF1UTqdGAdatU68/MlLD2TExjAMHfT7+wvXg8eD0eAD1QHX3amGKx6ML46GHNI/ndMKBAwyOjNDKWX59Frr82K+/y9DdfvvtVFVV8ec//5nQ0FB8Ph8+n49Tp04BcOGFF/KDH/yAn/3sZ2zZsgWv10tWVhYLFy4kISEBgGuvvZY5c+aQmZlJW1sbDQ0N3H333dx+++2cd955f1fjw1JS2AlAvAqeosbBYR7sg9xf4UMNWxB6Cgsi4KWMALz1Fs7sbFtVWUMSDmCM2cBrCT/j5w9czD33DDMT3fAPAkxMsHv3+wwNwXsnT+om1NOjeZDu7kDHHjgAqOk8goZLGRiABx5g505oa8OES+dosr2lhUOH1ABcBcD5rFxpFKuffx6cTjIzv8QcIDI1lbY2oKOD6dMhOTlYyWyLiowytz7PQYD6ejZu3GuTPDsBxsc5ffo5pk+HkUOH4MknGUM3uSnmMzNQz/kAMDPyDOzZQxCGONd8dnDHDs1JORwcOHmSI6++yj7QhxgZAYeDD0zf7zP/cvPNALz//l+Ad9Wo79hBQnAwI2jIbvKmDcZz3o/PZ07sublMAVs1/GJg2pO/54e3fEB4TAwj+/dDRwfvAge6u5mxdKl+76WXYNMm5sTF6TVbWpjmdKo3ymHgIB0dakB2WT0XFKShuMOH4fnn6eg4wSSXS8E7t97KHXdAUFERISHqWFyK+WxcHBQVERIRwY3hr2i4Ojwc7roLh+n/sjJg9Wp+XXYxPp8xdOXlnLnz5/p59ps5dELDrRxUwEp8PAfNWDz2GLx8/jf04LRwodrAQ4dwovq74dYcjIpSl3HRIiZV/YkLL4SZB15Wg3zHHfDMMzhiYuCiiwydufaIw4yz06m2/gzAM89oLqyjQ+fr0JD+u2cPCQnqGA1u2oQzNhY3GhXg858Hp5PwmBhmREQw34zfFQC/+IUefPr7Gff5tM2WTLh1AsjJIQVg7lzeHJwBe/YYez8A3d2cOgXvvw80NNDdrfNy0uF37cgJwcFwyy22wn00qNjrP/+zztFt2zhoBuH4eBiHd+ygZvelzDF9MTQE/NM/6YGCaJypqXqQ4zLo7mZo0yZe2zNFoxktLVBUhDM3l89e/4tefw9EE1MA+f++n3jiCfszVsH41KlTZcqUKZKWliZHjx79yHW6u7tl6dKlcv7550t4eLj867/+68cqGIfHpKtLkcR/tKDOjY1avzQwoEW7hq+urU1s/kKbx3J42LAivKH/r6kRaW6WiQlFCLe1ae1QaqoixfPyRKHTVVUiWVmyZo2Keh4Fm6OwDUT8fq3NGRhQ6LTLJRIRocWqxcXSAzIxoTVEGzaIiMcjfr/C2t8xz1FdLSIZGcq/l5oq8+YpgrmhQUS8XvH5FD0dH294BGtrZYOB5s+aJQqJ7uzU/mhosEmhu7q0Gyz2E4sUV3JzbbYXUy4opaVaAtbTIyITE3KPuf4hUFh3RIRIQYEcBakxZR12SYPLJY9YJRZ5edqe3t4A8a2BYFdUmD7o6xOpq9NauNhYrdHq6pImsLXcamtNbVNqqi3pIxER8pYp3ZDSUpH0dJlAZWB6DUzfqm/bANqftbXaeUuXimRkGKqnQwbGPyRr1ihMH/LlORA4onVpSUlax1Vfr6ULTqeA1kR6PFrAXFur7C/wZ4XrO52yerU+emKi6Fxwu2UvSicWGirSYEpBtD6zTqStTWJjtcRk6lQRiYrSMWhvF3E6paHB0KT19Ai8IcfM9yUtTU6hJAji9Wo5RFqaiMMhpaWGTs1UaC9fLiJLlyoRCIh4vdLQoHPiKEoL196uYyBVVSLt7frsNTUihYXygin1eMGUIqwHownZLZKcLNAuMTH6zEpHjYGzyQABAABJREFU96wotdwWmxxb6bPqtWzC45GkJEv7sN18Z7+cQkt3pk+3tBXH5EFTDpCTo33X0mIK4Ht7DXnCdlN6c0Sgz3DBdujzpKXJ+vXKrBMcLCLJyVq8Hhsr6ekBYnRLv088HvF4tMogMVH7Venq/DYHnF2fW1hoi9kWFIgcO3aWmVH+5V8CtbEf8322Sh4+ba9PNQUY1GmNTVeX1lM5HDobk5MDxbeGaFdaW3WjsOpr4uO1Tmd0VMCrhsosXktkUhk5dLHAcS3yjoqy2RTy8tTQ+UEkK0sNh8sly5ebwt2uLq3FiYtTjStTN3QM5chsaBC7IHjDBrPBREWJ9PbavIeNjSKSmSlZWbqYOztFJC1Nqqv1MSsrdVGNjqpG3SaUuV6am3Uj93j0/i6XMkw0NalBM6zHa9ZowbhdLOz1irS2SldXQDxdWltFystlB1pU7kdZVPabuqVRY1jE5ZLtpg0SGyttaM3eO6Z/pLVV+6OhQesEvV6BMS2uzssTWbpUN+PYWOnp0Wd9FUMpNTEhvb2G/ioiQvajNY2Sni5PWfcfHZVelDFlk3nDHpuZv8bqG6vtdXXyFtib68SEMQbNzSLl5QKH5H1UO66zU/vYKhB/H2V7gdelsFDEolpTjb9ugT2yYYNqClo8lFFRem9xOg0rzZjA07q7traKtLUJ7Dcs+f2GlqtfJCYmIOja0CDS3i6ZmTo+UGGrOkhdnU1AXln5ISWB+npDwP2GrVI/b56I1NRo/6xYoQerwkKRnBxlnFm6VA8lHo9IaaktYCqNjSL5+fI0qmrQYOrhGsAYkHpDntAutbWWKoTfGLpDAu1SXq71hMqbuU4PNenptlCufvYVfbaoKIE9MmuWRUv2tOwGo7A+LidRAoK0NJ26euA4LlJbK0oH97rhuPyzlJcr044yuGwRqLetUjtIbGygiBzGJS/P0iZ8Q+B1m0sTXtQ5Ozyse0penqSkmDlRVCSwX6ZOFfH/6Edn19D94AdaE/gJ3v4f/OAzQ/dpeVkD39rqF4mJEWiX3WaDa0CLlxtQ6qLTaJH2gNkM30FFJV+yNsqkJBkeFnnJeCu1xoDCZvGilFEWJdgAKkjaazYri3S3EdTtKStTz8Lrlf1mk5fERCkGeQEVslwHupp6eyU93WhSGq9BnE45aRZxebm2Cbxmgz8uo6O6tuLjxS6UjopSB8XrFZG6Oj2d9/TYG/2rGEqurCzJzBRbNNVS37RqrI+Zjf8d1DvqQYvCD5lrbEc9Ob8xdrUgT5i+bTY/S0SEvGDu+xJaWFyDFh6/ihbRHzXXkaYmQ+bcL/CkekjJyXZ/QrtIe7sUo+KsExOihdJdXVKKirg+YvpVXC6RjAw5ZgzYIfO3DaDWweEQSUuTp1C6qndMm3aY+QDVAneITEzomGZlyfCwoYErLrYVwb1eEWlvV4q1hATd9EdHpbzcMGTU1kpvb6AQX/Lz9QAVGiqSn6/yMxjB0YYGqaszauvJyfp8lZWSnq6CqfCA8Uh/Ky8Yg5qfL7bclMejdGXJyUqMvQMVG21Hi7rz8kQkPV381lhaoqWlpVJaqueKAVRdXpKTtY11dSIejzxo5oglUlpdbbgs29tFsrNlk9XvRUXSbOZGBUhTkxr8LtS7k6QkkYwM2bDBRB38fv19aKiUogfT1atF/2jRmSQmSnx8oF5csrKU/i4nx1YTbwVjcP6sYskVxnAXFtryT+L1yvLlhqu0rk7q6tRoNaIHlFWrTHSkosKe8yUlJmKQl6djHBwsT6PkAZ2dYjzozdqe3Fw9OKSni5SXK9tLWpoeIA1t0QHOMgXYZ4buY78+1cKrb78NHDvG8uVziIuJYRDNKwxh8jnj4wQlJDAnOJhpHg9z0Lycy/w7BvDYY7zwgsb1xzB1biQA04kDqqo0Gb937wjTIiKYAcxISICyMkW+h4RojmHzZvpuup0Eh4OXB+czE7jU4YCtW1mAFphHA4tBUQQjI3z5y5reuBKACyAzk5C4OIaGNAWiv5/FjI2PAzC5X2vr7roLpiUm8tqs72KB5k6fBozg6eObZzITzS+Mm2c68cQTDA1hi6Zy4ADs2cPQEGzadFo79P77ccfHcykw0+SZIlNTcZtrRMbFKYoOBe8AzAkN5SqHQ9v6hS/wLgpkcQPXA8vMZ8PNNd4z13nDeTUz09OB/cBlBKWnK9jmoYe4xuMhKWkOuFzMBoKDZ2l+qriYN4ZmE4fmDCOBZUuXaidGRhIeE8Nmc/1paC7wzNwrVDD0wAFFbX7967wGhMTEEA5G/PVNYDI33jRJ6xL7+3E4TO3Y0BC33mpAKiNAR4fm10JDYedOXmmZzMaN8PTTWgzX36+ppQMH0OTW4KCWJ0RHs3mzAnxmomNVVAQvvPAeuN3s2AGUlbFzpyUq6zElLJdpLplm7r//fVi0iDMvvcSttypWY9OmES6tqmKB243Pp/28D/jd7w5AdzdhXV3MTE/n3a99TQkFbrqJn/70VaqrYVpPjwKRiorgppv44JvfZLCjgwVmrp5Bc3QZGfCHPxzWThga4go03/1K4q9woGtuNrpO4F3eBZ59fhJWJ/7hD/rfI0NhvNYyCb74Rc2TZWYqcjIujsedP2Ms4Wow9Z07dyrO5eVbHueBB4BFi8jPh40be5iPqTqhmYvRfti9ewRuvZXnnhuG8HB++cx8JiYUyMySJaxeDRcvXap5z5ISnn9eQZF/Cf8+7tRUutGfN24EXC4t5XjwQcKAY8e28thj8OjGmcBl7NuHSdyFKKhl82YtFzl6FFpaeDd8Ptx6K8c4y6/PwCgf+/WpNnQXXQQ4nTQ3w5n9+5mMGivbYA0NwcQEY6dPM9LRwQl0AVslAmMAO3dy+eUBRerJ9tUH6Efn8dy5EBHhYPzYMd10Wlqgu9suUj4OEBlJaKj+PDKixnZkZATuvpsP0OT+GQyS8q67OMhsYmMVsKVMIGHwwgswMcHRo9oC/f1Ujt/wfW1ZSAhTgsZ0ofl8XBX+NiEhSkzR3Q24XEwGvn/rGYLMM46YNyhAz/759GlVBA8HGFLEYnAwWDVCAwOKXGxpwYcBkPT20o8aUDea2OfkSU6MjCgKrbsbl+n7cPOsR8BmKQkzfTC2Zw9XBL2pwB3CgGEF2lRXw9atvNvRwcgIvN0/zYBR1JhTXc0VnjHbmL4H+F56SY3OhReCz8dsoH/PHoXgA5P639NJfvq0PmN3N9OAof0K9tAFEAuEsXixwUFERmrJADoBmpv194cOAR6PkoqMjEBQEC6X7h2xseeCz0dQkDYlMtLMP4dDjd3RozgcyjbzHkB4OMuWQUzMxRAUxOioXvuyy8y8xBzWeN8YvDgSE6fC0aNMcrnYulXRpvPmOaCwEHw+tm3T+RsGREVF60Xuugu6u5m5dKmiMoOC8HgS1WivXKnPMjgIIyNMiY9nkpmrFljrDApKXLgwUifrF79oEwk4ndpWh/ms8j1cRCSGeOXAATj3XGJjA8QHTidg6uLo6NDDRHg437/huJZLbNrEeefpZ4OC4Bpe1jrPjg4FBhHJuOlamK7lCBbqxuEgOPgCGBnh1lv1Gt3dQEuL1tyNj+vc7u4mOlqH5vpFx8H0WUiIaZ/TqX3V26vt5PM4nVoxAgNaVjIyApzSgY6O5tQpdP2cOqXcAocP4+csvz4rL/j4r/9pl/LjvGxX/sUXTZhns0hlpbSZEIQkJ0ubCTn8wYQxd5jwiqDJ83YThnsaJRzejeadWrG4LtfIURPOUKZ0zdc896GwHayTwkIr1OSX3SZE12fuuQZEysul1tx7kxXOrKgw+mr9Gj6JjRXoECkpkUaQefMMEa/LpaE0v+Y4xOMRiY9XXsXERJGqKg3xxceLlJZqListTaS1VZ4wz7fb9Edvr+Z0/CYkpXpZY7akjgwMSF6eSLHpk/XmWdaZcGAnaDKwokI5A1Vczg5jtoPGeCMiZML87jSGzzAnRxrMdSQiQirNtf6ApZ6Qr7mr3FwN3YItZnsUBG4XWbFCwScVFdp+FPTix4BdKio0F2lE0CxOSamp0RCaYdiXwkKb4FkyMkQiIgTqBbbYkk7vowK0Mjys42NydhZ4Qfr6NBxq5G0qK01oLy9PpLPTUpxRfsTsbOXgbG2VigoJ5CyNqGpWlgRANvHxUl0ttnr1UTSn2AUC22yhWj8KeKqt1bEbBpHMTKmsNCHohATNy+Xk6M+GB1Py87X9Rgj2FGhsLzNTJDNTuVLT0mQ3ynM6YNaEJWR6zPRpHRoKH7XmxIoVOs7JyRpCNKFacbu1Y6qqtN+tfy2+SYup2+0WaW7WfklO1n4rLdV3XZ12Zk6OSGurhgjj40Vqa23dPqmpkepq7Sdpbrbz3JKRoUnswkKRxkbpQUE7Vv9Z+cv3TRhV0tNF/H7pA82HGgUHGRjQduTn63prbTXzpk+arDmenq5z2OPRMGdbm/hvuunshi5//GNdxJ/g7f/xjz8LXX7aXrnPfJVwYPr0r9m1WlMAwsO5IjiYY8cGiEMh6G4MF56B3juAMIeDi4EfPnYll6JemIaNvgNE41q6lF/9Cg4dagPexJmba5+29bz8Pr9etot+IDs7DDcG8h4Tw1XW/VauxEEAsn1pcDDjP/iBFhg7LmLzZsDtJibmMvi3f6Mf9bz27AESE0lIQGt8GNOi1JUr+U7061BUxK7LvwtcoEdNl4sfyxr2Pfccf+q4kgQgLDgYJ1q7NqPjZbZtg7D4eGYCu4YuJSMjmJ07zen4jjv4bdGYTY+2GFgUFcUSIDo+nosB37/9G2M/+IFyL54+zQkCYcydAHv2cPDYMTajJ/wXQeuiDh+26b+OHDumFFfj44bV5gAQrRD6Z54hpKyMdzGMW8HBWqZgykcudjp50fV90N5gH+opHv7d7zjxgx/AbbcxdvIkh//wB3ahdWD3dXxLj/zr1rEZeGXxr2FiAt8TT8CCBXQfO4YGEw/zw9vOUF0NTpeL5cvhvgemcG33o7w4eBWEh7NoEfDkk7zZfzFbR0bg9tu5/raLGRmBP/xhgHdX/hZ8Pn7xC0MJlpnJu3/8o4YGnU6Kij7k1X/pSxQVwRNPHObGuIPqLTid5Oai1GUcxhUfz8mTnYbvUyMAtLQQFhPDo9VhbN0K//qv7/MygMPBsmWmPCYtDbxeuOMO9bqDgnjySRi79zfqlj7zDFx4IT7g9xvnaLzutttMNC6EtzHUbzExBAFf6fsLbN1KeEGBzfhz/IknmOx0cubf/g06OnScnU52736H7pMneXnJb6C4mLEHHqY1+ru8svjX/Lv/u/w14dfwxBPq1T71FDfeMRNaW+GBB3CnpsKyZbyZ9iv6vv0TXp77E/jpTynecQ27bn2Y18avZOVK2LdjB3R3Mz4OQ4cOgdNJX5+JOlg1Dhs3crzsz7wY/j24+WaKd1zDzMxM3gbCCgv51m1hPOv+GVRWaq3pyAjcfDN/2RpGCBoO5bHHOAw8u3Uafx66Hu69l8TEOax44kqoriYj42IWAJOiogKsO4mJ3H03PNpyha7Xs/n6HwpdrlmzBrfbjcPh4Ctf+Qqvv/76f/vZP/7xjyQmJjJ16lSmTp3KkiVL/tPnb731Vs4555yPvFPUXf6HvT7Vhu7xxyeYGxdHSgrs7OhgNib/MTICbjcLF17EouBg4iIiCE9LIy44GDo7uRRTYxQTw9XoOp8SFWVzUno8DqZOvRbmziUmBnPVOZCSQhha3+YB4Nvw3e8ShNaLOtPT1dA++CAh6ekkBAdz5vRpglDDOAhw+rRuRuHhjIwM67x74QU1aMHBOID8fPOAe/ZoeLS3F/g8PPYYYzd/T8MlPp8W5wLH77jPpss6jtbczQRwuwkDJsXGQn8/d90FJCTgXLqUoCD9yh13mHySzwfd3cwHPC4XMxIToagIl9sNbjdOj4dX0EJfH3B4ZIQDph9mY2r1Dh9mkADd2hGMAdy5U2umzj2XacDVADffbHKQ84GrCU9I0KRYejrRKN0Yd9xhSLuvhssugzvvxOfTDa2bQIjvPdMm6uo4QcCYjIOGeRcsgORkDmOYvC64QMfp3/5NGVn4PHAYysr0TLFiBb+M/g/uuacTVq7k3nvhzyM3snYtPFo/gznuD7QO0VCwWfzITz0F77qvZu3aTkZGmhlzzdTPhYfDyAjnnaeGeTLQPzhoyFJG4Mtf5sajayAujqNHWyAiAnhf6/Ho4QNg1qzpynX5hz/AkiWUlemeDp24gPE//hGn0/SD0wm33MIbQ7OVzeSxx7jhBoscXPv12ct/xUwzV4aOHYOdO9XYLloEmPzwokWEREXpqWPRIo7fcR9hMTHMxdCJpabyCtCyZYsWhpeVAV4uNv/t+6dvsXMn1NQoE1xVlbbhzNJvaEgwKYnnnntfWX0GB6G6mrHlP+GWWyAvz+ThhodpbNRswauvqo3eBRAUxLFj7/NX4OWga9m8GWbm5vKzOydxX/WlMDjIXXfpunz58KWUlgLR0TreixfzzDPaHsx8mYyO8QMPwJSKCh3T6dMJQlnWnnkG/lQ9mQULdG7ucl5DQgJMSU3VhoaHEx4aCt/8JuPjGgblyBHO6ut/wNDV1NTws5/9jHvuuYddu3bxpS99ia9//esfIfz48Gvr1q1kZGSwZcsWtm/fTlRUFNdeey29vb0f+VxKSgpHjx6130899dTH7pa/5fWpNnTr1p0Ls2YREgILsrK4GDVUHc89B3PnqiG45x4Nxvf3a77ijjsIQmPyY3v3Qm8vd98NXHCBFpvHxpKba9b7hRcSFwfp6VOJjY2EHTtIiYrClZREeGcnWVkXQ3Y212BYKu64g+vi4pQJIjIS7rmHMeDaxESWLV3KHR4P5ObijIiARYsQ/4TmNfLylFj5ggu4PjeXAwfMHnfbbUqEcscdpKYmwIEDyq/odMKxY9x0E8jodKaNHKFVroQNG7g6MZHly2FKQQGMjDDNSi4VFem99uyB8XGuWBTGb766gfp63UTo7oa77mJmTY1N0MyiRbpjOZ2QnMy30tO50uXixogIIhMSmO9yMaewkO+lpXFvfDz37tjBfIeD6yIiuDori+UJCdwRH8+7hw4pg0RqKh8AjpISxjxX4Kqo4JxzprNwYTR0dTG2aRO7Dl/MXKeTxx6DZ+PuYzlQWjqLvgXfAL+f7996Bg9ayH414E5LY35wMJempsLq1YS7XAwCt6BAmJtvBu6+m7Gnn+Zm1OaM+3xqmCsrOQEsXBgG5PH78Z9wqvc4jI/zhudb1NZeBs88w+u3PMx39v2Slhb1/n+/dgpxiYngcnH33XpQSkq6iF/kjjFz46OsX38ZGRlfpaoKwlJTeSP8GggJITtbYU5uILy0lOXLITc3GhobeTPpdkhIID4+wczuBLjzTjyea7kyIUFzRqbNDA3xxm0Pc+gQrF6dwILMTIIqKjh8GBLq6uCJJ/hzy2yu2PhbpuTlwXPPcV346yQkwJHGt/jLnpn4fDCpqIhbboGQri5YvpxrW+6De+7hJjTawZYtfHDoEMTF8ebIbHw+eHfz24QDN3o8sHIlixMSSEhP58cA1dVUVNzEFKeTb38bLln/e65y7CIkRMfhpz9VvNGkqj8pScKWLZSUTFWjcOutAEy+48csXqxRBrcbuOUWbrhB6eeCg5U17XtuNyxezJo1U7kxKYlrnv8Jf1n9Jng8/P6WXco45HYTHq73XbzYMMndcIMWvff386MfGbDRl77EgpoawoDvRL7CK7/YAIsW6aFi0SKmoIxuy5bpWSs8HNasgfnh7zI4iC7UJ55gxb9OYfDkSTj/fBYtMlGSgYG/az/73/j6/e9/T3Z2NllZWcyZM4e1a9cyZcoUHn/88f/y8+vXr+fHP/4xcXFxeDweHnvsMc6cOfMRtixQtiuXy2W/p06d+o99kP/p2OnHeVkx66Qkv7yP1tGI0yn/P/bePz7OukwXvgqdMgsNpthoyjaYehqc5RA3dRtMXaOMErdZCWs8xNecNWr2GG12zR6iRM17CBg3PTRKFqOJMmqULCkkWwccSZAIIw40tqEd6bQMNJa0HdtpE9q0HdqhnTbD9f5x3c8z8O5PoXt2Oct8PvNpmsw8z/f5/rq/93Vf93UHLQ62z2JGw8MkS0qEoRcViZpdVMRtED16EsprKy8XLftBi+WVlCjBlNXVBOYJxAkooPKYxZ4YCCgeUVqqOFgoxGxW8R0nvubUWNtibRqB0hLY0kJGImxvt4rWhYWKCRUXMwPljW3YQNLvVwXq9nYCe8nRUSUOT06SwaBLL0+nrX5dbS3DABsaFIv7mfXHNou3rFihXL1zFtPh5CRVD+6Q4l5WUyztxEqmpxUvycvjHotvbLF+6kcupWDa4mr0enmbxSOfQI7qP2lxweP2XRYXK/ZVXU2gn8DjbsHUWEwxp/5+khMTHITyzUIhkr29bGiw3DpYfcHSUk5YzI6DgwzYffvt3dKiuNiUtSsYVI3CGECWlNj17yTw17nCocXFTCatyKvfr8re0aiSkicn2dCgSuHMy2N5OS0heVRxHUv2Bo6Sk5OK//T0kKEQS0qUd/aY9YFSK+4hOzsVQ/P7Ccxaft7dpM9HIGRJ66pfyI4OsqCA69fT5mZIDWhqYjqt8Z12YowtLUpv6O4my8pUqHRiggUFRvcfHNQcDgQU2yos5GEb1wP2Hoeo+KtWWZX7sjLug2K34+OKTyeguG44TAK3MwTlHrKzk5ybY1GRwpRtbcpDZE+PUj8iEQL7mU4r6yCRoOWhHaByV3eSsRiXLdNUVB5diAk4OXhfZxxgZ6elF4RCXLBAjxKLKYy9bp3aDRwjR0aUYjI9TSClPpqbI2tq+G2AHR2WR9nWRuA0s1kn9echFhWp/T6f1Q4cHc1VKC8sZEOD5dENDLCxUV2quoLnMUb3pS9p/F/DO/WlLxEADxw4wFQq5b7PnDnzD+6byWR44YUX8oEHHnjF7z/5yU/yhhtu+Fe1/YUXXqDX6+WDDz7o/u5Tn/oU3/SmN7GgoIBXXnkl161bx6NHj76mPvqXXq9rj+6ppwRf7d8PnDVV93wAxQUFLvz10p49gkkctpHVylsO06Ls78dzzynloBCK5+mjXjvy7QNwGMDzrujwfgAYHcVTTx0ELrwQ+wG8eN0NuOC7/XgGwPt8zwvuyWZx5stfxgX6tqC2oiKc+Pa3ge3bMT9vnuAf/AFWrwYO7d+PY5Aw8PQ0gPe+V6fa/HwAHunvzUNe2dVXY/FiobT79xva9bQiWmfOKFZ5FQSZLoQqJxw+DBTm56sdV18tSA9Z1NUtc2vE4cgRufnz8w6NDigrw8XISaR5IYHgKwG8dOQInoNBZnl5rhD0WeSEs6+x7+QXFCg+l0yK3fjUU3ouAC8cOQI8+ywWL4YrRA23MsYsbrj2BWD7dmkaQoDnSwBe3LULz8MEo+fnUQFBxAsh6PKRR4ArfT68BYobbt8OvNf+hve+12pUvA/Am/E//oexLk+cwNGjQtPg9crjsNfZsmtQUWFpCV4vdu1y2HgvKAViaEjfwwt4afU1gqsrKoADB+D1Ckm4FBprPXsWePObNc4rVwJI22CeVdUFvFnpK/Bj7dpL5Vr4fFi6FKisvBDAaezetg2Yn8fFp57HxQDeXlWFTZuQqyhx8CAQCqnG391349FHJb2J734Xzz4LuTuFhUAwiMLycpyyPlxeWIgrAfy/H3kGQ0PmpXg8eAGaXx8q3Il8e54XAXygeC+A5fDa9MH112P23GUoK9P/n3sOSKXgdJg974XYvh244DN/gSuWvghks/B6l2PJkrcAeBtw441YuFBes1DVFfgtgC9+EQA+hAsgNa/rrtPgXn+9pu07D4zB6xXq7/UCCxYsAbxeQdbCrzVOn/kM8OCDWGrDtHo1gP37sWyZFxfgJdPS9btQf0mJrdlVq3DttZDo84kTKC62OfHLX+Lhh02y78YbcV5f55F1WVRU9IqKMLfffvs/uN3Ro0eRzWb/0bJq/1RJtf//68tf/jIuv/zyV9QoXbt2Lf7u7/4O4XAY3d3diEQiqK6uRjabfQ2d8y+8/k3N6L/Ryznh/PznKVOY2EOWlzMCqMpwRQWjAGtrdeKMmDcRRi5xfBK55OVwmIxCSbJKVg4ReIhZOKoZKQJRNyF6ArCq4lEyFuMYIKUEWJKyz8cp82rY3s57oIrdA3b6ZVubVSver1NsQQGBQ2R9PaPmoaZStFP/WWNXbhE1LxyWWkl9PZnNSiJqfJyOlMhpiCX3AHJJv3NQwvCCBWTS8WaiUQ4M6KTb00OyuprZrL73mNP2/Hzus+9HYInZpaX8mV37iJ3+Nzp/b2x0E8Nvs/tMQ8npW+z/J2FM0OlpY6uOE/h6TtWmsZHP2tixrMzG4x5l7BYVcetWcotdN2zjehrGemtslLpMaSnHIY82maSO6YWFamMiISZdURFZWmqszrsJ3MmxMZE3D5vHsHEjc4nWQ0M67Xd3uwosjqKNJMTmNQbBIDs6LGHcqWre2EgODLCzU95oHGKiSgLrFDk3p3u1trKuzqkoPmpVrA/YHB9neTmVjFxaylhMXoPX+zKmZTwuz7qkRG3u6hKaUVMjSY+5ObKyUn8LhcjCQrFDy8rI1lbJWPn9HLMxSkPiCMGgPs7mZu6BvPLDkKAACwrI/HyhI42NBA7o+bJZeZS9vYzHLeHaKave2Kh21tbKc29rkxtWXk62tTEa1X+np0kGg66KjlMU/ACUcA8cFZN3cpLBoFRoolFqEGMxPbNJAIbDktibsv7p7TXZrlCIR5wxGRxkIqHK4sPDJKuquMvW9swMyWSSwDHdo7mZwDwPwFiXs7Ni+TY0cGDAHvV8sy47OgQBvYZ3qqPjX+3RJZNJAuCvfvWrV/y+ra2N11xzzb/Y7ttvv51LlixhLBb7Zz83PT1NAHz00Ud/t475HV6va0MHpMjBQdbUUIojpaXCFrq6yMZGDgxQm0xpqVz3ykptVCUlWtxNTa4SA+vq9LvyctbXS4GBHR2uvFBNDcmpKVGg8/NJr5dFRdpkJmyxsblZ0FwwKGp0dTUP298jZhAyzkafybi6eochDcYjjhGaneXwMHkOEHQ5NCRNxHEtfkftwWFS9/RQdGZbsL291LPU1GgDrKggYzFtph0dZEsLx8a0Z/b3q7ksKSHj8dzGaJJdbGgQVby+nt+19j1gizsJwaAhmKZlRQX3mAGKmbH7hnM9n0/X9PtzeqEeD/1+7ZWsr9fnpqZsYz9NBoP8EaDxCQbJoSEODJB7bBP+mfXtNExtpaGBLC3lFAQTPwGD0CIRsrWVP4LByg0NOWk2r9dko0JkZaU0JNNp00p83NW/bG/XdTo6SE5MyLjW1HDtWml1+nza16XYsZvAUW3uhYVSPTGljih02MlCUlRFRYK42NXFmRkzmNXVgs6DQQI7XNkqZrM6bGSzBM6aRF2KIRsLtrXpUBOJkPE4w2FBrCmA7e0aa7a2kqEQg0H9bf1607rs7ZUxm5pSyo0zsRz5nmRSMHtPD0/DDnRVVQxZ3wfgQIJPugfEWExzrKmJBPbT75cty2ToSrYB8zJkXi8jEf3N69U0KSrKrY2NG/UuLaXuVV/PFSt0cEinLQTQ1saxMZMqa25mXp7g51DIoM2+PvV1JEKv19Z4SQknrI/6++2AMjWlNIZgkNP2LOvW6TobNqhdGzbQhdNdyaK6Ok5Nqbump8nUPff8hzV0/5o2vRbo8hvf+Abf9KY3cdu2bf+qZ1y6dCnvuuuuf9VnX83rdQ1dLl4MID8fixcbFOWons/NASdOCPFbuFDEivx8/f3pp/VvNiuMb/FiJZ6fOaPvzszg+HGVlMKJE1i2TAHoxYsBnDql+xQUAHl5ShaGJZkfOQKsXCmWnYPVLF6MxRDElm//ngHcGmFHjwJLlggOfMc7INYW1JaiIv1+y5YsUFCAc+cEyZw4YdWpf/lLS2I+59LCF0JknPx8AOm0nj1tUNjChSK4XHQR4PXi6qt1vZUrDaF885uBpUtxQX6+vuf05alTIvIYW8sLwZJnILjqAqiQ6xlAsJO1wXmfcsYlP18Yq9crNf3KSuDNb4ZzO+Tnq5MXLlQfIqGaec7QWN1Dp/yhk9zvEIucYplOG2H3X7nSJopPSiNXX21zBsCxHTsAn09IIdLA/v0gsxq7X/4SwCFL2n5BqPCJE+qrM2d0j/x8FBUJUisq0r3EhN0L4LhSJEpKcMF20auXLVM/zQO4wOtFWiIegn1HR/HW7CEAh03OI23ZzkdxxqbcsRMX4MTMjBXxO25D8ntucj4+8hHR9hcuBAoLlaBtfysuNsTuuecAnw9PP61+m5+32oo2n+D16tne/GZdxyldsHCh1sDRo676EJYuxSIINj4LYPaStwPI4oKyMuTlaeosXmxrB4uweHFuWp2F+tPrvVDM5rw8Fy0/cyYLp6TlxTY1rDoRYP0n1rLg9M2bbQ6///14+GG7x/y8+x2XBZlIqOrAzAyWLJHOAJYvV5K9x4P9+62I+MqVuBgvumkxs7P67Py8to1LLhExZn5ec+vQ0UVqgKnTFBYakWZqCuf19X+Ydblo0SL80R/90SuIJA6xxCm79o+9vv71r+Nv/uZv8PDDD2O1svz/2dfBgwcxNzeHZcuW/avb9ju//s1M6L/hyznh9PWlyPJykQACAT5rp/uInfizWSogXlcnL6Kujuzt5RHzqmKQ1l9/v+CKCTtpt7cbpFRfz4aGnAI7GxvlCdTVkdmsPKn2drkkoZBU+Ds62NlJHUkbGoRr5eeTpaU5bykQEBnDEW+urdW/ra1kezsDATtZtrTICxsfl+7i6Cjd8gPRKEMhg9dmZwWtRCI8DonrsqaGUYg8cg4ipExN2em9tlbtm5hgT4+EdTMOBBMIyAMcHBTsEwio73w+sq3N1YmcgIk3t7ToekVFTMAIPnbidgQLb4Mlb9fUuELMjMXI3l4COyW0bAKH0SjlaWUybGyU19HUZDqTIyOcntbvBu3Z2NGhxOX6ejIS4YPmMe2yMR4eFnx9HEZSipP3wZLXg0FuAigB4f0E5nXKt/GJRCjPM5Uix8flEXV3u5UM6POxo4METrueYDbLnLZjNiuXYmSETCRYUyPY7VmIvNTerpxpTk7q801NQg5KS0VmaWggcNQSxh8XdNrbS5aVmfd3SvMiGCQTCXn6o6OMOB6xz0envMc5iJgjEssxtXdqyuWhOP3qeJwZa+fPIGi/vFzPMzdH0ufjSYD19RQCUVfHcwCrqiSWPAeIwOPzkRMTbGrSFBkY0HRifb0gxHCYJSWCNZNJoRusqeGyZTRCzylXSJvT02xpkbfHjg77+z1kc7NVNTjk5r7H45peVVXqrrk5ARbMZrkF4MyMrm/54WQsxrAhBwUFNE/zGONxacM65J2BAe0FgYD2lcpKyq0rK1NVDEOOBgfVpztxnsko69fLy34N79T69b9Tm4aHh3nRRRfx7rvv5jPPPMPPfvazzM/P58zMDEmyoaGBX/nKV9zPb9iwgYsWLeKPf/xjHj582H2fPHmSJHny5EnefPPN3LJlC/ft28dHH32U73rXu1hSUvKPwqfn6/W6NnSp9et5H6Qawakpfhdgty3WEUjVJAQxxL4Ng9eKi3mn/f9HyKlnBOxzG6GYEPBRPgYxusTC3MmIfWYQMEhrmP39ihlVVpIsLxd01NzMfud+ra0csfZscTZnw7hiMVPEKCggcECGweslcEzG0qC9UIgEHpchGhri4CBlfDo7tQH5/QyHzTiWlpIDA7zPni/gGKTKSno8gnh/ZNDU9LQDs83LOE1OMgLwTgiO3Aax7oL23JycdONwz5qxG7dnSkOxSadiwRb7PysqOAu4JX4etDaxpcUEtO8g8N8F+UJMxhFAh4b2douFfovZLPUcwSAHzKAGkYsBMhgk6+o4DcUOt8HijL29fMR+dxiKmYZtM2dzs1U4+DqBYXo8goenIMV69vVJHHlkxMTD9/AcxGp1DwXT0ywpMWi7qEjWcXJScFxbG1lfr76ZnHTn40bbbKNRfU9q+sdIMypS5xm1f6N8AiDQqcNXJKLDxNwcgdPs7zfoMxBQG0pKuM2uMwuDdIeGtPN3duZKVkUimqvxuMa1p4ccH3cFuu+EYsoBqOzP2Jiux5ISjV9ZmSZmXR3Z2Skm7/S0a5jZ3KyYqN+v6w8NyVI0NHAbFAc+AMGX9PnIqSmX1cvZWTekyNFRfb+4mMxkZAy7uqxyw0NkQwMzGWNCFhQwElEsLpu17waDsl6xGE/bOkw797WxYnW12jo+zulpQeO1tSQrKvgg7OCYSJiaUT/Z18cYQOBenrbniMdtThQXC8YMh/+vMHQk+e1vf5tXXHEFFy1axGuuuYZbt251//b+97+fn/rUp9z/v+1tb7Ow0ivft912G0nyxRdf5Ic+9CEWFBTQ4/HwbW97G5uamlzD+W/1en0bujVreBKi/zIQ4LRtvLsgg8fBQSZt8RyHYkvftr8/YG82NpJVVfw2dOL/BkBgHYGHlA4wMcFYTAtpxNkgPR6yooIdHbYYYbGfvj7FUHp7+YBtxqkUuQmKAeyxhZbN6rNOfTmdwB/XouvuZiplaxAgcD/Hxy3GEI2agvosf2abzfr1Oj1GImboolGys5P9EOX7CWdhWymRTciRcjg7y7w8i/HV1alenfVL2No8CRnGewAduycnGbY+jdszsaTE9fiOA2RBgU76TkyupsYt8cOiIp60PpgDuGABCXxPn4tE3BgoMO/KQgE7mU5TnltrK8chbzwJM47T0xwe1uk7A5ADA24ZHaduHINB0udjwumPgQEp2VdXUxJgD7G21ng9sLp1yaQOHKkUmUgoTldZKS/AqelWUuLumVmAnJqSIZmY4BxEjphw+qi9nUFrY1sbybk5Tkzo8u3tlMJ8Om3pBKMch6o4qIqBSYBZWaTpaSERTh20k9DhIGNjXlBAeY6dnTLAZWUyakNDXLPG4ksdHXLlwmH1pcmkJWy9OP2sMTotd6a2VukRlZVqdFeX+tPalJen2DLLy5mEkZQmJ8mBAaEh+fmM2vwKQweRbY4xgQ4knJtza0WOjZFsadEhJZVyaydOTJDAZqYgr72ujmR9Pdev1/03bqSMa0WF5mFPD++B0IgwLI45MCDDWVbmGsdolFrDqRQj0EHYHZtAgMBfk0VF3AIQ+GIuoOjUtWpp0f28Xm4734auuzsnjfYq36nu7vPSptfb63Vt6H7+8xQfA9wCq722KY+Z0Wpr08I/DuQ2waEh/gjyyjbZ4g4EtEn22sIWLLLJ8phmzeu522XubQOMKLCbnJ3lHHRCd46WExN0S9qwpoaz1p59sBOuET0yGe1BDAQEXdXUkGVlBGYFoQWDerZEgkCKzM/XJtvXR46OcutWg3Xq6hSMz2Z5xDG6tqAHIO9sAsqtSjjGqbjYmGt6tphjFIxQwpISLdyqKmatXxgI8CTkGcVgpBrTLTxtxtPJRTzpPGt1NZ+w37OoiLfZZ5nNmpe0jsCwW8InFpNHxUSCjEYNtjvKDRt0Ug+FNFZh2EHF71e/ejxMp+X1PWbvEFQzbdDuH4MYhIOwnMbRUX4fOpk79dJ6e8Xeq6wkmUzqUDI1ReblEdhrbLsnOWX9VV/vwGxb5PmNjzMSUVFdjo/rYFRXR4bDXLZMxicIeTz63pMMBtVV+2DkI2tTGmIA68DzLQI7yHCYTwBGRPmevLzKSjKdVsHdmhrGoZwwl40xN0d2dgouj8fZ2WmMxvZ2GfSJCZEv/H4GoUNM0PowABWEdQwOGxpcXdiBAcpbamxk2sYO2Ml9ZvQIkLEYh4d1gAiF7GBYVSWv1MrqZLNqA0dGSAhiraujS0JqbyeZSrGnx6De9nZDWR4lGxo4NkZ3vdTV0ZLYUhwcNGi/pUVapKOj0rsdH2djo62dYJAMBjkCQfu9vTSEZYccM0h71qkxuWKFXdPR9Wxt5bR9JgWQTU1saxNEvPt8G7o77tDp5jW8U3fc8Yahe728Xu7KC3oaJ6emGLXFyYoKPmub1T1m0O6DvDk2NPAx26STZhQZCDBqp7dn4VDe/4p7bGOsqqJLzX8QcK8J9LOmhna628sYcrT7TQB7ALKri4+YAX4WRm9ub+fMjNZjfz/JykoCZ8nGRh4ACBwTPJmf77K9gPtdGn0gQLmYHR2KteTlkbOzgltqasjOTobMsDoCyMxkWFOjxPgnoPhITY08xfZ2kgMD3LCBHLDnC9qzOsnVcdsgOD7uVhjPQAeGccd49fTIgHo8MoLFxdqE6+oYMON3GubZeb1Wa24HgXZ5H7W13Gf3Hh8nWVBgFaZvJ3t6dMDo6BC8VVjIPfaMHBqS11BTo92xooInzfCyq0sGvLpap4rmZvVHeTk5NGSIwGYC+9nZqRO9aP1xMhCQ5zU4SNbUaIzy88WmzMvTJjk5yTVrLL5UUSELEggobcSEgFlayulpMfWmYUzRaZ2LAgGdexYs0DyYnla82ONRAvKKFbQ5YTE6Y9dyepqtrXLS9kHwe3s7c/HUgYGcQQmFNM9KSnRI6utzDRY7OtTOgQF9pqCA22z+OjHvbJZkPM44FMcdgTwx9z4TE/IY29pknDwesq7OTcFgX5/g5ZERsr6ehyGvOgPz9oqKyMlJ7jEDytZWV0BcJ5VBXT8Skfvb1eWUtZPHOjrKDRusHyIR9U8mo/ngtLOvz/VWT9vn2Niof71eeeMNDWQqxV2w9ILych1UEgm3qC3wKNnba8LbTwrO9Xo1B0tKXG+Qo6NMXXfdG4buP8hrAUn+21Fd/m1eL7zwAt70pjch1dmJxbfcio9/HPj74ZfwEi7ABU/vzJVGOXJEwqr33KPM0RMn8NOP34sbCp8UNWpmRuVhTpyQVpDEA/GLzYswNAT8cPmtojguXy4m5cGDwCc+AfzsZ8DICH76mZ9i5UrgqoW/wQ83X4m/GP6Q9ILuuANobRUFb3gY+P73JazX3y+12K9+FQveegk4+kv8puTDuHLoVvzFwa/hhzc/AxQX42t3XIzrrgPe882PAV1d+NbDV+Laa4F3zv8aOHMGn7zrPfi7T/9CBcBMm/AX+R/F5s3Srrx03X9XFu3q1aIser04u/ztqme3fTtQWIiPbrgG9391J7B8OV5YeBkuPXUIz5y4HFd95Eoljp88KWHgp56S+ObHPw7Mz2Nyz2V4d+Zx7Mx/n0rtDA+Lfvbxj+Os75345S/V/e9bvlfJtJWV6t8f/AAvffNbuAAvAZdcgq+eOYOvFhYC0Sge2nE5/vTo36lv8/OB//pf8cL4Flz6y5+q/lr+ZbjgZ2PAxIREB2++GS98/LO49OAzQF8fvnP1d/DxjwOXbf4pfr38BrzL9yKwcCFeWrgIF3zzb4Hly3HovR/D4sXApd/8GvD5z+Ps4svw8MMq0/L405fhfatfBM6cwXeGL8PKlcADDwDfXfU9fG3ms7j1ul/poYxW+duyG7B/v5h87/rx/4u/mPnf+GHx1zRPPvIR1bV561txqPF/YccO4E8X/hzPLP8Qrto3Jvre/v345KOfxN/tfx+wejVG3v23GBjQ197z8K2i4NbWAo8+ism33oDSUjELP7RtPVBZibMV78Oimd9i7/wVeHvXXwCLF6tv58/ixflFuPjgbzTfVq8GvvlN/PbuX+Cmm4D7D16Dn3c9iQ/94GNKZr7lFqCwEI93PY6FC0Xm/IuyXxvbExq3q6/Wc+3fDzz9NH679rO44p71+M6S/4W//PEHgIcfxq1di/BXfwW8dfsYXqr+MC6YOQTcdZfWyy23aB5ks6Ii/vKXwP79eOkHP8QFXV8z6iLw0le/pv9bySA8/bS0u26+OZf0XlEBbN+O2W/8Hd7afyuO3fQ1bN4M3HByI36a9+e44eYr1e516/DbG7+AKw7+SrTWH/xAv3//+0Vf3bxZlNCnn8bZob/Hoq98QSKcmzfrnjfdpH8PHpRoxKOPKiN9wwb89dW/wLcWfgFYvBhfOvM1fOQj2krm53XJdy3cKaWK+Xm8cOONeNP7349UKoVLL730te933/wmLv2933vV1wGAF06fxptuuuk1t+l19/r3trSv5vVyzFrelLCRaZgUVUMD9xmc8CPzEB5xPLrqam572cluACD7+tzTqogI9xL4OvdBMGB9vQ5tsxAL7R6IaAL0s75eMRggzsegmNazyFUUZ2srx+zzT0HxQba1kdEoKyt1WBXLbp7s7OSzUGmWcJguGWV42ALvEDSyfj11wm1pUeykuJicmxMM1dLiEmBOOx5PWRmjUR1YD1sbOTtLn49uHhjjcdbXk9+AvN97IGjwu9YnbnmhaDQHxxUW8tsQRHjY+Xt1NVlYKM/a43FjlkHHwyopUfy0sJC3AQYNd+r0b7DbA7BcQHsGoJNsbZVH53gifj+T1tccGpIr5uRGNjTwtHkN7OwULtjeniv9bZWv2d1t8PQeAocYDss5yUBwKUMh9fX4ONnSIsZfWRndYFQ0So6Pc/1668PqarlYoZCg7IEB3b+8nMxmOTws6DgOg7rTaQaDatqqVSSbmjg9TXvmeZ4E6PPJswMOSZRgakoxx9lZjo2pKU4srreXaldDgxsvigBkd7fmRkmJ+qepiaypkWfc1SXvqbNTZJb6esZsnh93vK5Uys0py5q3x0BA4zkyov43bay6Os1n1tTIk25rUx/U19Mpxe6MTQYKAbCwkBwZEfqQl6fPNjTI+3aIFFaWyp3IIyOCl+26w8PKUWQgoOtGoxrnri61raODSbvnYee+DQ3k0JDigqWlVq59Kjc+Ho8g+HBYnmFJCYHNZG+vjdFura+SEvVhaal+npsjh4bOWzVvd7/r69Oceg3vVF/ff0qP7vVt6L73PQJ/pZ0imyXwUQLtBKIEogZBhQg8RlHIdxgd/BYCtxK4RzWtmpsJPETgSzIoeXn8GcS8mnA2XjOcYgl+j2vXWtLr9LS+09bGzk4l/CpQHiXwpDHqdhN4lMA4m5oEYbW3Uwu/rEwMPb/faNJHtUG3tCjO0dPD/n5aYFuqDPX1pgsYCJB+vzZJq4MGbCE7O+2e9xPosj44ZjDdXgKPa1OLxzkFQa3AWdbUiNIt6PYU6+u1AS9ZooRqKamcpTQat1AaoLspMschIy30U7Gjcfr9QliBnQTusL+vI7DDVCZm3Xp26v/TxibcyXBYyBKwU2SO6WnBez091rejBPrZ0iJG6rJlTrL2gN1vmMCt1hf3U0zaR+373yJwP7du1VxwNEHnbIME7iHz8kR8SKctBeMspwD1m8dD4C61t7ycrKpiGIIj29qowSkqYiQiun1np7RIz7n9fy9XrWKOGNHRYSo4j5P5+Swq0rzzeGhj8yiDziFuaorAPRwfFwydgCXUJxJuEjVwiAyHHR4QmUwKlgyFBHuPjHBiwkhIlZUipiQS7O2l9esoxfLcTOB2V6VA6QPz1pdnyXTaKfVH4CjHxhyYdRM5OcnSUosFDgwI/gyFXMgV2KxYl9/v5lvX1krPkuPj2pjb2kTsqa3VhazuXX09ydZW7oGSuZnJ5GDT3l43ppdOk5yY0DM3NNiB8XbFsOvqyPZ2RqO0PeFW/T4cJrBXh6pkksD96sSmJh0yiovJnh7dq7jY+qOfbGqiDsinZLgrK7l4ceoNQ/cf5PW6ThjvO/L/ALgET95+O3619QJIwTIBIAsghAsaGwE8BiBk72/hb/7mOKTAOAcggcOHwxh5/3cAjEEptA9j6ORJ7ATwwAODeE9bGz5SUIBrATz11CCUohrDww9vc2uoAc8DP/kJ7rgDAGL46lcBoB/Ad6ylP4QKmxzE978/gtlZS2rdsQOorUV1NfDbxx6zxNqzuNjjAVavVmXlDRvwl2W/wiKo2vgjjwD3XvdDrFwJ3Hrws8DmzXjrWwEsXYpLb/4sqqoqcO/KWwF8E6r1dhwA0Nq6xBKp7wcwogTop56CF8DS8nKsWuUxacnvWHvX47777sNTT/Xg+PEeAGEUFgKtrR4Ao/ZchwEMApgFkDbktxQq3hPD00+rMkJeXimAX4P8PlTpbgQP7bgcwF1uPTvgeSxY4MUFSy8D8Et8YMffWhXp5/E0gN8ufDvI76uGGH4M4BIAWXz7279GTU0l7rhDMpDAH0Mqn78HoBTfyr8VwDIA/w+A5fjCwS/Y36+1ckiVeAFWf6242BG4xPMnTyov+447cPXVQHm5BwthCeFdXQA+gVDIi98MPQmsXo0PVFbiwx8WwvVC/hXA8DDuuAOoq7sWt912ELEYsHBw0Pp/Ftu3A4vDYXzA7xdUd+YMgPcAQ0M4cOA+vAjg3LkhzTEcx7z16s4zV8Kphn5VURGu6OzEtm3P46/vuAJYuBD79p3RuCxfjsceewEPPvgMvnDH5Vi7Fuh+9gY9U0UFnn4a+OIXn8exnzyO7duBT95yhRUQWA6lgCcAPAEgK9jy1Ck88sgzAM4BeBw+nwdf+urFWLnS8tuhR1gKAHgH/vs3r8GuXU/gwx8G7s//C9x1F/C1HTfghpvejjvv3ArgGfz5n8dwaOgXKCwUov7AA8/h8OGt+PXSD+HYR/4Ch276Op57DnjoM/fjXTe+Hb+56Tu4IBxWznNFBeahpr04vwgAsG1bGli9Grfffhy/mbkUQ0PA955+DzZsAH7x6b/Dxz++DcASvP/9z+DYXX+Ph977v3HwoFOuR32iUEACqzs68Hv/5XIAaeCmm/D4J76Hz95xJR7avx8/zP8Ctm3bil/t3w8gpjl0x/cArEVR0SVAMolffPVxnDqVxHl9/TvVo/u/4vXvbWlfzcs94XzjG8ZIO0pmMi7T7iQUIN6wQVDds3iZzmQq5cKI2wye4cgI4/ZdBZlPE7ibSUjnTp7WMSYNdhoAyPp6AndK1868P3Z0uPCVo2l4xN5PAYKcrG2OPpJDBGlspAs5AZvl5QUCnJ4WvFhTQxKSO0qlKJewqUmn1eJirl1rOXk9PY7mkiolQ1CkyBR7OOVAT/n55MgIgUfp9zOXb1VYKO8Egj1TEGknCsGdbGsTJFVXJ2jSno8VFWLgFRSIDOD1quOam8nycrEu/X6GHbjRUj/kyd3N25x2dXSITZnNqj35+QQOsafHpJ8iEXl4lrO3B0Y0aW9nJkOyttaVCDtsp/I9Nhb0eMi5OWYg+DabpZGPDhCYp9+vQ/txmH5qS4uguHDY4Mz7ycpKrl1rqQ7NzUyn6crEufDc6Kigr74+DVxlpcugTcLIQKb72NEhhuaKFSSrq5lKORXG97jyY+qD3WxtlfNyxOax1ytU7QBEmMjLo6BEBxOvrhaEPD6uedLUJK/KIMRnnXZ0dZFzc4zF5HU+BVV+iNkaYUuL4/aQAwOaCy0t+m5fnyt/xYkJzWefj2xq0tj09ur6s7PyylpaeBwvSw2ZmhKMWFxMVlVxi43L+LhV5Cgp0TM1NZG9vWJtRiJu5gqnpsjRUf2+rk5eXGmpSwBKpazy+MgI2dgoD7q42FhHWTpxgpQz/0dGmIJycNndzZi1x5FfA86KwFJQIK+uupqnYRVUCgpUISClcUotXnx+Pbrvfz+nhfYq36nvf/8Nj+519/rMZ3BNfj78/jcDmzejAtKhX1xRAfT3Y8kSoLCmBr6qKrwPwBUtLfj51ktxDYAynw+rCwqQX1eHsx/5GK7y+3EFgLfU1qK93Quf71O4vLYWR48qnr1ixRJc3tCAqwoLVZTy058G8Ef4i0+/hMsKC+VNmIz6M7gK7/X5cFVNDQ4BWOr3o8zrBfx+oLUVL545Azz3HF70vUven9XcwvXXA8XF8Hr/GO8e/xpe/MRn8fbFz6O+3opQlpfjBz+ASBqf/jTwiU9Itd3vd4qPq7Gf+QzQ14e3VFbiKqjKAAoLsWLFSlzp8+EDAFBTY3pH1+LUKZMlSyaB1lZ8wOvF28vLUVxdjUtbW3F5TQ3eVVgo9+zpp7GwqkrEkRtvBFpbsbSoCMjLw9kjR4Crr8alhYVAebmi8ydOAIWFuB4AvvpVXAXAV1sLfOITuLymBoAfCxZ8CldDFcMPrfsa3mPDu3fNnwOrVqGxcRm2btXYPrP0farc7vfnCu1u3w5s366aY9deK5m14mIUejy495eXY2V5uTwjrxff+/FlWNTQgBcg76wYwNq1y1FTcyFuvBG4Mv955FdUYO3alcDHP46bbgKwejUWlZcDuAq47jrU1FgDt2/HXXfpUY8eheodnjoFVFcjFgNQXS2XY2gIWLoUu3cDl/t8av/dd+MFXIpTpzTsd9yh/nnuOeAtNTXwelfisq4urF17CdDYiJqad+ATn9B9lra04KXFl6KpSZyNxQCwcKHa+t73amy8XmDdOvXPkSOSjbvxRs2PEycAnw/LATwzcxkwPY0XFl6mA39NDVZCxYXfWVqK1Xl5IlMdPChPdu1avKusDDh6FI8/re+eXXixq5N33XXQRPz0p7GyqkokpqIifGv4LZg88nbg5puR39qKy/PygM5OHFp8JX5V+FFVc/jBD1BRWIihIZVBHB8Hzu7ZIxJKVxcwP6/nMHm/m26CyEvT07hsyxhw3XXitgwNYeuuXfjGN8QjeXtDg9bm5z+vudXejhdWvgsPPXwBDp48id+u/AAura4WUeXgQVw6OCjpuBtvxDvz8nABXsKxExcATU0YHPTgVwvfB4yO4uGHAVx9NbzFxchmNb/wiU+4HDS0tPzLe9gbr/8zr39vS/tqXs4J51HA6lfdkVM6qKkhBwYUb+nsJD0eHoGC6BEYtbihIUdK8Hg47nh2k5MW17uXwDGOO96KBcIfc+Ipfj9TdoqrrCTZ16c4WUEB2drK03Ya3gXl5qSdU2RfHx+DkshjMRNnnp42Bf1TOjXOzen3qRRjAP1+xT9CIeoUauoM22CixhO6xtSUcrLWrlW6w1NOu9vbyXCYbW3qnlnz0tjRwbExI1H09XHrVnE1piHiyYRdPwRTq/B42NNjp2i/35XwOgmReTg7y2hUv56epgJsU1Pk9LSScPPylO4QMxp4Xp68rLk5xd46OphMUqkH5qFycJAcHZW309PDWWsbvV5de3ycJwGLIZ5iAlIEGR8nOTfHVIpu3bP16815gKjngYCeY+tWxdXGxiz5Opslu7tFPKmqElpgGlnBIEVGaW622Ot+eaqZjNIOHA+pslK088JCejzmcfX1ae5ZjAcYd8Wd29oU6nNUPWYBFykYHqZLeOHkpDo3EpEXNTioeWvkEkcmjU1NitmZh822NjcRnnNz8qAGBtzqBHNzJAsLRWaJxURkqaujoyawcaOmnkvM8HgYCMir3bhRj+/mwiWTZDLJJwwViNl4nbY5FYYp9XR0cJN51g8AriLJrPUJPR4egEghW6A0FxYXMwupkDAc1nhYdYJ4nOrbtjZGnc94PJyzNT9hc5kTE7wPcKXYolGS9fWq6NDaqrns85F5eUIYenvJ5mYesOcB+jlmawK4R2hCOk1WVMgDHRnhHnvG1Oc+d349uh/9SOP7Gt6pH/3oP6VH97o2dKl9+5iA8llYXc2oTbCsGa72dnIXxIAcs0XGwUE3sD+FXMmYXciVlRHJ4lvcZxtOfb3ynFJ2rUHA7ttPZrMchwXIHaNQVcVt1pYp5GSvnrD7xQG3WGp5ufK2nITT41DuVGOjft/SQisyeUg/ODBUdbWbdMzubpET4nQZZs9C0F3cFjQHBlhaqk33CYiJF4vpudraKCgzk3Flv5y+eAqCMJ8FXEgoDLgqI1HbqHZBcGjafn72Zd9lWZlbdHYKljBdUWEKIDsJfIsP2CbH4mLeBoOCLGcOeJQcHdV9h4Z4n41xEKbYUlKSY1bW1HDSNrZJCOLL2meegowe8/NlZHt7bRwPEdjCqSnri5ISlpS4gigiRNTXS5mkt5cbN9rhpaOD6bRuu24dtUmajNTgIGUUHFHF0VEGAkpoH4EOVcxk2NEhA7xuna49PExTgxm3Q9djBmUe06EkECDLyzk4KLg0ELDKHU61jooKzY2eHrKlRcVpGxsFfXd0CEZsaiIHB/W96WldyNrHoiIO2hyftvnD7u4co7alRVB4YaEmb0mJiFM2NkuWGKw7MpLLL5ucZDIpg8hQiPR43DJQTjkhFhSQFRWcgw6Cc3MyrilAA2ClfOJxugedggJ73kgkxzidm9Nnm5s5M2NroqhIPxQXc9yM6MwMNcCFhTl5uEiEMzM6bESjWmOPQKWeUimais4eGbaqKgLzLoM3mbS1196uz0ajTL397efX0N1zj5vg/mrf56uiwuvt9bo2dJGIaM+EEmqzWW0woZDm36pVOmB2duqwKbHm3Rwf10Gtv1/zv7dXDt7WrdqXWFBATk46BcnZ2KhrrFunazjsumSSrsKC5VJz1SrtpZ2duRI4wCGX3Q5sVhwjkXBLowD3i4Jv89Gq1RC4X6ffdDpX7buzk3ug2FZ/P7WR5OVxbs48qWyW0aja4XgqGzZQu8bcHOvrc+W/wmGKTm19wEiE69Yp/FJTo+/5/drLGhrEiEskSCBOv1+xJUcouKREz+3kpopteZrAbjKT4dhYrmbb+Lg2jt5ea0NPj1yCbJZr1+q+t0HxmwULrO3T0y4Zr6hIe7W8qlMa8HSawL1uaZi6Oo3nqlV6Lvb02IFhr+6VThO4U4M4NET6/a7EFkdG6Pdrwx4bI+nzcRqmlpJKqfK4aWuuW6evtLdrzFldrc05HnfFtR3nVqzcWbdSuVNTDjgmD9LYjUVFJDs7NW51dbpfMmltjrqVvtetyzlgwJ9xcFBjMjZGsreXsZgj4vxpZjLq68FBaqL29bGhQX0tNuUX5R3FYqys1O16eixO1tioWOvkJDk7y5YWrZP6eoEGwH61PxIhu7qcsnxMJLT3x2IkOzrY2qqPKNw3z1WrtP7WrLE5ms0qxtbbS46MMJvV79et0/wbGNA1vV5jjHZ2ajytLJEb152e1nN2d0sRJZm0dbaD0WhOLDoaVejKqWDu1rGLRChm8WaN1cQEV60ypnNlJTduNA+2uVm/a2hQe4aGyMpKQxiO8S/+4jyzLu+7T3P9NbxT9933hqF7vbycgX/ooRRZXJzT/OvoIEdG3PpswDGtCit86cohDQ6Sk5NMpSQ3FQzq804UfGBAG3gqpQ2/pETvdJrawUtKeASg12tpAn6/eA6O15OXp9O9qcyztzdnMTMZnRZ7erh2rQxOKGSbkwW5fT79Pxajbjo+rtOr6UGys5OhkB6jqYlkcbHUOrJZsrNT129q0oaYSJDT024xAWazZG8vGxr0/9ZW9Zurlenx6Jc1NeqEpiadxK1ywtQUtanMzelnr1fP29GhfpyY0PfKyrTbxWIi2rS362/RqFvtgZCmZF0dyaEhbTaDg3TcnNvM81m2zO7f26vPpNO6t2l/cnQ0d+1QSAbGPj8xYc88O0uGw+qbyUkXZWMiwbY264d0Wp+rqZGEVibjVgRgJKKxDoc1BiUl5NAQAwE9Sk+PjdfQEDkx4QqGsK2NTKcZCqlbmMm4HkptrcuxELXdyEVzc1ao1CnQNjDA9es19Xp67JqhEJnJyLh2dXFqymqy+Xz6Ny9Pz9DWxkSCryDVOJUXODCg56urs9SU04JKw2Gyq8sZZj1XXR1ZUyNP1u8ns1lmYdBqJkMGgy7UyLIyMpvlxIQp/ySTZF2dDjWpFLdupeu1JZNae8mkDhbxOOU5mlfqIB+hkNZ4Nkt5mPX1uoAD1Rq5yZk/ExMky8s1d9vb9dlIRH+PRNxCxZyeVnu7uzUvu7u5yzy6bJa6fjisPhgYYCJh4zo1pTGy/EFXQskOP52d5Oc+94ah+4/yel0burVrU6TPx5ISFWCMGnQ4Z9DZxATJggLF2QyicHQbHQV+1tdLSsmgNkFls4IoPB62tjrVC06RVVV8wK5Pn08bsMcj7N8U2sMGl9Hr1aZSWMgBgwO/gVzlZicvqa1NOXLLlgkO2wdpC7a10WC1FDkxQWAvk0mt11CIZHU1EwnZmMFBupW0o2a499i9ojC2aXU1W1sFBWUAdxNximHOGkSVhsUli4q0AxcX87hdI2L91g0xJAcM8nkEVqnBIK9BCCb+EcDvI1c2Z5/BYaehWJGSbncKmszPV2NGR7kFEhLm5KSbVM5Uiqyv58QEuRGK2fQgJy59Dor7bbF7rbd7Dw9TMFtFhSTZZmf5LBSjOWD9I+bnOsvhm5dFcg5KPh/XrJETlExqf4zHDVKrr3dyrQmc1u9TNG/glAyvMRCdSgj9MN3PykrLWzyqDXZqymJ3KctFu8M0F+/kgxALs7WVikPV1zuIIYEDfBbGYjT5Kno8MnamHZk2WK6zk2RrK3t7jSXq8QiqLS52k7CdfkpAsdxnzfhs2GBzzKoPBCCocpPN7duh+CjQxW0w6Nnq1axbp1zMnh4zxiY6zq4uMUVjsRxrtqeHwFlDP+bJqiq1MZUy7/S0oO9slsA93ATpehYUkBwYoM9H98BVXm4HmGxWGqJWPZ3t7VyxwvrAEJIH7dDl85Hs65OB7uiw6igprltHy489K5g5GtU9m5rI7m55voWFZDis9ZlOG3v3PBq6TZvoBtZf5Tu1adMbhu718no5dAncwrSdJJUsfDfXrFGirujrN1JJzCECt7KggBTZJETVILuTySRts4sTCDECR8vyGOn384i7IR6jkspvIfA9LbiqKgLDL0vG3kKv10mcvsmSjYft/w8RSLG31yDSvDyyu1uLsaDAFvK92vQDAXlCdnoehxKIlywhmUqxqcmcC0hJxan+XFnpwJ5dFG1+1K3qzNpa24Tv5/r15oFWVJDd3SIk9PQQuJ1Kih+wPrqXUg55iMGgTujAXno8TnbBXxG4m8BeSzg+a/e9h+Xlek5lO3zLjNpRArczmyWBTk7YpgkcYmMjLeH5UTIa5bJlgvpuA+waOw162mLJ509ywQK3xB9bWtQmGZA4gSi3bs1Br8C8OZLzrKpyIL8Un3IOPc3NdqjYTHo8OiiNjzMc1mE9CUsjmZwksEeboXPyqKpia6u8jrk5koEAOzp076Iig8aam6kE+8d0bfP62dVl6R8pI1c5xi5uyemPu5ql6bSeO52mvJqmJgJntbk2NRE4xvJyGWZBu0fdMjO9verfeDzXV5mMnLUNG9QeCU1vtjmwV22YnTXB5i32vpONjTogDQ7qPnl5hm4UFBA4zc5O3WvDBn2moUGOlANzA3tVIy6TYWUlLXl/C8vLdXDo7ZXBctRfenoMOpyaEvKQTjMLJcun0yQ7OtR/iQSBec7NqX3BoIAUB7IE9tLr1XM7zp3mbErrMJEg8CTZ2sq1ay02ns26MPBhO4gCZ010exOBWRM3mNcBLRgks1l+5CPn2aO7//5cjORVvlP33/+GoXu9vF4Ro3MghGSS8bgWjImXi7nX3Ex2dgoSGRwkUymGw/rcwADJhgZOT8s4bNigTSAa1f/jcW1ckUiuOCVHR/WHggJXkZ1dXaypsSC8zycDks1qwjswyciIS0Dg4CDZ3Mw1a4TScXZWTEHb8NjXJ3JLMikobWrKTYFifj7TaYO6Uikt+mxWHo25fDMzJINBdyGXllqVhO5uDg+r+YqT7HcV6YHTOl03NWnnmJx04xVTU3Y/W8DOo23dypxMk+WOhUJql5sfNTnpwkBOzpnzeba2ktPTTCT0q7q6l/1telr/mlG/DWJssqmJc3My8tks1UbH1QqFXIX8bJZkOs1kUt6x32/tymYZCKhp8bjBUJGI7hcMunCdg4oyFtMvEgkyHBb8NjFBJhIulLZ1K8nJSY1hJEKGQkwmDY4eHdXvs1nOzNB9c3paYxuPu90VizFHoEin9b1EIjfvRkYYCuXGnpOTaldXl7ytlhYXMmRfn6DrUIjxuIzH3BzpSs5Eo+TIiA5AySSnpjT0kYjNOyuJ4xh7RiJu7idHRjg2JrJUIsFchQcH5rZ6cmNjdNcmAwH3EBCJvAyedYLLiQTZ3u4Sf1haKssZDDKTedlnR0e1fvLycovSnpEdHbKos7N6jupqMpmUobe1FI2+rO96enTNsjJdPxBwC7E6n5+ZsX5NJJhK5cLl2ayN48SExr+7W9+pr+fGjfrbN7/5hqH7j/J6XRs6JxkcGGY0qtNWxCCsOQhn32Vwm8N6ZE8PNxmEtstgr9MGge2Bo3V5P4EBwRyzs06IgWN2T4d1BmzSqbSgIFcl2zT67jFIh6WlPGDXZXW1PIe6Ohk+0zpkU5OgFdvMgANaRLW13LhRXk1HB+XpRSKsr1di7yysRJHPZx7PXm7dKhjSSZo+AGOWjo4SOMsoLOHd47HT617Be1VVTCSUjHwfcpqeYeu3xyBINJmk63HS7xfkmZ8vI93WlmP2FBUpXmVJuI9AkOlpWBJyezu3IVePLmBjOWv3HB+nrlVfT2AnYzEjqPh87vfpPFs6rU28r08buVVMYHU16fPpEGBVHVhRob/5fNpx/X4uWKBDUW2t9kBHdotFRToMDA1ZQdxxsqBAcTJLh2BNjRvePQyj3zc358QDZmcFK/b0kPE4jxjMuG4dtaFPTdHrNemrlhays5NPQZJsDqQtb+8UBwe10absUFNbSzIQEDQ5NERgXvf3+9V3Xq9L5e/osO854+TziZXa2Ki+bGsT8cLnYwpihm6z+c5QiOzt1ecHB8UsTqXIjg4n710nh1BIhqpd1SjCthZPOv1fWso9tkbPwdIMCguVOF5VxWlYNRGnnHdbG9nQkEv+t7/NzWn6tbXRrVuXTtNlvjz1MqSCzc18EBKROADB8hFAWGdVlT4XCOS0NU1ajPE4j9saYns76febpu04mZ9vhVePyiMvK5Oxd3RDTWUiddFF59fQ/fSnGt/X8E799KdvGLrXy8sZ+KhBOUuWaC1u3UrXC2Fnpza08XEdVVtbtfE4zCo7wbO7WwvY2bgGB1laakF/WxyO9mTWNlVOTmqVZbMsLc3p9DnFS1lZqQXU3KwT8cgIGRWMxqIih0fAdNq8hpoaF+LZuFFzcmaGZH6+sRXjWkizswatbeFJ2zCZSJDj4waR7iRwWs/T1KTPJ5NMJIwUMDXlbmqOoeXsLDk0xM5OrXu2t2vzKyvLqbiUlZGDg2ZM58npaW1oRpQYGzPvOJtlQ4Ou43jM4+PmCQeDZGtrruCngyf29MjYWy7UlG3aAwP6nsMxYVMT6fPJ2A0MuOlkTqmiFStI+v3s6BDENDCg28Sg+OnatXRjsfG4xW5GR9nba2MQDjOZpEuUaG0lWV0tQ9PTQ05OakwaGsjpaVdHcgtyuYFzUP075uWp74JBQc0+nzyHkhKXOAM8xGkz7j098nQnJujG4JjJuJu66wUGAnL3HG95epqTEP2doRA7Oy2HcHBQ36+okJEOhzkzI0M3MUE3143t7SpVNaZxD4fpesGMRt18PANCyNJSzaPeXnnItbVsa6Nbxy2TIdnZyeFhUyPxevXM+fkOXskD1k+ZjKDgXfa7rVupeeaUUyoqIvPyGArpsBo143QYVgh1fJycm9PciMdl6EIhsrGR55w+qa0ly8p4HHAFo2dmdCDZZodBZ8/o6bFrdnbSRF217lMptyTVs1DOZtyM7ooV2kp6ekhOTirUkE67OXepL3zh/Bq6hx7SpH8N79RDD71h6F4vr5fnlSjHKOTmyHzXvI/7IG8sAXlWD0IJo8chj8Z5s6SEDAQYsFPsAEDgTgKdvA9wT49FRcqBCjknwuJi4fejo5yEEsPZ26vk4IkJt2ICS0p4J5RrFoIF8b1ecm6OwaA25ccgUgaLisjSUra3a+OQvNk8Ozut9tboKJlI0OfTJkG/X/BsNsuNG22Tq6lxZbQGIdLGzwCyvJxr1ojIsQlGSInFCJwSvRpwk13vgfLQZpGrMD7inMoLCthrfXCPbSBOvbos5P1tQ85D3gMRGxxCjvM3BgLmuUQJtHMCRlLxenkfVCSW6TQ3AgS2cG5OpB0ODPA268vvOuPs92u38Xrd3MFNMI+ip0dedEGBxq2mhk/ZRpSGE3v9HoFvsaPDmKn5+ayvl02ZnrZac6GQ/tbaqnwzJwdkdJRtbZYHV11NJhLcuNEOXRY8PAx5Iuk0ud7GJJkkOTcnTz2ZlHfS1cWJCeXFAbfzCYiUEoFQi9ZWuqU02tpEyw8EJGN2GlZVOy+Pk2YMTtrmTK9XVnRighwfZzCoufKsrRE3Yz0QYBLgndZ/91j/uozOxkayq4sjNqYMBkVc8ng4CYeMEtXc7OzUoSU/300NYSAgVjBU2WMXkPPE2tvJ1lbGocoV69fTFWNmMKgFMDXlFntVrPhetxhveTnJtrZcNfBgUOPmHDyTSU7b8yRsXTOb1WkoP59bAJeUyfJyl3D0I5j3bQwx4A5yaCgnCVdRQdbUaP1XVekCQ0Nkfb2N3xuG7j/C63cydN/5zndYWlrKvLw85uXlsaKigg899JD799OnT/Mv//Ivedlll/GSSy7hRz/6Uc7MzLziGolEgn/6p3/K3/u932NBQQFvvvlmnjt37ndqtDPw3/9+yqWo0+fjzyDo4xH7l+k0WVqqTd3jYQqCLrbZZvMA4OY7PWL/H4NDOtnCDJSw7fMJPmRennQWCwvJwUHRxU1bkaGQFo/Hozwx2/g5OspHzGiMQadXDgy4FZDXrXMU30+5sYmxMQuVQQQUVTM/Rsbl2YXDVIJ81EW/XFWMhG14e+wZN0Gw6T5ItzMG0wItLiYnJox8EFW7SkrI0lJtzKWl8vr8fhfmpc/HPXbN2yE9RJrRnLLr9pshcwzJccjgTppBDFv/pVIk/X5KKf8xdXJzMzk1xSzgisVvhODNcJhke7tCMlDx1kFrk8OAZEUF+192z01mULbYWIwBZDTK79s8SMOpnHArgXaXPMOqqlwSd3e3PMdMRoakr08pHT4f2djIYNCpMJ5y4221tVZh3MnqrqwkBwbY3q7neQyCAEV2mCU7O10l/xUrnITxu42VOmzEqDsJnCVra5mFhAxEejorI1FRoc3W4zGW5n4dnEZHyaYmHrfxFwlop3tw2rCBcku6ungcuRJTSeQOjMqzOyWj0d3NaVtj4+M6pE3Z/0V+kYEOhayPOjvd1JZ43MbR59MBpbFRLMeREZexypoaLljgVMw47SCkZDBomrOzzNqad4ojqx+PksmkEtYtPlhXR5cBWV5OsqFBa95IN01NBsXX1/NHkArRsmUkh4bULmOVAnG2tdHCCPvlATc0EDgg17+sTAeBggKyt9eNAz52vg3dz3+eO7C8ynfq5z//T2nofiety+XLl2PDhg2IRqPYvn07PvCBD+DP/uzPEI/HAQCtra148MEHsWnTJkQiERw6dAgf/ehH3e9ns1l8+MMfxtmzZ/GrX/0Kg4ODuPvuu3Hrrbf+Ls1wX3v3Ar+F6o+e2b0bxwAcgxTU3wLgO3dfjKO7dmE3gN+cOyfdyfJyPGff9wLApz+NAweACwC8CEA66C8AeA5noVqMu3enAUwBF16I5wD8amYGuPNOfPvbuwCvFzsAnF17Ay77yQ+x/dw5fGj1MZwAsB/AmeuvxwyAx6G2ngJw9H/8D2D/fhw8KClELwCv9xKcuO8+HNq1C1u3qpDjxVDdR5UFOAg89xwuOPOifldcjLIyyU9eWXxWouQHD+IYgP/yX4CzAPLtOQ8CKM7Lw+bNwEJrB1atAlavxq5d5wBchRMAcO21OLFrFw4COLNrlzp2yxZcYO1+fvduzAA4CuBq67+9AB6GKhA4/bfTnv1xAL+GtDYP2ri8AOC5mRlcevAZHHrsMUglfxd27t6NU9/9LrB/P34C4MILgStP/RozAMhtuPZaALffjoMHVXvi7XbvJ3fvxm8AnL3vPqCkBFcB2Ax95reQ1uFbAMwA+A2AF1a+C28HsB3AxT4fzgAA3gYgjc98xsTdd+/G9u2qFQpITxKbN6tyQXk5li4FfrN7N/D009i6VfVYgcPAypW49Olf4dQp4LnnABQW4uwDD6jg6IkT2L1bz78fAIaHkZdnc624GBdeqM+fOqWxA/biAhs9r7WxqsoDLF+OC/Ly8PTTsO8fxfbbbwfOnMGpU8AL585hNYD+/rcB116L56+/Hti/H/mTkygrAy64+4cIBkvxzW8CL15/PWZnIR3JoiLkBwJYCmAHgCchDU0vgJ//+AWEQpe4xVd323z40PJnAJtnB6Faw8AleAnWj8uWAX/0R1i9Gjh3TpKk8/MAiorwPJBT0l+9Glf1/SUu3b8T2LULK1eq1mtenheXXneNPlZWZjWG34zdkHQl8C68BKCpCfD53gzcdReuvVaX/dP5n2LhwtzYLV8OYH4eMwCQSGDxYsmSXv7Vz2L+vvsASCL02msBBINYtgxAOo3nAeTlXYUzZ4C1awFgEXbsgA36Mj3U3ByWLgWOHjkCzMxg82Zg79FLUYzz/LrwwtdeueDCC893q14fr9dqKZcsWcIf/OAHPHHiBD0eDzdt2uT+7dlnnyUAbtmyhST50EMP8YILLniFl/fd736Xl156KTOZzL/6nq8Izra0ELhfpAifz/VGsjBYJj+f0xCENm0n/z3IESMyUHzusHl9IiJsIbBHENvQEDk3x7Ex0fEdLchzsPyuYJAJWOyjrk6QTne3m6e1z07Ijmr/JvN4MhlBYrGYCkauWSMWG/1+jo/r97vstFpUpINjOk1yepper2SKCLgIWihkzLSREbKkhIcdj9I8HKaU1nDY+sKp4dfUZJBnYSG3bqWbg5gE3M86VRhYUEDW1SkPrLqah6Fcq332Zm0tWVrqenKuDFdHh/renm8fQDY381nAcsGi7picBAy6O0UmErmcOodkYLlNDpniNggmY3e3PO1QiEm8LF8vEJCnODiosamt1bM78SOr5wekyIEBwZMDAxweNugsm1U8KpvVSX5uTvOqs1Nx04EBTkzY2HR1kdlsTsBgcFADWVKiv8XjDJlnm0zSTSZ32I9TU/K4BOnuNAmwJ8n8fDFSx8flGoXDXLFCXnw6LajzAKQXycpKkVomJsiuLg7Y2Pj9dIuxsrWV2SxVGFjSLGRpqWDBnh4GkSMzMT9f/RuNCh6OROTd5+XpXvbvPgiGXLWKOWKHUwi3vV1xWEtEP2dr4Ih52KyvF9zZ3U16PNy6Vc2fmhIywYaGnJRaLKZ5nUjIay4qclV22NamdRgMkvn5gi6zWXmWPT0uEWgaoFNlNw3Li62sdLQV1E9tbW71j0zG1lV+PoG4vOT2dnl/HR0aBIOF02m6Xl7K7z+/Hl04LH7Aa3inwuH/lB7dqzZ08/PzvO+++7ho0SLG43GGrQOPHz/+is9dccUV/Nu//VuSZEdHB//wD//wFX/fu3cvAfDXv/71v/rezsADP9RimpwkfT7X2LGxkQyFCMznKhyPj+cIBUVFOahsaIjAppzorjHJOjpoMYe7qJyyexgKGXPN5yNHRzXRvV4tnFiMTCR4GhbgNg78aTMK9Hr5LFTyI2uwTU0N3cKRExMkPR4ehyChtjaDeebmyIoK3cvYhXNQPteCBaaMkk6TmYyb+AqktBhbWgRRVlSQlZXaDMwqzs3l0gycDYN+vwy7sWV6e13lMDfW5eocer2uYLCTeE2Pxy1Ue9o2lCPOYaK+npyelpEbGnLly9wisNXVZEGByBslJWrD6CjjZswdCawFC+iKam8zI3eb3bO/XzBwHILSFN+7i2xo4Kz7/8fcUjQzMzIqyt3bwXjcCDl1deTUFIuKxGDduJGK4wYUO2ppIR8ALAYzYMb6SwT2km1tluys6uT3wEq+hMMEdpMVFcxaexWfvEXzM5EgBwYIjFqe3s7c8xYVufG4qSm6aRSS32on8/JkOCcn3aR75yDF9nZtvpmM4O/WViaTguHE8N1MlpeLTBWJkK2tOhAUF2vNlJXpYBCPC55rbiarqjhhxjoOkEVFbnFcYIebA9jfL8On3NVDVPHjnWxq0hpQvuP3JB9WX++qyyh0cJbA42RlJVW0+ICFEB4TsSSTYWmpUnocMowjYVdUpPmq+z5p+Z33s61NsLAg0C0EdrhalZOAS75U/+93hRR0nVEdFuJxAncrXupUry0ulg0GLJdxmMBmpnbsOL+GLhLRgnwN71Qk8p/S0P3OZXp27dqFxYsX46KLLsK6devwwAMP4KqrrsLMzAwWLVqE/Pz8V3z+rW99K2ZmZgAAMzMzeOtb3/oP/u787Z96ZTIZvPDCC69467VIJWm2bQMAvMXvF45x7bXYe/UN8HguVA2UG28Eiovx28JrMDAAlQ5pbtZ3AQCX4mzTX8FbUwPcdBMu2/5zfPjDBnvgXQD8AG7Ao48Cl5aWqi6Lx4PCQgD5+Xh7YaFbnNJbWIiCAmByz2VAWZngp2uvBXw+FAPYvRuCCa+/HhUVwJo1wOzxRXjP8t8Cl1wCL4QweL1WRWd+HsjLw9q1wG+PXoyFCwVpLlyoCiWnTgEveS8Gtm7FSwBWAgAuwezqDwuSamjQTa6/Hp//PPDT3VfipetvwN13AydPAuvWGYK0cqXwoBUrcHbtDfjF5kWYn1dFlx//GMC6dTgBQYbw+1WC5H/+T8Dnw6WwUjFr1+I9UIFQb10dFkEw3KL6euDGGzGy7e0o9niAkhJ8/OMA/uAPsGxZpX4uKwPKynD8eFq41XXXAUuW4EpYQdX5eRw7czGKi/WLS+vr8U4A8HpRBsFtMzPA8qoqXAyntCoAeICPfARvKS9HGQDgQixsa8PlAGZngTKvF1/5ClBS8oe4avf9qru6YQNw9904cOAMzkJDi+uvx2c/8xJ++UuhVVfCgYYXGYz2IQCXGBS+D8BZbN2qMkJeL6yg50rg+utxQUmJQeRvA/AeXfCOO+xGFwBLl2LJklLMnrwYS5cCuPFGfPrTmkZX7hkDTp7Ec89ZjVhcBVx4IS6f/63GsLAQe//gw1i0aSMmJwGcOIGLN/8c37t7EUpKlgAzM7j86Z+rzSdOqA3btuHqq4HfFL4P+OAHcUV+PuD348X3fghobFT77rpLpYh+//eBtWtxBYDCQsHCKCsTTLdwIYCrsLyxEcBSbN4MPPVUWqV7kIUAzwuxdStwQU0N9uwBgLfizJkscN99mJlR6SSvdwlKSz0AluPFJ54A8A4Ax1FfDyxYcK36fft2/PmfA4tKSlTwdan6eNky4MCBLLBjB06e1H3VT2/HzAxQ7PPh+HFABWaXA1u2ACdO4JrCwlz929Wr4fO9DQsXqmTSf/tv6ufiYlj9HVsT3/ym9pLOTvzRHwHvLCsDbrkFKj68HC++dQXO6+uNwquv/vW7WsZMJsM9e/Zw+/bt/MpXvsKlS5cyHo9z48aNXLRo0T/4fHl5Ob/0pS+RJJuamvihD33oFX9Pp9ME8ApSy///ddttt5kH98p3av16ywU7KmjDAu9saZF3V1+v03JxMTk4yHMwIkBfn05yVVV0yhNkIbbkHEBgBxsarMBlaamOi7GYYJzqarlaZWWCsKJR0u9Xwmpbm7yRjg55fZWVzGaNIWm5ZVGAnJpy9ftCIQX0m5roJlizsZEbNtBl2zlCuA7UCWxWTmBLC0MheWRuUnc6TQYCIpeUluqLTkJtOq3jdW0t2d2do61PTpJTU/I8SkrU9uJiV9vwCIyoYhxy9/95eeqHvj71ZTQquG5gQF51Q0MuX62ujtsM3mJNjR68rIyZjL6ayYhin4BgVeBeXS8vT6SfUCg3bl6vvNSGBrKwkP39eszbzFtMJKj7B4PywOfm5DkHAm4h0o0bRWpJpTRsq1aRHB0VfGfZ2+3tasLEhG7pZu3X1jIYNOJCYaHmQUeHm/e4YQPlgfb2itRQWKiLmGfJnh6xAyMRuWlOpvb0tLxnr1fzobra/Xd42NIP/H43YZs9PYLUnOdKpzU/GxvF4uzoUBI84OqOOt50fb393ej0Yesnl6UYDrt6k0VF5vVPTgoKLCjIravubnc+hEKW9N/dLbe3p0eweTisezsoitH1z0GknDko8dz5jpP8z74+zZeGBt3T4EZWVZGBAMvLxSx1dEAZjbr5l2NjzFWPiETI7m6FIgYHX5EbODVlYYDBQQ4PWxpOOEzW1WmtNjWpbeXlhhJt1vytqJDXbeLZjqQew2HS5+MRgKmSkvPr0U1MqB9fwzs1MfGf0qN7zTG6D37wg/zsZz/7bwpdnjlzhqlUyn0fOHCAAPipT6U450CFnZ0cg2JC+6A4WiBATfSKipw8SEkJEwZt7QJczckDZgSn4LDM9lv87ywlJ/Uo2doqeMIE9RoadN85IAeLlpUpHmHaT+m04mJOVWvW1Ajzn5xkR4cxyhoaxILr6SE9Hjftj21tYpRWVio24FRqHhkhp6a4dq1Bn05soLub26B43zmD1sJQDCJpkM05x0i1t5OplKU3RWXonSRaRwjbVDdYUqLNoK6OSSh+811YQnxeHjOOMSwsZACKa7jMzdJSPmgwZsb6neXlbm6cYOHd2ql6ewXXWhI2QyFugZinoRDJcJgdHerPfufQEgrJqFdVkUNDMnYlJRyDWJZOmoaTKhGJkHc6m2x1tbHqbiHwdXo8ZgDKyhiPm6RVR4erZNLSQjIQoN9vtdny890wFfCYmzy9bh3duCI9Hhea9HqZixXX1FASW5vIUIiBAE1S6hRZVqZNtLiYwG5jhnYJ1uzp4WHAJK1SBLbIAAWDDAa1aSvGN59TKolGOQvFezk1RSDOykoNb1WVfsepKWYg6v0eCHpO2vwpLTUtyViMrKxUGRuI+enEQp+FIHdggCEo9sq2NnJujqtWqS/Xr7cKD729Mr6xmGD2dJobNuRElFescJispzgwoBxJp7wesMWFCoGvM233KijQ/Cgo0Bg41SQ2bHAqbpwmJyZUxiurfFC/33Qxu7r4XUgzc9UqWhrBHuVqQvHS0lKNq99v4QKnBmVjIzNQOkcaINva3KoQR3CeWZeTk4o3vIZ3anLyP6Whe80Vxl966SVkMhn80R/9ETweD8LhsPu3qakp/Pa3v8WaNWsAAGvWrMGuXbvw/PPPu5955JFHcOmll+Kqq676J+9x0UUX4dJLL33F23ldVlqKeBzAAw/AB6AQYlBeWVcnL331auDECczv2gVcdx1e2P4bnALwTgCXA8DWrVi+HFheVAQvgCt9Ptx4I+D1vg1YuBA+nwcrVlwFj+eDQHEx3gLghd27gfx83HNPGti9GwsBYOFCFBQAOHMGixdDUNy112LnJQvwFoiR+HZr8+MXLcCxldfgazcdE4Nr8WL85CfAsS9+ESguhs9nUIxVLn/pl4+jsvIqoLwcO2feIsxofh4jI8Af/AGAa68VTHP0KIoh5G1heztWQ1DmCQCXe71473uBhaWlwtL27wf278d/+S8AcAl+AwBXXy3IsKRETMGDB8Wcq6iAt7wcL23ahGMQE29dWZkqZX/603jenm/nzAw+AMGVhaWl+M2uXfjtrl14J4BLASwaGFBfXXgh3uV70XCicgAr8dwDD+Dp//k/MT8PPPngg5ifB+49dQMWQ2y3974XwFe/Cq9XzNr/DgFhh/7sz8RkfOQR/Lbyz/HVkhJ8dc8e5EPQ4ubNGutD1sZHHwU+D+BvAaCrC4UA/P6/AfAJbN2qLkB1NU6etDE4dQobNwL4wQ8EQX760zhxwpiR6TTm562yO/4YgKq/p9MaoheK34lD586pFPbBg1izRqzU/QBw4AA6OlZgyZIbAa8Xq1cDFwcCKC+/BFiyRKN2880AjuN6AGvW/C8MDn4YOHgQhc3NGBoCPJ5LUVBQge3vfjdw4gRWrgS83d0oKy9HPH4hsHw5jl20ANi+HU+HidpaACtXgnHNkaVvWyA47pe/xLGlV2LR4CAutvY9B+ByjwfLAey8ZA2e33EIv/G+E7j7bj2nTfFFALyNjVgE4E1vAoAG3FBeLlh/8WK8sPAyfOQj+tr+/ca6LCzEKVszPt+l+Nu7LkbbVxZg82YAd92FEydgsKYX1/6PBbjuOuDwYbW5oKACmJnB9dcDJSVtuLiuDl1dwBe/qPl7yy2CP//3/v+Ou+8G4nHgiuUvoabGC6xejcUALjhxDCUlF+LECeCjX1wBZDL4U9sqPvMZAJ/5DCorV8LrFTS7dm0pVq8G6uqAP/kTQ3ybm/HlLwO4/nosamwUS9rnA265BStXihG7SDTN8/d6A7p89a/fxSp+5StfYSQS4b59+7hz505+5Stf4YIFC/jzn/+cJLlu3TpeccUV/MUvfsHt27dzzZo1XLNmjfv9+fl5Xn311fzQhz7EHTt28OGHH2ZBQQHb29t/J+vsnHDe+c4UTwOsq1OQ2cmhc5hVnZ0Keh8BSK/XLaPzBHLFRVldTb9fybOPQAQHYF6Bap/PiAWHBFnU1/M+50ReXq7TaHGxm4/HYJATdmKk16sTXmEhR6xt38DLKiiPj7OqSh7EEYAlJQqsx8wTbWoi6fEIHhsZ0Ul2eloYXyZDdnWZaspZEVTmSFZU8BHAhQCfMq9nD0QYqK+nyzZlXx+TSTl3Xq/JVzU2vhKqHBgQZGMn/UnkKhWMQOSOA8glwqfN0wpY/47Ye5f163Frz0mITODkiQGhXBX2uTlO2JhydJTrIWJDNkuyro4DA+QmKE/udhsLZ8zZ2MgxiO15m/V3S4u8r3NQRYOJiVylC3q9Rt65l8CnTQxbivlMpwVXlpTIc89kXIWQ3l4jHuTn0+93qghscaFjoQB7XckvtreTg4Ncs4YctD5hfr6JVj9G+v3yvOrrCewx1ftOY/ndbl7nY/K+/H6ytJRVVY7X85jmY3GxdDIhdmsgwFyidUUFOT7ueln9/SafVVQkL6+sTCjB4CCZn887be4ctzGfmdGlMhnNsUmoMgQjET5gn+kBrP86GYYlWVuH1dYK5nVqNzIQkFhDMKiwg1V1d0pIAWetb46RdXX0+zX1Jcy9l2NQwjdwN38GuFWw2N3NVatMY9Tq6q1dqzFZsoRke7sqlY+M0KmHx+5uJm0+tbdb9YLWVvV1JMJBiF29apVQhWXLhOwyFtP3rXxRMEhXiq21VQhmauHC8+vR7dihjngN7/NFkHm9vX4nj+7555/HJz/5SbzjHe/ABz/4QWzbtg3j4+OoqqoCANx55524/vrr8d/+23/D+973PhQWFuL+++93v3/hhRdidHQUF154IdasWYNPfOIT+OQnP4mvfe1rr8pInzql02dhIVBcWIhjAOZheWnQye4EdJJ/6cwZEUPKynDGPudcZP9+5Zedte8tWXIhgBeA0lIcOPAclA0WE/tDf7F8lMNAeTnmAcy++Srg8GEsAnDBzKFcElY2i7dAXmY+gLcUFuKCvDxg/34sXapT7tKKCixeDLwEEU3277dT46c/jRtvhLFSzsgdOXMGGBoC6urw3HPAihUeXHb0N/p8QQFeBJBM6jlesvcZ6BpPPaX/nwUAjweA8r3sR+DoUSyy7+DCC4GLLhIxpLgYZ6HwPSCCRT6Ay+DkHSpHzjkrnrFrXA6RNubtd/nWd2cBvLRwke6DZwCcVZ8mk3hh4WVYCDuhT0+L7IAzuODMi+5YXWb9tMju4eID11/v/ITFkMe3fbvG/6B9/tFH1ZZTANDSImIQzgJ4Mx54AFix4kK89MgjuP/hi1FfD+Dqq0WW+f73MToKXDp/DPv363onTpzAjh26BzCl3LkHHkBtrUcjvnIlDgJyfRYvxvbtaq8XwJkTJ3D4cBbAXuDznxfH4ZTIGiJ0XQIUFQF4By4DALwgMshXvwqcOYOPf9y4Kziufr/5Zng8NkYOUWp+XuPY3AwsXIhz5wAsXow3v9lSMwsLkUwCKCnBi9d/DJifx9kTJ3Cx0z/WM2/1HMPSpcCio4eAM2cwDyOhLF+OpTbGbwFw5cqXAFyCUwDSaQAnT+IFCH1ZuRI4etSWRX6+nsnnA3AaO5++ALjkEiEIBw9ixQprPxYD+fnYv18krlOn1KLL4Tz7JVhp1166FMBzz8Hn05TFwoVYuRL4vd9Tv544AeCP/1hzv6wMCxZciNOnAZw7h8vtea++WmAGduzAI4+k8eLq9+ECAAsWvMXup/ucOAHgwAFtB/v348yDD2L7dnnBGBzET35inJUV55mM8sbr1b/+vS3tq3k5J5y/Nc8AmGVnp6m+j4y4ZajTdmpkS4tiQI7A7+SkPtfSQsbjUvgwYoTK7hxjW5uo5484HlxhIWN2umUq5aqBezy6XX8/yclJUbq7u+U1+f2uIn8qJUp3CnBVjTg4qB98Pra3y4urq6NOtpEIU4BRqs/mCn4mEgS+zp+Zl8RYjMxkrNzInQR2Kt+suFjPZySHSMRyvYBczHJiQn0WiXB83OKCXV36m9fLA3aqT5rnq5jQDuUyZenGCx1ZUaerfT631ibb243m3tvLczAtyK4uxSM7O8nOTlHDTWV+DCBTKa5aJd7B8LDktJJJkj6fPKmeHiaTJtcUCNBJAUnZ6b6uTu1Ys8YIKhMTrKvTqb/bPI+1a3W9lhaj7BtBxdFCra+neVSPkUNDTKVsfnm95onsIRBir82nCUjmbP16khUVGoP8fAKblFIxNSWvORCwGNFNqploXuf69Rr2PbDYplXIYDrtajomk9a+wUH9fXycY7D0h9paNx7Fmhr29FiNwURCBJBQiFNQjHJ8nG6ayQSU/rAHcCsBRKPU90pKyPFxt3ZbBlZBwoggji5sLJYrw8O2Nm7YQI5AsfJHoFzLpPXPPebVM5lk0Lzb+8ybIuDUflIxYUgBZcRQBHq9TELpIE59wGCQOWHpqSl3LBw5tAfte5sg2bpwmPyZeaFPWN87FS44MqK5OTDANJSqMzVFsrGRm2wtAFH2wkF+dpLT0/IgW1ro82lYNpqHeN7z6J5+WuPyGt6pp5/+T+nRva4NXequu7jPFkkkogn8oC2eGJBLFrWJmQbI7m6GAXeRcVR5S1ug3KYpOHlVw0xD8Gdjo8gFszbZM7aBrFljmoa1tcxkbCO0Ui7PwiC6dJpu8bbSUhmgVMoVEm5qItneLlbbwIDBKvsF8RircmDApKkKCshIRMbWEu1CIZJ+P2trbbHW12sjhODSTRBMtw1idm6zTScDkL29tq987xUJ4fscQ2mHgyQEXcZiahO93hypwu+XZbFk3ykYWcephh6N8jHb8Jifz0EYEcTkxVQpYos22vJyMhIRtBuJaPwKC1lSomdzDinPIiczxubmnB7i3BwnIWj2JAQTc2KCt8E0H4uLyViM37VNmJGIQZf3UHXyHpLxhGr8sb1dLEzrT+C0VTHYon6urzejdUxQV3m5a0DicRvPhgaxdU04eNY22K1b9Yhr1zqFGI6S9vsUVNvQyUfbB2lfArNkOCwSVTJJ4B4dsMbHmUgYAaanhyEICo/bGMdiFDyZSHBiQnMpENBzWQF7plJ0k/VP2vrZZMaprc0OYKb072h3dnRQp7NgkGxqcmXJjkMkoShAdnW5deQ4NeV+/yQEj09Nkezrcw+ISYjUMjiYS39NpbTGxsb4MhmzFIFxMhzmwICRSCIRwbMVFezvf1m5pvx8HRL6+lRD0ghGL2cqPwE40QeyoEDSe/E4n4ByVh02JzBLjo4aO/uQq3tZU2Nrr6vLLZ3+a5xnMsru3TlB7lf5Tu3e/Yahe728nIG/5x4VqAwGSWazrpDwOVuI7e1UvKWxUYuvqUksW4iJ6CzIdetI+nzyJioqOD5um8bIiJ3c92tz6+mRTqMZMEd/kmVl7qGJoZA2RycAV1enf4uKtBGaYgWTSWazoq9PT8t+sK+PbGzUdWMxbZbJJDk6ytpa5oR7/X5GIvJ2Egm6C5uJBOnx6Ofubs5BydNRe1avl4rZFBZqgxoYoIqkjsto5OerDYWFanM0qoNAc7OMRDSqz5gCCn0+NTw/n6yrczUvj0MeMFtbyUCAx2Fxv2DQVVVJJmlpBPcQOMu4nbjXr6c8iZ4eeYwVFWxosHpyNTXyxAoKmDWDzcFBGbTycq5dK0PylM2BfVCs71koZpeGGKlxKL44PEzTNj1kcbV5efterzbOcFgHldFRK4C6k6yqYnm5YprH7VAkZZXNuTIWc3OuEPBhKIXBYV3S71esuLraYmxxtrbaRt3UJOPR3a3P9vXJgBYWEthNj8e8T9MpXbBA5yc2NHB42FT0TcHDKf/ElhYZkdFRhkKaM5EINZbBIGtr6RYVZXMzE3ZQmIK8q2ehuFMmQ83d3l4ZvKIixaqqqvR8jY1kPC6WcHGxDGlFBZNJTYP16/XV4WG664jJpJsB5B7gysq4dq3WX1ERyaEh1tSojdK3TJGRCJctszkxO6sDRSJBDg7mxBqCQba0WKrH9DRraqx8nRm0qiqLtQ0NMRBQjJ/j4+4zAnu5YYPWXHl5LiNmbMza6xwyGxq4y+ZVwvYTC6Oe/+oFbxi6V/16XRs64BBZXMzWVsloRfEytXZTeKfPp92gslIrp6XFrTuXgggMHk+OCDIHmOLEWbK11eql7SXwJDk4yEfsM6KHn+VJmDi0GYUnYLlidXVkWRlP2gYegYkg5+Vpg7YFsW4dSY+HVVV0lfcjEaO2V1QIQgsECOx/RbFHxmLs75dNiEb1+wzk0a5bRzIvj7Pm9cwCZGWlSBU+n74UiTCVErxXWkqXzMHiYtdwOcUwLd+CY8hBTRGoKsI5+/f7dkofsOeMQMrv95nBOQzkoEeTbVK9t0cJ7NYY5eVxakqQcVsbyXCYPTCqfCpFdnaytVWU7zFIZT9hRisOwYKTEDS2HiKjFBWRLC5m2oxde7tKAW0ByKoqjkMyW8CXcgQUE5cGjrmndUdM24H+Js1wOpkYwEPyzicnqUrWUdUUhRGVBge5YoVQh7AZfokyj+ZyMkdGZEwLCwnc5apsbIEIEevXU65tVxfXrnXuu0l9WlFBxuNuVYvxcarPvF4Z32RSh4SuLobDOTJKSQltAiRdibHvAq7I92EIHo/F6G7sCWcux2Ju3/eYQQf6OQFB7kwkGI06oMp+rlihqcfpaa2ZdJrADhnl+nqlloTDdrg8Jpi8uJhLlsgDlXjzk0Ji0mkCT/IxwEl7IwMB1tYakWtoiB6PxKFFkpl1PXjOzhI4pMNsXR1PQt5rR4dB2kNDXLtWY77J+h6YZ2+v0+fzbsUrNjeT9fXs7TWoOBh0Cyqn1q49v4buuec0T17DO/Xcc28YutfLyxn4H5tRAXYykzEj0NtLdnXxtJ24OTSk41hDgwu5cXRUXlVdHTk5yU1mgJyEakemyGFnOos+BsVaHBV3jo+zsVEHyLExutJZ7OwUTFpWptNfZaU2u3SaTwFumIXRKDk5yQTg5DfrVG4lmCfNmC9ZQnJuTjBMKkXgJt4DywPMZDg2JtsHbKHHQzdnjTU1bi28cJhkNqvYYVmZNsZYzIVQXa/SkrCzZiAdSS2WlbGx0coFtbSoD/v6yM5ORiK5nOBg0DaARMKtJB2Pk2xvZwLmfVvVd6ceXWurni8QoKClSITAXsWKZme1wWazZEWF2lJTIzkjg7SAxwg8zsfskNDRof7o7FRMjrEY16xRu26zOVNfL+O+YYPGLpWy+WMbwsAAya4uwZWzs/JQpqfllXd22kb8kNiDsRh32SGjtZWqVA1YHtz9mnOWy0a/32SkvuUebBwILZWi4lOAmzi+dSvJ0dFcjLWhIVcpY2CAT0FSXCeBXOzN72dbmyVCT0xo0IJB1TBMKlY8NaXn2wXl5D0G5AoATk/rA4WF5NAQlyyxMjilpS583d9PsrXVTbCOxUxWLBbjxIQOI8dt/TA/nyws5ANm5CcgSPUBKFZ2n60Jtw5dVRVZXc2TUMz1ETs0saSE5yBG6dyc3c/iz2Nj9uypFJPOPKuu1r3KytzQxNychAKS0GF3wwb1bzDIXGn5UIhzEIzrVEd/BDCvfpQjcAo0P0bGYpobjY3O0HIEYh6n3v7282vo9u2jS7F+le/Uvn1vGLrXy8sZ+MnJFPcAbuHD+yCq+yN2Yt+6lYo7eTw8bCdwVlXxCVtcIcCFILZA3krUvAAgRBYVGbw0L4+uoIAxGDQ6Pi7oY3JSRmVuTnBcQwPHxnS6S5shStqi32ebH1MpMpViLGYeXV2dICirZFxQoJMjGxp0io9G5b1WVwtaSyTIkRFHmjAXS8pmOQdR6FNQHPI+M4gxyDOJAzm9zokJi9FtErRoAr1JGCGir4+sqeFx5OqP0Z5jI6zOXX6+C4ees98nYDGYhgaypYX32QaXhpXWsf5SjO5bBB5VHzY06KCQny/DZvE4YF6bSV0d43F5fN+3a7K9XePR1kaOj7vJ4E/YPJiaIr/rGBQzcrfZRsf2dn4fIPBFg1B3qD/z89nUZIYnmVR/t7bKS6mqkieQl0eWlJiO4iECB9Q/s7OcmrLxGx2VC1NV5RrbmLWN4+Ncs0ZowcwMXd3G2lqaYPiTPGn/Cl79a8GjVjNQ9Pot8kBDIXJ62vXYH7Q+I3KxTgf2ltd1VB5QPM7eXktNSad53PrM6auwGRi/3zyxri6ysdEtnupAe/T7edKMC/AoH4HiuecAt16fI9M4M0OyuFgHltZWKZpMTIiQNDlJlpayvl5OaFGRoM72dj2jksTPuoLKwNdJv5/r15tKzeioYt1DQ2xv13CMjZHs6xMyMjKi+RcOs7FRB6LxcV37u9Y/69bRVE8OkNmseXSn2NCgqQDM6wBWViYYtaWFxyGCGT0eFyreupV8Buc5RveGoXvVr9e1ofvCF1LMOKfB9nZVe4bljdXUyEhUV5OlpdrI6+uZSJATtlknILiroYFkfr4MX1GRFRg+bTGk0wZF7SG7ulwvR6oO+3Pe29ycK281PEx5cU6turw8ppzNv7VVBi+bJefmtOGMjOgZCgvJsrKcYsPEhBZVMqkF3NQk76a7m0ynGYuZmG0wqLhLIMAjzmm2rY1HoHiVk8NWV0cZ/vx8eUWjo1b3a1wswaIibWYFBfK6wmFhRg5lsbKSe5AjEpyE4E6nisFT1v9Ru9ZJM2p7nL4eGBDsVF7+sryx+wkcc3P0AgEjUaTTnJiQYk1VlfWHz8fWVrpi0T+DYOqnAFd8+RzAbmtDBFIDcQzzFsD15G6D8h1DgCmb7Hfzn1hRwfXr5aFycFAeaWWlYNBQyC1Um4JIHxIJ3i2Pu7ubgYDlY2WzgtIzGXJyksuWSZA7YgcNbdxHmUqZJ9/e7lbuBjaTPT0EdjMNVXCor9dYs7LSVEhSXLDAYOfpac27QMCtRMHmZh0gpqY4N5cLZTGTkXErLpahmZyUvFhXF6cgj2vCDibbAFmd2Vk6QeUMBEUHAiZy3tvLFMRIdkS5N2zQ+Dr15MrLmYuZBQKuKlFpqcW8HG+xtNSMmGKm52zeTkzou8A86fezpcWqypvqjJM7t3GjIQhNTSwttQPH7CyrqmTkn7Bxd5TuWFHhHqicCvMMh+nxyDhPQaGMujoZxd5eG4dEIhdvzMtjTY0OKk6csrGRTF133fk1dAcOuIfkV/tOmarUG4budfB6hZp3MslVq0ySqbNTBqaszJVZ4tCQPIXxcbK0VNBYe7s2+6IiN3B90rwCQRIHhLEDuZInmUyuEkAs5tLQ2dTkVl6emyNZU6N/TSsomTTqdmsrU44RiMfJ2VlBhdksQ7DiseGwvKiODiYStPhR5yskjVRRYY+glL4+trbm6PxMJFwM8QgEtdDv15fDYW1yjtZlbS05Pc1QyDb0ri4thsZGPaOjA1perpiko/MZCnHbyw8K9fVa7Pn58ixKSnSN0lKyrEzfDQbJ5mZ5YKOj5NCQa7C3blUT3YKyfr+RAe5kMilD19pKNw2Co6NM2ybsxBtnZvQMIUBtjEYVm2prc7U2h4dJVlW5nlw2a6kH8bip6O8lBwZy0HF9vWSlgkGWl5vH0NmpsbVCoevWUXOrr4+OGyejl5KnUFbGDRtsbpqu5FPWxkgkV5Yn7bR7YMA1Hnl5NIbnUaYBVy7ugLV/xQq63iNHRyVkMG1zraxM7bXciQmArKvTZzs7XTU8jo9r/re3q+96ejRWRUUajIoKI0cdJXBWh5OuLjf27Hj8QTtotLdbPzkioePjZH6+qxfKlhb9zilnVVDAbFaHk4kJyqOLxdjRoak3NWXzOhIhq6u5dat+T4/H4mzzfMQOQvX1mr55eXSLKU9PU+vfDpVP2RpPA6726/CwrYmWFra3G3yfTJIdHTqQVlXJmx0YMI/OyC/d3fo5FtMhLBLh1JQdyPx+noOTjnAeDd3hw8KvX8M7dfjw79ymvr4+vu1tb+NFF13Ea665hpOTk//s5//+7/+e73jHO3jRRRfx6quv5tjY2Cv+/tJLL7Gjo4OFhYX0er384Ac/yN/85jevqm/+ta/XtaH7whdSjMGgy74+DsJyX2ySrVtHtx7bPvMuODrq6iBuAciuLvEuIFht1k6QQMg8DjEugfvJhgZXD1Ob8QEyFGLMWTixGOn1cmZGi/ecnYZnkavrxpoavWdnOTNjp8OeHnlbXi+zAJcsoRvrCQZpYrI7ZDyiUdejCwTs+y0tWtSjo9zi9Ed+PiNQjMTxYPPyBKmmnHYkEhTrcrPredLvl5EsL9eCbm0li4pcSvmzdq0IDIIrKOA+u+YB68Ownfjp9ZJlZdwESy+ornZJK5ybI30+SmdynM8CbomjBOBChlGo7JAjaNzbK+JREPLS6PdrA/N6mUqJPPCEzYN7oDypB228xyG47fsw2Doe521QKR9gEz0e8zjKytjQYMZ1aIgOTW/ZMpJ1dSwoEHy6D3CJFsDjOgxFIoxE9OiJhBmmcJiZjDbJKWs7q6tdZZSZGYuBFRW5HhGw06DdA6a3+C06jMPjgOWP7iZwSDHXVEqHh9paTsPIPLW1ckWyWbK11c05a2w0w9PeLlhwdlbIgfXlIzaGMQj6dnMWQyHNNYjkNDBgY9XWxgScePlmhq2f6fO58VCnFF5PD8nGRsW7IxF6vcYCnZ6WpSor46pVtBSflEvumJujHUj2k5WVRkx5SEYzYeV1enrEWk2lmE6/zIOcmJCxymSUj5fNcsUK0/kMh8nBQfbbGu7vpxHNdnJ8nLwPIg2tWaN2VlUZ2aW72y3plITCAnsAsqnJJQrN/V9g6IaHh7lo0SL+8Ic/ZDweZ1NTE/Pz8zk7O/uPfn5iYoIXXnghv/71r/OZZ57hLbfcQo/Hw127drmf2bBhA9/0pjfxJz/5CWOxGG+44QauWLGCp0+ffk399M+9XteG7umnUzJIgJW577SNc4vw+9FR+/lxAg8R2ESRCL5ln7uTfj9tE7rDfT9lmxGwUxBeYSH3ALaxfI/AZjemog0nSoZC7OkR5Cmv614C99q17zKI7l4ZrGw2R/8eGeGyZcpvcxSbHBLAsmUka2uVLAy4ovKcmGBDg+UIVVbqFDo5SUYiLnFFYsm3E7iVwKP6fX4+FYu6n7W1lotsBtnrdfK5nrT2bjZYcy+BcQIDHBx0mG/Ddt1NBEYJ7CSQspjTnVSdtbudAg7W/1+3z95LYLMluO/hz6DYKHCAa9fKCXPyk/TzQzJkkQgXLHAEer9n9x9wN8VAwPnuLfT7nf6/2xh391BxtCdNNu2LzMtzNs67eBvEunNYuMDRHLyaTHJqyjbMvDxtmE1NucNIIqFB83i4fr3FoObmyECAnZ3a5PPyLBbU1kbgbgL3u+kVBNzYlCNjBWyxhOTHbN7dyfWQB6327yAzGeUbVlSwvT0HCYrJeS9ZXc28PPXJwIAcW4drwaIiMhYTtJ9McmJCn9EBb4eN6zCBfgJdGkS/n+XljuzYMIHTFiectzE+xGyWFlO928hRe900C6bTnJqiQa6zBASbc2TEFSZvbDRx5lBIB4zubiEAs7NCPKwCREMDydZWPgBojUQipN8v2Le7W581tCedtnGyYrVAv2Lro6NaAMmkSYvd7jJfFywgWVPD1lZ93slN2LpVsLrm4Dyn7VAKHCIjEXo8ZgRnZ+0zu86voTtyJCcB+CrfqSNHfqc2XXPNNfyrv/or9//ZbJaXX345b7/99n/08x/72Mf44Q9/+BW/e/e7383Pfe5zJOXNFRYW8hvf+Ib79xMnTvCiiy7ifffd97t2zb/69ZpFnf89X0Xf6wDwDqC4GH/+5y8AuAQSI7oUwBXSwsJyAG8GcB2AZfbNpZAg1dtw5gyw6CtfsM8tAbAIb4HEkL3eUmDzZhybmcELAHy+d0CiYotx6pRkvT72iUUAtgLXXy/RXzwmZSNcC+APVZ4KhwAcB/BzAEDzX1m3b9sGbN+Ow4efw1VQSbKTJ7eqBtjsLA4fPo4XH3gAu3frCl/9KvCBsmPA0qW6//YngT170NUFYH4eXxp9H44f/znwk5/YM74NEp26VLJI+fmQiHIpli8HLj5zTLXtiopw5sxx65sl6lOU4POfBzyeFQBKALwNn/rUQTz88DN6XpwBMGV9HgPwHWzZkgWwD8AogOPYvfuneOKJ+zQWuALqMS+A5Xjf6hcBXIKFNlrAMng8qrkGJICBAQkA46fwAsDy5fiTPwGueO4Xdu9zAGJ46qkXsG9fDHfcIXkv4FI89thh6+tduHL/zwFUW3/8WOLQKMPJkwk8+OA+AG/G1QCeBnBpMAgcPQqP583Aj3+MRe+9Bn+94XJcufmHaGkB8OUv4667ANx4I44fN8mve+4BbroJB8+dw803m/TVH/8x8LnPYfly4OGHpZP93HOQBhb2Angen/40gNtvx3MAvvTja4DRUSxdCpz68pcBLMFeAMC7JCuFNN5jM3toCJqd3/gGLqiuxsGtW3HHHUBPD4Df/32cOfNjAB8CVq/GV74iebKhIaC+HrjsB1/Hww9DKtkPP6x6izffjOFhte+664C8vD+08bxc10GpBuW973WFmdX335YIM36JJ574MYBv4tQpSaMBWbxn+7fQ1rZCQtLr1gE334wrd/w9PnRkIxob3wIgKgHlW25BfT3wQsWH8PGPm6jyl78M9PUB3/0ufvF7HwZuvllz/JZbMHPPPbjnnp8CX/0qLgVw+PC3JVRcWCiB6q1bNUbLlwNDQ7j4jq/hppsgAe9CzfCyMkiJ+6abcAiXS5wdZ9UJO3aofp7Xq+vhNGYefBC44w68++iYZvLw19HTcyGW2m1KSpYBJ07g3LnDEgUfHsYV83uhfec8vv4PizqfPXsW0WgU16mgIADgggsuwHXXXYctW7b8o9/ZsmXLKz4PAH/yJ3/ifn7fvn2YmZl5xWfe9KY34d3vfvc/ec3z8vo3M6H/hi/nhLNmTYrAbnJiwlQkDlDxhP0E5t0gtE6q86yr08lfLMpDBOJkOu16YsABnaobGpgxCJPt7ToSFhYSOMveXju1hcM6BldUKG4zOCjocmTEIMGzOmEGApyYsJN0Nis4rL6eY2MGB7W2urXZGIno5/JyYTyhEGMxo5VPTnLJEld5jDMzQnvCYUt8HR/XCT+dZirlPPMhAnutFM+s5WWdtVPoWcUnSkt5DooB1dSIpVZUpGdsaxOUU1qqsMgcTLA6m3Wq6ogNaWK8PT363tatxnaz3EVgnh6PkDTggMgHc3MMh3VNFhfT79e9HMUKn4+u/BWbm93kZgufsLzc7j0woD4NBsnRUXo86mvHC5On/5DmQzrNmRl5La2t+q7HY7HYYJC3ASaCssNSOxzm4yECO81b2a1EfE0dxTf9fpde7nhwTrxnbExj4VR3DwYtzuQkxHd18SmDW1esoJurxbY29cHoKPv75UkcN0gZ2MuCAiOhOLXwfD59cXCQwKjN13F5RuXlBA5o7CxZe2aGCvpOT2vgTWAZuJdbt9Ktzg08rkGtrKTXmxNX5uiovhcOu6LVTCbJcJi1tY4A8xauWaM+qKrS+K9Zo7nk5MW5ie61tTY/9rqV1ONxkmVl3LpV8dBslrpHYWGuDFRTEx1sNRajxe5SZGcn16/XHF63TuM0Pk5X9Hl83NZkby9ZXe2kljKZ1LTNQHmBra0kUynG40ZUKSvjunVCKVhSYoLeD5HNzZZuetZNz3jrW1Pn16M7flyd8BreqePHCYAHDhx4RemzM2fO/IP7JpNJAuCvfvWrV/y+ra2N11xzzT/aVo/Hw3vvvfcVv+vv7+db3vIWkoI2AfDQoUOv+ExdXR0/9rGPvYZe+udfr2tDl/rUp8holNGoNuexMe13g4N6z81RSZIpkpkM4/HcJO/peZmySCjEYFATfeNG6iLhMINBF3UhZ2eZTmtduYswk3FDWaWlJCcmFCMYGZGSfFxzvqpKC3/FCncv0sQLBMiuLpfN5whPxGIkKyoE6SQSgh3Gx8mWFj1TOCzoKxbTxbu7ydlZrl1rBSiTSY6N6XkGBrQXrV+vSzhwvRNcn5jQvdev12edVEBZoTmXNCE49hT9fhEOSktlbMJh9YnXS5dF2tCgaynZfp5r1+YMdG+vNpj+frt3NEqGwyJKGLOvrU3tcwgHjiZnKqXNpqZG91+1Sj9XVeVCivX1elZgXoSNAUGunJxUG2dnXXZlT49Bfo2NZE0NBweNoDI4qEOOMQDTANncrLqzUHx240bboB29qvFxjWdNjQxfQwOZSLh5hYkE3RQDv/9l0lZDQwTmcwnera0yipWVrK/XQaC0lGRHB4eHjdWYTOqAYKcRkwxlIvEyynw0SsbjHB7W76anmWP3hkJkZaXaH41Kvsr0NGdm1K/OYWVw0HLu4nEd4ubmODaWqxEH7GZeno2/18tn8bLKBU5e3uRk7vTU3U1mMopvpdPqjLk5rbuurlwgLBhUQv84XY3XTEY/+3xqZxpivR6GGL8MBjURjO3pEK8SCZJNTUylLKY9O6v2DQ0xHtcht65OKUbb7LDIRIIzM3ThUDY1ae05ObixmJtjx44OfWdoiBwddaXE2tvPr6E7fjz1Wu0cjx93xDZe+b7tttv+wX3fMHT/zi/X0HV2cqNtBI2NSix9wsgOUxYg3gKppSRhaQclJdwCJarugsgUnJzkNogsopP8DgJPkoWFllN3mkDI1eiLA0ZUsXykkhJJOLW0uMnQUQvYO8wzer25E2gmQxYWujqanJvTppxMkl1dbnpBJqPNNJu1Cs+FhVpgkYgrBDg2RrK+nsGg9liOjpLJJJ+FyCGuxmdTEwsKREaJmhelRT4rD7Wjg4zFeNq+sw9GJvF4eBoitPT3UxuXGQY2N+fkvjo7dQ1TVjnsbBipFBkIcMpiTPugMkXj4zIaip9t0nUqKrSplJRoU62pseK3mzk3p3JGqRTVn1VV2jyd4JKT5FxW5qq5ZAGnJLuepblZm1x+vu4ViVg+1FHLJ9xBDg4aQWUzWVIir8rSKoBhsqxMh4niYl0rnebcnG30ra2aT4OD+ptT9LekhCwvl8FwkvWnp9nbS/O2j3LJEpWUcp4PiPI4JD+lubabwDFVk4fYwEuWmMJJd7erm8mWFtLjkdY3RBSJxWxepFJkU5O8OUMSenvtb4kEOTGhcS8rYwxK4Zi2sZqYkIZlFnCJJBwfd+n4zoa/YYPWA5ub1SmVlRrLigrNfb9fPxcWugo9rK3lzIzIHCkYK9pORckkNbaDg2Qmo/ul0+zvt/k+NERGozLkRUWcnraSUyYw4FalD4cdN1XebzSq99ycDHFenpivo6OMO/3e2ppDbKwNwDFycNDY2ac5B6W5hEK6r5PXGw6ff2WUI0dSrzVExyNHUv9qjy6TyfDCCy/kAw888Irff/KTn+QNN9zwj7a1qKiId9555yt+d+utt/Kd73wnSXJ6epoA+NRTT73iM+973/v413/916+6j/6l1+va0AHPEBhlxmAdeRApNjZagmtfnxmt3QRCBOJ2Cj3AZctc1Sljv53msmWmOej1MgajeEciWmSVlQR2GmyxW3Rm2wh6e5VXtWqV1o4C9o8SiDIel4dRWemqWJHJJGOxXDKrc+LNZEhms7kKC44qSGOjKwPW2kpydpaRiNbr9DS1+MbHVcHcWGrOcy1ZQrcSgOCsWQJPalNMJrUZjY4KxonF3CrO6rfNVA7hWQLHZIwCAabT2kcSCdma9etJjoy4h9xYLLcBs7raCAg72djokFPi1o9HXakyYA/XrlVzSkq0N3V00K3SrYraj7K1VafyqSl538PDpKvHZPqgzmYYDOagxFWr9LmBAe2369eTrK8XDFdeTiYSnITDuN1sxu4O/gwOCele+/lxsrNTpKDJSRGBmpvJeNxRniNwP5csEWQWj2v4hoe1p4ZC5kXW1iqFJUX2Q2zV3l7txTU1dCsDMJvVZu/xkG1tPG0Q54IFmhcbNhgUWlmpjbmvj6Wl6gPggDwnY/kWFZEMhzk8rPm+bp21pbPTNYROcr4IRQcIzLvlzIAQx8ZMX7OmxoXhCaX2OBUM+vtp372HPp8jAbbH8hXjBHYYQpCi12vsx9lZm3ffI5Ci30/38FdZqX5taTEosaREP0xMkCUlXLtW6y4vj0aIupvZrPpIa3HWFWGor1d7HI3SREJzV20+ZZ/fTfb2OhkhrqyY16sEee0zd7sMaWALOTVlc3uvG1b40pfOr0d3+HDqtZIuefjw79ama665hp///Ofd/2ezWf7+7//+P0tGuf7661/xuzVr1vwDMsodd9zxiuf7tyajvK4N3ShEk1eC962ufI+rSZVOa6YGAjrddXVpQ3fiaYEAOTqqU2wgoN9NT3NgwPJp2tu1AYyM6FpFRW55nZkZGgNugI2NtiidYox9fbpfWxvXr8/BdEuWyBC4sE1tLdNpOSROLGfVKvPepqe1GTc1uWoPtHbG49Tmnp+vBe/xWFs6CaTocrYnJvSOx3PwUFubVntjIzk9zUBAJ72xMYtZxON6eEesuaNDbmVvL4F2AgdYWqq21tXpOTo7tTkY2sTycic29jiBYdHH+/py4rKBgN6m8h8MMpevaCLBOUbrMU5M2IZUVERWV7s5bE1Nuozjdbe3a8h6euhqUDI/380jBI6RXV1MpTTUBQV63EyGFsd6UjtjSQmBO8zY3cpnzQsG4pwD3A3QUcOYm6OuaxDnRgcCq6+XIWlrU+e2trKjw4GBd6uRNTUEmgjcTU5MyFsywWW2tZFtbWxq0rSWB54i29uZMs/hNGCJ1AfY0GDQZm8vGY/rwJTJEDhF4/67gsTnHO+xqoorVhgMm06TDQ2CHnt6ZMANruT0NKdhZaqmpgiErD2PUozica2VggIGAuQuBxWw0liPGcIwAaX5tLaSLC4WulBdzQ0b6JbziUGpJtNQxY3T9h1WVppqzB2ae0NDBDZpMBz9vIoK/gySNXPUkJxrOYcxNjW54tWDgzoQ9vZSE6KkRHm403QFn+n1ygP1eNjSQlcUYd06W5cVFcxmc1UW2N4uGbjzVOT039PQDQ8P86KLLuLdd9/NZ555hp/97GeZn5/PmZkZkmRDQwO/8pWvuJ+fmJjgwoULeccdd/DZZ5/lbbfd9o+mF+Tn5zMUCnHnzp38sz/7szfSC/6xV86j+7I2m6IiN5fNOBxsb9dm29qqTTEvT3Nw61bt3cGg/qaT3ADr67XP9vTQVTXJy5NNaGpyELDdLi07maSbPM1AgMzLkyFpabEYkZFRHBpzKkVWV+cIKOm0Tu6plG7c0aHfFxeTra3aPOfmBHcVFnLDBnk5W7eSbGgwz2OPGxNjTw+/awsaOOQm3Y6NGWkjlSK7ulheTle7MBQi2d4uw5lIkEND3LhRe72o2Lvp88mQ1NaSD5jnzO5utXdkRDGUQEDH/FBIjayuJsNhzsEEpS1VoLNTnqDz8/r1dA8jjvoFcJSJhNodj1PH7/FxV4lm2TKLN3V3u1WpHbWaaJS5fiwpcXUwBwZ0n4zBTW5iWDCojSqZdCuRL1umW/7MjJyM3VH6fLSK6AdkiKqrrZyOYDOlXTzOjg5n879bh5+iIi5bpnnmCB0zFOIuSFpqyRJpI87CSR3YJOHqCF2CDjs6NI8iEbK01K3YLYOzU38LBDRvKyrcunRu/uHoKJnNyoO2MlIFBZrTK1ZoDgwPq20dHSQHB9nerssNDJCMxSxN5jE3+X6PGT1HIeaItb+oiIY+fJ3SII27Bx6lvNyqNk9Omtd4hw4g0ah99lEqneU0gUftWvdT6MJRAju15pqbOT4uKN7xap0QKfB1a+8BilCzh8CAnnV6mkoxGiWw112X7OlhUZH2ifJy5uKhdkDSdXabFm4/gXvI0lL292v9OXH8ujqNc3k52dFxfj26AwdSr1UYhQcO/O5t+va3v80rrriCixYt4jXXXMOtW7e6f3v/+9/PT33qU6/4/N///d/zyiuv5KJFi/hf/+t//ScTxt/61rfyoosu4gc/+EFOTU29pj76l16va0OXWrtWaidBwU0cGcmJ6kWjWrytrbkg+OCgK2LMaDTn9QQCuZ8tb6q/X5uyI8Dc20u3fpfjNWpj2mu1wR4nKyp04i0t1f0CAbeeXDTqHvR0GjW2XDhsHlw6zUgkd5BnNiuPZGqKTKcFlTkJWU7ZlExGq8zns4V9VsbW4i0u5pROM51mjogQCJDd3U55MDKT4cDAy0gMvb3qN4ccMD1tQsuHWFeXY8u1tJCcmODYmCU89/YyENABQyoSpwgc0gobGdG/U1Pq0IkJcnycPT1233DYNfqxGLVbmHZhOEx5FUNDZE+PW2qmv1/GYONGGc2JCZEUenrULWNj1HcGB8nRUR0sZmfJRILxuLU5HtdhYmCAwCHFMysrCew2luVR3mYGfs0aKpE6RjKleAmDQQ4MGCOwq4usqVGMqL3d5WM4DlomI5sVjxtkmM3axjsqI9TVJfZsVtd1is2uX6/+1gEqTtbW8m8c76q93YVnJyaMbOF48V1d3LjRNuzRUbdm3NwcyZISHTQCAVZWWnvSabK3V0nkwaDmilOOZm5O8UUjXQBnTZxaLN6SEsp6lpfrsy0taszQEDk05Mrfsb6eDAR0b6fswNCQK8PHhgZ5ohUVpM+neOjoqNpiaEBREd0Adnm5rYv6erKmhhkoL3RggPICKyo0/hYbn5uzOd7SQjY2cnhYX81kFAPOmifuzOGJCebqLY6Oai62tJCFhVo7lZW5Q1ZJCZNQ+af+froMx/Nl6PbtS71WqUvu23d+jO/r7fX6NnSf+5wbLAf2asL7fHI/+vq0SAoLyaKiV0xgN/Ds9wueGR0VzlVURPb15TaHYJCVlTolLllCupx6r5eMRi0ec5acmNDi6+3VinGkpyoqtItnMmRvL+fmDIIz74rRKHt6tNDCYbpMLmAPp6bMkJhSfH+/ieS2tJBtbVpYQ0Mq4moLbdkyg08CAVdKjJWVWuSOgG5zszasxkZXTLi9nW7BUPb00C3AVV2t6wwOkrW1LCnJFaucmrJnCQTIYFD96kg/RaOusG5NDdUHJSW55GqrPiCiyVmWlxtUWV4uy1BfL6jJKp9XVVHf9XoVu3SooeFwjr2aTIoQMj2tdmQyZF+f+gMgPR73o2xtJSsr5RVVVXHDBgfZk0CAiCf3MgopnxwHzLMbNqLI0VwFhkyGHR3mnba3k6WlbroCp6fV1+EwOTnJ8XEziE1N8swtBitv50mNkx1kOjrUzq1bSWazrKzU9FqwgBo0px2plHlDihvHYvZ84+NCBzo6CMzKC3b6ZWhI4zA6SmYyDIXME0sk1PapKY2HQ6QZHydDIR0C6urIykp2dOhZHKi6v58umYMjIzlijiOymZ8vq1FXRzY368DY0yMDYvJ0514GUbK7210zTjV1JpPk9DTr6+1+6bQOjfX1rsSfU4cxm6X6fnpa/dDVpQbX1mr+dHTod+m0UJbeXrfixxwkKxaNUm13DpbNzW7BWubl6fBr+rft7dR+kp/P/n7Nh9TPf/6GofsP8npdG7qPfCRFoN8twSN4YadLOVcO12YjWNxPYN4gnEepXLp5Asc4MEBj3cXd+lz7bLKzrIwsLuZhC0IL0tvE9nYxOtOQzBQ9Hm7Y4KYSGSyzhwMDsnslJTqVh0LaVN3UgcFBugloySQ7OnTdbJbk0JA2ulDIFDseZX8/XcX5jRtp0M5D5OQkz9kpf3BQdlaB9QNcsEALzyEyAFtkgCYmRFOvrXVLt4g4sJMireznkiXO71Kk389Mhq524fBwTk7TcdR6e/X2++nmBQoe3mNCIHt1OEiJiDDlwq3304nzOYoq7e0W1gMMQhrnzIzs5MaN6jIXms1myaYm5xzAwUHtqQ59HNipw8T0tAvHsrNTxi4vj+zq4rOAVSMYNugyztPmyQHDvA1GUDKj39vLXOpHbS0rK3NnnLEx7b9r1ujf4WGS7e0MBMyDd2qEtbdzAmKkFhToe+vWkayvl1Hr63NhVYepAuzWZ4qLyXhcz19VpcK3U9rLh4dlgPx+qlFzKgbrpHkA8zLO2aw28VDIoNCzpgiyiSIhpRgMOoLKo6ysNPWSqSkZkd5eXX9qim1t6o4NG5wShgcYCOhs5uQ9VlZqDW3YoJ97eugKMQsBOOrmYjrepxN+CwZNecY5wIVCZG8vOzs1H9esoZGW9nBwUGdXp4jyhg1qqs+n/nWQayfm7sTZVW9uP+n3MxrVZ50SVDU1JBsaLNcy9bJ6leo7hwDmwEB/+ZfnF7p87rnUay1Hx+eee8PQvW5eLmZtAWUgpaTpigqtQr9f/5rK60kLcp8DdIorKpIVKCjQ/30+eQtmHWQgTskbTKcZj2vupg2ScogmTU10ISdgt+47OUlWVvIwVBMuFqNOp319dAT4enstzhQImKpvmh0dFvfLZBRLMBzTWeCtrXSrJjgbGzs7XbqZ4ltPajO3BHd6vdphamvJyUn6/bkAPT0eMpt140dMJNSmmhq3VtdJgMzPlzdcWMi8PNuEHQaJU6o5mVSbystVtiijZ+7oyOkCnnNO6s3NOQHosjLW1JjsWWWlnqesTDtSKuWe9GtrzeMtKNChxtiFnJwk5+a4fr0dbBxYNpORJ+fw/o3aF4lYG6uqcjXd6upYUpIjiGQASzl43LQKD0iMOj+feXnKs3PK2kxPk6yu1qFlclLjMzCgfrM6P06dQjd30k4+paV0hY/F6tyruWjy+NPT1M+WDJmXp2nr6JhGLSbNujq3Sn1/v3khBQVu+gZjMR2WZMHZ0WF5nCb4zOJibeAjI/LGnEryxcWuca2r03dOmrfHggKRWmIxtrfLzm3caHOyr0/3yssTsaawkOzu1hzKy3MrvzMSUfuKi8nCQoWtkUuKZ3e3K8PF2loRUiIRcmiIjY05ck4gQHWMkzRfUcFdhvKwpEQealWV7uMInBcUuIWRndAC+/p43PYTV/6tuVljMjTkipV7vUoDmbYYKz0etdmJ9dXXq7NCIaY+97nzauh270691gLj3L37DUP3unm9nIW0dq3R0E3bb9UqEjikmIPl1zina6c6d3m51sayZdQOl0iwtVUnv/5+akNqaBA+X1+vDdjv58AAXRjRVTSZnCSnp1/5u95et6Ans1mmUlqUySRVzj5FNw7IpiZtME4RVAfuqq3Nqdmn9L3+fp0sW1v1HE4eUHs73SKuY2N0i5I2NWlNy3A/Tk5NMRDQfY3QR3Z38wBg/XbMTTbn1JQW+9wc43Hr49FR95Td2Wkb5uysqwTvxMb6+6mj/cQEGQ6zpES/T6VkjF3Yc3paBre7m2vX2veam7lxoxmuSETXnpwkJya0yRtTtKmJriBxS4t5SbW19Ps1B5wwoxQ/trC83GKBnZ1csMDGfmRE3olBhnNQMnhtrT7X0aG+FBHpKFlby7k5GTunDe4PDQ1uGCmRoBtjW7MmpxbDwUGOj8ubTyTUn2xoUOe2tRGYVVX1HuYEAxyIzHIHXQX9uTkVle3u1k0tVstMRs/U2iq43QoBt7czJzTgQALxONnZqXHu7DSq/ChDIbVRSMhRjdPQEDdsUB9u2GAHtfp6rSkTUWZPD9nY6JK1mppIJhJMJo1YZH05Pi6P0xEiZzZLzs5yYsK+k0rJ/ejt1UKxVBvn8MOBAbd2ohuYLC933a7+fuZy5EIhV9iZ4XDOG81kNAizs+T0tNjSQ0NkaysbGozpadVBGImIRZmy6yaTObi/p0c/Ay6vjNEoOTJCv//8enRvGLpX/3pdGzpgF+OQajoDAUadYHIwSI6MELhLpy2n+GVdHWMxk3wqLHRLdgBRsrNTJ9bmZkYi+orglE4CNxHo4tatqsQcAwwqvVdSVjC5sIoKneqHhnQSrKx0k5P3mZfEbNaNka1dSxdOYjpNVlfzMSg3x+ECzMzQ4CrDCRMJHjC4VNBrSqfV6WmyooIhgyfdpCPH0g0M5Fig9fWOPq5TTSiXSlFWJoymvV2r1mFR1Ne7pUfcMj6W4PQYTJmispIJKGk/6ZyOAdLv17hMTakP8vLkXeX9f+y9f1ic5bU1vJIGizakxAZLfMWDvsFSK5b4Sos9YsWKB1ppxUorVXrEUyxppRUrVtqiTktq6BEVC1VUWkdBoUoUJeqoGNGMQsxoMKLBBJMxIQGTiZkYmpAwru+PtZ979Ht/narn+45XnesaiTDzPPdz/9r33nvttZIoAum9nDYPuKrKPOeeHnciBzY42o/8fPUHMzN1LZ+PD0BF/D098joiNkYrvO+WlXE7PDKAXWRSEsfMI3oJXi3Ueo6MmGeSns7+fqt5LCrSBrtkicLaphpxDWCinPeZZ3+PPKOREaOUu5s1NaTfjKJCfzeSZWXcBMHtRU12Mzk1JcPnzanpaRmpcJglJWJH8Q5mExPU5IxGDWF4j4q4hy0Ml5bmIgdNTfrs1BQdSIi5ufLe2tvJigqBOXJy2Npqno3Pxx14j9BudjYds0Fvr1PleAfQ/EhPJysqFF6uriYww0mIsWR4OF7yJodyA1NS7EBj2oJASIcag5pOTMTD36ecQiuW38aEBI9W7IDW7+SkgDd2o8FBOp2+/n6STU0cHDQ6r+k4UGsLRHwwa5aBkcrLybw8zaVgUN/NziawngUFmovLlunzXV20WsOQPjc+TubkcB8EQAnBAzL1EXjmIxM5fS+JfTjMD/UWEf4nhu5j8Yobul4twPLy+KI06ighItfLWhgKMRy2ye3V3UxN2Yl/uUI+nmaXGTvlGe6xibtNp770dN2vt1cGJRAgU1K00AYGyIoKjo3Fi5YdG8eSJWRxsbwoYyHp6dHiqaig0yt72zbe0VHzSJqazNDtVIOmp62m6wCBVQrZerp6CQkcgPJIAwPU75qbFU7y+RzDxcREnAcyELA+8SR57HTu0XT5/fp1OEwZbShfxsZGtS0YdHlM5ubqpO2FhIuL455GWxurqgxw0NOj/g6FCOwTqm/JEqtl26y+MDQey8ocB+b4uOVJPAnvnBzGYhLTXAdjsk9O1oEgOdn0wHrJsjK+bSFb4BFnQKuqJMpaU6PrTk1ZaHBykhwakhcKOI/HCzlXVkoO6BpIWUD5XZU+eA6HIOiTfMAOHiqW/oUeIiHBxnCVPG1TCNemfrcrjWlttc01PZ01NTZPwmFZrakpK2kIkW1tTsWbPp/msN+vvjL2E69slP395PS0Doejo7pmR4dylrGYjKAx/EQi1PyxcpLRUcYjECkprm30+x0fXHExbRzXG0pU60R5zusIPKPDytAQlZPrkofa18elS3X5nByPWGC9ITyfJLDBscgwJ4eRiEUUfD6nFsBQyGM3IwcGXL7NU3wAJsn0dCpnu0vP3N0tj9FC0r29NDTpFgJPknl5dpBZpfVYUEDgHoWeS0p0CKqrU54+NdW++wyB+zgw8NF6dGvXRh2Q+oO+1679xNB9bF7ewN8AD3G5N85bGI1qIZaWCrkXjcaLbIwyxQvJebjwJoCsqNApzedjUpLCjmFIj6sfqhXy6H2Gh6ld0TwMp+8ViThtPObkkA0NTjJkYMBCheaNrVjBeO1CeroDUcyfT12sr48HAZOeCcVDqaEQAampd5tH45G3iE7rHj4MyMD09XlKJC7MyPx8Wa7sbLK7W6AX41GsqqIs35Il3k5Dpqa63CYQJbCanJ52yEtOTrK4WAdrb79LTNTzFRZq46qvp1ZZRoZO4UNDcZono8byjMzD5qFXVcVpBBmJqJ3FxdIQ7OuLl2G0t1P1WXeTqanMy6Pjk5w/n2yGgD3HHKN2tQOOeovl5fHatoYGjasRgnoAIyAU92qnp+XhtbVRYI0bxY3Z1MQBSKPPq/27D7Dv36xyg9paPgDlmZQPvIgPAHwA8QJ0n0/lCx7IhBkZ5OSkDFQkosNDOKwQmsnLd0ISVfT5ODhohtHGcxqIl2WEQtwBwe7HxuyZje6qvp66ZzRKTk3FRUsrKxmLaX576YG2NpIjI8qrWu2ZiZ7rcJefL+fPvP9+8+z3AWyHNARDEGhqBcA2SBvQ069zOdX0dG6A0Iyd9jlCdH5paVbkPzKisK4X6hwfJ5ubuQGi5GJWlhTeExPZaV5+c7OiMiuhov66Os1jJ91TU0MODXEU0i9csYJkaSmDgDH4bOa/217gSRMtW0YXKg4GzYsHGP3Zzz4xdP9FXrNI8kNLIPx//NqzZw8++9nPIvr442h4ogB/OOc57Dnha7jwQmDBAkgqA8DlZ76Me145EWvWSF7k5JOBX53/Bi5vORa7d+uzv/gF8PmRp3DbxjPw9NPARRcBZ528C/jWt/By2/M48dlWIBIBZmbw5o9+iyuuAE49FZg7F7h4XytQVoZvX3Q4HvqXVvz50J9i82YgN1eKHxMTQEMDcOedwNq1wH/7b0BenmRCDrvjZgx99Wf46uhdePfCH2J2x124euMPsWgR8MOubwK5uXj5nKuxZo3ud9y/noIfZjyPm24CBgeBb+68Sw914YX4wW+OxT1VzwAnn4yvnH4YVresxkMTX0FLi5R5jjpK6hx/OOc5FP3ua6iuBr5Z+C62TczGkWseAn75S1xd+hrS04HPfAYYGwPS09VfW7fqPXeu+rWrC0hNlfzMnDnA2WcD+/fr8489BqxaJRWYRYvUv6eeCnz2s/uRkZGIV17RNefOBTIz9ZlfPS1JmcbP/h45OcAZpx7Ar649xH1/7Vrg6uyHMPT5b+PQQzWuHR2616JFwBVXqE3nnAOcccJbmLfoCFx6KbB3ryRqnrtpNWZ9NQOLF89Hdjbw58texqwvp6CsbCHu+edWzLr0bDApC7jsMjX+oouw6+wf4vDf/AS7Gv6E3buBp59WV//21MdRdONZeDTtElyC23DnncCBZTfg2l/8AtcODOBvJ58GALjqKuDm5KuBZctw5WUH8Iezn5H+zIYNuLmZuOMOoK8POPrZTun6pKYCd9yBN256CMc+eZs+u3493s08HrPXvoivVJ2E1WsP0e8bGvDI4OF45x3g+53fBq69Fq8mnoTjX/krcN55ODAzG2eeCTxzzg34c/LlyM4GTlr7Z9w152KkpwOnrbkB2LcPSE/H4ykXYOdO4AczdwG7d+Pcp3+G114DCgrUz6+8orF//dangKefxvLs3+Lkk4GbbtJcuHjuX/GDB7+He27dg7senIcfXvgucOmlOHHVn/DynS9iye0n4ZaFv9WCOOoo4NZbgfPOww1rTkNurn49+7qlQE2NBis7G8ufnIdz5z6uSdXVBfzmN8Arr+CNk7+HY195CNi4EW+edzmOvnsp0N+Pd598Cvv3A4fdfxdePOGHOCnzb9gzcxjmPdwJfPGLwJw5eBkn4sTB2wAAR157Cbbd/5zW1yuzcWL6HmDOHMxLPQx7Jv4GzMzgkVXz8M2uHwJHHYUj7vg93rrjIWDdOuyp/jXmPf0QkJyMp2ZOwxnbO4GyMvy2YTauXv8DXJ56D446Crg8+ylg5048kFCIc8/9LKLRKObNm/eh97tQKIq5cz/4dQBg7949+B//48O36WP3+v/b0n6Ql3fCeRlCXAYCHuWUxEK9crd9gKu56eqKg0Pmz9dpv7BQv/NOdsAWJ5zohWj+AilV3wu4k2xWloXy0tOdNMfYGMloVPmGjg6XMykvVyRIEP1Jh1SrqqJOj+Xl8nAMkJGURHmEDQ1kfT2jUeMWzMzUKTUWI7BWYUzTOxke9vIQMwSWc9JyBoWF+oiD01dUcHDQilmjpIM0ZmQ4IGpnpxzNiQnKpRoacmwmeoYuJ3uUlUXLFe4ksNMETz1x1RlmZqqZs2YpNCix1efldfh8XLHCPJi8PJaU2Kk6OZlVVXEqL2CfLmLt2GQhR3mX663+7UqFmerrKTaOAxRv4p0MAjZGqwg8YowkWxQWGx1V6DAhQblVw6MnJtIVXBcWKqK3dCkdepXl5faMmzlgXto15rUsXkyyqIgReIrbrWQgwLo6zceqKlo/qW2NFjLjwADz8sT0EQiods+ThcnLY5wUvKmJJSVWj5eZyT/iPVRUsRhLS83DMOmM0VGSPT30+9V3TincjvgrzMvxWHuU9zvAhQs1FxYu1LhFIvqeF42OhxVnLNcmMMkOSLD4bUB9VV/v0L8xKA9Ln0+gkLIysZwkJyta0d+vkGpaGpmWxrdtHr8A5QRjEIXY/Pl0tZmFhXQ1CL291P2qqzV/y8uV721qUiSgoYHAFrK4mEPm0XnsQUCv+sxKQFZC6NuEBDruW0/e6DUL38dVz0Mu7JyVJVadFwD293+0ocuhIckFfZj30NA/pkf3sTZ0tyGeAC8ooKxbdjaZnS0gRFmZ3rm53OEtsuzsOIN6YiLZ3KxwmV1LAAmxyT9v4Sfm5ZEdHdrUentloPr6bOPexlDINhfTG2N3N9dBSfumJjpU39hYPLkdClEGLRwmy8u5bJku29NjuRgjY1QE8YA2GitfAF5mEII4h8Mka2ut8Ph6HnOM6JmYkBCHVFdXk/39bG7WRrrPe96hIQcd5+SkQneWz3rbQj2jFi6KQSwhiYlUIz34XG0tw2F7/ulpDg8biCMcZnW11ZoZT2gMiDPZt7eTRUUcGzNqLKt2HoXQbj6fbjEyEq9/3g4BTVhUFCepbGigavMmHSoyEolLFLXD4OpTU6ysVGiUPT0yFBUV5PQ0ly7VpTz9QNbUMDGRBoR5RoeOujrm5QnM0NurDW7hQnLADNo+wOnZeRp/TEtjWpp4Hx38vLqarKsjcCdpcyQz00inxR9GpqZyeFgglM5Okk1NTh/QweNDIba1iYLLK1WZP9/6OiFB/KqABtdKBzYAjv7UY5kZt/kYs82b6ekKAZaUCJCSk8PSUo3pa4AMZFGRjOvYmKOlq6+nq/kMBrXZ9yMO3NpuocAHAI1BdzcfgABCK83YRqGSIaanu5ICn0+GrtsORF6fVlTIEHd20qGa2ddHRiLstcMC09L4AkRP9jxMrSQYZBAqcRizA+7wsIXhm5t1uioqIn0+fX5khPT7+QLgKN/uA/iE/ZuBgL7c3c26Os29FyBw1nbgIzV0wWCUw8P8UO9g8BND97F5vVefyWMOcZyLHlxxdFQbt4cwGxkh+/v1O68Gy8idx8ao7/j9Tt/OK+wuL9ciz8sj2dOjBWVUYj091I46NKTT5NiY7hMKyYCNj8cJHo0dfnSUDswxPa1b9vcbX2VzswAFsRjDYYPPNzXpnoEAo1E7yTc3yyvq6HDSJHV1+t7UFNVwT5W1v18PEwrFc3B9fU6orqKC2ik8oTiPIeW9oq/WIT09ao+nUODIpQcG4iwpnnRBT4+rpY7FGKdTCQTUNoO319a+Z+yamvT7QECbTUcHo1HzLo2o2+9nPE8VDMbJM0dG3KbnBq+jQ56YV0U9NOTUH9jYqHyhIf0MCyILlpIig75kiXJTJoDn5QTHx0mOjLC/n06AdfFixvXsvPqrQIDs6RG/uBlwr0/Y08NoVJ5iSoo8+eZmm5v9/fT5rBzF0JUe2AJ4Uv/Oz2c0SjcmpaV6lvZ2Gy9Pcy0YZH6+vu+pKLCtzcnepKTIWCxerPnDQEB93dISp8Gpr5eBCJpB6O1VG6z0pKqKjiCawSDZ3h6n2rMDIaNRrbnxcbXNS8yOjOgZPO267GynBcdIhOzrc1PG05ucmqJjZvD7SWf5amvjh6BIxKl8cGyMY2M2j/r6lN+z2lX29Oj+3umloID0+x1fKINBRqN0ZT7BoPVTR4ciRHV1TqTZq08tLNR5JhT6aD26TwzdB399rA3dqwDZ1mayI31OJNVt0LEYnaKqz+dqgTg1xeFh24D7JPPDaNQxfniEJc4YtrToonV1gkaPjLj6MeAR1tVZeNHv12ZZWyukWnc3a2vphD4TE3X9xYutfT6fozEaGNBGW1pqKMihIW1a6enahEIhIQr9fo6M2IZTUEDW1zsWduARbdBJSa5oOhzWtVesMBBNR4fbzKJR20wDAacE4KgompvjyMehIWPBv5PAZqalCfBRWKjF70kXeYTQXv2uCqEf0YYwNOSk9BxdhiFio1HG66ny8jg2ZiUgwSCBnS5sxiVLHHl2SYkev7XVUy94g8uWqS0eDL2khPIee3vJSITAXmnjjXpK89E4OjUzU2Hj/HzTHVvOToDAk9xup/nMTJUvhMOyye3tJDMzBVwpKtLDL1nCa2Dw/JERebfT0864lZZ6YfZJjWdmJoEbCSxnMCiPcXCQzttkRgYrKuJGz1MimAKcRp9KF9YbhH8mTplVUcFYTLD+iQmSiYnyWnt6VPIRo6EQoywrMwBKKKR+s2s4VW8xEnDFCo8urdfqIt+gWG2eoUcx1NNjQBhPStyKuJmdrXHNzhZqsbpaHlxdnVIGGRlkejrHLPoyDagtXuy9psYiLssd4hIQ8MyjE4tZ33d1mXp9djaZnMwpCD3b26u5NGaRjaVLtR59PurE4ekWGpFDe7utp/JyMjmZXV3q84PmhXJykmxv59SUrUmPI7a7m4888tEauoGBqGPY+6DvjwoJ+nF7fawN3e0W2ikpUc6tuJhuITIc5jSEgpuYoDbr0VFyeNjl9DzV8buhGq+lS7VxNzXREfm9BKHEDkK5hMTEeMiE9fVWaL2PoZAMSVIStWNYmUN1tT4r9GSU7O5mSYlt+EuWOJ7G6mo9B2AX6uigl+gDNnPSnkWb/zayrIyPQjVpExPexn03AZ906SIRB5cOBKx2yUIs7O+XC+id2s2A19Qwrlze0aEGeUYpGrW81FqWl8vQlZbGDTiwyqTJdhJ4w4zNTgIbWFZmYa1gkKecYiflhgaNS1oaGQxyYoKOjd7vJzkyYjB9GafxcbrQ3uCg7p+SorGV1uB95Pi4KwbXBryZL1m/yRiHGAVYUREXRUhMpNd58orLy8nJSc6frxAUcKf6qqdHBruy0sbkbgKtQlfW1zOCOPNO2MKYkpQJOELIR+3ZBJNvYDfitX2mzcqlgA4ZdXX6uWQJgQPO4/CGhM3NZEMDn7Dw3ooVstezZjHuYWdkeGIJmtjp6fL8RkfJ9nYZsaQkRStGR8lYjBMTau6KFXQI0YkJ896XLPHOAQSetHzxNst5ruLEhA4oGRkK6TIhgWMWbp62sOUKMzA1NTIYt9vnVqyg5lliooxkRgbHzBA9av00ZaFQr6idNTUERmS4TSeR+fmqpYzo3/vsWk9A9ZwFBXrmISjv19+vfgdm1Ke5uTpgJCbyoHlqTE5m2D5fViYUqJdvjcWsb1pamJen/98AoTKjW7Z8pIauvz/KoSF+qPdHlTf8uL0+1oZuB+DCNv391EmqoCCuLl1X505XXp2WO515NGGhkJvUnrYbEGVpqQABnuRAJGK5L3P3xse1AYRCtikYI7sTAzVG9c5OyiJ4LCpe/VF3t743OWl1R1vY1CQDGI1SxrK4mBUVjLMzGJuDp0btKW4PD+v5Fy+28FturgyIRyxdX092dChEk5Ghv+Xmkn19bG42I9TX5xQVmJUlD6W4mMzLc1RQVVV04Ron1WOQ9+lp83AMNMKWFo6O2rNYeDECOILg8XGS7e0cGLDauJYWPXNqKtnfz87OOMtEfb3dt6iITkrd79e1/H4uXWrXsIKxaJTxHF5yshoWDmvzS0+Pe4/Z2QyHdZp3GoThMJmV5fgmjznGvHsjE2ZU7BQeAIMJCWRCQhxEEQg4Lbhr7NS/7r2HpdJScnxcXnpFBTk6ytZWu3d/v64FsLBQ883jDPWqMTg6StbWOofYMYD4/fJKenrIlBRWVtr8NeUJ1tVxelpztqeHjo1kdJRxBqCeHjXE74+rxZeXs7XVygtqaw0/7/eEFzR3xscZiShP65FQMz2dTEgQ2KS9nayr4wbESw1YUqKyi4wMMiVFbaqp0br1lDdqa7VWPIM1MEAOD3ssaaysjHN6+/0kIxH9TE3VM3lFoKZUMAl4ZJh61lCIzc10YdJo1LzalhZyclL7y8iIDqWVlVbKEuUUvHzd3jgR5siI4xpndrbU4rOyPjF0/0VeH2tDBzylzcMKlx1Qwe83D+Q+GbTmZq2GYFA5m9zceFiuvJwOcZWaqkVmyEgJiv6GYkdpd0KXTEqysMk2xxbhBF0zMrTxjI9rgWdk6N6pqaR5oJ4adHm5jNPSpdQKKSnhCMC8PK3Nqipqcaen614VFeTICF8AzGsx1WiPNT452Rg39up5urtl3OvqyJoadnYaei4YdPXhra2ya2xr0wN7uSUL5Y6PvycXmZwsnsLGRroOMhHLKEAWF/NtGJehcRgyL0+Hj7IypS7t8LBiBa0PV+rUbHmwhASqQcXFDuqZkUFniOfPt7aWlDgux7uhGrbMTJIJCRy3Q8BLEHMJy8u5HXHyaGZk8DUo5LfFTunz58dzQMzNjUvpWA6U2dk85RR95pRTVCv1AEDgZvPWWzUWPT02bwJsblbOrqpK9gm4TWOSmMgAQCFE/0BOTWmzzc0lsJrBoOr+nEhvRgZLSzWVPXWC0VGvCL2VzM5mTU2clovj42R3twxhba2TQiosZDyOPjpK9vUR2EXW1DAryyIhxcUaO0+VtqhI49DUpANMaqrWTkKCDhS5uVp/CQlkc7PQlCkpBKLmKO9jXp7nUUtTzlPREIrXUK6NjYxE1L8eqc/8+SQrK6kC7PUWPdmitplqBCsryclJHQIaG9nTY0bZDktA1H6O6DCUkGDF61I89+bx2wA5Oakxb2iwsZkhc3NdaL6sjGRLC4HlOlS0tLg1Xl8vD1XtvY3APR8ZC4m33z3+eNSBiT7o+/HHPzF0H5vX+3J0RUVMSLANICuLkxBi8FnPG8vJcUwYW2yz22f/HrHPjMGUjw2l5UHHH7CTJ5uaODoqNgzPy/GkaZqbqR3GOP0YjTIWE+Jtuxm2CKAdq7KSQ55RHBhwZQHe6dDDaJhN5hQEV09JoUv+s6mJwBt8wZ6lrY0ulwDsos+nPNKI9UPEMzqmj7bFDJF3cnbFwB71fHo6N5n3sQVCXD5hISN3Yk9K0jWTk2XILRw6PMw4W4rlhzg0RHZ3c8rr49JSGTIrFpdR2KI+NXozlpYKJDM1RVZWOkdpHCAzM+UJ5OXJM8/IYFOThWZTU2V8ja2C3d0yusnJzsvb4I3F9LQ81f5+J8pbWmqgHsuLsbaWCxcaQra/Xxtdb6/LZx5zjJCgHBggAwGus1AYp6fJggKuMyN3DYQ8ZEqKNsP8fAL7ZLl6e51qjHcgeBRSymiCUZgVFRHYp7E22jrP8WZLixpYUqKwZX4+xyFl7nVQKJWlpRpf29SXLbMDj6fOa8aX7e1OxZ3p6XwJ8TxZVZXlTaur45GQsbH4dQzYVFlJsqeHo4B7MzOTLCriJjt8BG1MHrBIQdBbE4bOZFub2lRbyxUrdN8hb+40NDAY9Eo09pLt7U4omKOjzMsTEjUYpHv27Xa/J2zsB7w1UVAgA9neTjY1xVMaKSkOnekhg5mba8jjdm6xgxUQoBNyDAZ1raEhTtm6eR4fLerykUeUU/4w748qb/hxe80iP8YF4zfdhHn5+fhV14n4/fkvA+vXq/D06adVhLtoEXDppap6TU4G1q0DentVrbx3L7BqFXY9thqH33mDilMLC4FVq/CVvU/hqquAc+/4JnD99cDevXho4iv49vcPxbaxfThy4kX8afAk/OT8XcBll2HXTXfh8Csuxq9S/4xrr1WB+CX7bwZOP12V44ODwNe/ruLgBx8ELrgA6O1F9zduw6GHAt9uOQuznugGe5/Fn3d+Gxfv/AOeOvlKnLHzr3gm9Xt48kngt1svxnGr/ozX1+zBlQ3z8Ie9P8G7t9yC2bW1OPGxP+BHP1Lx9oMPApfvWwpMT6vodmYG+NznAADLv/hrnLv5BlU/r10L5Oai8XN/QGUlcPhVlwBnnqk+e/ppVYCfeaY+95vfAAsWYFvLchx5x2913UWLgO3bVV2cnKzfzZ2rKuMtW4BDD1VlPKDK74kJ4MILgVtvxRvpZ2D/fuD4zHcx9MJsDA8DlyxYrs+tWwekp+P1jG9h/Xrg21ta8UbRT3Fs+ruqVL7oIo3pmWcCu3er+PmUU1SZvmaNCpO3blW/e1Xu+/erjU8/rf+fM0e/6+vDgd/8Fk8/rY/PzKjw/OjzvoLuX6zG9zM0zqmpwLlHrUb3pq9gehr4whd0qaVLgT1VVwIPPohfnfc6fn/VHvzts5/FqgBx1m++ghdfeAFzR4njvnwort2/Hz8BcERpKbbd9Fds3gx8beVSvFrya8yZA7z0EpCUBHzz1m9jz8MPY0ECcSBxHo5L3YObbtKjnLbxz7h578X42Y/+hts6DsMJJ+j3J669CzjqKLx7+hmY/crLwLXX4leZy/H7vhM1rwFgzRqccecP8VTHNry+90hs3QqccfIeHJs9D2/0vaq+f+IJIBbTOvrSl4BQSOvo0kvx0JOH4aij9LGj160Apqfx7jnnYvbWNzWfdu7Ei+nnYu9e4LQ5z2m8t27FzM9/jjmRCF7eejhOvPQ0jROg4nxAHX7UUZpvRx0F/PM/47nOTZiYAM49+4A+t3u3BujCC/HmzJE4euYNvLj7WGzYAHw/7Tm8vuBrmDNHX1+zBvjanNVAaiqe2ng0PvMZ4Kvjy7Xm/+3fgCVLVK1/0024re9IXJL5jNr09NN4MfkMpKcDh+98XR1bWAhccQXuwg9x4YXA7PWv4oxLj8dT320FRkbwvZ1/wl+vWA288goeWnAxvo2H1NbTTwcefBB7nn0Wn73//o+sYPyRR6L4zGc+XJH31NQefPObnxSM/12v6667jgD485//3P1u3759/MlPfsLDDz+cn/nMZ3juuedyYmLifd8Lh8P85je/yUMPPZQpKSm84oorePDgwf/wfR0lDuBIiUdH4xBvL/EQghL1VllAj8+otTWeoF+2jDotDg0JPh4OO6Z+FhRwJVQP9DZAZmU5MeO6OroQSlISycZGJ6LqFWOHQnRM7rW1lj+rrnbK0+ztVRgwP98droERIcWsoE50UVGO2SlfAADRgz1hJ1UPmq7Qzt0KD46PO1rEnh7LcXn1b1NTdMfvgQHH8dnZKY9teppxpF0wqIeNRr0yJo6MxKPB7e06TWdmypnLyJCn4fPJC/D55AQ3NZGsq+PChRYS7OtjV5dxX/r9Lk+1z7xUn89pzJJLlii0Z7RYU1NqkocOFLpzhiwvZ2KiTvunnKJo2naoljExUe2chPTlFi6khU4ndRPLl3F4mKOj5vHU1HiCADqt19VpDvn9FFLyF/JKLErghGp7evgoPDDKbWRKCiehnF0s5vE+BvisnfwtIMCMDKvdzMuLe6XRqMbdgDjj43T1WqyrcwhDNjc7Qmmv1MKT8GFfnysb8eD54bDN08bGeKF1JMKurnjfMxJxpTudnXF+Accn2dfHkhL93UtDs7jYkSGzoUEedHEx6fMxaFECT+tt2jy1GAxpGgjEF5fVC/b3K1fpefExQKU4BqixLAU5OiovztC5bn0VF5P19YoGJCaytFT57XcsWtPbqyWxcKGFbjs6XIh9E0TBx5YWJ9ZcXGz7RXExy8u1fKqqSHZ3c+FCq1gyrzXa3/+RenQPPRR1FUMf9P3QQ/+YHt0HNnSrV69meno6TzzxxPcZuqqqKqalpbG/v59r1qxhbm4uv/a1r7m/z8zM8IQTTuCZZ57Jl156iY888ggXLFjAurq6//C9ncL42rUGHnmGUZtcnVDYshNKPL+DeLHoSgvp9eI9bCdG2fEXgI9CKDAR8t7NXqgYuL1dm/cLEGpsAwRbTkkhWVeniT81RXZ362+joxwAHJv5v0PFso6zLzWVHB/nsmUyAGLBXy8rkp7OQED7lvI4SnInJlK7WyzGtDQDxhgKzisfmJ6mQrU9Pey1+z3ghYpyc7UZWT8wIYEMhZiUZOLfZnC22DOO2MbwGlSs2+u1G+BSu+7tiBeUB23DClh/P2vP721uvQB7vI0dCveFAQodeb0LSzI93YpxJ8npabZa30xMWA6kr49L7dlu8dqVm+uUnjdA8HK/dxBoaxMIIT9fKNX8fA5DId2XrP0qm7iaPT3GmG86ZfX1dAcfp07e3i6j5+XCBgbY3GybXXU1p6cZL8IvLSW7u9Xu0lLGYgpjPgCQsRjHx82gNDVpk25sZHMzeS9AoMGInxtsHjyiexjUvqRETaitpdMPDAbpnqukhGRiIqMQR6PH60q/39kRj72F5eWaDw0NnALYbOPWa3PBE7Flezvp87HXDBQ7Olx4shdSjwAe0Vzq7ZXxT02NI5lN6XQLwH+3cQqFqMVlJ6cpwJ3B6uqoZF0oRGZmupLJHfA4btsdf2VGBsnmZuXh/H5yaEj3nJ4WECpC187tAAcG6Go/99nztrbSIW8nJgTmuRs6GMUJ4G9VOD49nUCfDjc1NbqWJ5zY3U2WlvJZfLShy+XLo04494O+ly//xzR0sz+IF7h3715ccMEFuP322zF//nz3+2g0ivb2dtxwww0444wz8D/+x//AX/7yFzz33HMYHBwEADz++ON49dVX0dHRgezsbBQVFeF3v/sdWltbceDAgb+rHZtwDDYePIi0tDzMKynBBIDZAJIBZANofOIk7AIwB8AuAHMBHF9djb8BOAzAEQDwxBN4PfU0HAdgv30P+D6APfgaxIXZ0ACsW/cWTgawE8BmANi8GTt2PAtcdhn2A3joycOAtWtxGABs3Yp5AN4FgN27cTyAGQCHAzgdUNgsNRU5OYoSnQOgsvILAIA3N2/Gv/zLQezdC5wKIDPzeCQmAvv3P6Qwz5o16OgAFuXmApddhpUr9+C0jkswdy5wyJx38dYLLwBHHYXjAKTbsx8CAJEI3nkHWGTtQGEh3lxwEvbvBzZs2K6+2LkThwCY530mIQHJAHLtWkhMBJKTcYL9/9F27d0AEu3nIfY+HMACAKkA9tr7bACvApiw/tsLABgE8Cm8AeBv69cD1dXYBaC5+Qhg/XocDQDYDgA4AADz5yMdwJF2z3QA7w4OAn4/jmhqwmwAG+1vfwPw7o8uwesAdq1cqX5oacEeAK8AyC4qwiuAPfGR2L1bj4jERLz2miJQWLsW558PzK66BHfeCWD9etx4I7D53nuB9HQ8NXMa7rgDGB0FMHcunn5aw9TQAIVa//VfsSA/H9tu+itOPVXzay0APPoo7r/fIninn45nn1XbbroJEGPmIvU5FmI3AGA/hoYAAHhryxaccw5w7717sHGj5vxxlZVoaVHfpwO49loA+fnYBeCIujrgvPOARx8FkpPxne8AVVXqz8Nm9ijE3NEB5ORgJ7Quttn4vQt99frroXjtAw9gtjc/MjKQCuC4hAQcCXFXAp9XP599NhITEoD+fqxZo8jhI4nn4sDZ5+KopCRkAzg6Lw8PPgiFopOTgd27cVh6OlJTFTHdvBnAzAye238SsGQJ+vq0XhYkJGDvXgA4Fosg/tTUVI1NZia0vhYsQGYm8NSqQ4DNm7FmDXBcWRl2A0gtLsYrryh7gdRUJCYn4wAUqVywQM9ZVwckt7fjEE0H3PPgYQp5owSvzv0KkJMD4HSFXDduxPr1UMh83z5Mfv17wK234r/hk9d/mdcHsY4//OEPedlll5Ekv/71rzuPrt9c9bfffvt9nz/66KN5ww03kCTr6+v55S9/+X1/f+ONNwiAL7744v/yfvv372c0GnXvLVafAlzsil8djH5qymmJAS+T4+McGRFYwStPYjhMTk87eDZwsUAlHotDWRnZ30/JiPzBTvxvENimMgWLd1RXU4AMj21+bIzMyWEwqMNdZyd1AveYR7KyhKLLySF9PpaW0tWvedRDU3baX7HCCsdDIW4CWFysA/mKFZ6nt4XA3ayttdBNTw97oDAroJCOK4YWyZ0XpWRbm3APbW2KAPX30yXkIxG6k21KipB6GRk6Da4zb4GBQLweLxwmk5PltTQ3k+npTpssZl4he3s5MREPQ46NyYmYmFC4NRbje4A2gTgWuraWzMuTtzM2Zui3RwT68fvJoiKOj9PVZ9XVUR66FQlLff4yhcWKioyH8Wa1PzNT/WPXKCigAyRwbIwsKSGwnuvwHhDO5KTjOV1pHitwEcNh2hy50079kwQauHixN1b7rN464FhyrgEo2Zrr5RVY2BO42YnXFhTY2JgSvSdXxKkprljhIeWvJMvL1Sc9PWRlpeZlSwuBqJ4lFjNShZfV8YGAkz0CusicHKeoEQrReVEVFRbOq6x0yEwvxLkDcEXoLC3VvG1v15wtKSFws4WUV1O8pJMW7v2D+qGjg+JFrSOwnCwvZ3GxkJYJCQozA2+YvtsfCFxpckjPKCLg9ys8mZXlVBcYiRjSczXZ3Gyh/LX2vesVAm5stHbdrfuWlAi0kpvrUg1jY7S1v97JHQEBAptNM/BiAmv17KEQ2dQUR2QHAgSuJnAd6+s/WtTlffdJsf7DvO+77x/To/u7Dd29997LE044gfv27SP5fkPX2dnJQw455H/6Tk5ODq+88kqSZGVlJc8666z3/X1qaooA+Mgjj/wv73nNNdeYYXv/+yGooLO4WPt0ZqZq2CYmtJ9EAccG5WIVUcW5W1u1t0ajVjAejbKuTjahqYn6Uno6uy10tw6q+fE2H69ItKZG943FtHGUldEpDHNy0slj9PYaSq68PK6lVVPjGB28cCWwK25ITGQMWM63AacnBgTI7GyhQKurHcuXNLduVTgvFmMopD3SiYg2N+vaQ0MqrWhvV/7BuDIrK+Nq5gwG46UJtbVkLGYlDQfY2+tsNQMB5WuSkryi+J0Eoiwvj7OU1NXZBhqJMCvLQqx5eeTUlEM+MhoVkwvgODNLSt5TYzc5SZaVaZOLRFhYaOG02loCIQI7ra/eYH29VzQ+w9csTJWVpX1pu4WiSktl5BcuJI3Rm5ycdGeS+nraprbX1ZxxclIP0tdHiaauUhiyo0PhYaiukcnJ4masqCCwUgexhgYJ0o5743wdr7G59V4C604YWtgOHhwY0LxpaFDxdUT94imF3wfE2UsiEZU4eAVhFRWaACMjbGtTqNIVm5vy7qj1DwMBT4TboX45MOC4Wz2ZIO/QA+wig0EWFsbVdVpbSWZnSw/RQtExKFzNsjK+ZiHPgxYO3eGFcZOSNIE7OnRIycoi8/JUPjI5yU773hA8Md0ZPX9TE+fPt/kUi2lN1tXp0NvSoutlZJBJSQpb5+Wxupouv70FSjOI1Hmf9on2do6OitczAuV3p6Fw+0tQftAjIm9r036Tn0/jL90mECYUwo9u3PiRGrp774167Hwf+H3vvf+Yhu7vCl1u2bIFP//5z9HZ2YnExMSPzKv8v73q6uoQjUbde8uWLQCAJAD33TeFwkJFK9avH0RdHdDUBLS0KFzW0QHcfz/wDE7DI68cjV0z83DZZQrtXHUV8OSTCtHccMc8XHfdftx6K3D5pQf0x7o67IbCnq8AQEMDnnhiCtdeK1AZ2tqweTOwfv0U1q9X+MQLYbyZ+z0sX3UE+vqAf/934Je/BNatGwWqqvDggwIzYuNGxWdOPRVn7X/IgGhTQi56F8zMBJCDQyBU4LunnwHgUGD+fHwFutfMjH0MRwDYg2MB3NUxGw0NkrFpaADuvVf3ez39LDyy8ytCKn7+80LWdXVh2TLdsqsLWD54JA6c/DXFrM47D7jiClx97WwLF/XijjuAF154Cx0d+vyzz27FO+9sxMwMADwK4AHcffcUVqzQo7S0qL+fW3841q17QSHAk0/G8scOw2rr16uvn4drrwWOAnB1wyEYHFQY6eGHI8AddwA7dwLXXosDAK6+6XA89thbuO++jRajewDAauv8EFpagO3bnwbgxy4A110HrFv3KvbvX4FdAJ5/fhPuuy9iwNGngeuuw0YAuP12zHu4Ey0t6jcUFGD+/M8AmzfjocEjFIrcuRPo7oYCpO9qgk5NYRUUnm5pAZCaqrDjVVcBeAG47DK8WvJrLACwbJlQuUACjodCuaefDlx+0S4kJSXiWACTP/893v23f8PrZ18OXHGFHsvnw9EADp94FTt3AkfufwO48Ua8DguTbtwIzJmDmRngTx3z1M6LLsKe8y8Bdu/GzIzWw8QEFIubMwe49FJsg4VPH3sMGzdKSefSS/V+fP9puOoq4MA539N3cnKwc6cH5HwV2LQJjz22BwsXAvv3b8TppwPr167FO++8iKMAoLYWswsKFH7etAmHQ+M7p6ICDQ3AgpwczAaAT30Ke07/NpCSArS2CrW7ZQt2A3hx6xFYAIWqj4XCtMBBHPnK48Cvf62Q/aqngOuuw9atEOwyIwMoKQFCIRzYsAH40Y80Urm5+OMfI5iTnY1DbF2/uPc4hUjxKA5b8wxw//147DHgDQCHp6bi2muV0tgD4ERoXhwGAD/6EQoLgf5+YOXK7RYHfRX33ad5MA/AK5Mp+OT1X+T191jFBx54gAD4qU99yr0BcNasWfzUpz7FJ5988j8ldPn/fsULxtcR2Ef6fHzAQkzLlsnbGhgg2dLCnBx5FklJBhjo7XVhmrY2/S4tLa6mPTxMnaYLChzTh+fmeUnp4mILZRUXC9gxNMRxGEKruZkVFfGaZ48zMBKh3L1QiKyrY3+/oQ+Hh9WA9nYhMBsbyaQkeQb5+Sry9fkszLTZeWgcHWVlJY3ncIvEXSGwhSe4bsQhEuGcJllR4UUDVaQejerUH4moXUaSW1iosJnnpXkh3wCEPPVqArlkSZyQNzlZ1/D5dJqORBg1oAKHhhzxr6fO0NVlYeT6erK2lqecojbV1nrF1bsUTja18mhUXkNTE+Nk2R4zvwftrKyMc57l55M9PZ5YgMLD2dkcHZXHH40KGejRw9XW0grMZwjsNBBMJbsBC7F1MQgDDVmInL298vx6ez26TKak0EJ0u+ThTE15HOMKtTU1qZ+KihzbyTUWchbqNspwWPPL7zewSn295kVzM9cBRhW3lmxoEOhkaEioRFNz9yjqMjJ0nRhAhsMqqDfFcU/iqLmZ+l59PTk6Ki/Z72dhodZGU5OuIaCJaL66uszznpzkFgh8tAMqvF+8mCZ/tI3ANlZX00KHAesbFX57ckPATs3FoSECm+39POfPN6+xo4M5OfLAS0p0/RBUmN3ZKYRjXp7GuKzMC3kuN9mqLUxL0zyeNcv6IuatmX2qvYvF1FHDw1Q64IBQ1ObZMRhkQoKm1zHHqN16nhG31oFt5OioeeUHtNYmJ7lly0cburz77qiH5/nA77vv/sf06P4uQ7dnzx6uW7fufe+TTz6ZF154IdetW8fdu3czISGB999/v/vO+vXrCYDPP/88SfKRRx7h7NmzOTk56T7T1tbGefPmcf/+/f+hdngD//nPRzXJKis5BbGFpKQ4kg1yeNiTtrKY+wFOTekzXrjFg/3Pny/Encdgv8XyYgwGNUPKygjsdcTFgQC1+tLSFDIpKtKmH43ahN+rBWPhn6oqktPTcfb48XFthD6fDE16uqzR+Lj+7fdzasryfLW1ZFsbExJM5WBykhMTdJyZaWkke3sVBoxEWFYmY7ZwoZ6zqso2zJwcJiXp9+XlFtLNyHCqCYODuuasWfEygZwc/czIMKJeo/gaHNS9jfqRbGnhyIi6a3zc2m25D3Fg7mJdnezPrFmylYsX0zGoHHOMruMdTBIT7bAyOkoWF7sw47Jl6g6Pam16mgpJV1eTAwNsa5Md8ZQhli7VZrp4MR2bvcm6kUVFyilZ4u1ZCM03f76YT4A7TVV6J4HVDiXqSRNxbEwhYUPuLl7ssZUsZ0aGmjQxIRvS1aVmBoN2wCkqUhsiEfZDpQeBgPqktlbjmZ+vv4+OmrGyPG9pqYVci4vZ1WVhzIQEF+4EZszYbOaKFXS6bs3NdCHj6mqdsUIhK/GwawEz7OrSGAFRV9LiUc9Fo5bPrKzUjY0nlA0Nrli+stLjbX2EeXm6x8KFWl8yRNscX6mnF8mKCvtbH4uL4+wo9PnY02NSTtPTOixkZMQVItLT9VyhEE85xdOH20BWVrK4WHPpmGPU54GA/t7WpnnR1WVztKODVVV6JLGozJB5eRweVhtGRtRX1dUkExNdO6Pu0LGB7O93ZOKRiMb6ggs+WkP3l79E2d3ND/X+y18+MXQf6PXeHB2p8oKjjz6aTz31FNesWcNTTjmFp5xyivu7V15w1llnce3atXzssceYkpLygcoLtmyJKncWDrOiQnH1KcBp0s2fT20ARUVaHAUFXrGaGEPS0sjKSm3UWVnayNPTuXQpne6aTvjbdJJvaVE9XXIy2dTEY46x+PySJdq0PAmccFjXTkmR51dXp4VZXk6Ojyv/0dbGUMgpoMQleHJzCexz9X91dbQ81DYZMr9fK3J4mDU1ZuQSEsj+fscH6fNRG1p+vvojP58sKNDvfT7lMNraPCYtXSMQUN+Ul8dzc95u09JCZmVpcx8eVhtycuKfLShw0jyusLGmRt7S+Lj+HyqH2GT5jWCQ76F3mtEYGWCGzc1yfyorbeOWPAmrq+OMF/n5ZFmZTt3t7erIsTE9b1ubdtDiYvWpeQDs7mY0agbby4OZvtnixXZij0YZgzHTB4Pq04YGsrJS5SQNDQQmNUHKyujzqal5eSTr6136KyeHcr1zc8mCAq5YYRD4xkZ1eEsLgX1MSoqTa1wDqA0tLTrQpKezuFjtBXYRuJHs6eEfASP3Xs2CAr4HWDIii1BWJoNQVyeLH4uRjY062OTlKT/c0+NyuOzuVj4rGFTfeJRetiaMnpPTsHrS1FTXl+Pj1j/GJ1pcTM0HLxlpKgAsKdF8GBtTlGTJEkfczb4+tSMtTevHC0cY409np9ZCb29c37CqKk5d19RkB8n2dnmkOTn6XGmp5mt3d7ye0IBjXu6+p0d9waQkMhiUHA9U3jI+TpcD94yXd5BiSYmrDWVSktb5kiVkWRnr642g5yPmurz99qjz1j/o+/bbPzF0H+j1/zZ0XsH4/Pnzedhhh7GkpITbt29/33c2b97MoqIiHnrooVywYAF/8YtffKCC8U7bkLxTW16eBtOj1opBlEyhELW4pqbIWIy9vVrLExP67H0GgPBAE7291MwuK+NLlgSPWthu1izdo62NZEODURHt5MSE9rVZs+y7xvDq88VRjMBOMhBgba0VcFdUaOOze+tEuNaJPXohOmCLhCLHaCjRfWRDg8KmqamMRGin8V4C1/ElAy14IgoDA9becFgbSCik6zc2ymPy+djVpVPu6ChdfRjLyrQJNjaa3EsvgQ0sLVV/FxbqvgJ+PG8s8JME3nAq5MAWFhdbuHVqiqecYiG8+nr9TE4m+/oYjapZ+8z78AAUQDSudODzkenpjgsyJYXWLoFDIhF50mrHBgJvcAPghEGBl0k7hefnq0/mzyfZ2Mh3PONWU8NoVNcWU/59rghpxQpqp+3vp2ji7hYwwavVA8iWFm6Bag1V47naGd3n7R7yCG5mJzyaqKgztNdAtYIsL5fxqazUQcDvd2CKujpq4ra0sN+AHStWeH0hntNolCIXjqn54TBd/R37+rQAwmEyKUnh8XCYU1Maek8FhKGQ1sKkbfo1NTzlFC/094wZ170UGGglR0dFP+dEi5OT+baFNZmSwidgNZwQRdk+W8PuENXUFJfKycvjdkgW6AmorjMCT72gV/N5yRICK/U8bW3xWraEBJ0cKyvlrWZnixKwokIH06wshqAi/3CYxrm5V31cUKADQVISmZzs6hG3QEXm9fUm3pua6lDLK1aQbG93dHGjULH5jh0frUf3iaH74K8Pbej+/3i5gvFjjzV9qntIn4/boaLvAUDGq6GB+yAYuFe8PGp/f8L7TEUFmZLCv9hnVKzrI9AlCZGODnJyUg6AGbwdENoxP59aUGlpTteN2dlkfz97ATG3NzezF0J47YAKmT210YEB05uECoJZWekYQ0IhwfmBGbcpe/p6wGY+a9f08j9dXdqgolGq6Nw2ledhqLfKSlZWkiugotlNgGNzqKy00NjoqJCqZty3QGjTv0BoN8+bWwkV+26AFSNnZuqUITl0MiUlTrBtsc8hwLGIvGP9ug+wsPI9uk5xMSetbWlpOi9sMUMwMqIcGsvKeLd9ZhRW7jA0pI5MTHQK8s7zzsrSIaWx0RW8HwTIkhL9PiODwPME1rOiwjyG5GR5JqEQa2rM07bwFsvKXCFyXZ36mrGYQtmmvDA4SLK5WfyeQcnMRCFP9l6A4zB2j7o6TkzI3jgGDld6cLfNxV4yLY3A825DJYSULClRO5iVxRhU8MzcXL4EcWxu8PogOTmOQrQcXSSi5+TwcNzLbG9nzPp0xMbrBTPOtbXUeLa3q1i8qEiTcskSJ1Zr1TWaD0lJDNn88fJ/nkpIAMpJ9uA9Xn5fn0pzIN24sTHGD4xZWcr1NjTIEjc2mlTQFjI3l4ODZvx9PoXM7bm8cWNyMllezoDN2UeBOJ9mb68jqZ6aojsgMBBg0PrBIyCXysjVZFqaEQ3c7ThXYzHKUPf2kgUFPGh991EaultvjdLv54d633rrJ4buY/Nyhi4UIvAGmZ5unlUrVXPTKuM3NGQhn5B5GmsJ7KNqfBoIXK9Qx9iY/U51PsO2QL1YP3NyjPn+DQL3EQgpXp+QYJ7ayxwZoQmx7rJE+FoCm827uJmCo99MYDUzM438tqTEao42823AQbXZ1ubospiWJlh7Roa8GuOjysy0sEtJiXZKoy7yKKtU93Of9ccqeZo1NdYXq7hwYfyUL89js9WpRSnm9n2OMEPPch+zsrzygevNi+qjEvjP2/PtourJbrO/racH/Y9//h4pFExNEZhh0A4dwAbHKwwESJ/PQCnXCwY+NUXggAnAXkePzQR4mcDLnD/fi5C+TIVDfQSuN4qwN0wz71bz+lYTWGX5tJf5AgTz95A6gHm8PT0Kpfb0CHTihQRzczl/vuUhbeDfBjg8bGUcFRVkXR0LC+WlzZplwrzRqM27LhklMyyDgyR7e2X8yssJ3G3GbhVvAQi8zGEzCn6/Xcvn04EhKYnApGME0fi97Aip58+Xc9jZSbKpSfPOdr2sLJLFxczL069Ue7re+ne5zaG7Nf/a2hgIeLm3dgKrDKASte/cQw4PW23hCKem4rzbHBkh29td1YMo0OoUym1pYX29DhhLl5qeY22tAyl53quTJCouJrCLHBqye4Vc7tLnI1lUxN5eiyB0dJB+v2Nl0Ry4Lb7GWlosajBD4D4ZvupqGevaWhYWUs+fm+ukucagVElennKfDqRiHl19vdqr2sqPVo+upSXK9nZ+qHdLyyeG7mPzcoZuzhy+DYEFIhFNwifMg+kByJER7jCvIwQ4L+h5+9wKWD4vMZH32mnvAcA28ru1+Q0MOGrITvNGJgGypoY5OeZp1dTohOwl58NhdkOe4/i4qMPehkJZA1CNG5ub6fdrD3jHW7DhMNndzYICOYf7oJqvggI7sZquV0oKuQlwdEns7mZPjza1SIRkWhoDdjJ/1mtvURHLysTT9wTgkHgLFxo6ND+fHBriDvv7qJ1mn4c8vIe9DXlykuNQGGkSxkGYkxMnHLUcUQyQJW5qIsvLOWQn+SmvLww8I0N6tzzAhgZGrG3LllHh05QUAiMMBNSPLCvjs1DYadp7Dk/mxlj32dLivDmmpMhQtrSojYmJMhAeAWZ+vhn2qNd0vg3ICNTWMj+fLmw3axbJ5mYX6mttJZmR4cA5ERtvTk+Tzc3cYP/fZAaJdXUMWd95BeqjozIy+flU2zs6zJNbZcauz3J0vRrrlhZuMO/NM/z0+ciaGqcuPwIJlr4GxPOnPp88t5oatduLUQ4Py1AUFZHd3XzH5vioeT7DiNf5bbf1MuZ5V0NDMj6m+eYBtTzx05A398rL6cEvJ7114XlW5eV8zfpp2u7rNN56elxR+CaYVz48TEajBjqRQa+stANiQwNLSxkP81t4fjvkwQehqMoQFJFhXZ0Oe5bs9kRqJwFHGfYO4CSANBdvJpOSTL3gPndYZTisthlim4mJJqr7iaH7r/D6eBu6UMgJWCrv8SSBLor1YCWnprSB6CQ3QyBqobJH7FR6t05gkQiVf1pOYDl3mEEE3pDFsbCXTq/PE9irhH5eHouLtYdVVpIcHdUptb/fvJgDBj/WCVheyErm5LyHJLisjMAzZEICS0vpoNf6/TanwM38fCdwSp+PCxfaKT0nx+X0AgFtNPKE3rB73m1ezk6yrc2eYReLi60NtikB65mXR4N1TzIvT/ujvJ7NzmvSc/3B+utO+/t6AgHLdfTafbdQnuCT9p0QgRECvTzmGBmGzEwVDb8GyRR5OT9gpcJJ09MEbpQLY0ZZHtn1Ns7XE1jNWbOU2pFHt97GSF6JPMERFhSQQBcHBz2Pbr21a0s8nNXXxwigE70RK7a2kszMlJFvaZHxTUpiSYmh9rwi8uxsjUc06lCBhgEisEHzwnl07fI4BgYcKwkjER04KisJ9Jon54UxA9ro6+s5a5bGZB8s/JydTQeVr66259pALlnCY46Jox17e0n6/bpXWxtZWak2mTH3Sjs01q02Z1YR6HXsH6EQDUH7PIEAh4e9z68i0EXW1poB2MtYTPv/smWME4Ob6r0i3H+QUWxsZF2dbFIwaIjOoiKFRD1g1dhYvNSntJTAXrK31+61mszJYdQ7iAEcHaUDkrCuTmu8o8PW/t0CDrW0kG1tHBiIRzG8EKynOydjep8L/Y6OmphtOKx+BBxIhi0t7OykC7sqMvHcR2robrpJGn8f5n3TTZ8Yuo/N671MAREosc28PPZDeamonSaXLdPEjNopehOUIxq2je01CJHY2al82AvwwAF7NfETElhd7W3++8i8PHZ6XkxamkJIo6NcB2PE6O5WLiYS4Tji5MUBu+fD3nc7OshwmJWV2mBi3gm/ocHVBS1d6qG/9pmy8Z0OzeahvgSFXhnPXQwN8TUIzLEOykmutGdndjYrKnQqf9s8Gs8wAvtkMM2jGvM8pfx8TtupdpM9MzMy+DCU33zYPrvOOyXn5vIByDN+yU7zYfvMs3aK93J/U1M0b/zJ+GZSU0MGApz0+qO9nQ8DBJ7RCb24mBMTdDnYh2E5qLQ0fbeoiD2Qp3cflAdiJKK2p6YKINHXxxWQZzkFT1fsRgINcRHasjIHFmV9veq8YjFtbu3tynEBZHo629rUdXl5JJuaWFxMO9wckCHLyCCLirhihUKYAViYtK2NWVkWhqyv5+ioh66csZzcy/b/ATN2dxJ4nu+YV1JeTmfIWFREZmZy2TJ5cTsAtbWmRpYpP1//np4mW1pYUGAGqLxcwIvGRs0tn49TNmc2mHf1rN3L0+djcjJfsvH19AM9PUcxptzDETMALCkhh4bY2hoHUoZCau8AFBXJy9P9Jybo0J8eoXNJCcmpKccI5PPpmQ/Cqzls5ag9a2IiyeZmGe9g0LG8RCIkQyGXYxwAyLo6VwvrlWYEINaYU07RPPNIrAcAJ8o7Oqrx8nJ2iYnqQ6flaCKwkQjJyUkrTfnoDN3110fZ2soP9b7++k8M3cfm9V42b6CdTE+3vNSV9n6EwPVkd7edNp+hUHLLHe8d8AsCDS7qIC/FR+BmvgaxlgMjmsgpKZZ8XmvXeYYlJcZtNzBAYCfZ00O/X16KTonyGOPe4jN2Ep6MKyK3t5MdHSwslGHq7ZVHt882woICShh2TJ7PwoX6CsNh1tRY4ryoSGEvC0FlZtKkfLrMe7iSyo1FyeRk2zC7mJOjTcAL7SYkeB7RBgK3EghZX02aMbqN4bCnFL3ajMNK699tPOYYz3tpp7zJAKuqPLSjlzNbReUpn7FNcRt7bOMH1rO42Kt720WOj9u/Nyg/1ddHYC8nJmjPdiOB5Swt1ebk0TEBDZYDWkmg1/ggr6M8nUkbm59x1iyvbTdzKeLKFqyvJ7CeTEjQSd3AQXl5CjEnJZFMTna2lZGIdr/ERFZWai6Nj5Ps7WVdHQ19uk+5vvp6m5vL5TE2NOi7jY0m6rnL8mzPO3ThJjNy11j79DzLOTGh0BqLi9naagakupoZGcpFsqCAwCR9Pm3QaWn6OTpK/Y9nQAxROTDg5c7us/G60+bPL1x5SmKiV5N6n+bZ5CRzcrTPp6SQnJ62WsPlNhbP67BglG7BIC3kuoHAahmKYFDzt6PD8uxRJ7PlEBRTU3FqPQuRMi+PvWaEGQiQubkKKTc06LDS0eFKAsrKSI6MuHx5QYGuFY3qp1Ck1wtQ0tNDYBuZnm6/v1tWfniY/f06SIi3dDM3wANTvUz29HD+fKOli0Ztnr74iaH7L/Ka859Ct/L/0esbp/wNQAYwMIBDbm8FcBaALyAj4yhs2HAmcP8FmDXrrzjzTDFtzZ0rsvEHH/wFyFcxa9bxOPts4Ogn/4ykpFq88852APORWbMJmS0tePeO44F/vRsTEBv+smVfxlVXHY2cnPkoLAQSUQI8+CBKSk4Dtm7FF74qRqqTTwZSUi4WE/6Df0Z5+cVYsAB47TVjrLr1t5g5+Wo1Zu1aPOp/C+hqxgm5b2FZ4hFITEkB5szB/fcDuHQrzjkHeAzA9u0bcfF5R+C3Nx2Niy4C5p13FjBnDjZuBN5MPhFHnyw9AJx9NtLSHsGWLW8DiCAzcxGSkgAsOAWZm/4VCQnSLT18/XNAWhqwZQtaWkQPVV6+CH19i3DCCWL/mpg4Ajt3fgMPPvgNHL33VSxZcjzmz8/BddctQl7efOzYAWRlSc8UAJ544jwUFs5DJHIMbml9F7t2z8aqVXlYufIkZGZ+BuvXz0V+/pdx1gtLUVPza6TfCGQCqKn5Ai68EDhpZjWys78CJH8aa9YANTWLcOKNAKam4Pd/Bp/vvQ01NZfgxhsPoqAgAX/90eO4bfNZOP10sV4B2aiqAubOPR07dxqrPS5GQsIRbmyA7+H8871Z9K+4ED/DERDVU/eXfgvgbeCyy7BoEYCdSRgbVl/MXZ+C5EQAmTmYeUUam7jlFuBHPwJWrUJyMnD0zhclSnvHHTj90m9jcBBoa0vEaRv/DPzud6iqIoaGgD/dChT+5jc4GsCcxETMbm4Gfu4H7liOFSuewYl9S1Cx/9tIP6oe+N0X8D0AfwVw1n4A2Iqnnwa+n5AA7N6Nn2Q+hb9lngE89hjS04HNm38MLBhASckRuPr0Z/DuotMwMwMcN+cNvLz3WOAzn8HfcBguOdgKPJ2CI084AXeuOh7p6cDzz+egvv6fcMcdedi7F3jnnU2YWXks5pSVIStL6ygl5TyUlgJ44QXceee30NUllY8XXzkEJ5WUYP7TJfh+wS4EKnJRVQXgwQfx6KbvoaZG/T9nziI89pjRrK1ahR//+GtAux+pqRegp2ceDqTPwyGJiVqwy5YBmzfjno7fABdeD2zahG/8GsD9C/DtxES89iVo8vl8KN8JYP206PC6u3Fr+AKkpxvl2p2rcNVVx+OKK6px660A7rgf86oWAB0dqFl2Eq66qhxdXcAPzjwVWVlHYM+6zfhl+TaEQhcCic8Byck447E/AD4fcNSbKC39JyxCKbL3A1u2HAUk78CiRaY1fMcd+PzMDPLzq7By5Qfe3v6nVywGo9n7cNf4R3zNIsn/vxvx9748xd1gMIrBQXFXHvjULCRGIiJXXLcOSEgANm/GM4W/xwknAIfvfVN8dA88AJSVAc8/DyQl4c3sb2PBAuCwlSsk8bxxI14++WLMnQsce+fV2j2/9CWpg59/PtDVhT1VV2Le/rf0t2XLRDb41a/iNt92XJL5DG5eexp+Vvg6MDODXanH4/Dzz5K69oMPytpdfz0u7vkWrrsO+Pzky9j55S9jQTSKd+fOw+yrrpSi99y52PypT+EYzICxWbjtjtlITxfl4KWXAi8f/CIODL+GL38ZqK0FLs59VcrJBw/qF088oZ04IUGkkdu3y6jNmQPk5uLAzGwcslHK0r+66Qj8PvVmGV5PI+Woo/T9e++VhEpODvDVr4rn8eyzpcq8fTvQ0yMF9T/+EfD7RSx69tm6z7e+hd0TE0hubtYOsHGj7rFgga4tK4SX9x+HzEzEORyffBKzfnwymppOwuV/PAZ/G9mEJ5+UcT5s86vq7/371cbNm/H69Q/huA0rRHJ69tmSS1m7VqcKu+frR52B4+64Utbc2rf1u9/FUQMDeGTvaejoAO7Z+BUcvnG15F2en4VDEQWzTsWsdV2YNet4vHv2t3HD6Q/h/POBT30K+Pz0m5qQc+dqN925E7Ou+waAXJSUfAbLl72Ol/cfhxM7rsTNR/0B550HHPmNLwIAJp9+DQkJ4q585UtfwglZWcC11+JnT5+Lm7P/jLvmXIwfvtOK2dU/xR7OwushYv9+4PF/noVrg0HM+ufZGBjIRXY2MO/ph/D6d76DnUHiaxccAzQ24k87v4efnPcWsHYtdv3Lv+DwcFhjkpiIP3UdjvvvB54652aNQWIi3v3OdzB7YEBjc9NNej/wAHDoobh567kAZL+/mb1N/fud7wBjY0BmJvZs2YJ5GRk4Dq8jMRF4+eldGNpwOHJygNl79+CuB+fhscdE/TkxAZw19zmNzW9+gz+9chp+krocKCzEDbcehvR0SQKdfbbmww1Vr+NvRx2Hw1Y9jufmniXl8VvPAh57DF87dTaee+lQfDF9HxISgMsuU7M9AfqrrtK1du7U0j9trT1vcjJueOUsnHeetotv/u4UwOfDEReehZkZnV2+P+uvsuqJiTir72d4vGsXXtx8OHbulLEeHFR39vWJ3/TdJ5/CsT86A5s2rQOzLhB/54IF+OyTT35kCuNLl0aRmPjhVMH379+DX//6E4Xxj8XLgVH+/d/ZCxVxVlerRqzfckBjEPfeBstZDHv5sdJSBu1zIctdeXk2r25GwJU+MiWFOTkemCXEfVBebxSwYlWjlsrOdglsj3H+BbvW9DSVR0pJUQLIk1RpbOTYmKEpR0aUU5mcNPj0etVzDQwoHDM2RmCn2t/dLfBJeTmnp1W0TbtPSQlJn4/RqHJx2+2ZJqF6sZwc8TuOWH5J5RD7CMwo+d/eTiYnc53l5QjVnB20Zw4E1FYWFSmHl5rqatEc80tKiuJ8WVkKz42MkNnZHLLc2bNQztTrF4Flel1togfQiEbp+NmA1RwYUM7Sq8eKwZCMnnRDRwfZ3a0+WrIkzlvm96uWKz1docLeXtWXGUHi2y4kvZfAG+T4OEdhDCV1derTkhIyK0shzeRkhZ8zMsi2NkajytmUlJBMSRGKzwsL1taSNTVia5ma0linpWk8pqZYUqJmlJQo5PVHmNSQhZI3WKh0h4UDgZvJYFBF5W1tBJ4RdN7ipcDzZG5uHCn43vlSU6O+ratTfq6lhQyHxTgzNKSJ2NOjuZGTwxeg3OvzUIH94KBB6xMSNP/9fjIW0zi2tDhEZGkp1dd1dXEGmoEBhT+7uzU2pijAnBzltqwkIApo/vj9ClOOjSkfFo2SLS2MROKF8cXFRs5gDEPLlpGsrmZTk/qrt5eaj54m1egomZ/vEMicniZDIT1/f7/ubeM5ZmkCtreTqali4xkeJvv7FW4NBLgD0L/z8jju3S8311GHjY2RGz/iHN3SpaIX/DDvpUv/MUOXH29D5/ORlZWGpNtMjo8zFovL7/T0UBtgWxu92TcwQHJ6mpGIcT0aiGN6mnEuvUiEY2MK/Xtkz52d+n0waN8ZGeHYmC22yUltMnl5SkSb8eTYGPv7td91dSkHVlVlOQMrfB0ZMQqu4WEODMQZDBgOK3cxNEQODyu5n5OjFdTYKAaGUWpxFRdzetqJizs6sfFxOpmgUCj+DB7RtCcfxGCQS5fav6em9OH2dsdrGQ6TjMU4a5bjDeayZWZko0KCZWWRbG7m0qXx7gYOEBAvp9enkQjVoHDY5Sqnp3WdWEz39/utD3t7mZFh4+TxTfX0sLZWzaupETjBY7rx9NRqauJsbxwZcbJDhYW6fySisT3mGI05p6fJhgampBjIpLqas2Zp4124kPwdBHqpqjJCYW+CTU2Rw8Ps6rKi8lAoTrvW3Mzqao1Rfb36xJPY8ZhMxsdph5i12liDQTcP6POxtVX5Wk+7z8t7sa1Nxm5oiGxoYGGhAFOxmMbEyVIND3PpUmN/CQbJhgY2N1t/Z2Upf9bTw/x8xnUNPWLnyUnGYrqm4xy1AneOjWneDw8zIUHXz8gwzkyPrqanR2vPI4pMS9ODt7WRY2MCt3iS4WNjaktxsT6TlqaJVlCgHNzYmGsPe3oEYAkGydJS5uWZgUxLI8vKZMgKCrT2vXqRsTGyqcmRvbvibpPHKizU403CgFotLRwYiJOis6xMzxMOO5V2Vldr/RUXxxGfdvBbulTr/PHHP1pmFJ8v6njfP+jb5/vPM3SRSIQ/+MEPmJSUxM9+9rO8+OKL+c477/wfP3/ppZfyuOOOY2JiItPS0lhdXc3du3e/73PA/yzRdu+99/5dbftYG7q3344S2Cuodm2tgR3eIPC8kuV+P+vqZGDmz3cIZ8ah7+u1cEdGDFm5Wh5aezsPmqfocTlO24aTkWHIrKEhLcahIcf7zPZ2x8aQlaVNzStzqqpy8nIu+T86Sn0oFiObmlzCnrZYOT4eNw719Swvfw8p8PS0NpCmJhnOYJAMhcTeMTxMn88r9g5R8Ok+0u9nQUGcjtLv1/3XmecA7HXeSSikhb5ihdqflkYHglm6lI7ns6dHjlhnp0cNNcO8vPjGHo3SvKV9BkS4jTU12ntWrKA8iLQ0JiYaaa7fz5KSOAl2dTW10QwNyWsaG+Mpp8jLTklROz0H0uPFNJpGAUcCKnqeNcuQg+3tFCgoageU9fIOi4okGFtZKcNQUSFvaXTUgAU7nRfcCBUKFxZSNWjFxWRmpngSozZeDQ3s7VUbsrJsXOvqDJ4fFXjEhGrZ0GCe/GqypYUlJV5t5QFuMu9y1LwpgWmeIYeGZOxKSnQIamwkk5PNGG6xiMM+bcB+v/pzYED/X1/vtPdcLVlHh1G53Wqw+r0GGunTXG9rY1mZxsiRYtfUsKtL3l57O72Kc+bkaI7n5NAZy5EROg/KE5vwyMDHxuhKCPLyGD+deUiaQEDG2WNxGRtjzCIVExMkc3N50IsSZGQIYTkwIIvf16c51NNjIK0RfW501IklS2h1mx6iqIhpaabOMDCgA0hjI9nUpHvV1ZHj4zqENjSQw8OaB6mp7O+3NRUMkoEA5879aA1dfX2US5fyQ70/KjHY/9WrsLCQX/7ylzk4OMhnn32WixYtYllZ2f/28+vWreO5557Lhx56iBs3bmR/fz8zMjL43e9+932fA8C//OUv3L59u3t7eqj/0dfH2tDdaxtOdbWH+NvnGMgHBxWms/ptMhrl1JTmfk1NXAF8ZIS8105kixdrro+OUpREtbXsgYrPg3bST0mhE2hlRYWra2pqIjk2phqspiZyZISRiNZqXV28nor9/a5+l7m5WkThMDkyYhuMJD/Y1KTGjI/re8Zpqc05RObkaPMrKCCnpgwJtpzAHzgEwbs9r8t7Xvb2kuPjWuge/VFPD3sKDqcAAQAASURBVJmXx8JCfXZgwE72nkx6ezvZ18f+fo91pN319eLFnmDoLgLPm6HrJdBl4d4ogQPMyqJTxwb2ur4bG7MNxedjf7/2/bdtzLwNEdhCB2dsa+OQ/V3e4jZOTYllA7jbULbPmxzMSgLLuQIqrpbRv48vWchp1iyv3nAbmZurovLJSbK2lrW16jsplL+sAYxGNeilpaZSfQ+BkLgaQyH+EQqX9/TQFd2Ll7SVbGnh8LCetbbWYxe5kvdBnJheTV5BgYl6Tk9rUk1Pk9nZTqmAeXmMRm2uNTSQJSW8BlZKYNGIxESTmhoeJuvr5d2ZYn0IogZjd7fCjcPDXGH3Z2MjV6zQcHvyTLGYDhxjY7oGlyxhVpYnWHCfIRS9Q+IqxmIeP+ikSjmsgD8CFfiPwGjx0tN1MElI4F9gZR4D1E0tnEwoTeD3k71QOUMEnvDqy444HdirZ6mr0/pITycTEjTHvXHNzdU4eYeYlBQ+ACFte3u1PoDVmnCpqRwbM7q5lBRmZWk8PSmi9nYp2rOoiJ2dmtdeiQSwjc3N4uZ8yR3E/zEM3auvvkoAfOGFF9zvHn30Uc6aNYvj4+P/4ev89a9/5SGHHPI+7mMAfOCBBz5U+z7Whu7WW6MGo96ncJFNcjY1OcYEWjjiIJQj4vi4wlM5OWRJCcNe2CE313E2qrbsAJmX50JkhYUka2u5BXDsFkBAm5gtAKanK7RVUUFmZ/MgVK83agv0NWvDvRb+WrbMuBWzs1lbK0aHd2zx9fbSSad48HaGw2Q4LENhrCP5+RaKmZ6OKzQPDcn1LCvTc6WkcGLC8oElJdoNYzEnH+SFQAcHZWhiXggqK0v5xYICMjtbeTQvR2PqzVNQPdsLgFMz8Gq5er0DQk+Pwks+H5mXp7q26mq+Zqd/QLpmb9tmdDcg6H5DgxWTHyAbGjgFMWi8BuV+XoDKQDwCXra1kUNDfMGMThhQuDYQIMvLOWzfZ2+vvLe+PjI7m3V18Xo2n49kYyPb281z7utz0HbHXD8+rj5qa3OHJWcQmpq4bJkdZCIRjYeRaHd1keOA046LxexzQ0McH9dBwO+n5QMnjdB7H1lUpMJ1Lx8ZDrOwUPetrjYi6KIiuVGeckBBATk9LaWD3FwCb2j+lJZqLNrbeTtUrhADyGBQkYr+fj5sc9bT25n2rh8KkS0tOpwkJWmOpaY69XO2tLg6tFjM+t14v5Ytkwc/MUGyo0NzoLlZubmohYTb28VgEtRBtb9fBMpeWoH9/QyF1IdsaZHBLyhwSgzMziYnJ2XcoXrSzk6Sfr+MYHW1cs8VFezv1/XHoPpO5uaSIyOaHxUVul9dHXdACu5jYyTb2twBmZGIxqSkRAeHsTH1USDA/n6tyWgw+JEaurq6KH0+fqh3XZ2n/LKF0WjUvf+jEmn/u1d7ezuTk5Pf97uDBw/yU5/6FJcvX/4fvs7tt9/OBQsWvO93AHjkkUfyc5/7HHNyctje3s53333372rfx9rQRTduNE/mgApBR0YUlmlqktHKz9fJdskSbRCVlVpgLS3aIWprtXi7u/VZI4BNTJQdmfYWgM+nz5SXx0Xgamq0mPPz44n2gQFtuF7yv6FBoBMIBDPtGYSiIkYiJn4aDDIAxfXp88nylZaSkQhXQsSxExNysGpqPA9qRCfO5mbHZMWpKVu5Y3rm9HQZOnvW8XHLCRUUaCF3d5PBoIx8JEJWV8uAVlbqe0VF8jbz8/VMRUXqj+5udypnYqL6xGOJb2/X9ysqyNxcjtuhwPPG3oFAGOzuVt/5fHGWCa8AzSquge+I4cIM//g4HSnxPm9csrO5xTNe4bCY8Xt61A6PCqykhOGwsZgYUMMLjd0LkNEoly2zOrDMTPp8lpPKy5M32dbm2F9YUKANr7ycw8NGdOzNDcsFq25uvUAUfr8MdkkJPZfVMyDj43Qx7O12gBgfN7AFTAuxpkZ5xMxMhkLqulE7rHmqCx6Y4xpAczw1Nc7vGAqRlZX8dyBO2WGeW12dnpHd3WRmJu+GivgnJhgXA6ytJbu7WVsbxwnFYiSLizXeFRVkcjJHzHivWGH550CAjrE8J8eRI7C52WlPbQd0kJqe1hyrrnY585oaHTKGh20+mkwSe3s5PW151LY2VlQo9N3To+6dntbyD4VItrRofNrbXdH4JvvePsDljW1BkT09TrPOY1jZAJBlZTJsJrGVmak1y1jM8Xh6EkHBoNHpZWbyIMDo2Wd/pIbuyiujrK/nh3pfeaUnWv3+9zXXXPOh2rh06VIed9xx/9PvU1JS+Kc//ek/dI0dO3bw6KOP5q9+9av3/f63v/0tV61axRdffJHLli3jpz/9aTY3N/9d7ZtFfnzLCy64IIpXX52HFx97CzjvPBR95hnEYkLDn3468JPPduLy0AX4/veB0lIh/H9/0es46fzjcMIJghzPnavqgc2bgUhEJTlXp98FPPggfpW5HL8/+zlh+js68IOJG5CZCTz2mN7zzv+m4OuvvCI4/8KFwKOPAsnJ+Ir/pzjhBODPV72OV2eOw9q1wA/Ofxcvrp2Nk3YKKp2cDBw/8RQwdy4m/+kr+HzgLrx5+g/x1j/NwsnhMDB3Lv6WeDgOyz4OuOYaHF13Afr6hKp/8EG1/2efasWsS88Fs7+pdra24rTLTkJVlf63pUXI/gULgF+drJqzwUF996+37tIHHn0UzzU9jwULBMW+9VZ9Z9Uq9feiRerTX605F7joIvztzG9jYiL+97PP1t+3btV9DttrpRd33gmccw5eTf4arroKqKoS9Pv884HfX3sAN996CH42+ANgzhzMe/AuXHYZcM45qgyYM0fX+9Wle1RwlZiIWX+8ET7fp7BokSDee/fqvsfuXK1GJiZi+WOHYdEi4POfV2XF7bcDdXWCmV9e+Coe33o8OjqAb31LFROvvAJ8e+I24L/9N6CnB29e+2f8+MfAo1+8HD/ceQPu2nwanlv2DFpagDvvnYU7Womf/PGLWL70NSxYAHz608BXc94FABy+YDZ2PajykgsvVNdeeKGaNjMDzF7/Kp7bfTxaWoB7zluuSTpnjjrl9NMx699yEYsdj1tvBX4y9y4c+uMfYl/lz9D4327GL8d/Bjz2GJ6783X88z8PIhbLxezPzccbobdxbOI2YM0aXPud7+DodiIxUVUcjz2muf39L74MnHACbrtjNvbvB77/fc31/fs1zjt2ANPTwNF4E5c0HI3f/U4VOOnpWh83X/YGfnXHsbjuuj1YunQeFiwALil8UwO1Zg32XPFbzFu/GpgzB3/LPAmHJb6Li380G1u3Al1dGoPubk2H66/XI19xhebZokW6x8Wnvo6inx+HtDQgM1PtSk5WXeXyrV/B+vVQ7WoicPydV+rhrr9ejdywAcjIUOnAH/+I2fW/xrtbt+Hi3xyJP7f8DbM+swE+35eRm6uvff7zwPg4cNFFwElzX1cZUqJKCxYsUM3k61U34M3zLsfTT2sMZ2a0N7x+xW24Ye8lePBB4JkLb8Pkdy5BdzdUTrRoEV5drz5OTQV+/OM96Ov78FB+b7+7/PIoPv3pD1cSMD29Bzfc8Fls2bLlfW369Kc/jU9/+tP/0+evuuoqNDY2/h+v+dprr2H58uXw+/0YHR1939+OOOII+Hw+LFmy5P94jT179qCgoACHH344HnroISQkJPxvP3v11VfjL3/5C7Zs2fJ/vOb7Xn+XWfwv8vJOOJdfrtBlfT3ldXgIhfp6MiFBv09Li3sndnJmbq5CL8XFZE6OPpeeTublcR/AjAzjnKytZX29/p2RQbKtzRHbMilJp7fGRnkY0Wjca/GkjC3PMmon3n7ASbkIOGHhpNRUnXhra/kS4MQlRSK7jezoILBWJ+T+foUaKyoMbbornrw3SHcgYKfe3Nw4PZZHQlxTQ1ZUcGoqnj9sbSXZ0sJYzLj8MjN1EveoXkpLydxcPWdeHkcAh1DbAdGDPW8exXbEKdgiMJq1vj4yI0MeYXExmZ7uNL/EUbpPnsX4uH7m5ioElplpKhK75Er09ws2n5REJiQ46RtPhJVFRWpjYyNHrB1O56y7WyEqj3i6rU0n9pISyyfeR/r9mgvV1WRLi7wmU0gfHtZXQyHKdUhLczp+09PGiGFCocCMUImmTO9FFpqaNC7vmFeXlmYUXpmZLgoB7LVQY9SUCdbzNZuTBQU2T40FpKvLvPmCAjI1le3tFsZsbnZlDqyt1d8jEQ4MKN80PEyH7GxuptZMaam+09urfi0r0wSpqGBFhX0+EODDUBpgnfeZ0lK+4EUqAgECexkDXK57bExTbnhY7e3poXKhJhZcUUGyoUH92tjIwUF1RWenAVxMDmliIi4SvM7mVFqaSoo87nDm5mqdTk7Kg5+a0tyOxRSGzsvTs9bWsqZGy3BggHEtwakpfS4rS+AhE6AFDjhB3cpKC2m/h5uUPT3xyFE47ElRMvrv//6RenSXXx5lXR0/1Pvyy/++HN1bb73F11577f/4np6e/lChyz179vCUU07hN77xjf8QyKSvr48A/q5w68fa0EXPOcehvKJRJcKfgDTf7obyOB4iy8uNbIGS4vcBbPdCGDU1jhvRS3YDAYXdpqcdLmMAkEEtKSGjUaE9YzHdZ2hI4apAgIODyjlMAfGcQl4emZHBTbb5RqP6bmurx3G4Srk1W6TLlimEdcop8Ugo/X4yHBZ4wJ5vdJROD62sjI5UcBTgLRC91jiUc2ltJXsQrzNkY6PRPj2pPE1BAVlUJOOUkKALpqQwAHFUBoMkfT7ugBL5Ic+YNjYqP5abq+sWFOhkMDBABoMcsI3wWet7ZmZqFywvp9TbQ3RQzcpKxw25dCnJhATm5BhqMT+f9Ps5hPfwhlZXk319CilWVCikq8SfnqG4mL3euFmY2RPO9Jj4BSyRlFAgoHt65RKOlLimxtXKpaSQnJpS39fXMy/PNr+EBFlCD8eekkKOj2v8S0rIEYWc34YBSKKidBJn6Yz62z4DvGw1nRusju5W5RFNYUAgnC0K742Pk36/QmzNzU7Prh3KBTMU4jqbd6JVC2mTNmDS0qV6jmdt7XgKBq0AbwcMjRnQRh4MyhCWlOhQUFKi+V9R4dCaTE4ma2vZb2MUjVIHOsuLB+0AtAUWRk5L0/xub3ehyLY2GSKfj2R/P/dBufSlS2nPHiVwK9nSwooKK/OJRp3CeHW1rbGGBoWwDeAzBoVMYzE9f309HXWZJ1TPhgatJQu/5+RQazMSIXAPWVxsEkF3yhimp8vQNja6dAXLy9mHj7aO7mc/i7K2lh/q/bOf/eeCUdasWeN+FwgE/q9glGg0ytzcXH7961/n1NTUf+heDQ0NnD9//t/Vvo+1oXv88agjUR0bk2ci/sKdnDXLIOEdHVoZVjsHTHJwUCUC8+dL2HN4OK6dtXgxXSFYTY3shodErKy0HIUVvSYlGWR9YIDAjLwJv5/MyNCGOTrq0Fn0+xkKWW6kpoYcGdEJenpaQJPiYj3EkiWK/YdCWmylpQwEDOVpGlqsrXV1SH4/ZTiCQXJqSvmIgQHzLKRCIPTiTo6NqSxgeFhOUWYmtQElJDA/37zWjg5tnpGIFm0o5JCbDIXo93ss9xtUctDXpxuMjbGzUyduR5Y7MmKbwz7298edbbejeMdqT6umu1vtaWpSPicpiUuXmspCSwu9IjBpAG7WaT0YFFiho8PaNcOREXWVV1+XkREnFfY+Mzgob8oJitbXy/gZBH5wkPExsrrDri5ri8nSeAATD2Xb2kp5K4EAw2Ejhe7udiTFnZ2yC8PD9jxjY+TQkObH6CjHxjTPqqpI1tbKAC1ZIqNYUECWlbG11dowMKB5ODxMFhSwqUlTQLytnp7dejIhwfLYv9AkLygQCAVQx9gJSf1yMV25ztgY5883Ww2w2ZvbpgZfUaGDWEWFvNmeHjqQV1MTyakpVlfbHLNCQkPms6JC/bB0KR3Ih6mpZF2d/p2VpahJRYUm1Ph4fN0UF5PhMA9CUYW2NuqAkZlJ5uYqahCN6hr19QJ12brp7NQU8jxXBgK6fnOzDGRSkuZCQwPZ1sYVK3SAmYIBYsrKyJISdnXZvLFaz3CYzptjOOyUID796Y8WdfmTn0RZU8MP9f7JT/5zywsWL17MoaEhrlq1ihkZGe8rL9i6dSu/8IUvcGhoyD3XV7/6VWZlZXHjxo3vKx+YmZkhST700EO8/fbbuW7dOm7YsIF/+tOfeNhhh/Hqq6/+u9r2sTZ0L9piXbiQTgh1zDyzlTCkmLDcLqQ2bT/XQfpoXrhuAArDKVQ2QmC9EIPNzS5kdh8MOWiJ89FRO3FGo66sbWKC5OSkQjkw2HRmpk55gQDfNi+PsRgZDGqjzM4mMOlqUVessBBPVhbLyrTew2GqLcPDTElRuGUfIA8iEjERTNtsc3K4wzyodZ5nYx7dSuuL1wCytpZ5eXYaLi7W9cvLuQmmwi3GWg6YJ+Y5Yiwt1ek8J0cdPzamzbuxUf8/PEw2NLC/3zblzExOevdMStKm3dvrVNqBqMaqt1c7a3W1h44nu7tZVWWn88TEOKDEKypuaGBXlxni+npZF59PHdjdzUnPi6ysJKNR9Rmgjam6miwpYVKS5+noRCEPewsPQurmbGgg09NF5AGx2Tc1qcumzRPg2Jjmi9+vAcvI4NsQkGadeREsLdUzFBXpuhYTFBHzZlnD7GxuMC/qNRhDS00NgUl5lJOTav/wsEK+9fWO5aO+ngqfmpG7BnCHDSYnk729HvBVc3B4mOztlUFesoQRmAq8gUw6bQ5pjLbQyb4nJjIa1diGw7r91JSMgt9P0u9nFIqaDACuTvAlCOCxwsZvJQRq2gFoHWVnSy6pp0cTrbFRRjMzU4Y5ECCHhz1ZQSYk6GOGM3PEy6MwcJcHNLHw9g4gjh4uLSUrKujz2aGmspKMRHSQLSvTudE81+FhrUXV6t6jMhLzmtnXRxYX67kjEa2hjAwyMdGUUP5xDF0kEmFZWRnnzp3LefPmsaKi4n0F45s2bSIArly5kiS5cuXK/yUwBgA3bdpEUiUK2dnZnDt3Lj/zmc/wy1/+Mm+99VbGYrG/q20fa0MXNRkUYLUmblaWTnSGNKytpZPneQkGI47FFL7IzSULCvgshCRkRobeeXlmF97gNBTaDATME8vK4rgt1E1QOGl4WF5hXp42vUk71b4NhQeHIJh7wIxsxDYPL2fS30+ypEShL6MKy8szj6ioiAMD8jI9ei/298fppbKzXeGqMRTJg83L07UqK/WcUNinooJkZqZCRiMjXLFCm/XEBMnycra16fQetr56zf7NlBS9S0rIpiaFrsbGyNJS7oDCklNmONnYSCYlMWbf9T67xTskFBRI0ic/nwOAhbtGuNL6iykpvN3bqORmyDPv7VVtWkeHy/tNQuFn1tXJcPX0cHraBEK9koNwWJuPp+USDJIDA5ono6NkaSlra+kY9Lu6dN+CArqwdWcnyfr6uErE9LTmSm8vGYnEWWpMVM2xyYyN6RkaGsiREYZCYvHY5PWfUU4NDpr0y/S0NtrkZOUHCwqUwysrkyHw6Dq6u7l0qdWKTok6jJWVru1OUWFkRMauoIDAM/RYDDbZ5r8UiBfO9fQoNNrXx5ds3jp+Mm8O5OeTTU3KbdbX63eNjTKmGRlkfb2MflNTvHjTE7HzrGFTE5mfr1B5VpaeqaNDChVeDi0YVP+MjurwUFenPiwoiCOkrbaTbW36Wyym7wYCosGD0g7T04wXBubm6r6eMe3t1Zx77z36+mTQe3tdzp4tLWQgwIN22OPYGNnSEi/X8WCfFgHh6Kg83+XLP1JD9+MfR1ldzQ/1/vGPP6EA+9i83lte4IXhRryNq6FBi6GsTJM3GNQktwUxBWixeVD+3t74KdzvJ7OymJJiRsNOdGxqoqssLShwFEChEOPV4KGQPpOR8f7ygrIynSDLy8nkZC2szEwyHNbm1dfHMJSXYFtbnNtqdNT0rNZyYkLGqLVVTZ41y/J+Fq5bvJiOloyxmOP1o8+n61VUuP3ZxZpMxTkcpjbGujp5nzU18RKDJUtkCbOz9TMx0bXXeXWVlfpcQoI2Cc+rM2qkUSjJz46OuEfghXsaGx2cnIGAPlNba+UFFzEc1qnaq1Vjfb3anZio+xYUSGl9St8fgXm4li+k308uWeKAECwp0WSxPgrawae93QydAZOGh2lMJXvJvj4nRsvaWp3+fT5OTVkNZEeH+tg8SHk/GxQyGxiQR1Jaqgcw48y6ujhdSDDIGKyG0HKtTE5W+Lq2VqCc/HyOjuorETukzJ9PxzfJ3FyVEFgYk6GQcpqRCFlQwGtgUYT+fjIvjxMTFjHIyCDb2zkO5eaCQTPYqan6gEUhAgFHLKI5VF6usVyyxHnr01B5gSsVaWnR/UtLybo6hfr8frWhpUWGKDdXn7G1wakpMioV7a4uO4Dl5Gguepp5Yi4gAwHW1wtc09YmezkxofuPjJBMT5eH29KicIABpdjRoWjF5KT6KzNT9x4a4rJluvzICN1BjTU1ro/Z06MQ5+honGLQ07pramJ/v+XJ8/JEB/azn32khu7f/i3KJUv4od7/9m+fGLqPzcsZuqEhF7vo72c8EZyWpndBgcsXefkw76TLoiIyJ0chJA82Zxu0RUjIvj5OT9PVsbGxkYzFWFdnuYfMTCkdD5AsKGBSksI3Xq2N8iX7yLGxeAHx8DCBA66QdnycZFsbKyu1cS5dSrKnR/ezUBMbGsQ6Max9PBQi6fdrMw0E2NysbpiYIDk6qg24p0cL2Hj6XO1QeblOpKmpZGWlx6HsQi6e3p3HwOSU0D2EnilahqHQsIdEW7GCSthnZ7t4Vl2dbM5BbxPOznYcjiUlsrmtrc65YX19HLDqkIwDA+5QUF9vzxgMyjAMDclATU/Ly+3p4SSguRAIxAuss7NlhI0rcx+gXGZpKVlTw8zMOAvL2JjGnZOT2nhjsTjYxUJT3nMND9PlLf1+fS8ctjZGo2RdnfqvtlYfGB2VUYxG2dWla7S2qr+7ujS/wmG6fBJ9Po1xTU0coRkOa/MNBllVpX4H3lCHGdGrwu+/MALqZxgKCY2Zny/iA+D7FPhmtXe2U64QcNqOo6PUhp2dTbHM3Chg1bhRnLW06CDQ3u5osebPt8hDTU38YFJWxvJy6yvPMFsOzKFoOzoIWK4uGGRZGR3dGPC8+sD06jy1dBGv7yT7+pwWoofKlJL7Ls3J4WH6/RaRGRsju7sZDqvZus4Wx7OZk6Pl0dMTZ+Zjby+BvRwc1D3q6+nyo4WFdOu3rs7GxmN0DoUY/fSnPzF0/0VeH2tD96yd7IADjj/RnWaHhugQAR7Uv6BAG1Bfn1EXRMmMDBf/9wxFebkBAtLSZCzy8rTyvORGZSWZkWEipAFyelo5loQEcnJSYbHUVDI1VRvXwADZ16cTYHk5R0YYT5L7fNpUbbOORIxL0+cjGxo4Pq6mT0xQJ/CWFi3m3FwyMVEeRnKyCc8u5zHHiGGF9fXk1JRO4GNjLC42Y71kidyXcFjo0BAdy0RmJuko9aE85zueN9rWZt7KyxwfjzvJrKtzfJ4eQW5xMR1zhBc1pM9HjoxoY8vIkHW18N+yZVSfBgIyoPX1MlamKt3cbLyZXig0GGRNjRmXmhoCuwSkMd7Btjbds6rKCqwN8l1YKA5JD7o+OmogigglfhqjogHRqPrYC5samqSqSr9jfz87O3WfHVAedhOUf6qooDxOMxiFheqj/Hxq0M1wAi8zYl5DZqaecWrK5lxHhyMdpt+vEpVRjaMjSm1oIAcG4gX5Y2POswmHqTHs7ZUV6+9nfr6VHkxOkhUVOigkJbHVPEnW1jI/P06hyuZmvWMx9Utbm3KNoRDZ1CQe0dJSZmZqyhQWUnMuK4t1ddTaTEwkfT6OeB5raipHoNyy36/xdKoiIyOOtWQLxM6zHQKBPGvh3k1QmDw/ny58WFVlc6ex0ZXBbIDlSpOT+TaULnjYQqWhkPLbL0E5RM9VrqiwvrdSC4+g2iN79tTWKyroojIec87ICF0IfGSEjsIsumXLR2ro/vVfo6ys5Id6/+u//mMaulnkx7dg/Pbbo/jRG8vw8vm/x4lbVqgKdMECbMs9F0fufBlHFp6IbdnfBP75n4GCAmD9ehUyL1igis4zzwQ+9zk8t+JtfG3OalWuPvkkrtz6M5x9NnDagldxw2PHY+tWFYzefP0BabItXAhs2oSvzX8NN94IfLXpe7jtzL/ikie/B2zZAuTlAV/+MjA0pCrTV15R9fPu3dJSGxwErroKsw7uA6NT2IN5mLd3m9r3i1/gmeaXcOqpKmIfHAR+cNQz+O3Tp+HqqrdUmJ6QAJx6Kp7ZeCTOOQfYdf9TunZ6OrBzJ56bexa+9uCVeKPqDzh278vAzAwanzgJ5eUqsj6u7wYsT78c99+vmtsjV3bijVMuwIMPApc/+U3gggt0j8FBID0d7176M8zuuAtYs0bV3mvWqKp2zhxV01rh5rb+13Dk5udUGbx+vaq6N27E73Mfwq9OfUafW7wYWLkSj2f8FGfdfwluO/k2rF8P3HD6QxqXzEzglltwV9qvcf6/zsIhNTU49sEb8MYdTwHPP4/n8n+Nr+19HO+eeRZm3/nneHX5xES8CnzRIomRzZ2LZ06/GnPm6Nbf37gU2yp+jblz1V1H3/lb7Lr0amzerELiXyXegD8nX46LBy8Bzj8fv111Bq4+9Sn8efMZuPjCA3j86UOwapUK34/87inA0qX62+4bcNeCy7Foke7T1qZH+eMfgc83Xq7K5x/9CMsHj8S5e+/S/99/P2479S5MTABXZz+kgQBw7oJnsPyih3BJ37dx29zL8bOZG3DzF1rxesFPsX8/cOJRu4Drr8fNqb/HV7+qrr4l8j3g5JNxc+KV+MHPZ+G2pcSvnj4Lvz31cVy99lxg504UfeYZPOp/C9d+/vO4tqxMa2J4GM9ddBte/udZqKqtxbH3/wF33AGc8crNQGIi3iy8BMnJwLwZ3RPr12PigQeQWlICnH023v23f8PmMeLYi07TMy1ahNsyb8AlE78FzjwTl9z5NZx9NvDtO88Fzj8fTy34Hs5Y9CYa7z0avzyqEygpwcsbD9Pa9fuBwUHccNmbuHzvb+PV7Fu3Auecg8b7jlXR/JlnAtdcAxQVYdcVv8fhucfhoetfx+c/D3zV900s+adHcEvpU6rWz83FtguvxJErO4EvfhG44w4gN1dz8/zzdY9ly7DzgQewoLcXOOooPLf/JHztG4cCwaDm+Wc+Iy3KU08F+vqwp+pK3HGHlsjnw6tVEX/++cDTT2ve7dyJP81cghNOAN56aw9KSz+6gvELLojikEM+XMH4gQN70Nn5iR7dx+LlnXC2b4+SsRj7++WceYfQY47Re/Fiynsz2K/Yy2c4NqYTaF4eHS1VRYWLXDoqLXfan54mx8fp91uooraWzMtjRobVT4XDuldyslyE9HSdik07bWCAZEsLg0Hz5FJTyclJp/rh8TrS748DIkZGFLasqFA4MxKhQ6/09Sn3096uk77PRw4PO/kZj0Nw/nw5oqrTOsDpaf3/xIQO+hUV1saMDNbXm0fX3u48Ww/8Uldnzzk6yp4e9THwTJwOyQrSPdDk8DAdpyRHRwns4vCwPFWfT33B0lIdMb2SgrY2ncp7epx3x/x8xxrFigr1+/i4IUxflodcU6N7BQKmjjDioP5eOYCHeejv9/piJzk9He+DtDTdMzWV7O11kjjs72d/v82Bjo64bEtzs9rtyTqZzl0wSD2HoQZ7enSNZcvUnVNTCqENDqq9bG4m29ocQYAX/mxuJun3K6zZ1iZgTFoamZnJ1laNxfQ05UF1dzNq+bGJCU8eKcTbIYDUJgtZA9/Xw5aV8RrzPiNeSLmsjH4/CVzNxYstehAKMT9fjvcLnvdjPJuMRllerpB0WVk8nHgQAmLV1JAcGGBzs413aSnZ0qLowdiY6aJZhKGlhV1dcXmkaJTy9LOyXB0be3o0HkVFCkMbinQ7TL/P0LgObGLrjj6fxs6o6bwQOcfHNWY9PYq+NDaqj72oT2MjWV/PWMyiCRbxYXGxCy+3tVGRDk/TztILjEa96P5HXl5wwQVRVlTwQ70vuOAf06P7WBu66I9/TOblxTdp060qLVXuIiWFWjBLlmiUPaRUb6+ToYlAyLPxcScvxuHhOCuDgbMU7/eoHoydQkWrI7aZr9K1Bgb0s7HR5cfGxkh2d3PFCgO5mBadR3yblUWn18a+PqeAUF5O0u+P40xgCDC/X5ul5Y48ZNjixQaQMKBJa6ttJuEwCwrUFR65rVcjVFFBsqjIUWyyosKhI73NIhzWNauqdHiorY1HeTxUYU+P8k1W80z29rKnR5eaNYvkwAB7e+m4ItndTRYXMxi0TaO0VBt3e7usSUsLmZnJkhILfYZCGuTxcQYC2pPa23VQ6OzU2HnRZQ9/1NOjMWtrowMNGNCSkYiewYlqNjZqg8/Ls3DoPh4E9IwmFArMqDGRCNnerlBjOKxQ49iYfvr9Cg17jRsdZSSiIQmHZehcHi8YJIeGCKyPS8k0NWmMvFNVZaUOGVNTnJoy0ExLiwZzclL/bm93ihoDA9qPQx4AJS/PDgY7ndbaBkBhzLo6zdOhIWPZWe1oKrlkCUdHrX8MXRsDtJa6u9UvRUWUnM8kCwuNbDslRf1eVET29WmOG9zeI21mOKx1GAyqvwcGyMZGHTrb2xXKTEkRcKytTQepyUln6GprrQ/S0rh4sVDPBy2s7YVIWV2tn94BKT2dDIW0jo0DlTk5ZG2tUxl53gujJiU59OSyZYwzxZSUaEw88FEopDYtWaLxMg2+kRHtF38vC8n/bb/7/vd1wPgw7+9//xND97F5OUN3771kZaWg016BaWqqJqJt5kxI4HY7we6wfMY7MDRlWZmQevX1+n5JCVlUZMXmu7RojC12cJBkZiajFt8PAwSeYTismHxpKUnvlJyTI6Z9CKK/Ccbib3V+QwBHR+O0Uo5ZITXVsTpEIiSTk52XVFVFWdz+/rjqdXKyTqK9vRwZsY19YEDXSUlx7PPMyGBPj3kj6el6rtFRBgJKBU1N0dGd7bB+ikD1Z2NeriUrS4u6u1vPGA6TxcXcZ88XA+JeaW6u8pPexjM6qu/U15N1dWIvycjg84CVOk3yNSgfOAWx2pSXU+OYkOAYQYZsc/bKC6YAQeu7ux2axUNqMi1NG5mHqu3p0e8M6s/0dFc3snSpoeV8Po1Db6+r3RseNoBQX59+ejpmFRUORh4I0Il7eiUCsRi1Off16bmjUWnV2WY6Pk6nZ+gdsEIhql+Tk3X4KS5W7tFKP1zRvJEkR6Mkh4d5OwTND4X0DBwfl3EZHlYJgVeCk5REVlZqLOrqZOxKS12ZQFoayaEhjtiYOuFCA3axpCSOXmxoUATDQzZnZpLd3TogdnTousXFWj8FBeqPsTGXx3N0fd3dpM+nMS0tVbtNbJjDw5orxcX6m4caMsWCFSuo/ujp0WEsN1dtMVq+WIxaSCkpGuCMjLgBbWoiGxqUB/QMam+v7ltcLOOamqp53dTkkKILF1LzxssP1tZqAbW3696mhs7qakYfeugjNXTnnRd1QJ0P+j7vvE8M3cfm5Q38EISwy8rSqd47sbuNx9uM2tv1RyOsGxtT+CgcJtnXJ57GyUm2tSkk1NRkp9qcHL5kG/8OIM4678UbDd0VDBpysbRUf8/O1imvrk4LPxLh+LghtsrL2dVl3lNNjdplIaGlS+PrhS0tZFERBwff461a8TqwWYs2LU1GqqnJ2rKKSUkyVuztZSzmamwVkh0Y0Ebh95OTpvxt1s4T1HRGo7zcFdh6IUPVvK3l6Ki8QS/E2tQULydavFh7WH+/DITPZx6biVxWVFAdkZenzdJTZY9EJAYOOFmXkRHd2hMBZ0WF/j45yWXLLOTb1kYJ7m4hfT4WFGhvLiw0wVOo/MDsPddBXKIlJbpnXR1lGDwl6lCIzc0Wqi0oUMG2NzFiMRlIn485OXTs+Z2d4lwc9zzA9HQyKcn07naR7e26TmOjU0sHujgKAX6am+NVEUxKig+YSSRMTVFGs7ub7O5WqKynh6yr4wrPczNFCKcgHghoXrW3k+3t9PvJVuB9HixLS3mN97uiIvb0qAv8fjto2QHKi1gyMdFFCObPJ+nzedUD8jSjUacKPuzNnepq56ExKUnjZwecmB1Ax2GIYE9hPCGBTEnhPigk6xEWbMd7wCjvUZvnwEDcnV2yRBNwbIwsKHB6dANmuJubdd9RqOh7bEx2Ki/P1pyh2rZYm1esUH3sSxBlWXW1ea7Fxe6QWFlJMj/fiai/YM8V3bHjE0P3X+T1sTZ0P/lJlBwYcCwiXi3T9DTJ8XF3Smdzsxb+0JBOm1YfxKkpMidHebNQSKdvgwqPjJDs63MOQWsr42GYggKyoEDGzZJA4TC1K3t5Ok9JNC2NLtmRkkKnq+MJao6POx49+nx0AnPT0w6GzuFhDgxYbmdqSm0dG2MopOaMjVHWsaGB7OhwOcFIhLp2UxP9fn31verXnZ3vEVkNBNSPnqRRf7/6qaNDH2pvj4euCgp0XdN5Y0pKXP6mrU2WOTvb1Yc5FGx/P71E5cAAHUWTxy/Iigq1r6REnmppKZmerkPB+Lg29hXWz8PDNE2cOLelB6Vsa9MmW1rKpqa4sfdQd65f6urIyUkGgxYeLS7WgcBozY45hmRdnQMwTk/HSx+Yk0N2dKjtfr8zjsoBRl0IlTU1MlAjI5pn5eWaAzk5HBgwb7G8XPmt7m6hFxsbtfE2N2tTb2yMU6r19rqyinDYYPAQCnBigmRKiq5ZVqYN2IxLVhbJWIy3eGG4oSEyJYXBoKExy8q4eLEdXvLzycZGx8fK5mY9h7GAsLw8zmfa1OQYdBgIxOV4xsc9ZR3xjfa6X8trLitzJNiMRhU5aG+XsTdE9MQEXTmQz2d9HghorhlJAhMS2N5OVzxeVqZ+3wSRJPT00MnquKJwKzCfntbntgOOos/vZ/x01tio73R0uIZ7eW7nYbe0aD54jYhGvdQ0BwY+2tDlOeeIy/PDvM855xND97F5udBlfj45NUXgQDw55BU5JSW5JLhjYi8qUvirrS1OATUwoI05K0s5BUghua2N8ZPokiW6Tmqq/t3f7wpJw2GSbW1alL29cfopT/g0FtNG1NFBVldrQY+MkOPj2lS6u/k24FI6LgQWCnELRDPkRctiMa9u6mWxhFRXc9ky490bGWF9vS1UEV1qU7IQzeCg5YXS0txJm5GIjKcVz7a3U8fT7Gx9zkI9+yz8xVBIbfZIPsvKtOkNDMRjoB6rRU0NPdfJEyQdN+/K0+7y9OjKy0lGItpYU1MNfv8L/X95uQNzeArUzMmJh0mzslhSYrXkXpg0on6dmqJO1lEzKOPjop0yRfZe84a8UjCHPgqHHeDHI9hOS7PxtVBba6v9Lj1dz1lUxBjAxYstDDo6SpaVycAkJqqPTVWD3d0yrIGA+qm+XmPV0eGUs/1+kkVFandBgTOKMQs71tYyfmgLBnk3TKnBcp21tXRsMX5Ahs2Yff1+OzQ1NiocbQAVTk/r/vX18WSfeaMFBVSfe0lOj690eFhrxAgHPNFRpqWRjY2KChQXkwMDMubZ2Ro/Ux5nZaU+47Wvt1eT3WvH+Lj6zyNTb2zUoStmQJesLPr9cVUJn8/miRGKR7xr5+VpfoTDSld4OfSxMc356WlOTNAdkpmYqLliPGejtm8kJFDtr6nRQbenR2O1ZAlbW7UM3jHvL1pY+JEaurPPjrKkhB/qffbZnxi6j83LGbpNmzQx/X4tclMX3O6d8o0UeGyMYij3NgJjiJAMzjNxxpCCAnLJEikeh2jqq9NxsuSWFkaj2puAqDa56mqxRgAE3nCkwRwdZX+/gT0mJx3RrcdJ6NWgDQ7S1bF5UiT0+3US9WiOenvJUIiBgL43Okqyv1/fratjZaWdxE3KprNT95yy3A2XLFEoaWxM/+9xHyYkWHhtPZmaygigvMPUlAM/trZSO0pLi0LCPh/Z26trG5NITQ3jf0tNJYNBTkzEeXPD3oZRXU3m57O1VfukR6/p5cJGRhwQkZycpJPvaWlxBfXeyf1t23ja20kODKhPIhHlW7wK7vZ2cmxMHsCSJWrD2Ji+29Dg6KhKS3VPYKfG3cu1TE1pw/V+Wk5u/nwDK5nnUVJiBwzb5cfG7G89Pc6ws6MjTpQdCHDFCt3G7yc5OqrxCwbd530+OtFT+nw85RQzoAMDUmyPqoB8xQqhHj1gTDisujPgYkYAJiToPp0W8pMs0tUEVjMtLR5u5vQ0r7GQnofgZWoqCZiMkc9hMKanabyPa9WvxsEKbJEnagcrLllC+nysqDAvbmhI1/Wq/4NBjXU4zGOOsedrbnZ8D1lZOl91dWkNlJTod4GA2GeAneTYGJOS9FziDJ1hOKzPVVbquTo7leP2lEqCQbWnrS1+HmVeHpOS6JQo8vNtnTU0ENjFnh7N12XLqHXU0BCX7AkEuHChGfhYzOUYo5/97Edq6AoLoywu5od6FxZ+Yug+Ni9n6Ey9u6lJG/ITEKek32L5jMXIzExOW4z/IJTwHrL4fDegzScY5PMAe+1zisQEOA2RzZaX61C5HQa6SE0lo9G4TldtLWMxM6gDAxwflycx7RmXlBTHHM/c3DgjSiDgQlOZmVRoKBh00SE2NelEPzWlkFp+Pjk5KU/HmOu9gu/BQVvY5mkehAh677XNawjKBb0AAU32WagoK4sEWtVWUyUf907eZWVkbq4D8/T3kx4l/duAk2vxCsqZmho/ZHg7RTjMEATGOWj9zpQUx4EI9BFYq7Hx8lJpaeTwsFMF98oDmJlJTk05kM8OIM6raGwmYe/3ycl6pt5eeTve9YNBPuFt6D09Jomz1lTE7+HEBI3HdIYsL1dosrmZUUCRg/R0An1xZfGpKWZmWg7UA7iEQtpUvXoVS950dQkoEzZPsr8/HlICZjgNgVR0aFrPdwACmzkFELhPudmREUd3B9wqg9vfz4kJG//eXvoBAntF0NzX5wBP09O65+LFdjAZGuLYmBkS81qugUBTozZ3bgGcI8rcXLKpydGYOYqtvj6yoYHNzSppYVZWvMC8qEgGwAvl19fzHRhIKT3dGR+PQWYT4MkucmCAcQL0ykoODso+jo3R0J7Pk6GQi55yeFiecmamO+x5MVPvPq9Z272D0cCAnWOs75ubaWjSfU7NvqaGLlEMTJIdHQZGk1bkO4BCzh693vQ0OTlpUj6fGLr/Cq+PtaH785+jptW1jZMAHzXjFYZkSDo7BT0eglj8h6Bcxn1m1FYCZFIS+/vptOieAAisJnAnwzbJPXb5aYCdMAHVhAQh2SoqeJ8tEtbVKek9MMBRiPXhbUjXq91+DiBO6ltbq71wFGLJ3wEl5m0/4A5IcFPyQltMJXIyDt8eGGBamhaqV8KwBUKbDdmzPApjkCku5imnCCQQgkJGU1PawDIy6NgkNtjnxwEyK4sR67sglMtYB/BG+8y9UJK+294xM2R+68v7IEaKsP0+DAm0vmBGZhgwQ3c9X4KxsNTU0A/VgLG/n00wrb7xcUatn2+06/7uPdf1GGw22HPfCLDNDMo7kGG/xfp9xJ6HaWk23vcR+A0HB827yc5mW5shXf1+hTVHR51UUW+vAX6qq9nZ6VFVHXCsJSUlFurz+2X8iorIujqli63fWFPDtjYzIO+R+ykuphnf68zQtXIlhPCtr6esWU6OAzUmJVGsH4mJnJgQFP4d2KHE0+dLTX0f48nEhOE3IIYS5ufHw5AJCbwGOiS95M1170AVCJCVlXzY+pgdHQL7QEhZ1evdw2FvPeTkkM3NzqAPDxuoJTNTsj95eYp4BAI6CFrdSEGBni0/n2RSkg45PT0MheS9jgBWL9grRHPQ2IQqK+UBRyJkUxOrqoyQu7tbnldmpmjO8vNZWUkXFn7b5qtHZ8uSEpfnbIc0ITs7SYbDBCzXWldHYK+MuiFeD0IHr2CQ5OSk7U0fnaE788woi4r4od5nnvmPaehm/+eWo//nvr576CN4CAAwhSMmJ/EmgAkAMwBmQ+QIgwDeBPA0gG0AUFqKjQD+BmAPgJffeQdnLHgZe+276pA9AAbxN4gcZMOGGIBhvA7gXQBrAPzt4EEA96PxC39GKoDTTwfQ14cTAeCxx7AGwCsAkgFkApgL4DQAiwCkp6UBTz6JwkIRPxy3ZAkSE+dhQUEBDgfw859vRHIysKCyEhdeKNIFYD/+9vWvA489hjPPhJhd1qxBYiJwWObRmJkBrlzzPRyVl4fZDy7HAQCJAHbbs2LOHDz//NvYC2CttXHdOuDgwRewdy+wKDERyMzEXgDrAbwK4MV167AZwH4AbwFI7e/HCUVFKASQC+BUu/7hAAoBzE5MxFcAnATgSADnpaXh7OxspNoYzLMx2Gzjtw0AEALwKp4DsBFQh0CEE3j+eZwHABgE5s7FYwCOnHgRR9k9TgBwIoCj09OBkhLg2mtxFKDxAHA8gJMWvIk37P5nA8DMDOZ4E+jOO228YwDOQnExcMstwMtr1+LHP34Rt2TcgF+t/yF+f/JyHPjCF3DjjfcD3/0ubrnF+nRmBrm5utTChQnApZcC69ZhecOruOwyABs3ilXjtdeAL30JO3cCJwO6/4UX4oQTRJxTdO8PUVYG4KqrUFUFHAIA+IL1Tx6OAgC8gTvuAHDTTVjzwgv4a8tbePjhKVRVAccBQCCAsjJgXlkZAOCM9DeABx7AAQBobcXmzcCJT4vx5PPjL+K0rp/gMABnnw2gsBA480zsOupEvH7wILJtjmwFsBMAJiZw0sxq7PqXfwE2bsRuAGfm5wOHHoqvVVbisN5eXJiYiM8Hl2PhwjIcDeDIll/h1RdeANavxxk7/4q/XvYcTty/Gkff+iu8tX49sgEcePZZPdOqVWIVOftsrHnnHTx+5zbcfjvQ0QHg9NNx2oJXgSefxEkzq3HttcDxDQ3o61PfpDc04GtzVuOiiwA8/DCuugrAf//vwL59uKX6Vfzg1DeBH/8Yvyx+Fdi/H4cBwJo1aGkBflW1C5g7F8kVFTgKwLe3tOKG3+zCmw88gMFBAHPn4lioHT84ew9w7bUA9uPbi17FnuuuA7Afu9etw+vPPovERK0F3HorZmaAPYlHYAYf7SsWE0PTh3nHYh9xoz4mr7/L0F177bWYNWvW+96ZmZnu7/v378dPf/pTfO5zn8PcuXPx3e9+F5OTk++7xptvvolvfetbOOyww3DEEUegtrYWMzMfcEpccQW0zxzAgeQjcBS0iQza+7mGp3AqgAXQZpwIYNfvfocjAewC8DqAE+vqgB/9CG9AG8ybAIA3AMzDagDPPX0A/f2fwuLF38ZqaIM9F8Bh9fU45phGpKcDp6akoKUFwK23Irm8HDjnHOwFcAQABAKYjbiRexXQbnrhhTjj5D044QRgzy23YP/+F4DvfAeJPT0oKFiE/fuB3bffjvvvF2NRXt4iHFZSAmRm4swzgW1/+QvQ1YUrrgBw3XV46SUxHOE3vwGefNIZtD3QIO954AGccsp8vAjgMACvbtmCr47eBeCfsH17GHv37wcefBCLrB/mQUZ6DoAX7Tqvpp4BnHMODkBGfCtkaM7MyMC8igoZXwAnpKZq873sMqCiwnoTWG3jcAIA7N5tY/cNABk4FUB2Vhbw2GM4FTJ0r5b8GskAgHPx6tZ5OBbq4/02dkdBBhVtbfhby5+B66/HLgAnJCQg3bvPmWfidQDHJSTgqIwM4Otfx1YA2QDw619jAQAgAmAhdux4AZGIXRNHABs3YtUqAHPm4JDcXADfwd7NmxEKAUf39GBXw59w7LJL8MorYsh684EHRDW3dSu+OfcZ4O67gaefxtrNm4FQCDdfuws7rc0Xt5yEr808g2XLxNxG7gEyM/HN1BfxOgDgM3gDALAH7wIAtmLvXgAPPIBEAO8uOALAdixbBhxXWQn09SE9HUBmJu4CcPjJx+Ke3bvxlbw8YONGHPej0wAAbxZegjOuOAmvX/YnpOfn4/BVD2FP1ZXA9dfj8C8txIsA0iGDvMbWw5IHzsLR530FcwHgoouQCgCLFmHyn88FEhNl0PPzcc/+c7Fzp8Yad9yB1QDevOUW8a1t3Qp8//vAddfhKej1NIDZd/4Ze373O+y56c/Af//v2AoAqamYmhKN2t+6HgJuuglv3HILsHcvMjMBVFfjppsA4HEgKQndm76i9VdXh44OYNfu3Xiz/Ndq27XXis7uySexefNmJAPY/M47OOSxh4B778W79y8Hzj4biQD2lP8UQxsOx9EpKSgsBPbffjsOg+ww/vhHUc3hAeC738UqAMDdSC4txXFJSVi7FlhQUwMUFuK0+3+GeeecYZ/55PVf4fV3e3Rf+tKXsH37dvdetSo+nDU1NXj44Ydx3333YWBgANu2bcO5557r/h6LxfCtb30LBw4cwHPPPQe/348777wTV1999QdrfUMD3gKQlnY8Dtm7y3kf+2HeQ+YZeBcycHNhBi8lBfsB7PWukZgI3HEH5kJeSyIAbYOH4EQAl191CK64AnjppVGcAJ1w9wNAcjI2bYrh9NOB3Tt2aI9fsADYsAE44QQcCRkKrF+PQ+x+E5Cxw+ioSCfnzsWqVcC89HQA/wQMDwOPPYadO0WPmZyVhdRUcSs++2xMPJ1z54qfMjsbaGiQA7R7N1JSgF/+EvrPtdficMiz3Qt5H5sBvP22+iDZ+gLJyQCmALyKtwCgrw+HQcboKADHJifjWGvzYQCOT3wDuPFGzFg/eEZ074YNwJNP4m+bN+NVAJsnJnS6HRwEXnkFm60tqZCBOgQATjhBp2s8CyAmz2PzZuDaa7EfomJMTfW8vn3YvVttwm9+gznWl1sBHJacDPzylzjsjpuBM8/EegCvHzyI1yFjjJYW7AGw/uBBTGzYAFx/Pd6EHTi++EX9xNv2m/3YuVPPBSwETj9dnsLcuUAkAmAf5qakYMeOCPC73+Hwjpvx7q23YetW4IorgKNzcoCJCbx75ll4auY0cZ5ecQWOB4DUVPyp63DMgQ5ZLS3A8p2n4dJLgYwMYNaseTiwbh0e2nqSeXBvmcGNaGzwNt55ZxNw6KHxuYtR/PSn0Lw4+WTMnas+PATak4+GzcnsbOCd/4e9/w+Lu7zTxfE7GnRqQ4o2VGKDJTa00660xCNbsiutdKUbzkq37Kdsl7V8jnSX3WRP6ZbT0so5pZZeZAutbKVLtlKdKkdSYS3qVFCnho3UsAF1aiZmNDQZEySTgMkkGZMxTJLx/v5xv97P6P747La6361XneuaKwFm3j+e53k/r1/3675PAp//PPLytPSOHgWwZg2eXfNJLF/2CvCpTwE2b8dszSyz9VNYqKVyQWkpsGePDO+992JmBiIJ3bMHePhhLFsGnD0bkYHu6sIaAJf7/Thz41/o+J2dQHc3Sm3tXAPg56Wfw/KGBvh8ACoqcDmAn4yeh0ceAW67Dbjo3EvAbbfhiqoqPFvwcQVVjzxi9/8isGcP0mm7H8jmXlJWhnPngBeWXqGH5/rr8fz1X0CR34+DAIrKyvCzvE9i4dP/E+edegk4dQrPQrZ4ehrA+efjG98AfC0tOKrHAi+3/B8dC2VAby/k3pcA585h/uRJPP44FPodOADceivQ14cL8ca+Xm80571/I1+/TJ7z5ptv5oc//OF/9W8nTpxgTk4O7733Xve75557jgC4Y8cOkuRDDz3E8847j/Pz8+4z3//+97l8+XKm0+n/8HV4OetvfCOp2pRJY4RCKqy3tws8UlvLrG5UMmlciLuYyaj+0tJCsrubW7YIdxGJWOOowQg3bcqqq5jqis7X308mVRjm7CyZSKi4HY8zlcqiB8fGVPsaGCAZjXJyUiitOOAQmImEITPb2nSyWEyF80hEdR6rNTIQYCJh6LqGBsHWvc8ae71rlluQGrWhw5lIGDrM1Jk9tN/YGAUkmJkhEwlu2ZLlgwwEdCgPLNneTiEHe3s5NCRaL6fObL1dTKdV24hGNeaBABkKufa5JUsc5ajqWSZVxPFxJ4y6ZYvmxNPQi0YpUIE1QHvzUVWlOWVHh9ME9JB6LC/XuCQSXL2aWSh+JMKLL7baT20tgaOqJVVUOHVyj3DAyfJEIk4OaWTEGv09DaPubs3d+DgnJuxvBon39APZ2iokbSrluDJTKTqez3TaxjCT0fcXFgSIWFhQbTAcFjCpspJnkW12n5igA5OkAd2jNeSvXKk1Vlmp9SOU4jbHFPIkBMpiYaHurbeXq1frmWlvt+cpFOKGDapj3Wy15fHxLFGAk+sxIoHZWTrwx4YNur6BARsT40v1+s/a2zWHXjvkkiVqCveQybOzWTmqCahtorGRjq6MqZQuoLpaAJxAgBwe1lrp65MmHQSiqa3N1rCrqnS+tjYhMAMB1cc9AgRPI3DzZifR6MBmW7ZoXbO21hEOMS+PjMeFQg2HpU6f1n1t2PDG1cO8/W7dOvVnvp73unVv1ej+Q6+9e/fisssuwxVXXIEbbrgBL7ygZF84HMbZs2dx3XXXuc/6/X5cfvnl2LFjBwBgx44dKCkpwaWXXuo+8/u///t46aWXEI1G/81zptNpvPTSS695A8DllwNXLHsRWLYMvzh3BY4fl0N1113A4uJLuP/+BJbv/Bne/W4AS5cq7YETOHhQQdXWrcCZr34VeXn63tatIsHH0qXA0qXYt09e3r59es/Py0HGzp3Arbfi0UeB7z1wOXDiBD7/eQA33YSLFo/hg7v/AXl5IjxfU1iIw4cBzM/j1CkgGgUuq6kBtm3DsaKrsGyZpUaeekps/4ODqtcsLupa/H55qzfeiEtG/y8u2voT4OhRXUdBgep3112nC7v6aiycvAjYvRurVgEPPpjA9u3Aj3+sMXmp6EN44AF5daOjRphfXAzccgv+9y2XYHQU+HjpMaxYoUNe9NTP8InrXsGePVY6W7sWL3zqC5icBMiDeOQR4CMrX1BqasUKPLvvAvz4x8Cz+KCyPOvXA6WluOkmfYRcxO7dwHl7ns0O+OKiIqa8PKC+XnO0YgXg8+FDnX+MBx8Eds2/S5H3gQP41Kd0P48+msJPHluuItNnPwv4/Vi1yuZvZASTk8DPdl+C0lKd6kzdDdiFD2HNGruX224DsBxbt9p8A8CePXjfuWcVGQHAiRM44/8QPnnNMWBxEXv3Wk1rxw4d9NQprFoF4LHHXL0N69cDBw4gkbBrKSjApZcCP9l6EY4e1bgfPQrd83XX4YJzLyMeB3DwIG69FTh07l26vgce0Bw/9pgub+lSLLX621e/Cny04BfAzp24ougVXFBdjcVF4H/fcQVuvBE4fPin+DGAbdsOAvn5SnliJ8674wfALbfgAICj994L+P0oLQVw4ADWrAEWF7+Jri7g5+c+BOTlYWxMKeSPA/hHAB9fsQtfbX4ZK1fq95fc8r/xt0OKO596ytZhXx9ycpSO3b3b1vbBg/ibDS/g3DmV4g4c0PB7agzXXQf8NoD/dd0uPPTYRbj8rm/iqh2bcdXRn+K3oaVx7pzN02OP6d+bbsJLDz+s8b/1VqCzEx98egvQ34/Pfx74YE4OvvmpnyMvD7ho8Ae44sTP8d73qlx69dXApQu7cN11wBUA3pf3oqLT668HvvEN/NXVT+CSo7+Az6dg1c3FXXcB+/Zh1SpbMouL9gEADz8MnDuHC5a+ghMnJKTy/PP/5pb21uv/369fxio+9NBD/Id/+AdGIhE+8sgjXLduHS+//HK+9NJL3LJlCy+44IJ/8Z2ysjJ+5StfIUk2NTXxE5/4xGv+nkqlCIAPPfTQv3nem2++mTAE06vfu6B2AEHDT3vwSIVTBQWiEoTg9JMQRJ7t7UJHFReT5eVq7IRQlKyuJgsLCcwRCOv3ySTDYXPUIWj8fkPxAQcIdJK9vUIG5uTIBfT5OG6ItakpOpg+w2GytlYIu95e/S2ZdP3VgQDJQEB9bfE4OTPj/lZba9pqxcWKxExnb/16ofQYjRK4TdGA3y9UYG2tWiFaWrJeq8+ncejuZkODjj0xoehuwwZpb0XtfTeE0DwLtUp4fUaMRuXyRqM6T3u79yOTSVMu2LiRmzYZXDuTESS9ooJsbhY8vr+fMYBVVaY4APW2nYQg6ZyeJmtqGI9LfJORiFCznuTAwoJjfdm0yaJz61+amck2/qYBx4EYDFLffxUzBoNBlpXp2n0+ugZ+IMgYQGAbWVpqEP9RngQ0jsGgonijzmIwyOcMAUhY3561nSQN/Tk7q/l1Ebn11AHbefHFiszY0kJWVzMUUjtLOEyytZU+n0CMY2Omh9bWpv6vjRvJcJgTE9bbGQplSYaNlSeT0dJ7xlsTwaDaZGprnWo8Ozu1/srLyVCICZtzlpYKwRmJqPUgL48ZGBdpRwdLSl7V+9jdTS8c2wZDF9fV8WkI/cvcXO4AtBaMEOE0hJqdn6fQqDk5fBJqEVkA1MNv13LW/l5VleVl8ISCo1GqbWVmhgGo/WLaEKH7Ic5WT6kgbsd+GsiSNEQiela6uxmGERsUFysTkJfH07Z/AGeYtv2kuNjO6fdrgwiHtb56esiODia/8pU3NKIrK0ty3Tq+rndZ2W9mRPe62guOHz/O5cuX84477vhPNXSLi4tMJpPuPWeChg89lORhgwWnUtQGU1qqXauqisAhQc89YsKcHBmI6mrXE5QGspIbDQ1keXlWqXh83BpsD2kTMSJh5uTYxndOG3lJieO7o9/vjp+ERDlZWkrm5OhB9Qhoa2oET56YINNppbkiET7nPUBG89XaSmtaDTvqMfb1vUquZk4Qdtu8WVbmGtjZ2qr7HB72GLQcj2U4rBRXa6s2z3hcGcQjUAsG/f6sge7v13mHh/Whpib9rbOTC56jUFys+zLmi72wHre2NqW4iotdz13G0lEZG0PgtHYs7yKam7MN7w0Nrl/KSdd4SvIeK8vGjdn7r6jQxlVeTpaWClLf36/duKFBPzc26nidnWRzM0tKBNP30pUZZGVvXKNVXZ2MvJFhn4VaNPr7Hb81GYtxZkbjWVlJ5WuNSd+j62JHh8aovZ3Fxeo7m5+Xg3AcgrIzENBnS0tlzPLysmoR8TiZk8P5eWb5Sfv6mMkozfggoPOOjjqYvalMkeGw+hxnZx3V2+Sk1qKTFerp0fxWVtKT5vbUE5iXJ2PnEYY3N2uMmpqUo6yuVoqxspLJZFZZIhYjuXGjzuXR2w0Pk7GYnL72dhksqIfOUdAZ6UIgIDvU02Op1cZGMh7Xei4uZiajv6csXcmGBqUaS0t13zYv7OjQtQYCcjI9coXKSnq5/vl59dQ1N9PJTfT0OHYvDgzQKZ53denZZ1VVVsanqckRLST3739DDd1VVyVZVsbX9b7qqrcM3a/0uvrqq3nTTTdxfHycAHj8+PHX/P3yyy/n3/7t35Ik29vb/0WN7/nnnycA/vznP/8Pn/PV6gUPAgQeIgMBDgO8HWoGvh9q9r4f4HegPpnbzcMbsPeD9llOTPBuqDfoboDAdwl8hdMAN23yAsUonwZ4J9QH9Yydd2REVFKFhTIS41A/2Rb7LCsrebd9JwT1kbGqihwYYHu7nrGz5inS7+dJqIesqUkePnDa2EtC2ryDQfb02EZr0jzs6Mg2u5aXk+PjvNOu5WG7VnZ0iGzZroUVFRYF7JUxraggk0neD/WbDUN9gOPmvd5rx2BbGx81j3gO6kd82P7vKRlEbGxPA3I+/H72Q32LXt8dOzt5L0RxBjSpt88cgnu8jaaykk/afHB4WGPX28th89DHvHurqtIuaHRlp6GeyUkocjwMRXWzUO/bHLLRiqK2IQJ3s6FBRioCMYo4xpLBQbKiQoYmP59dXTb+o6NkNMqWFmvwr64Wa0zKGE+8IlV+vuNNDdrYMJFgKKQ9e2jIao4FBezqUhYCCNi17bC+unt1/ulprdlYzOvLds3w/f10cjXJJLPRe0ODnA2PfTuZJIeHs0avoYGsq1Ofs12f9zyEAA4Nyd5nzMjdbONJWARaVqZr2LiROTmWYWhtVXReVqYv9/fr3dTEpB37CJQxYW4uGQpxxtYVR0dlWcJhOXUTE04iJxKhIxQAjuqaJifFgATIiAJZCaO+Pq2rYJB7bc3s9c5rsjr7bb2wvZ1Mp7kDcMonIZjxtWI1cBc5MsLDUNR/HOpbTCRMNcMa8zkxYZmBtwzdr8PrdRm6kydP8uKLL2Zvb68Do/z4xz92f9+zZ8+/CkZZWFhwn+nv7+fy5cu5uLj4Hz6vN/HAs2RvLycmxIqS8jbWkpKsNz8wIO9/YEAbdX09mZ+vja6wkIzFFFGUlSky8fm4aZMVvwcGuG6dvO7cXJKxmDaHhgYyFFK2wjZd1tZyakrNyS0tzOZVystd2mTEuzZjV29sNLJgWDrMHhqPgoslJSIW7uhgfv6rUjWxGDk6ypYWGcqWFmvGNWOyfj3JujqeBdybFRUyhA0NeqBtk25uVmTnpZkcga/RVDEclvdfWckHkW0CD9mmwcZGJrx78/t5t/3/sP192Lun0lKyokKMGL29TlQUOCNWmOZmsr5e0XVBgSMh7gfY2GjAmWRSZMa2Ud4PpcMmzdCyo4Nh28huNyNcVkbNeWEhNwMCGtj1nbS5A04T+DY5OqrxNp5HIOjSVe3tJGdm2NGh4T9pm76niwfs4YYNshtAkMBWpcVycjSGIyOsqJAR8ySjgGMEtstIGDgF+Jkxc2y3SD7EpwGXHWNBATkwwCVLaBJH95K5uZrj2VmXnmxsNMLu9nat874+reFAwOPhJjs7xWRSVZVV+DBHxkn05OU5IuaGBup35eUCqEyQd9s8/52tYeAHTNiYehzUus9R5uerxJBMZkEmQEhr2prl1XS+2ZyPuww0dIpdXbQSxV0cAZx+3gjgAko5hM+LLD0aJRAlcMaEgp8gYzGpJcT1M/C8jG9ZGZ+0MS4sVPTb2GhYJHM6gFOsqPDm+hh7e62J3AjRvehufj5LFJS87ro31NB96ENJrl3L1/X+0IfeMnT/7utLX/oSH3vsMe7fv5+Tk5O87rrruGLFCr744oskyQ0bNvDyyy/nP/7jP/Kpp57iunXruG7dOvf9c+fO8corr+QnPvEJ7ty5k4888gjz8/PZ1tb2S120i+imp8mRET2spgXGWEwpkmAwm1owr4/FxXrwo1FyYUH8vZ4HOTqq7w0MsKzMag69veTERDb1EwxqQ25o4JNQnWJggGRpKZcsUbQUsw2WHR06XyCgjaSwMKuVYdIpfr8h7pqblQ4ZGJBBSKVkpBsaWF+vB662lkr7tLfLkFodpr2djgja1aaMVNqrC3kitI6DsbeX7e10atIZgDU1Mngxb9PNz9em6vNllQra2nS/nZ2cmJBxTUN1G09bLRSi/lBWpvuur1f6LRjMyhb5/WRlpQh3UynHZjExYccrKxMfNkAODrKszP7vwehGRnSeaJSsqBBtVoZkUREDAaONmphwSFRPFYiRCNnSwq6uLPu8h0r1WPZnZ0mGQoxGdfj5eZ3nNbUco8j32Ew4PJwVX/XIqY3zMpnU9zIZap0NDpLT01nh1cFBRR/xeLa+2d8vR2d6WutgdjarbZdK0eXqWlqyBOKe11Rfz/Z2jVcoREdKDpwi6+qY8Ryf6mrNm7dO29sJ7Myia0dGHINKIkHlvTs6PBoYTkwIjTk2Rt1/Z2eWsDwQILu7de2ePEVdnT7nkX97ROAdHVoro6Pcb5FRGtkMAQcH9f3paboUSEmJsgKBgI5bVkaOjzvNRwfnLC52SuKsqNBaTib1me5uHSsY5KOAnpuCAkWAPl9W09GTCGlszFLCmTptT4/WTCpFHcuDM8/MkAMDvPvuNxZ1+cEPJllSwtf1/uAH3zJ0/+7rM5/5DFeuXMkLLriA7373u/mZz3yG+/btc38/ffo0/+qv/ooXX3wxL7roItbW1vLw4cOvOcaBAwdYXV3Nt73tbVyxYgW/9KUv8ezZs7/URWcjun3k7CwjEarYXVamBV1dTTY1aXOZmdEDFgppwff1KZdutbR02vj5Nm7U4q6t5ciIec8jI+zocGs8q0RggnVDQ+KOTJoHHIkodeRB7DkxQVZWKorx+ZR6Ky8n8/I4NSU7OjTELJ+e51JOTuoh8vtF7tvdzbo65f3HxujIhNvasteWTNJRn9XX6zssKsoKkHqQ+9ZWMhTS2ESjbj84CWT1wGzzHRmhNu/ubrK93UVyk3aeHWZ8MhZJsrzcpSeZn+/SmhEvWuzs1OYRCLg6jRc4eFpgW7aQLC5mRYXG5l6oPcO6ONjaqhTxNmQp3KIWIdG4T+cs2nscJk/T1ERWVXGLRXSnvTmrqTHOwnMEtprW3x4HIAK2WsR3RqnF3l4HTWdREVlU5PwX4BwrKzXtwPMEDuk45eUyFLOzDlDkZQ7WrxeAZA5KsSrSOGWGKUmGwwQOcM4i02iUZGEh02nt1UNDBuQpKJDR8gyKRXSzs7YO/H7nWMVi3vWeItvaBP/v6ZFhMJWOSc/ZaW7W4ojH2dOjjdLjjLzbjNzNyFK8Sa/wNtLn45IldNyaK1cq0lNElyQzGUZcVLZNjk5zM30+j+7uLou47iZra7lypcPwEHieOwDju9zOmK13L+Oxbp2EfKWAMcrcXBrR+hOcn1cdVFHmLgLHZGgt6yIQ2jFu2pRtgdDvDzEnR+M2MqJ2CA97wmTS4+92Cg79/cYLfv31bxm6X5PXL9VeMDQ0hEOHDiGdTuPgwYMYGhrCe9/7Xvd3n8+HzZs349ixY0ilUrjvvvtQYGwZ3us973kPHnroIbz88ss4cuQIbrnlFiz14N2/5KusLB84dQqnThmbRUGBYNunTgEPPIDzThxTA/fevYI+79yJFz//ecDvF94dwAVHD+HTn4bw0ZWVOHP//bj9duC3fgvA7t247jpBolesALB9u2h9rrwS2LMH1dVqLV9mv1uzRg3U11yj72JuDvjiF9VgXlWli47FgC9/GR9Z+Anuukt9yIegfloYfBx79mDpUuDUnj24+eZJYMUKPPUU8Mwz6vv9v4PnAddcg6IiId0PHtQtX56Xh1IAH/4w1LxaWAi8+93AH/4hUFeHS/NfAd7xDuDECZw3+hMsvFNtAJ//PLCsuRm48UZd88ICsHOnoOfbtwsPvm8fVgG4DrrH82AN8UeP4rzKSjXaFxbiCohZA2fP4iqIWeVDdXXAlVfi5a99TRBuvx9f77wAOHsWV16pa0djI850/a3mYv16PP74LD5TewbLoXv0IN1//ufAipwcXAZRfKG0FB8sLMSKmhoc/epXcRmAVY2NuAxiRhkc1PFe+vFPUQrgr/z/CF9lJZb39uK+Bx/E5a2tqKg4H8BxYOtW5Oa+Hx9J/SNwzz0AXsIKABdfnKPlcvAgzp0DLn3bS0BlJdDRgVtvBX5020toaTkf3/qWCDTESZPBRwoPAXV1uOTWrwMHDqjfGMDynBygpgYHDgCVlcvFBvKXf4nL7twEYMb6Hw7bxR/EGYhibmgIeGluDhfcvhnLlgnCf/HFHwQ+/3k8e+IEXvryN/GUtQ2cOmVENddfjxf37AH27cMHPgBcceNHceAAAKSA66/HmjUQPP+66/RcFBWJNeb663WCa6/FJzdchsce09hf2v4XwPbtuATAfz/1D/gcgB9C1HilpdCsFBbixhvVSvHx8pfx4Q8Dfn+TEeUsx0unzsNFAD6S/zzy86/Ft6/5CdDVhfFxfWfJkv+BiooyrF79WaCzE3/4h2oJOHcOyM1djRMArnhuDEAxfmxLNC9Pj+WOHbNobX0Xnv/AH6Cx8Q+wYYOex4qKMlza8qfIKynBJxf/AWVlJWhpuRgvffHreHFqClf4fFi9ehVyci7Gl78sUp/3PfI9XJGbC0CEAEVF6m648Ubg05+26Tl3Djt3QlRw5eVYs0ZD+TsrfmH9JW/c662G8dfx+q+2tL/KKxvRLZANDdywQWizBaiVgEVF2Ubr6mo6t664mCwu5mkYaXFODtnSopw+RMC8YFHA6tUkN27k+vU0mZJT5MiICJLz88nycq5bly3eMxQiBwcVWSaT8o4rKsjcXIYsyumF6ogJS6WuXavs036oDnUEgvUzlWJLSxaMwp4eAs9zbMz1dpOdnezv16Vs2kQHYx+HpHYylvrxUKJsbXUktp5wqteI29xs4ApPKNbvz0L4W1r0+fx8brGILmDR1MMQ8OZxqEaTgWp4A1Bxv99+7+qE3vWUlioy8PsJHCVwVJHIxo1SgYCkYTgywm9BbQ2cmSFHRtjbmyWsvhMCv0x681lczOeg9HEPBKhwdaXGRvZAZMAnLapasGhEqNqvkAMDOm9/P9nRQSDkiLU3b9Y1bNli/cqWQaioUBAMLLC9XVMP/IzAds1TTo7CmpER1tUJjPKkjYPW1V5Fo52d1lqyzeSjfmTghyFOQsrlXV3UGu7udllxL6o5DJDT02oGb2zkyAgdRD4NkPG4arcmgrp+vcbfaypnW5uius5O3m0RJ6urSaiWNjJi6d66Os7avLKzkyM25zcDFo1tZhjS5YvH9Vb14KiXdSSTSdV0FxYI7NU4tbQo1ZlKEThk9bgFsqyMJSWqhylifF6E0MPDBHayH3DVAQYCDmDN6WmuXu2ymlyyhGRHh0An4+MEjglZ3dbmyKs3bLDrGx3VvY6PG+n3Ateu1XNWV6cM0NSUkX6bisXEBLXPhMNsbjaU5husR3fFFUlvC/uV31dc8ZsZ0b2pDd3cXJKsq2NTkzGzx2JkJsO2Ni3ElSuplW5M/+zvV90iFmMkYukGwGmFJhJ6MOfnlXoYG1O6pLZWi3pmhvpDfT3p87G42NJuluYK22b7JKAPe+rE6bTLhYyP23Vu3Kh05ewsW1pe1WNVWanfB4PaXONxMhjUeZqalIrq7ubIyKtqbga/86RHYjGS4+NO9HhmRvW49est3TI6ys2bdW/NzSRLS7lhg91LRYUr0LO7mwwGOT5um2Ymwy1bNJStrZbOrarS07+w4JjqGYtptzHmlqoq/c4rcbG1VfWm2lqOjb1KBToSydatJiY4B7FxtLXZvQeDLh3mzUcqZeebnXX6d1NTNleZDCcmDMATjTKZ1IY5MqI5bmvLlrySSWZFPtvbdW+jo0oV5+eT1dVKsXkIT9vNPFaTyUmrtxqwY37eDFNvr+tmCAZ17nhcc715s9KR9fWmszc7q3RZjGQkIkettVVrNp125SJGInIcOjqUgu7rywKHQiHW1Ahw09VFsr2dY2OWnjfxwLOQzBGHh3XjoZAhcOfY22vpyZERbtlitcuFBa0xT6h140Z2dckhqanRYRMJUyovLpblT6c5MWFyQPE4WVsrg5ZIcGxM8zA7SyevxESCZwGnku7o9o09KBi0OuzkJDkyonRvTo4g/+ZIhmDKHJ2dGsTiYi2EhQWt6Xhcx/AkwIeH9TbV44A5IczLI4NB1yLhqF8mJx0bTTxOJ5Lr+j7NofYkcd6onjVvv3vPe5JcvZqv6/2e97xl6N40LwdGKS7WJrqwwIsvziKpVHORVlRjoxZdS4s2e/XFnTGve0GeWGUlpW91iMCcNnsIzcXaWqdtJnHOrW6vY1ubHe+ovMh4XJ5jMMi6OtWnpQi+3Y69mYWF2hgyGWrDr6sjcM71IOXmUoaxpESIwepqF915QAcPJMC2NnnjAwNMpTzP+V6yrs6ihV0EwszNtWbo6WmWlclAzcxQm5ypkQNnWFenfXr9+mzf0KZN+t2SJZIqkqzOEIFvEwhw7VqvJnWvHepbVMvAnM3HDgLbCBw1L32XwCUZ2UcPdNDWZpt9PK5NubPTEHiq6zmZmY4OAmE7z/fs/Dvd9Qshd4ZAB4FbXLN1Y6OiDcHSt/Lii73a0XY+ZxEix8f5nBmIiQmS+fny+g0skU5TtcTGRgLnshqBGzcqKgsGtRnm5DAJ1aC8lrOJCRqS8yECYc1taSmfs+iH6TRrahRtlpUJzVtSInQi8COBpmprWVJitFoqeDECOFHWVMrTaTtFlpU57dnmZgMzlZQoUikrI/Pz5QBUVbGpKatFrOfoR1y5UsEosFP3VVVFzs66dlTgB46kQM/SZrK4mDdDkkJsbOTUlK3z+nplCZqb3e+Be5lIGNo3kXDgnHDYgEfV1UxZBO5aFBoaTBfwebKnh5uh9ov9sKxKKiVATG+vjH5Vlc4ZDr+qNreNTCblKNhCBJIEAoxDCNKREWU4FKFu1dyWl+t5Ky8nq6pc/+H4uEW6hoL2QE6Mxbh06VuG7tfl9aY2dH/5l0ku2CbJpiY+Dkv95eXxMAwUYv9nWZljyZg1DzAOgSnq65WK2mupLPXN7SGbm+2h3ktgK9nczKe9NNzGjUpz9PYy7D2Qvb16cEMhpU99PjIU4pyl2KZhsO3RUQd0aWoiWVenDbWkhMzLcwAYtrQ4MAqwy0U6nJggZ2e9fmwyGpXh6u52HH8edD4BA2qUlRE4Rvp8TjdL+lrPK3L0yEGLirJsIqGQvGPT7GJVFdN23G02XszN5X5LxTEvj0HzrKMwkdrSUibsO2dtHJiT43Ja0oLbpY3QGuHTli5jaan10Z2WV97WJp5FKF06AbV6zFm6jt3dQryWlXEcQr92ddGJfE5a9P6oF3m0tXEcoMAPARe5s7iYmzfbptXfr3DF0zTr7eWmTUpZs6yMjY2eg7FLm18g4ICQzGSyKInJSdkKWJqxttYMf5icmdE6qKqSkff7CUSdAxYFCNynvyUSWluZDMvKLL1XU6O58sBSeXlyxAYG3DyzpUVrpaPDgTU5OKjItbdXBqmzkywpcTqKGZvjDRss8g+HycpKPm3rioGA1k1xsSKpgQECP+PNXjRp3K11dbKVmzfT9SXGAHJiQiWChQVFfr29ZEcHu7r01aqqLEdlLKZHZ8kSpehloJ5g2qLAxkaSOTky3vE4+/tlvAcG6Maew8NCa05MsKJC9nd+niSkXzg/r+FKAly9WtN3j+0HVVVZAGZHh8YqP58CtAGuBMGyMtbW2nHe4NTlu9+ddOrrv+r73e9+y9C9aV7exH8LIPv6CBzQxpJMKlzq79dTYRETKyoEVS4q0mbe1uaaV9nczB7bkD2KLuAAKyuFqDzsGbaWFqEM43Edt6fHmEm2cWzMhB87O/XA1tW5DX18nDpXJKKHMDdXm8zsrAyWpU+amrLpQM9DZHu7eb+HnDqz6jiq60xAdQ4Pyg00EXhIqDm/X09bIEAODmZTZrm5MkoVFeTCgtJt4TAnJy1SELSNKfNuD9umJ6Ok3iRmMhwZsTRoWxvHxzWsQ0MO9EdmMly/Xj/391M1y7IypeXq6nQvNTXk9LRQosY2/TiUUhsZ0TG6urSxpNN09Td2dDAYNATqxo12XQtkczObmxWFbtigWxmGIq3+fg3JhDklXV26764uBWHs7dWmPzBgx5wzUoBva5dvadFmmZvLeJzOGQoCLmJ42Ax02puboiICSadmnrJr0Sb9PU4ADtVXW0syHtcay81lKiVnxXiGZSASCc1XWxs5MsJ4nNxhn+HEBBsbLU3b2kqmUjIILS1kXx+jUWpsJye17qqrybo6IWLjcbKwUMc29Cfb2hxC1vwqboM1ore2yvno7uaSJTIyXlTKxkZ2dSmNGTGHMmBO3j2QWO4kFH0NQ3XchwGhpyHErEcB9jgUFXdDdcD7IXQnIIJ2plKKqpNJndvIne8xo5u0Y0TNkD1pxiwI1ZFH7LxGgOJ6OVlZKUFmqOduFiKAEDnF865GnZ9P55yxqUlOklHV7QCY/NrX3lBDd+mlSa5cydf1vvTStwzdm+blTfwjgKUytuvZtgdqry00dnfzLBSl3WsLnVVVDEOMGiGAbG11/4/ZQwFsJSCmFXZ3kxMTDAbJ281ApMybraoyzz0QkMdrCuAMhbgFqhdkMsxSkw0O8jl72KamSPb0yFiUlxOYc8oHq1dbnaaggIGAAqBgkDpZKMQlS+iiJGYyZEODZTF/xM2bBWqJ2UMeMWPFqirW1JBboDTdXruH3FzbpGpqlBssLOSYjdUO26jusf8XF1skUFmpjbK4WM7D8LA8Y68vKhwmm5tdyY1+PydgEbT3b2MjzwIWDf1M11NVpXvy+VxJhAMDXL1aRm3c/jbjGfLKSrK0lJs3a39iT482+Y4OGay+Pu63eWB5OTk7y+Oe41JfryjI7yfwvEHQd2jgfT4Cd3M/jOvS8OvAHCOAqwlv2qRoccMGktPTur7xcU2Yvfv7jaO0t5fs7JTDlZOjjIHB/pXWfkifyctjGGLHCQMygLW1BHawsdEYtADXX8jqaie3UFWllPQ4xCxzLxQ5MpFwkh5NTcagMzqqOS8tVTTZ3U1u3KiG87IyRiGwz+NQe0drqyKWTEYGOBq1Psp0tu44MWHremCAEQig8rQ9MywrY8zWUTcUUd+DLNdlJEIyL08q8B0dOlhHhyNhuBdwNeqaGgWS+fnWtJ1MyhEIBMiZGT4Oywh0dpJ5eZyFotMjULT7HMzpLS5mLGZp5aYmx5TC0lImEtZyU1SkQS0pMXDYdzlthhIIvNaBC4c1uJY1UTbiLUP36/B6Uxu6UcAQiTu1Kfb0kEVFzJghIyAvraDALdQwLH2Yn6/00+xsNuXZ0GBMGPexpMR687zPT0zoYfP0R6yxyyMtjsVIptMybOPj2rD9fj3ARUVODuc5GNFzPE7OzjKZpBnrJKemLEU0OMh0msaneUab3fi4eBgzJHAfH/Y2EWuMV+S3U6kgn49xcwJYVqaNOhhkIKCo6LBtLuzsZHOzATqGh+Wt19czAUVxHmrTYx4xTmYdr6PDcUWm02aUwuFsvaW3l+HwqwA8lZWKcgzZx1iMbG1lLKb9nr295MKCIozBQfr9hnScnGRXlx0nN1fG1Wt0Hh0lm5qsTndKkafXsJ1MMpm0NGVnJ+Nxw2oA5OioPpOXx1RK0V8oZFH55CRZUaFr8lKIg4NkIuFYWzg7axFdUMato4Nsb9e1j446wmov7TpjxnUvoO9HowSeUJqxqorNzdbQnsnwuK3dhgalR7u6SE5Ps6kp27fFtrZsE3tRkX5XVsZEQsN6GHDRK8NhRdA2Z8GgLtdbpx5ZwRHvPqqrNRcbN2qN+P2sqzNgV12dDEtZmRwvAyoxlWI87rKnZCzGp2193uytwepqbobQjdvMgAzbmDwN44QtLJQz2tysZ9nnYzCoNfswoGurqXFSQS0tWrvz81bfNeTVHIy2q7NT5YLaWh6BRXCjo1oTJSVkdbW+t7Cg5zkeF6ikr49sapKjaz24EcBqrD/gGGBozCG6MDoY1Dmnp7nfDHriDTZ073xnkvn5fF3vd77zLUP3pnl5E/+4Pcjr1mmjmJqiMx6cmdHC7ejQQ+OhCS1142lzsbFRG8L4uCO+ray0yMVjRygulkvr9+vJ6u4mOzsdtdDYmJ5lNjfrgfXYGurrtQkZqszL7Xus+UwkyL4+RiJZnSyPZNkZnslJbbpNTXoAAwFFLy0trj7Bzk4yHrd61w5FDYb88/TpvKiDgYA8+clJGeFwmAwE2Ntr99Db63KoEVgk2tpK9vUZUCHJsTEBVjydt6kpbToe21RNjSLTpib9vqnJzj09Lc+7r0/Go6PD1bTY2SkHwphYIhGS8Tg3bLA6SzwuDzsvj4zFWF+fBQTl51tENz7OtWt12Npao3U0776lxQxqXh5bW7MNv/X1WjOsrta4T0+Tw8P0+z0O0p/pWr2ovbub8biOt3q1ms8ZCum6fT7Nf3m5q2FVVFAnTiTImhomk9qPgSSfM0fCYwljKuXUIBiNKvc6OSmDbw32AwOkR0uTySiy91CnXV26Lkf91dmpG2xrY0ODNNpYW6v1aYWnw7aBs6bGRYzj41p/7O/XWrVi19OeAZmYIHCMbG/nypVaCyUlmiPW17OujlIQsEjuZiiKPwIDjZSVcWpKczMJ4x2tqdG91NRwhzlWEXu+AxaRfQtKdV58sTlWw8Nct87YgDy2ldFRGeicHNLn4wJE9TYCZQNGRuRABD2DW1NDZjKOEIAdHVrYubk8DvF8jpihDUGRctwclljsVc9pVZXqhDMzTmXhyJE3FoySl5fkxRfzdb3z8n4zDd0vrUf36/R6BQC+9jVcfz3w+OM/xkc+8BKwuCitqKkpPLTzMomX7dmjbtYf/1hiYEVFOO/gC05q+X0AcPiwdMJOncKaNRLHRlOTVJHvuAO46SZg5Uq84rtInbizs9LCwjCOHgWefHI/sHs3Dh8Gzt17r7Sqdu/GVdcux675d+GlpZeoUbelBUVFAHw+vJJ3CVBZiYcf1v3s2aM+3dtuA3Dllfr8lVeithbY9fkfAG1twK23ShPtve/FBZWVSKehRuwDBwC8iCVLyuErLgamptQgvriI4W3vwsqVwJnS31ZDvXXfdnUBL625CoAaYvPyoMb5o0eBvXvVhJ/JqGM+Px/Hj98PYByDg8DKldbXHIshnYbTufP51Cu/dClw++2z+O53bVz37gV278bFFwOYnNRx9+zBKzd+Tn21TU343on/F4uLizi06rfxoR9/HfjiFzE8LNk6jI5iWU0NkJ+Pn+67AqdOAY8+Ctx39d/gyJHDuOeeg8CKFVi/XuM3NaXbOAXg8sVfYMUKYM+eWcDnw/XXS6R6cRFZZfiiItx6K9QJ/N3vYs+efdgOADiEU5/9LPClL2FqCnjlq1/FiRNqHnZcCKtWASUlmF9cxEdLX8LuqSmRCOzbJ+KB1aux6+AlwNVX4447dF5gEf76elxUXo6zZ3+qOf3sZ7EiP1/6elNTmpDRURQUALv2XIDu/X8sce1vfAO4/nrs2SPl9+57r8BfdF6O4WE1My8/8YKuaXoauOsufOXc3+DLXzZShT/5E+BjHwPm5vDKIz9FQX4+fvLnPwG+/GVceSVw3mP/qPW3ahWQl4cLcAb/e+vHgWuvxTyAK275K9Ng+ydgzx4cPnw7DhwAnnkmIeaBp5/GZz+rZn0sLgIrVuAvAPwAwCKMXCEvD/39wPLiYlwAKZpXn/0Jfmp/ewLAzyCF+A/ccBX+CMB5+fm4qawM6wEcPz6Lq68GcOQIjh8HLhj8oRbdX/4lsGULtgL45tfO4NuLizgKYFleHgoAoLQUp04B78rPxxUQmcGfLvsJFo6ch6uvBg799V8Djz2Go9/5DvDII8irrUUsBvwORAxxnbYHnADwi/l5fPnL2meW3/U9YNUqqdHfdBOWNjYCf/7npgP41uvX4vVfbWl/lZfn4fwtVFwHjnL9embh3+3tdJj63t4sT1ZpqaKCYFCfq60lYzF5nwUF8khLS13NxgM/nLa0pofac52wExPMz5cTuGULydlZp8t12rznlhY6dfD+fpK5uYoMUim5pcEg2dDAsjI5kiUllGc6Pk5WVbG21prXPebmcJjAQ3za80h7ejyBdUp1YatQiAUFhsYYds3h4TDl6RYVaXxGRxVNjY9zZsYiJI/70OdTKjAnR1FGcTEF458jk0kv80oODnLzZqX9hoZ0D7W1JBMJVlZmVc4ZCPAkBPHm8HCW0T4YVKQbi3FqivLw07rd8XHHtqbo1OMt7e9nNGqR3vg4BW9/iPT7uWmT6w/XuQFyZoa9vRrH+wGvhOjAKzMzuqbaWurLTU3MzVXrAxDQxUxOuvnTHOwl8C0dv7lZ3JKAIsLSUt4PT79su4BJFRUCYYyMWMvJd/kc1LSen6/xm5+3VKvPpyghJ8epHExOMttiMTysmw+HGYXxTfb2MhIx0EpZGdvaTEXAk1IYGCALCpwoAAMBLZrcXPb2GmHA9LQ7DqentU4GB1lfb0Cl3Fyt//5+ATGGhx1hQWWlERk0N3PzZqEVYwA3WyQ3Z2nMflitPBJhEGrq3wa17py0z5209TsJIao9EErGxmvJEiNDT1tWwVOrHx0lBwY4ASsP+HxKP5aUcAxKm4ZCqmFG7VybN2t9tbfTpeI9+rz7AdcWMmzzAoTZa8cC9ug7kQjZ2up4Z3fY35Of+cwbGtEtW5Zkbi5f13vZsrciujfd6yRg7v5LmJ4GLjjwC0mHnzsnb7iuTvxATz+Nc3ffDcRiWFZWpu8sLMg9GxzECSCrFpyTA+AMHnsMeAmiufLl5IjCCsDvXH1GEd7UFP5p6Udx5MgU1qxRsIjHHsM73gFgzx7ROo2OSjH79GlccvQXTsj63e+GhRunFGFdc42iKfvb/z3wUYVGV16JP/9zYP/+w8B73ws8+KA8V6zCCshDRnk5PvTUD03o+BkAZ/ACoIgpL09h1+7dOHVKpzt39ixOHTgAvP3twMqV8jpXrMDSpaZ8vW8fzuzdi5cWF7ETwPzZszgDGGXacQAvAcuWeQLbQCyGNWt0uTk5oijz+QAsXSrv94TRDj32GJbl5Yke7YEHxKW0dStw5ZVSp771Vnxk5QtYBHDBIz/Bpz4FfPzql7C4qCnMyQH2PfOMxnV+HvPzFlHt2GGz9B6gshLnzun3F16ofy+Azn3ppYoyl9sYv/vdAK6/HkVFFgyfPavIcs0aYN8+nDz5rMYRs6JyuvVWDA4C506exK6lVyE/fw2A3xX12ac/jXMAXgaAVavw0s6duADAKgCAX+vrmmtwua3b664DgLN4CcA5AEeOzGB+Hrg09TyWAji3uIijR4EXz57FMVyCFSskam+3rrFbXMSupVfhZQD/7b/poLfcYst31SrRugEKb1etAj77WTw7P4+Pr3kBV+U9L66tu+7CoZMn8elPA0tLS3FszW8DR49qLT7wgAYmHse11wIbNgBTJ0/id8pfAZ56CkeOLAIHD+LIkZewb5/WziU4Bpw6hXe+E9gH4EUAfgBT0M+XQXR3L3njZP8/YWPyrP3/FwCOzs/jjE3HIVvrOwHsAUAmcPCg5nPfPhtUnw+IRoHzz8cvAHxk9Yt4cXERBQB2P/MMngfg0zTgBIBdUMR4/fVaJytWQHvHwYPA978P+HxYBiWCzjz4IC4A8LPFRQAZvGLXCVwM5OZqka9YoevYtw9LoUjbPdRv0OvXnQLs2LFjuOGGG7B8+XLk5eXhz/7sz3Dq3wlrr732WixZsuQ17w0eV569XnjhBfzBH/wBLrroIrzrXe9Ca2srzv2yN/JfbWl/lZfn4fwYMAj3XfI0Cwv5jNUDxqFCP30+zlqOfQLZ3iCvF4ytrXzUagcn4QEI7iIwJJqjkhKytZWpFPndVx2THR1sbjbBzb4+9eyNjroaj4e6TCat58qUh8fsd5OTFOQ8RStaR8l02jFlpNPkXsAIeA+pbmJhjtdC8Lgdi4ODhhq8V8TtUIF/BwQ6OQkBMhoaxCLxKEyHLxBgcbGpczc0CJSSl8cHkSVNnjCvfAfEguGiGiOn9rTWMhlm+7aiUbKxkem0Rdn19XzSxsPVhRobHZk1sEPRY0uLIpqcHLa3W821o4PFxdY+CBX4wzDUZVUVz0IoyJISqp7Y2+vqSxwe5jYY6rSnR8oWtmbY368wpbGRwIJrhGY6bSjYndZIv0uf3biRq1cLeRgKCShTWSlkpBcJPwioHlta6nTxamsVpbKtjaysVLSdm0sgpCiqsdHANIe0diwyXLdO91tRQZPt2aux91Q4YjFFwhZ1sa1NNaKFBU7CpI1gQKq+Pof47OqyyH121kXIPT1UgbajQ2vF7+cChLZ9DurL9MAxTKezendGK+OBf8bGbM4GBzkJoSu3AU7J4kl7Lm+Gaq3ftWd1G7Koy7u9uZqcJFtbGYnoOfgurL7Y0sJNm1T+W7lSUWQmY5HswACZSHASVkvs6SFzcrjfIsEdUGZiDAYyg9Cj6TSzSM/BQT3jg4MCshQUaE59PntOv8KHoXYD4Ft6eDo69JlMhpyY4H57/sJ4Y8EoPl+Sb3sbX9fb5/vPi+jWr1/PD3/4w5yamuLjjz/ONWvWsL6+/v/zOx/72MfY1NTEw4cPu/err81TvLnuuuv49NNP86GHHuKKFSt+acWbN7Wh27kzaZDfJE/bBn6PPUxjAJnJMG0P65z9exgqRG+BQZYbG5lI0PXp3A1Q7B/SAfO0M4EznDODGQPI+no18NbX6wGKxcjpac4BahOwh5g+H2+Hiu6e+GoaSrn29spQ7gAInNJDVVjI2VkhAfdD6ZFMhq5Z2MCKSo0Gg1y/PqsMwnCY9PmUFYXSPfebQWR+PmtrxRM5bcaEkQhzc2WrZmwzPm0bwnEzSh7q0jNAcxBn55iNVdwe6nEzQmP2Dtt5HoeM6jb7zDQEwMhkPFTpdgI/0Fjl5pLt7XwcUhRIJmnsF88zkVB6LZ0m/87GsteuNQOBCtJQSmoa6t26H8iCWAoK9HNvL6MQsnEWML2xUQIdTkjdS/G1tJCcnuamTdrTu7roVCvo9zu5nclJulQeZ2ZYUmLfra0V/Dwvj6yoYDhMfscby8FBDgxYe0pPjwzExo1iKQEItDEO9fGJHeUJpVarqsjcXJeaLSnROjlsmzZzcvgcrC2hsJAZGPq2v1+p3sFBbtpkfWM+n4xcfb0MZns7j9u4Ttj7QYAzM3Y/4TA5PMxH7W+cmGAEchxHIG5Z4F49H6mUaz+ZmrKG7khElslTKs/NlYPY06NxGh9nBmBlpW7TE7ONxykyhKh+Hwcs/Xs3n4MM9erVJEdG5HgavVdTkwFzJia4ZYtSow/aWtiwwdKV8hA5DjjxB3Z0KN1ua8ZTbZCm61al0WtqCOyVEa+sVDq4sJAMBOT0jYy84e0FS5cmX9258iu93yi2ln/+evbZZwmATz75pPvdww8/zCVLljAej/+b3/vYxz7Gv/7rv/43/+5pmM7Pz7vfff/73+fy5cuZTqf/w9f3pjZ0A7YZA7eoXlRdzTl7sJ0nacwdXhPnLOTdHbENmg0NvMcMGPPzzeh0EtjBbm8Traoi43H1/3iK0S0trueZg4PaBAMBRXWdnbzHO34qJS/euCOHvU0gkdA7mbRa0F5mMvKI+/tJJoXKE8XYnOofIyPk9DSBH3AYMtiJBMlYzEQv7+batXTq2jG8itR5epqtrXTSOTHbbNetsz6ijg6nIv2wbcYP2r/9NnYNDVYT8flUyzLSaqeTNjqqgxm3oSSrF8jxcfFWAmRHhwy9/avNUdETOzrkfOTlce3aLHm1R1n4qBnWZyAHhU1NPAI41aWzUO2H0ajGKhoV2s6kZphKydi1tOgz+fnkxAQvvlj3tX493QYNJC1bEHbFwooK9bDFYrRI9BTHzGizvl7HTqXI5mYeMePj96vGxIoKMb7Y/4FRx1hTW2utDdEoT5vRKC5We0tJCcmWFvp8lgWYmHDUVSMj1Nz29pIlJao72lhv2qQGb5aUONX5pF3f5CSddc7Y7xKQ88WiInetIVs/ra0qXc1BDt0RWJ+aZ6BjMXJhwUkpcWKCw+aMDHuGtrjY1eS+a0buZnsu74YiRUeQXlcn41dczGRS4/Bd71ksLubQkJwOr8k+k7GxMWaBRwFFrEbNNmPPQwCKCnsgx/eIN1+G1uTIiBtLVlTo85WV5PAw99pxgC/xXrsvYLOeg8FBMhTSmEQiDNvY7X+DDR2Q5JIlfF1v0Z298YYuEAgwLy/vNb87e/Yszz//fN53333/5vc+9rGPccWKFXznO9/J3/qt3+JNN93EVCrl/t7e3s4Pf/jDr/nO888/TwD8+c9//h++vje1odsEGFv8OebnZ8llMxkK8l1a6khgnXCk9ag5QctgUMwow8Py1KNRVlZaCiYnh2FkacWOA1kgSSxm6uR7uH69PXQjI/JcGxtlHK0FwesxWr2aZHOzvOlkUhFARwcZibim5/x80x0zFhTdX1ib1fQ0GQwSCPMsLGJpbnbkw8BXCLQpmu3vZzJJ17rQ2Egn3Oow/zMzSts0NbG52Tbb0VHt+mVl2gj8fhk00/cC7mZXl5rMPWh+ba1Ul6V4fYDAHDdv1rwYQ5SMXm+vxskT0RwZISsr5bHPzKiNCWKjiEY1bo77M5EgCwr4DBQx+/3WLhAOE/gBgaBRUCXp94t/FJjjMBSRKAW8k9NQtFNSouHw+ah5sA3U65n0+Wipp1u08XZ3K/qxnkjxbQ6xH0oLP2mbNqNRzkEK5zKYIU1qTw+nISBMezsJtPF+c1aAo06PdwvgdOHY0EB2dyt9OTlJdndnWw2s5eNOGMAnnXa4K8Ziir6KipxyaiiklHYkQh27osJt4IGA1kB/Px2dViZDMhBgOGzPSiLB0xDcnsmk7qujg8A2o93c68RTV68m+6HU7V4zMk+aQdtszsqmTZrrmyGHcGbGqL1ychwzyoN2vs1QliBqax7YpTS70aixtdUptLOkRNFmPM4E4OjMuu3fhgbN6+1mjGZmaE7iGbKoSNdgVH5RiAwgbtcyDfGS/p3dw/r12i+iUZItLays1NawA1a22L3719bQzc3NMZlMuvfi4uLrusZNmzbxfe9737/4fX5+Pv/+7//+3/xef38/H3nkEe7atYuDg4N897vfzdraWvf3pqYmfuITn3jNd1KpFAHwoYce+g9f35va0D0AmDLydtWwBgdlEGprlYqrr3eN4szLY8wWPhsbZQQLCsj2dj5sC5f9/VwACNwrmkpYfetVSsTs7HSNtTMzZrxmZmQAjWGfJSV82jy61lZqt+7pIUdGGAFUW0mlHEv9aagxPBDIMoMxHucs1DNUV2eGd2bGDN3dLrqZnCQZjRqh70MsKVFa8xnbaFlbSw4MOCaLVzeSp9OGFo3FnNhCBtk077Q9sE/aptXQYI3D9fVCpgUC2kwXFhzwzXOQ2drKqSnZp5kZkn4/n4RFPx6zdUFBVvh2ZISTkxb9dHbK6JqVrqigBytVVOH3a1MzFVERWJ9ziuU9PZS4Z0ToP/b1saNDdvUeKHLp6FAEODFBl/7t6aGTc6+qotXGjmldjY9rrAoKXN8VsCAKsFSKzMvjNsAJcDInh8zPVyRmjlQGcEoTwH1aF3l53LTJmuNHR8mSEu6H0mjPwXhcu7tZWWl1qJERNU6bGkTKnD1WVspgdXaShYXs77cm8MFBGczBQdUqR0d1HGMeiQNkMqnPeg2HoRDZ3q510tDAJUvoeDo9RHMgQLKsTOs7GFQkZ/2iXFgQHZoZsTQU3W4zQ7UNqsPdjWxTeUeHDLFNJllQ4FhnHociKA8NPDIiQ+zVxROJV7GbJBJ81AzkWe+5LizkJFSuYDTq5J3GvGexu1uG055Rb2+4F3DR/AxgNdu7XQ0buC+rmN7erkxMNMoIlAlJXnXVG2zojhPIvM73cTvWa98333zzv3rur371q//q51/9fu65535lQ/fPX+Pj4wTgBL3fMnQAb789yXTaNqjycu200SgTCe3BgQDl2U5MkJ2djgrTW9jJJMmGBs7OGnx9fNxJ9SQSJCcnOTubZV9wD4NJsaxcSbeRRKN0PIlMJunRVGwxA8qNGx2c3ttsXWTpWQe/Xw9aIuFYLjg5KY99dJRTU9ZMPjOj6zVqsslJZiNE22g8p57JJNna6rgjk0m6dodkkooOjG1jbIw6aTSqTa+/X1Yqndag+P0urRQIUOeanJQxrawkBwZkyBob9XvjafIiti1b6KROMhmSw8NZw1hUxDgMRJCfz64uOs5FjwiAVVWO6zEaJblxozYyhWucnZV3ngFkiPv62NbG7MZeX89AwCiwSko0brEYGQppLGpruWWLrYWFBceH2dCg00ejVqvydPpGR13dbnLSjhuLsamJWfmh7m7Nw/S0rr23V+ukocFJwXB6mmxsZH9/VrrGywQMDNj1eCCJVIrBoDXhx2KcmFCE4vVJhMN2jQUFWeORl6esQDRK1tXJIejudnR0McDpt4VCVLTX2OgoJCfM0Zmft2cqFNJzMDpKR63T0uJYcUIhzVckklVtWL9ey8lJNW3cSKbTnJmR33iz57RFIo6MORSitOeCQSepxUBA6ysS0QdmZ/X/6WmtiXSaHR2i61u/3q43EtGceS0I09NO9qjbHCHnkC0syGn2ADGjozrfzIxrJWhrszGuq3OtOwyHHdGBFwX/9KdvbMO4shRnXuf76C8V0b344ot87rnn/j/f6XT6V05d/vPXqVOnCICPPPIIybdSl4R5jDO2AEpKKGNXUKDNJCeHGzbImw7jVWi9ykpFFCUlZFWV0pI+nzbH9nbjIQwTeF41n1SKExN6nhcsmjgCT7DzDIEhsqWFQEgUT42NnLYoaAJKjThSzMFBsrraeZ9dXZamjMfdZsqeHvr9trnZRtrfr70nY5FYb6/da2Ul29qsNhUOE9iuyKCqSnx+HizU0rKtrST9fkVFAbH1NzSQHB9nT4+e26ehlM0OZEElLCjgWQgk4PeTnJgQRVnKGNtravRDKqV7SKXIsjLXDjg0ZPyMFtnshepxEcDSnnudDMxeQPdmQCIBAHaQbW3akEtLyZYWGYhIxKUUW1upfraMba6ZjAbUNnVHE1VYmGVemZ4mk0k2NmrPrK0l2dlp/W87jJotSublGUvKKYFzrFa2aZPG06M7SZoDw+JiRwSdSFAG38tf9/c7vkavtgMcUGagsFAbbFkZN23SmHkMIJWVdGwwSRtzR+AcCDCVshqjF2m3tWmsKirIVMr1qbGwkGxu1v/r6rKNjq2tSkW3tuo6c3J0b01NciQjETlo9szV1GjuvdphJGLr0Cy+Z2BZWMgEVK87CUvv5uWR4+NcgLILEbvPm22tjSCL+h0bs3VfUKDapNGCcXg466y1tZGJhEBhGzcyYE7PvYBjRnnOrpt9fQzb7/ba5zw9OQ9kNmzPUwqQt5KTwxSU+gQWmLLnAzglUJjfr3EbGNC9DQwoIv7JT95gQ7dA4PTrfC+8Idf0z18eGOWpp55yvwuFQv8uGOWfv7Zv304AjEQiJLNglIWFBfeZ/v5+Ll++/JdKt76pDd3P4ZE6b2NvrzaAaVvQUcARrM4gm+P35Hwcf15bGw9D+fpswXkHgR/p70aY29UlaL6jKjK6qeZmkh0dihQtWuHEBMeQ5ZOkz6eHYWBARqa/Xw/Yxo0yWlVVBI6S/f1e/7i8YqOlAk7r883NZCzmgBcR83YZCllQE+bAgDa0hBlbj6ia1dUsLlZq0CNtloL1MdGDeTtWVRXHbRxiUK0kCNVZ1q+3qLaiQg92aakMVG+van0bN2ZTu62tTKfNeBut0xHbKI8Dcolzc00Tboc2qYICpxLvEVyzp4dlZdpIx+w+op5xLSoic3IYiVg01dOjqLayMktllpOjqK+0VJbOc3JKSnTQ0lLm53vSfs+TExO2pn5gqMetTtEBOMrjUDvD/LxFVZZKS6UMrFFa6iSaMrZRHwb0u/p6bZ5FRUrXWg3Z0/nj6CiZn89JSFV9BlAKdXCQQJIjIxYl5ueTAwNK6ba1yULH42xqUoo7CjVgewAr18/S2ChDaVG9J5La30+tI09mKjeXT0JpxjDk7I2NkczJEe4Eiu48PNXAAMlUivPzlkXo6OAcwO9766ymxskpPQPV6jIw4IlRdTESIQsKZOz6+hRB9fVpznJzZSBbWsjBQXZ0uO4SZQnCYZ23p4cMh5W2j8XcWojbOKSgyDQGaA23t5MTE3JG6+p0I729ZFERYzFzznw+HauuztpCNnM/hNgGhrQ2fD6Nwau550pL+Qu80WCUX19DR6q9YO3atZyenub27dtZXFz8mvaCgwcP8v3vfz+np6dJkvv27eM3v/lNPvXUU9y/fz+DwSCvuOIKfvSjH3Xf8doLPvGJT3Dnzp185JFHmJ+f/5vVXrAb8tY7OrTJT0zo+RgYIJlO6wGuqcnK8rS1OVYPT62EJSXaeNNpbtqkB7ery1KEIyNZDkZLf8Zi9vuKCg4MkEAHh4bEeXkWgnjPmGfJ2lq2t+tY6bQuZX7eQBwms8JolM3N2nzq63VdXV0kZ2aUcguF5FGn03o4S0tlBMNhx53I3Fyr+4wSOCbPt7+fgYAu2xOd9RTYOTLCaFT2wNMYA55XYd/T1amvl2GqrHS5XMnh3MeyMhW2fT6SnZ2MRnV8IRHnBOQI09XOVq6kq980N1Mf3LjRKQiEw7qsgQF578kkteFUVxM4ozpKfb3ehYXs7dX5i4s9MutjupbZWa5e7YmHnlGUBPW9rV+fjRzr61VrbG+3cQkGSb9f66WqimxrI5C01gPrd6uokGErKyOTySw3qGkOsrBQxmx2ljFkW0iam0n29ysys143r4Tn6Q8COxThjYyQPp+chtZWbfLV1TqvAYfWraMGqrCQjMV4HIqGWlq0z3tlJpaUOB28QEBDNwc45pvDULqSOTn0tIDskDKu8TiZyTAYNGelo0NGKxg0MM5ma+25y0AOhxyKs6tLElfs6CCbm7kDalk46RnOnh6tvbo6fQ5Skh8xI3czwO/YdzZtstpgTQ2PmHMKnHH8tfn5zCIfTTVg3BylfnNeWVqq+nptrdMb9Hr6wmE9F+vW2XlKSxVBGsVPfb0iwxlzwAYGrPaZk6M9oqXFIWGDQdJBk9vbeeutb3Tq8hA9Yd1f/X3oP83QJRIJ1tfXc9myZVy+fDkbGxt58uRJ9/f9+/cTALdt20aSfOGFF/jRj36Ul1xyCS+88EKuWbOGra2t/+LaDhw4wOrqar7tbW/jihUr+KUvfYlnz579pa7tTc2MUnjhhcDVV4ttA+/HwYNiSjhxAjgjTgxRKxQUiHphxQpgcRE7d+ozBw8CePvbkZeXh4XjF2DnTjE8rFwpLkMUFQHJpFhT5ueBsjIds7QUOHlSfHv4IDIZACjBUvvKK4D4JFetwsGDIm1YutSOCWMnuPJKzM8Dr/g/iNJSEaT4fCKxWLcOOLTsffjABwAUFMDvB46dusBoHU7g+HE45pTduwGUlxu9RzlWr74Y8PuBt78dBw/q19u36/x47DFMP3kecN11jvgCjz1mlChHxWiyuKhr/93fxYrcXCAvDwvnX4aFs5fg4os/CGAFCgo0pLm5AHJz8c53AldeacfDBXjb23SYdeuAtWvPx4oVwJm8dwE+n5g9li3LEmIePIiiIpGk/PjHwHk5ORofI5IsLMwRwcTu3R6lCE6dEumEzwcb+2UoLgawcyeWLQNOnwZWrrTvFRVhfh4IhQDgncDSpVhcBA4fPouiIiN8OXkSyMvDtddCFCDXXovKyuXiQMVHsbS8HLj+evzZn0FcmCKr1HgVFLifsXYtFi68HKsAXFBcDBQUaNzz8nTf0C0vXap5Rl4ekJeHiy8u19pYtgwoK9O69PkcB+eKFQCOHsUF8y+IE/PKK6GLFSfM+ecDl16qZVlQYNN5/vn6XEEB3v52nfsy2Pz6fCjIz9c58vKyDD3QHPp8wML5l+H5A+fh4EE73jvfiSLYNb7tbQDeiReh9X/NNUBu7krg6qtxXnW1nh9A11hUhFUAVgBYVlAgdpjyco1Lebk+V1CAgweBSwCgqgrLII7SZdD8XAbd84qcHFwEYO3aHK3bK68UK8z69Xi59gYgNxdLc3NxBUQVugx2zLVrdd4VK5BOAygtxSr72+7dAO64A8uWAZcXFgJf/jLOy83VfRqzyXIA7wJwic+HvDxgRU4O4PfrHkpL8fLVHwXm58XwU1CgB/zEif8EFpJX3qD3f87rkksuwY9+9COcPHkSyWQSP/zhD7HM1hUAFBUVgSSutbVbWFiIiYkJJBIJLC4uYu/evfj2t7+N5cuXv+a473nPe/DQQw/h5ZdfxpEjR3DLLbdgqUcz9R98vakN3c/TaSAvD3fcAQBnMD/v9g5cMP8C/uLPX4Hj3Zqf1xP7yCOOmWfVKgD5+Xj2xAlcuuRF5OUB71v1Mh57zJ770VFRIT3wgKzF0BCefBLaCVavNlLnjNEQZYCiIjz1lB4MbyPPy9N+deCA3pcmf6GTHzyIZcuA87b+FH6/Lu/gQW345eXAZU+P4corgV34ELZvBy7Z/TM9QDU1GB4GcMstQF8ffqfokAyg3w/gZ9i//+diLI7F8P73iwrryiuNOurqq0V8/fjjuPFG4Pd/HzrZ2bMAVonWyecT31QohJdOngR278alMz/Dpanncfz4PgB74fPpeCdO6FaiUdswAAALOH78JRQUwFFDPfNMSnRhW7fKGBYVaRNctgzYsweLi8A73iH7evDsWRw4ALzy6T8GrrsOc3MZjfP114ui7cQJrFgBHD++iAMHPOalKTzzzH5gbg7PPJPC4mIGhw8fx9NPn8UvDhzAgQM213gBpx5+WBsSzsM11wD7978ExOPA/Lw2pttuA/bswYEDop4CJnWjPh+iUbh1MDQEPP74DPYdOAAMDeHE3BwW778fl+YcAwA8v3cvcNttuOsuAE89hT+6XtRxK1ZoXPbv348zjz+OFw8cwPHjx7VMr7kG848/jivyjskg7dsHHDggejfz4I4ehRb4/DwwOIg9AFIpoLpav15clG+HtWsd0/a112qcXgRkDd/+drx85AgAYPHIESycXg7ccQfy8vS4nDolB2LVqldRRhUXa4s0smdgESK9msHBg8DJkzJ7Lz/8MAYHRdWFxx4D/s//wTE7xD/Nz2M3ADzwgPyY227DFIAT8/NZguxHH8UFAC4H8AJkN3YBwJ134tjZszgFo0Pz+4GnnkIioTm5aOiHwDvfiVdOnsS83aYPwBMAcOIEngWA22/HU08Bi/fei4MQ/diKFQA2bMCjj57Fqbk5oLdXXx4cxOKdd+Kpp0Qj908AFhcX8dRTwM/PnsUrzzyDp5/WxVy0eAw4cUJzuGYNcP/9wIMPimburdevx+v1hqv/FS8vlP/CF5JkMilQgDF9cHycTKc5NmZ1m1BI9YjubjIeF1y7vT2rSlxby6Eh6xsKBl3LVjhMMhp1hLoeVJ6trQJLdHerztLSQpaWKqXZ16d8loe1j0a52UvhVFUpXTcwwO8ADpnZ20td8/S0Up7NzWQ8rrTlwoJD2aXTdNfipIgM8h4MMosEDARE05S0643HHaJyft7uc3CQmUxWyYiZDNnUJLBGOJxFF5i+lwdFPQ0DMzQ2ZvW/gkGl7KyJnpEIPYXWw1ANNZ2m6/XjyIhSb8mkI6QeGSFZXOxkh5KW/kqlSFZVZb/X0ODSQ8kkybIypaZMDDeVMq5iGNCiqckBTTg4SBYVsbeXWeh53I47Oqr7sbRwPE5X82J/v9MuTSQMbec15g0Oaj1Foxwa0jRzdJS1tYK+Dw2RbGrS9Y+PZ2ncPAG6hQWtM5MsCgQsZR4Msq1NaUSvFYUDAzrnzAzHxgxENDPDgQGq1tXU5NCEHR0kCwsFHIQATMAOzUNPj2uledpqiMzJIeNxFhfbus/NJWtqNP7JpENdjowYoMcjRB8c1L/RqNZ9OOwIxqem9A4Gtab8fqVsAwFDXVZXM5nUGG3YIHSlN06bNukx6+kRQMW7fdcGUFioeZuY0AkMojk/r3lrbhYStbLS5sv0IjMZ3T9nZx1wNADV6RmPa3zicT1jHqKzp0dAlRgdGrmhweqzxjjunrP+flc6CYXIiYk3OnU5S7UHvJ737H9a6vLX+fWmNnS32mYFLLC11RhFrJHbY1ZgKCQjV1WV3WQ8aeRQiBwcFMS4o0NF6UCAPp+K3HuhfpgnLSc/B2NFD4cdvyOQZFeXof4GBlQcb26mJ5IWiZAcH2cqZZ/Jz+fUFN3mz44OsrvbaYmtXWtggb4+srGR4bDVlior9eBNTxN4iAswtvzxcTIeZyRCAt8msFl9Si0tGgdrDWhtpb5fWytD3dzsUIfs7mYwaOKffX0yEn6/wC4wlFx7uxWzd7o2jaEh3VtXl4Z382bVvgoL6WifWlqY1cLzmuU9yeqeHrK21unvcXZWoJRIhBs26BitrdnbSBmYgSMjbG83I9DQQCnCz5ENDVy9WptQZaV6HIet5ldTo9rdo1BvWl0dyYkJ1bwWFsiGBs3txAQZi7GigtbfeJ/mKRqVQa6ttTk4RGCr2keGh/mkrZNQiKTfLyBIZSWBnwklOTIioxwOc3JSc7XF5rCsTPv2li3MioJGIvo3FtO6TqXIjg5nfLy2iKDnSHR2Ol4Eb00461Jfz2BQ/WiMxXSylhaypkbN1dEo6fNpPjMZ1a49QcFMhrOz5pfBmssnJgiccnp0GzboUhMJkmVlrKoSbN9DOwYgANL9UMP4XntuH7afH7faXwYCwsxCQrVhM3I323cH7Fg+nwGVRkc1j15vQDTqKN48B/RpCATVA4GyAgH1x95px/QYTfx+PfusryeHh/m01QODQdXc77SffT7ybjtmXR2ztfSaGq5erWkLQkCb5D33vMGGbj/VHvB63vvfMnRvlterDZ0aqC1aMHVolpdzAUZ/1dIiKiFkUX+sqaF1/JIjI/w7GPFvdzczkNhmTo6ai8P2kHLjRsGrp6cdum9+XqdzyLNwWNHAwAAjECBhYIBC11mP2Q7zjEdG6EAuSUh6ZGxM+9LYGMlIhDMQOS+wQw+xITqBrzMEa6I1L1OAnO8ROOUIqunzaUdvaSHTaYZCah9IeH8fGGBvr7UyRCK61tpap0D+tG1UYxBKbuXKLLuLY3VpbmY4LCOXyWgf3bxZY7FlC7O9eUVFGuNkUuNRX6/Bi8UECGlqIhcWZDhaW702MzKZZE+P9rHDNh/MzdUAxmJkSQmBOQK7yPx8zs7KQMZiOvf3IRBCJCJH6E5bM5OTJKurPe1dxuNmkGdnyYEBgVsgLk4P2drTYxyjCwvMyZED0g/1/p20+YjFSBYWctqiIGCPEIPd3bp/v5/s7SXwFU5DDfDmVzAaFWJyxjbY/Z5hGR8XgCmTkXPW10cuLDCdNimedJpsauKmTZrL02bMwzDUb3c3OTjI/YBT5+bCAllXxyisaTovj65Bb2SE3LhRkbEJijY0CIUYiWiNeMrnXoTmMgsTE4zFBOC414xDBkI9jkBN29+18fiura1heyZYUKCx8gBkBQUcGBBS+GY7BnNyuH69ll5Xl2y6l53wUM87YA5pQwPjyJK8ewLL90IO03MQBd3srAFuDHDG7m6yoEAo30CAHBjgDDzZpdv4d/BAMT8iQyE5GgMDHtaNI2aUk0uXvmXofk1eb2pDtwfqg6mo0Oa6ebMcX6/HmaOjr236DIfpCalFIhY5eWiyeNypPDc2WrO238/TZrBYWUnW1sooWPotGNSeOzZmbQadndoIPFSh11RrKciuLioUmp7WtczOkr29jlGst1ebbTJJGZJUihwfF4VWaamjdqqsJNnaKjRgOq1jJZME9tBDf3qRw+wsyURCqa5gkI6t2DgCGQy+NqLzUkHexlxbqwuzzXblShmSykqLUKenHVK0p0d/r6vTsG/ZondzM11jek8PtaH09ir1tXGjNqneXh2gqMghBefnlQL07oHeZjczw/p6M6h1dfT7LbobH2d+vvamhgbri/P5ODam6V+/nmRxMevqdL1TU8ZVOjlJVlYyk7F1k07rmisqCBx1+oMjI3btySQbGozaDK+KRioqHBIvBZATEzLidXU6RkUFMxkNcU6OKLCOwAiY02mJznvGKRzWhjs9rXszOfTJyVfR3EUirtWFwSDDYd3z1BSzDCdVVWRVFSsrreexuVl9Y9XVpN+vOS4rI2tr3Xe9BneOjyty6u4me3p4FqZ0EI8LodvezoYG+Swm1E02NLCy0hhumprI6mp+y86R8RyV2lpGo0LYRgENpHcdLS0O1eg1tg/YvN8M8a5WVppz1t/PmhqbMy+3bHRus+YwMSeHzM1VpFxczEBAmYFtZuyYm0smk5qncFhOxPQ0j0Bp96Eh3cuEfae319oOjIWF0agMvDXFx+M6fgbg/v1vdOpyH9Ue8Hre+94ydG+Wlzfx28zjNWpGFhfLjmzaZJFEf78evkRCD24qxWRSnn1Tk8H4BwYYgqigKiq0MQ8NUW5qW5trNPWkbsxGyIDF4wSiXL/eNszWVtULy8ocA8PkpOzGli3G2xiJMBi0TcHohaamSMbjXL/e4O6ZjOPk5OCgINQeMfHAgDbYzk5dk1enmJ0lECKwmXEoneXVEtrajLqro0PXbvRRHkcfi4u5cqVdXzTqCJrPeptFPM5oVJB94F6D6h8gcI6plIxIbi6t+TtIYBcbGrLtaj6fxjQatXMkk7q4cFgGwhhpIhHb/BSkWmr4tDyX0VGyvp6Hbc710J4jIxEC27hkCa0nbYdxLz5PYA/j8KSAks4J0H2cs+McIBsatOGbmO7UlIZFn93lKD0cQ8n4OD2WiecguPwkVL8cGSGZm6u0byRCYI7s7NT9QJRwNTUk8DOOWWSwdm3W0Yl411FTowGpq8tG0eXlHBl5VetLd7ea+sPa7KNRpY03bWL2+8PD5Pg4161jtj2gtFRvz8mz9H5JiZ6fdeuyJarGRurZ6e528klKk9/1mrYU4HlyctJlJ0bMSLGmhv3IkqlPQFmWqiqt6fthmYdAQP8ODjpJrTFY3dUMX79FdkDStYR48+4K2KWlWrcNDczAMjX5+Yrkq6r07OTkcNiOz+FhIyXYQ6dHND4uAwyllfvtsxNQG0TUjs9UypHC0O8ncI4zM2pTOA4xN72xhm6GSpm/nvfMW4buzfLKTnzIef8DgFxLo2ZiT48MWW+vFmUmI0+5tVU7v0cC29pK4FC2wbi+nps3Z9M7tbXaPKzWrnrLxo1kaSmbm+lIaxkOk62tAgaEQtrMBwZIn48LyNYoWFsrTzUUos9ndUV7gBKelxkMKmVVWioD1dRE4DTb2sw4LSyQ4TCbmnRdTU0ko1FHLFxZSe1Qvb3ZVEwy6ejDODHBsTHtFSMjFkFu3Ki/VVfruoeHszWrcJgMBPhdKJ05DdVQTpsX/oylalhUxFmo5jJn3vdmQBtIZ6fmpq2N7OyU0WhoYH29ASvMYEejJH0+pQ67uzkCcWxyYICJhNWgrF8rap5zxDZSVlW5Zu0xu9bVq82pMEb9/n46bTjm5JAVFdYPHiQLClSrcQoGt/BJgIWF1vvY3q6NPxBwfKGFhTIIF1+sdSLO0fsIiMaL+fmOaqyhIduDFYOkiIDTinKKi8lUStfR3U3gmEXpp3gWyFKTVVUxk6Hj/wR2MQ6lo9na6kivOTurdVFZSUKp0MpKrSkmEorGLdI7CaXojBtBG3lnZ5ZWLpUi02kZp8ZGGXSolrjDjHUvVAYAnreG+yRrauRMqq/xgPXbHeWmTeJcVf/pLjkHjY0MBmkp+DNcu1a9kiwspM+naFy3knR6dvX1ovpKp834d3Zy82ZzpkZH6ffr3HJ0TssQ5uWR6TSBOdeDN2mO7NCQZR8WFlRvTKWYRDZl39hIc/gOsKrKsj4G/kokqPxzJsPKSt13Mhx+y9D9mrze1IbuK19R4244TLK2lg0NyhJ5pAcevyMjEdbU6Lmdn8+mtUpKSDY3c2BAD4Pfb7yZsRjZ3q6UkSeoOD3NpiZtajMz1JfTaUVlxql4HEqFxKEayewsdRHpND0+LBcN2jVFo3RpIpdibWvTpjY9LXDLyIjbBDgz4xBkU1O6n7ExypjZBXoevkcCIqkfRT9r1+o4S5bY5j08zDnbzNevJ9nernEzomYuLLChwTaAkhJ37OZm8/ZHRjRovb1kJMLWVtuQQyGdoLnZ6bN57FiZjM7D4WH9YXjYAVc8pKfTSctktNHm5spIhULcvFnnDgapQU6ndfD+fkdw4SFnQyFtjitXUnI0CUW33oa2fj114mSShyHU5+bN+l1dHR0n4+bNJCsqdM7cXLcZekAQhkIaj3icAwO6tvp6kum0BFrDmrtQKFufjcdtnJqayI0buWGDHJ+BAc19TQ2zTk9FhRZtJuPSrRlA99/Xpy+WlFgzd5JnIeAER0eNZuyc1nVbmzb7vj5dSDxOdnZa9LyXwClGIooK8/NNZy8eJxsatP7icTIS4dQUszXJ0VG3jtjTQ2Yy3Lw5G8lPTmqcgkGNbUWF1qyHrPXSsBwelqPR06OItLXVkRt0dNi6CgazenYFBVoIPp9jKDniOTOW9p+dtflcWCBnZ8VgZJJCXingCODS4I5wtKgoCzRpbSUzGRmzQIBbtlhaPBgkZ2YUQXd0kPE4UylN6cwMedVVb3RE9xyBg6/z/dxbhu7N8vImPrlzpyD+PT2mn3gfgSEC2wj8gOm0Ip6VKz2WjgUq5RYmcAuBu5xcj74XIvAjHrdoATiqzbihgczLM490G9euNeqhzk729Mhr9AiA168nOTxMASROG6NIkMAxAg8R2KuHLGnpl9ZWAnNOAqWhgdo4amr0/dJSB/memrK06fCwHrREwiHzGIkYwf9p473cafd4G5XGe97YU7YTOMPaWoN5W8EeOOpSp55sjCfHA+wisI3NzbQo5EcE/ieBTq5cSUsVHjNpnm/buY9y9Woaxdfddu/bCWxlbq4uvaJCEfFzFoV6EWZ+PrVxJBIE7taGPjmpKCSReNX5A1y3TkPQ1aW5Br5tJZ+7CNxrqNyQRQNPmP7dt53xBx7i/TCtvJISpoBs3W5wUChKj6HeizgrKlhfbwbJo5gpLtaaGB/Xtbe0sKnJk+Q5pQ0zECAQILAtq4Dt87m1VFJCcuNGAnMmEbTLRFc3SyXB5+O6dRbp1NWJe9XaCBobSYZCLCwkgdu4ADAnR5ejazjqyIsP2/e8FGgk4kVSRyn6O2+9DhH4nloBAIfq1OeesPvZbs/VTjInx4RynyBTKddxwuFhsq+P6bSMmrcmamtJ1tbKUIRCTCSMlaWiQg5GWZnTiuvqooyQ3y8HwujCXi2IzKS0HSMRZmu+CwuKqBsaLLV+nwyh0Yl5Yq1AgGmoTNHRQTI/32Sn7lO91dSN9wNkKqVKgkXazc0ax95eGdX5eVq0et8bbOh2U+0Br+f9xkgHvdleb2pD9573JMmBAW7aJIZ1lpRkEX25udkalMmasKpKqaP6enm1NTVkX5+MU0kJWV3Nk5DYZUcHyY4Obt6cJefnxIR6kCz15fVjzQAyToODQsHFYvKYm5vVK2YptmEo78+mJjM6pzk0pM2+t5cO8cjxcQ4N0Uhkt5GdnQSOOQDF2BjJigoH59+wQRuIV5Noa6POU1GhzaKtjRwfVyqyvd31FE5MMIuMbG3Vpl1aql3TvFin9VVV5WSLHoZABXttwzwJiYWyspJRM1x7LYV5DyzV29DgZF/Y0aHIqL6e69cbtHtmRl73wgJZXi7DPDzMe6E6iTRpUgyH6XTOZuz8aUv9nYQhbevq+LB9ZmSE2u0XFtR2EYtpMjs6BFCoq7ON93tkU5NqOIODlrq8lwt2/ro6kr292iS90LSjg729Gqb16zWWooUbJRBVpNLUpPTW5CQHBlSDS9la9dKdESjtqzWxze4/bE7QE5yx9G1XF+nluysqtKECp7Lk5DMzqjv19TnhCfb3a82Pjjr6q7Y2qwX39sp5yMnJOkzhsDbzzk4ZC1M97+gwJYDiYma8+a6rYwzSeuuHpw25g2lzFrZskX+wbl2W99jrSXwOyIJaRkddb+iWLXJ01q83irVgkHV1msKaGhn52wGysZHAGd4M0YQ1NtKlK43j2XUTjYzYsWpqdPD+fhYXZ5UonrY5aW/P0uJ5PYcpgB4fbEeHnrX167UENmywtZLJOF1HptOuLzd5ww1vsKGLOKf1V39H3jJ0b5aXi+gMbealAGdm6GQ/Nm82j7u/Xw+sNUFv2EDHg7llCw03neb4uDIWQ0MkYzGXlfRq3NEos6S1fX1kWxs3bLBU5+Aggee14fb28ixMd81UNqemSE5POzZ/71pSKX3GghfHI9jTQ7KtTcZgfNzrPc8+wZGIep3CYdcnxUSCY2N0PVCJhG7d07irraVDhXlikeGweaO1tezvz96L21UsNROJZBuAu7p0zHXrDIAzPEyGQrqv5mZPR5acnnZpnPp6pa6GhsyomlPA/n4yndY4jI5qniYmsu+mJra3W+N4MKi3odzWr8/WF2dm6NJtHm9ob6/O5Uk2MRDg+LgOu2kTydlZTzBBv5ycJONxORpeZN7RIeOSm0vW17tGbNbXv0b6JZUimUio1llYKKs4MiKjuLDAkhJdo3ddnqxSOq35rajIBiCeHBN7ex23ZnMz6XWy+/2vqhWXl7sU5MiIvjsyYpt+To7WT2cn+/utLaSpSb/z+ZRmtKZrQ9A72cTJSc3f0JA9Q4GADOHsrNb15KS7NqMfdXXy/Zb+ZTJJJpOcn7f0biDg0KuZjMtwkq2tWvsG/mI4nG1xaGlxeWiHiDV5K+8eNm1Sn93dUB38Hu++DOjFaFTX0tHB+fnsvblyQX+/4z24G1ZrttYZ97w3NDgpII6Pk7GYnsdYzJUaHBdtNMqBAa2x9evf6NTlW4buV339coRhv4avn+V9Ep//vOgKe3r0u6kp/btnDzD9zF8glQLOnQKmtgKxGPA3t1yAW28Vm9GfjnYBi4vo6roApaXAU08Bn5nuwwVHj+KBvP+Lzk5g+fwvgAMH8L2tn8CPfwzcccf/xLJlwCafWI7+qeAGVFYCF/w/fZi++n/iI4Fl+Po3gLe//Sp89SOH0dYGXHPNb+Oxx3TOjw+WAw88gIvy8oC+Pozu/iG+vuqHeOXGz2Fqyigdf/9ODB34G3zyd5/D/KqP44Oj3wY+/Wn8ZPsl+OSynTh6AsCqPHGGff7z+MXRS1BQAHzjG8BHu4AvfhF48knRQ+XliaLr058G7rgDuO66D8LvBy5ZPIQD114GfOlpLF4rJrAfpG7AqkXgv3cV4HnfBzE6Krap48eBD3wAmJ4WldnTT4vfcfiGP8bCHl3Gx7s24IHPikKqvPy3sWervnvPPYexuLgSS5dqnp659g/wgQ8Ap5cCn/naV3ARgGM3fRuXYAzPrvgotm4FvnDds8A11+C2LwPfxNfx7J9803GFdt4IPPlkAgcOvFO8kBCV01NPiaHr3e8GNm/W7x57DOjrAz73wHW47cvAjTfq59LSy7FiBfC1rwH/9+A3xDW1fj3mAbycdxU2bQJw4Erkn4Dox268EdctA3DuRuCRRzB9+kNYuQhcjhdx0SMPAMuW4aD/j/DB664T59pRcYf+dOe7cOqUqLWWz/8CfX3vQ0EB8LNHluKCpa8AO3bgmms+ji9c83NsvP0qYFkcwUngI6N34PGzX8BLe57E7c8A33vyZqCjAzk5l+HRR4GrCgtxbmoKSysr8fN1/xN5JwCsKsaBUeCuu4Afvv+9GB0FPnlbG/zbjRZszRpceimA0lIUTE3hhav/CJefehZF5+Co6rzn4sYbfxt9faJw+39vFV/hs6cux7ndwOhjvyP6t64ubP0TfXdoCPg2gN0A7msDfnibD8P3X4D8fODj5S9rTIzQ9d57NQfl5cDvnDiB3buBj/oWgS9/GT8/cAmu+tjH8PL6P8JFJ0448s59Ry/B+1YcA06dwtatwH+vq8Puu+/Gvn3AxwHsA5DX24tr/vqvgfXrgTvv1AlWrcIZ33JccO4cpqd13p8+cjVwzz2iSdu9G1/+stZQH4CdAH5R+sd4X99HMXPt13HLLcBPrlwlbrWCAi2goSHc0Qf87dFvAF/+MrBiBV5ZegHO++IXcd+eD2LNGo3b9u2/6q72b70y9n69x/gNfP2ylvHgwYO84YYbeMkll9Dn8/HKK6/kk08+6f7+yiuvsL29nQUFBfT5fPy93/s9/uIXv3jNMRKJBP/0T/+Uubm5fMc73sHPfe5zr2G5/vdeLqL76U8tvXdGXmF5uaNWYn29YySfAcjSUqUdBwayUMXubv3Ng3Mb9nv1amOX7+jwyDuU6mluJouLmQCM2V5ADVo95XEgy1iSny8kYDRKlpTIgy4r0zlSKac7x4UFcmZGtYnJSTI3V4i6UIgMBuVRx+METst1bmhwkYDXlM2iInJ8XAX1wUFFi5bCYkeHk//JzaW85IICjo0pi7lyJcm+PkajirgmLD05g1chKzs7Na5er2FHh0KhhQXGYIjHlhYnLMv2dqW/WlvJ0VF5v8YUw5ER/a24mGFLCwKnskCAoiJdaCaj+QoECCR1sX6/q2syHtfvWlsVkWUycr8tTenAOYYy5cBAVkjWwEDJJB2TvqflyZERsrBQY9XTk1XAKCkRi4rfrw9WVLi+zHCYThyXra1ZqqpEQtdhygOTk3TpQCYSjEazEe+6dSQDAacU0NFBsrPTRXdeajQQsHVYX+/o6lhaqjWRTGYFiMvLdZ35+ZyfN/BEXZ3S+OXl2YhwYsJF1sXF1HeamrK6jr29mr/BQSd1E4N0FictNewxCoWsfsWcnKzysRdG+/0an+5uzcXIiNbR8DDZ1MRoVGQKXt2S+fmk36/oMBqlayCcnMxKX5mQ6nHLpNzslQby8xUt5ufreO3tdHnJxsasZFNbm8YtJ4dsalIKubJSKe1EQt+pr9f5gkGyudkx6rChgevXmwZfQYGTGWJ5uQOj7N37Rkd0T1G9sq/n/dRvZET3Sxm6Y8eO8T3veQ9vvPFGTk9P8/nnn2coFHKy5yTZ1dXFd7zjHXzggQcYiUT4yU9+kqtXr+bp06fdZ9avX88Pf/jDnJqa4uOPP841a9a8Rrfo33s5Q/e1r7kykreeu7qy2QQnrjk6qo0wHvf2WjY0WI6+uZkMBNjbm83pMxp1NSzH/WiIyU2bqE22tZUTEw4IR2BOMO3JSc7BeBRnZ8lwWAbImpCDQaVAZ2ZIzswwldJ+4nFTOh22sGSH2Nsr47KwoM0mGGQ8bk3BnqJ5Wxs5McG2NjpZmJkZ7WteL926dbqVoSFd1qZN+no6TbKggMXFdNB5ptPakPr7yfFxT6qMXV3ar1TUPyVnYHKSzGQ0luEwlyyRXQiHs430DQ3ZlKHbKIqLX5NWdorvra0aiMFBcmBAzsDsbDZ91NjItjYBgGprs7WSjg4Zjfx8HXLtWkM9Tk+zuVnjVVtLMpnkunXZvkZPcZ61tRrjsjLGYmZ4ysvVkAxklcLLy8maGs8P0clSKR0okSCrqwWeqax0+3lFhRk5S7M7urq2NrKqiqtXa8zq6uhUzlldrZ8B1zfJ9naWlBjGwpwFFhWRCwu6j85OFhfrOGmoZYWhEJub5SOxvFz1XEvzcXKS3LiR9fUeGOUcm5uzU9Dba+upr49e/rW9nQbPf57MyeG6dYLbl5WJiSUGY3MZHs7WEqwHkgMDmtdEQmnvdDrLHZZOay2HwzIeubkax3hcFzI9rWOWlnLzZrVpzAH0+8VgNGdG7mZAg5tIaCA6O3WMykomk9aKE4lovjZuJKNRxuOa/qdhDezhsNZbIiHh9FfXLCMR/T+R0Hrp66MjbPVS7pkM5+fJT3/6LUP36/L6pQzdV7/6VV5zzTX/5t9feeUVFhQU8Dvf+Y773YkTJ3jhhRfynnvuIZlVon11FPjwww//Ukq03sTfCTFLCAV2QLtFbi5ZV8cU1F9z2D4zA4EkWF2t3bC4WJ8tKODjsD6kpiaLznYS2COwhZG6Tk4a4KW93QFZ1Dj9PXJBrAOsrpYnX1DARy3q6+mhdg7L+bOsTACAUIhcWJDnOTPjhJ5jsVc1Vff3c8sWXeqWLWJcYEODIj6LHqNROh084Av0+7UJOsaLsjKyvZ3pNN1D64FIPGaQREKGoKeHZE4On4F60B6E+vo8cmYh8o5lWy5SKe2gMzOuzjg5afD5QIAVFULRRaMCkJy1TShp45oGDMV3zPE7hr1I0Fo8RkasNcJAA2chcIuH4OPIiCENz5G9vQ7MOjam/WfSi1wSCTY1CSnHwUE5E1a/aWykNQ0nXVM6cJfRPH2bZ219AHv5DARFHx/PokaTSZLNzUJGRqOctaiYBQVsbzeS6elpR+ot0MkTuq6GBgqdt1dzlZND5uU5CjCP2qqkJBv0HoF6Bj0gSSqlvXnJEjpjzWRS2YqODt1rMql594i6Cwpk4H0+GeHWVkWTfr8mMi9Pz4TVCGdmrHHbRGhXrqSBZcQz29jIrDGIx3kPsv2UsxBH5QTA22F9pzMzfNR+9yiEdAzYehuHan07ADY30ynes7iYZwFPftGV9ZzyrQFNboYIokP2DEagLMsMVH97HNl+0P5+W0eplLIXlZVag9Z24DWhxwCnPD9m9wGENYfl5TLgqZT2l+JisqDgPwGM8gSBZ1/n+4m3DN2/9/rABz7AL37xi/z0pz/N/Px8lpaW8gc/+IH7eywWIwA+/fTTr/neRz/6UX7hC18gSQYCAebl5b3m72fPnuX555/P++6771897+LiIpPJpHvPzc0RAPfsSXpZQLKzUxvOwgIjEf0uFKKigXjcMeX39JDs72c0ag2fhkCcmaEjeJ2dte95hW+j6XBsJhailJWRHuojFKIDkzCTcUCFsLfJDQ461MRh2/AjEZKDg4rOJid1QYmE0lENDQLGjIwIwNHe7vqTGIm4PjtPkSCVIplKyYuPRl0PGTMZsr2dQ0PZiJH9/a6p2PuXgYAiSI+PLBrV2HgAhNlZ/TwyQobDbGuzqDQel4U2xc9IhC41yI0blRKK6DK2bKFTjZidpaMu8/oSd5jB5saNHBiwKGhykomEgWzKy53igMfyz7w8nbuhwXGFOrBINMotW6yPamSEHBzMEh83NTlUoEfkzI4OrSGba69nMBDICsM60Vtjrg8GNYfz8/a3RMKN9eSk1ounOBGLac4cDUpfX5Y1v6lJyNtkkoxEPMyDEwnm4CBZU8NYLNuGwYkJfRdwx3JNzyUl3LTJQCtFRXImBgYUuvh8ZHOzNvZYTKnkiQmWlNgc9fQ4NhfXQJ6TQ87M6O8LC1ofkQg5Ovra+wqHFa0ODLjvMyeHHR2WhVhY0O+MxNu75tsB19tmLXDqhYTS4lNTJoza0KD1ZamQRIKul9VjQRobE0DF42/nxES2ZzCZdGUBJpPiVl1YyD4rXkvJxo36XCIh49/f7577YNAQsBaqp9N6Jjkz4zKssRh5331vdES3g8Azr/O94y1D9++9LrzwQl544YVsa2vjz3/+c/b399Pn8/Guu+4iSU5OThIADx069Jrv1dXV8Y//+I9Jkps2beL73ve+f3Hs/Px8/v3f//2/et6bb77ZJvq1b08Bu7eXBKIu/zc1RTIYVJrCayYNBJSjN4kajw6Mfr88sMlJJynS0mIL2TZsEwDI1qYGBhxvHvAtzsxQ3l1uLpNJU3KurSVLS1lZaQ97MsnNm3WJZWUk+/q0WcVi7OrSYdvbSc7OylO32k8qpeikp4e6zpwcPbyhENnWxkDA6gQdHQR2Ztkr6utlDNNpNjUZQnJ2VhuUNbEDSV1cZyeBqPrXKioUUVVU6LheHccx9oe5YYOC38ZGkvX1TCSyVGNeFMd0mrm5CviqquiQlgMD1MUYv2Qq5Ri2hIjNydF1d3eTZWUuKGV1tUsxDg0puqmvVyo2P9/UzsfH2dEhhGFFhV1fbi4TCW3+OTk6zshIFk3f3KyxZne30tL5+WR5OZcsoUV2czIkpaU6XnGxW2ONjdSBvFRXYaEayW1dOjWLzk45IMEge3o0n2vXUsarpYXAnObHpIU8KSUODJDNzW7Td6nfhgat21SKLC/n0BCzUZW3rtvbtWjSaadyz7w8jWFHB1lQoPNUVTlHq6mJ5MKC5sE8Qbcuw2ERLpeWkn19et6KiwmMsrHRUJ3FxWRVFcfHzcB2drp6WjfgWILY06NzbdzIhEXp69eLCJrDw+yHyJ9HgCybiyl3Z6B0pYeqbGlhFiqan0/W1TFkRu5my3qwsVGRfE2NnAmTdYoCSm9bSnYGcNkgzsyQra3s6DDmGJvTTZvoatcbNti67O8nS0u1bsvLHRfuT37ylqH7dXn9UsKrr7zyCq666ir8zd/8DdauXYu/+Iu/QFNTE2677bbXBYj5915tbW1IJpPuPTc3BwAIA8AXv4jvfx9Yu/aDeAnLgT178JGVLwB33YUfrPom0NIiGOC+fYKHff7zOO/A88DUFJZvvQ/o78fOvXuBoSF85CMABgcxNGTq2Y2NwDXX4IJPfxKXdf6VxE5XrRIscsMGfO66FwBU4+BBoKzsKmDDBol8FhUJAlhSgve/H7ji6BN4/uhyLC4Cy7/2BZSWAti4EX+0Zheweze+WvVzHDwofc//fdvl+Pan/gnYtw9Xbf8ePvUpAb7+158ckmDp7t245hrgzO//PvDww/jc+kNYGotJLBJ7sHUrBPnavx+XbvlbYH4eP7j1ZdxwA/ACLgf+7M+AwUGgqwuJxHI8u3gFUFSETZs+iE99ChJx3bMHmJvDIgAkEoJydnYCOB9ABs3NwGc/ayLX69djakpIzDVrgN/6LVPePnEC5eXSx7z+egDpNNDXJ3FKT+39934PF+38JwD6saoKOHb2LBIJ4AsHv4Iz25/ANdcAN90EwUUPHAD278dnKl/EZz8rIN9n6l7BkSNPYnFxCvjiF3HhhbqFt79d4zl68iTy8oTEXLYM+KeHH4bPJ5HXK3ZswbvfDbycdxmwuCgk4TXXAJ/9LK680gR0cVjovZER/MmfAC/t3Qts347WVuDOO2ex55lngKVL8fLdd+OpuTn8bM+7cElpKRa3bQN27sQNN7wERCJS+b7jDvyvz5+Bzwc8/XQE6OjAme9+F4WFqyTS+bWv4dztt+O8e7ZI+XR+Hli2DKWlWsJFRVqCuOYaIQa3bcPBqSlkMsC3/T/ED/text/fdRGW/90m/OTqbwJf+hLO4AJ889LN+O+rduHEiRM49Nmv4Njnvw5UV+O8E8dw8NFHEY8Dx373d/GDvjPA1BQqKqDB6uzE5fNPYPdu4HN9V+FKAIfGnranshj4H/8Dubl/gBUrTMB0dBTw+3HwoIml3nILnvja1/Di4iKuB/APi4sSZL3pJtxyC3D0+9/HQUgQtq4O+CgA3HYbPg5gPYCLoGW9c+dOHLr7buDWW/EigIUF4IU1Hwc++1kJw65fr8Vw003Ahz+MAgB//ufAXwH4ewBYtQqHABx88EEsWwa8+PjjeBlSnb7uOuDYCmnJv6+xEVizBhe1twNf+xpe+M53UFAALMvJwW0AcO4cbr0V2G7XPD4OLfqrrwYKCyWIvHkzXvx//h+c+B//Ax87N/4f3uP+Y6/MG/T+DXz9Mlbx8ssv55/92Z+95nd///d/z8suu4zkf17q8p+/PA9nt3lZlolxqEhPa4vRqCKr4mJ5dLm5NPoQ/d7vJ/PylLrJz9f3q6q4ZAmdR+/VHWIxq7V0dur7gQDLyrJEyA0NJIeHXU/YnHc+A66wtlbhnN/vepEYCik6CwZdT5goqw4pCjSgA3Cb0iNVVWQwKFCF38+9sH49v5/qkQmzpoZqGq6sVIi1caPGZGZGtb2CAt1XRQU5MJDlguzrUwpx40altHJyuBfW3Gw/l5VZ1BAMOooldnSQMzNOLsUyky7FMzJiyMD8fH25uTnbPez3ux6vmKWlnLirCcYyk2Fjo1JqD8JAFBUVdE16fj97e63Bf2JC6S8vl7uwoFAvL4+MxXR/FpG4OuPkJFtaFOxu2GBp68pKAgsms7NXkVVRkWpgVVXs6mKWX9Hn0xz29CjDEIvpfMXFZHMzt2yxdTQykkWJ1tUpuszNJVtamJtrEZGBLZiXx54efc+LprxexHDY1kEspjVfXu54QIGduiePEqyiwrHzDwwYqGJwkI4J3aJXT95myxZbc8PDugebMy/dvd+7v9JSRUYjI2xtzYpieBysnJxk1GpzrK1VRJSXR5aU8Bmrv3FigjPefBYWkpEIT0KSOo60wJBeR7zf5+aS+flsaVE62tWDvZ7E9nZpM9rx2dhItrfzZu+cRUVkRQXnYPX6ioqsdt/0tMaspUW1TCMNYE2N47vrBwicZsKOV1xMRX7BIGMxWzu2JllSwuR1173BEd0Exer0et4Tv5ER3S9l6Orr6/8FGOWLX/wi161bRzILRrnlllvc35PJ5L8KRnnqqafcZ0Kh0K8ERvlbwIhvj4llvJ9kMpmVnzEGEmf4mpq0ac3OKs0Qi5Gtrfw7M1yearbfr431NFQcn7OHJAlklbX7+81m/oxdXbZRbdyoulpJiR6qujrXHJxI0FEejY0xSwHW3U2Gw46qqabGNtCeHrKnx86xSxvT8DA5MEBgF09DRXyGQg4CDrQR2CyYd3u7K7clk8zKmbS2aqNsbc2S0dbVsaXF7qGnR/mxggKxvPh82hD6+ynU1o8YDAqVuGEDnfDqypUe7dExLlmiIVq7Vl91sPWeniyKr7XVscWPj1P3lk4LqOBJnyQSDi3KeJwnAcfub8oyZE8PBebYaWTIp53I6pIlSod53SPAAndYuqqqSscvLrb5rKyUwWpqcnI/Il4O6HednUpnm4yQ1At2qsbT388dEGAiFhNo6FFLmQFRbfLRqMiXE54zcwsfhljxlyxRqjwcNnHUhgbt4Kbi3dpKOW39/apVzsy4mugWO6ZHPNDVRU10X19WS8kUyx8Esg3ZRUVkfb0AVsYSvWGDEMFdXXQipp6OMcNh11YgDcgnTMboCVZUGBCmv5/HAVZVkd+F2ICOWApy0u717yyduGWLgELd9jcuLMj45OfzUQg4cr+NZw8EUHkUAqABp51YblkZ5eW8qoUgZI5FHBLD3Q+hMecgcNijEJPLPXbe2VlrsykocMoHUYj9p79fdcJ77Pr9fjoQXH09ndoFa2tZVaVnbYd9N7nvjZHEecvQvf7XL2XonnjiCS5dupSbNm3i3r17uWXLFl500UUcHBx0n+nq6mJeXh6DwSB37drFP/zDP/xX2wvWrl3L6elpbt++ncXFxb9Se8FOgKyuJvA9eXB1daoNGOqRHR2uJ+wkhPAasQglaQ8ci4sZhSR/PJor8SguCGVWVER2dzOdFozZQbpzc9nRYe0GjY36t7bW9Sl5NFlMpYQYy8sj/X5X/HYbWDLpevKYyWR7wtJpPgkpNNTXG0jAxFeBIQYgKPfmzfq1PPpjAlrk5PBez1vOySGrqjg/n5WBmbb78kRHmUo53bOojdPDNiZB23A8oEh/v0Hbq6vJqqosQMCjRBkeJoNBRWaeQctkeBpir3DyP6Ojr2Kwf8LpBQbhgSd2aiwqKwmcIhcWXJTsRX+sr+cRSPqmocH6sDwG4bY2cnRUG3lfnxyOiQkpSAwPM5nMipauXp2VpkkmSebna1yGh2X8DeLZ20sZj/Fx48xckOHt7yc7O/kMkGUCqazkAkSF9Sis1unzqQ5UXy/DYPXQqSkDshipdwgiZJ6EyLZZXe1UyNnbK6q1KLVOmprI5mbuh6mbWxS3ZYuhM8vLFVGaSC03bnSGi8XFLvIft2t37OZFRYqC/H5WVcmpSdsztdc7ns+n73j9CfG4HBRTXPeMHH0+sryc42bUdtjzGLA1ugVwKNEULNtiCOhMJrsmvRqgJ7RYW0uypobz89bqYS0Er+6N9ZzUOTN2bG/nd6AoMmPzT7+fjm07EtHzXVwsHb3GRjIUkqqIz0egk1EzoMDdikatfcJTyUjYM5ZctuwNNnT/SKEmX8/7H98ydP+R14MPPsgrr7ySF154If1+/2tQl2S2YfzSSy/lhRdeyN/7vd/jzMzMaz6TSCRYX1/PZcuWcfny5WxsbPyVGsYfekhGoqyMZHMz7zSPz4MPe5D8sL33A+TGjbwTovq51x6qsTE6b/FxSGIEuI2nzYOT976NZ23j3wEYtHovOTLiPHmOj8vQptOcAVyT+KQZjQnP+BQXk5EIo1E6Xa6SEmsfKCxkYaGBRyoqHCsSMKcUyvS0Hs7OTnJhQRvywIADsngq3nHIAw3aZqM2jDNZQ1dQ4Dxz4JR0yUpKyPx8PglThTbp68PePdfWcgHyrrdB7QdpKOqN2/3eY+ecgZwJ2neHX7W5zQLk9DTTAIFvEbiN47Dm9MlJhiCNNQ4McAwg8DzDYW3c8/NyOO4H+H07r7chc2CAj9r5tth8jo9LGy1m15tIiKrqcZvD70OkycDmbO8d4ICbjMUUMdXWCgTR1sb8fLoNtLfXIymecyK/waDNazjsHA0ODLCujgza2mN3t5FkH2UmY/NdVMTKShqM/Qc2Z3cbsfP3XHpzAdJPBKK8+GIDS/T3C5iRn88YjDu1tFTzODhIDg+7Me3vt6xBfr4+19mpvFtLi1S3bXy3Qc5JJGLUeNaEPwZrUUkmtZ5LSjhtRgnYxmGbJ+blOVoyD7GaSmm9P2jrqaGB8tRGR8m+PgfyaGw0dZGeHqeyHghYdiAvz4iq73MySB4Iq6lJY8SklE085YeeHro0JltaPN5tOSllZfyu3efmzXoOi4tJTk7yW5BeoEfDBhxSBqKqSg5YYyNPQ+K5xwGH5o1EyH3AG2zoxglMvc73+FuG7s3ycoYOMJb/r8mD27hRxqK4WJ52c7PbiGO2AT5nmzM9o1NQwJC3+VdXG2v81wnMsR8WEdXXS34Fltf3+cjCQldGYEuL/vWYF+xBfhIgIxFtCgUFZFOTjKtRaXjtD3NmhBiPO3g0YzE+54zuOaVHxsdN9PMu3u0ZzwmS8bilw7azokKEudvsHllURJaVMRo1KsFX/y2REKfj7KxrOI+bIbvfDOSD9v9nIMdhwwbquz09ZHOzjFlHRxbCHYsptVZcrN8ND3N+XpvHOJRqPW3fP/yqDdsjNb7Hxhw4pe+3tQlRmUxyAurpm0U2WoyZUVq/XjUtJ7RrDcsPQ168p+MXBMjxcZXxoLRdRYU2srExfYZ+v4xaUxOBY26+NmygUziXUsNpjeXkJFlTw0mod9PR0ABct876L+vqskKgNTUE9iiyLS1lV5el3Y1F52HIwZoGVFdta8vqn4VCakrPWORodbTTgFKOra1kSQlnZy2ig1CNs7MWibe1aZ319TklbHYqSpmcZFarLzdXDkRZGdvaDJ0PkIEA98IIETw+TRN39SD7nJhg0J61R2GZk/x8jtuaGrPnoQdyQO+EHB+v4dzrej8NkLOzDEFOacp7HtNpcmFBY9bfL+cvk1FtLxKRExMKkRUVXIAcsEcBRXItLS6N6TlcrK/X2G/cqIXg8/E0wO/avLGtzTWTA9/mhO0lQFD7wcQE2d6ubEA0yhjkSCWvuOItQ/dr8npTG7q7IZHJtWvlVW/apGc4GqU2Wy8CCgbltQYCjpncCD3IQEAptelpeX/JJOvqzJv3+zmLbGTG/HxH1OulyICd3LDBPMr+fkVW9fV6G9v9zIx6iMrKSPb0OFkSTk+TnZ1MpXS++nrVyYJBaiN3qcrtShWOj5PDwwIyVFQonRIIkL29tvF+j8D3tPkaObDxR8vTTSR0XI/1xOsr2rjR6yjQF3p7BULwDLv1FCnHv42bNule6uuz47VkiYygZ5h7e+UPrFxpnrlp8jU2UhtDR4d2z7o6V2PyWjNc+m92lqtX2/+np1206akTrVtHM/w7FFEFgwTOmUzPOS5ZImMxP6/5AQ4xDni+CKNRq0uOjpJFRXI8BgbIcJirV6tvCxjVOmpvV2tEXR2ZTptk0zGNdSbDacBJuMQ8x2lkhMBeGXGrMU5M0ObqbtcwDZzmpk2a9zAsFdrfr/P29SnaMwLvnh4by54ecmZGEkPjqq01NytKcTVqI5fmwgIDAUvVeswetbVkT4/SfJkM2d3tHdIj4SeDQU5MmA5cJMIFQA5XUmrtqonuMhq3Y+TMDM+acfaEeFlSwqA5SlFYXQyK2uagxuv9UBbkpK23J80heBJKx95p398GZQaAOQE/WloUeXl9qlbofhogg0GmoEzGc1BNjoWF7OigS2Peb/MVDKqmy4YGetpCx82wdnUpFToNZSrq6gT28hwLr+bKwUGtx4UFOQIAk0eOvMGG7qcEJl/n+6e/kYbul2ov+HV7vQPARfPP48QJQa/f+17xrp47B2DnTuD3fx944AHgkUeA2VkxD2/dCkBoZADAgQMoAIATJ5CXB2DfPpw4YcTQmQyWAViVlye4dUEBPvtZCPbd2YkX5i8AMIuaGjvst76FL34ROHHPPcBzzwF33ol9+4D3LTuED3wAgu8fOICjR4GXr/mEsPc5ObjoxCHs26fLueUWu/7cXGDrVhxb89toaPhdweufew44cABnzwoifGVeHl647nPAzp34q4L7APgAXI9rAGBsDGVlus8DB9RdgZ071S6wuAhcfz1++MhlaoMoKMADD+jPuO02tRfs2IEDgJihFxeBs2eRk3MVgBSuvloI96IiAHfcgT/5E93bxRcDhYXLkZt7Pj7zGbUfXHONbhNTU8C+fbjwQoh1ePduzc2aNRrr0lJs3w6cAnDp217C7t0AFhdRWirCYGzfDpSWIg/AJXmvoLzczu/zAXib3gcOoLLyfCxbBqxdez7e/37gDIBkUrewZMlKnII6RM4/H/hg0csiO66sBKqqBJE//3wA6kR5FwDgg8L2X3ghli0DsHcvMD9viPKLsQzArt3n4TwArwD4etdFuEzfAoqKkJu7Biguxg9GL8Oy2loUFVlbBt4OP4A8AKtX+/De9wrq/kHv5GfPas3l5OD//B/gpTVqX/n0p6GxO3cOOHcOebaML805hhtvVCvHefOHNC7LlolNen4eK1aI+BiLi2LnPngQOH0auwGcOXcesHMnli0D3rfiGIqKgAtOHQPm5vD+9wNjY8ALeR/CIQAfSf2jLfYVeq6wCtdco7HAzp1YWlaGVauAZQCQkwOsWoXlAE5A7Rre9ebna7VeDuBZAD/ffQHmAeDaa/ESIHJtu9U8AEt1RiwDkJ+/Cpefex74b/9NrSunTqndYutW4OhRnLHjHABwFIC/ogLLAbwyN4cTJzRPpRCB8/QzF+GT172MVatsbq+5BvD54LP5TKV0vS8D+G2IlHw51Jpw4ABwycFd+sDAgJYidF/nATiDC/DGvt5qL/iVX//VlvZXeXkezu23J8mZGQEw6urkopuszdBQVvbEkxBPp6351RCHmYy+NzNjtYPhYabT2ewbw2GOjWW5gjMZyhsuLSX7+5VSsxRJIEAd3LsOE0O924u6GhvlpU9MqD5hTdtDQ9aMrq5zMhh0rBoeQMFr6J2fN0BCMOjqR7GYPG7HEGEyKI5P09BpoZAxU2QyZEeHPPZ0WseJxx37BGdmdJzJSUV/s7OOrYNVVfS4yjxUJEdHdc8er6AHLw0GHdghmaSTffE4AdNpkoODWULk3FzOwWpzBQUC3xhbycSEnau83GnqxeMkm5oUdVZWCugxY+NjACJ2drK52VhVBgfJujp2ddm4WqO1N2bxOLMExomE4wVgMqnPpVIcGbFrtTHl8LDWXjLJQCBLR7Vpkw7b20uyrU3n81hUPOLr2lpyZkb3m8mQnZ0cGTGIejDohK4nJmx9hMNkS4ujNguFND7BoLVmWDhmWTQXvcQAaz+Z09zW1ip139rKw1BteT8ELvGyzayqImtrtd4NJOJJT23ZwqzEksneJ5O6Tw4PO55HjwlmfJxkTQ3r6xXJepwFHrm5J6vVbelVTkwwHNbYj40Z7VgopPPm5joSaIbDLlr1OFPTaZLRqCS4oJS2V9/jwoLCVC/VmUpxakpN5QwG9fdEghwZ0fUHArrQQMCVLoTWirKlxdpZbA0wGn0N36mnEv/QQ290w/goJSr9et6jv5ER3Zva0H3lK0nHsnASKgSzoYEeGqCtjWRJiR7skRE9KGVlyvHU1OjhALQBeWme0lKuXGnggOZmzs5mCaMZCqlOUVbGvYDTY1vwNmirBTAnR+m+/Hyyrc3x5D0JQ6AZci8nRw9MCkJPsqpKadKFrCrCypUkJyYIJLVB9Pc7hWQhLQ/p3B4Db3ExZ2bUGuGhATk9zXDYjOHoKNnWxt5e3bK3sTKdZihkG2NtrWPpcGJjjY1Kc3nKBDU1ZE0Nj0N1licBPfTC8fMIhLDz6pSsrpaDMDKiMWhp4RGoT2z1apLj47oWQ1KuXEmytNSAGWecc8FIRCCH+nrHQcn6erK6Oqu00N6ueYLVklIp9vfbGhkd1f1aKpQDA0bfeMoQvKcdgfDKlSSrq7Nq4gMD2jhjMaV0p6flTKRSzgCNjCiVXlZmKT9PsTSTYSRi85KXR3Z2cmzM6MmKi53atd+vtQicM9aUJJmT43r3WF5Ojo9z/XpdRksL3b0yFFI9LJ0me3vlFNj5mproetLY3S0eZUv9H7Znp75e+/VxQI6ZoUicw2SitfvtGfDQpAsQ+MspTZjRmpig61ecn9fPMzPM0pZNTKiu2N0tp6q6WueKxWQ4Z2fJtrYsLZ/1y03a+qqpUTrWa2VhTg7jcXNITRUkkSAZj2d5PC3nHgzSqcbfbPfjicXT75ejV1urNeIJq0YirK01Z8oIn9nZqdppR4e+44m2hkJMGlPUW4buv/71pjZ0n/mMvM1Nm0g2NHAAAk9E7e2JZh7GqyRnamq4DSpubwPI3l5WVQl2f79t2qrxbDXQwFGrAd1N1tYyZA8Zu7vVLN7aKkRiJkNGIjximwdhhf72dlefCJl3zdZWF+FUVNAx2NPnI3NyWF9vD9zGjY7iCAg7pKWKOWF2dVntbXpannNnJycAtrSIgslDR+6wmkFOjgAKxz3jMDlJNZqfE2DG5yNLShwsnaGQrrWgQAawpMQR7Hp9RfT5+BwEIjgC9UndY/ebNKM/DtWiTkM1FgfrLimhgD8P6bPV1YzH6SINdnfzQQiQMzOjOe7pURvBnfZmRUUWRTowwO9DIIMBgJuh1oPHoTrQvZCszPdhDcPNzdwMD/nZ4Zj/mZvLzZstIuvp0cbV26v6Yl8f1641CDvgerKBoOsx85QAmEhorHt6yPFxrlxJh8CVivhpAvdlBYFzc2Vwc3II3EsWFhLYZi0vtxBY0AYKWALgEB059MiIDIvdf10ds7xs09NkTY1r9q+qsojElMqdjEVFBWdtXiPI9rJ5iiCMRMjaWk6bA5NOm2Pk8wlolMkQCPC7gOMT9QRu29rkLPb2kuzo0OdHRwmcYSplTtj0NFlXx3XrvJrqGSc2OzsrYwbs4UnA6pwBpiBHde1ana+2lmQqxVAo21rH6Wk5LaGQACZRoVVLSuhIsG+24zQ0kMzPJ3CIiQQNlZt0ClErV9oz19Ehyrz6eiag3sEZW8M1NRbc4Y1GXQYJbH2d7+Bbhu7N8nIyPTfcQJaVZdWuZ2bIWIxbtijbVltLbYBeg3RzsyMKjscNxZabK286mXRkvhMTlvJIpzkykpXW4sRENjXn97OkRJuNQBB3KxobHNSC7+7WrumlxUZGnFL57CzJ7m6ln0ZG2NDwqjRjf7/TvgsESMbjaprtoQxRe7vj3+TgIBmLaTMdH2dJiUUIJocSiSiqmJ3VENTXUzfd3c1MJktUwtZWF8SxuppsbJQx8vTzFhbI2VnW1dHJxFh2y0XCW7ZofByv4sAAN2/W18vKSIZCzGToDBbHx8mqKgfO4OCgDGtLS3YCrJ/NwcANFGPtdU493VP7GRrS8ASD2li3bCE5PKxIOBTSppdIcMuWLPGKh8bk5CQnJqwXr7paBic/n4WFcg7SAFevtmhncNCRTTuCYWuwZk2N0wrySMZDITre0s2bHfexI5QG5rR5Tk6SAwMujT47S7KmxjHsb9miQ7O/X5FbIODSaV1dliZMpbRucnO1Vq3RvayMis7DYTI3V/cZDJJ9fQyHtU48Ih8PDJVMMtuvV12tZ8l2cb9fzxYwx9WrBUQKmEM1P6/164iUe3sVdXZ2OmLk9natfRYVCRQzY0ZzYEBoyMJCnjRjykBAayIcdgTlrKtjGsoI3A1lDyJQZHnajO4MkC0ZFBRkScc3btR1mKpFNKp7vtmcNObluZ66iQnKOW1pySIrTeMxErExrajQOqitJdvbOTGh4/3lX77Rqcv7KTDJ63nf/xtp6N7UYBTs2gX09eHcOYEufrLnfdh16grMzQEPPwzcN/gysGUL8Nd/DY80cfdu4JXy38HQkDAX6OwEQiHsOrAcu3afh8ceE7Xh5z79EnDuHP7oyl/gc0X/iM9d8wtg6VJ8b/AS4POfB7ZswU03ASUlK/HStZ8E8HtYVVODQ5U34H3V1UIF3HILMD+P0VFg15o/Ql+fMARLlwJYsQKfWPM88NhjePvbgfeteQXHlr4LD636CymMP/KIittPPYVbbwX+1/vHgKYmHPviN/FC3odwwYkXRba3YQPyamrwk1Mfx+KiaCkxOopDlTfgqaeA4WEBdM4/XzV7LF0KrFmD8x64Dz/sPISzZwHs2YNPfcpUqH/84/9fe98fVdV5pf1oRG9TUUxLgy7pQiMpzYQMZsJX7Aqd3Cm0MCOtNGEmTEIb0pJIJmRCUzJhjcTQhd9IG9qSwU5IepMQoUINGgzGEEOV6B2hyW24RiIEiSKiEEU5yo2i4PP9sfc5N077tUbNNJj3Wevkx+Xcc99f590/3r2fDSxZgsluN/Dtb0tFZZcLR6d/EZ2dcgDf2SnXnj0AfvUrbJjyHTz5JIATJ7B9u1T13n/Ld9HaCrz9tnznvQXfQHu7xi9UVEhERkUFvjb2W9z3g9MSuLBrF3DNNRj80teEP/BHP8KOHcDPHtyP47ffIwEWra1OG157TcZz+3a5hoaEbvHAAWD9eg1i6e6WeZ4+HW+8AWDfPmzbBvT1yXhs3Qr5R2MjFiyQoAf8y78gNvazQFgYhoeBqwBMTUvDLbdIoAF8Pvz21FelgnRzszSiulr+feqURCysWYMjR4DSZ7+AI0ckcObK9TU4cCAYH3Vl7TPAypUArsYttwBP7foqUF0twUjbt0twUGsrnnsOmPziOvxz0vsYGwOO336PhDm88ALwX/+Fg2HXYeFC4Zss/c8rsW8fgJtvxtmwq4C4OMTHa0DQqVP471M3AgkJiAKkUT092LVLAoni4uSRW7cCyMzE7t0ad9LZKYEt+fkYfHoDsGyZBGksWwbgszhwAPB6gRsgAR41NRC+1ZMnYZO4znG7haRyZATo65M5OXAAx/ftA6KicG3Y+5ifmQkMD+OLcXHAf/wHpsfHY+qRg9KIbduAHTuAffvg9QJISsI+GSac1d+9we3GVAAutxtYswbXZmTI4u/sxNjAALBggczZlCkyAbNnA1u34v77pd8xgHBxVlbKvJw6Je0MDRXi1F27MGPkoERtJSTghgUfSIXxO+/E2dR/AJYswdnHfoyvRbwr77DBJwd/aUl7IXAsugce4BZIzlFenoSD96tLyg5z9qub5ZBqeywuZp/tVnO5pARJVZXDuSf8hoPiuoyJsWtjioYPSXp+SzV8oEMCUuLixM2iLqlRdd3ZSbSMjJR2ud1kVpZYAnl5LC+nU0E8K4tOuWmgW7RWragg7CFjQZejnsHQ42FhoZw9NTQELSeWlIhWHB8vmmxkpKYpHCGjokTTVcsIeE809uZmBgKSg9ehrr5edUcyPp59EBaT1lYGK916PByE5jd5PA7jOzMy5Dysq8theXFyCcPDJS0iL0/zkt4jsEXmo6qKjIkRjbylRe6rqBD3nJ2P6PFIv6qrRYPOzw/mUTU3y+93dcnnttlnV2PVwrX2OZfNnjFpksxxYiLJQEDb1UnGxcmYqnsK2EfGx8tcxcU56R8bN2oeXGpqsBiuTcNVUuLk3vl8dKoc2AFP5eW263OMFtTtrb87CKWZSksjcJCxsbIWenRcIiPVK5GdzdZWTaaOjQ1WDcjMJCMjnYIVzMgQr0BpqfxoWpoT8MP+fnH1p6aS6emyfsLDyYgIsbg1z60X6grvJ+lyccUKPXNrbCTDwoSz1V7rNq9oQYHj7mdUFB3faWysDEBcnGTOQFISxgFpX2KieGDq6uS7bW3BwJLeXnG/+nxkXR27upSBxuejD5KWEIAcHXQDMu5RUfKZnhGzsFCsz5gY6WtYGFlXx+XQ4rH5+fKZXX4rNFRc0noGPGmSzNUo1NWu9TDtqiFWcfEltuheILDpIq8XPpUW3cQWdF/4AoERcfUVFRF4j8nJ4kNvaJDD9pUr5V3euFHdMA0NzMgQn35OjuyPh3QTnz1b7nPqURUXswFytuZV92B6up5vdHSQ+fkOtVZ/P4OkzkVF7O3VXLzRUY6OittpxQp97uAg+/vVdWUzJY+O0utVV2Jmpmzibjdra+U9ZGQk3W4qp+VrZESEE3CydKl4XvPzSWAHR9V9pPucFjc94gQWDAzQqWfHsjIOQc71IiNl07Jr87GkRF7wri7W1sp3gDEODck+lpMjfczLC9b/A046vJd2jTzgqFPdG2h3oi8HBijBKkVFLCsLRl8KE8wR+nzq1szPDyZIQqjIYmL0HLOggMC+DwVxdDulgoARBiBnk8B7TEmxz036JBexqIjATqe89yhA9vaKcFOex9pambvkZJJuN0dHqcpQJ4E+URqysuTcrbhYhMX4uGymg4MEtohLsr+fvTov2dnStt3Qc06PR3kjB2WD17PRoSGSFRXiUlauVTtIpqVFFLu3ALtqLFlWRq9XXdSVlU5V83EIc8cZFQQsKnKiOPt0DdHlotst87dihQzJqlWy/w8NkezqYiAQTKzPzqZTWFZLMpINDTyjLl67PBJzcqRPXq8IuZgYsrraYSzZaytAZWXCp9lDp1Axo6PJpibpY0QED6sSNjQk48HwcBGyxcWipQwNiUDz+eQ96+oS4V5dLQptdDSjo2X+jtkuTo9Hz6oPijYQH0+PJ1jix2abOaQuzY4Oki6XuJW1/iNwUOdvjLNmCWXZboC/+MWldl3+hhJMcjHXb4ygmyiwJ74F0POxp2RDbmoSwZGWJlpvXFywrlp4OHttgaV8lHb9qs2qqbK8nHshB//R0eL777VfxIoKSQsoLpaX1+0OnuU1NMgmXVgowiEjgx36MnFoSJ6Rmkrm5wsziqrztbUkOzr4FiSyUMvpOVx+b+iGGh1NcmhIhGlPD4ESp2Kz3x88qwIOOhXG39IXm+npZEEBW1rEGhuEWr0JCeTgoFiUbW1kV5cTvdoLSdB9A8LwsEVfeq+XTlVrVlRIf12uYLKunbIxPi6Sob4+GLKfkMAW22KJjxftICSE7O8Xq7i0lOzpkfFJTSWwXZ5VVCTsLYODThKvBTgh7oMQCrhFiyTZ2i5WypYWBgJKZKxnWOPjMqccH2dLCx1+yPx8aY5l0eF7LCoiWV3NWbPkeT6fkkvn5pIVFSpIX5MAo8JCMi6ObwPOBngGNu3amKy52FjutdeEx0OgUyJGIyLserzS7rAweiH12bqgkb0ejwhQrZtHj8dJWbAje7vt3y4rIxMSuHEjnYT/XqhnQStw21XtbQubpaXcgiBhMzMzyZwcEQT5+SwsVOUuOloWWkiIU5Giq4syeJrWMzSkxjXE+1Fn9zk9neshUcl28JBHBddagPR6GYCyFqWnO2wv7O11yK9tSjkGAmRXl5xbl5U5EZ221D0MOMpCr74HPkC4K71e/lzX0QldG0xPl/74/fIu5OdzEMqN6fGQpaVs0fuBp+gFlPB7O5mVJWs6OZm1tdJ3H4QBxoqONoLuE4IJLeheftniYQgBLiMjuVEXmM087veLFvsWJIKsC+JSWQ+JJtukL1VrKx3uRuG67COwmkMQBgfhu9zHM3rP24BaD0elqKa9ydTViYba38+9UEaVxERugliFm+w2REc7OVB2hKTDWRgezrQ0ZbiAsHhs3KhaY12d43Jkbi7p84kbze8Xa9Hnk81TaYhs5o0tEG00NFTCsf2AdKqlhcA+RkeLy5KZmWRICH34ELmuRly+pd8Z1I2pCXJwfwKivdpsEHW6Kdm0a4dVYL6kwrJZBSmbmnTjWEdgtbQpNJQsL+dmKFdjXR3XAAQOOjRitCw+q21YpX0ZBJzqFC3anioIc05Xl0RdnrQ31P5+rrXnITlZn7+KwOOOt5MJCXa8QbBCuMcjkZElJczPDwqRjRtFVoSEUDZNr5cejwb2dHSIQqEuzYICEbR1EDdtWZmWedJSQczLY3o61XW6WsdnrbKnrJZnlpeTERGsqgqyzhzWuauqooTYQyOO09MdYcUGjQqtrmZ5uVQoGAckcKiw0LHgT0L4SLeoQNoIYXOprJTvsrCQTfYa0ooGDA3lZthcl69xDdS1GRVF1tWxtla8GS0tSpodESGsJG63UwGDjY1O6olNLBQdTbKsTJRIj4e1taIjWbDJwNcJl61Pg9EyM2Uctcy3M4ca0MPsbBF2mk9ZVETHtf1fH+5nWJg8x+PhcoCxsZojWVdHoFPc95mZBI44RXCLipT0uqhI/j46qsw6l1LQraFETV7MtcYIuomCD7sue3vFvRQdLXyHdkWepUtVy/P5RHvt6ODAgHO0ZHurHG674mIxQvLy1OXm9cpbmZUlN2ZnByPa+vvJoiJ1W2zXSuNHyfBw+nyaK2W72rRieEuLbExNTWq1dXTIPV6vU4HbLrPS3y+/b7sxy8spHdPwQidy0z6Pys0ly8sp9FvdZGYmfT6RZZmZ0nSXi2R5uRNN6uQGqs8SGJFNt63NSfBmVJRjrdbU2AJ/J8PDhbwXeI8cGmJ9vVhUK1eSwMsETjI/X+Zj4UIRBDU1slksXEhpfEGBbHBpaQ73JMfHydxcp/9C72XJ53l5juUkVGMdDA0Vr114eLCWHLCTKSlSWWDSJJLZ2UxPp9JUDWq5oRGnfJDLRTItzSHDtnPM0tOpbPVHHfdXczNls9f8r5wcyt8aGuRBVVUydqGhZFgYW1qkXT09ehZbUcFFi0SYpqXJxmhBXKvKdUC6XCJ8EhLEagsLE3qq7GwyN9ch72dmJllaysMIJnKLoDnN+HgRxH6//KaE/Y+IQlBZySH9XZaVyeZcXU329hI4yvx8mUu7zRkZus6io506eVI6yqMVxg/qNUimpfEwJD2nF3pG29TEegQ5PkcBcnBQQvvr6sS7UFYm/QsJcaz6JltBa2sTpaSqiushVF6zZ0ubAoDMT1aW400ZgnpyYmJEcQwJIfPyhFqtqUnWX2FhUPHNzNTxsYJ5dg0NjqUbGytuzG5V2tjTI8pLQ4NT2dzvl/myaweysJD0eJiScqldlzWUqMmLuWqMoJsosCd+LST82OWSDaWqiiKlxsdF87WZC4qLg/XP3O6gi62nRzZyiIvC66VTjLS1VazBLgTJn232DQ4OyvOHhgj00ePRjVFLrjA+Xq78fEfYdnWpYElNlQ3MpmApLnbYT/LzlTS5pcXJUs/K0g21pMThpwTe46BaU85hn6Y4AK/LgOTmkj09tCz5c3a29jc3V17uigoR6BqCXlSkeUUlJXJPXJxYpJGRogGUlOhZ1++cmJMVK0g2NLCmRvrv8cjt8+aJC3DpUrkvM5MihXJzpX8NDU4dPebkyBiNj3NoSHgILUsEot8vz/D79ftut3OOptkiqmU3itCNj2dsrPR14ULhL1wLcU9KHvsYNwOO7kKPR/gJNTm4o4My2D09MuYREbQ5HUdHtR3R0WRlpXJdbhe3ZEmJE/RUWUkyK0s2+pwcAp1kQoKst9BQMhDQEj9NjqWclibPtvvP4mJZzJpIvXEj5YbeXrnJzkwvKwtWzsjKcmKU2NYmZ1exsTLOyijTBXXVadATKyrEUu/vZxckx5Cjo5KWYVkOD2tNjXzlJLQeY1MTbeb+kJD/ocAkJDA5WZhJGBtLP8STcUgt2fWAU96nWy39LhWKAbW27Hduo/btWb2nRT+bN0/WC6uqZD3ZLkfltO1RgU5IhQtmZ3MNxMuQlydejTZbkPb3O5V6mJ8vi6exUQjHIfmA3RA3ZgDiJt8MyQXNy5P9wueTdZGcLEPgU4v30ieMG0F3oZjQgs6r2ihwVFw1liVvul04zeuVjSs1VSK5EhKcDdfxU4SGyoLPyxNBUFnpBKTZZyiMjSWrq0ULbmmR52RnMzNTozFHR+VFz8qSFzAjQ84FlcyXFRVkXp4IyZgYkTw2VYlWJGhqChYAWLSI8vfycj2TWxWs5p2fLxqtlkYJBEimpemZkWxANfpys6dHxsDjYWWlWgyZmRJJVlVFWpa4hZR2LCuLIgFUe2+zhXxMDJmVxcRELVDZ2+tQVLGwkBwdZVWVKAcFBRpAorXJ7DxE5uUFz4cSE0Xh0MrntlBhUZFsUqmp8mxVPlaskKn1QhO9CwpYU6OWcViYUzTCrjBgE+k3NGjeW3k5GxpUCCh7RlOTTI19dmkrG0NDJKuqxNILCRFB1dhI5uaKeyw726GYy8+XM0/bHWfZ/x0WJkqIxyMGgy1gUlNp84gB+/iWbpjz5mnUcK+6r+PjxarVMzCblY2lpbKpNjc7xYMP25t6fz+jo9XaGxqSeS4okHVYX8/kZC3qWloqizs9nRbUvV5WRlZWSv9GR6Uh2dlBqq2ODrKggN12//LyJEI1K4uZmbIEVqyg/HhhIX0+OiWcmJbGJu0nXS62QNhsRkeDZMlUZeEYxA06pPee1HHbpBbVFhU+2dnBAJniYoqQ6+2VQSwvD0ZZut1kYiIrESQ3YFMTOyAEzYdspcLvl/egqEg0NrXITwBkXZ2QQKiwi4yUqNcztqBra5N30OOR9dXbywDEVW6tuTRuwqCge54SNXkx1/Mfm6AbGhriP//zPzM0NJQzZ87k3Xff/SfLr+3du1f79YfXb37zG+e+P/Z3u5D3+WJCCzrgHQKW1D/rksg64CmKWy1Ha1Z162cNlArcv9b/fpJAiQqIfQRE+wYeYrlqnsBdjndQXIN3Udw0R8T6ycwkq6udytyFhSKkpM7YgwSe1EjFVdq20wQekueNj9MmVATW8i3VqH0+yg5dVUWgVoSr0hbV1soGLWc4TxLokE1YVfmTkOAXsTYeIvAT7WufU1VB2vU4gffEQomIIEtLJeBjdJRSn26ZPr+BUhEhi0CxQ28kDAt9BNoJdDAxUTb9FStEJor1JMrHihUi12QMHuC8efJ9GaPtZFSU1pw7zaoq+75uCaLoFVfcIRXoQBNnzaK2f5/ORYdsxEVFBLbT7aZT8VwS+n0EBp1IQbH+pLoCMMjkZBnPE1CXV2MjgaM8aW9k4eF2QXkyK0sEoM8nkjc5mcA+sqFB59lHr1eEoChBlqZHeBx3pYzrIOlyMStLrcSyMtLlYmUldc0+qsEOT/AYxLW5WzflpiZ1t46Pk4WFjjchJoZkZaXWK/01mZ5O4NeMiRHdpahI+m9ZFGHX38/Zs2Wtjo6Kh09cz4MEOnTclhFokB+Ijf3QHD1Hj0eeWV8vz8jIoAichARlFnqPwM8JPMW8PHvsfbq+HtY19JCynawm/X797VWsqpJXwK6x6HLJuGnMi1jeHg/3AsEzPrdb2uD3E9hBtrRwxQqqm/2kut1LdM38hBkZ4lpnRwfT02W9WBbVYzKmAb5PEegke3oYHy/eiuUAgZ0ElvGnkFp16eniwbBdvbJGO3ipWEiC+92zBOou8nr2krTpjyElJYV//dd/zdbWVm7bto0LFiz4kwW1x8bGeOjQoXOu4uJiTp8+/RwBCYDPPvvsOfd9uJD3+WBCC7oiwDlbiI/XF6C+Xiyo+HjZ+O2Ij9RUERh2DpVq6ezqYqkKk/FxktnZBE4zL082F69qk7YF5dQsUzYN4ChzcuhocwUFDJ59pKWJS7OlxVE4GRbGtDQ9PywpkbdDqYsyM+Ul6emhw7spG0tnMGCgrY3Ac9ytwtiOVhRPzcME1kokoNstO4VGVNqeL4aEyIYeGUlWVYkF0NTE1lbVyisr5e9hYexXTfyY9kU2p5fFuvLqJt3WxqVLZfO1N12bgCMyUjbgykrKnERGilusvDwY6mgX1mxpodcrJVBs957XGzx76+mRsetQK37jRm1vYyOB5wg8R6alMSdHNpvERE3TApzzT2CMdZDghcxMkh6PzVJFlpY6wSasquKkSdTK76tk4qqqWFWl1ll/v27av5YaZy0t3A0NdlE+yRq1AoB1YjVVVIj10tamm+jdbIbkpIWEiLvXtoQYGSmNCg0le3u5caNaar29Ysk0Ncm66e/nekidQHq9LCsTYcW0tGC+nZ2w19LCHoBlZXSsZTY1cTc0Vy8+Xu6trhbrxs7haGpiTo4YPg4vbH09gaNkUxMnTRIh5qzb5GSh90QwmKUfEiBWDqnxtgmSZrEWQhn3EsRFGIDkbx4GnKCorCwJ4PlPtRBFydsnfQ4ERFj19Mj72NIiHKLazjNqBQ5B6OI6IK5X2wW6DZI+UF8fpPWy2U3octELLUuUkMDNsCMtd3I5JNAL6CQ7OsT6LivjokVaClHXgnXvvZ8aQffOO+8QAN944w3ns02bNnHSpEns7+8/7+fExcXx7rvvPuczAFy/fv1FtW9CC7oX9SUCujlvnizs3ZAovCYVckP62Vu66E/od2whxqws+nThMyREQ/qfI7BWPisrIzs66PGQT0PcagwLIwsKWFCgQSiNjRJQUl7uuFDWQM5sqqooamV6OtnYyEHdbDg0RLa1OTXOAIutrfKu5uRogm9iInNy5PzD46EIaeXYtJPj7TwiEXRPsKhINgwv5EzCroTNoiIuXSrnC14dI/b2cuFCFdLqvhyHREb6ESRltjcFwJJotPz8IIF2eDjZ3CyWaG+vKBBaBHflSqUuKy6mXzd1JifLbxcV8SSgQSI75Dltbc49Tgi8z0fgtFCJQtxcozpvLC4mCwudHEAmJDjBF/T7ycZGqV8HkM3N4gaEWm69vaIklJYSGGNZGQm8Tvr97NI14INEOzIiQpOFLfboptzcLIK0WzdPNjdLwnJ1tcOragFSkxYQpSotTeYiI4NAu0jjqirV/hudKNcuCNlBC9SqLC4msE9qoW1Ud2VenkSIpqY6Mf2JibKufBCOz3oVsJZF+f2YGA4MqOJhK4R2RGJ+fpBooLCQls57D+DQw9lHBYegUbFK5eX3i/tXY6vIkhJugUS+bgacPtmFV2sgilOdruEtKnB2qIBgSAgZG8txgDk50t9NgLPmbPo521WrKa2yJoaG+DQk6vQkJMLXFp5v6NraofMzqvPDoSGH1ot+P/shUdQ90GAVzUU8AxBYxs2AWnbFolCGhclxhNcrykl0NM8AH0OF8V9RPFIXc/2KANjX10fLspzr1KlTF9VGj8fDsLCwcz47c+YMr7jiCq5bt+68nvHmm28SAL1e7zmfA+CcOXP4uc99jvHx8fR4PDx79uxHat+EFnTihhhhG+TsQNxp6whsJ/Av6gYa1M86CBTrf7dTAjee4NKl/JCr7wiBEtapoAR+wvJyjcIsLSVQyJAQcXOkpFB28fp62WAqK1le7qStUdxr69QCE/JacWmsEg3UDiyoqCDQyN1AsJROfb1GB651QscZF8eaGtnoRLP8Ne3q16OjlE0rNJSWRXUPFlNcR6/T5VJrMj1dP28k0Ccu1LAwsqzMSToXV+8TBGop7sG1OjZPiSURCFBcN+/pmA7aNWadHF9xn405Z3Tiuvw1g66q3+kYdZJRUfSqwJNqDKsJjJG5uezqEvkXANQ1eET7tk7nekzODL1eFR47uXChuA4XLqQmQO8kcNDhvxS3tqXh6eK67FGhxOhotdZOchzqFouNdbg0pZrAiAjg/n4dz4NkdbW2Xco6lZfbRWhHdH6bmJFBrZLQKJ+rq7K3l8KLqQqQKCyreQySWkBI+kw3JFDDdl12dZEsKWFNjZyJZmXROWcDnlO2ntVOdfCUFLX22tqcpOqlS1URqahgfLw9b/JOybvwcwKvyRpxuRgdbbs3JQBJc7yDQVS9vWRaGsPDbZehh0Ate3rkvZCjgUEKiXY3gVUaIbtO52+EQK1D2rBypbxjGRnqjh0aksK2PSQbGthvz1FPD5mV5eRbAj4yMZFLl8qURkfbruTV+hsNXLlS25yVxfx8aa/fTzIQkGjdQED3kSNkWRnz8uQd+ilssoBiLgcclzRHR7lqFR0yChm/TZdY0D2lfbiY6yn+sTOv5cuXX1QbV6xYwWuvvfYPPg8PD+cvf/nL83pGbm4uv/zlL//B5z/+8Y+5fft2/v73v+fKlSs5bdo0lpeXf6T2TWhBZ736qrqXRhgIiEU3blthmjfWoNbLGdXuGBcnh99K9twLiNtDmfuF2mtQhIiWaJFow9NkYiIt1RD36oLPyqImBu+Tc57QUDIykseg0WTV1WRIiESURUbKJqNBMsnJSp/U1SUWYVUVz0DphwYHSb9f8ne8XsnTst+qwUHZvdraJHAlN5fMyZFNq7ycgQCDCfPh4cLw0qDCLjFR2lJcTOAks7JEIx4YkJe0W/tmVx8IQINRXC6xlDo65EYtP9Ni32NTtufnkwkJYkkqTRkbGsSNrNRLdvK5jOGYbEypqaIhpKaSbnewrEpOjmz4Xi8ZF+eEcjM/XyRoUZHMt5IHO+VlMjLOcccxK0vG6cNULn4/mZHhMNnn5dEJv581i2R1tQTWJCaSJSWyAYaEyHfj40nLctIi0tIou3NhITk4KJ83NwcZwdvaxF2dmurkQNbWinDJztao3cJCEWCJifI8OxI0K4uRkTLE9hzaoZqrVsl9dvoMc3Lo0MzYRMM+n7jXGhtl3HzB8Q4EKEpSfb0IlupqMjZW3NUZGfL9/n7pS3h48G9er7TBzhIvLiYjI8W6TU2VZ+bmSufq6hyL0XFb25K1o0Pa29YmayQrS/6uNSSd2j5NTWRHhxP4wa6uYG287GzS75fAm4oKWR9er7QjL89x3TIyUu5NTAwmiNfVnUOX9mFKMmZlBd/XqiqyrU2CzrSej9stZ3Ytur/s1n+vXKnHuO3tl1jQPUmg6iKvJ/lRLLp/+7d/+6OC8cPX7t27L1rQffDBB5w5cyYff/zxP3tvUVER586d++cH7kOY2IKur49rVavLzhZXTxcgGmhoKCMjxVUVgJ4zAUKDBXHpHVNXRkuLWA1vqztDLJBuLY/TTjmb8oigCQkR4VhQQOCguD5cLtkY8/Lk5fR4OKrPYn198CWy48i1SKPfL+dMtbWqFerLvXChWHYaTEd6PIyO1oTUxkbS7ebAQDAknfHxtCw6m55dpNJmORlVqzAkhGREhNPv1laxauLjKZtOUxMZEyNWpL3pZGWRyck8AT0LKiiQhmVkkIWFolh8aIOw0zDsUjz9/QymKrjdTlmXnh5qHtYqAjtlk4uKkrHJzJTfTU9XS3pQLN24OBHmaWnBc8ZAQL5XVUW/X8coO5tMS+NJyJnqqM4tMzNZWUknuq++nur6PqgBFC+TRUXcBBDYQSYkMCtLQv4HIWVSjkFclychLr6VK6nnfz6yq0t+3+MRAeX3OzRWTsK5nehZVqYWp52H1k2GhsoZcFaWBDilp8uZWEEBxTI9ykmTpM0WhD0lMZFkXR2XLlWrUysC2JUPWF8v58aVldKmtrYgg38gwJwcUbaqqugk8TMxUd4jLXE1OqoKWUyMsxbY1ORk8vh80gamprKyUuegv1+EmccjrtPychmPlhYZMLdbqLk6SAYCQcXG5XJYbTg0xKEheT9GR4PH7Rwd5YoVKvQ1KIf9/bL2/H7hmx2VPtuVfe3IWptHtalJqf46OtjToxHWiYlkZaUquwelDTEx9PuD1SZsue+ctUPcmM3NklLhVQs8Npa0li37xAq6823T+++/z927d//Ja3R09KJdl88//zxDQkL4/vvv/9l7Gxulpt5HcbdObEFXWsreXi3HokwINTXyAgwN6cafmysvw/g47RjzykoGK0Knpjoh0ZmZwegpp8y3fWCmYfTs7xeLKiqKPp/s95albhbNwXJIIMvLZePSiuOBAMnmZtnkh4bkANz+zuios6mxuVka0djoVJi2+ZEZHS3t1hLWwGnS5xNGC4/22eNxgic2bqRu4n1kejo3bgyWYgFedoJWxE35O2lPf79oygkJ8v+BAL1eGZuUFHnhbXYNp3prIMClS0U+FRVRxigQIHt6mJ2tgUI9PaIRV1eL5VJURObkOOO3YgXJhAT296tLrb6era2aOqClhexipytW6FmT18uMjKCbq7BQhtCeMublMS1NomHLy0lmZzMrSxWLlhbn32xocDb/hgaSXV0cHw9mghQWymfq32VtrW60+fl0qDzq6piRwaCV1NEhY6Hk3HbpnaYm7V9hYdDiaG6WzdjjkX7avG4VFbLu6uudVJSGBnVxa8Qse3qCpNp+vzw7N1fWcXOzMy7MyHAqr7OqSr5jE1/n5joueTujoKZG3Xs+n1PQlk1NHBrS8Xa7nUo8LS0yN2xsFGGUk+O4GJmcLJNYUCC/PzgowtHmX7O5NwsKpM12iKNdNygtTdqblkbGxIhyV1xM1teLQLPzYu38wupq+e+4OKED7CHtaK/0dF131dXSrkCALC52SBvGxzWoRglTi4pkTTI6mvR4xGouK5PvjY7yjAq55WrJNTfrvGZm8r77LnXC+CoCz1zkteqStOl/wg5GefPNN53PmpqazjsY5W//9m956623ntdvlZSUcNasWR+pfRNa0C1ebPEt6IG938+3oWHimhFsM/6fsbW1uDiyrU00ej3wptst2nN8vARJxMaysFCiyMTf/2vaFFG2xnsYUD7GPtLv5zYEK2Ifg0ZC2vWuoqPJxESp5gwEmUwKCpyc9p4eFQ7h4Q5LS0ODvDReL9V9d8QpZMnISKcmam8vyYoKpz7dIJQfMTExqCFHRJCVlWLRZWc7oZAi7E47hWvp9QY5QGNjZeOqrpb+xMWRxcUObyETEuzDNxmP0FAeUyvZoeXKyJBGamAB8/OdszCfjxqyrmeN4eFkZKRs4Er8y+RkTdoekw2vpESEXnIyGR7ucBr61U0bCNBxtQa0HTExJDMz2attcrtJhoRwFJKS0g2b9PmgbHYabJGYSKeeHKOjSbdbmGNSU2lZkhTMiAjOmmWTaa92Ige7umRoGhrErd3URLKhQdaI0rSchH3G/BrLyvSMTYUNy8rk336/KHE5OZw1S/b/efMoYx8RESQUTk2VdaLMMiwtDZ4Bl5TI5mtHBNfXi1Corye9XgniaW7mqlV0oo5tnk7n8Kqjg45Zk5YmYxwb6+TNsaFBhFJoKPPzGQz7V5Lm7GwRhE4h1PFxMjLS5gAQhaWtTYSZutmLioLFYefNk5+R87wxWR/9/aK45OTIYNfXyzpvaXG4MG3Cdbse4/i4WPOWRYehhkVFpNcrFmx6uiNQgTGxJCE175KT6VQbsUkGVq2SyOwaFXLLAQ1gaiDQSWvdukss6J4g8PRFXk98LIKOlPSChQsXsq2tjdu3b2d0dPQ56QUHDhzgl770Jba1tZ3zve7ubk6aNImbNm36g2du2LCBTz/9NN9++212d3fzl7/8Ja+88ko++uijH6ltU86zms8nEjWrz+LILKm19a1lN2CDywXExkots9dew+zZV2DKIWBKSIjU3tq8Gdi3D2GJicCZM8C8ecDAgNTf+kEYvpCdDQwPSw0qANizB+HhmTh8+BSAXmBrFaa73Zh+4AAwMoL4+Ln44XNz8bOICBw6dAjgAMLS06W41fTpUiDtV78C3n4bUyMiMPX666U+VkUFUFGBpCQph3f77UBYGOR/XC4kREg5rNtvB37wAwBTfoD49s/Jd1euBJYswYIF0u+5cwGMj2PqqeP4pXUH7ivZh8dSAdw1DCxaJH286y4gIQG/+AWAI1GwC6S91giUl4dg8WLgg4jn0doK/N34OHDNNUB0tBROGxmRxoWHY931j+I7JVcA2dlAa6vUGzt8GJ9PTAS+/W2EfeYzMr5btwIA3l32PAYGgK+5XJh84gQwNoYZOTnASy/hxik7pXYbvoXIyM8Cdy0F7rwTX2n/DZCeLjXBIiKAmhpMSrpC6n4tWIBnKj4AXrgTWLwYnx8YwAc3fwM35OQAy5bhytbfAgUF8t8vvYQbqqpQ/wsA6/8KX2xoAMbGUBED4MmlmLp0KXbtAr6Tk4O7AFx//Wz867+eAf41DCMAtm3bixl3PYR/nLIOv+juxpzDhzF9OoCwMOzaBXw1MRF48kk0DstQxMbeiR/9CLjy8RBc++QPsXXrzzA2BkzNycE3wn4HdA5L6bm59wMnT8IVEgLPgdlYu3Y2HnroDADg+cxhNDYCOLBA5v3NN3HbnTcASSVIGpZ6cf/+728Dc0NwfGAABw4A5eWzgZgHsXIlsHLlZFz3yCPA6tWyfqurgdRU/Opx4O8eGcZdd30R2H4Ek0eOy9xdfz1KSgDcdBNOtQOTcRYYGcGUsjJ8/sknpb5eQgJOL7gOU6eclQYkJODKqCgMbt6Jq5uex+sp/xcLFgBztm4FamsRswCIio/Hf+XuBLZux/yEMTzzSBjwyCP42uOPSxHD7S7gscfwxeGdaGy8AVfuewc7x/4PbvjXbwJuN76157v4VkQEsGAB3r3lHryYIK/vyAgwMnIFsKADH5yaLHUdKyqAPXuwrvM6fCfqp9Lv227Dfy97GV/93iI8sGoV0HkEL7zwDUze/jrCcnKAA+/gv1/8vNw75UFg3z6pIXn99Th753cx+f77MWvWFcjIACZ3FOHHS36P/T+4EV/Efvzjj74ocxSVgq0px3EPgKMAIuKBMAAbAISEfAuLFwM48vpF7W8TDTU1Nbj//vvx9a9/HZMnT8att96KJ554wvn7mTNn0NXVhQ8++OCc7z3zzDOYO3cuvvGNb/zBM0NCQrBq1Srk5+eDJBYsWICf/exnyMnJ+WiNuyDR/ReGreGsg7AkLFokSlx+vp4lKIvIDnwo762uTq60NPGxj487rsEaSOBEczPJujqmpYkWeAhCHLwGSmoMoXiqrdWot+xslpXpOUl9fTDgw9asm5vFPdnczOZmcbedAbhqld5nq/IhIfR4RPOdPZui3VZUcBDQ858+0u1ma6vNM1joVBdgSwtra6l8m/sI7JDPq6rIpiaxSgIBaW9jY9ANZKcIKH3S6KhWBh8aEmuqrEysuNRUsWh0XIBu0udjb2+wpI8ds2BTFs6eHYzB2LjxQ9Rs2dliVdg1hYaGRAsfH6dliWFgs2/MmiVuMztvq6aGwbIy1dUOcYxEQtYS6CBjYpysg/x8sX5qAHJoiG63rJM6dTtmZ5N0u51IPZuFxo6NGBggWVjImBiZ7w+7hCXloZHA66yCpC5s0vlISSFZUiJRknFxBJ4SC6i3VyzPujqNIH2UTZAQ/tFRGYqiIjpk0/T7yeRkOT8a0jErKxNaLX+QiWSzus4YE2MfR5GlpfJ3ZZ5hYqJTiX7VqmBIPisq+AYk5+wEIOtOy0W1tFAW6fg4Cwo0z6yszDnTy8oi2dXFykpZk3l56g6uqGB6OiVn0OXiXtujkp3NHTpGewGH5X+HWt4+H2Vs7bDl/HwyKkqSxyFpCQHImbPbLV7PgQGZm6oq6VNTk7570dEyZvX14lmIieEOSJpJTY0EanVDzukrK6U/Tm6rWoI2MXxrq6wDm+h81iytmxcdzYULxYXrcsk9QANDQsSyKwVoPfzwJbbofq5nbBdz/fxjs+g+yZjQFcanQiqL79hxBlfuewdxccDUXb8Hdu8G1q/HlQBSUiAlkwcGgBdfxOmXXsKcKe9LaeK2NiQk6MNeeQVRUQBefBEvvXQK27cDByAVp8MAzAGwH1IYe+FC4FrXfuCaaxAVBfzDPwCYPh3XXw/cdhtEa92xA3jtNUREAKiuxt8lfIA77wTehVTyjorSh11/PTrPnEFjoxiiN98MoLsbiI/HPm06AOCmm9DRAcz//HEAB3AQokkiLg4dHWL8AJ8BMBtjkN9EaytmHHgHGBnBsWP6nM5O4M03xapLSJCq3adOAdpsvPiilItubQV6eoAtWzDc3Q20tiIuDpg1awHwwgv44ql3MXX7b3HtqZ1ISpJ+T59g/giyAAALCklEQVQuj0xKApYske6lpGjl8tZWYM0asVy3bRNrYdMmIDoav906GS6XFHHeB2DGnt/j2LFjmD0b+FbSB8CSJfj61wEMDOA0AGzciBsXHBetecsWAHMBfBZHOjvxV38llbYXL5Z2jAHAqVM4ckT+fxg69gDGtmzB7NnA/lNfkC+MjaGzUwyXQEBuDA0Vw3x4GFKZOixMB2oGgEGcAoAjR/B5XSvR0fY/gLPt7QCmYz9kXEcA4IUXcHXIUZ0rrV4+/D5GRuTxUwGMbd6M/WE3ANu2YetW4Kqx9zF4coaM2RVXYPp0qZCOkRF8XpfRWGcnIiJ0ve/aJe3t65O11N0NDA8jTN+XU6ek6ju6uhAG8QwMA7An4asL3kdcnDwHnZ04cUJeH4yMyDvW+rqs09ZWXH89MH/sXSxZousrNRU33yxVv8dOncIA1KPicuEDyHwMQyqmH4H0930dWuzZA+zdK+0YGwMg63oygBFIdfcZAL75TZnDrVuBjAwpYt7aKp8NHp4MnDgh/R8ZkUrsISGYCmCP9v8ggCt1vlwuYOrWVxEXJ3P8wdxrcfWs05gMWYtfWXgaWLAAUyDtOHbsHUwGMNbdjbfeGkJysk73vn0AvoTFi+XZHwDAu+/i0mL8El2fQvylJe2FYHh4mADYl51N68Yb6XZbtNrb+S4k1PcVvawf/pDWvffSmjmT/arRWaqpvQwhmbXa22nddx8bIRFTr8GmFvNzB0Crs5N791q87z6L2wBan/scrUWLaB07xmeekd+1vv99Wq++yldftWg9+yzXrrW4E6A1cyatXbu4B5DvzJ8vn7e30+ezaK1bx3/6J4vvAUxMtGi1tdHas4fPPCO/NwgwLMxiYaHFxx6zaO3aRauvj/HxFjsBWt/7HtvbLe7aZfGBB+Q+a/VqWsuWsVf70gJwF4Sl4sYbLfpUo35Hvw/0cdo0KXdkzZ9P63vfk/Zedx2tlBRaAF/V6/Bhi9a993KPauKvALRuu41WcbGM8223Cd/jbbfJpW3ZCXCnavOdAK2kJFotLbS+/31On24ReIfW9Om0CgvlOfPn8+67Ld57r8VjAJcssfiLX1i0pk2j9cMfOjXy9gK03G5a7e08dMiiFR0t/UhJoTVlCq3oaFpuN39vr4WUFFrz50vfk5J4TNcE8DaBg7z6ah3DlBQ+/LDMbVGRRevYMVqvvsr77pP+u90Wrb172dJi0XrgAa5bZ7G52eIhgD6fxZdftmj19dGKjeWuXZaso9tuo9XczG0A3wPkuXv20Ou12Ndn8Y47LFqxsTx82FLSgj62AQT+WyM+fy+/m5TEPQBffdXi9OkWjx2zaHm9tBYv5uLFFq2f/pSNAKdN099dt47WAw/I2PX1ce1ai9OmWfzhDy1aGzbQOnxY+pGSQmvmTPog53OHIMnbGwAmJVmcP9+i9fDDtPbulXOupCSuXm3RWryY1k030UpJYXy8xSlT9FnLljnJ+ocPW9y716L1T/9E69576fuQZWft2kXrxhvl3dmwge9CCpY+/rjFNWssaduaNbSmTOHevRafftqi5fPxxhstAuto3XEHU1JkLLq7Ld52m0Xrjju4bp3FDRvkHbOSkmjt2UNr+nRZ2/Pn0zp8mIcP61x5vRwCeO+9suas4mJZb9HR7AWYkqJjvEbK5NjvALBJ3v9ly2RtrFtH66mnZJyWLGE+JPx+eHj4ova7oEX3uMYLXMz1+KfSoptEkn9ZUfvR8d577+Gaa675SzfDwMDA4M+ir68Pc+fOveDvHz9+HDNnzgTwE9iegAvHSQAPw7IszJgx4yKfNXEwIYNRrrrqKgDA/v37dQF8snH8+HFERkair69vQiwu096PF6a9Hy8+Ke0liRMnTmDOnDmX6IlncfGux7OXoiETDhNS0E2eLEeLM2fOnBAvno0ZM2aY9n6MMO39eGHa+9ExERTxTwMmpKAzMDAw+PThUgSTfDqDUYygMzAwMJgQMILuQjEh0wumTZuG5cuXY9q0aX/pppwXTHs/Xpj2frww7TWY6JiQUZcGBgYGnxYEoy6XQ7IJLwanABSbqEsDAwMDg08ijOvyQmEEnYGBgcGEwFlcfHrApzO9YEKe0RkYGBgYGJwvjEVnYGBgMCFgEsYvFEbQGRgYGEwImDO6C4VxXRoYGBgYXNYwFp2BgYHBhICx6C4URtAZGBgYTAiYqMsLhXFdGhgYGBhc1jAWnYGBgcGEgHFdXiiMoDMwMDCYEDCC7kJhXJcGBgYGBpc1jEVnYGBgMCFgLLoLhRF0BgYGBhMChhnlQmFclwYGBgYGlzWMRWdgYGAwIWDy6C4URtAZGBgYTAiYM7oLhRF0BgYGBhMCRtBdKMwZnYGBgYHBZQ1j0RkYGBhMCBiL7kJhBJ2BgYHBhIARdBcK47o0MDAwMLisYSw6AwMDgwkBkzB+oTCCzsDAwGBCwOTRXSiM69LAwMDA4LKGsegMDAwMJgTGcfG2iQlGMTAwMDD4xGL8El0fD1asWIGvfvWruPLKKxEWFnZe3yGJRx99FLNnz8ZnPvMZJCUlobu7+5x7jh49ijvuuAMzZsxAWFgYvv/972NkZOQjtc0IOgMDAwODi8bp06eRkZGB3Nzc8/7OT37yEzzxxBN48skn0dbWhs9+9rP45je/iVOnTjn33HHHHejo6MDmzZvR2NiI119/Hffcc89HatskkvxI3zAwMDAw+F/D8ePHMXPmTAB/DyDkIp92BsDLsCwLM2bMuPjG/RE899xzePDBBzE8PPwn7yOJOXPm4KGHHsKPfvQjAIBlWbj66qvx3HPP4fbbb8fu3btx3XXX4Y033sBNN90EAHjllVfw93//9zhw4ADmzJlzXm0yFp2BgYHBhMDZS3R9MrB3714MDAwgKSnJ+WzmzJn4yle+gh07dgAAduzYgbCwMEfIAUBSUhImT56Mtra28/4tE4xiYGBgMCEwdsmecfz48XM+nTZtGqZNm3YJnn/+GBgYAABcffXV53x+9dVXO38bGBjAF77whXP+PmXKFFx11VXOPecDI+gMDAwMPsGYOnUqIiIiMDDw2iV53vTp0xEZGXnOZ8uXL8djjz32B/c+8sgjKC0t/ZPP2717N2JiYi5J2z4uGEFnYGBg8AmGy+XC3r17cfr06UvyPJKYNGnSOZ/9/6y5hx56CHfdddeffN78+fMvqB0REREAgMHBQcyePdv5fHBwEHFxcc4977///jnfGxsbw9GjR53vnw+MoDMwMDD4hMPlcsHlcv2v/254eDjCw8M/lmfPmzcPERERaG5udgTb8ePH0dbW5kRuLlq0CMPDw/D5fPibv/kbAMBvf/tbnD17Fl/5ylfO+7dMMIqBgYGBwUVj//79aG9vx/79+zE+Po729na0t7efk/MWExOD9evXAwAmTZqEBx98ECUlJdiwYQPefvttfPe738WcOXOwZMkSAMCXv/xlpKSkICcnB7/73e/g9Xpx//334/bbbz/viEvAWHQGBgYGBpcAjz76KKqqqpz/X7hwIQBgy5YtuOWWWwAAXV1dsCzLuefhhx9GIBDAPffcg+HhYdx888145ZVXzrFea2pqcP/99+PrX/86Jk+ejFtvvRVPPPHER2qbyaMzMDAwMLisYVyXBgYGBgaXNYygMzAwMDC4rGEEnYGBgYHBZQ0j6AwMDAwMLmsYQWdgYGBgcFnDCDoDAwMDg8saRtAZGBgYGFzWMILOwMDAwOCyhhF0BgYGBgaXNYygMzAwMDC4rGEEnYGBgYHBZQ0j6AwMDAwMLmv8P/DOeDTTE6buAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# there is also an option to do all of the above as one process\n", - "# and also to use a cutoff for autocorrelation of X variables\n", - "# while also outputting the autocorrelation matrix \n", - "dfx = pd.DataFrame(pd.read_csv('28BenzeneDescriptors.csv')).iloc[:,:-1]\n", - "dfx2 = dt.clean_data(dfx, cutoff=None, plot=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "09499c1e-6b6c-4eea-8b24-2be4e91647df", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(28, 676)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dfx2.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "17f2601f-357a-4aa5-8167-a09b33c5e0a5", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# create training-test split sorted by response variable \n", - "xtrain, xtest, ytrain, ytest = dt.sorted_split(dfx,dfy,0.2)\n", - "# similiarly, dt.random_split(x,y,test_size=n) also works for larger datasets " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "43ae1c23-786b-4aa3-9794-95e737dcda8d", - "metadata": {}, - "outputs": [], - "source": [ - "# creates a feature cluster with 'average' euclidean distance and cutoff of 2\n", - "# this is the tunable part of the system \n", - "clust = cl.featureCluster(xtrain, 'average', 2)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "bdcca1e4-0411-42e3-93d6-54a7ff99a8ef", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " \u001b[1;46mCluster\u001b[0m 1 ['ATS6m', 'Ts']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 2 ['EEig02x']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 3 ['IDE', 'HVcpx']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 4 ['DP12', 'DP14', 'SP15']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 5 ['BAC', 'EEig03x']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 6 ['Av']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 7 ['SPI']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 8 ['QXXv', 'L2v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 9 ['L2m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 10 ['Infective-80']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 11 ['EEig14d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 12 ['HATS6v', 'HATS6p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 13 ['Mor30m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 14 ['R6m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 15 ['CENT', 'X5', 'EEig06x', 'As']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 16 ['Mor03u', 'Mor03e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 17 ['Mor08v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 18 ['RDF060m', 'L2s']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 19 ['PW5']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 20 ['E2s']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 21 ['X4A', 'GGI1']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 22 ['LPRS', 'CSI', 'VAR', 'MPC06']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 23 ['VED2', 'DP03']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 24 ['SEige']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 25 ['EEig07x', 'EEig07r', 'BEHv8']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 26 ['ITH']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 27 ['X3A']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 28 ['ATS3p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 29 ['RDF040u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 30 ['Mor27v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 31 ['X3v', 'HTv']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 32 ['X5v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 33 ['H2v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 34 ['H3v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 35 ['ATS3m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 36 ['BEHm4']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 37 ['BEHm3']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 38 ['PW3', 'X2A']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 39 ['X1v', 'X3sol', 'X4sol', 'nCaH', 'nCa-']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 40 ['Mor03v', 'H2m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 41 ['H3e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 42 ['SEigZ', 'Mor03p', 'H1m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 43 ['C-026']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 44 ['Mor03m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 45 ['E2m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 46 ['JhetZ']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 47 ['H-047']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 48 ['MSD', 'J', 'Jhete', 'Mor05m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 49 ['QXXp']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 50 ['GGI3']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 51 ['QXXm']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 52 ['S2K', 'X2sol', 'EEig03d', 'EEig06d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 53 ['GGI4', 'Am']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 54 ['No.', 'SRW10', 'X4', 'BEHm8', 'GGI2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 55 ['ESpm03u', 'ESpm09u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 56 ['X5A', 'EEig05d', 'ESpm02d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 57 ['ATS5m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 58 ['GNar', 'PW2', 'EEig01x', 'EEig07d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 59 ['BEHm5', 'BEHm7']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 60 ['ATS1m', 'ATS4m', 'EEig04d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 61 ['PHI', 'X5sol', 'BEHm6', 'QZZm']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 62 ['AMR']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 63 ['S3K', 'Tm']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 64 ['JGI1']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 65 ['JGT']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 66 ['S0K']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 67 ['ESpm03d', 'ESpm08d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 68 ['EEig02d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 69 ['JGI2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 70 ['QYYm']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 71 ['Me']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 72 ['Mor25u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 73 ['HATS6m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 74 ['RCI']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 75 ['Mor30p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 76 ['ATS4v', 'QZZv', 'Mor01v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 77 ['Mor05v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 78 ['R5v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 79 ['R5p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 80 ['Mor23u', 'Mor23v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 81 ['Sp', 'ATS3v', 'Tp']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 82 ['BEHp8']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 83 ['MATS2v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 84 ['MATS2p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 85 ['HOMA']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 86 ['PW4']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 87 ['QYYv']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 88 ['QYYp']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 89 ['SPAN']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 90 ['BELv7', 'BELp7']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 91 ['GVWAI-80']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 92 ['BEHv7']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 93 ['BEHe7']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 94 ['H5u', 'R5u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 95 ['MATS2m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 96 ['BEHv2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 97 ['BEHv4']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 98 ['QYYe']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 99 ['TIC2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 100 ['TIC3']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 101 ['TIC1']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 102 ['RTe']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 103 ['BELm7']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 104 ['RDF070u', 'RDF070v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 105 ['Mor04u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 106 ['Mor25m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 107 ['R2u+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 108 ['BELv2', 'BELv5']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 109 ['RBN', 'RBF', 'BEHe5']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 110 ['RDF025v', 'H4u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 111 ['HIC', 'HTu']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 112 ['ATS5e', 'BELe5', 'SEig', 'RDF015m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 113 ['BEHe4']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 114 ['BELv3']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 115 ['BELe3']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 116 ['HATS0u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 117 ['BELe6']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 118 ['H2e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 119 ['BELv6', 'HGM']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 120 ['ATS6e', 'RDF050u', 'RDF025m', 'HATS4u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 121 ['RDF050m', 'RDF050p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 122 ['BEHe3', 'R6u', 'R6e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 123 ['H1e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 124 ['TE1']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 125 ['RDF070m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 126 ['Mor24v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 127 ['HATS2u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 128 ['T(N..N)', 'T(N..O)']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 129 ['RDF060u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 130 ['nO', 'SEigv', 'Qpos']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 131 ['nBM', 'ZM2V', 'GMTIV', 'PCR', 'GGI5']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 132 ['HOMT']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 133 ['HATS6u', 'HATS6e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 134 ['EEig09x']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 135 ['BEHe8']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 136 ['MPC08', 'RDF060v', 'L2u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 137 ['BEHv3', 'QXXe']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 138 ['BEHv6']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 139 ['R3u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 140 ['Mor32v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 141 ['EEig13x']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 142 ['Mor27u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 143 ['IAC']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 144 ['BEHe2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 145 ['MPC07', 'ESpm01r', 'AEigm']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 146 ['EEig05x']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 147 ['EEig08x']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 148 ['RGyr']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 149 ['Mor25v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 150 ['Mor30v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 151 ['EEig08r']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 152 ['R4u+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 153 ['BEHv1', 'H4v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 154 ['ATS5v', 'Au']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 155 ['ATS6v', 'ATS3e', 'ATS6p', 'QZZe', 'Tu']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 156 ['BEHv5']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 157 ['BEHe6', 'Mor05u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 158 ['HTe', 'R6v', 'R6p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 159 ['Mor04v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 160 ['ICR']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 161 ['E1s']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 162 ['L1m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 163 ['L1s']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 164 ['TI2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 165 ['JGI5']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 166 ['Vindex']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 167 ['Yindex']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 168 ['Lop']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 169 ['GATS7p', 'R7m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 170 ['GGI6']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 171 ['DECC']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 172 ['HATS7v', 'R7v+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 173 ['HATS7u', 'HATS7e', 'R7v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 174 ['L1u', 'L1e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 175 ['ATS7m', 'ATS7v', 'ATS7p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 176 ['R7u+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 177 ['GATS7v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 178 ['MATS7v', 'MATS7p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 179 ['GATS7m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 180 ['GATS7e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 181 ['E3s']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 182 ['DP18']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 183 ['H3u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 184 ['RDF065u', 'RDF065v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 185 ['L1v', 'L1p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 186 ['RDF065m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 187 ['EEig11d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 188 ['EEig11r']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 189 ['JGI3']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 190 ['HATS5e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 191 ['IDDE']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 192 ['L3m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 193 ['L3v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 194 ['SPH', 'L3u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 195 ['RDF055u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 196 ['MATS4p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 197 ['RDF030p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 198 ['RDF030u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 199 ['MATS4v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 200 ['RDF045u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 201 ['RDF055e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 202 ['L3s']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 203 ['EEig09r']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 204 ['RPCG']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 205 ['R2p+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 206 ['R1v+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 207 ['R1p+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 208 ['E2e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 209 ['Mor30u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 210 ['Mor30e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 211 ['EEig10x']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 212 ['EEig15d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 213 ['MATS1e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 214 ['RTu+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 215 ['H6u', 'H6m', 'H6v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 216 ['E3u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 217 ['MATS1m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 218 ['Mor22u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 219 ['Mor22e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 220 ['E3m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 221 ['HATS5u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 222 ['MATS5m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 223 ['MATS5e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 224 ['E3v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 225 ['E3p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 226 ['GATS1e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 227 ['Mor32m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 228 ['E3e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 229 ['De']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 230 ['G1v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 231 ['MATS3m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 232 ['JGI4']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 233 ['nOHPh']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 234 ['H-050']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 235 ['Mor15u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 236 ['Mor15e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 237 ['Mor15m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 238 ['Hy']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 239 ['Mor08m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 240 ['RNCG']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 241 ['MATS7m', 'MATS7e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 242 ['R5e+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 243 ['EEig11x']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 244 ['PJI2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 245 ['PJI3']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 246 ['IVDE']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 247 ['IC2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 248 ['EEig10d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 249 ['MATS6m', 'GATS6m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 250 ['R5u+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 251 ['R6u+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 252 ['C-040']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 253 ['Mor29m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 254 ['Mor29v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 255 ['G3v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 256 ['Gm']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 257 ['G2p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 258 ['EEig08d', 'EEig09d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 259 ['GATS5e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 260 ['GATS5m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 261 ['MATS6e', 'GATS6e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 262 ['DISPm']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 263 ['DISPe']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 264 ['PCWTe']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 265 ['Mor21u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 266 ['Mor21e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 267 ['SIC1']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 268 ['CIC1']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 269 ['HATS1e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 270 ['Mor13u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 271 ['Mor13e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 272 ['Mor29u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 273 ['R2e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 274 ['Mor10u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 275 ['R1e+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 276 ['R3e+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 277 ['R1u+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 278 ['R3u+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 279 ['Mor10e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 280 ['HATS1u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 281 ['E1e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 282 ['ISH']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 283 ['H0u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 284 ['SIC2', 'CIC2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 285 ['IC4']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 286 ['SIC4', 'CIC4']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 287 ['EEig10r']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 288 ['P1m', 'P2m', 'P1s', 'P2s']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 289 ['P1u', 'P2u', 'P1v', 'P2v', 'P1e', 'P2e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 290 ['Ku', 'Kv', 'Ke']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 291 ['ASP', 'Ks']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 292 ['L/Bw']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 293 ['MAXDN', 'MAXDP']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 294 ['AROM']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 295 ['EEig04x']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 296 ['Mor18u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 297 ['Mor18e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 298 ['Mor32u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 299 ['RARS', 'REIG']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 300 ['Mor26u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 301 ['Mor31u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 302 ['Mor31v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 303 ['MATS1p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 304 ['Mor12u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 305 ['Mor08u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 306 ['GATS4m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 307 ['GATS4e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 308 ['Mor24u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 309 ['Mor14m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 310 ['Mor28v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 311 ['MATS4m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 312 ['MATS4e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 313 ['GATS1m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 314 ['Mor28m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 315 ['AAC']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 316 ['Ds']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 317 ['E1u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 318 ['R6e+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 319 ['Mor18v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 320 ['Mor09e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 321 ['Mor20u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 322 ['Mor20e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 323 ['Mor09u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 324 ['Ms']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 325 ['Qmean']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 326 ['Mor12v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 327 ['LDI']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 328 ['Mor15v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 329 ['EEig12x']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 330 ['EEig12d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 331 ['qpmax']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 332 ['qnmax']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 333 ['IC1']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 334 ['R4e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 335 ['HATS2m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 336 ['RTm+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 337 ['R2m+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 338 ['CIC0']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 339 ['BELm4', 'Mor17v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 340 ['BELm2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 341 ['Mor17u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 342 ['Mor17m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 343 ['R4u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 344 ['nC']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 345 ['C-001']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 346 ['BELe2', 'BELe4']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 347 ['RCON']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 348 ['Mor22v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 349 ['RDF035v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 350 ['RDF035p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 351 ['RDF035e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 352 ['GATS3m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 353 ['HATS3e', 'R3e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 354 ['HATS3u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 355 ['HATS0e', 'R2v+', 'R4e+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 356 ['HATS2e', 'R2e+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 357 ['H2u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 358 ['RTe+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 359 ['HATS2v', 'HATS4e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 360 ['BELm6']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 361 ['Mor11e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 362 ['MATS3v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 363 ['SPAM', 'Mor11u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 364 ['HATS1v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 365 ['BELv4', 'BELe1', 'J3D']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 366 ['BELv1']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 367 ['X2Av', 'X4Av']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 368 ['X5Av']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 369 ['R1e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 370 ['TE2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 371 ['H1u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 372 ['GATS2m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 373 ['MATS3e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 374 ['GATS3e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 375 ['GATS2e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 376 ['Du']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 377 ['R1u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 378 ['HATS1p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 379 ['HATS2p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 380 ['HATS0p', 'RTp+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 381 ['HATS0m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 382 ['R1v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 383 ['R1p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 384 ['Mor04m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 385 ['Mor24m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 386 ['Mor31m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 387 ['X0Av', 'X3Av']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 388 ['Mor09v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 389 ['R2p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 390 ['Mor20m', 'Mor20v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 391 ['MATS3p', 'GATS3v', 'GATS3p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 392 ['Mor09m', 'Mor10v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 393 ['Mor11p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 394 ['Mor18m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 395 ['MATS2e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 396 ['Mor02m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 397 ['Mor11m', 'Mor11v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 398 ['RDF025u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 399 ['RDF020m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 400 ['Mor07m', 'Mor12m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 401 ['Mor13v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 402 ['Mor02v', 'Mor02e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 403 ['Mor19m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 404 ['Mor19v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 405 ['BELm5']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 406 ['RDF035u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 407 ['R4v+', 'R4p+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 408 ['R4m+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 409 ['Dp']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 410 ['H0p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 411 ['HATS3v', 'R2v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 412 ['HATS4v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 413 ['DISPp', 'R3v+', 'R3p+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 414 ['R5m+', 'R5p+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 415 ['R5v+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 416 ['E1v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 417 ['E1p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 418 ['DISPv']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 419 ['MATS6v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 420 ['MATS6p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 421 ['R6m+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 422 ['R6v+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 423 ['R6p+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 424 ['ESpm01d']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 425 ['BEHm2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 426 ['ARR']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 427 ['Mor07u', 'Mor07e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 428 ['E2u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 429 ['Jhetv']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 430 ['GATS5v', 'H3m', 'H3p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 431 ['H4m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 432 ['RDF055v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 433 ['T(Cl..Cl)']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 434 ['GATS5p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 435 ['H1v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 436 ['HTp']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 437 ['TIE']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 438 ['AMW', 'HTm']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 439 ['BEHm1', 'Mor06u', 'H2p', 'R5m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 440 ['Mor26m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 441 ['Mor13m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 442 ['HATS5v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 443 ['E2v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 444 ['R4v', 'RTv']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 445 ['GATS4v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 446 ['GATS4p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 447 ['RDF030m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 448 ['Mor21m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 449 ['Mor27m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 450 ['Mor23m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 451 ['Mor21v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 452 ['H0m', 'HATSm', 'HATSv']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 453 ['T(O..Cl)', 'HATS3m', 'R3v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 454 ['R3m+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 455 ['BELm3', 'Mor10m', 'Mor07v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 456 ['E2p', 'HATS4m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 457 ['Mv', 'RDF045m', 'HATS5m', 'nPhX']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 458 ['RDF040v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 459 ['SHP2']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 460 ['RDF045v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 461 ['Mor06m', 'H1p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 462 ['GATS2p', 'MLOGP', 'MLOGP2', 'ALOGP', 'BLTD48']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 463 ['GATS6v', 'GATS6p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 464 ['R4p', 'RTp']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 465 ['GATS2v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 466 ['Dv']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 467 ['RDF010v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 468 ['R2m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 469 ['RDF010m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 470 ['Mor02u', 'Mor02p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 471 ['GATS1v', 'GATS1p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 472 ['Mor19u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 473 ['RDF020u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 474 ['E1m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 475 ['R1m+']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 476 ['Mor14v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 477 ['R2u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 478 ['HATS1m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 479 ['H0e']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 480 ['Dm']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 481 ['SIC0']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 482 ['HATSe']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 483 ['Mor16m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 484 ['Mor16v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 485 ['Mor16u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 486 ['Mor26v', 'R1m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 487 ['Mor14u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 488 ['Mor28u']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 489 ['MATS5v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 490 ['MATS5p']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 491 ['MATS1v']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 492 ['Mor22m']\n", - "\n", - " \u001b[1;46mCluster\u001b[0m 493 ['RDF035m']\n" - ] - } - ], - "source": [ - "# export the results of the clustering, returning the dictionary we will use later\n", - "# optionally, print out everything\n", - "# optionally, also graph a dendogram (mostly for tuning rather than visualization)\n", - "clusterinfo = clust.set_cluster(verbose=True, graph=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "acbe1e18-9c07-4e48-81cf-e60b9adb742f", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7RklEQVR4nO3deXxU1f3/8feEkEnALLJlgUBA9n1RkcWiBQ1IEcRSpAgBESsFBBEVqmURNSoFEUH41ocQrFqUn4AKGMHIIpuUJSIKIcRAQJIgKAkJJYTk/P7wwdQhi8mQSSa5r+fjcR8P77nn3vmcOcC8vXNmxmaMMQIAALAQr4ouAAAAoLwRgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOV4V3QBnig/P1+nT5+Wv7+/bDZbRZcDAABKwBijCxcuKCwsTF5exd/jIQAV4vTp0woPD6/oMgAAgAtOnjypBg0aFNuHAFQIf39/Sb88gQEBARVcDQAAKInMzEyFh4c7XseLQwAqxNW3vQICAghAAABUMiVZvsIiaAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkVGoCio6N1yy23yN/fX/Xq1dOgQYOUkJDg1OfSpUsaP368ateurRtuuEH333+/0tPTi72uMUYzZsxQaGio/Pz81KdPHyUmJrpzKAAAoBKp0AC0detWjR8/Xrt379amTZuUm5uru+++W9nZ2Y4+jz/+uD755BOtWrVKW7du1enTpzV48OBir/vKK69o4cKFWrp0qb766ivVrFlTkZGRunTpkruHBAAAKgGbMcZUdBFX/fjjj6pXr562bt2q3/3ud8rIyFDdunX13nvv6Y9//KMk6ciRI2rVqpV27dql2267rcA1jDEKCwvTE088oalTp0qSMjIyFBwcrJiYGD3wwAO/WUdmZqYCAwOVkZHBr8EDAFBJlOb126PWAGVkZEiSatWqJUnat2+fcnNz1adPH0efli1bqmHDhtq1a1eh10hOTlZaWprTOYGBgeratWuR5+Tk5CgzM9NpAwAAVZd3RRdwVX5+viZPnqwePXqobdu2kqS0tDT5+PgoKCjIqW9wcLDS0tIKvc7V9uDg4BKfEx0drdmzZ1/nCADAfSKmra/oEizh+Ev9K7oElBOPuQM0fvx4HTp0SCtXriz3x54+fboyMjIc28mTJ8u9BgAAUH48IgBNmDBB69at0+bNm9WgQQNHe0hIiC5fvqzz58879U9PT1dISEih17rafu0nxYo7x263KyAgwGkDAABVV4UGIGOMJkyYoDVr1uiLL75Q48aNnY536dJF1atXV1xcnKMtISFBKSkp6tatW6HXbNy4sUJCQpzOyczM1FdffVXkOQAAwFoqNACNHz9e77zzjt577z35+/srLS1NaWlp+u9//yvpl8XLY8aM0ZQpU7R582bt27dPo0ePVrdu3Zw+AdayZUutWbNGkmSz2TR58mQ9//zz+vjjj/XNN99o5MiRCgsL06BBgypimAAAwMNU6CLoJUuWSJLuuOMOp/bly5dr1KhRkqRXX31VXl5euv/++5WTk6PIyEi98cYbTv0TEhIcnyCTpKeeekrZ2dl65JFHdP78efXs2VOxsbHy9fV163gAAEDl4FHfA+Qp+B4gAJ6GT4GVDz4FVrlV2u8BAgAAKA8EIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkV+ltgACo/fqIBQGXEHSAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5FRqAtm3bpgEDBigsLEw2m01r1651Om6z2Qrd5s6dW+Q1Z82aVaB/y5Yt3TwSAABQmVRoAMrOzlaHDh20ePHiQo+npqY6bcuWLZPNZtP9999f7HXbtGnjdN727dvdUT4AAKikvCvywfv166d+/foVeTwkJMRp/6OPPtKdd96pJk2aFHtdb2/vAucCAABcVWnWAKWnp2v9+vUaM2bMb/ZNTExUWFiYmjRpouHDhyslJaXY/jk5OcrMzHTaAABA1VVpAtCKFSvk7++vwYMHF9uva9euiomJUWxsrJYsWaLk5GTdfvvtunDhQpHnREdHKzAw0LGFh4eXdfkAAMCDVJoAtGzZMg0fPly+vr7F9uvXr5+GDBmi9u3bKzIyUhs2bND58+f1wQcfFHnO9OnTlZGR4dhOnjxZ1uUDAAAPUqFrgErqyy+/VEJCgt5///1SnxsUFKTmzZvr2LFjRfax2+2y2+3XUyIAAKhEKsUdoLfeektdunRRhw4dSn1uVlaWkpKSFBoa6obKAABAZVShASgrK0vx8fGKj4+XJCUnJys+Pt5p0XJmZqZWrVqlhx9+uNBr9O7dW4sWLXLsT506VVu3btXx48e1c+dO3XfffapWrZqGDRvm1rEAAIDKo0LfAtu7d6/uvPNOx/6UKVMkSVFRUYqJiZEkrVy5UsaYIgNMUlKSzp4969g/deqUhg0bpnPnzqlu3brq2bOndu/erbp167pvIAAAoFKxGWNMRRfhaTIzMxUYGKiMjAwFBARUdDmAR4uYtr6iSwDKzPGX+ld0CbgOpXn9rhRrgAAAAMoSAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFiOd0UXAACAp4iYtr6iSyi14y/1r+gSKiXuAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMup0AC0bds2DRgwQGFhYbLZbFq7dq3T8VGjRslmszltffv2/c3rLl68WBEREfL19VXXrl21Z88eN40AAABURhUagLKzs9WhQwctXry4yD59+/ZVamqqY/v3v/9d7DXff/99TZkyRTNnztT+/fvVoUMHRUZG6syZM2VdPgAAqKS8K/LB+/Xrp379+hXbx263KyQkpMTXnD9/vsaOHavRo0dLkpYuXar169dr2bJlmjZt2nXVCwAAqgaPXwO0ZcsW1atXTy1atNC4ceN07ty5IvtevnxZ+/btU58+fRxtXl5e6tOnj3bt2lXkeTk5OcrMzHTaAABA1eXRAahv3756++23FRcXp5dffllbt25Vv379lJeXV2j/s2fPKi8vT8HBwU7twcHBSktLK/JxoqOjFRgY6NjCw8PLdBwAAMCzVOhbYL/lgQcecPx3u3bt1L59e910003asmWLevfuXWaPM336dE2ZMsWxn5mZSQgCAKAK8+g7QNdq0qSJ6tSpo2PHjhV6vE6dOqpWrZrS09Od2tPT04tdR2S32xUQEOC0AQCAqqtSBaBTp07p3LlzCg0NLfS4j4+PunTpori4OEdbfn6+4uLi1K1bt/IqEwAAeLgKDUBZWVmKj49XfHy8JCk5OVnx8fFKSUlRVlaWnnzySe3evVvHjx9XXFycBg4cqKZNmyoyMtJxjd69e2vRokWO/SlTpujNN9/UihUrdPjwYY0bN07Z2dmOT4UBAABU6BqgvXv36s4773TsX12HExUVpSVLlujgwYNasWKFzp8/r7CwMN19992aM2eO7Ha745ykpCSdPXvWsT906FD9+OOPmjFjhtLS0tSxY0fFxsYWWBgNAACsy2aMMRVdhKfJzMxUYGCgMjIyWA8E/IaIaesrugTA0o6/1L+iS/AYpXn9rlRrgAAAAMoCAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFhOhQagbdu2acCAAQoLC5PNZtPatWsdx3Jzc/X000+rXbt2qlmzpsLCwjRy5EidPn262GvOmjVLNpvNaWvZsqWbRwIAACqTCg1A2dnZ6tChgxYvXlzg2MWLF7V//379/e9/1/79+7V69WolJCTo3nvv/c3rtmnTRqmpqY5t+/bt7igfAABUUt4V+eD9+vVTv379Cj0WGBioTZs2ObUtWrRIt956q1JSUtSwYcMir+vt7a2QkJAyrRUAAFQdlWoNUEZGhmw2m4KCgortl5iYqLCwMDVp0kTDhw9XSkpKsf1zcnKUmZnptAEAgKqr0gSgS5cu6emnn9awYcMUEBBQZL+uXbsqJiZGsbGxWrJkiZKTk3X77bfrwoULRZ4THR2twMBAxxYeHu6OIQAAAA9RKQJQbm6u/vSnP8kYoyVLlhTbt1+/fhoyZIjat2+vyMhIbdiwQefPn9cHH3xQ5DnTp09XRkaGYzt58mRZDwEAAHiQCl0DVBJXw8+JEyf0xRdfFHv3pzBBQUFq3ry5jh07VmQfu90uu91+vaUCAIBKwqU7QN9//31Z11Goq+EnMTFRn3/+uWrXrl3qa2RlZSkpKUmhoaFuqBAAAFRGLgWgpk2b6s4779Q777yjS5cuufzgWVlZio+PV3x8vCQpOTlZ8fHxSklJUW5urv74xz9q7969evfdd5WXl6e0tDSlpaXp8uXLjmv07t1bixYtcuxPnTpVW7du1fHjx7Vz507dd999qlatmoYNG+ZynQAAoGpxKQDt379f7du315QpUxQSEqK//OUv2rNnT6mvs3fvXnXq1EmdOnWSJE2ZMkWdOnXSjBkz9MMPP+jjjz/WqVOn1LFjR4WGhjq2nTt3Oq6RlJSks2fPOvZPnTqlYcOGqUWLFvrTn/6k2rVra/fu3apbt64rQwUAAFWQzRhjXD35ypUr+vjjjx2fumrevLkeeughjRgxolIHjszMTAUGBiojI6PUa44Aq4mYtr6iSwAs7fhL/Su6BI9Rmtfv6/oUmLe3twYPHqxVq1bp5Zdf1rFjxzR16lSFh4dr5MiRSk1NvZ7LAwAAuMV1BaC9e/fqr3/9q0JDQzV//nxNnTpVSUlJ2rRpk06fPq2BAweWVZ0AAABlxqWPwc+fP1/Lly9XQkKC7rnnHr399tu655575OX1S55q3LixYmJiFBERUZa1AgAAlAmXAtCSJUv00EMPadSoUUV+vLxevXp66623rqs4AAAAd3ApACUmJv5mHx8fH0VFRblyeQAAALdyaQ3Q8uXLtWrVqgLtq1at0ooVK667KAAAAHdyKQBFR0erTp06Bdrr1aunF1988bqLAgAAcCeXAlBKSooaN25coL1Ro0ZKSUm57qIAAADcyaUAVK9ePR08eLBA+9dff+3S73UBAACUJ5cC0LBhw/TYY49p8+bNysvLU15enr744gtNmjRJDzzwQFnXCAAAUKZc+hTYnDlzdPz4cfXu3Vve3r9cIj8/XyNHjmQNEAAA8HguBSAfHx+9//77mjNnjr7++mv5+fmpXbt2atSoUVnXBwAAUOZcCkBXNW/eXM2bNy+rWgAAAMqFSwEoLy9PMTExiouL05kzZ5Sfn+90/IsvviiT4gAAANzBpQA0adIkxcTEqH///mrbtq1sNltZ1wUAAOA2LgWglStX6oMPPtA999xT1vUAAAC4nUsfg/fx8VHTpk3LuhYAAIBy4VIAeuKJJ/Taa6/JGFPW9QAAALidS2+Bbd++XZs3b9ann36qNm3aqHr16k7HV69eXSbFAQAAuINLASgoKEj33XdfWdcCAABQLlwKQMuXLy/rOgAAAMqNS2uAJOnKlSv6/PPP9X//93+6cOGCJOn06dPKysoqs+IAAADcwaU7QCdOnFDfvn2VkpKinJwc3XXXXfL399fLL7+snJwcLV26tKzrBAAAKDMu3QGaNGmSbr75Zv3888/y8/NztN93332Ki4srs+IAAADcwaU7QF9++aV27twpHx8fp/aIiAj98MMPZVIYAACAu7h0Byg/P195eXkF2k+dOiV/f//rLgoAAMCdXApAd999txYsWODYt9lsysrK0syZM/l5DAAA4PFcegts3rx5ioyMVOvWrXXp0iX9+c9/VmJiourUqaN///vfZV0jAABAmXIpADVo0EBff/21Vq5cqYMHDyorK0tjxozR8OHDnRZFAwAAeCKXApAkeXt768EHHyzLWgAAAMqFSwHo7bffLvb4yJEjXSoGAACgPLgUgCZNmuS0n5ubq4sXL8rHx0c1atQgAAEAAI/m0qfAfv75Z6ctKytLCQkJ6tmzJ4ugAQCAx3P5t8Cu1axZM7300ksF7g4VZ9u2bRowYIDCwsJks9m0du1ap+PGGM2YMUOhoaHy8/NTnz59lJiY+JvXXbx4sSIiIuTr66uuXbtqz549pR0OAACowsosAEm/LIw+ffp0iftnZ2erQ4cOWrx4caHHX3nlFS1cuFBLly7VV199pZo1ayoyMlKXLl0q8prvv/++pkyZopkzZ2r//v3q0KGDIiMjdebMmVKPBwAAVE02Y4wp7Ukff/yx074xRqmpqVq0aJHCw8P16aeflr4Qm01r1qzRoEGDHNcMCwvTE088oalTp0qSMjIyFBwcrJiYGD3wwAOFXqdr16665ZZbtGjRIkm/fGt1eHi4Jk6cqGnTppWolszMTAUGBiojI0MBAQGlHgtgJRHT1ld0CYClHX+pf0WX4DFK8/rt0iLoqyHlKpvNprp16+r3v/+95s2b58olC0hOTlZaWpr69OnjaAsMDFTXrl21a9euQgPQ5cuXtW/fPk2fPt3R5uXlpT59+mjXrl1FPlZOTo5ycnIc+5mZmWUyBgAA4JlcCkD5+fllXUcBaWlpkqTg4GCn9uDgYMexa509e1Z5eXmFnnPkyJEiHys6OlqzZ8++zooBAEBlUaZrgCqr6dOnKyMjw7GdPHmyoksCAABu5NIdoClTppS47/z58115CIWEhEiS0tPTFRoa6mhPT09Xx44dCz2nTp06qlatmtLT053a09PTHdcrjN1ul91ud6lOAABQ+bgUgA4cOKADBw4oNzdXLVq0kCQdPXpU1apVU+fOnR39bDaby4U1btxYISEhiouLcwSezMxMffXVVxo3blyh5/j4+KhLly6Ki4tzrFPKz89XXFycJkyY4HItAACganEpAA0YMED+/v5asWKFbrzxRkm/fDni6NGjdfvtt+uJJ54o0XWysrJ07Ngxx35ycrLi4+NVq1YtNWzYUJMnT9bzzz+vZs2aqXHjxvr73/+usLAwp0XYvXv31n333ecIOFOmTFFUVJRuvvlm3XrrrVqwYIGys7M1evRoV4YKAACqIJcC0Lx587Rx40ZH+JGkG2+8Uc8//7zuvvvuEgegvXv36s4773TsX31rLSoqSjExMXrqqaeUnZ2tRx55ROfPn1fPnj0VGxsrX19fxzlJSUk6e/asY3/o0KH68ccfNWPGDKWlpaljx46KjY0tsDAaAABYl0vfA+Tv769PPvlEd9xxh1P75s2bde+99+rChQtlVV+F4HuAgJLje4CAisX3AP1PaV6/XfoU2H333afRo0dr9erVOnXqlE6dOqUPP/xQY8aM0eDBg10qGgAAoLy49BbY0qVLNXXqVP35z39Wbm7uLxfy9taYMWM0d+7cMi0QAACgrLkUgGrUqKE33nhDc+fOVVJSkiTppptuUs2aNcu0OAAAAHe4ri9CTE1NVWpqqpo1a6aaNWvKheVEAAAA5c6lAHTu3Dn17t1bzZs31z333KPU1FRJ0pgxY0r8CTAAAICK4lIAevzxx1W9enWlpKSoRo0ajvahQ4cqNja2zIoDAABwB5fWAG3cuFGfffaZGjRo4NTerFkznThxokwKAwAAcBeX7gBlZ2c73fm56qeffuI3tQAAgMdzKQDdfvvtevvttx37NptN+fn5euWVV5y+2RkAAMATufQW2CuvvKLevXtr7969unz5sp566il9++23+umnn7Rjx46yrhEAAKBMuRSA2rZtq6NHj2rRokXy9/dXVlaWBg8erPHjxys0NLSsawQsg5+VAIDyUeoAlJubq759+2rp0qV65pln3FETAACAW5V6DVD16tV18OBBd9QCAABQLlxaBP3ggw/qrbfeKutaAAAAyoVLa4CuXLmiZcuW6fPPP1eXLl0K/AbY/Pnzy6Q4AAAAdyhVAPr+++8VERGhQ4cOqXPnzpKko0ePOvWx2WxlVx0AAIAblCoANWvWTKmpqdq8ebOkX376YuHChQoODnZLcQAAAO5QqjVA1/7a+6effqrs7OwyLQgAAMDdXFoEfdW1gQgAAKAyKFUAstlsBdb4sOYHAABUNqVaA2SM0ahRoxw/eHrp0iU9+uijBT4Ftnr16rKrEAAAoIyVKgBFRUU57T/44INlWgwAAEB5KFUAWr58ubvqAAAAKDfXtQgaAACgMiIAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAy/H4ABQREeH4Ffpfb+PHjy+0f0xMTIG+vr6+5Vw1AADwZKX6LbCK8J///Ed5eXmO/UOHDumuu+7SkCFDijwnICBACQkJjn2bzebWGgEAQOXi8QGobt26TvsvvfSSbrrpJvXq1avIc2w2m0JCQtxdGgAAqKQ8/i2wX7t8+bLeeecdPfTQQ8Xe1cnKylKjRo0UHh6ugQMH6ttvvy32ujk5OcrMzHTaAABA1VWpAtDatWt1/vx5jRo1qsg+LVq00LJly/TRRx/pnXfeUX5+vrp3765Tp04VeU50dLQCAwMdW3h4uBuqBwAAnsJmjDEVXURJRUZGysfHR5988kmJz8nNzVWrVq00bNgwzZkzp9A+OTk5ysnJcexnZmYqPDxcGRkZCggIuO66gZKKmLa+oksAUMkcf6l/RZfgMTIzMxUYGFii12+PXwN01YkTJ/T5559r9erVpTqvevXq6tSpk44dO1ZkH7vdLrvdfr0lAgCASqLSvAW2fPly1atXT/37ly7p5uXl6ZtvvlFoaKibKgMAAJVNpQhA+fn5Wr58uaKiouTt7XzTauTIkZo+fbpj/7nnntPGjRv1/fffa//+/XrwwQd14sQJPfzww+VdNgAA8FCV4i2wzz//XCkpKXrooYcKHEtJSZGX1/9y3M8//6yxY8cqLS1NN954o7p06aKdO3eqdevW5VkyAADwYJVqEXR5Kc0iKqAssQgaQGmxCPp/SvP6XSneAgMAAChLBCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA53hVdAOAuEdPWV3QJAAAPxR0gAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOR4dgGbNmiWbzea0tWzZsthzVq1apZYtW8rX11ft2rXThg0byqlaAABQWXh0AJKkNm3aKDU11bFt3769yL47d+7UsGHDNGbMGB04cECDBg3SoEGDdOjQoXKsGAAAeDqPD0De3t4KCQlxbHXq1Cmy72uvvaa+ffvqySefVKtWrTRnzhx17txZixYtKseKAQCAp/P4AJSYmKiwsDA1adJEw4cPV0pKSpF9d+3apT59+ji1RUZGateuXcU+Rk5OjjIzM502AABQdXlXdAHF6dq1q2JiYtSiRQulpqZq9uzZuv3223Xo0CH5+/sX6J+Wlqbg4GCntuDgYKWlpRX7ONHR0Zo9e3aZ1g4AQHmImLa+oksoteMv9a/oEjz7DlC/fv00ZMgQtW/fXpGRkdqwYYPOnz+vDz74oEwfZ/r06crIyHBsJ0+eLNPrAwAAz+LRd4CuFRQUpObNm+vYsWOFHg8JCVF6erpTW3p6ukJCQoq9rt1ul91uL7M6AQCAZ/PoO0DXysrKUlJSkkJDQws93q1bN8XFxTm1bdq0Sd26dSuP8gAAQCXh0QFo6tSp2rp1q44fP66dO3fqvvvuU7Vq1TRs2DBJ0siRIzV9+nRH/0mTJik2Nlbz5s3TkSNHNGvWLO3du1cTJkyoqCEAAAAP5NFvgZ06dUrDhg3TuXPnVLduXfXs2VO7d+9W3bp1JUkpKSny8vpfhuvevbvee+89Pfvss/rb3/6mZs2aae3atWrbtm1FDQEAAHggmzHGVHQRniYzM1OBgYHKyMhQQEBARZcDF1XGT0YAgBW461NgpXn99ui3wAAAANyBAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACzHowNQdHS0brnlFvn7+6tevXoaNGiQEhISij0nJiZGNpvNafP19S2nigEAQGXg0QFo69atGj9+vHbv3q1NmzYpNzdXd999t7Kzs4s9LyAgQKmpqY7txIkT5VQxAACoDLwruoDixMbGOu3HxMSoXr162rdvn373u98VeZ7NZlNISIi7ywMAAJWUR98BulZGRoYkqVatWsX2y8rKUqNGjRQeHq6BAwfq22+/LbZ/Tk6OMjMznTYAAFB1VZoAlJ+fr8mTJ6tHjx5q27Ztkf1atGihZcuW6aOPPtI777yj/Px8de/eXadOnSrynOjoaAUGBjq28PBwdwwBAAB4CJsxxlR0ESUxbtw4ffrpp9q+fbsaNGhQ4vNyc3PVqlUrDRs2THPmzCm0T05OjnJychz7mZmZCg8PV0ZGhgICAq67dlSMiGnrK7oEAEAhjr/U3y3XzczMVGBgYIlevz16DdBVEyZM0Lp167Rt27ZShR9Jql69ujp16qRjx44V2cdut8tut19vmQAAoJLw6LfAjDGaMGGC1qxZoy+++EKNGzcu9TXy8vL0zTffKDQ01A0VAgCAysij7wCNHz9e7733nj766CP5+/srLS1NkhQYGCg/Pz9J0siRI1W/fn1FR0dLkp577jnddtttatq0qc6fP6+5c+fqxIkTevjhhytsHAAAwLN4dABasmSJJOmOO+5wal++fLlGjRolSUpJSZGX1/9uZP38888aO3as0tLSdOONN6pLly7auXOnWrduXV5lAwAAD1dpFkGXp9IsooLnYhE0AHgmT1gE7dFrgAAAANyBAAQAACzHo9cAVVWV8a0Zd92uBACgInAHCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWI53RReAyiFi2vqKLgEAgDLDHSAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5lSIALV68WBEREfL19VXXrl21Z8+eYvuvWrVKLVu2lK+vr9q1a6cNGzaUU6UAAKAy8PgA9P7772vKlCmaOXOm9u/frw4dOigyMlJnzpwptP/OnTs1bNgwjRkzRgcOHNCgQYM0aNAgHTp0qJwrBwAAnspmjDEVXURxunbtqltuuUWLFi2SJOXn5ys8PFwTJ07UtGnTCvQfOnSosrOztW7dOkfbbbfdpo4dO2rp0qUleszMzEwFBgYqIyNDAQEBZTOQX4mYtr7MrwkAQGVx/KX+brluaV6/vd1SQRm5fPmy9u3bp+nTpzvavLy81KdPH+3atavQc3bt2qUpU6Y4tUVGRmrt2rVFPk5OTo5ycnIc+xkZGZJ+eSLdIT/noluuCwBAZeCu19er1y3JvR2PDkBnz55VXl6egoODndqDg4N15MiRQs9JS0srtH9aWlqRjxMdHa3Zs2cXaA8PD3ehagAAUJzABe69/oULFxQYGFhsH48OQOVl+vTpTneN8vPz9dNPP6l27dqy2WwVWFn5yczMVHh4uE6ePOmWt/1w/Zgjz8cceT7myPNdzxwZY3ThwgWFhYX9Zl+PDkB16tRRtWrVlJ6e7tSenp6ukJCQQs8JCQkpVX9JstvtstvtTm1BQUGuFV3JBQQE8I+Ch2OOPB9z5PmYI8/n6hz91p2fqzz6U2A+Pj7q0qWL4uLiHG35+fmKi4tTt27dCj2nW7duTv0ladOmTUX2BwAA1uPRd4AkacqUKYqKitLNN9+sW2+9VQsWLFB2drZGjx4tSRo5cqTq16+v6OhoSdKkSZPUq1cvzZs3T/3799fKlSu1d+9e/fOf/6zIYQAAAA/i8QFo6NCh+vHHHzVjxgylpaWpY8eOio2NdSx0TklJkZfX/25kde/eXe+9956effZZ/e1vf1OzZs20du1atW3btqKGUCnY7XbNnDmzwFuB8BzMkedjjjwfc+T5ymuOPP57gAAAAMqaR68BAgAAcAcCEAAAsBwCEAAAsBwCEAAAsBwCUBW2ePFiRUREyNfXV127dtWePXuK7Jubm6vnnntON910k3x9fdWhQwfFxsY69YmOjtYtt9wif39/1atXT4MGDVJCQoK7h1GllfUc/dpLL70km82myZMnu6Fya3DH/Pzwww968MEHVbt2bfn5+aldu3bau3evO4dRpZX1HOXl5envf/+7GjduLD8/P910002aM2dOiX5bCgVt27ZNAwYMUFhYmGw2W7G/y3nVli1b1LlzZ9ntdjVt2lQxMTEF+pRm3otkUCWtXLnS+Pj4mGXLlplvv/3WjB071gQFBZn09PRC+z/11FMmLCzMrF+/3iQlJZk33njD+Pr6mv379zv6REZGmuXLl5tDhw6Z+Ph4c88995iGDRuarKys8hpWleKOObpqz549JiIiwrRv395MmjTJzSOpmtwxPz/99JNp1KiRGTVqlPnqq6/M999/bz777DNz7Nix8hpWleKOOXrhhRdM7dq1zbp160xycrJZtWqVueGGG8xrr71WXsOqUjZs2GCeeeYZs3r1aiPJrFmzptj+33//valRo4aZMmWK+e6778zrr79uqlWrZmJjYx19SjvvRSEAVVG33nqrGT9+vGM/Ly/PhIWFmejo6EL7h4aGmkWLFjm1DR482AwfPrzIxzhz5oyRZLZu3Vo2RVuMu+bowoULplmzZmbTpk2mV69eBCAXuWN+nn76adOzZ0/3FGxB7pij/v37m4ceeqjYPnBNSQLQU089Zdq0aePUNnToUBMZGenYL+28F4W3wKqgy5cva9++ferTp4+jzcvLS3369NGuXbsKPScnJ0e+vr5ObX5+ftq+fXuRj5ORkSFJqlWrVhlUbS3unKPx48erf//+TtdG6bhrfj7++GPdfPPNGjJkiOrVq6dOnTrpzTffdM8gqjh3zVH37t0VFxeno0ePSpK+/vprbd++Xf369XPDKHCtXbt2Ffi3KzIy0jGnrsx7UQhAVdDZs2eVl5fn+Lbsq4KDg5WWllboOZGRkZo/f74SExOVn5+vTZs2afXq1UpNTS20f35+viZPnqwePXrwLdsucNccrVy5Uvv373f8NAxc4675+f7777VkyRI1a9ZMn332mcaNG6fHHntMK1ascOt4qiJ3zdG0adP0wAMPqGXLlqpevbo6deqkyZMna/jw4W4dD36RlpZW6JxmZmbqv//9r0vzXhQCECRJr732mpo1a6aWLVvKx8dHEyZM0OjRo51+ZuTXxo8fr0OHDmnlypXlXKl1/dYcnTx5UpMmTdK7775b4P9y4X4l+TuUn5+vzp0768UXX1SnTp30yCOPaOzYsVq6dGkFVm4dJZmjDz74QO+++67ee+897d+/XytWrNA//vEPQmoVRACqgurUqaNq1aopPT3dqT09PV0hISGFnlO3bl2tXbtW2dnZOnHihI4cOaIbbrhBTZo0KdB3woQJWrdunTZv3qwGDRq4ZQxVnTvmaN++fTpz5ow6d+4sb29veXt7a+vWrVq4cKG8vb2Vl5fn9nFVFe76OxQaGqrWrVs7ndeqVSulpKSU/SCqOHfN0ZNPPum4C9SuXTuNGDFCjz/+OHdVy0lISEihcxoQECA/Pz+X5r0oBKAqyMfHR126dFFcXJyjLT8/X3FxcerWrVux5/r6+qp+/fq6cuWKPvzwQw0cONBxzBijCRMmaM2aNfriiy/UuHFjt42hqnPHHPXu3VvffPON4uPjHdvNN9+s4cOHKz4+XtWqVXPrmKoSd/0d6tGjR4Gvjjh69KgaNWpUtgOwAHfN0cWLFwvc+a5WrZry8/PLdgAoVLdu3ZzmVJI2bdrkmNPrmfcCSrVkGpXGypUrjd1uNzExMea7774zjzzyiAkKCjJpaWnGGGNGjBhhpk2b5ui/e/du8+GHH5qkpCSzbds28/vf/940btzY/Pzzz44+48aNM4GBgWbLli0mNTXVsV28eLG8h1cluGOOrsWnwFznjvnZs2eP8fb2Ni+88IJJTEw07777rqlRo4Z55513ynt4VYI75igqKsrUr1/f8TH41atXmzp16pinnnqqvIdXJVy4cMEcOHDAHDhwwEgy8+fPNwcOHDAnTpwwxhgzbdo0M2LECEf/qx+Df/LJJ83hw4fN4sWLC/0YfHHzXlIEoCrs9ddfNw0bNjQ+Pj7m1ltvNbt373Yc69Wrl4mKinLsb9myxbRq1crY7XZTu3ZtM2LECPPDDz84XU9Sodvy5cvLaURVT1nP0bUIQNfHHfPzySefmLZt2xq73W5atmxp/vnPf5bHUKqssp6jzMxMM2nSJNOwYUPj6+trmjRpYp555hmTk5NTXkOqUjZv3lzo68bVeYmKijK9evUqcE7Hjh2Nj4+PadKkSaGvMcXNe0nZjOHrLQEAgLWwBggAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQjwADabTWvXrvWY61S0ixcv6v7771dAQIBsNpvOnz9faFtERIQWLFhQomvGxMQoKCjIrXVfj8LGVxHuuOMOTZ48uUyvWVX+XKJqIQDBctLS0jRx4kQ1adJEdrtd4eHhGjBgQIEf4PNks2bNUseOHQu0p6amql+/fuVfUBlbsWKFvvzyS+3cuVOpqakKDAwstO0///mPHnnkkRJdc+jQoTp69GiZ1rlly5YyCyuFjQ8FleVzDmvzrugCgPJ0/Phx9ejRQ0FBQZo7d67atWun3NxcffbZZxo/fryOHDni0nUvX74sHx+fAu25ubmqXr369ZZdYiEhIeX2WO6UlJSkVq1aqW3btsW21a1bt8TX9PPzk5+fX5nWWZYKGx/cxxijvLw8eXvzMmhZpf71MKAS69evn6lfv77JysoqcOzXvwh94sQJc++995qaNWsaf39/M2TIEKdfGp45c6bp0KGDefPNN01ERISx2WzGmF9+MPaNN94wAwYMMDVq1DAzZ840xhizdu1a06lTJ2O3203jxo3NrFmzTG5uruN6ksyaNWsc+0899ZRp1qyZ8fPzM40bNzbPPvusuXz5sjHGmOXLlxf5g7TXXufgwYPmzjvvNL6+vqZWrVpm7Nix5sKFC47jUVFRZuDAgWbu3LkmJCTE1KpVy/z1r391PFZRPv74Y3PzzTc7flRy0KBBjmM//fSTGTFihAkKCjJ+fn6mb9++5ujRo07nf/nll6Znz57G19fXNGjQwEycONExJ7169XIaW69evQptM8aYRo0amVdffdVpDh955BFTr149Y7fbTZs2bcwnn3zieN4CAwOd6ijJvLz55ptm0KBBxs/PzzRt2tR89NFHxhhjkpOTi/yBx8L8v//3/0zr1q2Nj4+PadSokfnHP/7hOFbU+ArzWzXPmzfPtG3b1tSoUcM0aNDAjBs3zmnOjTFm+/btplevXsbPz88EBQWZu+++2/z000+OWiZOnGiefPJJc+ONN5rg4GDHn+PivPXWW47xhYSEmPHjxzs9j1f/XF79ccxf/327+kvhycnJxhhjjh8/bv7whz+YoKAgU6NGDdO6dWuzfv36Yp/zvLw88+KLL5qIiAjj6+tr2rdvb1atWuV4jKuPu2HDBtO5c2dTvXp1s3nz5t8cF6ouAhAs49y5c8Zms5kXX3yx2H55eXmmY8eOpmfPnmbv3r1m9+7dpkuXLk4vSjNnzjQ1a9Y0ffv2Nfv37zdff/21MeaXf+jr1atnli1bZpKSksyJEyfMtm3bTEBAgImJiTFJSUlm48aNJiIiwsyaNctxvWuDy5w5c8yOHTtMcnKy+fjjj01wcLB5+eWXjTHGXLx40TzxxBOmTZs2JjU11aSmppqLFy8WuE5WVpYJDQ01gwcPNt98842Ji4szjRs3dnqRjoqKMgEBAebRRx81hw8fNp988ompUaNGsb9Qvm7dOlOtWjUzY8YM891335n4+Hin5/Tee+81rVq1Mtu2bTPx8fEmMjLSNG3a1BGqjh07ZmrWrGleffVVc/ToUbNjxw7TqVMnM2rUKMc8jR071nTr1s2kpqaac+fOFdpmjHMAysvLM7fddptp06aN2bhxo0lKSjKffPKJ2bBhgzGmYAAq6bw0aNDAvPfeeyYxMdE89thj5oYbbjDnzp0zV65cMR9++KGRZBISEkxqaqo5f/58oc/Z3r17jZeXl3nuuedMQkKCWb58ufHz83ME16LGd62S1Pzqq6+aL774wiQnJ5u4uDjTokULM27cOMfxAwcOGLvdbsaNG2fi4+PNoUOHzOuvv25+/PFHY8wvASggIMDMmjXLHD161KxYscLYbDazcePGIv9MvPHGG8bX19csWLDAJCQkmD179jgF09IGoP79+5u77rrLHDx40DGPW7duLfY5f/75503Lli1NbGysSUpKMsuXLzd2u91s2bLF6XHbt29vNm7caI4dO1bk8wxrIADBMr766isjyaxevbrYfhs3bjTVqlUzKSkpjrZvv/3WSDJ79uwxxvwSgKpXr27OnDnjdK4kM3nyZKe23r17Fwhd//rXv0xoaKjTeb8OQNeaO3eu6dKli2P/6h2oa/36Ov/85z/NjTfe6HS3a/369cbLy8txNysqKso0atTIXLlyxdFnyJAhZujQoUXW0q1bNzN8+PBCjx09etRIMjt27HC0nT171vj5+ZkPPvjAGGPMmDFjzCOPPOJ03pdffmm8vLzMf//7X2OMMZMmTSpwF6Swtl8HoM8++8x4eXmZhISEQmu7NgCVdF6effZZx35WVpaRZD799FNjTOEv5oX585//bO666y6ntieffNK0bt262PFdqyQ1X2vVqlWmdu3ajv1hw4aZHj16FNm/V69epmfPnk5tt9xyi3n66aeLPCcsLMw888wzRR4vbQBq166dU6j7tcLOv3TpkqlRo4bZuXOnU98xY8aYYcOGOZ23du3aIuuEtfDmJyzDGFOifocPH1Z4eLjCw8Mdba1bt1ZQUJAOHz6sW265RZLUqFGjQteg3HzzzU77X3/9tXbs2KEXXnjB0ZaXl6dLly7p4sWLqlGjRoFrvP/++1q4cKGSkpKUlZWlK1euKCAgoET1/3ocHTp0UM2aNR1tPXr0UH5+vhISEhQcHCxJatOmjapVq+boExoaqm+++abI68bHx2vs2LFFPqa3t7e6du3qaKtdu7ZatGihw4cPS/rl+Th48KDeffddRx9jjPLz85WcnKxWrVqVapy/rqtBgwZq3rx5ifqXdF7at2/vOF6zZk0FBATozJkzpart8OHDGjhwoFNbjx49tGDBAuXl5Tk9/9db8+eff67o6GgdOXJEmZmZunLlitPx+Ph4DRkypNjH+fWYpV/+TBQ15jNnzuj06dPq3bt3icZQEo899pjGjRunjRs3qk+fPrr//vsL1PRrx44d08WLF3XXXXc5tV++fFmdOnVyarv27yesiwAEy2jWrJlsNpvLC52v9etgUVx7VlaWZs+ercGDBxfo6+vrW6Bt165dGj58uGbPnq3IyEgFBgZq5cqVmjdvXpnUfa1rF2nbbDbl5+cX2f96FxJnZWXpL3/5ix577LECxxo2bOjydUtbV0nnpbTPjzv9Vs3Hjx/XH/7wB40bN04vvPCCatWqpe3bt2vMmDG6fPmyatSoUaLnqTRjLu3z7uX1y4ePf/0/JLm5uU59Hn74YUVGRmr9+vXauHGjoqOjNW/ePE2cOLHQa2ZlZUmS1q9fr/r16zsds9vtTvtF/b2F9RCAYBm1atVSZGSkFi9erMcee6zAP4Tnz59XUFCQWrVqpZMnT+rkyZOOu0Dfffedzp8/r9atW5f6cTt37qyEhAQ1bdq0RP137typRo0a6ZlnnnG0nThxwqmPj4+P8vLyir1Oq1atFBMTo+zsbMdYd+zYIS8vL7Vo0aKUo/if9u3bKy4uTqNHjy70Ma9cuaKvvvpK3bt3lySdO3dOCQkJjueuc+fO+u6770r8fJSmrlOnTuno0aMlugtU2nkpzNVP/pVkLnbs2OHUtmPHDjVv3rzEd3+k36553759ys/P17x58xxB44MPPnDqc3X+Zs+eXeLHLY6/v78iIiIUFxenO++88zf7X71rmpqaqhtvvFHSL3fvrhUeHq5HH31Ujz76qKZPn64333xTEydOLPQ5b926tex2u1JSUtSrV68yGBWsgO8BgqUsXrxYeXl5uvXWW/Xhhx8qMTFRhw8f1sKFC9WtWzdJUp8+fdSuXTsNHz5c+/fv1549ezRy5Ej16tXLpdvnM2bM0Ntvv63Zs2fr22+/1eHDh7Vy5Uo9++yzhfZv1qyZUlJStHLlSiUlJWnhwoVas2aNU5+IiAglJycrPj5eZ8+eVU5OToHrDB8+XL6+voqKitKhQ4e0efNmTZw4USNGjHC8/eWKmTNn6t///rdmzpypw4cP65tvvtHLL7/sqH3gwIEaO3astm/frq+//loPPvig6tev73gL6Omnn9bOnTs1YcIExcfHKzExUR999JEmTJjgck2S1KtXL/3ud7/T/fffr02bNik5OVmffvqpYmNjC+1f2nkpTKNGjWSz2bRu3Tr9+OOPjjsR13riiScUFxenOXPm6OjRo1qxYoUWLVqkqVOnlmqMv1Vz06ZNlZubq9dff13ff/+9/vWvf2np0qVO15g+fbr+85//6K9//asOHjyoI0eOaMmSJTp79mypavm1WbNmad68eVq4cKESExO1f/9+vf7664X2bdq0qcLDwzVr1iwlJiZq/fr1Be5uTp48WZ999pmSk5O1f/9+bd682fHWaGHPub+/v6ZOnarHH39cK1asUFJSkqOGFStWuDwuVHEVvAYJKHenT58248ePN40aNTI+Pj6mfv365t5773X6SGxJPwZ/LRWxmDk2NtZ0797d+Pn5mYCAAHPrrbc6fdLq2vOefPJJU7t2bXPDDTeYoUOHmldffdVpAe+lS5fM/fffb4KCgsrkY/C/VpLFuB9++KHp2LGj8fHxMXXq1DGDBw92HLv6MfjAwEDj5+dnIiMjC3wMfs+ePeauu+4yN9xwg6lZs6Zp3769eeGFF4qt4bcWQRvzy6epRo8ebWrXrm18fX1N27Ztzbp164wxhX8MvrTzYowxgYGBjufbGGOee+45ExISYmw2W4k+Bl+9enXTsGFDM3fu3N8cX2F+q+b58+eb0NBQx3P/9ttvF1g0vGXLFtO9e3djt9tNUFCQiYyMdBzv1auXmTRpktNjDhw4sNixGWPM0qVLTYsWLUz16tVNaGiomThxouPYtc/j9u3bTbt27Yyvr6+5/fbbzapVq5wWQU+YMMHcdNNNxm63m7p165oRI0aYs2fPOs4v7DnPz883CxYscNRQt25dExkZabZu3WqMKfmCdViHzZgSrgwFAACoIngLDAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWM7/BxKNBqnl/m27AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# this is the important diagnostic for the method:\n", - "# if you have chosen good parameters above\n", - "# then this histogram will show a smooth curvature \n", - "# resembling either a pareto or skewed gaussian\n", - "clust.cluster_dist()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "37a5bb2d-b9dc-4f95-bdc6-baa29d073cc1", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Start time: 11:43:20\n", - "\u001b[1;42m Regression \u001b[0m\n", - "10 => 11:43:20 [0.5646699236881829, ['R2m', 'X2Av']]\n", - "20 => 11:43:21 [0.6583947897894367, ['Mor04u', 'X2Av']]\n", - "30 => 11:43:21 [0.6583947897894367, ['Mor04u', 'X2Av']]\n", - "40 => 11:43:22 [0.7742657151910233, ['Mor04u', 'X5Av']]\n", - "50 => 11:43:22 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", - "60 => 11:43:22 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", - "70 => 11:43:23 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", - "80 => 11:43:23 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", - "90 => 11:43:24 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", - "100 => 11:43:24 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", - "110 => 11:43:25 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", - "120 => 11:43:25 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", - "130 => 11:43:26 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", - "140 => 11:43:26 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", - "Best score: 0.7932755997633875\n", - "Model's cluster info [104, 368]\n", - "Finish Time : 11:43:26\n" - ] - } - ], - "source": [ - "# let's try single-threaded feature selection \n", - "# giving training set, clusterinfo, and number of components to select for \n", - "# model is either regression or classification\n", - "# learning is number of total epochs to train\n", - "# bank is number a memory of best models filtered \n", - "# interval is how often you want updates on progress\n", - "# the system returns a list of features it found were best\n", - "\n", - "# this is a small data set, so smaller bank and intervals are used to show convergence\n", - "features = fss.mlr_selection(xtrain, ytrain, clusterinfo, 2, model=\"regression\", learning=150, bank=50, interval=10)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "ec1718ed-3022-4554-8627-dbba0b4af243", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model features: ['RDF070v', 'X5Av']\n", - "Coefficients: [ -1.45342979 -96.40117135]\n", - "Intercept: -0.07684397375001017\n", - "RMSE: 0.250852\n", - "R^2: 0.793276\n" - ] - } - ], - "source": [ - "# we can export this model for now \n", - "model1 = em.ModelExport(xtrain, ytrain, xtest, ytest, features)\n", - "# show summary data \n", - "model1.mlr()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "8a1ee23e-c76b-4057-bdf7-9fa88ca57c06", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwi0lEQVR4nO3deVxU1f8/8NewD7KpgICiJppLLqglQn0UxZTSyiV3EBVxIzUVU/q5JO65lLlbCC4ooLnikmaWFohGotVHKUxE2RFlQGBY5v7+8MN8G5FhBoGZgdfz8ZjHg7n33Hvfh+Fy33POueeKBEEQQEREREQvpKfpAIiIiIi0GZMlIiIiIiWYLBEREREpwWSJiIiISAkmS0RERERKMFkiIiIiUoLJEhEREZESBpoOoD6QyWRITU2Fubk5RCKRpsMhIiIiFQiCgLy8PDg4OEBPr/L2IyZLNSA1NRWOjo6aDoOIiIiq4cGDB2jRokWl65ks1QBzc3MAz37ZFhYWGo6GiIiIVCGRSODo6Ci/jleGyVINKO96s7CwYLJERESkY6oaQsMB3kRERERKMFkiIiIiUoLJEhEREZESHLNUR2QyGYqLizUdBtUhQ0ND6OvrazoMIiJ6SUyW6kBxcTHu3bsHmUym6VCojllZWcHOzo7zbxER6TAmS7VMEASkpaVBX18fjo6OSie9ovpDEAQUFBQgMzMTAGBvb6/hiIiIqLqYLNWy0tJSFBQUwMHBAaamppoOh+qQWCwGAGRmZsLW1pZdckREOorNHLWsrKwMAGBkZKThSEgTyhPkkpISDUdCRETVxWSpjnDMSsPEz52ISPcxWSIiIiJSgskSERERkRJMlkgniUQiHD9+XNNhEBFRA8BkSUcIgoCsAikeSAqRVSCFIAh1ctyYmBjo6+tj8ODBam/bunVrfPnllzUflBKCIGDAgAEYNGhQhXXbt2+HlZUVHj58WKcxERFR9T158gSXL1/WaAxMlnRASl4hzv2TiSsPcnA97QmuPMjBuX8ykZJXWOvHDg4OxqxZs3D58mWkpqbW+vFelkgkQkhICGJjY7Fr1y758nv37uGTTz7Bli1b0KJFCw1GSEREqrp+/Tp69OiBwYMH4++//9ZYHEyWtFxKXiFiU5+gsFRx9u/CUhliU5/UasKUn5+PiIgIzJgxA4MHD0ZoaGiFMqdOncIbb7wBExMTWFtbY9iwYQAAd3d33L9/H3PnzoVIJJLfFfbZZ5/B2dlZYR9ffvklWrduLX9//fp1vP3227C2toalpSX69u2L3377TeW4HR0dsXnzZgQEBODevXsQBAG+vr4YOHAgvL291f49EBFR3RIEAV9++SXefPNN3Lt3D9bW1sjPz9dYPEyWtJggCLiVKVFa5lampNa65CIjI9GhQwe0b98eXl5e2LNnj8KxTp8+jWHDhuHdd9/FjRs3cPHiRfTq1QsAcPToUbRo0QJBQUFIS0tDWlqaysfNy8uDj48Pfv75Z1y9ehXt2rXDu+++i7y8PJX34ePjAw8PD0yePBlbt27FH3/8odDSRERE2iknJwdDhw7F3LlzUVJSguHDh+PGjRvo3r27xmLiDN5aLLuwuEKL0vMKS2XILiyGjalxjR8/ODgYXl5eAABPT0/k5ubip59+gru7OwBg1apVGDNmDJYvXy7fplu3bgCAJk2aQF9fH+bm5rCzs1PruP3791d4v3v3blhZWeGnn37CkCFDVN7P7t278dprr+Hy5cv49ttvYWNjo1YcRERUt2JiYjBmzBgkJyfDyMgImzZtwsyZMzU+Zx1blrRYURWJkrrl1JGQkIBr165h7NixAAADAwOMHj0awcHB8jLx8fHw8PCo8WNnZGTAz88P7dq1g6WlJSwsLJCfn4/k5GS19mNra4tp06ahY8eOGDp0aI3HSURENUMmk2H9+vXo06cPkpOT4eTkhJiYGPj7+2s8UQLYsqTVTAxUy2VVLaeO4OBglJaWwsHBQb5MEAQYGxtj69atsLS0lD/7TB16enoVug2ffxSIj48PHj16hM2bN6NVq1YwNjaGq6sriouL1T6egYEBDAz4Z05EpK2ys7Ph4+ODM2fOAABGjx6N3bt3w8LCQsOR/R+daVlatWoV3NzcYGpqCisrK5W2KR9Y/Pxr/fr18jKtW7eusH7t2rW1VAv1WIuNIK4iERIb6MFaXLPPnSstLcW+ffuwceNGxMfHy183b96Eg4MDDh06BADo2rUrLl68WOl+jIyM5M/GK2djY4P09HSFhCk+Pl6hzC+//ILZs2fj3XffxWuvvQZjY2NkZ2fXXAWJiEgrXLlyBc7Ozjhz5gyMjY2xa9cuHDp0SKsSJUCHkqXi4mKMHDkSM2bMUHmb8oHF5a89e/ZAJBJhxIgRCuX+PQg5LS0Ns2bNqunwq0UkEqGrrfI/mK62FjXeRBkVFYXHjx/D19cXnTt3VniNGDFC3hW3bNkyHDp0CMuWLcPt27fx+++/Y926dfL9tG7dGpcvX0ZKSoo82XF3d0dWVhY+//xz3L17F9u2bcPZs2cVjt+uXTvs378ft2/fRmxsLMaPH1+tViwiItJOMpkMq1evRr9+/ZCSkoJXX30V165dw9SpU7Wi2+15OpMsLV++HHPnzkWXLl1U3sbOzk7hdeLECfTr1w9t2rRRKFc+CLn81ahRI6X7lUqlkEgkCq/a0txcDBcHqwotTGIDPbg4WKG5ec0nEcHBwRgwYAAsLS0rrBsxYgR+/fVX3Lp1C+7u7jh8+DBOnjwJZ2dn9O/fH9euXZOXDQoKQlJSEpycnOSDqzt27Ijt27dj27Zt6NatG65du4aAgIAKx3/8+DF69OgBb29vzJ49G7a2tjVeTyIiqnuZmZnw9PTE//t//w9lZWXw8vJCXFwcunbtqunQKiUS6moq6BoSGhqKjz/+GE+ePFFru4yMDLRo0QJ79+7FuHHj5Mtbt26NoqIilJSUoGXLlhg3bhzmzp2rdJzLZ599pnAHWLnc3NwKTYdFRUW4d+8eXnnlFZiYmKgV878JgoDswmIUlcpg8r+uN23MvklRTX3+RET1waVLlzBu3Dikp6dDLBZj27ZtmDhxosauZxKJBJaWli+8fv9bgxn5unfvXpibm2P48OEKy2fPno0ePXqgSZMmiI6ORmBgINLS0rBp06ZK9xUYGIh58+bJ30skEjg6OtZa7MCzLrnamB6AiIiotpWVlWHlypUICgqCTCZDp06dEBkZiddee03ToalEo8nSokWLFMa4vMjt27fRoUOHlz7Wnj17MH78+Arf7v+d9HTt2hVGRkaYNm0a1qxZA2PjFycnxsbGla4jIiKi/5OWlobx48fj0qVLAIBJkyZhy5YtVQ550SYaTZbmz5+PiRMnKi3z/Pii6rhy5QoSEhIQERFRZVkXFxeUlpYiKSkJ7du3f+ljExERNVQXLlyAl5cXMjMz0ahRI+zYsUMnHzul0WTJxsamTmZVDg4ORs+ePeWzSysTHx8PPT09DigmIiKqptLSUnz22WdYvXo1BEFAly5d5I/Q0kU6M2YpOTkZOTk5SE5ORllZmXxunrZt28LMzAwA0KFDB6xZs0b+MFfg2Xiiw4cPY+PGjRX2GRMTg9jYWPTr1w/m5uaIiYnB3Llz4eXlhcaNG9dJvYiIiOqThw8fYty4cbhy5QoAYOrUqfjyyy91egoYnUmWli5dir1798rflz9Q79KlS/JnlSUkJCA3N1dhu/DwcAiCIH9sx78ZGxsjPDwcn332GaRSKV555RXMnTtXYRwTERERqebs2bPw9vbGo0ePYGZmhq+//hpjxozRdFgvTeemDtBGym495K3jDRs/fyJqCEpKSrB48WJ8/vnnAJ41aERERKBdu3Yajkw5Th1AREREtS45ORljxoxBTEwMAMDf3x8bNmyoV18QdWYGb6q/Jk6ciKFDh8rfu7u74+OPP67zOH788UeIRCK1JzwlImqoyp/gEBMTA0tLSxw5cgRbt26tV4kSwGSJKlE+o6pIJIKRkRHatm2LoKAglJaW1vqxjx49ihUrVqhUtq4SnOzsbNjZ2WH16tUV1o0aNQq9e/eu8NBgIqL6qri4GPPmzcMHH3yAx48f44033sBvv/1W4dmr9QW74ahSnp6eCAkJgVQqxZkzZ+Dv7w9DQ0MEBgZWKFtcXAwjI6MaOW6TJk1qZD81ydraGrt378bIkSPx3nvvyZ9RePjwYURFReHGjRvQ19fXcJRERLXv3r17GD16NK5fvw4A+Pjjj7Fu3boauwZoI7YsUaWMjY1hZ2eHVq1aYcaMGRgwYABOnjwJ4P+6zlatWgUHBwf5BJ4PHjzAqFGjYGVlhSZNmuCDDz5AUlKSfJ9lZWWYN28erKys0LRpU3zyySd4/h6D57vhpFIpFi5cCEdHRxgbG6Nt27YIDg5GUlIS+vXrBwBo3LgxRCKRfJJTmUyGNWvW4JVXXoFYLEa3bt1w5MgRheOcOXMGr776KsRiMfr166cQ54u8//77GDduHHx8fFBSUoKsrCz4+/tj7dq1nMCUiBqEo0ePonv37rh+/TqsrKxw/PhxfPHFF/U6UQLYslTnBEFAQUGBRo5tamr6Ug8rFIvFePTokfz9xYsXYWFhgQsXLgB4djfEoEGD4OrqiitXrsDAwAArV66Ep6cnbt26BSMjI2zcuBGhoaHYs2cPOnbsiI0bN+LYsWPo379/pcedMGECYmJi8NVXX6Fbt264d+8esrOz4ejoiG+//RYjRoxAQkICLCws5PN4rFmzBgcOHMDOnTvRrl07XL58GV5eXrCxsUHfvn3x4MEDDB8+HP7+/pg6dSp+/fVXzJ8/v8rfwebNm9GlSxesWLECt2/fRufOnTFr1qxq/06JiHSBVCpFQEAAtm7dCgDo3bs3wsPD0apVKw1HVkcEemm5ubkCACE3N7fCusLCQuG///2vUFhYKAiCIOTn5wsANPLKz89XuU4+Pj7CBx98IAiCIMhkMuHChQuCsbGxEBAQIF/frFkzQSqVyrfZv3+/0L59e0Emk8mXSaVSQSwWC999950gCIJgb28vfP755/L1JSUlQosWLeTHEgRB6Nu3rzBnzhxBEAQhISFBACBcuHDhhXFeunRJACA8fvxYvqyoqEgwNTUVoqOjFcr6+voKY8eOFQRBEAIDA4VOnToprF+4cGGFfb3IxYsXBX19fcHCwkJISkpSWvb5z5+ISNf8/fffQo8ePeTXkk8++UQoLi7WdFg1Qtn1+9/YskSVioqKgpmZGUpKSiCTyTBu3Dh89tln8vVdunRRaHq9efMmEhMTYW5urrCfoqIi3L17F7m5uUhLS4OLi4t8nYGBAV5//fUKXXHl4uPjoa+vj759+6ocd2JiIgoKCvD2228rLC8uLpZPZnr79m2FOADA1dVVpf33798fvXv3hrOzc8P5VkVEDVJERAT8/PyQl5eHpk2bYt++fXj33Xc1HVadY7JUx0xNTZGfn6+xY6ujX79+2LFjB4yMjODg4AADA8U/l+efGJ2fn4+ePXsiLCyswr6q+wzA6kyPX/77PX36NJo3b66wztjYuFpxPM/AwKDC74OIqL4oLCzE3LlzsWvXLgDAW2+9hUOHDqFFixYajkwz+N++jolEogpJhrZq1KgR2rZtq3L5Hj16ICIiAra2tpXOhGpvb4/Y2Fj06dMHwLOHLcbFxaFHjx4vLN+lSxfIZDL89NNPGDBgQIX15S1b/75tv1OnTjA2NkZycnKlLVIdO3aUD1Yvd/Xq1aorSURUzyUkJGDUqFG4desWRCIRAgMDsXz58gb9BZF3w1GNGT9+PKytrfHBBx/gypUruHfvHn788UfMnj0bDx8+BADMmTMHa9euxfHjx3Hnzh3MnDlT6RxJrVu3ho+PDyZPnozjx4/L9xkZGQkAaNWqFUQiEaKiopCVlYX8/HyYm5sjICAAc+fOxd69e3H37l389ttv2LJli/z5gtOnT8fff/+NBQsWICEhAQcPHkRoaGht/4qIiLTagQMH0LNnT9y6dQs2NjY4d+4cVq1a1aATJYDJEtUgU1NTXL58GS1btsTw4cPRsWNH+Pr6oqioSN7SNH/+fHh7e8PHxweurq4wNzfHsGHDlO53x44d+PDDDzFz5kx06NABfn5+ePr0KQCgefPmWL58ORYtWoRmzZrho48+AgCsWLECS5YswZo1a9CxY0d4enri9OnTeOWVVwAALVu2xLfffovjx4+jW7du2Llz5wsnnCQiaggKCgrg6+sLb29vPH36FO7u7rh58yYGDhyo6dC0Ah+kWwP4IF2qDD9/ItJ2//3vfzFy5Ej897//hUgkwtKlS7FkyZIGMdEuH6RLRERElRIEAaGhofD390dhYSHs7OwQFhamdN67horJEhERUQOTn5+PmTNnYv/+/QCAt99+G/v370ezZs00HJl24pglIiKiBuTWrVt44403sH//fujp6WHlypU4d+4cEyUl2LJERETUAAiCgK+//hpz5sxBUVERHBwccOjQIflULlQ5Jkt1hOPoGyZ+7kSkDSQSCaZNm4bw8HAAwDvvvIO9e/dWe8LghobdcLWs/G6C4uJiDUdCmlD+0GRDQ0MNR0JEDdWNGzfQs2dPhIeHQ19fH+vWrUNUVBQTJTWwZamWGRgYwNTUFFlZWTA0NISeHvPThkAQBBQUFCAzMxNWVlYN4hZcItIugiBg+/btmDdvHoqLi+Ho6Ijw8HC4ublpOjSdw2SplolEItjb2+PevXu4f/++psOhOmZlZQU7OztNh0FEDcyTJ0/g5+eHI0eOAADee+89hIaGokmTJhqOTDcxWaoDRkZGaNeuHbviGhhDQ0O2KBFRnbt+/TpGjx6Ne/fuwdDQEOvWrcPHH38MkUik6dB0FpOlOqKnp8cZnImIqNYIgoDNmzfjk08+QUlJCVq3bo2IiAj06tVL06HpPCZLREREOi4nJweTJ0/GiRMnAADDhw9HcHAwrKysNBtYPcHRxkRERDrs6tWr6N69O06cOAEjIyNs2bIFR44cYaJUg5gsERER6SCZTIb169fjP//5D5KTk+Hk5ISYmBh89NFHHJ9Uw9gNR0REpGOys7Ph4+ODM2fOAABGjx6N3bt3w8LCQsOR1U9sWSIiItIhV65cgbOzM86cOQNjY2Ps3LkThw4dYqJUi5gsERER6QCZTIbVq1ejX79+SElJwauvvorY2FhMmzaN3W61jN1wRESkUwRBQHZhMYpKZTAx0IO12KjeJwuZmZnw9vbG+fPnAQBeXl7YsWMHzMzMNBxZw6ATLUtJSUnw9fXFK6+8ArFYDCcnJyxbtqzKSR6Liorg7++Ppk2bwszMDCNGjEBGRoZCmeTkZAwePBimpqawtbXFggULUFpaWpvVISKiakrJK8S5fzJx5UEOrqc9wZUHOTj3TyZS8go1HVqt+fHHH+Hs7Izz589DLBYjODgY+/btY6JUh3SiZenOnTuQyWTYtWsX2rZtiz/++AN+fn54+vQpNmzYUOl2c+fOxenTp3H48GFYWlrio48+wvDhw/HLL78AAMrKyjB48GDY2dkhOjoaaWlpmDBhAgwNDbF69eq6qh4REakgJa8QsalPKiwvLJUhNvUJXByA5ubiug+slpSVlWHlypUICgqCTCZDp06dEBkZiddee03ToTU4IkEQBE0HUR3r16/Hjh078M8//7xwfW5uLmxsbHDw4EF8+OGHAJ4lXR07dkRMTAx69+6Ns2fPYsiQIUhNTUWzZs0AADt37sTChQuRlZUFIyOjF+5bKpVCKpXK30skEjg6OiI3N5cD7IiIaoEgCDj3TyYKS2WVlhEb6MGzjW296JJLS0uDl5cXfvjhBwDApEmTsGXLFjRq1EjDkdUvEokElpaWVV6/daIb7kVyc3OVPhAwLi4OJSUlGDBggHxZhw4d0LJlS8TExAAAYmJi0KVLF3miBACDBg2CRCLBn3/+Wem+16xZA0tLS/nL0dGxBmpERESVyS4sVpooAc9amLILdf8ZnBcuXICzszN++OEHNGrUCPv27cOePXuYKGmQTiZLiYmJ2LJlC6ZNm1ZpmfT0dBgZGVWYwbRZs2ZIT0+Xl/l3olS+vnxdZQIDA5Gbmyt/PXjwoJo1ISIiVRRVkSipW04blZaWYvHixRg0aBAyMzPRpUsX/Prrr/D29tZ0aA2eRpOlRYsWQSQSKX3duXNHYZuUlBR4enpi5MiR8PPz00jcxsbGsLCwUHgREVHtMTFQ7XKlajltk5KSgv79+2PVqlUQBAFTp05FbGwsOnTooOnQCBoe4D1//nxMnDhRaZk2bdrIf05NTUW/fv3g5uaG3bt3K93Ozs4OxcXFePLkiULrUkZGBuzs7ORlrl27prBd+d1y5WWIiEjzrMVGEBvoVTlmyVr84rGm2uzs2bOYMGECsrOzYWZmhq+//hpjxozRdFj0LxpNlmxsbGBjY6NS2ZSUFPTr1w89e/ZESEgI9PSUf3vo2bMnDA0NcfHiRYwYMQIAkJCQgOTkZLi6ugIAXF1dsWrVKmRmZsLW1hbAs75iCwsLdOrU6SVqRkRENUkkEqGrrcUL74Yr19XWQqcGd5eUlGDx4sX4/PPPAQDdu3dHREQE2rVrp+HI6Hk60V6ZkpICd3d3tGzZEhs2bEBWVhbS09MVxhWlpKSgQ4cO8pYiS0tL+Pr6Yt68ebh06RLi4uIwadIkuLq6onfv3gCAgQMHolOnTvD29sbNmzfx3XffYfHixfD394exsbFG6kpERC/W3FwMFwcriJ/rahMb6MHFwUqnpg1ITk6Gu7u7PFHy9/dHdHQ0EyUtpRPzLF24cAGJiYlITExEixYtFNaVz3xQUlKChIQEFBQUyNd98cUX0NPTw4gRIyCVSjFo0CBs375dvl5fXx9RUVGYMWMGXF1d0ahRI/j4+CAoKKhuKkZERGppbi6Gg5mJTs/gferUKfj4+ODx48ewsLBAcHCwfIob0k46O8+SNlF1ngYiImq4iouLERgYiE2bNgEAXn/9dURERCiMzaW6per1WydaloiIiHTZvXv3MGbMGPlQkY8//hjr1q2rdPJj0i5MloiIiGrR0aNHMXnyZOTm5sLKygqhoaH44IMPNB0WqUEnBngTERHpGqlUilmzZmHEiBHIzc1F7969ER8fz0RJB7FliYiIqIYlJiZi9OjR+O233wAACxYswKpVq2BoaKjhyHSLIAhaMZifyRIRUT2iLReXhiwyMhJTpkxBXl4emjZtir1792Lw4MGaDkvnpOQV4lamRGEiUrGBHrraWtT5NBFMloiI6glturg0RIWFhZg7dy527doFAHjrrbdw6NChClPeUNVS8gpfOAFpYakMsalP4OKAOv2b5pglIqJ6oPzi8vzjQMovLil5hRqKrGFISEhA7969sWvXLohEInz66ae4dOkSE6VqEAQBtzIlSsvcypSgLmc+YrJERKTjtPHi0pAcOHAAPXv2xK1bt2BjY4Nz585h1apVMDBg5011ZBcWK30GIPDsS0B2YXEdRcRkiYhI52njxaUhKCgogK+vL7y9vfH06VO4u7sjPj4eAwcO1HRoOq2oir9ldcvVBCZLREQ6ThsvLvXdf//7X/Tq1Qt79uyBSCTCsmXL8P3338PBwUHToek8EwPVUhNVy9UEthESEek4bby41GehoaGYOXMmCgsLYWdnh7CwMPTv31/TYdUb1mIjiA30lLaWiv93p2dd4ZlDRKTjyi8uytT1xaU+ys/Ph4+PDyZNmoTCwkIMGDAA8fHxTJRqmEgkQldb5c9Z7WprUadTYjBZIiLScdp4calvfv/9d7zxxhvYt28f9PT0sHLlSnz33Xdo1qyZpkOrl5qbi+HiYFXhS4DYQA8uDlacZ4mIiNT37OICzrNUwwRBwDfffIPZs2ejqKgIDg4OOHToEPr06aPp0Oq95uZiOJiZaMUkq0yWiIjqCW26uNQHEokE06ZNQ3h4OADA09MT+/btg42NjYYjazhEIhFsTI01HQaTJSKi+kRbLi667saNGxg1ahQSExOhr6+P1atXIyAgAHp6HL3SEDFZIiIi+h9BELBjxw7MnTsXxcXFcHR0RHh4ONzc3DQdGmkQkyUiIiIAubm5mDJlCo4cOQIAeO+99xASEoKmTZtqODLSNLYnEhFRg3f9+nV0794dR44cgaGhITZt2oQTJ04wUSIAbFkiIqIGTBAEfPXVV1iwYAFKSkrQunVrREREoFevXpoOjbQIkyUiImqQcnJyMHnyZJw4cQIAMHz4cAQHB8PKykqzgZHWYbJEREQaJwhCnU55cPXqVYwePRrJyckwMjLCxo0b4e/vz2kW6IWYLBERkUal5BXW2WSaMpkMmzZtQmBgIEpLS+Hk5ISIiAj07NmzRo9D9QsHeBMRkcak5BUiNvVJhYemFpbKEJv6BCl5hTV2rOzsbLz//vtYsGABSktLMWrUKPz2229MlKhKTJaIiEgjBEHArUyJ0jK3MiUQBOGlj/Xzzz/D2dkZp0+fhrGxMXbu3Inw8HBYWCh/ph4RwGSJiIg0JLuwuEKL0vMKS2XILiyu9jFkMhnWrFkDd3d3pKSk4NVXX0VsbCymTZvG8UmkMo5ZIiIijSiqIlFSt9zzMjMz4e3tjfPnzwMAvLy8sGPHDpiZmVVrf6Seuh60X5uYLBERkUaYGKjWuaFquX/78ccfMW7cOKSlpUEsFmPr1q2YNGmSzl6sdU1dDtqvC+yGIyIijbAWG0FcRSIk/l+LhKrKysoQFBQEDw8PpKWloWPHjrh+/TomT57MRKmO1OWg/brCZImIiDRCJBKhq63yAdZdbS1UTnLS09MxcOBALFu2DDKZDJMmTcL169fx2muv1US4pIK6HLRfl3QiWUpKSoKvry9eeeUViMViODk5YdmyZSgurnzQX05ODmbNmoX27dtDLBajZcuWmD17NnJzcxXKiUSiCq/w8PDarhIREQFobi6Gi4NVhRYmsYEeXBysVO6y+f7779GtWzf88MMPMDU1xb59+7Bnzx40atSoNsKmStTFoH1N0IkxS3fu3IFMJsOuXbvQtm1b/PHHH/Dz88PTp0+xYcOGF26TmpqK1NRUbNiwAZ06dcL9+/cxffp0pKamyp8oXS4kJASenp7y95zqnoio7jQ3F8PBzKRag4FLS0uxfPlyrFq1CoIgoEuXLoiMjESHDh3qIHJ6Xm0P2tcUkaBrbWH/s379euzYsQP//POPytscPnwYXl5eePr0KQwMnuWJIpEIx44dw9ChQ6sdi0QigaWlJXJzczlnBxFRHUlJScG4ceNw+fJlAICfnx82b94MsVj3BhDXF1kFUlx5kFNluf84NoGNqXEdRKScqtdvneiGe5Hc3Fw0adJE7W0sLCzkiVI5f39/WFtbo1evXtizZ0+VfalSqRQSiUThRUREdefcuXNwdnbG5cuXYWZmhoMHD2L37t1MlDSsNgbtawOdTJYSExOxZcsWTJs2TeVtsrOzsWLFCkydOlVheVBQECIjI3HhwgWMGDECM2fOxJYtW5Tua82aNbC0tJS/HB0dq1UPIiJST0lJCRYtWoR33nkH2dnZcHZ2xm+//YaxY8dqOjRCzQ/a1xYa7YZbtGgR1q1bp7TM7du3FfqeU1JS0LdvX7i7u+Obb75R6TgSiQRvv/02mjRpgpMnT8LQ0LDSskuXLkVISAgePHhQaRmpVAqpVKqwf0dHR3bDERHVouTkZIwdOxbR0dEAnvUKbNiwASYmJhqOjJ6nK/MsqdoNp9FkKSsrC48ePVJapk2bNjAyetZcl5qaCnd3d/Tu3RuhoaHQ06u6YSwvLw+DBg2CqakpoqKiqjypTp8+jSFDhqCoqAjGxqr1p3LMEhFpWn2aLflFTp06hYkTJyInJwcWFhYIDg7Ghx9+qOmwSAld+JtU9fqt0bvhbGxsYGNjo1LZlJQU9OvXDz179kRISIhKiZJEIsGgQYNgbGyMkydPqvTtIz4+Ho0bN1Y5USIi0jRd+RZfHcXFxQgMDMSmTZsAAK+//joiIiLQpk0bDUemGzSZsIhEIq0YxF0TdGLqgJSUFLi7u6NVq1bYsGEDsrKy5Ovs7OzkZTw8PLBv3z706tULEokEAwcOREFBAQ4cOKAwENvGxgb6+vo4deoUMjIy0Lt3b5iYmODChQtYvXo1AgICNFJPIiJ1lc+W/Lzy2ZJdHKCzCdO9e/cwZswYXLt2DQDw8ccfY+3atfwyq6L6nETXNZ1Ili5cuIDExEQkJiaiRYsWCuvKexFLSkqQkJCAgoICAMBvv/2G2NhYAEDbtm0Vtrl37x5at24NQ0NDbNu2DXPnzoUgCGjbti02bdoEPz+/OqgVEdHLUXW2ZAczE63r/qjK0aNHMXnyZOTm5sLKygqhoaH44IMPNB2WzqjPSbQm6Ow8S9qEY5aISBN0bU4bVUilUgQEBGDr1q0AgN69eyM8PBytWrXScGS6QxAEnPsnU+lM2mIDPXi2sdW5JLqm1ft5loiIGrr6NltyYmIi3Nzc5InSggULcPnyZSZKaqqvjxzRJJ3ohiMioopMqpj8T91ymhQZGYkpU6YgLy8PTZs2xd69ezF48GBNh6WT6lsSrQ20/wwiIqIXqg+zJRcWFmLGjBkYPXo08vLy8NZbbyE+Pp6J0kuoT0m0tuBviohIR+n6bMkJCQno3bs3du7cCQAIDAzEpUuXKtzIQ+qpD0m0tmGyRESkw5qbi+HiYFXh4ig20IOLg5XW3vEUFhaGnj174tatW7CxscG5c+ewevXqCs/uJPXpehKtjfhXSUSk45qbi+FgZqL1syUDQEFBAWbPno3g4GAAgLu7O8LCwuDg4KDhyOqXZ0k0OM9SDWGyRERUD+jCbMn//e9/MWrUKPz5558QiURYsmQJli5dCn19fU2HVi/pUhKt7ZgsERFRrQsNDYW/vz8KCgpgZ2eHsLAw9O/fX9Nh1Xu6kETrAo5ZIiKiWpOfnw8fHx9MmjQJBQUFGDBgAOLj45kokU5hskRERLXi999/xxtvvIF9+/ZBT08PK1euxLlz59CsWTNNh0akFnbDERFRjRIEAd988w1mz56NoqIiODg44NChQ+jTp4+mQyOqFiZLRERUY/Ly8jBt2jQcOnQIAODp6Yl9+/bBxsZGw5ERVR+74YiIqEbcuHEDPXr0wKFDh6Cvr4+1a9fi9OnTTJRI57FliYiIXoogCNixYwfmzZsHqVQKR0dHhIeHw83NTdOhEdUIJktERFRtubm5mDJlCo4cOQIAeO+99xASEoKmTZtqODKimsNuOCIiqpZff/0V3bt3x5EjR2BgYIBNmzbhxIkTTJSo3mHLEhERqUUQBHz11VdYsGABSkpK0Lp1a0RERKBXr16aDo2oVjBZIiIilT1+/BiTJ0/G8ePHAQDDhg3Dnj17YGVlpdG4iGoTu+GIiEglV69eRffu3XH8+HEYGRlhy5Yt+Pbbb5koUb3HZImIiJSSyWTYsGED/vOf/+D+/ftwcnJCdHQ0PvroIz6UlRoEdsMREVGlHj16BB8fH5w+fRoAMGrUKOzevRuWlpYajoyo7rBliYiIXujnn3+Gs7MzTp8+DWNjY+zYsQPh4eFMlKjBYbJEREQKZDIZ1qxZA3d3dzx8+BCvvvoqYmNjMX36dHa7UYPEbjgiIpLLzMyEt7c3zp8/DwAYP348duzYAXNzcw1HRqQ5TJaIiAgA8OOPP2LcuHFIS0uDWCzG1q1bMWnSJLYmUYPHbjgi0kmCICCrQIoHkkJkFUghCIKmQ9JZZWVlCAoKgoeHB9LS0tCxY0dcu3YNkydPZqJEBLYsEZEOSskrxK1MCQpLZfJlYgM9dLW1QHNzsQYj0z3p6ekYP348fvjhBwDAxIkTsXXrVjRq1EjDkRFpD7YsEZFOSckrRGzqE4VECQAKS2WITX2ClLxCDUWme77//ns4Ozvjhx9+gKmpKfbu3YuQkBAmSkTPYbJERDpDEATcypQoLXMrU8IuuSqUlpZiyZIlGDhwIDIyMtC5c2fExcVhwoQJmg6NSCuxG46IdEZ2YXGFFqXnFZbKkF1YDBtT4zqKSrekpKRg3LhxuHz5MgDAz88PmzdvhljM7kuiyuhEy1JSUhJ8fX3xyiuvQCwWw8nJCcuWLUNxcbHS7dzd3SESiRRe06dPVyiTnJyMwYMHw9TUFLa2tliwYAFKS0trszpEVE1FVSRK6pZraM6dOwdnZ2dcvnwZZmZmOHjwIHbv3l0hUeLgeSJFOtGydOfOHchkMuzatQtt27bFH3/8AT8/Pzx9+hQbNmxQuq2fnx+CgoLk701NTeU/l5WVYfDgwbCzs0N0dDTS0tIwYcIEGBoaYvXq1bVWHyKqHhMD1b7fqVquoSgpKcGSJUuwbt06AICzszMiIyPRrl27CmU5eJ6oIpGg4lcGQRC06hbS9evXY8eOHfjnn38qLePu7g5nZ2d8+eWXL1x/9uxZDBkyBKmpqWjWrBkAYOfOnVi4cCGysrJgZGSkUiwSiQSWlpbIzc2FhYWF2nUhItUIgoBz/2Qq7YoTG+jBs42tVv2/0qQHDx5gzJgxiI6OBgDMnDkTGzduhImJSYWy5YPnK+PiYMWEieoVVa/fKn/9evPNN5GYmFgjwdWE3NxcNGnSpMpyYWFhsLa2RufOnREYGIiCggL5upiYGHTp0kWeKAHAoEGDIJFI8Oeff1a6T6lUColEovAiotonEonQ1Vb5F5KuthZMlP7n1KlTcHZ2RnR0NCwsLHD48GFs27bthYkSB88TVU7lZKlFixZwdnbGtm3bajMelSQmJmLLli2YNm2a0nLjxo3DgQMHcOnSJQQGBmL//v3w8vKSr09PT1dIlADI36enp1e63zVr1sDS0lL+cnR0fInaEJE6mpuL4eJgBfFzXW1iAz22fPxPcXEx5s+fj/fffx85OTl4/fXXcePGDXz44YeVbqPO4HmihkblMUuRkZE4fPgwPvroIxw/fhwhISFo0aLFSx180aJF8j70yty+fRsdOnSQv09JSYGnpydGjhwJPz8/pdtOnTpV/nOXLl1gb28PDw8P3L17F05OTtWOOzAwEPPmzZO/l0gkTJiI6lBzczEczEyQXViMolIZTAz0YC02YosSnt0QM3r0aFy7dg0AMGfOHKxbtw7GxsrvDuTgeaLKqTXAe+TIkXB3d4e/vz+6dOkCb29vGBgo7mLTpk0q72/+/PmYOHGi0jJt2rSR/5yamop+/frBzc0Nu3fvVid0AICLiwuAZy1TTk5OsLOzk/9DKZeRkQEAsLOzq3Q/xsbGVf7jIaLaJRKJOD3Ac44dO4bJkyfjyZMnsLKyQkhICIYOHarSthw8T1Q5te+Ga9KkCTp27Ihjx47hxo0bCsmSut/qbGxsYGNjo1LZlJQU9OvXDz179kRISAj09NQ/YePj4wEA9vb2AABXV1esWrUKmZmZsLW1BQBcuHABFhYW6NSpk9r7JyLSBKlUigULFmDLli0AgN69eyM8PBytWrVSeR/WYiOIDfSqHDxvLVbtxhei+kStZOnPP//EhAkTkJOTg/Pnz6Nfv361FZeClJQUuLu7o1WrVtiwYQOysrLk68pbgFJSUuDh4YF9+/ahV69euHv3Lg4ePIh3330XTZs2xa1btzB37lz06dMHXbt2BQAMHDgQnTp1gre3Nz7//HOkp6dj8eLF8Pf3Z8sREemEu3fvYvTo0YiLiwMABAQEYPXq1TA0NFRrP+WD55XdDcfB89RQqdw8s3btWvTs2RPdunXDrVu36ixRAp619iQmJuLixYto0aIF7O3t5a9yJSUlSEhIkN/tZmRkhO+//x4DBw5Ehw4dMH/+fIwYMQKnTp2Sb6Ovr4+oqCjo6+vD1dUVXl5emDBhgsK8TERE2ioyMhLdu3dHXFwcmjZtiqioKKxfv17tRKkcB88TvZjK8yzZ29tj9+7deO+992o7Jp3DeZaIqC4VFRVh7ty52LlzJ4BnU7uEh4e/9E035QRB4OB5ahBUvX6r3A33xx9/oGnTpjUSHBERVc9ff/2FUaNG4ebNmwCe3Z0bFBRU4Wabl8HB80SKVD67mCgRkS6rD60lYWFhmDZtGp4+fQobGxvs378fgwYN0nRYRPWeTjwbjojoZej6884KCgowe/ZsBAcHA3j2KKewsDA4ODhoODKihoETZhBRvVb+vLPnb4kvLJUhNvUJUvIKNRSZam7fvg0XFxcEBwdDJBJh6dKl+P7775koEdUhtiwRUb2l6vPOHMxMtLJLbu/evZg5cyYKCgrQrFkzhIWFwcPDQ9NhETU4KiVL6jwolneDEZG2UOd5Z9o0oDk/Px/+/v7Yt28fAGDAgAE4cOBAhWdZElHdUClZsrKyUvlbV1lZ2UsFRERUU3TxeWe///47Ro0ahTt37kBPTw/Lly9HYGAg9PX1NR0aUYOlUrJ06dIl+c9JSUlYtGgRJk6cCFdXVwBATEwM9u7dizVr1tROlERE1aBLzzsTBAHBwcGYNWsWioqK4ODggIMHD6Jv376aDo2owVN5UspyHh4emDJlCsaOHauw/ODBg9i9ezd+/PHHmoxPJ3BSSiLtJAgCzv2TWeXzzjzb2Gp0zFJeXh6mTZuGQ4cOAQA8PT2xb98+lZ+dSUTVo+r1W+2vUzExMXj99dcrLH/99ddx7do1dXdHRFRryp93poymn3cWHx+Pnj174tChQ9DX18fatWtx+vRpJkpEWkTtZMnR0RFff/11heXffPMNHB0dayQoIqKaoq3POxMEATt27EDv3r3x999/o0WLFvjpp5+wcOFC6OlpvluQiP6P2lMHfPHFFxgxYgTOnj0LFxcXAMC1a9fw999/49tvv63xAImIXlZzczEczEy0Zgbv3Nxc+Pn54fDhwwCAIUOGIDQ0lE9KINJSan99effdd/HXX3/hvffeQ05ODnJycvDee+/hr7/+wrvvvlsbMRIRvbTy5505WohhY2qssUTp119/RY8ePXD48GEYGBhg48aNOHnyJBMlIi2m9gBvqogDvImoKoIg4KuvvsKCBQtQUlKCVq1aISIiQt5CT0R1r9YGeAPAlStX4OXlBTc3N6SkpAAA9u/fj59//rl60RIR1WOPHz/G8OHD8fHHH6OkpATDhg3DjRs3mCgR6Qi1k6Vvv/0WgwYNglgsxm+//QapVArgWR/86tWrazxAIiJdFhsbi+7du+P48eMwMjLCV199hW+//RaNGzfWdGhEpCK1k6WVK1di586d+Prrr2FoaChf/uabb+K3336r0eCIiHSVTCbDxo0b8dZbb+H+/fto06YNoqOjMWvWLK18Dh0RVU7tu+ESEhLQp0+fCsstLS3x5MmTmoiJiEinPXr0CD4+Pjh9+jQAYNSoUdi9ezcsLS01HBkRVYfaLUt2dnZITEyssPznn39GmzZtaiQoIiJd9csvv8DZ2RmnT5+GsbExduzYgfDwcCZKRDpM7WTJz88Pc+bMQWxsLEQiEVJTUxEWFoaAgADMmDGjNmIkItJ6MpkMa9euRd++ffHw4UO8+uqriI2NxfTp09ntRqTj1O6GW7RoEWQyGTw8PFBQUIA+ffrA2NgYAQEBmDVrVm3ESESk1TIzMzFhwgR89913AIDx48djx44dMDc313BkRFQTqj3PUnFxMRITE5Gfn49OnTrBzMyspmPTGZxniajh+umnnzB27FikpaVBLBZjy5YtmDx5MluTiHRArc2zNHnyZOTl5cHIyAidOnVCr169YGZmhqdPn2Ly5MkvFTQRka4oKytDUFAQ+vfvj7S0NHTs2BHXrl2Dr68vEyWiekbtliV9fX2kpaXB1tZWYXl2djbs7OxQWlpaowHqArYsETUs6enp8PLywsWLFwEAEydOxNatW9GoUSMNR0ZE6lD1+q3ymCWJRAJBECAIAvLy8mBiYiJfV1ZWhjNnzlRIoIiI6puLFy9i/PjxyMjIgKmpKXbs2IEJEyZoOiwiqkUqJ0tWVlYQiUQQiUR49dVXK6wXiURYvnx5jQZHRKQtSktLERQUhJUrV0IQBHTu3BmRkZHo2LGjpkMjolqmcrJ06dIlCIKA/v3749tvv0WTJk3k64yMjNCqVSs4ODjUSpBERJqUmpqKsWPH4vLlywCeTaGyefNmiMViDUdGRHVB5WSpb9++AIB79+6hZcuWHMBIRA3CuXPn4O3tjezsbJiZmWH37t0YO3aspsMiojqk9t1wP/zwA44cOVJh+eHDh7F3794aCYqISNNKSkoQGBiId955B9nZ2XB2dkZcXBwTJaIGSO1kac2aNbC2tq6w3NbWFqtXr66RoIiINOnBgwdwd3fH2rVrAQAzZ85ETEzMC8drElH9p3aylJycjFdeeaXC8latWiE5OblGgnpeUlISfH198corr0AsFsPJyQnLli1DcXGx0m3KB6Q//zp8+LC83IvWh4eH10o9iEj7RUVFwdnZGdHR0bCwsEBkZCS2bdumcAcwETUsaj/uxNbWFrdu3ULr1q0Vlt+8eRNNmzatqbgU3LlzBzKZDLt27ULbtm3xxx9/wM/PD0+fPsWGDRteuI2joyPS0tIUlu3evRvr16/HO++8o7A8JCQEnp6e8vdWVlY1Xgci0m7FxcUIDAzEpk2bAAA9e/ZEREQEnJycNBwZEWma2snS2LFjMXv2bJibm6NPnz4Ank33P2fOHIwZM6bGAwQAT09PhWSmTZs2SEhIwI4dOypNlvT19WFnZ6ew7NixYxg1alSFR7NYWVlVKEtEDUdSUhLGjBmD2NhYAMCcOXOwbt06GBsbazgyItIGanfDrVixAi4uLvDw8IBYLIZYLMbAgQPRv3//Oh2zlJubqzB9QVXi4uIQHx8PX1/fCuv8/f1hbW2NXr16Yc+ePahqUnOpVAqJRKLwIiLddPz4cXTv3h2xsbGwsrLCsWPH8OWXX2okURIEAVkFUjyQFCKrQFrl/6KGFg+RpqjdsmRkZISIiAisWLECN2/ehFgsRpcuXdCqVavaiO+FEhMTsWXLlkpblV4kODgYHTt2hJubm8Ly8mc7mZqa4vz585g5cyby8/Mxe/bsSve1Zs0aTsBJpOOkUik++eQTfPXVVwAAFxcXhIeHVxhiUFdS8gpxK1OCwlKZfJnYQA9dbS3Q3Lzu53PStniINEntZ8PVpEWLFmHdunVKy9y+fRsdOnSQv09JSUHfvn3h7u6Ob775RqXjFBYWwt7eHkuWLMH8+fOVll26dClCQkLw4MGDSstIpVJIpVL5e4lEAkdHRz4bjkhH3L17F6NHj0ZcXBwAICAgAKtXr4ahoaFG4knJK0Rs6pNK17s4WNVpgqJt8RDVlhp9Nty8efOwYsUKNGrUCPPmzVNatnxwpCrmz5+PiRMnKi3Tpk0b+c+pqano168f3NzcsHv3bpWPc+TIERQUFKj0/CYXFxesWLECUqm00mZ4Y2NjjmUg0lGHDx/GlClTIJFI0KRJE+zbtw+DBw/WWDyCIOBWpvKu/FuZEjiYmdTJZMDaFg+RNlApWbpx4wZKSkrkP1dG3RPHxsYGNjY2KpVNSUlBv3790LNnT4SEhEBPT/XhVsHBwXj//fdVOlZ8fDwaN27MZIionikqKsK8efOwY8cOAMCbb76JQ4cOwdHRUaNxZRcWK3R1vUhhqQzZhcWwMa39/0vaFg+RNlApWbp06dILf64rKSkpcHd3R6tWrbBhwwZkZWXJ15XfxZaSkgIPDw/s27cPvXr1kq9PTEzE5cuXcebMmQr7PXXqFDIyMtC7d2+YmJjgwoULWL16NQICAmq/UkRUZ/766y+MGjUKN2/eBAAEBgYiKCgIBgZqD9uscUVVJCbqlntZ2hYPkTbQ/H8KFVy4cAGJiYlITExEixYtFNaVD7kqKSlBQkICCgoKFNbv2bMHLVq0wMCBAyvs19DQENu2bcPcuXMhCALatm2LTZs2wc/Pr/YqQ0R16uDBg5g2bRry8/NhY2OD/fv3Y9CgQZoOS87EQLVWclXLvSxti4dIG6g0wHv48OEq7/Do0aMvFZAuUnWAGBG9HEEQkF1YjKJSGUwM9GAtNqq0+7+goABz5syR3wjSt29fHDx4EA4ODnUZcpUEQcC5fzKVdn2JDfTg2ca2zsYsaVM8RLWpRgd4W1payn8WBAHHjh2DpaUlXn/9dQDP5jB68uSJWkkVEZE61LmV/fbt2xg1ahT++OMPiEQiLFmyBEuWLNGKbrfniUQidLW1UHr3WVdbizpLTLQtHiJtoPbUAQsXLkROTg527twJfX19AEBZWRlmzpwJCwsLrF+/vlYC1WZsWSKqXercyr53717MnDkTBQUFaNasGcLCwuDh4VFHkVafts1rpG3xENUGVa/faidLNjY2+Pnnn9G+fXuF5QkJCXBzc8OjR4+qF7EOY7JEVHtU7Rb6T7NG+Oijj7B3714AgIeHBw4cOKBTjzJSp5uxIcZDVNNqtBvu30pLS3Hnzp0KyVL5w26JiGqSKrey3/nzT8wZPBN/JyRAT08Py5cvR2BgoLz1W1eIRCKtuh1f2+Ih0hS1k6VJkybB19cXd+/eld+iHxsbi7Vr12LSpEk1HiARNWzKblEXBAEXjxxE8MolKJYWwcHBAQcPHkTfvn3rMEIiqu/UTpY2bNgAOzs7bNy4EWlpaQAAe3t7LFiwoMpHiRARqauyW9QL8/Ox67OFuBJ1DADQ/+2BCA87oPJEt0REqnqpZ8NJJM+mxG/o43Q4Zomo9rxozNK9239g48fTkXb/H+jp68Nn3iJ8vWa5znW7EZFmqXr9rtasYqWlpfj+++9x6NAh+WC/1NRU5OfnVy9aIqJKlN/KDvwvcTq0F4Gj30Pa/X/Q1M4eK/Z/ixVL/h8TJSKqNWp3w92/fx+enp5ITk6GVCrF22+/DXNzc6xbtw5SqRQ7d+6sjTiJqAFrbi5Gx0a5mDp1Gn4+ewoA0NN9ABas/wpvtW8tv5Wdd28RUW1QO1maM2cOXn/9ddy8eRNNmzaVLx82bBgfE0JEteLXX3/F6NGj8c8//8DAwACBy1fiozlzYGNqLE+GOC8QEdUWtZOlK1euIDo6GkZGRgrLW7dujZSUlBoLjIhIEARs2bIFAQEBKCkpQatWrRAREQEXFxeFcpVNWllYKkNs6hO4OIAJExFVm9pjlmQyGcrKyiosf/jwIczNzWskKCKix48fY/jw4ZgzZw5KSkowdOhQ3Lhxo0KiJAgCbmVKlO7rVqYEL3EvCxE1cGonSwMHDsSXX34pfy8SiZCfn49ly5bh3XffrcnYiKiBio2NRffu3XH8+HEYGRnhq6++wtGjR9G4ceMKZVWZtLKwVIbswuLaCpeI6rlqzbPk6emJTp06oaioCOPGjcPff/8Na2trHDp0qDZiJKIGQhAEbNq0CYsWLUJpaSnatGmDyMhI9OzZs9JtlE1aWZ1yRETPUztZcnR0xM2bNxEREYGbN28iPz8fvr6+GD9+PMRijgkgoup59OgRJk6ciKioKADAyJEj8fXXX8PS0lLpdpVNWlndckREz1MrWSopKUGHDh0QFRWF8ePHY/z48bUVF5HW4O3ote+XX37BmDFj8PDhQxgbG+PLL7/EtGnTVPo9W4uNIDbQq/JBu9Zio0rXExEpo1ayZGhoiKKiotqKhUjr8Hb02iWTyfD5559j8eLFKCsrQ7t27RAZGQlnZ2eV91E+aeWL7oYr19XWggkuEVWb2u3S/v7+WLduHUpLS2sjHiKtUX47+vMtFuW3o6fkFWoosvohKysLgwcPRmBgIMrKyjBu3DjExcWplSiVa24uhouDFcTPdbWJDfTg4mDFxJaIXoraY5auX7+Oixcv4vz58+jSpQsaNWqksP7o0aM1FhyRpqh6O7qDmQlbLKrhp59+wrhx45CamgoTExNs3boVkydPfqnfZXNzMRzMTNhlSkQ1Tu1kycrKCiNGjKiNWIi0hjq3o9uYGtdRVLqvrKwMq1evxmeffQaZTIaOHTsiMjISnTt3rpH9i0Qifh5EVOPUTpZCQkJqIw4ircLb0Wteeno6vLy8cPHiRQCAj48Ptm3bVqF1mohI26g8Zkkmk2HdunV488038cYbb2DRokUoLOSYDaqfeDt6zbp48SKcnZ1x8eJFmJqaIjQ0FKGhoUyUiEgnqPyfftWqVfj0009hZmaG5s2bY/PmzfD396/N2Ig0pvx2dGV4O3rVysrKsHTpUrz99tvIyMhA586d8euvv8LHx0fToRERqUzlZGnfvn3Yvn07vvvuOxw/fhynTp1CWFgYZDJ2Q1D9U347ujK8HV251NRUeHh4YMWKFRAEAVOmTEFsbCw6duyo6dCIiNSicrKUnJys8Oy3AQMGQCQSITU1tVYCI9I03o5efd999x26deuGn376CWZmZggLC8PXX38NU1NTTYdGRKQ2lQd4l5aWwsTERGGZoaEhSkpKajwoIm3B29HVU1paiiVLlmDt2rUAgG7duiEyMhKvvvqqhiMjIqo+lZMlQRAwceJEGBv/3225RUVFmD59usIgTc6zRPUNb0dXzYMHDzB27Fj88ssvAICZM2di48aNFb5kERHpGpWTpRcNyPTy8qrRYIhIN0VFRcHHxwc5OTmwsLDAN998g5EjR2o6LCKiGqFyssT5lYjoecXFxfj000+xceNGAEDPnj0REREBJycnDUdGRFRz1J6UkogIAJKSkjBmzBjExsYCAGbPno3PP/9coaueiKg+0JkZ9d5//320bNkSJiYmsLe3h7e3d5V34hUVFcHf3x9NmzaFmZkZRowYgYyMDIUyycnJGDx4MExNTWFra4sFCxbwIcFEVTh+/Di6d++O2NhYWFlZ4dixY9i8eTMTJSKql3QmWerXrx8iIyORkJCAb7/9Fnfv3sWHH36odJu5c+fi1KlTOHz4MH766SekpqZi+PDh8vVlZWUYPHgwiouLER0djb179yI0NBRLly6t7eoQ6SSpVIo5c+Zg2LBhePLkCVxcXHDjxg0MHTpU06EREdUeQUedOHFCEIlEQnFx8QvXP3nyRDA0NBQOHz4sX3b79m0BgBATEyMIgiCcOXNG0NPTE9LT0+VlduzYIVhYWAhSqVTlWHJzcwUAQm5ubjVrQ6T9EhMThZ49ewoABADC/Pnz1TpPiIi0jarXb51pWfq3nJwchIWFwc3NDYaGhi8sExcXh5KSEgwYMEC+rEOHDmjZsiViYmIAADExMejSpQuaNWsmLzNo0CBIJBL8+eeflR5fKpVCIpEovIjqs8OHD6NHjx6Ii4tDkyZNcOrUKWzYsAFGRnzcCxHVfzqVLC1cuBCNGjVC06ZNkZycjBMnTlRaNj09HUZGRrCyslJY3qxZM6Snp8vL/DtRKl9fvq4ya9asgaWlpfzl6OhYzRoRabeioiLMnDkTo0aNgkQiwZtvvon4+HgMGTJE06EREdUZjSZLixYtgkgkUvq6c+eOvPyCBQtw48YNnD9/Hvr6+pgwYQIEQajzuAMDA5Gbmyt/PXjwoM5jIKptf/31F3r37o0dO3YAePZ3f+nSJX45IKIGR6NTB8yfPx8TJ05UWqZNmzbyn62trWFtbY1XX30VHTt2hKOjI65evQpXV9cK29nZ2aG4uBhPnjxRaF3KyMiAnZ2dvMy1a9cUtiu/W668zIsYGxvzrh+q1w4ePIhp06YhPz8f1tbWOHDgAAYNGqTpsIiINEKjyZKNjQ1sbGyqta1MJgPwbPzQi/Ts2ROGhoa4ePEiRowYAQBISEhAcnKyPLlydXXFqlWrkJmZCVtbWwDAhQsXYGFhgU6dOlUrLiJdVlBQgDlz5uCbb74BAPTt2xcHDx6Eg4ODhiMjItIcnRizFBsbi61btyI+Ph7379/HDz/8gLFjx8LJyUme+KSkpKBDhw7yliJLS0v4+vpi3rx5uHTpEuLi4jBp0iS4urqid+/eAICBAweiU6dO8Pb2xs2bN/Hdd99h8eLF8Pf3Z8sRNTi3b9+Gi4sLvvnmG4hEIixduhTff/89EyUiavB0YgZvU1NTHD16FMuWLcPTp09hb28PT09PLF68WJ7UlJSUICEhAQUFBfLtvvjiC+jp6WHEiBGQSqUYNGgQtm/fLl+vr6+PqKgozJgxA66urmjUqBF8fHwQFBRU53Uk0qS9e/di5syZKCgoQLNmzRAWFgYPDw9Nh0VEpBVEgiZGSNczEokElpaWyM3NhYWFhabDIVLZ06dP4e/vj7179wIAPDw8cODAAaVj9oiI6gtVr9860Q1HRDXvjz/+wBtvvIG9e/dCT08PQUFB+O6775goERE9Rye64Yio5giCgODgYMyaNQtFRUVwcHDAwYMH0bdvX02HRkSklZgsETUgeXl5mD59Og4ePAjg2Yz1+/fvr/ZdqUREDQG74YgaiPj4eLz++us4ePAg9PX1sWbNGpw5c4aJEhFRFdiyRFTPCYKAnTt3Yu7cuZBKpWjRogXCw8Px5ptvajo0IiKdwGSJqB7Lzc3F1KlTERkZCQAYMmQIQkND0bRpUw1HRkSkO9gNR1RPxcXFoUePHoiMjISBgQE2btyIkydPMlEiIlITW5aI6hlBELB161YEBASguLgYrVq1QkREBFxcXDQdGhGRTmKyRFSPPH78GL6+vjh27BgAYOjQodizZw8aN26s4ciIiHQXu+GI6onY2Fj06NEDx44dg6GhITZv3oyjR48yUSIieklMloh0nCAI2LhxI9566y0kJSWhTZs2iI6OxuzZsyESiTQdHhGRzmM3HJEOe/ToESZOnIioqCgAwMiRI/H111/D0tJSw5EREdUfbFki0lG//PILunfvjqioKBgbG2P79u2IiIhgokREVMOYLBHpGJlMhrVr16Jv37548OAB2rVrh6tXr2LGjBnsdiMiqgXshiPSIVlZWZgwYQLOnTsHABg3bhx27twJc3NzDUdGRFR/MVki0hGXL1/G2LFjkZqaChMTE2zduhWTJ09+6dYkQRCQXViMolIZTAz0YC02YgsVEdG/MFki0nJlZWVYs2YNli1bBplMhg4dOuDw4cPo3LnzS+87Ja8QtzIlKCyVyZeJDfTQ1dYCzc3FL71/IqL6gGOWiLRYeno6Bg0ahCVLlkAmk8HHxwe//vprjSVKsalPFBIlACgslSE29QlS8gpf+hhERPUBkyUiLXXx4kU4Ozvj4sWLMDU1RWhoKEJDQ9GoUaOX3rcgCLiVKVFa5lamBIIgvPSxiIh0HZMlIi1TVlaGZcuW4e2330ZGRgY6d+6M69evw8fHp8aOkV1YXKFF6XmFpTJkFxbX2DGJiHQVxywRaZHU1FSMGzcOP/30EwBgypQp2Lx5M0xNTWv0OEVVJErqliMiqs+YLBFpie+++w7e3t7IysqCmZkZdu3ahXHjxtXKsUwMVGtUVrUcEVF9xv+ERBpWWlqKwMBAeHp6IisrC926dUNcXFytJUoAYC02griKREj8v2kEiIgaOiZLRBr04MEDuLu7Y+3atQCAGTNm4OrVq3j11Vdr9bgikQhdbS2Ululqa8H5loiIwGSJSGNOnz4NZ2dn/PLLL7CwsEBERAS2b98OExOTOjl+c3MxXBysKrQwiQ304OJgxXmWiIj+h2OWiOpYSUkJPv30U2zYsAEA0LNnT0RERMDJyanOY2luLoaDmQln8CYiUoLJElEdSkpKwpgxYxAbGwsAmD17Nj7//HMYGxtrLCaRSAQbU80dn4hI2zFZInpJqj5b7fjx45g0aRKePHkCKysrhISEYOjQoXUfMBERqYXJEtFLUOXZalKpFAsXLsTmzZsBAC4uLggPD0fr1q01ETIREamJyRJRNZU/W+155c9Wc3EApFlpGDVqFOLi4gAA8+fPx+rVq2FkxFvyiYh0Be+GI6oGVZ6ttn1vGLp37464uDg0adIEp06dwoYNG5goERHpGJ1Jlt5//320bNkSJiYmsLe3h7e3N1JTUystn5OTg1mzZqF9+/YQi8Vo2bIlZs+ejdzcXIVyIpGowis8PLy2q0M6Ttmz1YqlRfg6KBCrZ/lBIpHgzTffRHx8PIYMGVLHUapHEARkFUjxQFKIrAIpH6JLRPQ/OtMN169fP3z66aewt7dHSkoKAgIC8OGHHyI6OvqF5VNTU5GamooNGzagU6dOuH//PqZPn47U1FQcOXJEoWxISAg8PT3l762srGqzKlQPVPbMtNSkf7Bp7jTcu/0nAGDm3AB8uW41DA0N6zI8taky9oqIqKESCTr69fHkyZMYOnQopFKpyheiw4cPw8vLC0+fPoWBwbM8USQS4dixY2rdlSSVSiGVSuXvJRIJHB0dkZubCwsL5bMiU/2QVSDFlQc5CsuuRB3DzqWfoKjgKSwaN8Hsz7dg9rgRWn9bfmVjr8pxgkoiqq8kEgksLS2rvH7rTDfcv+Xk5CAsLAxubm5qfWMv/2WUJ0rl/P39YW1tjV69emHPnj1Vdj+sWbMGlpaW8pejo2O16kG669/PVpMWFWLHkgB8GeCPooKn6PR6b2w4fgFu/Ty0/tlqqoy9upUpYZccETVoOpUsLVy4EI0aNULTpk2RnJyMEydOqLxtdnY2VqxYgalTpyosDwoKQmRkJC5cuIARI0Zg5syZ2LJli9J9BQYGIjc3V/568OBBtepDuqv82WoP7/6NRSMH4/vDByESifDhzI/xWWgkmjaz14lnqykbe1WusFSG7MLiOoqIiEj7aLQbbtGiRVi3bp3SMrdv30aHDh0APEt4cnJycP/+fSxfvhyWlpaIioqq8oIkkUjw9ttvo0mTJjh58qTS1qilS5ciJCRErQRI1WY8ql/27duH6TNmoLCgAFbWNpj9+RZ0c+ujU2N9HkgKcT3tSZXl3rC3gqOF9teHiEgdql6/NZosZWVl4dGjR0rLtGnT5oW3Wj98+BCOjo6Ijo6Gq6trpdvn5eVh0KBBMDU1RVRUVJUPKT19+jSGDBmCoqIilR9BwWRJe6g6m/bLbPP06VN89NFHCA0NBQB4eHjgy93BsLS21blnq71o7NWL/MexidaPvSIiUpeq12+N3g1nY2MDGxubam0rkz3rOvj3QOvnSSQSDBo0CMbGxjh58qRKT3OPj49H48aNNfqsLqqe6tzRpe42f/zxB0aNGoXbt29DT08Pn332GT799FPo6+vXfIXqQPnYK2VdceL/JYBERA2VTkwdEBsbi+vXr+Ott95C48aNcffuXSxZsgROTk7yVqWUlBR4eHhg37596NWrFyQSCQYOHIiCggIcOHAAEokEEsmzgaw2NjbQ19fHqVOnkJGRgd69e8PExAQXLlzA6tWrERAQoMnqUjWoMpv288mPOtsIgoA9e/Zg1qxZKCwshL29PQ4dOoS+ffvWRnXqTPnYK2V3w+nC2CsiotqkE8mSqakpjh49imXLluHp06ewt7eHp6cnFi9eLG8BKikpQUJCAgoKCgAAv/32m/zJ7m3btlXY371799C6dWsYGhpi27ZtmDt3LgRBQNu2bbFp0yb4+fnVbQXppah6R5eDmYn8oq/ONvn5+ZgxYwbCwsIAAIMGDcK+fftga2tbMxXQsObmYrg4gPMsERFVQmfnWdImHLOkWdUZd6PqNo0fP8R0Hy/89ddf0NfXx8qVK/HJJ59AT0+nbiRVSXXGexER6TKdGLNEVBMqm01bWbmqthEEAecj9mPvmmWQSqVo0aIFDh06hLfeeuulYtVmIpGIg7iJiF6AyRLpPBMD1Vp5/l1O2TZP8yTYuXQBos+eAgAMGTIEoaGhaNq06csFSkREOqn+9SVQg/Pv2bQr8/wdXZVtc/ePW/hkhCeiz56CvoEB1q9fj5MnTzJRIiJqwJgskc4rv6NLmefv6Hp+G0EQcGZ/MD4d+z7Sk5Ng49ACR899j4CAAI7bISJq4JgsUb3w7I4uqwqtRWIDvUofBFu+TelTCdbPnoLgVUtQWlIM17ffwaWYWLzvodvTAhARUc3gmCWqN5qbi+FgZqLWHV0pt3/HwtGjkZSUBENDQ3y2ei0Wzfu4Xt7tRkRE1cNkieoVVe/oEgQBX3zxBRYuXIjS0lK0adMGEREReP311+sgSiIi0iVMlqjBefToESZOnIioqCgAwIcffohvvvkGlpaWGo6MiIi0EfsaqEGJjo5G9+7dERUVBWNjY2zfvh2RkZFMlIiIqFJMlqhBkMlkWLduHfr06YMHDx6gXbt2uHr1KmbMmMG73YiISCl2w1G9l5WVhQkTJuDcuXMAgHHjxmHnzp0wNzfXcGRERKQLmCxRvXb58mWMHTsWqampMDExwZYtW+Dr68vWJCIiUhm74aheKisrw8qVK9GvXz+kpqaiQ4cOuHbtGqZMmcJEiYiI1MKWJap3MjIy4OXlhe+//x4A4OPjg23btqFRo0YajoyIiHQRkyWqVy5evIjx48cjIyMDpqam2L59O3x8fDQdFhER6TB2w1G9UFZWhmXLluHtt99GRkYGOnfujOvXrzNRIiKil8aWJdJ5qampGD9+PH788UcAwJQpU7B582aYmppqNjAiIqoXmCyRTvvuu+/g7e2NrKwsmJmZYdeuXRg3bpymwyIionqE3XCkk0pLS/Hpp5/C09MTWVlZ6NatG+Li4pgoERFRjWPLEumchw8fYuzYsfj5558BADNmzMCmTZtgYmKi4ciIiKg+YrJEFQiCgOzCYhSVymBioAdrsZHWzE10+vRp+Pj44NGjRzA3N8c333yDUaNGaTosIiKqx5gskYKUvELcypSgsFQmXyY20ENXWws0NxdrLK6SkhJ8+umn2LBhAwCgZ8+eiIiIgJOTk8ZiIiKihoFjlkguJa8QsalPFBIlACgslSE29QlS8go1Etf9+/fRp08feaI0a9Ys/PLLL0yUiIioTjBZIgDPut5uZUqUlrmVKYEgCHUU0TPHjx+Hs7Mzrl69CisrKxw9ehRfffUVjI2N6zQOIiJquJgsEQAgu7C4QovS8wpLZcguLK6TeIqLi/Hxxx9j2LBhePLkCXr16oUbN25g2LBhdXJ8IiKickyWCABQVEWipG65l/HPP//gzTffxObNmwEA8+fPx5UrV9C6detaPzYREdHzOMCbAAAmBqrlzaqWq64jR47A19cXEokETZo0QWhoKN57771aPSYREZEybFkiAIC12AjiKhIh8f+mEagNRUVF8Pf3x8iRIyGRSODm5ob4+HgmSkREpHFMlggAIBKJ0NXWQmmZrrYWtTLf0t9//w1XV1ds374dALBo0SL8+OOPcHR0rPFjERERqYvdcCTX3FwMFwfU6TxLhw4dwtSpU5Gfnw9ra2vs378fnp6eNX4cIiKi6tKZlqX3338fLVu2hImJCezt7eHt7Y3U1FSl27i7u0MkEim8pk+frlAmOTkZgwcPhqmpKWxtbbFgwQKUlpbWZlW0WnNzMTzb2OI/jk3whr0V/uPYBJ5tbGs8USosLMTUqVMxbtw45Ofno0+fPoiPj2eiREREWkdnWpb69euHTz/9FPb29khJSUFAQAA+/PBDREdHK93Oz88PQUFB8vempqbyn8vKyjB48GDY2dkhOjoaaWlpmDBhAgwNDbF69epaq4u2E4lEsDGtvXmM7ty5g5EjR+KPP/6ASCTC4sWLsXTpUhgY6MyfIxERNSAioa5nGawhJ0+exNChQyGVSmFoaPjCMu7u7nB2dsaXX375wvVnz57FkCFDkJqaimbNmgEAdu7ciYULFyIrKwtGRi8ezCyVSiGVSuXvJRIJHB0dkZubCwsL5eN+Grp9+/ZhxowZKCgoQLNmzXDgwAEMGDBA02EREVEDJJFIYGlpWeX1W2e64f4tJycHYWFhcHNzqzRRKhcWFgZra2t07twZgYGBKCgokK+LiYlBly5d5IkSAAwaNAgSiQR//vlnpftcs2YNLC0t5S8ORK7a06dPMWnSJPj4+KCgoAD9+/dHfHw8EyUiItJ6OpUsLVy4EI0aNULTpk2RnJyMEydOKC0/btw4HDhwAJcuXUJgYCD2798PLy8v+fr09HSFRAmA/H16enql+w0MDERubq789eDBg5eoVf33559/olevXggNDYWenh6CgoJw/vx52NnZaTo0IiKiKmk0WVq0aFGFAdjPv+7cuSMvv2DBAty4cQPnz5+Hvr4+JkyYoPRZZVOnTsWgQYPQpUsXjB8/Hvv27cOxY8dw9+7dl4rb2NgYFhYWCi+qSBAEBAcH44033sB///tf2Nvb4+LFi1iyZAn09fU1HR4REZFKNDqidv78+Zg4caLSMm3atJH/bG1tDWtra7z66qvo2LEjHB0dcfXqVbi6uqp0PBcXFwBAYmIinJycYGdnh2vXrimUycjIAAC2erykvLw8zJgxA2FhYQCAgQMHYv/+/bC1tdVwZEREROrRaLJkY2MDGxubam0rkz2bB+jfA62rEh8fDwCwt7cHALi6umLVqlXIzMyUX8QvXLgACwsLdOrUqVpxEXDz5k2MGjUKf/31F/T19bFy5Up88skn0NPTqV5fIiIiADoyZik2NhZbt25FfHw87t+/jx9++AFjx46Fk5OTvFUpJSUFHTp0kLcU3b17FytWrEBcXBySkpJw8uRJTJgwAX369EHXrl0BPGvt6NSpE7y9vXHz5k189913WLx4Mfz9/WFsXHu3ztdXgiBg165dcHFxwV9//YUWLVrgxx9/xKJFi5goERGRztKJK5ipqSmOHj0KDw8PtG/fHr6+vujatSt++ukneVJTUlKChIQE+d1uRkZG+P777zFw4EB06NAB8+fPx4gRI3Dq1Cn5fvX19REVFQV9fX24urrCy8sLEyZMUJiXiVQjkUgwZswYTJ8+HVKpFIMHD0Z8fDzeeustTYdGRET0UnR2niVtouo8DfVVXFwcRo8ejbt378LAwABr167F3Llz2ZpERERaTdXrN6dMpmoTBAFbt25FQEAAiouL0apVK4SHh6N3796aDo2IiKjGMFmianny5Al8fX1x9OhRAMDQoUOxZ88eNG7cWMORERER1Sz2k5Darl27hu7du+Po0aMwNDTE5s2bcfToUSZKRERULzFZIpUJgoBNmzbhzTffRFJSEtq0aYPo6GjMnj0bIpFI0+ERERHVCnbDkUpycnIwceJE+d2EH374Ib755htYWlpqODIiIqLaxZYlqlJ0dDScnZ1x6tQpGBsbY/v27YiMjGSiREREDQKTJaqUTCbDunXr0KdPHzx48ADt2rXD1atXMWPGDHa7ERFRg8FuOHqhrKws+Pj44OzZswCAsWPHYteuXTA3N9dwZERERHWLyRJVcPnyZYwdOxapqakwMTHBli1b4Ovry9YkIiJqkNgNR3JlZWVYuXIl+vXrh9TUVPmz9qZMmcJEiYiIGiy2LBEAICMjA15eXvj+++8BABMmTMC2bdtgZmam4ciIiIg0i8kS4YcffsD48eORnp4OU1NTbNu2DRMnTtR0WERERFqB3XANWFlZGZYtW4YBAwYgPT0dr732Gq5fv85EiYiI6F/YstRApaamYvz48fjxxx8BAFOmTMHmzZthamqq2cCIiIi0DJOlBuj8+fPw8vJCVlYWzMzMsGvXLowbN07TYREREWkldsM1IKWlpfj0008xaNAgZGVloVu3boiLi2OiREREpARblhqIhw8fYuzYsfj5558BANOnT8cXX3wBExMTDUdGRESk3ZgsNQBnzpzBhAkT8OjRI5ibm+Obb77BqFGjNB0WERGRTmA3XD1WUlKCTz75BIMHD8ajR4/Qo0cP3Lhxg4kSERGRGtiyVE/dv38fY8aMwdWrVwEAs2bNwvr162FsbKzhyIiIiHQLk6V66MSJE5g0aRIeP34MKysr7NmzB8OGDdN0WERERDqJ3XD1SHFxMT7++GMMHToUjx8/Rq9evXDjxg0mSkRERC+ByVI98c8//+DNN9/E5s2bAQDz58/HlStX0Lp1a80GRkREpOPYDVcPHDlyBL6+vpBIJGjSpAlCQ0Px3nvvaTosIiKieoEtSzqsqKgI/v7+GDlyJCQSCdzc3HDjxg0mSkRERDWIyZKO+vvvv+Hm5obt27cDABYuXIgff/wRLVu21HBkRERE9Qu74XRQeHg4/Pz8kJ+fD2tra+zfvx+enp6aDouIiKheYrKkpQRBQHZhMYpKZTAx0IO12AhFRUX4+OOPsXv3bgBAnz59cPDgQTRv3lzD0RIREdVfTJa0UEpeIW5lSlBYKpMvy75/F1/Mm4E7f/4BkUiE//f//h+WLVsGAwN+hERERLWJV1otk5JXiNjUJwrLfjxxBF8vX4SiggLY2NriYFgYBgwYoJkAiYiIGhidGeD9/vvvo2XLljAxMYG9vT28vb2RmppaafmkpCSIRKIXvg4fPiwv96L14eHhdVGlCgRBwK1Mifx9UUEBtgZ+jC0LZ6OooABder+FL058Dw8PD43ER0RE1BDpTMtSv3798Omnn8Le3h4pKSkICAjAhx9+iOjo6BeWd3R0RFpamsKy3bt3Y/369XjnnXcUloeEhCgMkLaysqrx+FWRXVgs73rLe/IYi72G4WHiX9DT08NI/3kYMX0O9PX1kV1YDBtTPuONiIioLuhMsjR37lz5z61atcKiRYswdOhQlJSUwNDQsEJ5fX192NnZKSw7duwYRo0aBTMzM4XlVlZWFcpqQtG/xiiZWVrBsW17PM3NxccbtqGzi9sLyxEREVHtEgmCIGg6CHXl5ORgxowZSElJwc8//6zSNnFxcXj99dfxyy+/wM3t/xIPkUgEBwcHSKVStGnTBtOnT8ekSZMgEokq3ZdUKoVUKpW/l0gkcHR0RG5uLiwsLKpdr6wCKa48yJG/f5onQWlxMSybWiuU+49jE7YsERERvSSJRAJLS8sqr986M2YJeDbxYqNGjdC0aVMkJyfjxIkTKm8bHByMjh07KiRKABAUFITIyEhcuHABI0aMwMyZM7Flyxal+1qzZg0sLS3lL0dHx2rV53nWYiOIDf7vI2lkblEhURL/bxoBIiIiqhsabVlatGgR1q1bp7TM7du30aFDBwBAdnY2cnJycP/+fSxfvhyWlpaIiopS2goEAIWFhbC3t8eSJUswf/58pWWXLl2KkJAQPHjwoNIytdWyBLz4brh/c3GwQnNz8Usdg4iIiFRvWdJospSVlYVHjx4pLdOmTRsYGVVsSXn48CEcHR0RHR0NV1dXpfvYv38/fH19kZKSAhsbG6VlT58+jSFDhqCoqAjGxqp1dan6y1bVi+ZZEhvooautBRMlIiKiGqLq9VujA7xtbGyqTF4qI5M9SyT+3cJTmeDgYLz//vsqHSs+Ph6NGzdWOVGqDc3NxXAwM6kwg3dVLWhERERU83TibrjY2Fhcv34db731Fho3boy7d+9iyZIlcHJykrcqpaSkwMPDA/v27UOvXr3k2yYmJuLy5cs4c+ZMhf2eOnUKGRkZ6N27N0xMTHDhwgWsXr0aAQEBdVa3yohEIg7iJiIi0gI6kSyZmpri6NGjWLZsGZ4+fQp7e3t4enpi8eLF8hagkpISJCQkoKCgQGHbPXv2oEWLFhg4cGCF/RoaGmLbtm2YO3cuBEFA27ZtsWnTJvj5+dVJvYiIiEj76eTUAdqmpscsERERUe2rl1MHEBEREdU1JktERERESjBZIiIiIlKCyRIRERGREkyWiIiIiJRgskRERESkBJMlIiIiIiV0YlJKbVc+VZVEItFwJERERKSq8ut2VVNOMlmqAXl5eQAAR0dHDUdCRERE6srLy4OlpWWl6zmDdw2QyWRITU2Fubl5jTzsViKRwNHREQ8ePKh3M4KzbrqrPtePddNN9bluQP2un7bUTRAE5OXlwcHBAXp6lY9MYstSDdDT00OLFi1qfL8WFhb17gQpx7rprvpcP9ZNN9XnugH1u37aUDdlLUrlOMCbiIiISAkmS0RERERKMFnSQsbGxli2bBmMjY01HUqNY910V32uH+umm+pz3YD6XT9dqxsHeBMREREpwZYlIiIiIiWYLBEREREpwWSJiIiISAkmS0RERERKMFnSgPfffx8tW7aEiYkJ7O3t4e3tjdTU1ErLJyUlQSQSvfB1+PBhebkXrQ8PD6+LKilQt34A4O7uXiH26dOnK5RJTk7G4MGDYWpqCltbWyxYsAClpaW1WZUK1K1bTk4OZs2ahfbt20MsFqNly5aYPXs2cnNzFcppw2dXnc+tqKgI/v7+aNq0KczMzDBixAhkZGQolNH055aUlARfX1+88sorEIvFcHJywrJly1BcXKx0G10456pTN0B3zrfq1E9Xzrnqfna6cM4BwKpVq+Dm5gZTU1NYWVmptE1l59z69evlZVq3bl1h/dq1a2upFv8iUJ3btGmTEBMTIyQlJQm//PKL4OrqKri6ulZavrS0VEhLS1N4LV++XDAzMxPy8vLk5QAIISEhCuUKCwvrokoK1K2fIAhC3759BT8/P4XYc3Nz5etLS0uFzp07CwMGDBBu3LghnDlzRrC2thYCAwNruzoK1K3b77//LgwfPlw4efKkkJiYKFy8eFFo166dMGLECIVy2vDZVedzmz59uuDo6ChcvHhR+PXXX4XevXsLbm5u8vXa8LmdPXtWmDhxovDdd98Jd+/eFU6cOCHY2toK8+fPr3QbXTnnqlM3QdCd86069dOVc666n50unHOCIAhLly4VNm3aJMybN0+wtLRUaZvnz7k9e/YIIpFIuHv3rrxMq1athKCgIIVy+fn5tVSL/8NkSQucOHFCEIlEQnFxscrbODs7C5MnT1ZYBkA4duxYDUf38lSpX9++fYU5c+ZUuv7MmTOCnp6ekJ6eLl+2Y8cOwcLCQpBKpTUZrlqq89lFRkYKRkZGQklJiXyZNn52VdXtyZMngqGhoXD48GH5stu3bwsAhJiYGEEQtPdz+/zzz4VXXnlFrW105ZxTpW66er4JQvU+O10556qqmy6ecyEhISonS8/74IMPhP79+yssa9WqlfDFF1+8fGBqYjechuXk5CAsLAxubm4wNDRUaZu4uDjEx8fD19e3wjp/f39YW1ujV69e2LNnDwQNT6OlTv3CwsJgbW2Nzp07IzAwEAUFBfJ1MTEx6NKlC5o1ayZfNmjQIEgkEvz555+1Fr8y1fnsACA3NxcWFhYwMFB8NKM2fXaq1C0uLg4lJSUYMGCAfFmHDh3QsmVLxMTEANDOzw149hk0adJE5fK6dM6pWjddO9/KqfvZlW+j7eccUHXddPmcU1dGRgZOnz79wnNu7dq1aNq0Kbp3747169fXSRcjH6SrIQsXLsTWrVtRUFCA3r17IyoqSuVtg4OD0bFjR7i5uSksDwoKQv/+/WFqaorz589j5syZyM/Px+zZs2s6/CqpW79x48ahVatWcHBwwK1bt7Bw4UIkJCTg6NGjAID09HSFkx+A/H16enrtVKISL/PZZWdnY8WKFZg6darCcm357NSpW3p6OoyMjCqMR2jWrJn8M9Gmz61cYmIitmzZgg0bNqi8jS6cc4DqddOl8+3fqvPZafs5V06VuunqOVcde/fuhbm5OYYPH66wfPbs2ejRoweaNGmC6OhoBAYGIi0tDZs2bardgOq8LaueWrhwoQBA6ev27dvy8llZWUJCQoJw/vx54c033xTeffddQSaTVXmcgoICwdLSUtiwYUOVZZcsWSK0aNHipepVrq7qV+7ixYsCACExMVEQBEHw8/MTBg4cqFDm6dOnAgDhzJkzOlG33NxcoVevXoKnp2eV3XY19dnVZt3CwsIEIyOjCsvfeOMN4ZNPPhEEQbs+N0EQhIcPHwpOTk6Cr6+vysfRxDlXV3UrV5fnmyDUXf104ZwTBNXrpovnXHW74dq3by989NFHVZYLDg4WDAwMhKKiIrWPoQ62LNWQ+fPnY+LEiUrLtGnTRv6ztbU1rK2t8eqrr6Jjx45wdHTE1atX4erqqnQfR44cQUFBASZMmFBlTC4uLlixYgWkUulLP3+nrupXzsXFBcCzb1tOTk6ws7PDtWvXFMqU3wFiZ2enRk0qqou65eXlwdPTE+bm5jh27FiV3XY19dnVZt3s7OxQXFyMJ0+eKHzTzcjIkH8m2vS5paamol+/fnBzc8Pu3btVPo4mzrm6qlu5ujzfgLqpn66cc+rUTdfOueq6cuUKEhISEBERUWVZFxcXlJaWIikpCe3bt3/pY1eqVlMxUsn9+/cFAMKlS5eqLNu3b98Kd3VUZuXKlULjxo1fMrqXp079yv38888CAOHmzZuCIPzfoMWMjAx5mV27dgkWFha1/o1CGVXqlpubK/Tu3Vvo27ev8PTpU5X2qw2fXVV1Kx9seuTIEfmyO3fuvHCwqaY/t4cPHwrt2rUTxowZI5SWlqq1rbafcy9Tt3LafL5Vp366cs6pWzddOufKVadlycfHR+jZs6dKZQ8cOCDo6ekJOTk51YhOdUyW6tjVq1eFLVu2CDdu3BCSkpKEixcvCm5uboKTk5P8D/nhw4dC+/bthdjYWIVt//77b0EkEglnz56tsN+TJ08KX3/9tfD7778Lf//9t7B9+3bB1NRUWLp0aZ3Uq1x16peYmCgEBQUJv/76q3Dv3j3hxIkTQps2bYQ+ffrI91t+O+zAgQOF+Ph44dy5c4KNjU2d3g5bnbrl5uYKLi4uQpcuXYTExESF213L/zlqw2dX3b/L6dOnCy1bthR++OEH4ddff60w3YA2fG4PHz4U2rZtK3h4eAgPHz5U+Az+XUYXz7nq1E1Xzrfq1k9Xzrnq/l3qwjknCM++bN24cUM+5caNGzeEGzduKEy90b59e+Ho0aMK2+Xm5gqmpqbCjh07KuwzOjpa+OKLL4T4+Hjh7t27woEDBwQbGxthwoQJtV4fJkt17NatW0K/fv2EJk2aCMbGxkLr1q2F6dOnCw8fPpSXuXfv3gu/0QcGBgqOjo5CWVlZhf2ePXtWcHZ2FszMzIRGjRoJ3bp1E3bu3PnCsrWpOvVLTk4W+vTpI9+mbdu2woIFCxTmfREEQUhKShLeeecdQSwWC9bW1sL8+fMVbgXWxrpdunSp0r79e/fuCYKgHZ9ddf8uCwsLhZkzZwqNGzcWTE1NhWHDhin8sxcEzX9uISEhlX4G5XT1nKtO3XTlfBOE6tVPV8656v5d6sI5JwjPWodeVLd/1wV4NtfVv+3atUsQi8XCkydPKuwzLi5OcHFxESwtLQUTExOhY8eOwurVq+ukxUz0v4CJiIiI6AU4zxIRERGREkyWiIiIiJRgskRERESkBJMlIiIiIiWYLBEREREpwWSJiIiISAkmS0RERERKMFkiIiIiUoLJEhFRDROJRDh+/LimwyCiGsJkiYh0VkxMDPT19TF48GC1t23dujW+/PLLmg9KCUEQMGDAAAwaNKjCuu3bt8PKygoPHz6s05iIqGpMlohIZwUHB2PWrFm4fPkyUlNTNR1OlUQiEUJCQhAbG4tdu3bJl9+7dw+ffPIJtmzZghYtWmgwQiJ6ESZLRKST8vPzERERgRkzZmDw4MEIDQ2tUObUqVN44403YGJiAmtrawwbNgwA4O7ujvv372Pu3LkQiUQQiUQAgM8++wzOzs4K+/jyyy/RunVr+fvr16/j7bffhrW1NSwtLdG3b1/89ttvKsft6OiIzZs3IyAgAPfu3YMgCPD19cXAgQPh7e2t9u+BiGofkyUi0kmRkZHo0KED2rdvDy8vL+zZswf/fi746dOnMWzYMLz77ru4ceMGLl68iF69egEAjh49ihYtWiAoKAhpaWlIS0tT+bh5eXnw8fHBzz//jKtXr6Jdu3Z49913kZeXp/I+fHx84OHhgcmTJ2Pr1q34448/FFqaiEi7GGg6ACKi6ggODoaXlxcAwNPTE7m5ufjpp5/g7u4OAFi1ahXGjBmD5cuXy7fp1q0bAKBJkybQ19eHubk57Ozs1Dpu//79Fd7v3r0bVlZW+OmnnzBkyBCV97N792689tpruHz5Mr799lvY2NioFQcR1R22LBGRzklISMC1a9cwduxYAICBgQFGjx6N4OBgeZn4+Hh4eHjU+LEzMjLg5+eHdu3awdLSEhYWFsjPz0dycrJa+7G1tcW0adPQsWNHDB06tMbjJKKaw5YlItI5wcHBKC0thYODg3yZIAgwNjbG1q1bYWlpCbFYrPZ+9fT0FLryAKCkpEThvY+PDx49eoTNmzejVatWMDY2hqurK4qLi9U+noGBAQwM+G+YSNuxZYmIdEppaSn27duHjRs3Ij4+Xv66efMmHBwccOjQIQBA165dcfHixUr3Y2RkhLKyMoVlNjY2SE9PV0iY4uPjFcr88ssvmD17Nt5991289tprMDY2RnZ2ds1VkIi0DpMlItIpUVFRePz4MXx9fdG5c2eF14gRI+RdccuWLcOhQ4ewbNky3L59G7///jvWrVsn30/r1q1x+fJlpKSkyJMdd3d3ZGVl4fPPP8fdu3exbds2nD17VuH47dq1w/79+3H79m3ExsZi/Pjx1WrFIiLdwWSJiHRKcHAwBgwYAEtLywrrRowYgV9//RW3bt2Cu7s7Dh8+jJMnT8LZ2Rn9+/fHtWvX5GWDgoKQlJQEJycn+eDqjh07Yvv27di2bRu6deuGa9euISAgoMLxHz9+jB49esDb2xuzZ8+Gra1t7VaaiDRKJDzfQU9EREREcmxZIiIiIlKCyRIRERGREkyWiIiIiJRgskRERESkBJMlIiIiIiWYLBEREREpwWSJiIiISAkmS0RERERKMFkiIiIiUoLJEhEREZESTJaIiIiIlPj/O13PGprUcUoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# show plot of training\n", - "model1.train_plot()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "29df8327-de11-4d7c-8117-02c190947f35", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "22\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABUC0lEQVR4nO3deVxU5f4H8M8MOwKDKKuMgoqKuSGmgrmmQpZZ5tW0TAq1W2rX1FLL3RKzLCnNq6ao/So1w/JaZoo7Ku65kSZBIIIbyiIwyMz5/UGMjjA4M8x6+Lxfr3nJOfPMme8zDDNfn1UiCIIAIiIiIhsntXQARERERMbApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BAREZEo2Fs6AHNSqVS4evUq3N3dIZFILB0OERER6UAQBBQWFiIgIABSqfb2mDqV1Fy9ehVyudzSYRAREZEBsrKyEBgYqPX+OpXUuLu7A6h4UTw8PCwcDRGReRWXlaPzh0kAgKPvPwlXxzr1FUA2rKCgAHK5XP09rk2dekdXdjl5eHgwqSGiOse+rBxSJ1cAFZ+DTGrI1jxq6AgHChMREZEoMKkhIiIiUWBSQ0RERKLADlUiIiuiVCpx7949k1xbUVaORu52FT+XlkKq4lcAWQcHBwfY2dnV+jp8RxMRWQFBEJCbm4s7d+6Y7DlUgoA5vX0AAFevZELK9brIinh6esLPz69W68gxqSEisgKVCY2Pjw9cXV1NskCoUiWg/HohACDIxx12UiY1ZHmCIKC4uBjXr18HAPj7+xt8LSY1REQWplQq1QlNgwYNTPc8KgESewUAwNnZmUkNWQ0XFxcAwPXr1+Hj42NwVxQHChMRWVjlGBpXV1cLR0JkOZXv/9qMKWNSQ0RkJbgnHdVlxnj/M6khIiIiUWBSQ0RERKLApIaIiKzenDlz0KFDB/VxTEwMnnvuOZNdvzoPP2evXr0wceJE9XFQUBCWLFlitJhsiS6vnzkwqSEiolo5fPgw7Ozs8PTTT5vtOePj47F27VqzPZ8uz3ns2DGMHTtWfSyRSPDjjz/W+nl79eoFiUQCiUQCJycnNGrUCAMHDkRiYmKtr20sU6ZMQVJSkqXDYFJDRES1s3r1akyYMAH79+/H1atXzfKcMpkMnp6eZnkuXZ/T29vbZDPYxowZg5ycHKSlpeGHH35A69at8eKLL2okUZbk5uZm0uUIdMWkhojICgmCgOKycqPfSu8pUXpPqfV+QRD0irOoqAgbN27EG2+8gaeffrpKS8bevXshkUjw888/o127dnB2dkbXrl1x7tw5dZm1a9fC09MTP/74I0JCQuDs7IyoqChkZWVpfd6Hu4JUKhUWLVqE5s2bw8nJCY0bN8aHH36ovn/q1Klo0aIFXF1d0bRpU8ycObPaqcMrVqyAXC6Hq6srhg4divz8fK3P+bAHu5+CgoIAAM8//zwkEgmCgoKQkZEBqVSK48ePazxuyZIlaNKkCVQqldZru7q6ws/PD4GBgejatSs++ugjrFixAqtWrcKuXbvU5c6ePYs+ffrAxcUFDRo0wNixY1FUVFSlDgsWLICvry88PT0xb948lJeX45133oGXlxcCAwORkJCg8fyPev20dQ9+8skn8Pf3R4MGDTBu3DiTbQFSiYvvERFZoZJ7SrSetcPsz3thXhRcHXX/ati0aRNatWqFli1b4uWXX8bEiRMxffr0KtNz33nnHcTHx8PPzw/vvfceBg4ciEuXLsHBwQEAUFxcjA8//BDr16+Ho6Mj3nzzTbz44otITk7WKY7p06dj1apV+Oyzz/DEE08gJycHf/zxh/p+d3d3rF27FgEBATh79izGjBkDd3d3vPvuu+oyly9fxqZNm/C///0PBQUFiI2NxZtvvolvvvlG59ej0rFjx+Dj44OEhARER0fDzs4O3t7e6Nu3LxISEtCpUyd12YSEBMTExEAq1a+dYdSoUZg8eTISExPRt29f3L17F1FRUYiIiMCxY8dw/fp1jB49GuPHj9dINnfv3o3AwEDs378fycnJiI2NxaFDh9CjRw+kpKRg48aNeP3119GvXz8EBgbq/Po9bM+ePfD398eePXtw+fJlDBs2DB06dMCYMWP0ezH1wJYaIiIy2OrVq/Hyyy8DAKKjo5Gfn499+/ZVKTd79mz069cPbdu2xbp163Dt2jVs2bJFff+9e/ewdOlSREREIDw8HOvWrcOhQ4dw9OjRR8ZQWFiI+Ph4LFq0CKNGjUKzZs3wxBNPYPTo0eoyM2bMQGRkJIKCgjBw4EBMmTIFmzZt0rhOaWkp1q9fjw4dOqBHjx744osvsGHDBuTm5ur9unh7ewO4v59R5fHo0aPx3XffQaGoWNn55MmTOHv2LF599VW9n0MqlaJFixbIyMgAAHz77bfqOrRp0wZ9+vTB0qVL8fXXX+PatWvqx3l5eeHzzz9Hy5Yt8dprr6Fly5YoLi7Ge++9h5CQEEyfPh2Ojo44ePCg+jG6vH4Pq1+/PpYuXYpWrVrhmWeewdNPP23ycTdsqSEiskIuDna4MC/KqNdUqgSk5hQAAEL9PardJsHFQffl6S9evIijR4+qkxN7e3sMGzYMq1evRq9evTTKRkREqH/28vJCy5YtkZqaqj5nb2+Pxx9/XH3cqlUreHp6IjU1FZ07d64xjtTUVCgUCjz55JNay2zcuBGff/450tLSUFRUhPLycnh4eGiUady4MRo1aqQRs0qlwsWLF+Hn51djDLp67rnnMG7cOGzZsgUvvvgi1q5di969e6u7q/QlCIK6VSw1NRXt27dHvXr11Pd369ZNXQdfX18AwGOPPabRKuTr64s2bdqoj+3s7NCgQQP1XkyAbq/fwx577DGN7Q78/f1x9uxZg+qpK7bUEBFZIYlEAldHe6PfnB3s4Oxgp/V+fVZ1Xb16NcrLyxEQEAB7e3vY29tj+fLl+OGHHzTGopha5b5B2hw+fBgvvfQSBgwYgG3btuHUqVN4//33UVZWZqYI73N0dMQrr7yChIQElJWV4dtvv8Vrr71m0LWUSiX+/PNPBAcH6/W4yi6/ShKJpNpzlWN8DH39arqmqTCpISIivZWXl2P9+vVYvHgxTp8+rb79/vvvCAgIwHfffadR/siRI+qfb9++jUuXLiE0NFTjeg8OoL148SLu3LmjUUabkJAQuLi4aO3aOHToEJo0aYL3338fnTp1QkhICP7+++8q5TIzMzVmbx05cgRSqRQtW7Z8ZAzVcXBwgFKprHJ+9OjR2LVrF7788kuUl5dj8ODBBl1/3bp1uH37Nl544QUAQGhoKH7//XfcvXtXXSY5OblWdQB0f/2sgc0kNcuXL0e7du3g4eEBDw8PREREYPv27ZYOi4ioTtq2bRtu376N2NhYtGnTRuP2wgsvYPXq1Rrl582bh6SkJJw7dw4xMTFo2LChxkwiBwcHTJgwASkpKThx4gRiYmLQtWvXR3Y9ARU7jk+dOhXvvvsu1q9fj7S0NBw5ckQdQ0hICDIzM7FhwwakpaXh888/1xjP8+B1Ro0ahd9//x0HDhzAW2+9haFDhxrc9RQUFISkpCTk5ubi9u3b6vOhoaHo2rUrpk6diuHDhz+ypQmoGEidm5uLK1eu4MiRI5g6dSr+/e9/44033kDv3r0BAC+99JK6DufOncOePXswYcIEjBw5Ut31ZAhdXz9rYDNJTWBgIBYuXIgTJ07g+PHj6NOnDwYNGoTz589bOjQiojpn9erV6Nu3L2QyWZX7XnjhBRw/fhxnzpxRn1u4cCH+85//IDw8HLm5ufjf//4HR0dH9f2urq6YOnUqRowYgW7dusHNzQ0bN27UOZ6ZM2di8uTJmDVrFkJDQzFs2DD1mJBnn30Wb7/9NsaPH48OHTrg0KFDmDlzZpVrNG/eHIMHD8aAAQPQv39/tGvXDl9++aU+L4uGxYsXY+fOnZDL5QgLC9O4LzY2FmVlZTp3Pa1atQr+/v5o1qwZBg8ejAsXLmDjxo0a8bm6umLHjh3Iy8vD448/jiFDhuDJJ5/E0qVLDa4DoPvrZw0kgr6LElgRLy8vfPzxx4iNjdWpfEFBAWQyGXJu3Kp2gJNUIoHzA4PkisvKtV6rNmVLypQQUP3LLoEELo6GlS29p4Sqhl/ng9M0LVXWxcFO3WevKFdCqTJOWWd7O0j/GfRYVq5CeQ39tvqUdbK3Uw+m1KfsPaUK95TayzraSWFvJ9W7bLlShbIayjrYSeFgQFmlSoCivGozeSV7qRSO9vqXVakElBqprJ1UAif7ive7IAgouWecsub6u6+p7D2FAlevZCI4OBjOzs5QqbT91QMSQP3+BaBX2XKlChceGCgsfWj8jJ2O19Wn7N69e9H3yT64ffs2PD09qy27bu1aTJr0Nm7l3YZUcn+3ZpUgoKZvKFsuO2/ePGzevBmnTv9u1OsKgoAaPiohkUD9e7e2sqWlpcjISEdAYGM4OTsDuP8ZUfn9nZ+fX+MAZZuc/aRUKvH999/j7t27GiPqH6ZQKNTT5oCKpAYAOn+YBKlT1VUfe7f0RsKr95s6w+fv0vph2CXYCxtfv//cT3y0B3l3qx801S5Qhq3jn1Af9/10H7LvlFRbNsTHDTsn9VQfP7v0IP68XlRt2UaeLkie1kd9PHTFYZy5Uv3gPK96jjg5s5/6eNSao0hJz6u2rIuDHVLnR6uP3/i/E9hz8Ua1ZQEgY+H9pdEnbTqNX85qn/744BoY7yWeww8nr2gte2JGXzRwcwIAfLAtFV8f0d6He+Dd3pB7VfxOP/ntIlbu/0tr2d/e7oEWvu4AgGV7LiM+6U+tZX8a1w3t5Z4AgITkdMRt/0Nr2e/GdEVEs4oVNb87molZP2lvRVwT0wl9WlU0B/94KhvvbD6jteyyER3xdDt/AMCO89cw7tuTWst+PKQd/tVJDgDY/+cNvLb2uNay8wY9hlciggAAR9PzMHzVEa1lpz/VCq/3bAYAOJedj0HLtK8d8p8nQ/B2vxYAgMs3itD/s/1ay47t0RTvDagYM5F9pwTdF+3RWnZk1yaY/1zFDI28u2UI/2CX1rIvdAzE4qHtATx6vZcBbf3w5Uvh6uOayprqM6J3c0+8281LfXzpWqHWhNTZ3g4t/NzVx5evF2lNBh3tpGjlf/8LIP3m/bEWlbOgKtlLpWgd8EDZW3dxV1F9IiaVSNCm0f0Wmr/zilFYWv2iahm37mocZ90uRn6JZtnsOyVQCQLOX83HYwEy2P2TL2XfLsHtYu2DUVv7e8D+n8I5d0px665Ca9lWfu5w/CfRvVZQihuF2su28HVXJ6Q3ChW4VlCqtWxzHzf1Z9qtIgVy8rWXbdrQDSgvRUZGBpYuXYY3pryH81er/8wOalAPHi4VA23vFN/DldvFWq/b2MsVnq4VrV75JfeQmae9bGB9V3jVqyhbWFpe5ffzoABPFzT85zP4rkKJv25W/10EAP4yZ3i7VyQiJfeUuKzlewsAfD2c4etRUVZRrsKla4UAAKG8DNfvlGLsloPILqx4Tz/4GaELm+l+AipWSnRzc4OTkxP+/e9/Y8uWLWjdurXW8nFxcZDJZOqbXC43Y7RERESaxo8fj/DwcER274Hnhr1s6XBEx6a6n8rKypCZmYn8/Hxs3rwZX331Ffbt26c1samupUYul7P7yYJl2f1Ugd1P+pdl91MFW+t+0restXUT2VpZa+tS0qesMbqfbCqpeVjfvn3RrFkzrFixQqfyur4oRETmVFpaivT0dHVSYypKlaDu7ngsQFbt4ntEllLT34Gu39821f30MJVKpdESQ0RERHWXzQwUnj59Op566ik0btwYhYWF+Pbbb7F3717s2GH+Dd+IiIjI+thMUnP9+nW88soryMnJgUwmQ7t27bBjxw7069fv0Q8mIiIi0bOZpObh1SmJiIiIHmTTY2qIiEhcgoKCsGTJEp3L7927FxKJBHfu3DFZTGQ7mNQQEZHeJBJJjbc5c+YYdN1jx45h7NixOpePjIxUD0swpcrkSSKRQCqVQiaTISwsDO+++y5ycnL0vp5EIsGPP/5o/EDrOJvpfiIiIuvx4Bf5xo0bMWvWLFy8eFF9zs3NTf2zIAhQKpWwt3/0V463t7decTg6Ohq84aQhLl68CA8PDxQUFODkyZNYtGgRVq9ejb1796Jt27Zmi4Oqx5YaIiLSm5+fn/omk8kgkUjUx3/88Qfc3d2xfft2hIeHw8nJCQcPHkRaWhoGDRoEX19fuLm54fHHH8euXZrbXTzc/SSRSPDVV1/h+eefh6urK0JCQrB161b1/Q93P61duxaenp7YsWMHQkND4ebmhujoaI0krLy8HG+99RY8PT3RoEEDTJ06FaNGjdLYNVwbHx8f+Pn5oUWLFnjxxReRnJwMb29vvPHGG+oyx44dQ79+/dCwYUPIZDL07NkTJ0/e394kKCgIAPD8889DIpGoj3V5fahmTGqIiKxYcVm51lvpQysl17assU2bNg0LFy5Eamoq2rVrh6KiIgwYMABJSUk4deoUoqOjMXDgQGRmZtZ4nblz52Lo0KE4c+YMBgwYgJdeegl5edXvXQcAxcXF+OSTT/D1119j//79yMzMxJQpU9T3f/TRR/jmm2+QkJCA5ORkFBQUGNwV5OLign//+99ITk5W7wpeWFiIUaNG4eDBgzhy5AhCQkIwYMAAFBZW7HF07NgxAEBCQgJycnLUx4a+PnQfu5+IiKyYMTfY/HZMV/Vxz0V7kffQZpEPbk5rDPPmzdNYdsPLywvt27dXH8+fPx9btmzB1q1bMX78eK3XiYmJwfDhwwEACxYswOeff46jR48iOjq62vL37t3Df//7XzRrVrEJ6/jx4zFv3jz1/V988QWmT5+O559/HgCwdOlS/PLLLwbXs1WrVgCAjIwM+Pj4oE+fPhr3r1y5Ep6enti3bx+eeeYZdRebp6enRtdZ+/btDXp96D621BARkUl06tRJ47ioqAhTpkxBaGgoPD094ebmhtTU1Ee2RLRr1079c7169eDh4aFuFamOq6urOqEBAH9/f3X5/Px8XLt2DZ07308G7ezsEB4eXuU6uqrcbahy/6Vr165hzJgxCAkJgUwmg4eHB4qKih5ZT0NfH7qPLTVERFbswrworfc9vCHliZl9dS67791eJt/7qV69ehrHU6ZMwc6dO/HJJ5+gefPmcHFxwZAhQ1BWVqblChUcHBw0jiUSCVQ1bC5bXXlTbnOYmpoK4P5YmVGjRuHWrVuIj49HkyZN4OTkhIiIiEfW09DXh+5jUkNEZMVcHXX/mH5U2Qd3und1tDf7hpbJycmIiYlRd/sUFRUhIyPDrDHIZDL4+vri2LFj6NGjBwBAqVTi5MmT6NChg97XKykpwcqVK9GjRw91t1JycjK+/PJLDBgwAACQlZWFmzdvajzOwcEBSqVmV6E1vD62jkkNERGZRUhICBITEzFw4EBIJBLMnDmzxhYXU5kwYQLi4uLQvHlztGrVCl988QVu376t7j6qyfXr11FaWorCwkKcOHECixYtws2bN5GYmKguExISgq+//hqdOnVCQUEB3nnnHbi4uGhcJygoCElJSejWrRucnJxQv359q3l9bBnH1BARkVl8+umnqF+/PiIjIzFw4EBERUWhY8eOZo9j6tSpGD58OF555RVERETAzc0NUVFRcHZ2fuRjW7ZsiYCAAISHh2PhwoXo27cvzp07h9atW6vLrF69Grdv30bHjh0xcuRIvPXWW/Dx8dG4zuLFi7Fz507I5XKEhYUBsJ7Xx5ZJBFN2NFqZgoICyGQy5Ofnw8PDw9LhEBEBAEpLS5Geno7g4GCdvlgNpVQJOH81HwDwWIDM7N1P1kqlUiE0NBRDhw7F/PnzLR1OnVXT34Gu39/sfiIiojrl77//xm+//YaePXtCoVBg6dKlSE9Px4gRIywdGtUSu5+IiKhOkUqlWLt2LR5//HF069YNZ8+exa5duxAaGmrp0KiW2FJDRER1ilwuR3JysqXDIBNgSw0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiI9CaRSGq8zZkzp1bX/vHHH/WKoV69eggJCUFMTAxOnDih93P26tULEydO1D9YsipMaoiISG85OTnq25IlS+Dh4aFxbsqUKWaJIyEhATk5OTh//jyWLVuGoqIidOnSBevXrzfL85N1YVJDRER68/PzU99kMhkkEonGuQ0bNiA0NBTOzs5o1aoVvvzyS/Vjy8rKMH78ePj7+8PZ2RlNmjRBXFwcACAoKAgA8Pzzz0MikaiPtfH09ISfnx+CgoLQv39/bN68GS+99BLGjx+P27dvAwBu3bqF4cOHo1GjRnB1dUXbtm3x3Xffqa8RExODffv2IT4+Xt3yk5GRAaVSidjYWAQHB8PFxQUtW7ZEfHy8cV9IMipuk0BEZMWKy8q13ieVSODsYKdzWQc7qUbZh3fpdnU0zlfCN998g1mzZmHp0qUICwvDqVOnMGbMGNSrVw+jRo3C559/jq1bt2LTpk1o3LgxsrKykJWVBQA4duwYfHx8kJCQgOjoaNjZ2T3i2ap6++23sX79euzcuRNDhw5FaWkpwsPDMXXqVHh4eODnn3/GyJEj0axZM3Tu3Bnx8fG4dOkS2rRpg3nz5gEAvL29oVKpEBgYiO+//x4NGjTAoUOHMHbsWPj7+2Po0KFGea3IuJjUEBFZsdazdmi9r3dLbyS82ll9HD5/F0ruKast2yXYC9+O6ao+7rloL/KKyzTKZCx8upbRVpg9ezYWL16MwYMHAwCCg4Nx4cIFrFixAqNGjUJmZiZCQkLwxBNPQCKRoEmTJurHent7A7jfAmOIVq1aAQAyMjIAAI0aNdLoDpswYQJ27NiBTZs2oXPnzpDJZHB0dISrq6vGc9rZ2WHu3Lnq4+DgYBw+fBibNm1iUmOlmNQQEZHR3L17F2lpaYiNjcWYMWPU58vLyyGTyQBUdPf069cPLVu2RHR0NJ555hn079/faDEIggCgYiAxACiVSixYsACbNm1CdnY2ysrKoFAo4Orq+shrLVu2DGvWrEFmZiZKSkpQVlaGDh06GC1WMi4mNUREVuzCvCit90klmt1HJ2b21bnsvnd7Vel+MoaioiIAwKpVq9ClSxeN+yq7kjp27Ij09HRs374du3btwtChQ9G3b19s3rzZKDGkpqYCqGhZAYCPP/4Y8fHxWLJkCdq2bYt69eph4sSJKCsrq+ky2LBhA6ZMmYLFixcjIiIC7u7u+Pjjj5GSkmKUOMn4mNQQEVkxfca5PKqsUiVolDVFUuPr64uAgAD89ddfeOmll7SW8/DwwLBhwzBs2DAMGTIE0dHRyMvLg5eXFxwcHKBUVt+NpovK2Vh9+1YkecnJyRg0aBBefvllAIBKpcKlS5fQunVr9WMcHR2rPGdycjIiIyPx5ptvqs+lpaUZHBeZHpMaIiIyqrlz5+Ktt96CTCZDdHQ0FAoFjh8/jtu3b2PSpEn49NNP4e/vj7CwMEilUnz//ffw8/ODp6cngIoZUElJSejWrRucnJxQv359rc91584d5ObmQqFQ4NKlS1ixYgV+/PFHrF+/Xn29kJAQbN68GYcOHUL9+vXx6aef4tq1axpJTVBQEFJSUpCRkQE3Nzd4eXkhJCQE69evx44dOxAcHIyvv/4ax44dU7cAkfXhlG4iIjKq0aNH46uvvkJCQgLatm2Lnj17Yu3atepkwN3dHYsWLUKnTp3w+OOPIyMjA7/88guk0oqvpMWLF2Pnzp2Qy+UICwur8bleffVV+Pv7o1WrVnjjjTfg5uaGo0ePYsSIEeoyM2bMQMeOHREVFYVevXrBz88Pzz33nMZ1pkyZAjs7O7Ru3Rre3t7IzMzE66+/jsGDB2PYsGHo0qULbt26pdFqQ9ZHIlSOqKoDCgoKIJPJkJ+fDw8PD0uHQ0QEACgtLUV6ejqCg4Ph7OxssudRqgScv5oPAHgsQGaS7iciQ9X0d6Dr9zdbaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiMhK1KF5G0RVGOP9z6SGiMjCHBwcAADFxcUWjoTIcirf/5V/D4bg4ntERBZmZ2cHT09PXL9+HQDg6uqq3rfImJQqAUJ5xdYApaWlnNJNVkEQBBQXF+P69evw9PQ0aGf2SkxqiIisQOXu0JWJjSmoBAHX75QCAOyLnavsB0VkSbXZmb0SkxoiIisgkUjg7+8PHx8f3Lt3zyTPUVJWjrFbDgIAtk14Ai567CtFZEoODg61aqGpZDPv6Li4OCQmJuKPP/6Ai4sLIiMj8dFHH6Fly5aWDo2IyGjs7OyM8uFeHZW0HNmFFZs2Ojk7w5lJDYmMzQwU3rdvH8aNG4cjR45g586duHfvHvr374+7d+9aOjQiIiKyAjaTpv/6668ax2vXroWPjw9OnDiBHj16VPsYhUIBhUKhPi4oKDBpjERERGQ5NtNS87D8/IpN2by8vLSWiYuLg0wmU9/kcrm5wiMiIiIzs8mkRqVSYeLEiejWrRvatGmjtdz06dORn5+vvmVlZZkxSiIiIjInm+l+etC4ceNw7tw5HDx4sMZyTk5OcHJyMlNUREREZEk2l9SMHz8e27Ztw/79+xEYGGjpcIiIiMhK2ExSIwgCJkyYgC1btmDv3r0IDg62dEhERERkRWwmqRk3bhy+/fZb/PTTT3B3d0dubi4AQCaTwcXFxcLRERERkaXZzEDh5cuXIz8/H7169YK/v7/6tnHjRkuHRkRERFbAZlpqjLElOREREYmXzbTUEBEREdWESQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJgk0lNfv378fAgQMREBAAiUSCH3/80dIhERERkZWwqaTm7t27aN++PZYtW2bpUIiIiMjK2Fs6AH089dRTeOqpp3Qur1AooFAo1McFBQWmCIuIiIisgE211OgrLi4OMplMfZPL5ZYOiYiIiExE1EnN9OnTkZ+fr75lZWVZOiQiIiIyEZvqftKXk5MTnJycLB0GERERmYGoW2qIiIio7hB1Sw1ZD0EQcLOkDKXlKjjbS9HQxRESicTSYRERkYjYVFJTVFSEy5cvq4/T09Nx+vRpeHl5oXHjxhaMjGqSXViCM9cLUFKuUp9zsZeinY8HGrm7WDAyIiISE5vqfjp+/DjCwsIQFhYGAJg0aRLCwsIwa9YsC0dG2mQXliDl6h2NhAYASspVSLl6B9mFJRaKjIiIxEbvpGbdunX4+eef1cfvvvsuPD09ERkZib///tuowT2sV69eEAShym3t2rUmfV4yjCAIOHO95rWBzlwvgCAIZoqIiIjETO+kZsGCBXBxqegyOHz4MJYtW4ZFixahYcOGePvtt40eINmumyVlVVpoHlZSrsLNkjIzRURERGKm95iarKwsNG/eHADw448/4oUXXsDYsWPRrVs39OrVy9jxkQ0rfURCo285IiKimujdUuPm5oZbt24BAH777Tf069cPAODs7IySEo6PqOsEQcCNYgWyCkpQWq7U6THO9jY1tIuIiKyU3i01/fr1w+jRoxEWFoZLly5hwIABAIDz588jKCjI2PGRFXt4mraiXIWzNwoe2eX0IJd/pncTERHVlt5JzbJlyzBjxgxkZWXhhx9+QIMGDQAAJ06cwPDhw40eIFmn6qZpG6KdjwfXqyEiIqPQO6nx9PTE0qVLq5yfO3euUQIi61c5Tbs2uE4NEREZm05JzZkzZ3S+YLt27QwOhqyfLtO0tWnr7Q5nezuuKExERCahU1LToUMHSCQSreuJVN4nkUigVOo2OJRsky7TtLVxtreD3OPRLTPcUoGIiAyhU1KTnp5u6jjIRtRm+rUus5y4pQIRERlKp6SmSZMmpo6DbISh0691meWkbaxO5ZYKXQLAxIaIiLQyeEPLCxcuIDMzE2VlmqvBPvvss7UOiqxXQxdHuNhL9e6CetQsJ123VAhwc2ZXFNkOlRK4cQAoyQFc/AHv7oDUztJREYmW3knNX3/9heeffx5nz57VGGdT+UXDMTXiJpFI0M7HQ+fZT7p2HemzpYK3q5Ou4RJZTlYicOI/QPGV++dcA4HweEA+2HJxEYmY3n0J//nPfxAcHIzr16/D1dUV58+fx/79+9GpUyfs3bvXBCGStWnk7oIuAZ5weagrysVeis7+MnSXe+Fxf090l3shuqmPTl1G3FKBRCUrETgwRDOhAYDi7IrzWYmWiYtI5PRuqTl8+DB2796Nhg0bQiqVQiqV4oknnkBcXBzeeustnDp1yhRxkpVp5O6CADdno81S0nWsDrdUIKunUla00KC62aICAAlwYiLQaBC7ooiMTO9vCKVSCXd3dwBAw4YNcfXqVQAVg4kvXrxo3OjIqkkkEni7OkHu4QJvV6dajXWpHKtTE26pQDbhxoGqLTQaBKA4q6IcERmV3i01bdq0we+//47g4GB06dIFixYtgqOjI1auXImmTZuaIkaqA3QZq8MtFcgmlOQYtxwR6UzvpGbGjBm4e/cuAGDevHl45pln0L17dzRo0AAbN240eoBUd1SM1QHXqbFGnMWjOxd/45YjIp3pndRERUWpf27evDn++OMP5OXloX79+vxfNNWascfqkBFwFo9+vLtXvD7F2ah+XI2k4n7v7uaOjEj0jDLq0svLi186ZDTGGKsjCAJuFCuQVVCCG8UKrVt80CNwFo/+pHYVCR8A4OH37j/H4UvY0kVkAnq31PTu3bvGL5ndu3fXKiCi2uJWC0bCWTyGkw8Gum/W0sK1hC1cRCaid1LToUMHjeN79+7h9OnTOHfuHEaNGmWsuIgMwq0WjEifWTy+vcwVle2QD65I+DgWichs9E5qPvvss2rPz5kzB0VFRbUOiMhQ3GrByDiLp/akdkz4iMzIaCuZvfzyy1izZo2xLkd1mKHjYfTZaoF0wFk8RGRjDN7Q8mGHDx+Gs7OzsS5HdVRtxsNwqwUj4yweIrIxeic1gwdrDnATBAE5OTk4fvw4Zs6cabTAqO6p7XgYbrVgZJWzeA4MQcWsnQcTG87iISLro3dSI5PJNI6lUilatmyJefPmoX///kYLjOoWY4yHqdxqoaYuKG61oCfO4iEiG6J3UpOQkGCKOKiO02c8jLerU7X3c6sFE+EsHiJ6FCtZddxoY2qIasNY42G41YKJcBYPEWljRauO65TU6LMFQl5eXq0CorqptuNhBEHQ2FohKtgbt0rvcasFIiJTqlx1/OHJBJWrjnffbNbERqekZsmSJeqfb926hQ8++ABRUVGIiIgAUDHzaceOHRwoTAarzXiYmmZMyT3YMkNEZBJWuOq4TknNgysFv/DCC5g3bx7Gjx+vPvfWW29h6dKl2LVrF95++23jR0miZ+h4GK4gTERkIVa46rjec1t37NiB6OjoKuejo6Oxa9cuowRFdVPFeBhPuDzUxeRiL0WXAM8qyYmuM6a4mSURkQlY4arjeg8UbtCgAX766SdMnjxZ4/xPP/2EBg0aGC0wqpsaubsgwM1ZY3yMtvEwxpgxRUREBrLCVcf1Tmrmzp2L0aNHY+/evejSpQsAICUlBb/++itWrVpl9ACp7pFIJDolIVxB2PQeHoDNAddEpGaFq47rndTExMQgNDQUn3/+ORITEwEAoaGhOHjwoDrJITKWmr5UuYKwadVmywoiqgOscNVxg9ap6dKlC7755htjx0Kk4VFfqlxB2HQ4AJuIdGJlq47rlNQUFBTAw8ND/XNNKssR1YauX6pcQdj4jLFlBRHVIVa06rjOi+/l5OTAx8cHnp6e1X6QCYIAiUQCpVJp9CCpbtHnS5UrCBsfB2ATkd6sZNVxnZKa3bt3w8vLCwCwZ88ekwZEpO+Xqj4zpujROACbiGyVTklNz549q/2ZyBQM+VLVdcYUPRoHYBORrdL7U+nXX3/FwYMH1cfLli1Dhw4dMGLECNy+fduowVHdZG1fqoIg4EaxAlkFJbhRrBD9Yn6VA7BrwgHYRGSN9P5WeOedd9SDhc+ePYtJkyZhwIABSE9Px6RJk4we4MOWLVuGoKAgODs7o0uXLjh69KjJn5PMy5q+VLMLS/DrX9dxICsPx3Lu4EBWHn796zqyC0tM/tyWUrllRU04AJuIrJHeSU16ejpat24NAPjhhx8wcOBALFiwAMuWLcP27duNHuCDNm7ciEmTJmH27Nk4efIk2rdvj6ioKFy/ft2kz0um92BryM2SMrT1tvyXauUMrIfH91TOwBJzYqPvlhVERNZA73VqHB0dUVxcDADYtWsXXnnlFQCAl5fXI6d719ann36KMWPG4NVXXwUA/Pe//8XPP/+MNWvWYNq0aTpfp7isHPZl5aYKk/R0tbAU525Unb0kd3dGdmFplfNtvD1Q38kBxf/8DgVBwK2Se+pBwg1cHGqd8AiCgGPZt6GoYXzPsezb8Ay2F22LRX0nB/QI9Kr2tS3m34/OTPH+NNSDvzf+DsmW6Pp+1TupeeKJJzBp0iR069YNR48excaNGwEAly5dQmBgoL6X01lZWRlOnDiB6dOnq89JpVL07dsXhw8frvYxCoUCCoVCfVyZdHX+MAlSJ1eTxUpEZO06fZBk6RCIdKZSFOtUTu/up6VLl8Le3h6bN2/G8uXL0ahRIwDA9u3bq92921hu3rwJpVIJX19fjfO+vr7Izc2t9jFxcXGQyWTqm1wuN1l8REREZFkSwUamcly9ehWNGjXCoUOHEBERoT7/7rvvYt++fUhJSanymOpaauRyOXJu3OLKx1bgZnEZkq/kPbJct0AvNHTVHBQsCAJ2pt945BYJ/YK9DWrqr01sRKZ+fxqquKxc3UJzfMaTcHU0aKccIrMrKCiAv3cD5Ofn1/j9bdA7Oi0tDQkJCUhLS0N8fDx8fHywfft2NG7cGI899pjBQdekYcOGsLOzw7Vr1zTOX7t2DX5+ftU+xsnJCU5OVdcucXW05x+zFZCU3oOTw6OX0ZZIJVV+XzeKFVBJJDU+XgWgWKkyaP0auYMdPG85PPJLSS5zEe2YGjKcqd+fxsDPQbIl5Tq+V/Xuftq3bx/atm2LlJQUJCYmoqioCADw+++/Y/bs2fpeTmeOjo4IDw9HUtL9fmCVSoWkpCSNlhuyHbVZj8bUq95yWjPVBldlJrIMvZOaadOm4YMPPsDOnTvh6Hi/2b1Pnz44cuSIUYN72KRJk7Bq1SqsW7cOqampeOONN3D37l31bCiyLbVZj8YcC/RxWjMZytoWkCSqK/Ruezx79iy+/fbbKud9fHxw8+ZNowSlzbBhw3Djxg3MmjULubm56NChA3799dcqg4fJcgRB0HkPpsrWkJp22Q50r34n6MqE6FHdQ7VdoI/7SpEhavX+VCmtYrdjIlukd1Lj6emJnJwcBAcHa5w/deqUeiaUKY0fPx7jx483+fOQ/rILS/TeLbuRuwtC6pfhz9vVT9f783YxvFwcqzxel4TIWN1D3FeK9GXw+zMrETjxH6D4yv1zroFAeDwgH2yaYIlERO+2zxdffBFTp05Fbm4uJBIJVCoVkpOTMWXKFPVCfFT3GLr6riAIuFJYWuO1z1wvqHa/JXYPkTXT+/2ZlQgcGKKZ0ABAcXbF+axEE0dMZPv0bqlZsGABxo0bB7lcDqVSidatW0OpVGLEiBF4//33TREjWTlBEHDmes2rSZ+5XoAAt6pdSTdLympsogcqEqObJWXVtpawe4ismc7vT5WyooUG1a2wIQCQACcmAo0GsSuKqAYGbZOwatUqzJo1C2fPnkVRURHCwsIQEhJiivjIBtQmMTHGLBF9u4f0GfdDVFs6vT9vHKjaQqNBAIqzKsr59jJmeESiYvAiBXK5XGOF3sTERMyZMwdnzpwxSmBkO2qTmJh7logh436ITK4kx7jliOoovb4pVqxYgSFDhmDEiBHqFXx3796NsLAwjBw5Et26dTNJkGTdapOY1GZat77q8q7bZOVc/I1bjqiO0jmpWbhwISZMmICMjAxs3boVffr0wYIFC/DSSy9h2LBhuHLlCpYvX27KWMlK1SYxMdcid7qO+7GRXUNIbLy7V8xygrb3uQRwlVeUIyKtdE5qEhISsGrVKhw/fhzbt29HSUkJDh06hMuXL2PatGmoX7++KeMkK1bbxMQcs5j0GfdDZHZSu4pp2wCqJjb/HIcv4SBhokfQeUxNZmYm+vTpAwDo3r07HBwcMHfuXNSrV89kwZHtqEhMoNd4lYcH7EYFe+NW6T2TDODlsvVk9eSDge6btaxTs4Tr1BDpQOekRqFQwNnZWX3s6OgILy8vkwRFtkmf6dU1DdiVexh/wC6XrSebIB9cMW2bKwoTGUSv2U8zZ86Eq6srAKCsrAwffPABZDKZRplPP/3UeNGRzdFl+mrlgN2HVQ7Y7RIAo89EMte2CkS1JrXjtG0iA+mc1PTo0QMXL15UH0dGRuKvv/7SKMO1PuhB1a0HA8Dghfpqw5zbKhARkWXonNTs3bvXhGGQ2GjrXgqSudZqBeHaMGTcDxER2Q6DF98jAqpvjblaVKq1eyn1VpFO1zXVgF1uq0BEJF5Mashg1bXGONtLoVLVfq0XUw7Y5a7bRETixKSGDKJtsK8xWlg4YNdIVErOoiGiOoVJDelNl9V5a4MDdo0gK1HLeifxXO+EiESLi3KQ3nRZnfdRQhvUM+kKwnVaViJwYEjVXZ+LsyvOZyVaJi4iIhNjSw3prbZdTC72UrRq4I5WDdw5YNfYVMqKFhpUN65JACABTkysWOCNXVFEJDJGa6kJDQ2FnR0/JOuC2g7irexeqhywK/dwgberExMaY7hxoGoLjQYBKM6qKEdEJDJGa6mJi4tDfn6+sS5HVkyX1XkdpRJIJUCp8n6LAdeDMYOSHOOWIyKyIUZLap577jljXYqsnC6r84b5ybgejCW4+Bu3HBGRDeGYGjKIrqvzcj0YM/PuXjHLqTgb1Y+rkVTc793d3JEREZmcTklNWFiYzv/DPnnyZK0CItvxqNV5q1ttmC01Jia1q5i2fWAIAAk0E5t/XvvwJRwkTESipFNS82DXUmlpKb788ku0bt0aERERAIAjR47g/PnzePPNN00SJFkvbavzatv7iWNqzEA+GOi+Wcs6NUu4Tg0RiZZOSc3s2bPVP48ePRpvvfUW5s+fX6VMVlaWcaMjm6RtteGSchVSrt5BlwAwsTGAXi1f8sEV07a5ojAR1SF6j6n5/vvvcfz48SrnX375ZXTq1Alr1qwxSmBkm3RZbfjM9QIEuDmzK0oPBrV8Se0A317mCZCIyAroveCIi4sLkpOTq5xPTk6Gs7OzUYIi26XLasMl5SrcLCkzU0S2r7Ll6+HXtbLlK7uwxEKRERFZF71baiZOnIg33ngDJ0+eROfOnQEAKSkpWLNmDWbOnGn0AMm26LrasDE2vqwL2PJFRKQ7vZOaadOmoWnTpoiPj8f//d//AahYTTghIQFDhw41eoBkGyrHexQo7ulUvrarEtcV+rR8cfo8EdV1Bq1TM3ToUCYwpFbdeI+auPwzyJUejS1fRES60/u/y02bNsWtW7eqnL9z5w6aNm1qlKDIdmgb71GTyr2f6NF0bdFiyxcRkQFJTUZGBpRKZZXzCoUC2dnZRgmKbIMu4z0e5GIvRZcAT07n1kPlPls1YcsXEVEFnbuftm7dqv55x44dkMlk6mOlUomkpCQEBQUZNTiybrqM9wCAll714FPPiSsKG0CXfbbY8kVEVEHnpKZyVWGJRIJRo0Zp3Ofg4ICgoCAsXrzYqMGRddN1HIeHkwMHsdaCrvtsERHVdTonNSpVxYdpcHAwjh07hoYNG5osKLINHO9hPo/aZ4uIiAyY/ZSenm6KOMgGVY73qKkLiuM9jEfbPltERFRB5/9CHz58GNu2bdM4t379egQHB8PHxwdjx46FQqEweoBkvSrHe9SE4z2IiMhcdE5q5s2bh/Pnz6uPz549i9jYWPTt2xfTpk3D//73P8TFxZkkSLJeFeM9PKvM0OFMJyIiMjedu59Onz6tsTP3hg0b0KVLF6xatQoAIJfLMXv2bMyZM8foQZJ143gPIiKyBjonNbdv34avr6/6eN++fXjqqafUx48//jiysrKMGx3ZDI73ICIiS9O5+8nX11c9SLisrAwnT55E165d1fcXFhbCwcHB+BESERER6UDnpGbAgAGYNm0aDhw4gOnTp8PV1RXdu3dX33/mzBk0a9bMJEESERERPYrOSc38+fNhb2+Pnj17YtWqVVi1ahUcHe9P1V2zZg369+9vkiAB4MMPP0RkZCRcXV3h6elpsuchIiIi26TzmJqGDRti//79yM/Ph5ubG+zs7DTu//777+Hm5mb0ACuVlZXhX//6FyIiIrB69WqTPQ8RERHZJr0X33twz6cHeXl51TqYmsydOxcAsHbtWpM+DxEREdkmvZMaW6JQKDQWBCwo0H1HaSIiIrItot6UJy4uDjKZTH2Ty+WWDomIiIhMxKJJzbRp0yCRSGq8/fHHHwZff/r06cjPz1ffuI4O1SkqJXBtL5DxXcW/KqWlIyIiMimLdj9NnjwZMTExNZZp2rSpwdd3cnKCkxMXhKM6KCsROPEfoPjK/XOugUB4PCAfbLm4iIhMyKJJjbe3N7y9vS0ZApH4ZCUCB4YAEDTPF2dXnO++mYkNEYmSzQwUzszMRF5eHjIzM6FUKnH69GkAQPPmzU06lZzIpqiUFS00Dyc0wD/nJMCJiUCjQYDUrpoyRES2y2aSmlmzZmHdunXq47CwMADAnj170KtXLwtFRWRlbhzQ7HKqQgCKsyrK+fYyV1RERGZhM7Of1q5dC0EQqtyY0BA9oCTHuOWIiGyIzSQ1RKQDF3/jliMisiFMaojExLt7xSwnSLQUkACu8opyREQiw6SGSEykdhXTtgFUTWz+OQ5fwkHCRCRKTGqIxEY+uGLatmsjzfOugZzOTUSiZjOzn4hID/LBFdO2bxyoGBTs4l/R5cQWGiISMSY1RGIlteO0bSKqU9j9RERERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFm0hqMjIyEBsbi+DgYLi4uKBZs2aYPXs2ysrKLB0aERERWQl7Swegiz/++AMqlQorVqxA8+bNce7cOYwZMwZ3797FJ598YunwiIiIyArYRFITHR2N6Oho9XHTpk1x8eJFLF++nEkNERERAbCRpKY6+fn58PLyqrGMQqGAQqFQHxcUFJg6LCIiIrIQmxhT87DLly/jiy++wOuvv15jubi4OMhkMvVNLpebKUIiIiIyN4smNdOmTYNEIqnx9scff2g8Jjs7G9HR0fjXv/6FMWPG1Hj96dOnIz8/X33LysoyZXWIiIjIgiza/TR58mTExMTUWKZp06bqn69evYrevXsjMjISK1eufOT1nZyc4OTkVNswiYiIyAZYNKnx9vaGt7e3TmWzs7PRu3dvhIeHIyEhAVKpTfacERERkYnYxEDh7Oxs9OrVC02aNMEnn3yCGzduqO/z8/OzYGRERERkLWwiqdm5cycuX76My5cvIzAwUOM+QRAsFBURERFZE5vow4mJiYEgCNXeiIiIiAAbSWqIiIiIHoVJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYmCzSQ1zz77LBo3bgxnZ2f4+/tj5MiRuHr1qqXDIiIiIithb+kAdNW7d2+899578Pf3R3Z2NqZMmYIhQ4bg0KFDel+ruKwc9mXlVc5LJRI4O9hplNOmNmVLypQQIFRbVgIJXBwNK1t6TwmVUH1ZAHB1tLd4WRcHO0gkEgCAolwJpco4ZZ3t7SCVVpQtK1ehXKUySlknezvYGVD2nlKFe0rtZR3tpLC3k+pdtlypQlkNZR3spHAwoKxSJUBRrtRa1l4qhaO9/mVVKgGlRiprJ5XAyb7i/S4IAkruGaesuf7ureUzoqZ4+Bmhf1l+RlQwx2eELiSCUMO7y4pt3boVzz33HBQKBRwcHKoto1AooFAo1McFBQWQy+WQT9wEqZNrlfK9W3oj4dXO6uPQmb9q/TDsEuyFja9HqI87zt+JvLtl1ZZtFyjD1vFPqI+7LdyN7Dsl1ZYN8XHDzkk91cf9Pt2HP68XVVu2kacLkqf1UR8/u/QgzlzJr7asVz1HnJzZT308bMVhpKTnVVvWxcEOqfOj1cevJhzFnos3qi0LABkLn1b//OY3J/DL2VytZS/Mi1J/wE3e9Dt+OHlFa9kTM/qigZsTAGDmj+fw9ZG/tZY98G5vyL0qfqcLfknFyv1/aS3729s90MLXHQDw2c5LiE/6U2vZn8Z1Q3u5JwBgxb40xG3/Q2vZ78Z0RUSzBgCA9YczMOun81rLronphD6tfAEA3x/Pwjubz2gtu2xERzzdzh8A8POZHIz79qTWsh8PaYd/dZIDAHb/cQ2vrT2utey8QY/hlYggAMDhtFsYvuqI1rLTn2qF13s2AwD8nnUHg5Ylay37nydD8Ha/FgCAS9cK0f+z/VrLju3RFO8NCAUAZOUVo/uiPVrLjuzaBPOfawMAuFWkQPgHu7SWfaFjIBYPbQ+g4su79awdWssOaOuHL18KVx8HTftZa1lb/4x45vMDOHe1oNqy/Iy4j58RFazpM6KgoAAymQz5+fnw8PDQWt5mup8elJeXh2+++QaRkZFaExoAiIuLg0wmU9/kcrkZoyQiIiJzsqmWmqlTp2Lp0qUoLi5G165dsW3bNjRo0EBreW0tNTk3blWb6YmhaZndT2xattWmZXY/mf4zIu+uAh3nV7RwHZ/xpMbfLsDPCEPK8jOigqk/I3RtqbFoUjNt2jR89NFHNZZJTU1Fq1atAAA3b95EXl4e/v77b8ydOxcymQzbtm1Tv6kfRdcXhYhIjB7sinuwm4fI2un6/W3Rd/TkyZMRExNTY5mmTZuqf27YsCEaNmyIFi1aIDQ0FHK5HEeOHEFEREQNVyAiIqK6wKJJjbe3N7y9vQ16rOqfJr4Hu5eIiIio7rKJtseUlBQcO3YMTzzxBOrXr4+0tDTMnDkTzZo1YysNERERAbCR2U+urq5ITEzEk08+iZYtWyI2Nhbt2rXDvn374OTkZOnwiIiIyArYREtN27ZtsXv3bkuHQURERFbMJlpqiIiIiB6FSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJgr2lAzAnQRAAAAUFBRaOhIjI/IrLyqFSFAOo+Bwsd6xTXwFkwyq/tyu/x7WpU+/oW7duAQDkcrmFIyEisiz/JZaOgEh/hYWFkMlkWu+vU0mNl5cXACAzM7PGF0WsCgoKIJfLkZWVBQ8PD0uHY1asO+vOutcdrLv46i4IAgoLCxEQEFBjuTqV1EilFUOIZDKZqH7Z+vLw8Kiz9WfdWfe6hnVn3cVCl8YIDhQmIiIiUWBSQ0RERKJQp5IaJycnzJ49G05OTpYOxSLqcv1Zd9a9rmHdWfe6SCI8an4UERERkQ2oUy01REREJF5MaoiIiEgUmNQQERGRKDCpISIiIlEQfVKTl5eHl156CR4eHvD09ERsbCyKiopqfMzKlSvRq1cveHh4QCKR4M6dO+YJtpaWLVuGoKAgODs7o0uXLjh69GiN5b///nu0atUKzs7OaNu2LX755RczRWoa+tT//PnzeOGFFxAUFASJRIIlS5aYL1AT0Kfuq1atQvfu3VG/fn3Ur18fffv2feR7xZrpU/fExER06tQJnp6eqFevHjp06ICvv/7ajNEal75/85U2bNgAiUSC5557zrQBmpA+dV+7di0kEonGzdnZ2YzRGpe+v/c7d+5g3Lhx8Pf3h5OTE1q0aGHzn/daCSIXHR0ttG/fXjhy5Ihw4MABoXnz5sLw4cNrfMxnn30mxMXFCXFxcQIA4fbt2+YJthY2bNggODo6CmvWrBHOnz8vjBkzRvD09BSuXbtWbfnk5GTBzs5OWLRokXDhwgVhxowZgoODg3D27FkzR24c+tb/6NGjwpQpU4TvvvtO8PPzEz777DPzBmxE+tZ9xIgRwrJly4RTp04JqampQkxMjCCTyYQrV66YOfLa07fue/bsERITE4ULFy4Ily9fFpYsWSLY2dkJv/76q5kjrz19614pPT1daNSokdC9e3dh0KBB5gnWyPSte0JCguDh4SHk5OSob7m5uWaO2jj0rbtCoRA6deokDBgwQDh48KCQnp4u7N27Vzh9+rSZIzcPUSc1Fy5cEAAIx44dU5/bvn27IJFIhOzs7Ec+fs+ePTaT1HTu3FkYN26c+lipVAoBAQFCXFxcteWHDh0qPP300xrnunTpIrz++usmjdNU9K3/g5o0aWLTSU1t6i4IglBeXi64u7sL69atM1WIJlPbuguCIISFhQkzZswwRXgmZUjdy8vLhcjISOGrr74SRo0aZbNJjb51T0hIEGQymZmiMy196758+XKhadOmQllZmblCtChRdz8dPnwYnp6e6NSpk/pc3759IZVKkZKSYsHIjKusrAwnTpxA37591eekUin69u2Lw4cPV/uYw4cPa5QHgKioKK3lrZkh9RcLY9S9uLgY9+7dU2/4aitqW3dBEJCUlISLFy+iR48epgzV6Ayt+7x58+Dj44PY2FhzhGkShta9qKgITZo0gVwux6BBg3D+/HlzhGtUhtR969atiIiIwLhx4+Dr64s2bdpgwYIFUCqV5grbrESd1OTm5sLHx0fjnL29Pby8vJCbm2uhqIzv5s2bUCqV8PX11Tjv6+urtZ65ubl6lbdmhtRfLIxR96lTpyIgIKBKkmvtDK17fn4+3Nzc4OjoiKeffhpffPEF+vXrZ+pwjcqQuh88eBCrV6/GqlWrzBGiyRhS95YtW2LNmjX46aef8H//939QqVSIjIzElStXzBGy0RhS97/++gubN2+GUqnEL7/8gpkzZ2Lx4sX44IMPzBGy2dnkLt3Tpk3DRx99VGOZ1NRUM0VDZLsWLlyIDRs2YO/evTY9cFIf7u7uOH36NIqKipCUlIRJkyahadOm6NWrl6VDM5nCwkKMHDkSq1atQsOGDS0djtlFREQgIiJCfRwZGYnQ0FCsWLEC8+fPt2BkpqdSqeDj44OVK1fCzs4O4eHhyM7Oxscff4zZs2dbOjyjs8mkZvLkyYiJiamxTNOmTeHn54fr169rnC8vL0deXh78/PxMGKF5NWzYEHZ2drh27ZrG+WvXrmmtp5+fn17lrZkh9ReL2tT9k08+wcKFC7Fr1y60a9fOlGGahKF1l0qlaN68OQCgQ4cOSE1NRVxcnE0lNfrWPS0tDRkZGRg4cKD6nEqlAlDRen3x4kU0a9bMtEEbiTH+3h0cHBAWFobLly+bIkSTMaTu/v7+cHBwgJ2dnfpcaGgocnNzUVZWBkdHR5PGbG422f3k7e2NVq1a1XhzdHREREQE7ty5gxMnTqgfu3v3bqhUKnTp0sWCNTAuR0dHhIeHIykpSX1OpVIhKSlJ438nD4qIiNAoDwA7d+7UWt6aGVJ/sTC07osWLcL8+fPx66+/aow5syXG+r2rVCooFApThGgy+ta9VatWOHv2LE6fPq2+Pfvss+jduzdOnz4NuVxuzvBrxRi/d6VSibNnz8Lf399UYZqEIXXv1q0bLl++rE5iAeDSpUvw9/cXXUIDoG5M6Q4LCxNSUlKEgwcPCiEhIRpTuq9cuSK0bNlSSElJUZ/LyckRTp06JaxatUoAIOzfv184deqUcOvWLUtUQScbNmwQnJychLVr1woXLlwQxo4dK3h6eqqnLY4cOVKYNm2aunxycrJgb28vfPLJJ0Jqaqowe/Zsm5/SrU/9FQqFcOrUKeHUqVOCv7+/MGXKFOHUqVPCn3/+aakqGEzfui9cuFBwdHQUNm/erDHFtbCw0FJVMJi+dV+wYIHw22+/CWlpacKFCxeETz75RLC3txdWrVplqSoYTN+6P8yWZz/pW/e5c+cKO3bsENLS0oQTJ04IL774ouDs7CycP3/eUlUwmL51z8zMFNzd3YXx48cLFy9eFLZt2yb4+PgIH3zwgaWqYFKiT2pu3bolDB8+XHBzcxM8PDyEV199VePDOz09XQAg7NmzR31u9uzZAoAqt4SEBPNXQA9ffPGF0LhxY8HR0VHo3LmzcOTIEfV9PXv2FEaNGqVRftOmTUKLFi0ER0dH4bHHHhN+/vlnM0dsXPrUv/L3/vCtZ8+e5g/cCPSpe5MmTaqt++zZs80fuBHoU/f3339faN68ueDs7CzUr19fiIiIEDZs2GCBqI1D37/5B9lyUiMI+tV94sSJ6rK+vr7CgAEDhJMnT1ogauPQ9/d+6NAhoUuXLoKTk5PQtGlT4cMPPxTKy8vNHLV5SARBEMzePERERERkZDY5poaIiIjoYUxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEZFJBQUFYsmSJpcPAzJkzMXbsWPVxr169MHHiRMsFZCbTpk3DhAkTLB0GkVkwqSGyETExMXjuueeqnN+7dy8kEgnu3Lmj87V0+UJv27Yt/v3vf1d739dffw0nJyfcvHlT5+e0pNzcXMTHx+P999/X+7EZGRmIiYmpdQxnzpxB9+7d4ezsDLlcjkWLFun82Fu3biEwMLDK7zknJwcjRoxAixYtIJVKq/2dTpkyBevWrcNff/1V6zoQWTsmNURUrdjYWGzYsAElJSVV7ktISMCzzz6Lhg0bWiAy/X311VeIjIxEkyZNdH7MN998g7S0NPWxIAhYtmwZbt++rffzFxQUoH///mjSpAlOnDiBjz/+GHPmzMHKlSt1enxsbCzatWtX5bxCoYC3tzdmzJiB9u3bV/vYhg0bIioqCsuXL9c7biJbw6SGSGRu3bqF4cOHo1GjRnB1dUXbtm3x3Xffqe+PiYnBvn37EB8fD4lEAolEgoyMjCrXefnll1FSUoIffvhB43x6ejr27t2L2NhYpKWlYdCgQfD19YWbmxsef/xx7Nq1S2tsGRkZkEgkOH36tPrcnTt3IJFIsHfvXvW5c+fO4amnnoKbmxt8fX0xcuRIjVahzZs3o23btnBxcUGDBg3Qt29f3L17V+vzbtiwAQMHDqxyXqVS4d1334WXlxf8/PwwZ84c9X3BwcEYNWoU/vvf/+LKlSuIjo5GdnY2nJyctD6PNt988w3KysqwZs0aPPbYY3jxxRfx1ltv4dNPP33kY5cvX447d+5gypQpVe4LCgpCfHw8XnnlFchkMq3XGDhwIDZs2KB33ES2hkkNkciUlpYiPDwcP//8M86dO4exY8di5MiROHr0KAAgPj4eERERGDNmDHJycpCTkwO5XF7lOg0bNsSgQYOwZs0ajfNr165FYGAg+vfvj6KiIgwYMABJSUk4deoUoqOjMXDgQGRmZhoc/507d9CnTx+EhYXh+PHj+PXXX3Ht2jUMHToUQEWXy/Dhw/Haa68hNTUVe/fuxeDBg6Ftb968vDxcuHABnTp1qnLfunXrUK9ePaSkpGDRokWYN28edu7cCQCIjIzEnj17cPjwYezduxcTJ07EggUL4OrqCgDqpEvb7bHHHlM/z+HDh9GjRw84Ojqqz0VFReHixYs1tvxcuHAB8+bNw/r16yGVGv5x3blzZ1y5cqXa5JVITOwtHQAR6W7btm1wc3PTOKdUKjWOGzVqpPG/+gkTJmDHjh3YtGkTOnfuDJlMBkdHR7i6usLPz6/G54uNjcVTTz2F9PR0BAcHQxAErFu3DqNGjYJUKkX79u01uj3mz5+PLVu2YOvWrRg/frxBdVy6dCnCwsKwYMEC9bk1a9ZALpfj0qVLKCoqQnl5OQYPHqzuTmrbtq3W62VmZkIQBAQEBFS5r127dpg9ezYAICQkBEuXLkVSUhL69euHlJQUvPPOO4iMjISDgwOWLFmCw4cP47333oOzszO++uqrarvmKjk4OKh/zs3NRXBwsMb9vr6+6vvq169f5fEKhQLDhw/Hxx9/jMaNG9dqTExl3f/++28EBQUZfB0ia8ekhsiG9O7du8rYiJSUFLz88svqY6VSiQULFmDTpk3Izs5GWVkZFAqFuoVBH/369UNgYCASEhIwb948JCUlITMzE6+++ioAoKioCHPmzMHPP/+MnJwclJeXo6SkpFYtNb///jv27NlTJXkDgLS0NPTv3x9PPvkk2rZti6ioKPTv3x9DhgypNjEAoE48nJ2dq9z38DgVf39/XL9+HQDw559/IiEhAXZ2dpgzZw4SEhLw5Zdfori4GM7OzmjUqJHBddTF9OnTERoaqvG7NZSLiwsAoLi4uNbXIrJm7H4isiH16tVD8+bNNW4Pf7l+/PHHiI+Px9SpU7Fnzx6cPn0aUVFRKCsr0/v5pFIpYmJisG7dOqhUKiQkJKB3795o2rQpgIqZNVu2bMGCBQtw4MABnD59Gm3bttX6XJVdKA92Fd27d0+jTFFREQYOHIjTp09r3P7880/06NEDdnZ22LlzJ7Zv347WrVvjiy++QMuWLZGenl7tc1YOZq6um+fB1hQAkEgkUKlUACrGFDVr1kzjvnHjxsHLywuAft1Pfn5+uHbtmsZzVR5ray3bvXs3vv/+e9jb28Pe3h5PPvmkuj6VrUu6ysvLAwB4e3vr9TgiW8OWGiKRSU5OxqBBg9T/w1epVLh06RJat26tLuPo6Fil20qbV199FR988AESExOxZcsWfPXVVxrPFRMTg+effx5ARUJS07iNyi/VnJwchIWFAYDGoGEA6NixI3744QcEBQXB3r76jyiJRIJu3bqhW7dumDVrFpo0aYItW7Zg0qRJVco2a9YMHh4euHDhAlq0aKFTnR8UFBSEtWvXVjmvT/dTREQE3n//fdy7d099fufOnWjZsqXWFqYffvhB4/rHjh3Da6+9hgMHDmgkW7o4d+4cHBwcNBItIjFiSw2RyISEhGDnzp04dOgQUlNT8frrr1dpJQgKCkJKSgoyMjJw8+ZNdetEdYKDg9GnTx+MHTsWTk5OGDx4sMZzJSYm4vTp0/j9998xYsSIGq/l4uKCrl27YuHChUhNTcW+ffswY8YMjTLjxo1DXl4ehg8fjmPHjiEtLQ07duzAq6++CqVSiZSUFCxYsADHjx9HZmYmEhMTcePGDYSGhlb7nFKpFH379sXBgwd1efl01qhRoyqtZg/eHpw+PmLECDg6OiI2Nhbnz5/Hxo0bER8fr5GEbdmyBa1atVIfN2vWDG3atFHfKsfkhIaGwsfHR12usiWrqKgIN27cwOnTp3HhwgWNWA8cOIDu3buru6GIxIpJDZHIzJgxAx07dkRUVBR69eoFPz+/Kov2TZkyBXZ2dmjdujW8vb0fOQYmNjYWt2/fxogRIzTGpnz66aeoX78+IiMjMXDgQERFRaFjx441XmvNmjUoLy9HeHg4Jk6ciA8++EDj/oCAACQnJ0OpVKJ///5o27YtJk6cCE9PT0ilUnh4eGD//v0YMGAAWrRogRkzZmDx4sV46qmntD7n6NGjsWHDhhoTLlOSyWT47bffkJ6ejvDwcEyePBmzZs3SWOE4Pz8fFy9e1PvaYWFhCAsLw4kTJ/Dtt98iLCwMAwYM0CizYcMGjBkzptb1ILJ2EkHbPEgiIpEQBAFdunTB22+/jeHDh1s6HLPavn07Jk+ejDNnzmjtziMSC7bUEJHoSSQSrFy5EuXl5ZYOxezu3r2LhIQEJjRUJ7ClhoiIiESBLTVEREQkCkxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCv8PjqAziKyHb4cAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "model1.williams_plot()" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "0cedfc9d-83bd-43a3-908b-0d2cfb489d34", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "R2 0.7932755997633875\n", - "Q2 0.7099699197171891\n", - "RMSE 0.2508516645820539\n", - "coef [ -1.45342979 -96.40117135]\n", - "intercept -0.07684397375001017\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByWUlEQVR4nO3dd1hT59sH8G/YQZYKCChu62iduNDWYrVK1VbrQFFAlLrqqANXX6tVq9atdU9cVESrdbRurXui1J+t0mJVkI0oAQlh5Lx/UFIjEBIkJIHv57pyac55zjl3EsK5eaZIEAQBRERERFQoI10HQERERKTPmCwRERERqcBkiYiIiEgFJktEREREKjBZIiIiIlKByRIRERGRCkyWiIiIiFQw0XUA5YFcLkdsbCysra0hEol0HQ4RERGpQRAEpKWlwcXFBUZGRdcfMVkqBbGxsXB1ddV1GERERFQC0dHRqFGjRpH7mSyVAmtrawB5b7aNjY2OoyEiIiJ1SCQSuLq6Ku7jRWGyVArym95sbGyYLBERERmY4rrQsIM3ERERkQpMloiIiIhUYLJEREREpAL7LJURuVyOrKwsXYdBBsLMzEzlMFYiIio7TJbKQFZWFh4/fgy5XK7rUMhAGBkZoU6dOjAzM9N1KEREFR6TJS0TBAFxcXEwNjaGq6srawuoWPmTnMbFxaFmzZqc6JSISMeYLGlZTk4OMjIy4OLiAktLS12HQwbCwcEBsbGxyMnJgampqa7DISKq0FjNoWW5ubkAwOYU0kj+z0v+zw8REekOk6UywqYU0gR/XoiI9AeTJSIiIiIVmCwRERERqcBkiUrEw8MDEydO1PtzEhERvS0mSwZCEAQkZcgQLZEiKUMGQRC0ej1/f3/06dNHq9cgIiIqzsuXL3Hx4kWdxsCpAwxATJoU9xIlkOb8N6ml2MQIzRxtUN1arMPIiIiItOfWrVsYOHAgkpKScOfOHTRo0EAncbBmSc/FpElxI/alUqIEANIcOW7EvkRMmlTrMbx69Qp+fn6wsrKCs7Mzli9fXqCMTCZDYGAgqlevjkqVKqFdu3b47bffFPufP38Ob29vVK9eHZaWlmjatCn27t2r9diJiMjwCIKA1atXo2PHjnj8+DHs7e2Rnp6us3iYLOkxQRBwL1Gissy9RInWm+SmTp2KCxcu4PDhwzh16hR+++033LlzR6nMuHHjcO3aNYSEhODevXsYMGAAPD098ffffwMAMjMz4ebmhl9++QX379/HyJEj4evri5s3b2o1diIiMiwvXrxA3759MXHiRGRnZ6Nv3764e/cuWrZsqbOY2Aynx5KlWQVqlN4kzZEjWZoFB0tzrcSQnp6Obdu2Yc+ePejSpQsAYOfOnahRo4aiTFRUFIKCghAVFQUXFxcAQGBgIE6cOIGgoCAsXLgQ1atXR2BgoOKY8ePH4+TJkwgNDUXbtm21EjsRERmWmzdvYuDAgXjy5AnMzMywbNkyjBs3TudzzzFZ0mOZxSRKmpYriUePHiErKwvt2rVTbKtSpQoaNmyoeP6///0Pubm5eOedd5SOlclkqFq1KoC8magXLlyI0NBQxMTEICsrCzKZjEvAEBERBEHAqlWrMG3aNOTk5KBu3boIDQ2Fm5ubrkMDwGRJr1mYqNdKqm45bUlPT4exsTHCwsJgbGystM/KygoAsHTpUqxevRqrVq1C06ZNUalSJUycOBFZWVm6CJmIiPRESkoKhg0bhiNHjgAA+vfvj61bt8LW1lbHkf3HYPosLViwAB06dIClpSXs7OzUOkYkEhX6WLp0qaJM7dq1C+z//vvvtfQqNGMvNoO4mERIbGIEe7H21p2rV68eTE1NcePGDcW2Fy9e4K+//lI8b9myJXJzc5GYmIj69esrPZycnAAAV65cQe/eveHj44PmzZujbt26SucgIqKK5/r162jZsiWOHDkCMzMzrF27FqGhoXqVKAEGlCxlZWVhwIABGDNmjNrHxMXFKT22b98OkUiEfv36KZWbN2+eUrnx48eXdvglIhKJ0MzRRmWZZo42Wm3LtbKyQkBAAKZOnYpz587h/v378Pf3h5HRfz8677zzDoYMGQI/Pz8cPHgQjx8/xs2bN7Fo0SL88ssvAIAGDRrg9OnTuHr1Kh48eIBRo0YhISFBa3ETEZH+EgQBK1aswAcffICoqCjUq1cP165dw9ixY3XeP6kwBtMMN3fuXADAjh071D4mv1Yj3+HDh9G5c2fUrVtXabu1tXWBsqrIZDLIZDLFc4lE9Yi1t1HdWox2LtDpPEtLly5Feno6Pv30U1hbW2PKlClITU1VKhMUFITvvvsOU6ZMQUxMDOzt7dG+fXv06tULADBr1iz8888/6N69OywtLTFy5Ej06dOnwHmIiKh8S0lJgb+/P44ePQoA8PLywpYtW2Bjo7pyQJdEgrbHnZeyHTt2YOLEiXj58qVGxyUkJKBGjRrYuXMnBg8erNheu3ZtZGZmIjs7GzVr1sTgwYMxadIkmJgUnUd+++23iuTtdampqQU+7MzMTDx+/Bh16tSBhYWFRjG/ThAEJEuzkJkjh8W/TW/6mH1T6SitnxsiIn1y7do1DBw4ENHR0TA3N8eqVaswatQond3PJBIJbG1tC71/v85gapbe1s6dO2FtbY2+ffsqbZ8wYQJatWqFKlWq4OrVq5g5cybi4uKwYsWKIs81c+ZMTJ48WfFcIpHA1dVVa7EDeU1y2poegIiISJvkcjmWL1+Or7/+Gjk5Oahfvz5CQ0N1OneSJnSaLM2YMQOLFy9WWebBgwdo1KjRW19r+/btGDJkSIG/0l9Pepo1awYzMzOMGjUKixYtgrl54cmJubl5kfuIiIjoP8+fP8fQoUMVfVgHDhyIzZs363Wz25t0mixNmTIF/v7+Ksu82b+oJC5duoSIiAjs27ev2LLt2rVDTk4Onjx5ojSXEBEREWnmypUrGDRoEJ49ewZzc3OsXr0aI0eONLhuJDpNlhwcHODg4KD162zbtg1ubm5o3rx5sWXDw8NhZGQER0dHrcdFRERUHsnlcixduhT/93//p5i0ODQ0VK37sD4ymD5LUVFRSElJQVRUFHJzcxEeHg4AqF+/vmLiw0aNGmHRokX4/PPPFcdJJBLs37+/0MVfr127hhs3bqBz586wtrbGtWvXMGnSJPj4+KBy5cpl8rqIiIjKk+TkZPj5+eH48eMAAG9vb2zatAnW1tY6jqzkDCZZmj17Nnbu3Kl4nt8p7Pz58/Dw8AAAREREFBiKHhISAkEQ4O3tXeCc5ubmCAkJwbfffguZTIY6depg0qRJSv2YiIiISD2XL1/GoEGDEBMTAwsLC/zwww/44osvDK7Z7U0GN3WAPlI19JBDwKkk+HNDRIZELpdjyZIlmDVrFnJzc9GwYUOEhoaiWbNmug5NJU4dQERERFqXlJQEPz8/nDhxAgDg4+ODDRs2KLrIlAcGs9wJGb7atWtj1apVapf/7bffIBKJNJ6AlIiIysbFixfRokULnDhxAhYWFti2bRt27dpVrhIlgMkSFaKoBYjzH99++22Jznvr1i2MHDlS7fIdOnRAXFyc1hdUzE/KRCIRjIyMYGtri5YtW2LatGmIi4vT+HwikQg///xz6QdKRKQn5HI5FixYgM6dOyM2NhaNGjXCzZs3MXz4cIPvn1QYNsMZCnkukHQJkMYBYmfA4QPAyFgrl3o9Qdi3bx9mz56NiIgIxbbX/2IQBAG5ubkql4fJp+k0EWZmZhqt2fe2IiIiYGNjA4lEgjt37mDJkiXYtm0bfvvtNzRt2rTM4iAi0meJiYnw9fXFqVOnAAC+vr5Yv359uatNeh1rlgxB9EHgSG3gbGfg6uC8f4/UztuuBU5OToqHra0tRCKR4vnDhw9hbW2N48ePw83NDebm5rh8+TIePXqE3r17o1q1arCyskKbNm1w5swZpfO+2QwnEomwdetWfP7557C0tESDBg1w5MgRxf43m+F27NgBOzs7nDx5Eo0bN4aVlRU8PT2VkrucnBxMmDABdnZ2qFq1KqZPn46hQ4eiT58+xb5uR0dHODk54Z133sGgQYNw5coVODg4YMyYMYoyt27dwscffwx7e3vY2triww8/xJ07d5ReIwB8/vnnEIlEiufqvD9ERPrut99+Q4sWLXDq1CmIxWJs374dO3fuLNeJEsBkSf9FHwQu9Qcynilvz4jJ266lhKk4M2bMwPfff48HDx6gWbNmSE9PR48ePXD27FncvXsXnp6e+PTTTxEVFaXyPHPnzoWXlxfu3buHHj16YMiQIUhJSSmyfEZGBpYtW4bdu3fj4sWLiIqKQmBgoGL/4sWLERwcjKCgIFy5cgUSiaTETWJisRijR4/GlStXkJiYCABIS0vD0KFDcfnyZVy/fh0NGjRAjx49kJaWBiAvmQKAoKAgxMXFKZ6X9P0hItIHubm5mD9/Prp06YK4uDg0btwYt27dwrBhw8pls1sBAr211NRUAYCQmppaYJ9UKhX+/PNPQSqVan7i3BxBOFRDEIJRxEMkCIdc88ppSVBQkGBra6t4fv78eQGA8PPPPxd77LvvviusWbNG8bxWrVrCypUrFc8BCLNmzVI8T09PFwAIx48fV7rWixcvFLEAECIjIxXHrFu3TqhWrZriebVq1YSlS5cqnufk5Ag1a9YUevfuXWScb17ndcePHxcACDdu3Cj02NzcXMHa2lo4evSo0us6dOhQkdfL9+b787q3+rkhIipF8fHxQteuXQUAAgDB399fSE9P13VYpULV/ft1rFnSZ0mXCtYoKRGAjOi8cmWsdevWSs/T09MRGBiIxo0bw87ODlZWVnjw4EGxNSevz8FRqVIl2NjYKGpxCmNpaYl69eopnjs7OyvKp6amIiEhAW3btlXsNzY2hpubm0av7XXCv9OQ5f/llJCQgBEjRqBBgwawtbWFjY0N0tPTi32dJX1/iIh06fz582jRogXOnDkDS0tL7NixA0FBQahUqZKuQytT7OCtz6RqjsRSt1wpevOLEhgYiNOnT2PZsmWoX78+xGIx+vfvj6ysLJXnMTU1VXouEokgl8s1Ki9ocV7VBw8eAPivL9LQoUPx/PlzrF69GrVq1YK5uTnc3d2LfZ0lfX+IiHQhNzcXCxYswNy5cyGXy/Huu+8iNDQUTZo00XVoOsFkSZ+JnUu3nBZduXIF/v7+inX50tPT8eTJkzKNwdbWFtWqVcOtW7fQqVMnAHlf+Dt37qBFixYan08qlWLz5s3o1KmTYiTflStXsH79evTo0QMAEB0djeTkZKXjTE1NkZubq7RNH94fIiJ1xMfHY8iQITh37hwAYPjw4VizZg0sLS11HJnuMFnSZw4fAJY18jpzo7DaE1HefocPyjqyAho0aICDBw/i008/hUgkwjfffKOyhkhbxo8fj0WLFqF+/fpo1KgR1qxZgxcvXqjVATExMRGZmZlIS0tDWFgYlixZguTkZBw8+F8n+gYNGmD37t1o3bo1JBIJpk6dCrFYrHSe2rVr4+zZs+jYsSPMzc1RuXJlvXl/iIhUOXv2LIYMGYKEhARYWlpi48aN8PX11XVYOsc+S/rMyBhwW/3vkzdv9v8+d1ultfmWNLFixQpUrlwZHTp0wKefforu3bujVatWZR7H9OnT4e3tDT8/P7i7u8PKygrdu3dXa321hg0bwsXFBW5ubvj+++/RtWtX3L9/X6naedu2bXjx4gVatWoFX19fTJgwAY6OjkrnWb58OU6fPg1XV1fFgs/68v4QERUmNzcXc+bMwccff4yEhAS89957uH37NhOlf3Eh3VKg9YV0ow8CYV8pd/a2dM1LlFz7ljzwCkAul6Nx48bw8vLC/PnzdR2O2riQLhGVlbi4OAwZMgTnz58HAHzxxRdYvXp1hWh240K65YlrX6B67zKbwduQPX36FKdOncKHH34ImUyGtWvX4vHjxxg8eLCuQyMi0junT5+Gj48PEhMTUalSJWzatAlDhgzRdVh6h8mSoTAyBqp56DoKvWdkZIQdO3YgMDAQgiDgvffew5kzZ9C4cWNdh0ZEpDdycnIwd+5cLFiwAIIgoGnTpti/fz8aNmyo69D0EpMlKldcXV1x5coVXYdBRKS3YmNjMXjwYFy4cAEAMHLkSKxatarAYBX6D5MlIiKiCuLUqVPw8fFBUlISrKyssHnzZnh7e+s6LL3H0XBERETlXE5ODmbNmgVPT08kJSWhefPmCAsLY6KkJtYsERERlWMxMTHw9vbGpUt5S2ONHj0aK1eu5EhbDTBZIiIiKqdOnDgBX19fJCcnw9raGlu2bMHAgQN1HZbBYTMcERFROZOTk4OZM2fik08+QXJyMlq0aIGwsDAmSiXEmiUiIqJy5NmzZ/D29sbly5cBAF9++SWWL1/OZre3wGSJiIionPj111/h5+eH58+fw9raGlu3boWXl5euwzJ4bIajAkQikcrHt99++1bn/vnnnzWKoVKlSmjQoAH8/f0RFham8TU9PDwwceJEzYMlIjIQ2dnZmD59Onr27Innz5+jVatWuHPnDhOlUsJkiQqIi4tTPFatWgUbGxulbYGBgWUSR1BQEOLi4vDHH39g3bp1SE9PR7t27bBr164yuT4RkSGIjo6Gh4cHlixZAgAYN24crl69ivr16+s4svKDyRIV4OTkpHjY2tpCJBIpbQsJCUHjxo1hYWGBRo0aYf369Ypjs7KyMG7cODg7O8PCwgK1atXCokWLAAC1a9cGAHz++ecQiUSK50Wxs7ODk5MTateujW7duuHAgQMYMmQIxo0bhxcvXgAAnj9/Dm9vb1SvXh2WlpZo2rQp9u7dqziHv78/Lly4gNWrVytqqp48eYLc3FwEBASgTp06EIvFaNiwIVavXl26byQRkZYdO3YMLVq0wNWrV2FjY4P9+/djzZo1MDc313Vo5Qr7LJUxQRCQkZGhk2tbWlpCJBK91TmCg4Mxe/ZsrF27Fi1btsTdu3cxYsQIVKpUCUOHDsUPP/yAI0eOIDQ0FDVr1kR0dDSio6MBALdu3YKjoyOCgoLg6ekJY2PNFwKeNGkSdu3ahdOnT8PLywuZmZlwc3PD9OnTYWNjg19++QW+vr6oV68e2rZti9WrV+Ovv/7Ce++9h3nz5gEAHBwcIJfLUaNGDezfvx9Vq1bF1atXMXLkSDg7O7Pamoj0XnZ2Nv7v//4PS5cuBQC4ublh3759qFevno4jK5+YLJWxjIwMWFlZ6eTa6enpqFSp0ludY86cOVi+fDn69u0LAKhTpw7+/PNPbNq0CUOHDkVUVBQaNGiA999/HyKRCLVq1VIc6+DgAOC/GqOSaNSoEQDgyZMnAIDq1asrNQuOHz8eJ0+eRGhoKNq2bQtbW1uYmZnB0tJS6ZrGxsaYO3eu4nmdOnVw7do1hIaGMlkiIr0WFRWFQYMG4dq1awCACRMmYMmSJaxN0iImS6S2V69e4dGjRwgICMCIESMU23NycmBrawsgr9nr448/RsOGDeHp6YlevXqhW7dupRaDIAgAoKghy83NxcKFCxEaGoqYmBhkZWVBJpPB0tKy2HOtW7cO27dvR1RUFKRSKbKystCiRYtSi5WIqLQdPXoUQ4cOxYsXL2Bra4vt27cr/ngl7WGyVMYsLS2Rnp6us2u/jfy4t2zZgnbt2inty29Sa9WqFR4/fozjx4/jzJkz8PLyQteuXXHgwIG3una+Bw8eAMirCQKApUuXYvXq1Vi1ahWaNm2KSpUqYeLEicjKylJ5npCQEAQGBmL58uVwd3eHtbU1li5dihs3bpRKnESkXYIgIFmahcwcOSxMjGAvNnvrbgb6LCsrCzNnzsSKFSsAAG3atMG+ffsUvwtJuwwiWXry5Anmz5+Pc+fOIT4+Hi4uLvDx8cH//d//wczMrMjjMjMzMWXKFISEhEAmk6F79+5Yv349qlWrpigTFRWFMWPG4Pz587CyssLQoUOxaNEimJho563JHwpviKpVqwYXFxf8888/GDJkSJHlbGxsMHDgQAwcOBD9+/eHp6cnUlJSUKVKFZiamiI3N7fEMeSPzuvatSsA4MqVK+jduzd8fHwAAHK5HH/99ReaNGmiOMbMzKzANa9cuYIOHTrgyy+/VGx79OhRieMiorITkybFvUQJpDlyxTaxiRGaOdqgurVYh5Fpx9OnTzFw4EDFH3MTJ07E4sWLVd7/qHQZRLL08OFDyOVybNq0CfXr18f9+/cxYsQIvHr1CsuWLSvyuEmTJuGXX37B/v37YWtri3HjxqFv3764cuUKgLwmnJ49e8LJyQlXr15FXFwc/Pz8YGpqioULF5bVyzMoc+fOxYQJE2BrawtPT0/IZDLcvn0bL168wOTJk7FixQo4OzujZcuWMDIywv79++Hk5AQ7OzsAeSPizp49i44dO8Lc3ByVK1cu8lovX75EfHw8ZDIZ/vrrL2zatAk///wzdu3apThfgwYNcODAAVy9ehWVK1fGihUrkJCQoJQs1a5dGzdu3MCTJ09gZWWFKlWqoEGDBti1axdOnjyJOnXqYPfu3bh16xb/SiPSczFpUtyIfVlguzRHjhuxL9HOBeUqYTp8+DD8/f3x8uVL2NnZISgoCH369NF1WBWPYKCWLFki1KlTp8j9L1++FExNTYX9+/crtj148EAAIFy7dk0QBEH49ddfBSMjIyE+Pl5RZsOGDYKNjY0gk8mKPHdmZqaQmpqqeERHRwsAhNTU1AJlpVKp8OeffwpSqbQkL1PngoKCBFtbW6VtwcHBQosWLQQzMzOhcuXKQqdOnYSDBw8KgiAImzdvFlq0aCFUqlRJsLGxEbp06SLcuXNHceyRI0eE+vXrCyYmJkKtWrWKvC4AxcPCwkKoV6+eMHToUCEsLEyp3PPnz4XevXsLVlZWgqOjozBr1izBz89P6N27t6JMRESE0L59e0EsFgsAhMePHwuZmZmCv7+/YGtrK9jZ2QljxowRZsyYITRv3vxt37JSYeg/N0TaIJfLhV8j44WfHsYW+fg1Ml6Qy+W6DvWtyWQyYeLEiYrfg23bthUeP36s67DKndTU1CLv368TCcK/PWYNzKxZs3DixAncvn270P3nzp1Dly5d8OLFC0UtBADUqlULEydOxKRJkzB79mwcOXIE4eHhiv2PHz9G3bp1cefOHbRs2bLQc3/77bdKI6nypaamwsbGRmlbZmYmHj9+jDp16nBdHlIbf26ICkrKkOFSdEqx5T5wrQIHS8MdGfb48WMMHDgQt27dAgBMnjwZixYtYrObFkgkEtja2hZ6/36dQU5KGRkZiTVr1mDUqFFFlomPj4eZmZlSogTk9buJj49XlHm9/1L+/vx9RZk5cyZSU1MVj/x5hIiISHsyX+ujVBrl9NGhQ4fQsmVL3Lp1C5UrV8bhw4exfPlyJko6ptNkacaMGcWuQ/bw4UOlY2JiYuDp6YkBAwYoDV8vS+bm5rCxsVF6EBGRdlmYqHfLUrecPsnKysLEiRPRt29fpKamon379rh79y4+++wzXYdG0HEH7ylTpsDf319lmbp16yr+Hxsbi86dO6NDhw7YvHmzyuOcnJyQlZWl6BSXLyEhQTE5oZOTE27evKl0XEJCgmIfERHpD3uxGcQmRkqj4N4k/ncaAUPyzz//YODAgYpuJYGBgVi4cCFMTU11HBnl02my5ODgoJjVuTgxMTHo3Lkz3NzcEBQUBCMj1X85uLm5wdTUFGfPnkW/fv0AABEREYiKioK7uzsAwN3dHQsWLEBiYiIcHR0BAKdPn4aNjY3SaCoiItI9kUiEZo42hY6Gy9fM0cag5lv66aefMHz4cEgkElSpUgU7d+5Er169dB0WvcEg6ipjYmLg4eGBmjVrYtmyZUhKSkJ8fLxSv6KYmBg0atRIUVNka2uLgIAATJ48GefPn0dYWBiGDRsGd3d3tG/fHgDQrVs3NGnSBL6+vvj9999x8uRJzJo1C2PHji31aeMNtB896Qh/XogKV91ajHYudhC/0dQmNjFCOxc7g5k2QCaTYfz48ejfvz8kEgnc3d1x9+5dJkp6yiDmWTp9+jQiIyMRGRmJGjVqKO3Lv6lkZ2cjIiJCaZHalStXwsjICP369VOalDKfsbExjh07hjFjxsDd3V2xGGz+gqulIX9m66ysLIjFhvElJt3Ln4G8JIsNE5V31a3FcLGyMNgZvB89eoSBAwciLCwMADBt2jR89913bHbTYwY7dYA+UTX0UBAEREVFITs7Gy4uLsU2HxLJ5XLExsbC1NQUNWvWNJgbABEVb//+/fjiiy8gkUhQtWpV7Ny5Ez179tR1WBWWulMHGETNkiETiURwdnbG48eP8fTpU12HQwbCyMiIiRJROZK//FZ+60bHjh2xd+9euLq66jgyUgeTpTJgZmaGBg0aFLu4K1E+MzMz1kISlRORkZHw8vLC3bt3AeRNmzNv3jw2uxkQJktlxMjIiDMxExFVMPv27cOIESOQlpaGqlWrYvfu3fjkk090HRZpiMkSERFRKcvMzMTkyZOxYcMGAMD777+PvXv3FhikRKoJgqAXHfmZLBERlSP6cnOpyP7++294eXkp1h39+uuvMXfuXJiY8JariZg0Ke4lSpQmIRWbGKGZo02ZTxHBT46IqJzQp5tLRbV3716MHDkS6enpsLe3x549e9C9e3ddh2VwYtKkhU4+Ks2R40bsS7RzQZn+TLMHKRFROZB/c3lzKZD8m0tMmlRHkVUMUqkUo0aNwuDBg5Geno5OnTohPDyciVIJCIKAe4kSlWXuJUrKdPJeJktERAZOH28uFUlERATat2+PzZs3QyQSYdasWTh79iyqV6+u69AMUrI0S+X6f0DeHwHJ0rIbYc5mOCIiA6fJzcXBsnSXcqrogoODMWrUKLx69QoODg4IDg7Gxx9/rOuwDFpmMT/LmpYrDaxZIiIycPp4cynvpFIpRowYAR8fH7x69QoeHh4IDw9nolQKLEzUS03ULVcamCwRERk4fby5lGcPHz5Eu3btsHXrVohEIsyePRtnzpyBi4uLrkMrF+zFZgUWSn6T+N+RnmWF3xwiIgOnjzeX8mrPnj1o3bo1/ve//8HR0RGnTp3C3Llzueh1KRKJRGjmWPQ6bQDQzNGmTKfEYLJERGTg9PHmUt5kZGTgiy++gK+vL169eoXOnTsjPDwcXbt21XVo5VJ1azHaudgV+CNAbGKEdi52nGeJiIg0l3dzAedZ0oIHDx7Ay8sL9+/fh0gkwpw5czBr1izWJmlZdWsxXKws9GKSVSZLRETlhD7dXMqLXbt2YcyYMcjIyEC1atXw448/4qOPPtJ1WGVDngskXQKkcYDYGXD4ADAq2wRRJBLpxQhOJktEROWIvtxcDN2rV68wbtw47NixAwDQpUsX7NmzB05OTroNrKxEHwTCvgIynv23zbIG4LYacO2ru7h0hH2WiIiIXvPnn3+ibdu22LFjB4yMjDBv3jycPHmyYiVKl/orJ0oAkBGTtz36oG7i0iEmS0RERP/asWMHWrdujT///BNOTk44e/Ysvvnmm4rTP0mem1ejhMJme/93W9jEvHIVCJMlIiKq8F69eoWhQ4di2LBhkEql+PjjjxEeHg4PDw9dh1a2ki4VrFFSIgAZ0XnlKhAmS0REVKHdv38fbdq0wa5du2BkZITvvvsOJ06cQLVq1XQdWtmTxpVuuXKCHbyJiKhCEgQBQUFBGDduHKRSKZydnbF37158+OGHug5Nd8TOpVuunGDNEhER6QVBEJCUIUO0RIqkDBkEobB+M6UjPT0dQ4cORUBAAKRSKbp164bw8PCKnSgBedMDWNYAUNR0EyLA0jWvXAXCmiUiItK5mDRpmU2o+b///Q9eXl54+PChotlt+vTpMDJi/QGMjPOmB7jUH3kJ0+sJ678JlNuqMp9vSdf4k0FERDoVkybFjdiXSokSAEhz5LgR+xIxadJSuY4gCNi6dSvatm2Lhw8fonr16vjtt98wc+ZMJkqvc+0LfHAAsKyuvN2yRt72CjjPEmuWiIhIZwRBwL1Eicoy9xIlcLGyeKuZyNPS0jB69Gj8+OOPAABPT0/s2rULDg4OJT5nuebaF6jeW+czeOsLJktERKQzydKsAjVKb5LmyJEszSrxzOT37t3DgAED8Ndff8HY2BgLFizA1KlTWZtUHCNjoJqHrqPQC0yWiIhIZzKLSZQ0Lfc6QRCwZcsWTJgwATKZDDVq1MDevXvx/vvva3wu0pwgCOVmnUImS0REpDMWJurV7qhbLp9EIsGoUaMQEhICAOjRowd27twJe3t7jWMkzZVlh/2ywDpIIiLSGXuxGcTFJELif2sl1BUeHo7WrVsjJCQExsbGWLJkCY4ePcpEqYyUVYf9ssRkiYiIdEYkEqGZo43KMs0cbdRqvhEEARs3bkT79u3x999/w9XVFRcvXmT/pDKkbod9bc6hpQ0G8dPz5MkTBAQEoE6dOhCLxahXrx7mzJmDrKysIo9JSUnB+PHj0bBhQ4jFYtSsWRMTJkxAamqqUjmRSFTgkV9tS0RE2lfdWox2LnYFapjEJkZo52KnVrONRCKBt7c3xowZA5lMhl69euHu3bvo0KGDtsKmQmjSYd+QGESfpYcPH0Iul2PTpk2oX78+7t+/jxEjRuDVq1dYtmxZocfExsYiNjYWy5YtQ5MmTfD06VOMHj0asbGxOHDggFLZoKAgeHp6Kp7b2dlp8+UQEdEbqluL4WJlUaIOwXfv3oWXlxciIyNhYmKC77//HpMnTzbYzsSGTJsd9nVJJBhaXdi/li5dig0bNuCff/5R+5j9+/fDx8cHr169golJXp4oEolw6NAh9OnTp8SxSCQS2NraIjU1FTY2qquTiYiodAiCgA0bNmDSpEnIyspCzZo1sW/fPrRv317XoVVYSRkyXIpOKbbcB65VSjwVRGlS9/5tEM1whUlNTUWVKlU0PsbGxkaRKOUbO3Ys7O3t0bZtW2zfvr3YtlSZTAaJRKL0ICKispOamgovLy+MHTsWWVlZ+PTTT3H37l0mSjqmjQ77+sAgk6XIyEisWbMGo0aNUvuY5ORkzJ8/HyNHjlTaPm/ePISGhuL06dPo168fvvzyS6xZs0bluRYtWgRbW1vFw9XVtUSvg4iINBcWFoZWrVrhwIEDMDExwYoVK3D48GGN/4Cm0leaHfb1iU6b4WbMmIHFixerLPPgwQM0atRI8TwmJgYffvghPDw8sHXrVrWuI5FI8PHHH6NKlSo4cuQITE1Niyw7e/ZsBAUFITo6usgyMpkMMplM6fyurq5shiMi0iJBELBu3TpMmTIFWVlZqFWrFvbt24d27drpOjR6g6HMs6RuM5xOk6WkpCQ8f/5cZZm6devCzCyvui42NhYeHh5o3749duzYodZQ0LS0NHTv3h2WlpY4duwYLCwsVJb/5Zdf0KtXL2RmZsLcXL32VPZZIiJ9UJ5mTH7Ty5cvERAQgIMHDwIAevfujaCgIFSuXFnHkVFRDOHnUd37t05Hwzk4OKi9iGFMTAw6d+4MNzc3BAUFqZUoSSQSdO/eHebm5jhy5EixiRKQN5lZ5cqV1U6UiIj0gaH8JV8St2/fhpeXFx4/fgxTU1MsXboUEyZM0Lsbrz7SZcIiEon0ohN3aTCIqQNiYmLg4eGBWrVqYdmyZUhKSlLsc3JyUpTp0qULdu3ahbZt20IikaBbt27IyMjAnj17lDpiOzg4wNjYGEePHkVCQgLat28PCwsLnD59GgsXLkRgYKBOXicRUUnkz5j8pvwZk9u5wCATJkEQsGbNGgQGBiI7Oxu1a9dGaGgo2rRpo+vQDEJ5TqDLmkEkS6dPn0ZkZCQiIyNRo0YNpX35rYjZ2dmIiIhARkYGAODOnTu4ceMGAKB+/fpKxzx+/Bi1a9eGqakp1q1bh0mTJkEQBNSvXx8rVqzAiBEjyuBVERG9PXVnTHaxsjCompiXL19i+PDhOHToEADg888/x/bt2zkPnprKawKtKwY7z5I+YZ8lItIVQ5vXRh03b97EwIED8eTJE5iammL58uUYN26cQSV7uiQIAk78k6hyJm2xiRE86zpW+Pe03M+zRERE5WvGZEEQsGrVKrz//vt48uQJ6tSpg6tXr2L8+PEV/qauifK65IguGUQzHBERFc6imAkANS2nKy9evMCwYcNw+PBhAEC/fv2wdetWNruVQHlKoPWFfn97iIhIpfIwY/KNGzfQsmVLHD58GGZmZli7di3279/PRKmEyksCrU/4ThERGTBDnjFZEASsWLEC77//Pp4+fYp69erh6tWrGDt2rF7GayjKQwKtb5gsEREZuOrWYrRzsStwgxSbGKGdi51ejnpKSUlB7969MWXKFOTk5GDAgAEICwuDm5ubrkMzeIacQOsr9lkiIioHqluL4WJlofczJgPAtWvXMGjQIERFRcHMzAyrVq3C6NGj9TJWQ5WXQIPzLJUSJktEROWEvs+YLJfLsWLFCsycORM5OTmoX78+QkND0bJlS12HVi4ZUgKt75gsERGR1j1//hz+/v44duwYAGDgwIHYvHkz56bTMn1PoA0FkyUiItKqq1evYtCgQYiOjoa5uTlWr16NkSNHsoaDDAY7eBMRkVbI5XIsWbIEnTp1QnR0NBo0aIDr169j1KhRTJTIoLBmiYiISl1ycjL8/Pxw/PhxAIC3tzc2bdoEa2trHUdGpDkmS0REVKouX76MQYMGISYmBubm5lizZg2++OIL1iaRwWIzHBERlQq5XI7vv/8eHh4eiImJwTvvvIObN29ixIgRTJTIoLFmiYiI3lpSUhL8/Pxw4sQJAMCQIUOwYcMGNrtRucBkiYiI3sqlS5cwaNAgxMbGwsLCAmvXrsXw4cNZm0TlBpvhiIioRORyORYuXAgPDw/ExsaiUaNGuHnzJgICApgoUbnCmiUiItJYYmIifH19cerUKQCAr68v1q9fDysrKx1HRlT6mCwREZFGLly4AG9vb8TFxUEsFmPdunXw9/dnbRKVW2yGIyIiteTm5uK7777DRx99hLi4ODRu3Bi3bt3CsGHDmChRucaaJSIiKlZCQgJ8fHxw5swZAMDQoUOxbt06VKpUSceREWkfkyUiIlLp/PnzGDx4MOLj4yEWi7F+/Xr4+/vrOiyiMsNmOCIiKlRubi7mzZuHrl27Ij4+Hk2aNMHt27eZKFGFw5olIiIqID4+Hj4+Pjh79iwAYNiwYVizZg2b3ahCYrJERERKzp07h8GDByMhIQGWlpbYsGED/Pz8dB0Wkc6wGY6IiADkNbt9++236Nq1KxISEvDuu+/i9u3bTJSowmPNEhEZLEEQkCzNQmaOHBYmRrAXm3EIewnFx8dj8ODBOH/+PAAgICAAP/zwAywtLXUcGZHuMVkiIoMUkybFvUQJpDlyxTaxiRGaOdqgurVYh5EZnjNnzmDIkCFITExEpUqVsHHjRvj4+Og6LCK9wWY4IjI4MWlS3Ih9qZQoAYA0R44bsS8RkybVUWSGJTc3F7Nnz0a3bt2QmJiIpk2b4vbt20yUiN7AZImIDIogCLiXKFFZ5l6iBIIglFFEhik2NhZdunTB/PnzIQgCRowYgRs3bqBRo0a6Do1I7zBZIiKDkizNKlCj9CZpjhzJ0qwyisjwnDp1Ci1atMCFCxdgZWWF4OBgbN68GWIxmy+JCmMQydKTJ08QEBCAOnXqQCwWo169epgzZw6yslT/MvTw8IBIJFJ6jB49WqlMVFQUevbsCUtLSzg6OmLq1KnIycnR5sshoreQWUyipGm5iiQnJwezZs2Cp6cnkpKS0Lx5c4SFhWHw4MFK5QRBQFKGDNESKZIyZKylowrPIDp4P3z4EHK5HJs2bUL9+vVx//59jBgxAq9evcKyZctUHjtixAjMmzdP8fz1kR25ubno2bMnnJyccPXqVcTFxcHPzw+mpqZYuHCh1l4PEZWchYl6f+OpW66iiImJweDBg3Hx4kUAwKhRo7By5coCtUnsOE9UkEhQ808GQRD0akju0qVLsWHDBvzzzz9FlvHw8ECLFi2watWqQvcfP34cvXr1QmxsLKpVqwYA2LhxI6ZPn46kpCSYmZmpFYtEIoGtrS1SU1NhY2Oj8WshIvUJgoAT/ySqbIoTmxjBs66jXv3O0qWTJ0/Cx8cHycnJsLKywpYtWzBo0KAC5fI7zhelnYsdEyYqV9S9f6v9p1fHjh0RGRlZKsGVhtTUVFSpUqXYcsHBwbC3t8d7772HmTNnIiMjQ7Hv2rVraNq0qSJRAoDu3btDIpHgjz/+KPKcMpkMEolE6UFEZUMkEqGZo+o/Spo52jBRQl6z29dffw1PT08kJyejefPmuHPnTqGJEjvOExVN7WSpRo0aaNGiBdatW6fNeNQSGRmJNWvWYNSoUSrLDR48GHv27MH58+cxc+ZM7N69W2lIbHx8vFKiBEDxPD4+vsjzLlq0CLa2toqHq6vrW7waItJUdWsx2rnYQfxGU5vYxIi1H/969uwZOnfujEWLFgEAxowZg+vXr6NBgwaFlmfHeaKiqd1nKTQ0FPv378e4cePw888/IygoCDVq1Hiri8+YMQOLFy9WWebBgwdKQ1ljYmLg6emJAQMGYMSIESqPHTlypOL/TZs2hbOzM7p06YJHjx6hXr16JY575syZmDx5suK5RCJhwkRUxqpbi+FiZcEZvAtx/Phx+Pr64vnz57C2tsbWrVvh5eWl8hh2nCcqmkYdvAcMGAAPDw+MHTsWTZs2ha+vL0xMlE+xYsUKtc83ZcoU+Pv7qyxTt25dxf9jY2PRuXNndOjQAZs3b9YkdABAu3btAOTVTNWrVw9OTk64efOmUpmEhAQAgJOTU5HnMTc3h7m5ucbXJ6LSJRKJ4GDJ72K+7OxsfPPNN4o/Qlu2bInQ0FDUr1+/2GPZcZ6oaBqPhqtSpQoaN26MQ4cO4e7du0rJkqZ/0Tk4OMDBwUGtsjExMejcuTPc3NwQFBQEIyPNv7Dh4eEAAGdnZwCAu7s7FixYgMTERDg6OgIATp8+DRsbGzRp0kTj8xMR6Up0dDQGDRqEq1evAgDGjh2LZcuWwcLCQq3j7cVmEJsYFdtx3l6s3sAXovJEo2Tpjz/+gJ+fH1JSUnDq1Cl07txZW3EpiYmJgYeHB2rVqoVly5YhKSlJsS+/BigmJgZdunTBrl270LZtWzx69Ag//vgjevTogapVq+LevXuYNGkSOnXqhGbNmgEAunXrhiZNmsDX1xdLlixBfHw8Zs2ahbFjx7LmiIgMxi+//KL43WxjY4Nt27ahf//+Gp0jv+O8qtFw7DhPFZXa1TPff/893Nzc0Lx5c9y7d6/MEiUgr7YnMjISZ8+eRY0aNeDs7Kx45MvOzkZERIRitJuZmRnOnDmDbt26oVGjRpgyZQr69euHo0ePKo4xNjbGsWPHYGxsDHd3d/j4+MDPz09pXiYiIn2VnZ2NadOmoVevXkhJSYGbmxvu3LmjcaKUjx3niQqn9jxLzs7O2Lx5Mz799FNtx2RwOM8SEZW1qKgoDBo0CNeuXQMAjB8/HkuXLi2VWnFBENhxnioEde/fajfD3b9/H1WrVi2V4IiIqOSOHj2KoUOH4sWLF7C1tcX27dvRt2/fUju/Usd5eS6QeAGQxgFiZ8DhA8DIuNSuRWQI1E6WmCgRkaEz9BqT7OxszJw5E8uXLwcAtG7dGvv27VMaNVyqog8CYV8BGc/+22ZZA3BbDbiWXnJGpO8MYm04IqK3Zehrnj19+hSDBg3C9evXAQBfffUVFi9erL3BKNEHgUv9AbzRUyMjJm/7BweYMFGFwQkziKjcy1/z7M1h8dIcOW7EvkRMmlRHkann8OHDaNmyJa5fvw47OzscOnQIq1at0l6iJM/Nq1F6M1EC/tsWNjGvHFEFwGSJiMo1Q17zLCsrC5MnT0afPn3w4sULtG3bFnfv3kWfPn20e+GkS8pNbwUIQEZ0XjmiCkCtZjhNForlaDAi0iearHmmT7OBP3nyBAMHDlSsMjBp0iR8//33MDMrg0khpXGlW47IwKmVLNnZ2andCTI3l9WyRKQ/DHHNs59//hnDhg3Dy5cvYWdnhx07dqB3795lF4DYufgympQjMnBqJUvnz59X/P/JkyeYMWMG/P394e7uDgC4du0adu7cqVjdmohIXxjSmmdZWVmYNm0aVq9eDSBvPct9+/ahVq1aZRuIwwd5o94yYlB4vyVR3n6HD8o2LiIdUXtSynxdunTBF198AW9vb6XtP/74IzZv3ozffvutNOMzCJyUkkh/CYKAE/8kFrvmmWddR51OI/D48WMMHDgQt27dApC30PjChQvLptmtMIrRcIBywvTve8TRcFQOqHv/1vhPqWvXrqF169YFtrdu3VrRtk5EpC/y1zxTRddrnh08eBAtW7bErVu3ULlyZRw5cgTLli3TXaIE5CVCHxwALKsrb7eswUSJKhyNkyVXV1ds2bKlwPatW7fC1dW1VIIiIipN+rrmmUwmw4QJE9CvXz+kpqaiffv2CA8P159lpVz7Ap89AbqcBzr8mPfvZ4+ZKFGFo/GklCtXrkS/fv1w/PhxtGvXDgBw8+ZN/P333/jpp59KPUAiotJQ3VoMFysLvZnB+59//oGXlxfCwsIAAFOnTsWCBQtgamqqk3iKZGQMVPPQdRREOqVxnyUAiI6OxoYNG/Dw4UMAQOPGjTF69OgKW7PEPktEpIkDBw4gICAAEokEVapUwa5du9CzZ09dh0VU4ah7/y5RskTKmCwRkToyMzMRGBiIdevWAQA6dOiAkJCQCvuHJpGuaa2DNwBcunQJPj4+6NChA2JiYgAAu3fvxuXLl0sWLRFRORcZGYkOHTooEqXp06fjt99+Y6JEZAA0TpZ++ukndO/eHWKxGHfu3IFMJgMApKamYuHChaUeIBGRoQsNDUWrVq1w9+5dVK1aFb/88gu+//57/eufRESF0jhZ+u6777Bx40Zs2bJF6YvesWNH3Llzp1SDIyIyZJmZmfjyyy8xcOBApKWl4f3330d4eDh69Oih69CISAMaj4aLiIhAp06dCmy3tbXFy5cvSyMmIv0iz81bMFQal7e8g8MHeSOEqGh8z/D333/Dy8sL4eHhAICZM2di3rx5MDHR+NcuEemYxt9aJycnREZGonbt2krbL1++jLp165ZWXET6IfogEPaV8grsljUAt9Wca6YofM8QEhKCESNGID09Hfb29ti9ezc8PT11HRYRlZDGzXAjRozAV199hRs3bkAkEiE2NhbBwcEIDAzEmDFjtBEjkW7kL/fw+k0fyFsv61L/vP2krIK/Z1KpFKNHj4a3tzfS09PxwQcfIDw8nIkSkYHTuGZpxowZkMvl6NKlCzIyMtCpUyeYm5sjMDAQ48eP10aMRGVPnptXO1LoIqICABEQNhGo3rvCNS8VqYK/Z3/99Re8vLzw+++/QyQS4euvv8a3337LZjeicqDE8yxlZWUhMjIS6enpaNKkCaysrEo7NoPBeZbKoYTfgLOdiy/X5TxnN85Xgd+zH3/8EaNGjUJ6ejocHBywZ88edOvWTddhEVExtDbP0vDhw5GWlgYzMzM0adIEbdu2hZWVFV69eoXhw4e/VdBEekMaV7rlKoIK+J5JpVKMHDkSQ4YMQXp6Oj788EOEh4czUSIqZzROlnbu3AmpVFpgu1Qqxa5du0olKCKdEzuXbrmKoIK9Zw8fPkS7du2wZcsWiEQifPPNNzhz5gxcXFx0HRoRlTK1G9MlEgkEQYAgCEhLS4OFhYViX25uLn799Vc4OjpqJUiiMufwQd4IrowYFN4HR5S33+GDso5Mf1Wg9yw4OBijRo3Cq1ev4OjoiODgYHTt2lXXYRGRlqidLNnZ2UEkEkEkEuGdd94psF8kEmHu3LmlGhyRzhgZ5w11v9QfgAjKN/9/V6l3W1UuOyqXWAV4zzIyMjBhwgRs27YNANC5c2cEBwfD2bl81JYRUeHUTpbOnz8PQRDw0Ucf4aeffkKVKlUU+8zMzFCrVi1WP1P54toX+OBAEXMGraowcwZppBy/Zw8ePICXlxfu378PkUiE2bNn45tvvoGxseEmf0SkHo1Hwz19+hQ1a9aESCTSVkwGh6PhyjnORq25cvae7dq1C2PGjEFGRgaqVauG4OBgdOnSRddhEdFbUvf+rfEEIOfOnYOVlRUGDBigtH3//v3IyMjA0KFDNY+WSJ8ZGZe7oe5aV07es4yMDIwbNw5BQUEAgI8++gjBwcFwcnLScWREVJY0Hg23aNEi2NvbF9ju6OiIhQsXlkpQRES69ueff6Jt27YICgqCkZER5s6di1OnTjFRIqqANE6WoqKiUKdOnQLba9WqhaioqFIJ6k1PnjxBQEAA6tSpA7FYjHr16mHOnDnIyspSeUx+h/Q3H/v371eUK2x/SEiIVl4HERmGHTt2oE2bNvjjjz/g5OSEM2fOYPbs2eyfRFRBadwM5+joiHv37hVYSPf3339H1apVSysuJQ8fPoRcLsemTZtQv3593L9/HyNGjMCrV6+wbNmyQo9xdXVFXJzy5HebN2/G0qVL8cknnyhtDwoKUlq7yc7OrtRfAxHpv1evXmHs2LHYuXMnAKBr167Ys2cPqlWrpuPIiEiXNE6WvL29MWHCBFhbW6NTp04AgAsXLuCrr77CoEGDSj1AAPD09FRKZurWrYuIiAhs2LChyGTJ2Ni4QHX5oUOH4OXlVWBpFjs7O1atE1Vwf/zxBwYMGIAHDx4omt1mzpzJ2iQi0rwZbv78+WjXrh26dOkCsVgMsViMbt264aOPPirTPkupqalK0xcUJywsDOHh4QgICCiwb+zYsbC3t0fbtm2xfft2FDdAUCaTQSKRKD2IyDAJgoCgoCC0adMGDx48gLOzM86dO4dZs2bpJFESBAFJGTJES6RIypAV+/uoosVDpAsa1yyZmZlh3759mD9/Pn7//XeIxWI0bdoUtWrV0kZ8hYqMjMSaNWuKrFUqzLZt29C4cWN06NBBafu8efPw0UcfwdLSEqdOncKXX36J9PR0TJgwochzLVq0iBNwEpUD6enp+PLLL7F7924AQLdu3bB7926drUYQkybFvUQJpDlyxTaxiRGaOdqgurW4wsdDpCsaz7NUmmbMmIHFixerLPPgwQM0atRI8TwmJgYffvghPDw8sHXrVrWuI5VK4ezsjG+++QZTpkxRWXb27NkICgpCdHR0kWVkMhlkMpniuUQigaurK+dZIjIg//vf/+Dl5YWHDx/CyMgI8+fPx4wZM2BkpHGFe6mISZPiRuzLIve3c7Er0wRF3+Ih0oZSnWdp8uTJmD9/PipVqoTJkyerLLtixQq1g5wyZQr8/f1Vlqlbt67i/7GxsejcuTM6dOiAzZs3q32dAwcOICMjA35+fsWWbdeuHebPnw+ZTAZzc/NCy5ibmxe5j4j0myAI2L59O8aNG4fMzEy4uLhg7969ij6YuorpXqLq5vx7iRK4WFmUyYTA+hYPka6plSzdvXsX2dnZiv8XRdMvjYODAxwcHNQqGxMTg86dO8PNzU0x74m6tm3bhs8++0yta4WHh6Ny5cpMhojKofT0dIwePRrBwcEAgO7du2P37t1q/x7SlmRpllJTV2GkOXIkS7PgYKn93036Fg+RrqmVLJ0/f77Q/5eVmJgYeHh4oFatWli2bBmSkpIU+/JHscXExKBLly7YtWsX2rZtq9gfGRmJixcv4tdffy1w3qNHjyIhIQHt27eHhYUFTp8+jYULFyIwMFD7L4qIytS9e/fg5eWFiIgIGBsb47vvvsO0adN01uz2usxiEhNNy70tfYuHSNc07uCtC6dPn0ZkZCQiIyNRo0YNpX35Xa6ys7MRERGBjIwMpf3bt29HjRo10K1btwLnNTU1xbp16zBp0iQIgoD69etjxYoVGDFihPZeDBGVKUEQsGXLFnz11VfIzMxE9erVERISgvfff1/XoSlYmKiXsKlb7m3pWzxEuqZWB+++fdVfKfzgwYNvFZAh4kK6RGVHEAQkS7OQmSOHhYkR7MVmRXYBSEtLw6hRo7B3714AQI8ePbBz585Cl2zSJUEQcOKfRJVNX2ITI3jWdSyzPkv6FA+RtpRqB29bW1vF/wVBwKFDh2Bra4vWrVsDyJvD6OXLlxolVUREmtJkKPvvv/+OAQMG4O+//4axsbGiiV0fmt3eJBKJ0MzRRuXos2aONmWWmOhbPES6pvHUAdOnT0dKSgo2btyomLAtNzcXX375JWxsbLB06VKtBKrPWLNEpH3qDmUXBAGbN2/GV199BZlMhho1aiAkJAQdO3Ysu2BLSN/mNdK3eIhKm7r3b42TJQcHB1y+fBkNGzZU2h4REYEOHTrg+fPnJYvYgDFZItIudZuFOthbYNSoUdi3bx8AoGfPnti5c6fW1q3UBk2aGStiPESlSd37t8b10Tk5OXj48GGB7fmL3RIRlTZ1hrL/ce93tHRzw759+2BiYoKlS5fiyJEjBpUoAXlNYA6W5nC1EcPB0lzniYm+xUOkCxqPhhs2bBgCAgLw6NEjxRD9Gzdu4Pvvv8ewYcNKPUAiIlVD1AVBwMmQXQhaOAc52VlwdXXFvn374O7uXoYRElF5pnGytGzZMjg5OWH58uWIi4sDADg7O2Pq1KnFLiVCRFQSRQ1Rf5UmwYZvpuLaiaMAgO49euLH3bs0WmSbiKg4b7U2nESSNx1+Re+nwz5LRNpVWJ+lf/64h+WTRiM+6gmMTUwwbOosbPruG70c7UZE+klrfZaAvH5LZ86cwd69exXt17GxsUhPTy9ZtEREKuQPZQfyEqdf92zHzEGfIT7qCRxcauC74J/x7Uz9mI2biMofjZvhnj59Ck9PT0RFRUEmk+Hjjz+GtbU1Fi9eDJlMho0bN2ojTiKq4Kpbi9G4UipGfDECV07+AgBo06U7ApesRscGNRVD2Q1i9JY8F0i6BEjjALEz4PABYGSs66iIqAgaJ0tfffUVWrdujd9//11plMnnn3/OZUKISGtu376NgQMH4p9//oGpqSlmzluAsePHK43QMoh5gaIPAmFfARnP/ttmWQNwWw24cmJfIn2kcbJ06dIlXL16FWZmZkrba9eujZiYmFILjIgIyKspWrt2LaZMmYLs7GzUrl0b+/btU1owGyh60kppjhw3Yl+inQt0nzBFHwQu9QfwRlfRjJi87R8cYMJEpIc0buCXy+XIzc0tsP3Zs2ewtrYulaCIiADg5cuX6N+/PyZMmIDs7Gz06dMHd+7cKZAoCYKAe4kSlee6lyjBW4xneXvy3LwapTcTJeC/bWET88oRkV7ROFnq1q0bVq1apXguEomQnp6OOXPmoEePHqUZGxFVYLdu3UKrVq1w8OBBmJqaYvXq1Th48CAqV65coKw6k1ZKc+RIlmZpK9ziJV1SbnorQAAyovPKEZFeKdE8S56enmjSpAkyMzMxePBg/P3337C3t1es7E1EVFKCIOCHH37A1KlTkZ2djTp16mDfvn1o06ZNkceomrSyJOW0QhpXuuWIqMxonCy5urri999/x759+/D7778jPT0dAQEBGDJkCMRiPelASUQG6cWLFxg+fDh+/vlnAEDfvn2xbds22NnZqTyuqEkrS1pOK8TOpVuOiMqMRslSdnY2GjVqhGPHjmHIkCEYMmSItuIi0jsGMSTdgN28eRNeXl54+vQpzMzMsHz5cowdO1at99hebAaxiVGxC+3ai82K3K91Dh/kjXrLiEHh/ZZEefsdPijryIioGBolS6ampsjMzNRWLER6yyCGpBsoQRCwcuVKTJ8+HTk5Oahbty5CQ0Ph5uam9jnyJ60sbDRcvmaONrpNbo2M86YHuNQfgAjKCdO/cbmt4nxLRHpI4zrpsWPHYvHixcjJydFGPER6J39I+pu1FvlD0mPSpDqKzPClpKSgT58+mDJlCnJycjBgwADcuXNHo0QpX3VrMdq52EH8RlOb2MQI7Vzs9COpde2bNz2AZXXl7ZY1OG0AkR7TuM/SrVu3cPbsWZw6dQpNmzZFpUqVlPYfPHiw1IIj0jV1h6S7WFmwSU5D169fx8CBAxEVFQUzMzOsXLkSY8aMeav3sbq1GC5WFvrdXOraF6jemzN4ExkQjZMlOzs79OvXTxuxEOkdTYakO1ial1FUhk0QBKxYsQIzZsxATk4O6tWrh9DQULRq1apUzi8SifT/szAyBqp56DoKIlKTxslSUFCQNuIg0ksGMSTdgDx//hz+/v44duwYAMDLywtbtmxRudo3EZGuqd1nSS6XY/HixejYsSPatGmDGTNmQCplXw0q3wxiSLqBuHr1Klq2bIljx47B3NwcGzZsQEhICBMlItJ7av+GX7BgAb7++mtYWVmhevXqWL16NcaOHavN2Ih0Ln9Iuio6H5Ku5+RyOZYuXYpOnTohOjoaDRo0wPXr1zF69Gj96ktERFQEtZOlXbt2Yf369Th58iR+/vlnHD16FMHBwZDL2fxA5Vf+kHRVdD4kXY8lJyfj008/xbRp05Cbm4tBgwbh9u3baNGiha5DIyJSm9rJUlRUlNLab127doVIJEJsbKxWAiPSFwYxJF0PXblyBS1btsSvv/4Kc3NzbNq0CT/++COb3YjI4KjdwTsnJwcWFhZK20xNTZGdnV3qQRHpG4MYkq4n5HI5lixZglmzZiE3NxfvvPMOQkND0bx5c12HRkRUImonS4IgwN/fH+bm/w3JzczMxOjRo5XmWuI8S1ReGcSQdB1LSkqCn58fTpw4AQAYPHgwNm7cCGtrax1HRkRUcmonS0OHDi2wzcfHp1SDISLDdenSJXh7eyMmJgYWFhZYs2YNAgICWPtGRAZP7WSJ8ysRUWHypxX55ptvkJubi4YNGyI0NBTNmjXTdWhERKVC40kpiYjyJSUlwdfXFydPngSQV9u8YcMGWFlZ6TgyIqLSYzAz6X322WeoWbMmLCws4OzsDF9f32JH4mVmZmLs2LGoWrUqrKys0K9fPyQkJCiViYqKQs+ePWFpaQlHR0dMnTqViwQTqeHixYto0aIFTp48CbFYjG3btmHXrl1MlIio3DGYZKlz584IDQ1FREQEfvrpJzx69Aj9+/dXecykSZNw9OhR7N+/HxcuXEBsbCz69v1vVe/c3Fz07NkTWVlZuHr1Knbu3IkdO3Zg9uzZ2n45RAZLLpdjwYIF6Ny5M2JjY9GoUSPcvHkTw4cPZ/8kIiqfBAN1+PBhQSQSCVlZWYXuf/nypWBqairs379fse3BgwcCAOHatWuCIAjCr7/+KhgZGQnx8fGKMhs2bBBsbGwEmUymdiypqakCACE1NbWEr4bIMCQkJAgff/yxAEAAIPj5+QlpaWm6DouIqETUvX8bTM3S61JSUhAcHIwOHTrA1NS00DJhYWHIzs5G165dFdsaNWqEmjVr4tq1awCAa9euoWnTpqhWrZqiTPfu3SGRSPDHH38UeX2ZTAaJRKL0ICrvfvvtN7Ro0QKnT5+GWCxGUFAQdu7cyWY3Iir3DCpZmj59OipVqoSqVasiKioKhw8fLrJsfHw8zMzMYGdnp7S9WrVqiI+PV5R5PVHK35+/ryiLFi2Cra2t4uHq6lrCV0Sk/3JzczFv3jx06dIFcXFxaNKkCW7dugV/f39dh0ZEVCZ0mizNmDEDIpFI5ePhw4eK8lOnTsXdu3dx6tQpGBsbw8/PD4IglHncM2fORGpqquIRHR1d5jEQlYWEhAR0794dc+bMgVwux7Bhw3Dz5k28++67ug6NiKjM6HTqgClTphT712ndunUV/7e3t4e9vT3eeecdNG7cGK6urrh+/Trc3d0LHOfk5ISsrCy8fPlSqXYpISEBTk5OijI3b95UOi5/tFx+mcKYm5srzWROVB6dO3cOQ4YMQXx8PCwtLbF+/fpCJ6clIirvdJosOTg4wMHBoUTHyuVyAHn9hwrj5uYGU1NTnD17Fv369QMAREREICoqSpFcubu7Y8GCBUhMTISjoyMA4PTp07CxsUGTJk1KFBeRocvNzcV3332HuXPnQhAEvPvuuwgNDeV3gogqLIPos3Tjxg2sXbsW4eHhePr0Kc6dOwdvb2/Uq1dPkfjExMQohjADgK2tLQICAjB58mScP38eYWFhGDZsGNzd3dG+fXsAQLdu3dCkSRP4+vri999/x8mTJzFr1iyMHTuWNUdUIcXHx6Nbt2749ttvIQgChg8fjps3bzJRIqIKzSCSJUtLSxw8eBBdunRBw4YNERAQgGbNmuHChQuKpCY7OxsRERHIyMhQHLdy5Ur06tUL/fr1Q6dOneDk5KS00K+xsTGOHTsGY2NjuLu7w8fHB35+fpg3b16Zv0YiXTt79ixatGiBc+fOoVKlSti9eze2bdsGS0tLXYdGRKRTIkEXPaTLGYlEAltbW6SmpsLGxkbX4RBpJH+02/z58yEIAt577z3s378fjRo10nVoRERape79m2vDEVVgcXFxGDx4MH777TcAwBdffIHVq1ezNomI6DVMlogqqNOnT8PHxweJiYmwsrLCpk2bMHjwYF2HRUSkdwyizxIRlZ6cnBzMmjUL3bt3R2JiIpo1a4bbt28zUSIiKgJrlogqkNjYWHh7e+PixYsAgFGjRmHlypUQi8U6joyISH8xWSKqIE6ePAlfX18kJSXBysoKmzdvhre3t67DIiLSe2yGIyrncnJy8H//93/w9PREUlISmjdvjrCwMCZKRERqYs0SUTkWExMDb29vXLp0CQAwevRorFy5EhYWFjqOjIjIcDBZIiqnTpw4AV9fXyQnJ8Pa2hpbt26Fl5eXrsMiIjI4bIYjKmdycnIwc+ZMfPLJJ0hOTkbLli1x584dJkpERCXEmiWiciQ6Ohre3t64cuUKAODLL7/E8uXL2exGRPQWmCwRlRO//vor/Pz88Pz5c9jY2GDr1q0YMGCArsMiIjJ4bIYjMnDZ2dmYNm0aevbsiefPn6NVq1a4c+cOEyUiolLCmiUiAxYVFYVBgwbh2rVrAIDx48dj6dKlMDc313FkRETlB5MlIgN17NgxDB06FCkpKbCxscH27dvRr18/XYdFRFTusBmOyMBkZ2dj6tSp+PTTT5GSkoLWrVvj7t27TJSIiLSENUtEBuTp06cYNGgQrl+/DgCYMGEClixZ8tbNboIgIFmahcwcOSxMjGAvNoNIJCqNkImIDB6TJSIDceTIEfj7++PFixewtbVFUFAQPv/887c+b0yaFPcSJZDmyBXbxCZGaOZog+rWXGCXiIjNcER6LisrC1OmTEHv3r3x4sULtGnTBnfv3i21ROlG7EulRAkApDly3Ih9iZg06Vtfg4jI0DFZItJjT548wQcffIAVK1YAACZOnIjLly+jTp06b31uQRBwL1Gissy9RAkEQXjraxERGTI2wxHpqcOHD8Pf3x8vX76EnZ0dduzYgd69e5fa+ZOlWQVqlN4kzZEjWZoFB0tORUBEFRdrloj0TFZWFiZOnIg+ffrg5cuXaNeuHe7evVuqiRIAZBaTKGlajoiovGKyRKRHHj9+jPfffx+rV68GAEyZMgUXL15E7dq1S/1aFibqff3VLUdEVF6xGY5ITxw6dAjDhg1DamoqKleujB07duCzzz7T2vXsxWYQmxipbIoT/zuNABFRRcY/GYl0TCaT4auvvkLfvn2RmpqK9u3b4+7du1pNlABAJBKhmaONyjLNHG043xIRVXhMloh06J9//kHHjh3xww8/AAACAwNx8eJF1KpVq0yuX91ajHYudhC/0dQmNjFCOxc7zrNERAQ2wxHpzE8//YThw4dDIpGgSpUq2LVrF3r27FnmcVS3FsPFyoIzeBMRFYHJElEZk8lkCAwMxNq1awEAHTp0QEhICFxdXXUWk0gk4vQARERFYLJEVArUXVvt0aNH8PLywp07dwAA06ZNw3fffQdTU9OyDpmIiNTEZInoLam7ttr+/fvxxRdfQCKRoGrVqti1axd69Oihi5CJiEgD7OBN9BbUWVstMzMTY8eOhZeXFyQSCTp27Ijw8HAmSkREBoLJElEJqbO22vGb4XB3d8f69esBADNnzsRvv/2GGjVqlEWIRERUCgwmWfrss89Qs2ZNWFhYwNnZGb6+voiNjS2yfEpKCsaPH4+GDRtCLBajZs2amDBhAlJTU5XKiUSiAo+QkBBtvxwqB4pbW+3Kr4cxoXc3hIeHw97eHsePH8fChQthYqK/rd+CICApQ4ZoiRRJGTIuoktEBAPqs9S5c2d8/fXXcHZ2RkxMDAIDA9G/f39cvXq10PKxsbGIjY3FsmXL0KRJEzx9+hSjR49GbGwsDhw4oFQ2KCgInp6eiud2dnbafClUThS1ZlqWLBNBi77FqZBdAIC2HTriYOg+VK9evSzD05i6fa+IiCoakWCgfzoeOXIEffr0gUwmU3sk0f79++Hj44NXr14p/roXiUQ4dOgQ+vTpo/a1ZTIZZDKZ4rlEIoGrqytSU1NhY6N6RmQqP5IyZLgUnaK0LfbxIyyfNApPHv4JkUiEz0eOx9olC+FsU0lHUaonv+9VUThBJRGVRxKJBLa2tsXevw2mGe51KSkpCA4ORocOHTQacp3/ZrzZDDJ27FjY29ujbdu22L59e7FND4sWLYKtra3iocv5cUh38tdWy3fp2CFM7eeJJw//hE2Vqpi1JRhfTP0aTtaWOoyyeOr0vbqXKGGTHBFVWAaVLE2fPh2VKlVC1apVERUVhcOHD6t9bHJyMubPn4+RI0cqbZ83bx5CQ0Nx+vRp9OvXD19++SXWrFmj8lwzZ85Eamqq4hEdHV2i10OGLX9tNVmmFBtnT8OqwLHIzHiFd9u4Y/mh02jxvodBrK1WXN8rIG90X7I0q4wiIiLSLzpthpsxYwYWL16sssyDBw/QqFEjAHkJT0pKCp4+fYq5c+fC1tYWx44dK/ZmJJFI8PHHH6NKlSo4cuSIytqo2bNnIygoSKMESN1qPCp/IiIi8Hn/AXhw/38QiUToN/oreI2dDCsLM4Pp6xMtkeJW3Mtiy7VxtoOrjf6/HiIidal7/9ZpspSUlITnz5+rLFO3bl2YmZkV2P7s2TO4urri6tWrcHd3L/L4tLQ0dO/eHZaWljh27BgsLCxUXu+XX35Br169kJmZCXNz9ZZ/YLKkf9SdUbuk5QEgODgYo0aNwqtXr+Do6Ii1W7ej/YcfGdzaaoX1vSrMB65VuCQKEZUr6t6/dToazsHBAQ4ODiU6Vi7PazZ4vaP1myQSCbp37w5zc3McOXKk2EQJAMLDw1G5cmW1EyXSP5qO6tK0fEZGBr766its3boVAODh4YEff/wRzs7OWng12pff90pVU5z43wSQiKgiMog+Szdu3MDatWsRHh6Op0+f4ty5c/D29ka9evUUtUoxMTFo1KgRbt68CSAvUerWrRtevXqFbdu2QSKRID4+HvHx8cjNzQUAHD16FFu3bsX9+/cRGRmJDRs2YOHChRg/frzOXiu9HXVm1H6b8g8fPkS7du2wdetWiEQizJkzB2fOnDHYRAn4r++VKobQ94qISFsMYp4lS0tLHDx4EHPmzMGrV6/g7OwMT09PzJo1S1EDlJ2djYiICGRkZAAA7ty5gxs3bgAA6tevr3S+x48fo3bt2jA1NcW6deswadIkCIKA+vXrY8WKFRgxYkTZvkAqFeqO6nKxsoBIJNK4/O7duzFmzBi8evUK1apVQ3BwMLp06VKaL0FnqluL0c4FnGeJiKgQBjvPkj5hnyX9oGnfG3XLu1W1wLzpgdi+fTsA4KOPPkJwcDCcnJzeOmZ9U5K+W0REhsog+iwRlaaiZtQuqpw65aMj/8LMz7/EXw/+VDS7zZo1C8bGxm8Vq74SiUTsxE1E9AYmS1RuWJio1wUvv1xx5c8fCsWWeTMhk0rh5OSEH3/8EZ07d37rOImIyLAwWaJyQ9NRXUWVz8zIwNb5X+P8oVAAQNeuXbFnzx5Uq1ZNe8ETEZHeMojRcETq0HRUV2Hlo/6OwHSvHjh/KBRGRkYI/L9vcOLECSZKREQVGJMlKlfyRnXZKa3ZBuTVKBW2GOzr5c8d3IfpAz7Bs8i/UMWxGkKO/oql380rt/2TiIhIPWyGo3KnurUYLlYWao/qshXlImTeNOzatQsA8OFHXbDvx2DWJhEREQAmS1ROqTuq6/79+xgwYAAePnwIIyMjzJ8/HzNmzICREStdiYgoD5MlqpAEQcD27dsxfvx4SKVSuLi4YO/evejUqZOuQyMiIj3DZIkqnPT0dIwZMwZ79uwBAHTv3h27d+8u8TqFRERUvrGtgSqU//3vf2jdujX27NkDY2NjLFy4EL/++isTJSIiKhJrlqhCEAQBW7duxYQJE5CZmYnq1asjJCQE77//vq5DIyIiPcdkicq9tLQ0jB49Gj/++CMA4JNPPsGuXbtgb2+v48iIiMgQsBmOyrXff/8drVu3xo8//ghjY2N8//33OHbsGBMlIiJSG2uWqFwSBAFbtmzBhAkTIJPJUKNGDYSEhKBjx466Do2IiAwMkyUqdyQSCUaNGoWQkBAAQM+ePbFz505UrVpVx5EREZEhYjMclSt3796Fm5sbQkJCYGxsjKVLl+LIkSNMlIiIqMRYs0TlgiAI2LhxIyZNmgSZTAZXV1eEhISgQ4cOug6NiIgMHJMlMngSiQQjRoxAaGgoAKBXr17YsWMHa5OIiKhUsBmODNrdu3fRqlUrhIaGwsTEBMuWLWOzGxERlSrWLJFBEgQB69evx+TJk5GVlYWaNWti3759aN++va5DIyKicobJEhVKEAQkS7OQmSOHhYkR7MVmEIlEug4LAJCamoovvvgCBw4cAAB89tlnCAoKQpUqVXQcGRERlUdMlqiAmDQp7iVKIM2RK7aJTYzQzNEG1a3FOowMCAsLg5eXF/755x+YmJhgyZIlmDhxot4kckREVP6wzxIpiUmT4kbsS6VECQCkOXLciH2JmDSpTuISBAFr165Fhw4d8M8//6BWrVq4fPkyJk2axESJiIi0iskSKQiCgHuJEpVl7iVKIAhCGUWU5+XLl+jfvz/Gjx+PrKws9OnTB3fv3kW7du3KNA4iIqqYmCyRQrI0q0CN0pukOXIkS7PKKCLg1q1baNWqFQ4ePAhTU1OsXr0aBw8eROXKlcssBiIiqtjYZ4kUMotJlDQt9zYEQcAPP/yAqVOnIjs7G7Vr10ZoaCjatGmj9WsTERG9jskSKViYqFfRqG65knrx4gWGDx+On3/+GQDQt29fbNu2DXZ2dlq9LhERUWHYDEcK9mIziItJhMT/TiOgLTdv3kSrVq3w888/w8zMDD/88AMOHDjARImIiHSGyRIpiEQiNHO0UVmmmaONVkafCYKAlStX4v3338eTJ09Qt25dXL16FePHj+doNyIi0ikmS6SkurUY7VzsCtQwiU2M0M7FTivzLKWkpKBPnz6YPHkysrOz0b9/f9y5cwdubm6lfi0iIiJNGUyy9Nlnn6FmzZqwsLCAs7MzfH19ERsbq/IYDw8PiEQipcfo0aOVykRFRaFnz56wtLSEo6Mjpk6dipycHG2+FL1X3VoMz7qO+MC1Cto42+ED1yrwrOuolUTp+vXraNmyJY4cOQIzMzOsXbsWoaGhsLW1LfVrERERlYTBdPDu3Lkzvv76azg7OyMmJgaBgYHo378/rl69qvK4ESNGYN68eYrnlpaWiv/n5uaiZ8+ecHJywtWrVxEXFwc/Pz+Ymppi4cKFWnsthkAkEsHB0lxr589vdps+fTpycnJQr149hIaGolWrVlq7JhERUUmIhLKeYbCUHDlyBH369IFMJoOpqWmhZTw8PNCiRQusWrWq0P3Hjx9Hr169EBsbi2rVqgEANm7ciOnTpyMpKQlmZoV3ZJbJZJDJZIrnEokErq6uSE1NhY2N6j4/lNfs5u/vj6NHjwIAvLy8sGXLFr53RERUpiQSCWxtbYu9fxtMM9zrUlJSEBwcjA4dOhSZKOULDg6Gvb093nvvPcycORMZGRmKfdeuXUPTpk0ViRIAdO/eHRKJBH/88UeR51y0aBFsbW0VD1dX17d/URXEtWvX0KJFCxw9ehTm5ubYsGEDQkJCmCgREZHeMqhkafr06ahUqRKqVq2KqKgoHD58WGX5wYMHY8+ePTh//jxmzpyJ3bt3w8fHR7E/Pj5eKVECoHgeHx9f5HlnzpyJ1NRUxSM6OvotXlXFIJfLsXTpUnTq1AnR0dGoX78+rl27htGjR3O0GxER6TWdJkszZswo0AH7zcfDhw8V5adOnYq7d+/i1KlTMDY2hp+fn8p1ykaOHInu3bujadOmGDJkCHbt2oVDhw7h0aNHbxW3ubk5bGxslB5UtOfPn+Ozzz7DtGnTkJOTg4EDByIsLAwtW7bUdWhERETF0mkH7ylTpsDf319lmbp16yr+b29vD3t7e7zzzjto3LgxXF1dcf36dbi7u6t1vfyFVyMjI1GvXj04OTnh5s2bSmUSEhIAAE5OThq8EirK1atXMXDgQDx79gzm5uZYvXo1Ro4cydokIiIyGDpNlhwcHODg4FCiY+XyvPXJXu9oXZzw8HAAgLOzMwDA3d0dCxYsQGJiIhwdHQEAp0+fho2NDZo0aVKiuChPfrPb//3f/yE3NxfvvPMOQkND0bx5c12HRkREpBGD6LN048YNrF27FuHh4Xj69CnOnTsHb29v1KtXT1GrFBMTg0aNGilqih49eoT58+cjLCwMT548wZEjR+Dn54dOnTqhWbNmAIBu3bqhSZMm8PX1xe+//46TJ09i1qxZGDt2LMzNtTdsvrxLTk5Gr169MGPGDOTm5sLb2xu3b99mokRERAbJIJIlS0tLHDx4EF26dEHDhg0REBCAZs2a4cKFC4qkJjs7GxEREYrRbmZmZjhz5gy6deuGRo0aYcqUKejXr59iuDoAGBsb49ixYzA2Noa7uzt8fHzg5+enNC8Taeby5cto0aIFjh8/DgsLC2zevBnBwcGwtrbWdWhEREQlYrDzLOkTdedpKM/kcjmWLFmCWbNmITc3Fw0bNkRoaKiiFo+IiEjfqHv/NpgZvEl/JSUlwc/PDydOnAAA+Pj4YMOGDbCystJxZERERG+PyRK9lYsXL8Lb2xuxsbGwsLDAunXrMGzYMI52IyKicsMg+iyR/pHL5ViwYAE6d+6M2NhYRef64cOHM1EiIqJyhTVLpLHExET4+vri1KlTAABfX1+sX7+ezW5ERFQuMVkijVy4cAHe3t6Ii4uDWCzGunXr4O/vz9okIiIqt9gMR2rJzc3F/Pnz8dFHHyEuLg6NGzfGrVu32D+JiIjKPdYsUbESEhLg4+ODM2fOAAD8/f2xdu1aVKpUSceRERERaR+TJVLp/PnzGDx4MOLj42FpaYn169dj6NChug6LiIiozLAZjgqVm5uLefPmoWvXroiPj8e7776LW7duMVEiIqIKhzVLVEB8fDyGDBmCc+fOAQCGDx+ONWvWwNLSUseRERERlT0mS6Tk7NmzGDJkCBISEmBpaYmNGzfC19dX12ERERHpDJMlfSXPBZIuAdI4QOwMOHwAGBlr7XL5zW7z58+HIAh47733EBoaisaNG2vtmkRERIaAyZI+ij4IhH0FZDz7b5tlDcBtNeDat9QvFxcXhyFDhuD8+fMAgC+++AKrV69msxsRERHYwVv/RB8ELvVXTpQAICMmb3v0wVK93JkzZ9CiRQucP38elSpVwp49e7BlyxYmSkRERP9isqRP5Ll5NUoQCtn577awiXnl3lJOTg6++eYbdOvWDYmJiWjatCnCwsIwZMiQtz43ERFRecJkSZ8kXSpYo6READKi88q9hdjYWHTt2hXfffcdBEHAyJEjcePGDTRs2PCtzktERFQesc+SPpHGlW65Qpw6dQo+Pj5ISkqClZUVNm/eDG9v7xKfj4iIqLxjzZI+ETuXbrnX5OTkYNasWfD09ERSUhKaN2+OsLAwJkpERETFYM2SPnH4IG/UW0YMCu+3JMrb7/CBRqeNiYmBt7c3Ll3Ka74bPXo0Vq5cCQsLi7ePmYiIqJxjzZI+MTLOmx4AACB6Y+e/z91WaTTf0okTJ9CiRQtcunQJ1tbWCAkJwYYNG5goERERqYnJkr5x7Qt8cACwrK683bJG3nY151nKycnBzJkz8cknnyA5ORktWrRAWFgYBg4cqIWgiYiIyi82w+kj175A9d4lnsH72bNn8Pb2xuXLlwEAX375JZYvX87aJCIiohJgsqSvjIyBah4aH3b8+HH4+vri+fPnsLa2xtatW+Hl5VX68REREVUQbIYrJ7KzszF9+nT06NEDz58/R6tWrXDnzh0mSkRERG+JNUvlQHR0NAYNGoSrV68CAMaNG4dly5bB3Nxcx5EREREZPiZLBu7YsWMYOnQoUlJSYGNjg23btqF///66DouIiKjcYDOcgcrOzsa0adPw6aefIiUlBW5ubrhz5w4TJSIiolLGmiU9JwgCkqVZyMyRw8LECPZiM0Wz27Vr1wAAEyZMwJIlS9jsRkREpAVMlvRYTJoU9xIlkObIFdvuXTiDVdO/QurLF7C1tcX27dvRt696cy8RERGR5pgs6amYNCluxL5UPM/OykLwikU4umMTAKB5KzccOrAfderU0VGEREREFYPB9Fn67LPPULNmTVhYWMDZ2Rm+vr6IjY0tsvyTJ08gEokKfezfv19RrrD9ISEhZfGSiiQIAu4lShTPE2Oe4RvfvopEqdfQEZi35xBq166towiJiIgqDoOpWercuTO+/vprODs7IyYmBoGBgejfv79iuPybXF1dERcXp7Rt8+bNWLp0KT755BOl7UFBQfD09FQ8t7OzK/X4NZEszVI0vf197y7mfzEYrySpqGRji7ELV6Bd10+Q8285B0v2UyIiItImg0mWJk2apPh/rVq1MGPGDPTp0wfZ2dkwNTUtUN7Y2BhOTk5K2w4dOgQvLy9YWVkpbbezsytQVpcyX+ujVL1ufdhUrgqX2nUxecVGONZwLbQcERERaYfBNMO9LiUlBcHBwejQoUOhiVJhwsLCEB4ejoCAgAL7xo4dC3t7e7Rt2xbbt2+HIAgqzyWTySCRSJQepcnC5L+PxdLKGrO3h2D+nkNKidKb5YiIiEg7DOpuO336dFSqVAlVq1ZFVFQUDh8+rPax27ZtQ+PGjdGhQwel7fPmzUNoaChOnz6Nfv364csvv8SaNWtUnmvRokWwtbVVPFxdXVWW15S92Azi1xIhx+o1YGpmplRG/O80AkRERKRdIqG4ahQtmjFjBhYvXqyyzIMHD9CoUSMAQHJyMlJSUvD06VPMnTsXtra2OHbsGEQikcpzSKVSODs745tvvsGUKVNUlp09ezaCgoIQHR1dZBmZTAaZTKZ4LpFI4OrqitTUVNjY2Kg8v7reHA33pnYudqhuLS6VaxEREVVEEokEtra2xd6/dZosJSUl4fnz5yrL1K1bF2ZmBWtQnj17BldXV1y9ehXu7u4qz7F7924EBAQgJiYGDg4OKsv+8ssv6NWrFzIzM9We5FHdN1tThc2zJDYxQjNHGyZKREREb0nd+7dOO3g7ODgUm7wURS7PSyBer+EpyrZt2/DZZ5+pda3w8HBUrlxZL2bDrm4thouVRYEZvIurSSMiIqLSYxCj4W7cuIFbt27h/fffR+XKlfHo0SN88803qFevnqJWKSYmBl26dMGuXbvQtm1bxbGRkZG4ePEifv311wLnPXr0KBISEtC+fXtYWFjg9OnTWLhwIQIDA8vstRVHJBJxegAiIiIdMohkydLSEgcPHsScOXPw6tUrODs7w9PTE7NmzVLUAGVnZyMiIgIZGRlKx27fvh01atRAt27dCpzX1NQU69atw6RJkyAIAurXr48VK1ZgxIgRZfK6iIiISP/ptM9SeaGtPktERESkPerevw1q6gAiIiKissZkiYiIiEgFJktEREREKjBZIiIiIlKByRIRERGRCkyWiIiIiFRgskRERESkgkFMSqnv8qeqkkgkOo6EiIiI1JV/3y5uykkmS6UgLS0NAODq6qrjSIiIiEhTaWlpsLW1LXI/Z/AuBXK5HLGxsbC2tuYit2qSSCRwdXVFdHQ0Zz03IPzcDBM/N8PEz037BEFAWloaXFxcYGRUdM8k1iyVAiMjI9SoUUPXYRgkGxsb/hIwQPzcDBM/N8PEz027VNUo5WMHbyIiIiIVmCwRERERqcBkiXTC3Nwcc+bMgbm5ua5DIQ3wczNM/NwMEz83/cEO3kREREQqsGaJiIiISAUmS0REREQqMFkiIiIiUoHJEhEREZEKTJaoTHz22WeoWbMmLCws4OzsDF9fX8TGxqo8xsPDAyKRSOkxevToMoqY8pXks8vMzMTYsWNRtWpVWFlZoV+/fkhISCijiOnJkycICAhAnTp1IBaLUa9ePcyZMwdZWVkqj+N3TrdK+rnx+6Z9TJaoTHTu3BmhoaGIiIjATz/9hEePHqF///7FHjdixAjExcUpHkuWLCmDaOl1JfnsJk2ahKNHj2L//v24cOECYmNj0bdv3zKKmB4+fAi5XI5Nmzbhjz/+wMqVK7Fx40Z8/fXXxR7L75zulPRz4/etDAhEOnD48GFBJBIJWVlZRZb58MMPha+++qrsgiK1FPfZvXz5UjA1NRX279+v2PbgwQMBgHDt2rWyCpPesGTJEqFOnToqy/A7p3+K+9z4fSsbrFmiMpeSkoLg4GB06NABpqamKssGBwfD3t4e7733HmbOnImMjIwyipIKo85nFxYWhuzsbHTt2lWxrVGjRqhZsyauXbtWVqHSG1JTU1GlSpViy/E7p1+K+9z4fSsbTJaozEyfPh2VKlVC1apVERUVhcOHD6ssP3jwYOzZswfnz5/HzJkzsXv3bvj4+JRRtPQ6TT67+Ph4mJmZwc7OTml7tWrVEB8fr+VIqTCRkZFYs2YNRo0apbIcv3P6RZ3Pjd+3MqLrqi0yXNOnTxcAqHw8ePBAUT4pKUmIiIgQTp06JXTs2FHo0aOHIJfL1b7e2bNnBQBCZGSkNl5OhaLNzy44OFgwMzMrsL1NmzbCtGnTtPaaKgJNPzdBEIRnz54J9erVEwICAjS+Hr9zpUObnxu/b2WDy51QiSUlJeH58+cqy9StWxdmZmYFtj979gyurq64evUq3N3d1breq1evYGVlhRMnTqB79+4lipnyaPOzO3fuHLp06YIXL14o/bVbq1YtTJw4EZMmTXrr+CsqTT+32NhYeHh4oH379tixYweMjDRrTOB3rnRo83Pj961smOg6ADJcDg4OcHBwKNGxcrkcACCTydQ+Jjw8HADg7OxcomvSf7T52bm5ucHU1BRnz55Fv379AAARERGIiopSOzGmwmnyucXExKBz585wc3NDUFCQxokSwO9cadHm58bvWxnRddUWlX/Xr18X1qxZI9y9e1d48uSJcPbsWaFDhw5CvXr1hMzMTEEQ8qqcGzZsKNy4cUMQBEGIjIwU5s2bJ9y+fVt4/PixcPjwYaFu3bpCp06ddPlSKpySfHaCIAijR48WatasKZw7d064ffu24O7uLri7u+vqZVQ4z549E+rXry906dJFePbsmRAXF6d4vF6G3zn9UpLPTRD4fSsLTJZI6+7duyd07txZqFKlimBubi7Url1bGD16tPDs2TNFmcePHwsAhPPnzwuCIAhRUVFCp06dFMfUr19fmDp1qpCamqqjV1ExleSzEwRBkEqlwpdffilUrlxZsLS0FD7//HOlX/ikXUFBQUX2jcnH75z+KcnnJgj8vpUF9lkiIiIiUoFTBxARERGpwGSJiIiISAUmS0REREQqMFkiIiIiUoHJEhEREZEKTJaIiIiIVGCyRERERKQCkyUiIiIiFZgsERGVMpFIhJ9//lnXYRBRKWGyREQG69q1azA2NkbPnj01PrZ27dpYtWpV6QelgiAI6Nq1K7p3715g3/r162FnZ4dnz56VaUxEVDwmS0RksLZt24bx48fj4sWLiI2N1XU4xRKJRAgKCsKNGzewadMmxfbHjx9j2rRpWLNmDWrUqKHDCImoMEyWiMggpaenY9++fRgzZgx69uyJHTt2FChz9OhRtGnTBhYWFrC3t8fnn38OAPDw8MDTp08xadIkiEQiiEQiAMC3336LFi1aKJ1j1apVqF27tuL5rVu38PHHH8Pe3h62trb48MMPcefOHbXjdnV1xerVqxEYGIjHjx9DEAQEBASgW7du8PX11fh9ICLtY7JERAYpNDQUjRo1QsOGDeHj44Pt27fj9XXBf/nlF3z++efo0aMH7t69i7Nnz6Jt27YAgIMHD6JGjRqYN28e4uLiEBcXp/Z109LSMHToUFy+fBnXr19HgwYN0KNHD6Slpal9jqFDh6JLly4YPnw41q5di/v37yvVNBGRfjHRdQBERCWxbds2+Pj4AAA8PT2RmpqKCxcuwMPDAwCwYMECDBo0CHPnzlUc07x5cwBAlSpVYGxsDGtrazg5OWl03Y8++kjp+ebNm2FnZ4cLFy6gV69eap9n8+bNePfdd3Hx4kX89NNPcHBw0CgOIio7rFkiIoMTERGBmzdvwtvbGwBgYmKCgQMHYtu2bYoy4eHh6NKlS6lfOyEhASNGjECDBg1ga2sLGxsbpKenIyoqSqPzODo6YtSoUWjcuDH69OlT6nESUelhzRIRGZxt27YhJycHLi4uim2CIMDc3Bxr166Fra0txGKxxuc1MjJSasoDgOzsbKXnQ4cOxfPnz7F69WrUqlUL5ubmcHd3R1ZWlsbXMzExgYkJfw0T6TvWLBGRQcnJycGuXbuwfPlyhIeHKx6///47XFxcsHfvXgBAs2bNcPbs2SLPY2ZmhtzcXKVtDg4OiI+PV0qYwsPDlcpcuXIFEyZMQI8ePfDuu+/C3NwcycnJpfcCiUjvMFkiIoNy7NgxvHjxAgEBAXjvvfeUHv369VM0xc2ZMwd79+7FnDlz8ODBA/zvf//D4sWLFeepXbs2Ll68iJiYGEWy4+HhgaSkJCxZsgSPHj3CunXrcPz4caXrN2jQALt378aDBw9w48YNDBkypES1WERkOJgsEZFB2bZtG7p27QpbW9sC+/r164fbt2/j3r178PDwwP79+3HkyBG0aNECH330EW7evKkoO2/ePDx58gT16tVTdK5u3Lgx1q9fj3Xr1qF58+a4efMmAgMDC1z/xYsXaNWqFXx9fTFhwgQ4Ojpq90UTkU6JhDcb6ImIiIhIgTVLRERERCowWSIiIiJSgckSERERkQpMloiIiIhUYLJEREREpAKTJSIiIiIVmCwRERERqcBkiYiIiEgFJktEREREKjBZIiIiIlKByRIRERGRCv8P3aArSzH91rgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "model1.external_set()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "3792e6dc-0949-448d-975e-d98c508640f4", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAGeCAYAAADxK/mgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ/klEQVR4nO3dd1zTd/4H8Nc3G8hgb1CQ4UJEq9ZZtdVaO+yu3Xq99n5dd9fr3tdx197Zvcc5Oqy2tWpba+uqWqtWnCAqKCJ7EyBhJJDk+/sDpVJEGYFvEl7Px8NHGwjfvECTvPiO90cQRVEEERER0WlkUgcgIiIi18OCQERERO2wIBAREVE7LAhERETUDgsCERERtcOCQERERO2wIBAREVE7LAhERETUjqK7X+hwOFBcXAydTgdBEJyZiYgkZrfbkZ2djbi4OMjlcqnjEJETiaIIs9mM8PBwyGQd7yfodkEoLi5GVFRUd7+ciIiIJFRQUIDIyMgOP9/tgqDT6VofQK/Xd3czROSCCgsLMWzYMD6/iTyQyWRCVFRU6/t4R7pdEE4dVtDr9XwBIfIwp57T3X1+/5xZhqzSOiSGajF9cIiz4xGRE5zr9IBuFwQiojPZcbwSS3/LBwDsyTVCo5RjwqBAiVMRUVfxKgYicqpCY+NZbxORe2BBICKnSo7yhUzWsutSJhOQHOUrbSAi6hYeYiAip0oM1eHJ2UOQXV6HuGAtBgb6SB2JiLqh1wuC3SHiQEEN0gpqcKKyHvVWG+QyASF6DYaE6TE2xh9BOnVvxyCiPjQw0IfFgMjN9VpBqKqzYuGvJ/DNvkKUmaxnve/42ADMHRuFy0aEQy7j0CUiIiKpOb0gNNsd+OiXHLy7ORsNTXYAgE6jwLiYACSGamHwUqLJ5kBRjQX786uRWWrGzpwq7MypwpubjuHhmYmYNTyU0xmJiIgk5NSCcKTEhIdXpCGjyAQAGB6hx71T4zB9SDDUijOPay2sbsCKvYVYsiMXORX1uHvpPlw0JBgvXDkcYQYvZ8YjIiKiTnLqVQy5lfXIKDLB4KXEq9cl4/v7JuGSpLAOywEARPp54+8XJWDbI9Nw//Q4KOUCNh4px+w3t+GXoxXOjEdERESdJIiiKHbnC00mEwwGA2pra9tMWvvfthxcMTIcwTpNtwIdLTPjH18dQEaRCYIAPDQzEfdMHcRDDkR9qLCwEFFRUe2e30Tk/jp6//4jp89B+PPk2G6XAwBICNFhxf9NwI1joyGKwIJ1WXhqdQbsjm71GCIiIuoGlxyUpFHK8dLVSXhhzjAIArB0Vz7u+2IfrDa71NGIiIj6BZcsCKfcOn4g3r1pFFRyGX7MKMX9X+xHs90hdSwiIiKP59IFAQBmJ4Vh4bzzoFLIsP5wGf7xVRoPNxAREfUyly8IADA5Pggf3DIKSrmA79OK8fjKdHTz3EoiIiLqBLcoCAAwfXAI3pqbApkAfLWnEO/8nC11JCIiIo/lNgUBAC5JCsPzc4YDAF7dcBTfHiiSOBEREZFncquCAAC3nD8Ad02JBQA8/HU6Uk8YJU5ERETkedyuIADAY7MGY9awUDTZHbj7870ormmUOhIREZFHccuCIJMJeP2GkRgapkdVfRPu/nwvLM2ckUBEROQsblkQAMBLJceHt46GwUuJtMJaPPf9IakjEREReQy3LQgAEOXvjbduTIEgAMtSC7AsNV/qSERERB7BrQsCAFyQEISHZiYCAJ799hAOFddKnIiIiMj9uX1BAIC7LxiEi4YEo8nuwP1f7Ee91SZ1JCIiIrfmEQVBJhOw4NpkhOo1yKmsx7Pf8XwEIiKinvCIggAAfj4qvDF3JGQCsGJvIVbtL5Q6EhERkdvymIIAAOfHBuCvF8YDAJ5alYETlfUSJyIiInJPHlUQAOD+6fEYF+OP+iY77l+2D1Yb5yMQERF1lccVBLlMwBtzR8LPW4mMIhNeW39U6khERERux+MKAgCEGbzwn2tGAAA+2paD33KqJE5ERETkXjyyIADAzGGhuOG8KIgi8OBXaTBZmqWORERE5DY8tiAAwNOXD0W0vzeKahrx7Le89JGIiKizPLogaNUKvH5Dy6WPq/YX4fu0YqkjERERuQWPLggAMHqAH+6bFgcAeHLVQZTUcmloou7YnWvEyz9m4qNfjsPMQ3ZEHs/jCwIA3H9hPJIjDTBZbHjo6zQ4HKLUkYjcSkltIz7cmoNjZWbsyjHi0515Ukciol7WLwqCUi7DazeMhEYpw/bsKizafkLqSERupaquCaL4e7GuMFslTENEfaFfFAQAGBSkxVOXDgUA/HddFrJKzRInInIfccFahPlqWm9fkBAkYRoi6gsKqQP0pZvHRePnzHL8nFmOvy3fj2/vmwi1Qi51LCKXp1HK8eTsoThcUgtfbxUGBWmljkREvazf7EEAAEEQ8PI1SfD3USGz1IxX1mVJHYnIbXip5Bg9wJ/lgKif6FcFAQCCdZrWKYsfbzuB7dmVEiciIiJyPf2uIADAjKEhuHFsNICWKYs1DU0SJyIiInIt/bIgAMDTlw1BbKAPSk0WPLHqYJsztImIiPq7flsQvFUKvDF3JBQyAWsPlmLF3kKpIxEREbmMflsQAGBEpC8emJEAAPjnd4eQV1UvcSIiIiLX0K8LAgD83wWDMDbGH/VNdvz9ywOw2R1SRyIiIpJcvy8IcpmA165Phk6jwP78Grz9c7bUkYioD5ktzcguN6OhySZ1FCKX0u8LAgBE+nnjxSuHAwDe/vkY9uYZJU5ERH2hwNiAJ1Zl4KW1mXjm20Mw1vOKJqJTWBBOmjMyAleODIdDBP7+5QGuVkfUD2w5WoEGa8ueg+r6Juw4zrkoRKewIJzm+SuHI8LXCwXGRjz73SGp4xBRL9Op206b12uUEiUhcj0sCKfRa5R4Y+5IyARg5b4irNzHSx+JPNklSaEYG+OPQK0aUwcHY1JcoNSRiFxGv1qsqTPGDPTHXy+Mxxsbj+Gp1RkYEemLuGDOnifyRGqFHH+5YJDUMYhcEvcgnMH90+MxYVAAGprsuO+LfbA026WORERE1KdYEM5ALhPwxtyRCNS2rPr43Pc8H4GIiPoXFoQOBOs0eOOGFAgCsCy1AN8eKJI6EhERUZ9hQTiLSfGBuG9aHADgiZUHcaKSo5iJiKh/YEE4h79dGN86ivnepTwfgYiI+gcWhHNQyGV4+8YU+PuocLjEhKdWZ3BpaCIi8ngsCJ0Qotfg7RtTIBOAFXsL8fmufKkjERER9SoWhE6aGBeIR2cNBgA8//0hrtdAREQejQWhC+6aEotLk8LQbBdx9+f7UG6ySB2JiIioV7AgdIEgCPjvtSOQEKJFudmKe5buQ5PNIXUsIiIip2NB6CIftQIf3noedGoF9uRV418/HJY6EhERkdOxIHRDTKAP3pg7EgDwyc48LEvlSYtERORZWBC66cIhIfjHjAQAwNOrM7DzeJXEiYiIiJyHBaEH7p8eh8uTw2FziLh76V7kctIiERF5CBaEHhAEAQuuHYGRUb6oaWjGnz7ZjdrGZqljERER9RgLQg9plHJ8dNtohBs0yKmox31f7IPNzisbiIjIvbEgOEGwToOPbz8PXko5th2rxPNrDnMcMxERuTUWBCcZFm7AG3NHQhCAT3fmYeGvJ6SORERE1G0sCE508bBQPH5JyzjmF384gu/TiiVORERE1D0sCE525+RYzJswEADw4Fdp2JXDyx+JiMj9sCA4mSAIePqyobh4WAia7A7c+ekeHCszSx2LiIioS1gQeoFcJuDNuSkYFe0Lk8WGeYt3o4wLOxERkRthQeglGqUc/7t9DGICfVBU04j5i3ejzmqTOhYREVGnsCD0In8fFT6ZPxaBWhUOl5hw9+d7YbXZpY5FRER0TiwIvSw6wBsLbx8Db1XLjIR/fJUGu4MzEoiIyLWxIPSB5ChffHDLaCjlAn5IL8Ez32ZwkBIREbk0FoQ+MiUhCK/f0DJIaemufLy+4ajUkYiIiDrEgtCHLhsRjufnDAcAvPVzNhZv57RFIiJyTSwIfezW8wfgHzMSAADPfX8Yq/cXSZyIiIioPRYECdw/Pa512uJDX6dhc1a5tIGIiIj+gAVBAoIg4JnLhmLOyHDYHCLu/nwv9uYZpY5FRETUigVBIjKZgFeuS8bUxCBYmh2Yv3g3MktNUsciIiICwIIgKaVchvduHtU6kvm2hakoMDZIHYuIiIgFQWreKgUWzRuDxBAdys1W3LpwFyrrrFLHIiKifo4FwQX4eqvw6R1jEeHrhdyqBsxbnAqzpVnqWERE1I+xILiIEL0Gn90xFgE+KmQUmXDXp3thaea6DUREJA0WBBcSG6TFkvljoVUrsDOnCn9ffoDrNhARkSRYEFxMUqQBH906Giq5DD8dKsVTq7luAxER9T0WBBc0IS4Qb85tWbdhWWo+Xl3PdRuIiKhvsSC4qEuSwvCvK5MAAO9szsaiX7luAxER9R0WBBd207hoPDSzZd2G59dw3QYiIuo7CqkD0NndOy0OlXVNWLIjFw99nQaDtxLTEoOljkVE/dCa9GLsz6/BgABvzB0TDZWCv2N6Mv7turgzr9tQLXUsIupn9uYZsWpfEXIr67E1qwJr0ouljkS9jAXBDchkAhZcm4wLElrWbfjTkt04WmaWOhYR9SNVdU1tbhvrmzq4J3kKFgQ3oVLI8P4to5AS7YvaxmbctjAVhdVct4GI+saoAX7QaVqOSivkAibGBUqciHobC4Ib8VYpsHjeGMQHa1FqsmDe4t2obeBIZiLqfYFaNZ6bMxz3TY/DC3OGY0iYXupI1MtYENzMqXUbQvUaZJfX4c7P9sBq40hmIup9Bi8lUqL9EKzXSB2F+gALghsKM3hhyZ/GQKdWIPWEEQ9+lQYHRzITEZETsSC4qcGhenxw62go5QLWpJfgPz9lSh2JiIg8CAuCG5sYF4j/XDMCAPDhLzn4dGeutIGIiMhjsCC4uatHRbZOW3z2u0NYd6hU4kREROQJWBA8wL3T4nDj2CiIIvDXZfuxL5+DlIiIqGdYEDyAIAh4Yc5wTEsMgtXmwJ8/2YPcynqpYxERkRtjQfAQCrkM79w0CkkRBhjrm3D74lRU1VmljkVERG6KBcGD+KgVWDjvPET6eSGvqgF//nQPLM2ckUBERF3HguBhgnUaLJk/FgYvJfbn1+CBLw9wRgIREXUZC4IHigvW4qNbR0Mll+HHjFL8e+0RqSMRdajCbEV2eR1sdofUUYjoNCwIHmpcbAAWXNcyI+F/v57AJztypQ1EdAa7c414YtVBvLT2CBasy0IzSwKRy2BB8GBzRkbg4YsTAQDPfX8IGw6XSZyIqK0fD5a2HgLLLq/jMuZELoQFwcPdM3UQ5o6JguPkjIT0whqpIxG10nsp2tzWqZUSJSGiP2JB8HCCIOCFK4djSkIQGpvt+NOSPSgwNkgdiwgAcOv5AzA4TIdgvQY3jo1GdIC31JGI6CQWhH5AKZfh3ZtSMDhUh8o6K+Yv2Y3ahmapYxEhQKvGwxcPxktXJ+GioSFSxyGi07Ag9BM6jRKL549BqF6D7PI6/OXzPbDaOCOBiIjOjAWhHwkzeGHx/DHQqhX4LceIx745CFHkjARyviMlJnx7oAhHSkxSRyGibmJB6GeGhOnx3s2jIJcJWLW/CK9tOCp1JPIwGUW1eHV9Fr47UIxX12fhYGGt1JE6ZLM78NlveXju+0NYua+QhZnoNCwI/dCUhCD8+6rhAIC3f87GV7sLJE5EnuRwsQmn3mdFEThc4roF4adDpdiSWY78qgb8kF6CncerpI5E5DJYEPqpG8ZE475pcQCAJ1YdxLZjFRInIk8RG+TT5vagIK1ESc7NWN/U5nbVH25T9+3NM2JNejGKahqljkLdxILQjz04MwFXjgyHzSHi7s/38XgxOcV5A/1x15RYXJAYhDunxOK8gf5SR+rQxLhAqJUtL4NajQLjYlw3qzvZeLgM720+jlX7ivCvHw6j3GSROhJ1g+LcdyFPJQgC/nPtCJTUWrDrhBHzF+/G6nsnItSgkToaublxsQEYFxsgdYxzGhSkxfNzhqO4phEDAnxg8OKgJmc4WPT7YSVrswNHy+oQrOfrirvhHoR+Tq2Q46Nbz8OgIB+UmiyYv2Q36qw2qWMR9ZlArRojIn1ZDpwoJvD3w0wymYBofw7AckcsCASDtxJL5o9FoFaFIyUm3Lt0HxfNIaJuuyI5HNedF4VJ8YH424XxnJDpplgQCAAQ5e+NhbePgZdSjq1HK/DMtxm85IuIukUmEzBreCjmT4zB8AiD1HGom1gQqFVylC/eujEFggAsSy3Ae1uOSx2JiIgkwoJAbcwYGoJnLxsKAFiwLgvfHiiSOBEREUmBBYHamTcxBndMigEAPPx1OnblcHgMEVF/w4JAZ/Tk7CGYNSwUTXYH7vpsL7LL66SOREREfYgFgc5IJhPwxtyRSIn2RW1jM+YvSUWF2Sp1LKJO45U4RD3DgkAd0ijl+Pi28xDt740CYyP+/OkeNDZxiWhybaIo4n/bcvB/n+3FQ1+nocDYIHUkIrfEgkBnFahVY8n8MfD1ViKtoAZ/W74fdgcvfyTXlV5Y27roUnV9E77ZVyhxIiL3xIJA5xQbpMXHt50HlUKG9YfL8NTqg5yRQC7rj/8y2WeJuocFgTplzEB/vH79SMhOzkh47vvDLAnkkkZEGDB6oB8AQO+lxLWjIiVOROSeuFgTddqlI8LQ2JyMh75Ow5IdudAo5Xh0ViIEQZA6GlErmUzAPVPj0NBkg0Yhh0zGf59E3cE9CNQl146OxItXDgcAfLD1ON7alC1xIqIz81YpWA6IeoAFgbrslvMH4KlLhwAAXt94FB9u5UhmIiJPw4JA3fLnybF4+OJEAMBLP2bifa7bQETkUVgQqNvunRaHv10YDwD4z0+ZeG3DUZ64SETkIVgQqEcemJHQuifhrU3H8PKPmSwJREQegAWBeuzeaXF45uQKkB/+koNnvzsEBy8+JyInszTbkXrCiKxSs9RR+gVe5khO8adJMdAo5Xhy9UF8ujMPVfVNePW6ZGiUcqmjEZEHsNrseGntERRWNwIArhkdidlJYRKn8mzcg0BOc9O4aLx+/Ugo5QJ+SC/BbYtSUdvQLHUsIvIAeVUNreUAAH7NrpQwTf/AgkBOdWVKBJbMHwudWoHUE0Zc88EOFNU0nvsLiYjOwt9HBflpcy1CdBoJ0/QPLAjkdBPjAvHV/41HqF6D7PI6zHlnO/bkGqWORURuLFCrxr3T4jAkTI/zYwMwf9JAqSN5PBYE6hVDwvRYde8EDA7VobLOihs//g1Ld+VJHYuI3FhylC8eujgRd06JhV6jlDqOx2NBoF4TZvDCynsm4NKkMDTbRTy5KgOPr0yH1WaXOhoREZ0DCwL1Km+VAu/clIJHZw2GcHIlyKve3YHs8jqpoxER0VmwIFCvEwQBd08dhMXzxsDfR4XDJSZc9vY2LEvN51AlIiIXxYJAfWZqYjB+/NtkTIoLhKXZgcdXHsSdn+5Faa1F6mhERPQHLAjUp0L0Gnz6p7F4/JLBUMgEbDxShhmvbcXSXXmcvkhE5EJYEKjPyWQC/nLBIKz56yQkR/nCbLXhyVUZuOGjnThYWCt1PCIiAgsCSWhwqB4r756AZy4bCi+lHLtzq3HFu7/iH18dQEkthysREUmJBYEkJZcJ+NOkGGx88AJcOTIcogis3FeEaa9swYtrDqPMxPMTiIikwIJALiHC1wtvzE3B6nsnYsxAP1iaHfjfrycw+T+b8dTqg8irqpc6IhFRvyKI3bzOzGQywWAwoLa2Fnq93tm5qB8TRRG/HKvE25uOYU9edevHpyQE4ZZx0Zg+OBgKObttbyosLERUVBSf30QeqLPv31zumVyOIAi4ICEIU+IDseuEEe9vOY6tRyvwy8k/IXo1ZieF4bIR4RgV7QtBEM69USIi6hIWBHJZgiDg/NgAnB8bgLyqenyxKx9f7SlAmcmKxdtzsXh7LiJ8vTB9cDCmJARh/KAAaNX8J01E5Aw8xEBuxWqzY9vRSqxJL8aGw2Wob/p9XQeFTEBylC9GRftiZJQfRkb7Ityg4R6GbuAhBiLPxUMM5JHUCjkuGhqCi4aGwNJsx7ZjlfjlaAW2HatAblUD9uZVY29eNYATAIAAHxXiQ7SID9YhLliLuGAtov29EWrQQMnzGIiIOsSCQG5Lo5RjxtAQzBgaAgDIr2pAaq4RBwqqcaCgBkdKzKiqb0JVjhG/5RjbfK1MaJnqGO7rhQhfL4QZNAjUqhGoU7X8V6tGkE4NP28V5DLugSCi/ocFgTxGdIA3ogO8ce3oSABAY5Mdx8rNOFZWh2Pldcgur8PxijoUVTeiye5ASa0FJbWWk3sczkwmAP4+agRqVQjStZSGEL0GITo1Qg0aBOs1CNFrEKxTc48EEXkUFgTyWF4qOUZE+mJEpG+bjzscIirrrSiusaC4phFF1Y0oM1lQUWdFZZ0VleYmVNRZUd3QBIeIlo/VWZFZaj7r4wVqVQg1aDDA3wcDArwxMODkfwN9EKxT81wIInIrLAjU78hkAoJ1GgTrNBgZ5dvh/Wx2B4z1TSeLQxMqzFaUmy0oN1lRZrKg1NTy/+VmC5rtIirrmlBZ14SMIlO7bXkp5UgI1WFIqA6DQ3UYHKbHkFA9DN7KXvxOiYi6jwWBqAMKuQzB+pbDCGfjcIiobmhCqcmC4hoL8qrqkVfVgNyT/y2qaURjsx1pBTVIK6hp87URvl4YNcAPo6J9kRLth6FheqgUPFRBRNJjQSDqIZlMQIBWjQCtGsPCDe0+32x3IK+qAVmlZmSWmnCkxIwjJSYU1TS2/vk+rRgAoFbIMCLSgPNjAzAxLhAp0b5QK+R9/S0REXEOApFUahubkVFUi3151diXX439BTWoaWhucx8vpRxjY/wxMS4Ak+KCMCRM1yfnMnAOApHn4hwEIhdn8FJiYlwgJsYFAmhZgyKnsh57co3Ynl2FHccrUVnXhK1HK7D1aAWATIQbNC1zIIaEYFysP/cuEFGv4R4EIhcliiKyysz49VgltmdXYmdOFSzNjtbPa9UKXJAQhBlDQ3DhkGDoNM474ZF7EIg8V2ffv1kQiNyEpdmO7dmV2HikDBuPlKPCbG39nFohw7TEYFyeHI7pg4PhperZngUWBCLPxYJA5MEcDhEHi2qx4XAZ1h4sQU5lfevnvFVyXDQkBJcnh+OChKBuXRXBgkDkuVgQiPoJURRxuMSENekl+D6tGIXVja2f8/NWYs7ICFw7OhLDwvWdPsGRBYHIc7EgEPVDoigirbAW36cV4/u0YpSfdhhicKgO146OxJUpEQjUqs+6HRYEIs/FgkDUz9nsDmzLrsSKvYXYcKgMTfaWExwVMgFTE4Nx3XmRmD44+IxrSLAgEHkuXuZI1M8p5C0nLk5LDEZNQxO+Ty/Bir2FSCuoOXmiYxmCdGpcOzoSd02OhZ+PSurIRORCONOVqB/w9Vbh1vMH4Nt7J2LDA1Nw15RYBPioUGG2YtGvJyDjQlJE9Afcg0DUz8SH6PDE7CF4aGYiNh0pQ2F1IxeN6gSrzY6fMkphtthwQUIQovy9pY5E1KtYEIj6KZVChkuSwqSO0SvSC2uwPbsKwTo1Lk8O7/BST1EUse5QGU5U1mN4hB6T44M63OYnO3KxK8cIAEg9YcS/rhre4XCqoppG/HiwBCqFDHOSI/q8gJktzVh9oBiNTTbMGhaG6ADnlJmF23Lwy7FKxIdo8cQlgyGTnfnnarM7sCa9BCW1FoyL9ceoaD+nPH5XbD1agcPFJgwK8sGMoSEdXsHTZHPgu7RiVJitmBQXiKTI9uupdMeh4lpsO1YJfx8V5owM7/Opp6W1FqxJL4ZcJmDOyAj4d+MQIgsCEXmUwuoGvP1zNhyOlvOvrTYHbhoXfcb7bs4qx9d7CgAAe3KN0KoVSOngzex4+e+zJuqtNpSZLGcsCE02B15ZlwVTY8u6GgXGBjx56dAefU9d9cHW48gsMQMAMopMePmaJHirevZy/11aEd7fchwAcKioFnIBeHz2mb+v1QeK8ePBEgDA3jwjnrx0KGICfXr0+F2xN8+IT3fkAmj5e1UpZJiaGHzG+365pwBbMssBAPvzq/HPK4Yh3NerR49fZrLgrU3HYLO3/Bust9owf2JMj7bZFTa7A6+sz0J1fRMAILeyHs/NGd7l7fAcBCLyKMU1ltZyAAAF1Q0d3rfA2Nj2dnVjB/cEhkX8fra3r7eqwzeR2sbm1nJwpsfoC6c/Zr3Vhuo/LALWHYeKTG1uZ59WmNo//u8/c1EEis7yc+0NXfl7LTwtq90hoqS251lLai2t5QBAm9kkfaHeam8tB0DLHq3uXLDIgkBEHiUhRAud5vffls+2ezsl2hen9jwr5AJGRHS8e/mWcQNw6/gBmJMSgSdmD+7wN/IAHxUGnvbb8ugBfb97/byBvz9mpJ8XgnVnn3vRGTOHhUIuP/nDEoDpQ878GznQ9nv2ViswOEzX48fvihGRBshlLVkFAUiJ8u3wvqNOy6r3UiIuuOdZBwX5tDms1NeHWPReCsSFaFtvp0T7dWsVWM5BIKJ23H0OQmWdFWkFNQjWac55TDm7vA65lfVIDNU57cRDS7Mdv+VUQaWQ4fyYAMhkfXuViCiKSD1hREOTHeNi/Xt8eOGU/fnV2HSkHCMiDZg5LPSs9z1UXIuSGgtGRBoQrNc45fG7osDYgKxSM2KCfDAoSHvW+6YV1KCyzoqUaL9uHas/k+r6JuzLr0aAVo2RZykovcVqs+O3HCMUMgHjYvyhOG3eCQclEVG3uXtBIKKO9fqgJLvdDqDlhYQvIESepaCg5cS9/Px8+Pr6ShuGiJzKZGo5n+TU+3hHul0QsrOzAQDDhg3r7iaIyMUlJSVJHYGIekl2djbGjBnT4ee7fYihuroa/v7+KCgo4B4EIg9TWFiIYcOG8flN5IFMJhOioqJgNBrh59fxCZTd3oMgl7cMfdDr9a0vIBsPl2FTZhn8fVSYPzHmnCvGEZFrOvWcPv35TUSe5dT7eEecdpljgbEBy1LzUW6yIrPEjM925jlr00RERNTHnFYQTJa2gzjMFpuzNk1ERER9zGkFISFE1zqYQSYTMGv42a+RJSIiItfltLUYlHIZHp6ZiDxjAwxeSp5/QERE5MaculiTQi4758QqIqK+YneI2Jdfjd25RmQU1aLMZEV1QxNUchl81AoM8PdGfIgO4wcFICni9/G8RMTVHInIA5WbLFi0PRer9xeh1GTp8H5786pb/9/PW4k5IyNw7ehIDD/LmgxE/QULAhF5DLOlGW9uPIbPfsuD1eYAAOg1CkyKD8TIKF9E+XnD11sFu0NEbWMzTlTWIb2wFjtzqlDd0IwlO3KxZEcuJsYF4L5p8Tg/1r9bi9wQeQIWBCLyCD9nluHJVRkoqW3ZYzB6gB/unByDaYODoVac/Xpvm92BX7Mr8fXeQqzLKMX27Cpsz67C5PhAPHv5UKes8EfkblgQiMit2ewOvLL+KD7YehwAMCDAG89dMQwXJAR1+rd/hVyGqYnBmJoYjMLqBny4NQdf7i7AtmOVmPXGNsyfOBAPzEhw2qqIRO7AaZc5EhH1tXqrDfOX7G4tB/MnDsRPf5uCqYnB3T40EOnnjReuHI4N/5iCi4YEw+YQ8fG2E7j0rV+xL7/63Bsg8hAsCETklmoamnDLwl3YdqwSXko53rkpBc9ePgxeqrMfTuisAQE++N/tY7B43hiE6jU4UVmPa9/fgVfWZcFmdzjlMYhcGQsCEbmd2oZm3PjxLuzPr4HBS4kv7hyHy0aE98pjTRscjHV/n4KrUiLgEIF3Nmfj5v/tQrm546sjiDwBCwIRuZXGJjvu+GQ3jpSYEKhV46u/jEdKdMcr0jmDwVuJ128YibdvTIGPSo5dJ4y49K1fsSunqlcfl0hKLAhE5DbsDhH3L9uHPXnV0GkU+OyOsUgM7bsrDC5PDsd3909CQogWFWYrbvrfLvxvWw5EUeyzDER9hQWBiNzGgnVZ2HikHGqFDAtvH4MhYX2/FPWgIC1W3zsRV6VEwO4Q8eIPR/DYNwfRZON5CeRZWBCIyC2sPVjSerXCguuSMTbGX7Is3ioFXrs+GU9fNhQyAfhyTwFuWbgLxvomyTIRORsLAhG5vOMVdXjo6zQAwJ2TY3BFcu+ckNgVgiDgjkkxWDhvDLRqBVJPGDHn3V9xtMwsdTQip2BBICKX1mRz4O/LD6ChyY7xsQF4dNZgqSO1MS0xGKvumYBof28UGBtx9Xs78HNmmdSxiHqMBYGIXNpbm47hYFEtDF4tVxIo5K73shUfosPqeydiXIw/6qw23PHJHnz0y3GevEhuzfWeaUREJ+3JNeK9LdkAgJeuTkKoQSNxoo75+6jw2R3jcOPYKIgi8O+1mXjw6zRYmu1SRyPqFhYEInJJlmY7HlmRDocIXD0qArOTwqSOdE4qhQz/vioJ/7x8KOQyASv3FeHGj3/jUCVySywIROSS3t9yHDmV9QjSqfHs5cOkjtNpgiBg3sQYLJk/BnqNAvvzazDnne3IKKqVOhpRl7AgEJHLyS6vw/tbWi5p/Oflw2DwUkqcqOsmxwdh9b0TERvkg5JaC677YCfWHiyROhZRpzm1IGw8XIbHV6ZjwbpMVNZZnblpIuonRFHEU6sPosnuwLTEIMxOCpU6UrfFBmmx6p6JuCAhCI3NdtyzdB8WrMvkYk/kFpxWEAqMDViWmo9ykxWZJWZ8tjPPWZsmon5k7cFS/JZjhEYpw/Nzhnd72WZXYfBSYtG8MfjzpBgAwLubj+Om/+1CaS3PSyDX5rSCYLI0t7ltttictWki6icszXa8/NMRAMBfpgxClL+3xImcQy4T8NRlQ/HWjSmtQ5Vmv7UNm7PKpY5G1CGnFYSEEB3iQrQtG5UJmDXcfXcLEpE0luzIRYGxESF6Nf5yQazUcZzuiuRwrLl/EoZH6GGsb8L8xbvx7LcZqLfyFypyPQpnbUgpl+HhmYnIMzbA4KVEoFbtrE0TUT9QWWfFOz+3zDx4+OLB8FY57eXJpQwM9ME3d0/Av384gk925uGTnXnYlFmOl68egUnxgVLHI2rl1JMUFXIZBgVpWQ6IqMve3HgMdVYbkiIMuDolQuo4vUqtkOO5OcPx2R1jEeHrhcLqRtyycBf+vnw/imsapY5HBICXORKRCyisbsDy3fkAgCdmD4FM5t4nJnbW5PggrH9gCm4bPwCCAKw+UIzpr27Ba+uz2p3XRdTXPHMfHhG5lbc3ZaPZLmJiXADGDwqQOk6f8lEr8Pyc4bhudBReWHMYqblGvPVzNhZvz8VtEwZg/sQYSffKNjTZUG6yoqLOijqrDTa7CJvdAbVSBp1GCV8vJaL8vaFRyiXLSL2DBYGIJJVbWY8V+woBAP+YkShxGukkRRrw5V/Ox08ZpXhtw1EcK6/Du5uP46NfcnDRkBBcf14UJsUHQtkLi1U12RzIrarH8fI6ZJfXIbui5b95VQ2o6+QJlBG+XkgM1WHMQH+cH+uP5EjffrMnyFOxIBCRpN7cdAx2h4hpiUEYPcBP6jiSEgQBlySF4eJhodhwpAwfbD2O/fk1+DGjFD9mlEKnVmByQiCmxAdhRKQv4kO0XSoMjU125FS2vPkfK6vDsXIzjp0sAnZHxytPeinlCNaroVUroJTLoJQLsDQ7YLY0o6q+CWaLDUU1jSiqacTPmS2Xbobo1ZidFIbrRkdhaLi+xz8b6nuC2M31SE0mEwwGA2pra6HX8y+fyJMUFhYiKiqq15/f2eVmzHj9F4gi8P19k5AUaei1x3JXR0pM+GpPAb47UIyq+qY2n1MpZIj290aYQYMQvQbeKjnUChkEQUBDkw0NTXbUNjSjuNaCktpG1DR0fF6DVq3AoGAt4oK0iAvWYlCQD2KDtAg1aKBVd/y7pCiKqG5oRk5FHQ4U1GB3rhE7sqtgPm3Pw4RBAbhzSiymJgS5/eArT9DZ928WBCJqp68KwgNfHsCq/UWYOTQEH912Xq89jiewO0SkF9Zgc2Y5dudWI6Oots2bcGf5eSsRH9wytyY+WNvy/8FahOjVTnvzttrs+OVoJVbtL8S6Q2WteyfGxfjjidlDkBzl65THoe7p7Ps3DzEQkSQKjA34Lq0YAHD/9HiJ07g+uUxASrQfUqJbDsM4HCLyjQ0oqG5ASY0FFXVWWJvtsNoccIgivFUK+Kjl0GmUCDVoEG7wQqhBA71G0eu/xasVcswYGoIZQ0NQVNOIxb+ewGe/5WHXCSPmvLsdN46NwuOzh0Cvcb9FuPoTFgQiksTH23Jgd4iYHB/IQwvdIJMJGBjog4GBPlJHOasIXy88ddlQ/GlSDF5dfxTf7CvEstQCbMmqwH+uGYEpCUFSR6QOcA4CEfW5yjorvtxdAAC4e+ogidNQXwj39cKr1yfjy7vOx4AAb5TUWnDbolS8uj7rrCdIknRYEIiozy3efgJWmwPJUb4YH9u/5h70d+NiA/DT36bglvOjAQBv/5yN2xbtQk1D0zm+kvqaUwvCxsNleHxlOhasy0RlndWZmyYiD2G2NOPTk8vB3zN1EM9q74e8VHK8eGUS3pw7Et4qObZnV+Ga93egwNggdTQ6jdMKQoGxActS81FusiKzxIzPTr4AEBGdbllqPswWG+KCtZgxJETqOCShOSMjsPKeCQgzaHC8oh5Xv78DGUW1Useik5xWEP44N9xs4fKlRNSWze7Aku25AIC7Jsdy0h5hcKgeK++ZgMGhOlSYrbjx49+QVlAjdSyCEwtCQkjLdbVAy9m1s4aHOmvTROQh1h8uQ3GtBQE+KlwxMlzqOOQiwgxe+Or/xmPMQD+YLTbcsnAXS4ILcFpBUMpleHhmIp64dAheujoJY2P8nbVpIvIQi7efAADcNC6ai/tQG3qNEovnj21TEni4QVpOPUlRIZdhUJBW0pXHiMg1ZRTVYnduNRQyAbecP0DqOOSCtGoFlswfi7ED/WG22DBvcSryquqljtVv8TJHIuoTi07uPbh0RBhC9BqJ05Cr8lErsHDeeRgapkdlXRNuX5TKq+IkwoJARL2u3GzB9yfHKs+fGCNxGnJ1Oo0SS+aPQaSfF3KrGnDHkt1oaOKJ732NcxCIqNct/S0fzXYRKdG+GMmFeqgTgvUafPqnsfDzViKtsBYPr0hHN9cWpG7iHAQi6lXNdge+SM0HwL0H1DWxQVp8dNt5UMoF/JBegve2HJc6Ur/COQhE1Ks2HC5DhdmKIJ0al/DyZ+qiMQP98dwVwwEAr6zPwqYjZRIn6j84B4GIetUXu1r2Hlx/XiSUcp72RF1307ho3HJ+NEQR+PvyA8it5JUNfcFpyz2fmoOQZ2yAwUvJSx2JCLmV9fg1uxKCAMwdEy11HHJjz1w2DFmlZuzOrcZ9y/bhm7snQK3gLI3exDkIRNRrlp089+CChCBE+XtLnIbcmUohw1s3psDPW4mMIhNeWpspdSSPx/19RNQrrDY7vt5bCAC4eRwHI1HPhRm88Nr1IwEAS3bk4qeMEmkDeTgWBCLqFT9llMJY34QwgwbTEoOkjkMeYtrgYPxlSiwA4OEV6SiqaZQ4kediQfiDIyUmPPttBp79NgNHSkxSxyFyW0tPnpx4w5goKHhyIjnRQxcnYmSUL8wWGx5ZkQaHg/MRegOftadxOES8uzkbhdWNKKxuxLubszmYg6gbjpWZkXrCCLlM4MmJ5HRKuQyv3zASXko5tmdX4dOduVJH8kgsCKdpdjjQ2GRvvd3YZEeznQWBqKuWpRYAAKYPDkaogesukPPFBPrgidmDAQAv/ZiJ7PI6iRN5HhaE06gVclw0NKT19oyhIVAp+CMi6oommwOr9recnHjj2CiJ05Anu+X8AZgcHwirzYEHvzoAm90hdSSP4rQ5CJ7ixrHRmDgoEAAQHcDLsoi6atORMlQ3NCNYp8aUeJ6cSL1HEAQsuDYZM1/firTCWry35Tj+emG81LE8Bn89PoPoAG+WA6JuOnVp4zWjI3lyIvW6UIMGL1zZMor57Z+P4ViZWeJEnoPPXiJymnKTBVuyygEA142OlDgN9RdXJIfjwsHBaLaLePSbdF7V4CQsCETkNCv3F8EhAqMH+CE2SCt1HOonBEHAC1cOh49Kjn35Nfh8F1cTdgYWBCJyClEU8dWelqsXuPeA+lq4rxcevaTlqob//JiJYg5Q6jEWBCJyin35NcipqIeXUo5LR4RJHYf6oVvGDcCoaF/UN9nx9OoMzrHpIRYEInKKFXtb9h5ckhQKnUYpcRrqj2QyAf+5ZgSUcgGbMsuxJp1rNfQECwIR9Vhjkx3fp7W8GF83mrMPSDrxITrcMzUOAPDiD4dRZ7VJnMh9sSAQUY/9mFGCOqsNUf5eGBfjL3Uc6ufunjoIAwK8UWay4s2NR6WO47ZYEIiox77e0zL74LrRUZDJBInTUH+nUcrxzyuGAQAWbc9FVilnI3QHCwIR9UhhdQN25lRBEFqGIxG5gmmJwbh4WAjsDhFPf8sTFruDBYGIeuTbA8UAgPGxAYjw9ZI4DdHvnr5sKDRKGVJPGLH6QJHUcdyOUwvCxsNleHxlOhasy0RlndWZm/ZYdVYb3t50DI+vTMfKfYVSxyHqElEUW//dXpUSIXEaorYi/bxx//SWtRn+9UMmTJZmiRO5F6cVhAJjA5al5qPcZEVmiRmf7eQkq85Yua8QBwpqUG6y4of0EhwoqJE6ElGnZRSZcLyiHmqFDLOGh0odh6idP0+OQWygDyrrrHhtPU9Y7AqnFYQ/NjOzhZeWdIap8Y8/NzZcch+r9rfstp0xNISzD8glqRVyPDen5YTFz37L4wmLXeC0gpAQokNcSMvsdZlM4G8TnTRjaChUipa/hlCDBinRfhInIuocm92B79Jazj/g4QVyZZPjgzBrWCjsDhEvrDnMExY7SeGsDSnlMjw8MxF5xgYYvJQI1KqdtWmPlhiqw0tXJ6GyzopIP29olHKpIxF1yq/Zlaiss8LfR4UpCUFSxyE6qydmD8HPmeX4NbsSG4+UY8bQEKkjuTynnqSokMswKEjLctBFvt4qxAXrWA7Iraw+eXjh8hFhUMp5QRS5tugAb9wxOQYA8K8fDsNqs0ucyPXxWU1EXVZvtWHdoTIAwJU8vEBu4t5pcQjSqZFb1YBPduRKHcflsSAQUZetP1yKxmY7YgJ9MDLKV+o4RJ2iVSvw8MWJAIC3N2WjwszL8c/GqQXhlXVZuPDVLbjm/e04WsYzRd2JydKM1zccxeMr01tPPCPqyMp9LYcXrhwZAUHgaGVyH9eOikRShAFmqw2vrs+SOo5Lc1pB2JVTheWp+ahtaEZeZQOeXp3hrE1TH/hqdwEyimpRbrLi2/1FOFRcK3UkclHlJgu2Z1cCAK5MCZc4DVHXyGQCnr18KADgyz0tr3t0Zk4rCGVmS5vbdZyD4FZMf/j74hwL6sh3acVwiMCoaF8MCPCROg5Rl5030B+XJ4dDFIHnedljh5xWEC4aEoII/5Y57IJMwPVjuCa8O5k5NKT1TPRIPy8kR/pKG4hc1qnhSJx9QO7ssUsGt67T8GNGqdRxXJLT5iB4qxT48s7z8dsJI8J9vZAQonPWpqkPDI8w4N9XJ8FYb0W0v0/r8Cai0x0tM+NQsQkKmYDLRvDwArmvCF8v3DU5Fm/9nI2Xf8zERUNC+Lr3B079aWhUCkxNDGY5cFP+Pi3zGPgkoY6cmn0wNTEYfj4qidMQ9cxfLhiEIJ0a+cYGfPYb1w/6I74TEFGnOBxi69LOPLxAnsBHrcCDMxIAAG9tOoaahiaJE7kWFgQi6pTUXCOKahqhUytw4ZBgqeMQOcV150UhMUSH2sZmvPNzttRxXAoLAhF1isMhYmSUL2YnhXEsOHkMuUzA47MHAwA+2ZmL/KoGiRO5DhYEIuqUCXGBWH3vRLx41XCpoxA51dTEYEyOD0SzXcR/fsqUOo7LYEEgoi7hwkzkiZ6YPQSCAPxwsAR786qljuMS+EwnIqJ+b0iYHteNjgTQstojhyexIBAREQEAHpyZCC+lHPvyazg8CSwIREREAIAQvQZ3TYkFALz8YyasNrvEiaTFgkBERHTSXVNifx+etLN/D09iQSAiIjrJR63AQzNbhie9/XN2vx6e5NSCsPFwGR5fmY4F6zJRWWd15qaJiIj6xLWjfx+e9HY/Hp7ktIJQYGzAstR8lJusyCwx9/tdM0RE5J7kMgFPXDoEAPDpzlzkVdVLnEgaTisIJktzm9tmi81ZmyYiIupTFyQEYUpCEJrtIv77U5bUcSThtIKQEKJDXIi2ZaMyAbOGhzpr00RERH3uidmDIWsdnmSUOk6fUzhrQ0q5DA/PTESesQEGLyUCtWpnbZqIiKjPDQ7V47rRUfhyTwFe/OEIVt49AYIgSB2rzzj1JEWFXIZBQVqWAyIi8ggPzkyAt0qO/fk1WJNeInWcPsXLHImIiDoQrNfg/y4YBAD4z0+ZsDT3n+FJLAhERERncefkWITqNSisbsSSHblSx+kzLAhERERn4aWS46GLEwEA7/6cjap+MueHBYGIiOgcrk6JwLBwPcxWG97cdEzqOH2CBYGIiOgcZDIBT54cnrR0Vz6yy+skTtT7WBCIiIg6YcKgQFw0JAR2h4iX1h6ROk6vY0EgIiLqpMdnD4ZCJmBTZjl2ZFdKHadXsSAQERF10qAgLW4eFw0AePGHI7A7RIkT9R4WBCIioi7420UJ0GkUOFxiwsp9hVLH6TUsCERERF3g76PCfdPiAAAL1mWhockzFydkQSAiIuqi2ycMRJS/F8rNVnz0S47UcXoFCwIREVEXaZRyPDprMADgw605KDNZJE7kfCwIRERE3XBpUhhGRfuisdmOV9dnSR3H6VgQiIiIukEQBDx56VAAwNd7C3GouFbiRM7FgkBERNRNowf44bIRYRBF4N9rj0AUPeeyRxYEIiKiHnh01mCo5DJsz67C5qxyqeM4DQsCERFRD0T5e2P+xIEAgH/9cATNdoe0gZyEBYGIiKiH7pkWB38fFY5X1OOznXlSx3EKpxaEjYfL8PjKdCxYl4nKfrJeNhERkcFLiQdnJgAAXt94FFUe8B7otIJQYGzAstR8lJusyCwxe0yDIiIi6oy5Y6IxNEwPs8WGV9YflTpOjzmtIJgszW1umy2eOXqSiIjoTOQyAf+8YhgAYPnufGQUufdlj04rCAkhOsSFaFs2KhMwa3ioszZNRETkFsbG+Lde9vjc94fc+rJHhbM2pJTL8PDMROQZG2DwUiJQq3bWpomIiNzGE7OHYOORMuzOrcaa9BJcnhwudaRucepJigq5DIOCtCwHRETUb4X7euHuC1pWe3xp7RE0NtklTtQ9vMyRiIjIyf5yQSwifL1QXGvB+1uPSx2nW1gQiIiInEyjlOPJS4cAAD7cehyF1Q0SJ+o6pxeErFIznv02A89+m4EjJSZnb56IiMgtXDI8FOfH+sNqc+Dfa49IHafLnFoQRFHEu5uzUVjdiMLqRryzORt2h/uewUlERNRdgiDg2cuHQSYAaw+WYsfxSqkjdYlTC4LNIaKh6ff5B5Ymu8fMpCYiIuqqIWF63DxuAADgn98dcqv3RKcWBKVchplDf59/cOGQEGiUcmc+BBERkVt5cGYC/H1UOFpWh8XbT0gdp9OcNgfhlOvHRGH8oACIIhAd4O3szRMREbkVX28VHrtkMB5ZkY43Nh7D5cnhCDN4SR3rnHrlKoYof2+WAyIiopOuHRWJ0QP80NBkxwtrDksdp1N4mSMREVEvk8kEvHjlcMhlAtYeLMXWoxVSRzonFgQiIqI+MCRMj9vHDwQAPPttBizNrj1h0annIGw8XIZNmWXw91Fh/sQYjlzuoiabA5/uzEV2eR2Ghrec+SqXCVLH8ngr9hZiT64REb5e+NOkGPionX5qDhERAOCBGfFYk16M3KoGfLg1B3+7KF7qSB1y2h6EAmMDlqXmo9xkRWaJGZ/tzHPWpvuN9YdLsfN4FSrMVmzNqsAvbrALyt3tz6/GjwdLUGG24kBBDVbuL5I6EhF5MJ1GiacuGwoAeHdLNvKq6iVO1DGnFQSTpbnNbbPF1sE9qSOmxrY/s9rG5g7uSc7yx5+x2cKfORH1rstHhGFiXACabA788zvXXRLaaQUhIUSHuBBty0ZlAmYNDz3HV9AfTU0Mat29bfBWYlJ8oMSJPN95A/0RYtAAANRKGS4aEiJxIiLydIIg4Pk5w6GUC9icVYF1h8qkjnRGgtjN6mIymWAwGFBbWwu9Xg8AsNkdyDM2wOCl5PkH3VRntaG0thHhvl7wVvFYeF+wNNtRWN2AQK0avt4qqeO4hMLCQkRFRbV5fhORcy1Yl4l3Nx9HqF6DDf+YAp1G2SePe6b37zNx6lUMCrkMg4K0LAc9oFUrEBesYznoQxqlHHHBOpYDIupT90+Px8AAb5SaLPjvT1lSx2mHlzkSERFJQKOU499XJQEAPt+Vh715RokTtcWCQEREJJEJcYG4bnQkRBF47JuDsNpcZzaCUwvCxsNleHxlOhasy0RlndWZm3Z5Zksz3tx4DI+vTMdqXipHRESd9OSlQxCoVeFYeR0+2JIjdZxWnIPgJCv2FiK9sAblJiu+TytGRlGt1JGIiMgN+Hqr8MzlwwAA727ORna5WeJELTgHwUn+OMPgjz8PIiKijlw+IgzTEoPQZHfg8ZUH4XBIPxuBcxCcZMbQECjlLT/OcF8vjIzylTYQERG5DUEQ8OJVSfBWybE7txrLdudLHYlzEJypur4JVfVWRPl7Q62QSx2HqNs4B4FIGot+PYHn1xyGTq3Ahn9cgNCTg9yciXMQJODno0JcsI7lgIiIuuX2CQORHOULs9WGx1emSzqGmZc5EhERuQi5TMAr146ASi7D5qwKrNhbKFkWFgQiIiIXEh+iwwMzEgAAz685jNJaiyQ5WBCIiIhczJ2TY1oONVhseEyiQw0sCERERC5GIZfh1etGQKWQYUtWBb6W4FADCwIREZELigvW4cGThxpe+P4wimsa+/TxWRCIiIhc1J8nxyIluuWqhsdWHuzTQw0sCERERC5KLhOw4NpkqBQy/HK0Al/uLuizx2ZBICIicmFxwVo8NPPkoYY1h5FXVd8nj8uCQERE5OLumBSLsTH+qG+y44EvD8Bmd/T6Y7IgEBERuTi5TMBr1ydDp1ZgX34N3ttyvNcfkwXBDVltdny49Tge+yYdn/+WJ+koTiIi6huRft544crhAIA3Nx3D/vzqXn08FgQ39OPBUqSeMKLCbMXmzHL8ml0pdSQiIuoDV6ZE4IrkcNgdIh748gDqrbZeeywWBDdksjS3vd3Ye/9AiIjItbwwZzjCDRrkVjXgxR8O99rjsCC4oWmJwfBWKwC0rCA5flCAxImIiKivGLyVeOX6ZAgCsCy1AOsPlfbK4yh6ZavUq6L8vfGvq4aj3GRBuK8XvFX8ayQi6k8mDArEXZNj8eEvOXhs5UEkR/kiRK9x6mNwD4Kb0muUiAvWsRwQEfVT/5iZgKFhehjrm/C35fthdzj3hHUWBCIiIjekVsjxzk0p8FbJ8VuOEW//fMyp22dBICIiclOxQVr866rfL33ccdx5V7WxILgYS7Md723JxmPfpGN5aj5nHFCvOVhYi6dXZ+Cf3x1Cdnmd1HGIqJuuSonEdaMjIYrA35cfQGWd1SnbZUFwMd8dKMbe3GpUmK3YcLgMu04YpY5EHqjJ5sD7W7NRXNOIAmMD3tucLXUkIuqB5+YMQ1ywFuVmKx78Kg0OJ5yPwILgYtrPOGju4J5E3We12WFt/n2Wu9lq494qIjfmrVLg3ZtGQa2QYevRCny0LafH22RBcDHTBwdDo5IDAAK1aoyL4YwDcj6dRokpCUGtty8ZHgpBECRMREQ9lRiqw3NXDAMALFiXhT25PdsDLYjd/LXBZDLBYDCgtrYWer2+RyGordrGZlSYLYj084ZGKZc6DnmwvKp6yAQBUf7ebT5eWFiIqKgoPr+J3Iwoivjb8gP4Lq0YIXo1fvjrZARq1W3u09n3b+5BcEEGr5YZBywH1NsGBPi0KwdE5L4EQcBLVydhUJAPykzWHs1HYEEgIiLyID5qBT64ZTS8VXKkF9R2+yoljuEjIiLyMPEhOrxzUwpiA7UYGOjTrW2wIBD1UJPNgU925OJ4RR2Ghutx87gBkMt4wh8RSWv64JAefT0PMRD10LpDpfgtpwoVZiu2ZlXgl6MVUkciIuoxFgSiHmo3u8LC2RVE5P5YEIh6aGpiMHzULUfrDN5KTIwLlDgREVHP8RwEoh6K8PXCv64ajjKTBeG+XlyCm4g8Al/JiJxAp1FCp1FKHYOIyGm6XRBODWA0mUxOC0NEruHU85rPbyLPc+p5fa5Byt0uCGazGQAQFRXV3U0QkYvj85vIc5nNZhgMhg4/3+21GBwOB4qLi6HT6bjIC5GHsdvtyM7ORlxcHORyjvwm8iSiKMJsNiM8PBwyWcfXKnS7IBAREZHn4mWORERE1A4LAhEREbXDgkBERETtsCAQERFROywIRERE1A4LAhEREbXDgkBERETtsCAQERFROywIbmjevHkQBAGCIECpVCImJgaPPPIILBZL631OfV4QBPj4+CA+Ph7z5s3D3r1722xry5Ytbe576s9TTz3Vep/09HRMnjwZGo0GUVFR+O9//9tmG1OnTj3jNi699NLW+4iiiGeeeQZhYWHw8vLCRRddhGPHjvXST4iof7Hb7ZgwYQKuvvrqNh+vra1FVFQUnnzySQA44/N0+fLl7bbX2NgIf39/BAYGwmq19sn3QC5IJLdz++23i7NmzRJLSkrE/Px8cdWqVaJerxcfeeSR1vsAEBcvXiyWlJSIJ06cENetWydec801olwuFz/55JPW+23evFkEIGZlZYklJSWtf8xmsyiKolhbWyuGhISIN998s5iRkSEuW7ZM9PLyEj/88MPWbVRVVbX52oyMDFEul4uLFy9uvc/LL78sGgwGcfXq1WJaWpp4xRVXiDExMWJjY2Pv/8CI+oGsrCzRy8tL/Pzzz1s/duutt4ojRowQrVarKIptXxdO/TnTc/Czzz4TJ02aJE6cOFFcvnx5n30P5FpYENzQ7bffLs6ZM6fNx66++moxJSWl9TYAcdWqVe2+9rbbbhN1Op1oNBpFUfy9IFRXV5/xsd577z3Rz8+v9QVGFEXx0UcfFRMTEzvM9/rrr4s6nU6sq6sTRVEUHQ6HGBoaKi5YsKD1PjU1NaJarRaXLVsmiqIojh8/vk3BEUVRLC8vFxUKhbh169YOH4uIfvfmm2+Kfn5+YnFxsbh69WpRqVSKBw4caP18R68LfzR16lTxgw8+EN9//31xxowZrR//8MMPxbCwMNFut7e5/xVXXCHOnz/fad8HuQYeYvAAGRkZ2LFjB1Qq1Tnv+8ADD8BsNmPDhg2d2vbOnTsxZcqUNtu++OKLkZWVherq6jN+zcKFCzF37lz4+PgAAE6cOIHS0lJcdNFFrfcxGAwYN24cdu7cCQC4+eabsXz58jbLj3755ZcIDw/H5MmTO5WVqL+7//77kZycjFtvvRV33XUXnnnmGSQnJ7e5z7333ovAwECMHTsWixYtarfk7/Hjx7Fz505cf/31uP7667Ft2zbk5eUBAK677jpUVVVh8+bNrfc3Go346aefcPPNN/f+N0h9igXBTa1ZswZarRYajQZJSUkoLy/Hww8/fM6vGzx4MAAgNze3zccjIyOh1Wpb/1RVVQEASktLERIS0ua+p26Xlpa2235qaioyMjLw5z//ufVjp+53pu2c+tz111+P4uJi/Prrr62f/+KLL3DjjTdytVCiThIEAe+//z42bdqEkJAQPPbYY20+//zzz+Orr77Chg0bcM011+Cee+7B22+/3eY+ixYtwiWXXAI/Pz/4+/vj4osvxuLFiwEAfn5+uOSSS/DFF1+03n/FihUIDAzEtGnTev8bpD7FguCmpk2bhgMHDmDXrl24/fbbMX/+fFxzzTXn/LpTvy388U1327ZtOHDgQOsfPz+/buVauHAhkpKSMHbs2C59XVBQEGbOnImlS5cCaNnrsHPnTv5WQtRFixYtgre3N06cOIHCwsI2n3v66acxceJEpKSk4NFHH8UjjzyCBQsWtH7ebrfjk08+wS233NL6sVtuuQVLliyBw+EA0LK375tvvmk9eXHp0qWYO3fuWZcNJvfEv1E35ePjg7i4OCQnJ2PRokXYtWsXFi5ceM6vO3LkCAAgJiamzcdjYmIQFxfX+ufUkz00NBRlZWVt7nvqdmhoaJuP19fXY/ny5bjjjjvafPzU/c60ndO3cfPNN2PFihVobm7GF198gaSkJCQlJZ3zeyKiFjt27MDrr7+ONWvWYOzYsbjjjjvaHUI43bhx41BYWNj6Zr9u3ToUFRXhhhtugEKhgEKhwNy5c5GXl4dNmzYBAC6//HKIoogffvgBBQUF2LZtG4u8h2JB8AAymQxPPPEEnnrqKTQ2Np71vm+88Qb0en2b8wHOZvz48fjll1/Q3Nzc+rENGzYgMTGx3V6Gr7/+Glartc1vH0BL+QgNDW19gQEAk8mEXbt2Yfz48a0fmzNnDiwWC3766Sd88cUXfNEh6oKGhgbMmzcPd999N6ZNm4aFCxciNTUVH3zwQYdfc2pvoVqtBvD7+UOn7008cOAA5s6d2/oLiEajwdVXX42lS5di2bJlSExMxKhRo/rke6Q+JukpktQtZ7qKobm5WYyIiGi9UgCnXc6Um5srrl+/vvUyx6VLl7Z+3bmuYqipqRFDQkLEW2+9VczIyBCXL18uent7t7nM8ZRJkyaJN9xwwxm38/LLL4u+vr7it99+K6anp4tz5sw542WON998s5icnCwKgiDm5eV14adC1L/99a9/FePi4sT6+vrWj33wwQeiVqsVT5w4IX733Xfixx9/LB48eFA8duyY+N5774ne3t7iM888I4piy1VDSqVS/PHHH9tte+3ataJarRarqqpEURTFDRs2iGq1WkxMTBRfeOGFvvkGqc+xILihMxUEURTFl156SQwKChLr6upEAK1/NBqNOGjQIPH2228X9+7d2+ZrzlUQRFEU09LSxEmTJolqtVqMiIgQX3755Xb3yczMFAGI69evP+M2HA6H+PTTT4shISGiWq0WL7zwQjErK6vd/dauXSsCEKdMmXL2HwIRtdqyZYsol8vFbdu2tfvczJkzxenTp4tr164VR44cKWq1WtHHx0dMTk4WP/jgg9ZLFl955RXR19dXbGpqarcNq9Uq+vr6im+++aYoiqJot9vFsLAwEYB4/Pjx3v3mSDKCKJ7lABURERH1SzwHgYiIiNphQSAiIqJ2WBCIiIioHRYEIiIiaocFgYiIiNphQSAiIqJ2WBCIiIioHRYEIiIiaocFgYiIiNphQSAiIqJ2WBCIiIioHRYEIiIiauf/AdPYwjWp5p0bAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "model1.model_corr()" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "db30bcd2-24ca-4a44-a7ea-6b463da38e62", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACn5ElEQVR4nO2deXxU1dnHf5OBBBACJgQISVjcEFRsQaGoKCiKrVUwUhEVxQVcQAm0uGA0xv1VFKwWrYpgpQEDiUsrgoZ38paKtlbFqiAKRoEIyKJBWRJm8rx/3LmTWe5y7jp3Js/38zmfSe7c5dw7M/f87rMdHxERGIZhGIZh0oSMZHeAYRiGYRjGTljcMAzDMAyTVrC4YRiGYRgmrWBxwzAMwzBMWsHihmEYhmGYtILFDcMwDMMwaQWLG4ZhGIZh0goWNwzDMAzDpBUsbhiGYRiGSStY3DAMk9JMmjQJHTt2FFrX5/Ph3nvvjfy/aNEi+Hw+fPPNN850zgZSoY8M4zVY3DBMCvLrX/8aRx55JHbu3JnwXkNDA/Lz8zF06FA0NzcnvP/pp59i3Lhx6N27N9q1a4eCggKce+65eOqpp9zoOhPm3nvvhc/ni7QOHTpgwIABKC0txb59+2w5RkVFBebNm2fLvhgmlWBxwzApyPz589HU1IQZM2YkvDd79mzs3r0bzz33HDIyYn/ia9euxSmnnIJPPvkEkydPxtNPP43rr78eGRkZePLJJ93qvmeYOHEiDh48iN69eyetD8888wxefvllPPHEEzj++OPx4IMP4vzzz4cd0/6xuGFaK22S3QGGYYzTt29flJWV4fbbb8ekSZNw3nnnAQA++OADPPvss/jDH/6Ak08+OWG7Bx98EJ07d8YHH3yALl26xLz3/fffW+4XEeHQoUNo37695X25gd/vh9/vT2ofxo0bh65duwIAbrzxRlxyySWorq7G+++/j2HDhiW1bwyTqrDlhmFSlJkzZ2LgwIG4+eabcejQIYRCIdx4443o3bs3ysrKFLfZvHkzTjjhhARhAwDdunVLWLZ48WIMGTIEHTp0wJFHHokzzzwTb7/9duT9Pn364Le//S1WrVqFU045Be3bt8ef//xnAMDChQtx9tlno1u3bsjKysKAAQPwzDPPJBxD3kdtbW1kHyeddBJqa2sBANXV1TjppJPQrl07DB48GB9//LHiuX399dcYPXo0jjjiCPTs2RP33XefrvVDKZ5F7s8///lPDBkyBO3atcNRRx2Fv/zlLwnb//e//8VZZ52F9u3bo7CwEA888AAWLlxoKUbm7LPPBgDU1dVprjd//nyccMIJyMrKQs+ePTF16lT8+OOPkfdHjBiBN998E99++23E9dWnTx9TfWKYVIMtNwyTorRp0wbPPfccTjvtNNx///3o1q0bPvroI6xcuRIdOnRQ3KZ3795477338Nlnn+HEE0/U3H95eTnuvfdenHbaabjvvvuQmZmJf/3rX/jf//3fiKUIADZu3IgJEybghhtuwOTJk9GvXz8AkrvlhBNOwEUXXYQ2bdrgb3/7G26++WY0Nzdj6tSpMcfatGkTLr/8ctxwww248sorMWfOHFx44YV49tlnMXv2bNx8880AgIcffhiXXnopNm7cGONyC4VCOP/88/GrX/0Kjz76KFauXImysjIEg0Hcd999hq/tpk2bMG7cOFx33XW4+uqr8eKLL2LSpEkYPHgwTjjhBABAfX09Ro4cCZ/PhzvvvBNHHHEEXnjhBWRlZRk+XjSbN28GAOTm5qquc++996K8vByjRo3CTTfdhI0bN+KZZ57BBx98gHfffRdt27bFXXfdhYaGBmzbtg1z584FAOHAa4ZJeYhhmJRm2rRp1LZtW+rYsSNNmDBBc923336b/H4/+f1+GjZsGN122220atUqampqilnvq6++ooyMDLr44ospFArFvNfc3Bz5u3fv3gSAVq5cmXCsAwcOJCwbPXo0HXXUUTHL5H2sXbs2smzVqlUEgNq3b0/ffvttZPmf//xnAkCBQCCy7OqrryYAdMstt8T08YILLqDMzEzatWtXZDkAKisri/y/cOFCAkB1dXUJ/fnHP/4RWfb9999TVlYW/f73v48su+WWW8jn89HHH38cWbZnzx7KyclJ2KcSZWVlBIA2btxIu3btorq6Ovrzn/9MWVlZ1L17d9q/f79iH7///nvKzMyk8847L+azefrppwkAvfjii5FlF1xwAfXu3VuzHwyTjrBbimFSnAcffBC5ubnIyMiIPKGrce655+K9997DRRddhE8++QSPPvooRo8ejYKCArzxxhuR9V577TU0NzfjnnvuSQhK9vl8Mf/37dsXo0ePTjhWdNxNQ0MDdu/ejbPOOgtff/01GhoaYtYdMGBATHzJ0KFDAUguml69eiUs//rrrxOON23atJg+Tps2DU1NTaipqVG/ICoMGDAAw4cPj/yfl5eHfv36xRx35cqVGDZsGH7xi19EluXk5OCKK64wdKx+/fohLy8Pffv2xQ033IBjjjkGb775pqr1raamBk1NTSgpKYn5bCZPnozs7Gy8+eabho7PMOkIu6UYJsXJzs5Gv379sHv3bnTv3h2hUAi7du2KWScnJweZmZkAgFNPPRXV1dVoamrCJ598gldffRVz587FuHHjsG7dOgwYMACbN29GRkYGBgwYoHv8vn37Ki5/9913UVZWhvfeew8HDhyIea+hoQGdO3eO/B8tYABE3isqKlJc/sMPP8Qsz8jIwFFHHRWz7LjjjgMAU7Ev8f0BgCOPPDLmuN9++61iwO8xxxxj6FhVVVXIzs5G27ZtUVhYiKOPPlpz/W+//RYAIu4/mczMTBx11FGR9xmmNcPihmHSjK1btyYIjkAggBEjRsQsy8zMxKmnnopTTz0Vxx13HK655hosW7ZMNRhZDaXMqM2bN+Occ87B8ccfjyeeeAJFRUXIzMzEihUrMHfu3IT6O2oZS2rLyYY0aS3cPO6ZZ54ZyZZiGMYeWNwwTJrRo0cPvPPOOzHLlNLCoznllFMAANu3bwcAHH300Whubsb69etj3C6i/O1vf0NjYyPeeOONGCtIIBAwvC8Rmpub8fXXX0esNQDw5ZdfAoBjGUK9e/fGpk2bEpYrLbP7uIAUyB1trWpqakJdXR1GjRoVWRbvQmSY1gLH3DBMmtGuXTuMGjUqph155JEAJHGhZH1YsWIFgBZXx9ixY5GRkYH77rsvwcoiYr2QLR/R6zY0NGDhwoXmTkqAp59+OvI3EeHpp59G27Ztcc455zhyvNGjR+O9997DunXrIsv27t2Lv/71r44cT2bUqFHIzMzEH//4x5jru2DBAjQ0NOCCCy6ILDviiCMS4psYpjXAlhuGaUXccsstOHDgAC6++GIcf/zxaGpqwtq1a/HKK6+gT58+uOaaawBIcSN33XUX7r//fgwfPhzFxcXIysrCBx98gJ49e+Lhhx/WPM55552HzMxMXHjhhbjhhhvw888/4/nnn0e3bt0i1iE7adeuHVauXImrr74aQ4cOxVtvvYU333wTs2fPRl5enu3HA4DbbrsNixcvxrnnnotbbrklkgreq1cv7N271zGrSV5eHu68806Ul5fj/PPPx0UXXYSNGzdi/vz5OPXUU3HllVdG1h08eDBeeeUVzJw5E6eeeio6duyICy+80JF+MYyXYHHDMK2IOXPmYNmyZVixYgWee+45NDU1oVevXrj55ptRWloaU9zvvvvuQ9++ffHUU0/hrrvuQocOHTBw4EBMnDhR9zj9+vXD8uXLUVpaij/84Q/o0aMHbrrpJuTl5eHaa6+1/bz8fj9WrlyJm266CbNmzUKnTp1QVlaGe+65x/ZjyRQVFSEQCODWW2/FQw89hLy8PEydOhVHHHEEbr31VrRr186xY997773Iy8vD008/jRkzZiAnJwdTpkzBQw89hLZt20bWu/nmm7Fu3TosXLgQc+fORe/evVncMK0CHzkdmccwDNOKKCkpwZ///Gf8/PPPSZ/agWFaKxxzwzAMY5KDBw/G/L9nzx68/PLLOOOMM1jYMEwSYbcUwzCMSYYNG4YRI0agf//+2LlzJxYsWIB9+/bh7rvvTnbXGKZVw+KGYRjGJL/5zW+wfPlyPPfcc/D5fBg0aBAWLFiAM888M9ldY5hWTVLdUv/4xz9w4YUXomfPnvD5fHjttdd0t6mtrcWgQYOQlZWFY445BosWLXK8nwzDMEo89NBD+PLLL3HgwAHs378fa9asiakzwzBMckiquNm/fz9OPvlk/OlPfxJav66uDhdccAFGjhyJdevWoaSkBNdffz1WrVrlcE8ZhmEYhkkVPJMt5fP58Oqrr2Ls2LGq69x+++1488038dlnn0WWXXbZZfjxxx+xcuVKF3rJMAzDMIzXSamYm/feey/B5Dt69GiUlJSobtPY2IjGxsbI/83Nzdi7dy9yc3O5NDnDMAzDpAhEhJ9++gk9e/ZERoa24ymlxM2OHTvQvXv3mGXdu3fHvn37cPDgQcUJ/B5++GGUl5e71UWGYRiGYRxk69atKCws1FwnpcSNGe68807MnDkz8n9DQwN69eqFrVu3Ijs7O4k9YxiGYRhGlH379qGoqAidOnXSXTelxE2PHj2wc+fOmGU7d+5Edna2otUGALKyspCVlZWwPDs7m8UNwzAMw6QYIiElKVWheNiwYVi9enXMsnfeeQfDhg1LUo8YhmEYhvEaSRU3P//8M9atW4d169YBkFK9161bhy1btgCQXEpXXXVVZP0bb7wRX3/9NW677TZ88cUXmD9/PiorKzFjxoxkdJ9hGIZhGA+SVHHzn//8B7/85S/xy1/+EgAwc+ZM/PKXv4zM5Lt9+/aI0AGAvn374s0338Q777yDk08+GY8//jheeOEFjB49Oin9ZxiGYRjGe3imzo1b7Nu3D507d0ZDQwPH3DAMw7Qimpub0dTUlOxuMBpkZmaqpnkbGb9TKqCYYRiGYczQ1NSEuro6NDc3J7srjAYZGRno27cvMjMzLe2HxQ3DMAyT1hARtm/fDr/fj6KiIt0CcExyaG5uxnfffYft27ejV69elgrtsrhhGIZh0ppgMIgDBw6gZ8+e6NChQ7K7w2iQl5eH7777DsFgEG3btjW9H5avDMMwTFoTCoUAwLKrg3Ee+TOSPzOzsLhhGIZhWgU8n6D3seszYnHDMAzDMExaweKGYRiGYZi0gsUNwzAMw3iQXbt24aabbkKvXr2QlZWFHj16YPTo0Xj33XcdPa7P54u07OxsnHrqqXj99ddj1qmursa5556LvLw8ZGdnY9iwYVi1apWj/TICixuGYRiGESIEoBbAkvCrtaBXPS655BJ8/PHHeOmll/Dll1/ijTfewIgRI7Bnzx5T+wuFQsJ1fhYuXIjt27fjP//5D04//XSMGzcOn376aeT9f/zjHzj33HOxYsUKfPjhhxg5ciQuvPBCfPzxx6b6ZjvUymhoaCAA1NDQkOyuMAzDMC5w8OBBWr9+PR08eNDCXqqIqJCIENUKw8vt54cffiAAVFtbq7velClTqFu3bpSVlUUnnHAC/e1vfyMiooULF1Lnzp3p9ddfp/79+5Pf76e6ujrdYwOgV199NfL/vn37CAA9+eSTmtsNGDCAysvLdfevhdZnZWT85jo3DMMwDKNJNYBxAOJnK6oPL18OoNjWI3bs2BEdO3bEa6+9hl/96lfIyspKWKe5uRm//vWv8dNPP2Hx4sU4+uijsX79evj9/sg6Bw4cwP/8z//ghRdeQG5uLrp162aoH8FgEAsWLACgnUrf3NyMn376CTk5OYb27xQsbhiGYRhGlRCA6UgUNggv8wEoATAGgF9hHXO0adMGixYtwuTJk/Hss89i0KBBOOuss3DZZZdh4MCBAICamhr8+9//xoYNG3DccccBAI466qiY/Rw+fBjz58/HySefbOj4EyZMgN/vx8GDB9Hc3Iw+ffrg0ksvVV1/zpw5+PnnnzXXcROOuWEYhmEYVdYA2KbxPgHYGl7PXi655BJ89913eOONN3D++eejtrYWgwYNwqJFiwAA69atQ2FhYUTYKJGZmRkRQ0aYO3cu1q1bh7feegsDBgzACy+8oGqVqaioQHl5OSorKw1bhpyCxQ3DMAzDqLLd5vWM0a5dO5x77rm4++67sXbtWkyaNAllZWUAgPbt2+tu3759e1OF8Xr06IFjjjkG5513HhYuXIjx48fj+++/T1hv6dKluP7661FZWYlRo0YZPo5TsLhhGIZhGFXybV7PGgMGDMD+/fsBAAMHDsS2bdvw5ZdfOnrMIUOGYPDgwXjwwQdjli9ZsgTXXHMNlixZggsuuMDRPhiFxQ3DMAzDqDIcQCGk2BolfACKwuvZx549e3D22Wdj8eLF+O9//4u6ujosW7YMjz76KMaMGQMAOOuss3DmmWfikksuwTvvvIO6ujq89dZbWLlypep+77zzTlx11VWG+1NSUoI///nPqK+vByC5oq666io8/vjjGDp0KHbs2IEdO3agoaHB3AnbDIsbhmEYhlHFD+DJ8N/xAkf+fx7sDCYGpGypoUOHYu7cuTjzzDNx4okn4u6778bkyZPx9NNPR9arqqrCqaeeigkTJmDAgAG47bbbNCed3L59O7Zs2WK4P+effz769u0bsd4899xzCAaDmDp1KvLz8yNt+vTpxk/WAXxEpBQCnrbs27cPnTt3RkNDA7Kzs5PdHYZhGMZhDh06hLq6OvTt2xft2rUzuZdqSFlT0cHFRZCEjb1p4K0Zrc/KyPjNqeAMwzAMo0sxpHTvNZCCh/MhuaLstdgw9sDihmEYhmGE8AMYkexOMAJwzA3DMAzDMGkFixuGYRiGYdIKFjcMwzAMw6QVLG4YhmEYhkkrWNwwDMMwDJNWsLhhGIZhGCatYHHDMAzDMExaweKGYRiGYZi0gsUNwzAMw3iQXbt24aabbkKvXr2QlZWFHj16YPTo0Xj33XcdP/bf//53nHXWWejUqRM6dOiAU089FYsWLYpZ55NPPsGECRNQVFSE9u3bo3///njyySeVd+gyXKGYYRiGYUQIhYA1a4Dt24H8fGD4cMDv3PQLl1xyCZqamvDSSy/hqKOOws6dO7F69Wrs2bPH1P5CoRB8Ph8yMrTtGk899RRKSkpw++2345lnnkFmZiZef/113Hjjjfjss88wZ84cAMCHH36Ibt26YfHixSgqKsLatWsxZcoU+P1+TJs2zVQfbYNaGQ0NDQSAGhoakt0VhmEYxgUOHjxI69evp4MHD5rfSVUVUWEhEdDSCgul5Q7www8/EACqra3VXW/KlCnUrVs3ysrKohNOOIH+9re/ERHRwoULqXPnzvT6669T//79ye/3U11dneb+tmzZQm3btqWZM2cmvPfHP/6RAND777+vuv3NN99MI0eO1D9BFbQ+KyPjN7ulGIZhGEaL6mpg3Dhg27bY5fX10vLqatsP2bFjR3Ts2BGvvfYaGhsbFddpbm7Gr3/9a7z77rtYvHgx1q9fj0ceeQT+KGvSgQMH8D//8z944YUX8Pnnn6Nbt26ax12+fDkOHz6MP/zhDwnv3XDDDejYsSOWLFmiun1DQwNycnIEz9I52C3FMAzDMGqEQsD06ZKtJh4iwOcDSkqAMWNsdVG1adMGixYtwuTJk/Hss89i0KBBOOuss3DZZZdh4MCBAICamhr8+9//xoYNG3DccccBAI466qiY/Rw+fBjz58/HySefLHTcL7/8Ep07d0Z+fn7Ce5mZmTjqqKPw5ZdfKm67du1avPLKK3jzzTeNnKojsOWGYRiGYdRYsybRYhMNEbB1q7SezVxyySX47rvv8MYbb+D8889HbW0tBg0aFAnsXbduHQoLCyPCRonMzMyIGLKLzMzMhGWfffYZxowZg7KyMpx33nm2Hs8MLG4YhmEYRo3t2+1dzyDt2rXDueeei7vvvhtr167FpEmTUFZWBgBo37697vbt27eHz+cTPt6xxx6LhoYGfPfddwnvNTU1YfPmzQliav369TjnnHMwZcoUlJaWCh/LSVjcMAzDMIwaCu4ZS+tZZMCAAdi/fz8AYODAgdi2bZuqm8gM48aNQ5s2bfD4448nvPfss8/iwIEDuOqqqyLLPv/8c4wcORJXX301HnzwQdv6YRWOuWEYhmEYNYYPBwoLpeBhpbgbn096f/hwWw+7Z88e/O53v8O1116LgQMHolOnTvjPf/6DRx99FGPGjAEAnHXWWTjzzDNxySWX4IknnsAxxxyDL774Aj6fD+eff77ifu+8807U19fjL3/5i+L7vXr1wqOPPoo//OEPaNeuHSZOnIi2bdvi9ddfx+zZs/HAAw/gxBNPBCC5os4++2yMHj0aM2fOxI4dOwAAfr8feXl5tl4Po7C4YRiGYRg1/H7gySelrCifL1bgyO6eefNsr3fTsWNHDB06FHPnzsXmzZtx+PBhFBUVYfLkyZg9e3ZkvaqqKvzhD3/AhAkTsH//fhxzzDF45JFHVPe7fft2bNmyRfPYM2bMwFFHHYXHH38cTz75ZMRStGTJElx22WWR9ZYvX45du3Zh8eLFWLx4cWR579698c0335g8c3vwESlJ0fRl37596Ny5MxoaGpCdnZ3s7jAMwzAOc+jQIdTV1aFv375o166duZ1UV0tZU9HBxUVFkrApLraln15l7969OOecc5CdnY233noLHTp0cOxYWp+VkfGbY24YhmEYRo/iYuCbb4BAAKiokF7r6tJe2ABATk4OampqcM455+C9995LdneEYLcUwzAMw4jg9wMjRiS7F0khNzcX99xzT7K7IQxbbhiGYRiGSStY3DAMwzAMk1awuGEYhmEYJq1gccMwDMMwTFrB4oZhGIZhmLSCxQ3DMAzDMGkFixuGYRiGYdIKFjcMwzAM00qpra2Fz+fDjz/+mOyu2AqLG4ZhGIbxIJMmTYLP58ONN96Y8N7UqVPh8/kwadIk1/t17733wufzwefzwe/3o6ioCFOmTMHevXsj6+zduxe33HIL+vXrh/bt26NXr1649dZb0dDQ4EofWdwwDMMwjADNAL4B8Gn4tdmFYxYVFWHp0qU4ePBgZNmhQ4dQUVGBXr16udADZU444YTIJJwLFy7EypUrcdNNN0Xe/+677/Ddd99hzpw5+Oyzz7Bo0SKsXLkS1113nSv9Y3HDMAzDMDpsAPAIgHsA3B9+fSS83EkGDRqEoqIiVFdXR5ZVV1ejV69e+OUvfxmzbmNjI2699VZ069YN7dq1wxlnnIEPPvggZp0VK1bguOOOQ/v27TFy5EjTs3e3adMGPXr0QEFBAUaNGoXf/e53eOeddyLvn3jiiaiqqsKFF16Io48+GmeffTYefPBB/O1vf0MwGDR1TCOwuGEYhmEYDTYA+COAjwF0BdAv/PpxeLnTAufaa6/FwoULI/+/+OKLuOaaaxLWu+2221BVVYWXXnoJH330EY455hiMHj064i7aunUriouLceGFF2LdunW4/vrrcccdd1ju3zfffINVq1YhMzNTcz15Nu82bZyf1pLFDcMwDMOo0AzgVQC7AQwAkA3AH34dEF7+Gpx1UV155ZX45z//iW+//Rbffvst3n33XVx55ZUx6+zfvx/PPPMMHnvsMfz617/GgAED8Pzzz6N9+/ZYsGABAOCZZ57B0Ucfjccffxz9+vXDFVdcYTpm59NPP0XHjh3Rvn179O3bF59//jluv/121fV3796N+++/H1OmTDF1PKPwrOAMwzAMo8IWAF8AKALgi3vPB6AQkuVmC4A+DvUhLy8PF1xwARYtWgQiwgUXXICuXbvGrLN582YcPnwYp59+emRZ27ZtMWTIEGzYINmWNmzYgKFDh8ZsN2zYMFN96tevH9544w0cOnQIixcvxrp163DLLbcorrtv3z5ccMEFGDBgAO69915TxzMKW24YhmEYRoWfABwCcITK+0eE3//J4X5ce+21WLRoEV566SVce+21Dh9Nn8zMTBxzzDE48cQT8cgjj8Dv96O8vDxhvZ9++gnnn38+OnXqhFdffRVt27Z1pX8sbhiGYRhGhU4A2gHYr/L+/vD7nRzux/nnn4+mpiYcPnwYo0ePTnj/6KOPRmZmJt59993IssOHD+ODDz7AgAEDAAD9+/fHv//975jt3n//fVv6V1paijlz5uC7776LLNu3bx/OO+88ZGZm4o033kC7du1sOZYILG4YhmEYRoVeAI4HsBUAxb1HALYB6B9ez0n8fj82bNiA9evXw+/3J7x/xBFH4KabbsKsWbOwcuVKrF+/HpMnT8aBAwci6dc33ngjvvrqK8yaNQsbN25ERUUFFi1aFLOf+vp6HH/88QkiSI9hw4Zh4MCBeOihhwC0CJv9+/djwYIF2LdvH3bs2IEdO3YgFAqZuwgGYHHDMAzDMCpkALgYUnbUegANAILh1/Xh5WPhzmCanZ2N7Oxs1fcfeeQRXHLJJZg4cSIGDRqETZs2YdWqVTjyyCMBAL169UJVVRVee+01nHzyyXj22WcjYkTm8OHD2LhxIw4cOGC4fzNmzMALL7yArVu34qOPPsK//vUvfPrppzjmmGOQn58faVu3bjW8b6P4iChejKY1+/btQ+fOnSMpaQzDMEx6c+jQIdTV1aFv376mXSMbIGVNfQEpxqYdJIvN2PArYw9an5WR8ZuzpRiGYRhGh/6Q6ttsgRQ83AmSK4rdH96ExQ3DMAzDCJAB59K9GXth0ckwDMMwTFqRdHHzpz/9CX369EG7du0wdOhQ3QjtefPmRWYZLSoqwowZM3Do0CGXesswDMMwjNdJqrh55ZVXMHPmTJSVleGjjz7CySefjNGjR+P7779XXL+iogJ33HEHysrKsGHDBixYsACvvPIKZs+e7XLPGYZhGIbxKkkVN0888QQmT56Ma665BgMGDMCzzz6LDh064MUXX1Rcf+3atTj99NNx+eWXo0+fPjjvvPMwYcIEw/n4DJOKNAP4BsCn4Vcn57JhGIZJZZImbpqamvDhhx9i1KhRLZ3JyMCoUaPw3nvvKW5z2mmn4cMPP4yIma+//horVqzAb37zG9XjNDY2Yt++fTGNYVKNDQAeAXAPgPvDr4/A+dmIGYZhUpGkZUvt3r0boVAI3bt3j1nevXt3fPHFF4rbXH755di9ezfOOOMMEBGCwSBuvPFGTbfUww8/rDjfBcOkChsA/BHS7MNFkOay2Q/gY0hVU28F19lgGIaJJukBxUaora3FQw89hPnz5+Ojjz5CdXU13nzzTdx///2q29x5551oaGiINDcqIzKMXTRDKhy2G8AAANkA/OHXAeHlr4FdVAzDMNEkzXLTtWtX+P1+7Ny5M2b5zp070aNHD8Vt7r77bkycOBHXX389AOCkk07C/v37MWXKFNx1113IyEjUallZWcjKyrL/BBjGBbZAqohaBMAX954PQCEky84WcP0NhmGMU1tbi5EjR+KHH35Aly5dkt0d20ia5SYzMxODBw/G6tWrI8uam5uxevVqDBs2THGbAwcOJAgYeQKxVjaLBNNK+AlSqfcjVN4/Ivz+T671iGEYt5g0aRJ8Ph9uvPHGhPemTp0Kn8+HSZMmud8xAHv37kVJSQl69+6NzMxM9OzZE9deey22bNkSs97DDz+MU089FZ06dUK3bt0wduxYbNy40fH+JdUtNXPmTDz//PN46aWXsGHDBtx0003Yv38/rrnmGgDAVVddhTvvvDOy/oUXXohnnnkGS5cuRV1dHd555x3cfffduPDCCxVnSWWYVKcTpDls9qu8vz/8fifXesQwrZfmZuCbb4BPP5Vem13wBxcVFWHp0qU4ePBgZNmhQ4dQUVGBXr2cnotcmb179+JXv/oVampq8Oyzz2LTpk1YunQpNm3ahFNPPRVff/11ZN3/+7//w9SpU/H+++/jnXfeweHDhyOzhTtJUqdfGD9+PHbt2oV77rkHO3bswC9+8QusXLkyEmS8ZcuWGEtNaWkpfD4fSktLUV9fj7y8PFx44YV48MEHk3UKDOMovQAcDyl4eABiXVMEYBuAQeH1GIZxjg0bgFdfBb74Ajh0CGjXDjj+eODii4H+Dkb0Dxo0CJs3b0Z1dTWuuOIKAEB1dTV69eqFvn37xqzb2NiIWbNmYenSpdi3bx9OOeUUzJ07F6eeempknRUrVqCkpARbt27Fr371K1x99dWG+3TXXXfhu+++w6ZNmyJhJL169cKqVatw7LHHYurUqXjrrbcAACtXrozZdtGiRejWrRs+/PBDnHnmmYaPLUrSA4qnTZuGb7/9Fo2NjfjXv/6FoUOHRt6rra3FokWLIv+3adMGZWVl2LRpEw4ePIgtW7bgT3/6U1r5CRkmmgwAFwPoCmA9gAYAwfDr+vDysfDAD5lh0pgNG4A//hH4+GOga1egXz/p9eOPpeUbHK7JcO2112LhwoWR/1988cWIhyOa2267DVVVVXjppZfw0Ucf4ZhjjsHo0aOxd+9eAMDWrVtRXFyMCy+8EOvWrcP111+PO+64w1BfmpubsXTpUlxxxRUJ8bHt27fHzTffjFWrVkWOGU9DQwMAICcnx9BxjcL3RIbxOP0hpXv/EsAeAF+GXweB08AZxmmamyWLze7dwIABQHY24PdLrwMGSMtfe81ZF9WVV16Jf/7zn/j222/x7bff4t1338WVV14Zs87+/fvxzDPP4LHHHsOvf/1rDBgwAM8//zzat2+PBQsWAACeeeYZHH300Xj88cfRr18/XHHFFYZjdnbt2oUff/wR/VXMVf379wcRYdOmTQnvNTc3o6SkBKeffjpOPPFEQ8c1Cs8KzjApQH8A/SBlRf0EKcamF/jphGGcZssWyRVVVAT44lIWfT6gsFCy3GzZAvTp40wf8vLycMEFF2DRokUgIlxwwQXo2rVrzDqbN2/G4cOHcfrpp0eWtW3bFkOGDMGGsGlpw4YNMd4RAKoJPHroJfFkZmYmLJs6dSo+++wz/POf/zR1TCOwuGGYFCEDnO7NMG7z009SjM0RKimLRxwB1NdL6znJtddei2nTpgGQJpxOFnl5eejSpUtEMMWzYcMGtGnTJiEeaNq0afj73/+Of/zjHygsLHS8n/zgxzAMwzAqdOokBQ+rJffs3y+938nhlMXzzz8fTU1NOHz4MEaPHp3w/tFHH43MzEy8++67kWWHDx/GBx98gAEDBgCQXEbxczG+//77hvqRkZGBSy+9FBUVFdixY0fMewcPHsT8+fNx8cUXo3PnzgAkC8+0adPw6quv4n//938TRI9TsLhhGIZhGBV69ZKyorZuBeI9MUTAtm1StpTTWdl+vx8bNmzA+vXrFUufHHHEEbjpppswa9YsrFy5EuvXr8fkyZNx4MABXHfddQCAG2+8EV999RVmzZqFjRs3oqKiIiZpBwDq6+tx/PHHa05I/eCDD6JHjx4499xz8dZbb2Hr1q34xz/+gdGjRyMjIwNPPvlkZN2pU6di8eLFqKioQKdOnbBjxw7s2LEjJrXdCVjcMAzDMIwKGRlSunfXrsD69UBDAxAMSq/r10vLx46V1nOa7OxsZGdnq77/yCOP4JJLLsHEiRMxaNAgbNq0CatWrcKRRx4JQErXrqqqwmuvvYaTTz4Zzz77LB566KGYfRw+fBgbN27EgQMHVI/TtWtXvP/++xg5ciRuuOEG9O3bF2eddRZCoRDWrVuH/Pz8yLrPPPMMGhoaMGLECOTn50faK6+8YvFqaOOjVlbad9++fejcuTMaGho0vyQMwzBMenDo0CHU1dWhb9++aNeunal9KNW56d9fEjZO1rlJFRYsWICbb74Zr7zyCsaOHWt6P1qflZHxmwOKGYZhGEaH/v2l+jZbtkjBw506Sa4oNyw2qcB1112HnJwcbNiwAaNHj0b79u2T2h8WNwzDMAwjQEaGc+ne6cDFF1+c7C5EYM3JMAzDMExaweKGYRiGYZi0gsUNwzAM0ypoZfkzKYldnxGLG4ZhGCatkevCNDU1JbknjB7yZ6RUy8cIHFDMMAzDpDVt2rRBhw4dsGvXLrRt2xYZnOLkSZqbm7Fr1y506NABbdpYkycsbhiGYZi0xufzIT8/H3V1dfj222+T3R1Gg4yMDPTq1Qu++FlKDcLihmEYhkl7MjMzceyxx7JryuNkZmbaYlljccMwDMO0CjIyMkxXKGZSC3Y8MgzDMAyTVrC4YRiGYRgmrWBxwzAMwzBMWsHihmEYhmGYtIIDihmGYRgmxWhu5hnKtWBxwzAMwzApxIYNwKuvAl98ARw6BLRrBxx/PHDxxUD//snunTdgccMwDMMwKcKGDcAf/wjs3g0UFQFHHAHs3w98/DGwdStw660scACOuWEYhmGYlKC5WbLY7N4NDBgAZGcDfr/0OmCAtPy116T1WjssbhiGYRgmBdiyRXJFFRUB8bMT+HxAYaFk2dmyJTn98xLslmIYxhuEQsCaNcD27UB+PjB8uPRYyjAMACl4+NAhyRWlxBFHAPX10nqtHbbcMAyTfKqrgT59gJEjgcsvl1779JGWMwwDQMqKatdOirFRYv9+6f1OndztlxdhccMwXiUUAmprgSVLpNdQKNk9cobqamDcOGDbttjl9fXSchY4DANASvc+/ngpcJgo9j0i6SfUv7+0XmuHxQ3DeJHWYskIhYDp0xPv1EDLspKS9BV2DGOAjAwp3btrV2D9eqChAQgGpdf166XlY8dyvRuAxQ3DeI/WZMlYsybxPKMhkh5T16xxr08M42H695fSvX/5S2DPHuDLL6XXQYM4DTwaDihmGC+hZ8nw+SRLxpgx6RFsu327vesxTCugf3+gXz+uUKwFixuG8RJGLBkjRrjWLcfIz7d3PSZ94Ow5TTIyJE81owyLGyY9SJcbYWuzZAwfLhXnqK9XtlbJxTuGD3e/b0zyqK6WLJjRQr+wEHjySaC4OHn9YlIGNmIxNhACUAtgSfjV5eDPdAq+bW2WDL9fGrAA5apkADBvXmoKVcYcrSnmjHEMH5HS41L6sm/fPnTu3BkNDQ3Izs5OdnfSgGoA0wFE34gKATwJwM4nrBCANQC2A8gHMByAv+VGGP81lgfG5ctT60kvFJKEmZ4lo64uvQZ8pSf1oiJJ2KTS58dYQ/7+q7lm0/X7zwhhZPxmccNYoBrAOADxXyH5CXw57BE4KgIq9ATQZ2b63QhlwQbECpxUFWyipItrkTFPba1kedUjEEiPmDPGEEbGb3ZLMSYJQRIcStpYXlYC6y4qWUDFC5h6YM2l6ZlGXFwsCZiCgtjlhYXpK2wASciMGAFMmCC9srBpfbS2mDPGMTigmDHJGiQKjmgIwNbweiNMHkNHQIne39y6EdppeSgultK92ZLBtCZaW8wZ4xgsbhiTCCsLC8fQEVCi9zc3boROZHfIlgyGaS1w9hxjE+yWYkwirCwsHENHGA2HFLvsU3nf55OCUp2+EXJ2B8PYA2fPMTbB4oYxyWkAuuqskwPJtWQ27kZHGPkhJWUBiQLHrRuhF+ZGai0TbDKtg9Yac8bYCosbxgTVAI4GsFtnvb0ARgHoE97GKLJpRoNiSElZcfdB126EyZ4bKZ1q/DCMTHEx8M03UlZURYX0WlfHwoYRhmNuGIOopX9rUR/exmhquGyauUR7tWIAYwCsKQW2D3A3+DaZ2R1qNX5kdxg/5TKpDMecMRZgccMYQCt7SQt5/RsBHIRkZgkX4dOlGEA5gDLt1fwARpwD85lZJklWdkdrm2CTYRjGAOyWYgygl/6txy4AVwIYCclVtQxi0zbcBW33lA9AESTB5DJydkd88KOMU0HNyXaHMepwDBTDJB0WN4wB7HStbANwKSShc3n4tQuAawE0xa0ru6d8UIgcDr/Og5glyGaSld3Bxc68CcdAMYwnYHHDGMDpejE/A1gIoD2A2+LeU40chn3TPJgkGdkdXOzMe3BJAIbxDDy3FKND9ISVGwHcD6DZpWPPAvCoRn+iJtD0Ak1NwPz5wObNwNFHAzffDGRmOnOs1jrBplfhCR8ZxnF44kwNWNwYQWnCSjfxAzgAwCGBYCdOVCgWOWZrnGDTi/CEjwzjODxxJmMDahNWukkIwPwkHl+QZLkjuNiZd+AYKIbxFJwKzihgNuU7nhxI+nmPhX1tttgHh0l2SjZPsOkNOAaKYTwFixtGAasp33LW0PPh13HhZWYEztEW+uECRlKynXJHxBQ783BMUjrDEz4yjKdgtxSjgFXTeXQGk1qWkwh+ADdb7IvDeModUQ2pflB0en0fmJv6gjEET/jIMJ6CxQ2jgBnTeR6AxQACAOoQm5pdDOCb8HsV4ddlADrq7HMmPB9M7Bl3hFqMlDz1BQscx+EYKIbxDJwtxSgQgvTEXw99V5L8lGqm1kwIwBUAKuOO44ckbOLTwD2IJ1Ky5c9LzT3mg2RNqwO7qFwgFOIYKIZxACPjN8fcMArIFYFFYmUKIVUHNvNU6gewFMBfIGVFbYYUY3MzPG+xkZHdEePGSUJGKSXbcXeEXowUAdgaXm+Eg/2wiVQXBzzhI8MkHRY3jApyrEx8nZtCAJMBHAv7AlYzAZRY3EcSkd0RSnVu5s1zwR0hGs+TAmnIyagXxDBM2sFuKUYHzr4RJmkWh1pIwcN6BOBpy41cLyj+lsRFCRmGAVco1oTFDZN+6MVIGYm5SZKY5ekLGIbRgSsUM0yrQo6RAqzNmp7EVHIj9YIYhmF0YHHDMGmB1VnTk5xK7ql6QQzDpDocUMwwaUMxgDEw7lbSmm6DIFl/SsL7dsgl5Jl6QQzDpANJt9z86U9/Qp8+fdCuXTsMHToU//73vzXX//HHHzF16lTk5+cjKysLxx13HFasWOFSbxnG6/ghBQ1PCL+KiBEjqeQOIU9fEF/dV8bnA4qKePoChmGESKq4eeWVVzBz5kyUlZXho48+wsknn4zRo0fj+++/V1y/qakJ5557Lr755hssX74cGzduxPPPP4+C+IqgDJNsQiGgthZYskR6DYWS3SMNPJBKztMXMAxjI0nNlho6dChOPfVUPP300wCA5uZmFBUV4ZZbbsEdd9yRsP6zzz6Lxx57DF988QXatm1r6picLcU4TsrVaqmFZ1LJla5dUZFL9YIYhvEyKZEK3tTUhA4dOmD58uUYO3ZsZPnVV1+NH3/8Ea+//nrCNr/5zW+Qk5ODDh064PXXX0deXh4uv/xy3H777fCrPNE1NjaisbEx8v++fftQVFTE4kYTrm1jmpSs1WJnKrkd3UnxCsUMwzhCSqSC7969G6FQCN27d49Z3r17d+zYsUNxm6+//hrLly9HKBTCihUrcPfdd+Pxxx/HAw88oHqchx9+GJ07d460oqIiW88j/UjFmaVDkKwPS8KvSXIBhUKS1UHpeUFeVlLiQReVXankdnUnPH3BhAnSKwsbhmEMkvSAYiM0NzejW7dueO655zB48GCMHz8ed911F5599lnVbe688040NDRE2tatW13ssdfQEwGpOLO0h8RYStdqsZpKzjAM4x2SlgretWtX+P1+7Ny5M2b5zp070aNHD8Vt8vPz0bZt2xgXVP/+/bFjxw40NTUhMzNxssWsrCxkZWXZ2/mUpBrK80Q9CWng8kA6sGFkMRbfZ1mMuTwop3ytFrOp5AzDMN4iaZabzMxMDB48GKtXr44sa25uxurVqzFs2DDFbU4//XRs2rQJzc3NkWVffvkl8vPzFYUNIyNikfFAOrAh9MQYIIkxF11AaVGrxUwqOcMwjLdIqltq5syZeP755/HSSy9hw4YNuOmmm7B//35cc801AICrrroKd955Z2T9m266CXv37sX06dPx5Zdf4s0338RDDz2EqVOnJusUUgBREVAvuD+vWB08KMa4VgvDMIwnSGqF4vHjx2PXrl245557sGPHDvziF7/AypUrI0HGW7ZsQUZGi/4qKirCqlWrMGPGDAwcOBAFBQWYPn06br/99mSdQgogKgJ2Ce7PK1YHD9RmiUeu1TJunCRkogOLuVYLwzCMa/Cs4GnPEkiBtnosBnAHPJMOrEstPFObJR6u1cIwDGM7RsZvnlsq7RG1tPQAMBlAmcJ7SUgHBnTqnQyHJLb0xFgSXEDFxcCYMSZrtZioMcR1YRiGYWJgcZP2iIiAHABXQz3uphCSsHHR6qBb5VeuzTIO0jlEn1uSxFg0cq0WQ+hltCltkmrVkBkmBeAHhpQnpercMGbQK9BGAPZAXdiUQ3JFuSxsxo1LrBlTXy8tr5Zr2KRTbRYTNYaErxPDMMJUVwN9+gAjRwKXXy699unDv6cUg2Nu0pZ498ZuADOQaBU4CEncKOFUnI2G6yUUkm4kasXwfD7JMlFXF/UklerTRcjTH6gFfit8DqauEyMMP7m3TlJy+pTWQ0rMLZUsWoe4UXNvPAEgDy0iIARglMD+4oNyrYgJHddLba30pKTbpYAJt49XqYXh4OhWeZ1cgl19rRN+YPA8KTG3FOMUWu6N8QD2oqVA2/eC+4xOp7Yy3YGA6yXlq/yawURae6u8Ti7Arr7WS0pPn8LEw+ImrTBatVc0k0pez8rcU4J9y+8m2KWdcKz6cCgkWUaWLJFeHZ/o0ujngDSphuwxnJ741PXvFWMIfmBIK1jcpBVGq/bKmVQqFXXhA1AUXk9UODVBeXJOwb4Nh06VX7lLM+DIBJnV1UDv3rHBhL17O/zEbuRzkDfhasi24+STOwepeh9+YEgrWNykFUbdG3qZVEBLOrWocCqEsstKsG/+76XYBiBx4E7I8LZ5tvLqauCSSyQXRDT19dJyxwYiI5+DvIkfeHIuAFLYJNnVkPVmn/coTj25s6srNeAHhrSCxU1aIfpEEe36UUun7gTgHkizRAPiwil+GgdZgHwluH2+FLS5fDlQENenhAxvGyfIDIWAKVO015kyxUFXgtG09mqgeIbKJoVJzOqwEpOVZJx4cnfa1cXYhzx9CqDwYJXsBwbGKJwtlVbIKcVqBftkugK4EpJwkTOdlgG4HsC+uHVzATwHqdCfSEaPEj60jMAGpncIhYA1TwHbZwgkZVmcZmH1amCUQOZYTQ1wzjnq71tOIRbJRJNjn0hlk0rA/zsDx7SLuH5FkAcKj9cekrNl6uuVxYiZbJl0zGpL9zR5nj7Fs3C2VKsl2r2hxW5Ibg75qfo2AJciUdgAUg2cS8LbaMWFaEGQXFqTw/8bcL2M6N6S3KV5/7QY5Fdba309W+Iq/JBOVu2kFWKfYjbxAf7fw31XkNFgdg/ixJN7ugWptobYoeJi4JtvJMFZUSG91tWxsEkxWNykHWMgCRVREVIP4DGB9W6EVCfHCsfCeEVhE5lEycC1uAqjQeNu4dV+GUTVJWrS1ZdOQaqtKXZInj5lwgTpNZ0sU60ES+KmqakJGzduRDAYtKs/jCWWQ3IfvQJtt1Q0ouvtAbAhvG+zP/R8SALmG0hupIrwq9b0DiYyicwg6hJQWs/VuAoTNXFcwav9MoGdT+5eClK1korOsUNMimFK3Bw4cADXXXcdOnTogBNOOAFbtmwBANxyyy145JFHbO0gI8ptAH4HZdeSXTwJSTwZvYHFCxA910s0JjKJzDBiBJCbq71Obq6yuHG1+JcTliw7spvyBXeTAhYKwL4nd68EqVp1J3GBOybFMCVu7rzzTnzyySeora1Fu3btIstHjRqFV155xbbOMaIsg5hrySp7IY1aRrBDgLgwQabfDzz3nPY6zz2nPAi5GldhtyWrGgj1BmpHAksul15DvWE4u6l6N9DHr5EkZZOFzQmcLq5nt6vLKHa4k9ItdohJf8gEvXr1ovfee4+IiDp27EibN28mIqKvvvqKOnXqZGaXrtHQ0EAAqKGhIdldsYkgEXUlIrjUSg2uX0REVTaea4CIKsKvQZv2G0VVFVFhIZH0LCq1wkJpuRqBQOz6ai0QsKuTROQjCoIoAKKK8GsQ0nLh611FVAWiwrh+FkJarruf8OdRVULkUzhfX7hVGe2Xi5j5vM0SDErfgYoK6TXowPdX6Zjx5xfzGfmIior0++L6d5xhEjEyfpsSN+3bt48Immhxs27dOsrOzjazS9dIP3ETIPeEDYiohogKSRqs1NbJI6LFpC5AXBApVjA6CMkDiM8nPoBYHeiqZhEV+uMGZb+0XOwkiapydURJLql/NlVEVCgJqnhxFL+vIj9RsNLY+blBVZXyZ+bzSc0JgeM2dokSM99xhrEZI+O3KbfUKaecgjfffDPyvy/sO37hhRcwbNgw6+YkxgB2mYFnQNtLKbsVRkA73dwH4FkAV0A5niYFirwZjbcwGldhNf6huhoYNwfYFuc+qW+WlovsJ1QLTN+jk7m9R1ovsQOIzDEmlCQVAtbk6ffJTVpLgKxd7iSvxA4xjChm1NOaNWuoY8eOdOONN1K7du1o+vTpdO6559IRRxxB//nPf8zs0jXSz3JTQ/ZYZAJEtEzlPR8luhVmEZE/bj1/eLkaYXeK0P5txC13gJKLo6go1gKgZi2Qn371rAW2uRlKBZ/oS+M7QJLlLvzZVQjsA5CuvZdoLW4Wu89T5DvOMA7huOXmjDPOwCeffIJgMIiTTjoJb7/9Nrp164b33nsPgwcPtld9MRpUA5hk0762Q3oar4IUsBpNfOBuNYA5SEyHaQ4vV7IcOFzkTS0o1M2iY3opxFrWAkBarmctsCtrxXTmdpypRjh5y2NZUq0lQNbuVHQucMekCkaVU1NTE11zzTX09ddfm1JeySZ9LDdqVhArlhsZrZiYuCd3RStMESXGagRM9EP0UqgEhc6a5a2YCjueoisq7LGUBGoE+1IT3wGK+bzkmBul2B0vx2K0FssNUYu1MP63kE6xRUyrwFHLTdu2bVFVVWW/ymIMoGUFMYpSiq5WHRqzlWgdKvKmleb62GPeiqmIn23czHp2VbwdPgIo1Kjr4wNQlCutF7vj2H81yxB5OBZjV/wErwrYXVzP6ZRzNZKdis4wScCUW2rs2LF47bXXbO4KI46ewBDFTA0asyLFyIzltRAqKCcSFKqGqPvGTkQGVL317HIzvP46cFDlvcjXQqmuj0KdHdUyRB4dPEMhYOZM/fWeeMI+UZbsOZnYncS0MtqY2ejYY4/Ffffdh3fffReDBw/GEUccEfP+rbfeakvnGDWMxgHMAdAbUkZUtCgqhCRsjNzgvhJcL17MyIOi1ozlHSHFEMX38Uko9lEv/kQEN2Mq8gQzhrTWk7NWxo2ThEy0iBO1lMjWLjUBmJMrFSxUHPhkU804SAInvI9iSNOarQGwvQTIH+Pd2aJFvzddu9pzPLXrLRfRc0sAylmADNMKMCVuFixYgC5duuDDDz/Ehx9+GPOez+djceM4RoMze0IajC5GePQJ72M4Wiw2IY33ELXO8wLHK0RiJVp5ULxEY7ufwy2a+nDfFSoR2yFM3Ax0jXcLmF1PdjNMnx47SBcWSsJGa6DUC2oGgPbtgTFjtDoA6fOYjhgh6i8CRsyDLRWjncTNYGI966LPJ7lHx4zxphBkmBTFlLipq6uzux+MIYZD8gEIxnBgPSQXz3BIMTTxVCNhoFK0mIi6wyZD2c01BkAupEk4RSFIFoKS8PZR+7UiTHw+SQy4MWGhjOxS0rIaiMZ5FBdLA+KaNdIgnJ8PnHYasHatFNORn99iOQmFWtbbuVPfarFtm7S+5lN+jKkG6oLYg7g5U7eR7Da2qjCMbZgSN9FQ+InEpxYDwDjA6zA2QeYD4aYkWOSCbPFPlkoWE9En2WNVlq+BMWEjEx2kPKJlsSwW6uv1Y2yiSVaga7RLCTDnUorfnzwgVlcDRx+daMmZMEESO0bdd0JWCznwPMXQ+97YKXydthJFC9doQcswrRxTAcUA8Je//AUnnXQS2rdvj/bt22PgwIF4+eWX7ewbo4gsRn4ysa0sWOQgRqO1Z6zOSG3VzB+3vV7VVJ8PmDVLGqiiSWagqxOZK2oZY9u2SRljZuKSvFaXxk7crLbrpJUo2UHKDONlzOSaP/7449ShQwe67bbb6PXXX6fXX3+dZs2aRR06dKAnnnjCzC5dI7Xr3OjVmBFp0XVoAoLbBMLHV6tgHN2UatzIiB7PYA0cvaqptlUo1qj/Y2Y+quj1GxvN9VGvYrHR5tW6NE7gRrVdp+Zkag3zYjFMHEbGbx+REXu+RN++fVFeXo6rrroqZvlLL72Ee++919MxOfv27UPnzp3R0NCA7OzsZHfHILWQ5mKyg7kA3gbwlsC6FQAuhTQHlJ4VoBLA71TeC4X3oZUxpYQPkkutDqoxHY6b5zXikqqhHNz75JOx1YnV+lddrbz9E09ImVNa51RbKz2x24FstUiWVSsZLpboY3brJi37/nt7jy9b1gBlV6TR6x0KSRYaNYuc7Farq2MXFZNWGBq/zainrKws+uqrrxKWf/nll5SVlWVml66R2pabuOqwrrUA2VdhWK6sLFpd2eF5p4TQmBOrCioza0c9QatVUJbfU3uqj2/yNtGIViwWacmcI0jrGqXD8e20ErWm6soME4WR8dtUQPExxxyDyspKzJ49O2b5K6+8gmOPVQsmZazTLQnHzIOUBVMpuL5eXI1KGjGKAFwGqXif1Vo8dqIRlxQijZClcJrvlCnA3r3KNU4uuQTIzRUPhlaqi2I1NmbuXKB79+QGoya7Dowbx4/Obquvlwo15uUBOTmSJcbIdW8t82IxjAVMuaWqqqowfvx4jBo1CqeffjoA4N1338Xq1atRWVmJiy++2PaO2kXquqWqAUyBuWwjK5RAcmHVQswlFoBYBo1aXR2RejsW0HJ9yO9FDz4Fu4DhM5S7UAv7vISixLscZBeFmYwxJ1wXRl1LyXaxuH18NRdktAtTD1FXZCDA6eVMWuG4W4qI6D//+Q9dccUVNGjQIBo0aBBdccUV9NFHH5ndnWukpluqipLjjop2M8nBzGruJLUJMz2EnntILTC3EJL7Kf6cK2xyB5lp0S4HtYkRtYKGnQg6NePaSbaLxc3j2xUE7FSQMsN4HCPjt2lxk6qknrgRzZDKIKJLBdYz0uLFilq8jBfiYnTQGliEBIGCwKlJoriJn/VbLaZj1iznM4L0rq/WwG3XLOdmcev4elltRgUJz/Qtjm3ZkkyycVzcvPnmm7Ry5cqE5StXrqQVK1aY2aVrpJ64CZC4GOlqYF2RtkyhP1WUKLaKyNPCxo50aR+IikAUDJ9zFSSLTrLEjZIlQe0m7vTNPRgkys01N3C3FsuNE8dxI5U91Ul2oDpjK46Lm5NOOonefPPNhOVvvfUWDRw40MwuXSP1xE2yMqRA6plPGvVevIjowCI0+EA9Qyp+QAekQV/LfSC/b8Sl5DWXQ3m5WN9LSxPFlRsuFi1x55aLxykLEVsl1OFaQGmH4+KmXbt2VFdXl7C8rq6OOnToYGaXrpF64iZAyRM3DrkC3MbOdOnFELPYxKd6a7kPtOJ9vH5TDgaJcnKMXcP4J2cnXSwiT+5uuHiSbaFqbdjtBmQ8gePipnv37rR69eqE5e+88w7l5eWZ2aVrpJ64saMqsdkWcP703MBOy83cqWLr1dS0HF/EfRD/BL5smXddDtF9nTvX+DVUEg1OuFiMPLk77eLhIGB3YTGZljgubqZMmUInnXQSbdq0KbLsq6++ooEDB9J1111nZpeukXrihsj9bKkUyHwygt7AIjogFxURLV4stn68e8GM+8CLLgdRK5Po9Yx3Edl1viJxVnl50ucpH8vp681BwO4haq0tKUl2TxkDOC5ufvzxR/rVr35Fbdq0oT59+lCfPn3I7/fTyJEj6YcffjCzS9dgcSMibDye+WQGrYFFdDCuqkrOE6FXRI6RasqiLdmBwnJzK8iUg4Ddwcjnz9c+ZXB8bqlwfRy88847+OSTT9C+fXucfPLJGD58uJlduUrqFfGT52MyMbOzKYqQ3IrADqJUQK2oSJoBGkh8L36d4mL9onleLPpmB3rF7sxSUQFMmGDvPgFgyRJppmxR3JxXKxlzaLU2jBS3LCriebhSBCPjtyFx895772HPnj347W9/G1n20ksvoaysDAcOHMDYsWPx1FNPISsry3zvHSb1xE0tnC2DWwhgMoBj4UhFYK8hWqF4505gzx4gI0Oq8jpiROxEl3ZOhKiG2rQAyZjg0s4JOqNxqoruffcBZWXGtuEJJ9OL6mppihMRuJpzSuBYheLzzz+fHnnkkcj///3vf6lt27Z0/fXX0+OPP049evSgsrIyI7t0ndRzSxlJBc82sO40ci6NO8VSxeMRzbBxIwDVSMyK6H7NuLjMZJz5/fb3X/QcrcQFcZBp+lBSIvaZO1UkkrEVx2JuevToQR988EHk/9mzZ9Ppp58e+b+yspL69+9vZJeuk1riJkhEc0lMrJQTUYnguqDETCi7BIlSkb9CSokYnmBQvWaLUtCnk7EwbhV9E401Ee3P3LmxGV9OBdBqXXur2XE80KUPnDWVVjgmbrKysmjLli2R/08//XR64IEHIv/X1dVRx44djezSdVJH3CiJBLVWSC3iRGT9PEqcVsEOQSJPzxB/vBQIUq6qIioo0L4B+nxERYVEwRqi4GKiwFyiinC2TWOjvULH7qJvVguamU1ldirFW0ukWa1rxANd+sAp+GmFY+KmV69e9H//939ERNTY2Ejt27enmqh6Hv/973/pyCOPNNhdd0kNcaMmEtSaPFCI1sSJnlbBLkGid2wPp5cbzQIqR2Ihv3gXjNXsG9GqvyIDsV0uLrOpzHZauEREmlnLDQ906Qmn4KcNjombG2+8kYYNG0b/+Mc/aObMmZSbm0uNjY2R9xcvXkynnHKK8R67iPfFjZmifdE/Tj1hNMvAsYwIkoBgXwMiF8E97Jh3Sm2gNHvjrKqydyC20zSfzFRmUZHW2Gi8rhEPdOkNp+CnBY6Jm127dtHw4cPJ5/NRp06dqLq6Oub9s88+m2bPnm2sty7jfXETIGPCRkmAKLmZ8oio0uSxAgL9Fg189lg8g53Vi+2wBIiKLSMDsd0urmTV3TEi0vTqGsVP9MkDXfrjlXpRjGmMjN9tjKRhde3aFf/4xz/Q0NCAjh07wh+XLrls2TJ07NjRyC6ZBLYbXJ8AbIWUMo6o1wWQUrq/h3qKt+ixRNbLF9yX6HoOEp0Ovn69c8chArZulY4lmma6Zo1YLZl77xVPA88XvOai6/n9LefjZs2W7YLf1+3bpdo5y5cr1wiaNw8YM4ZrzbQ2or+3TNpjSNzIdO7cWXF5Tk6Opc4wAPCVye3GAvg5blkugOcgCZs1kERKtNCxU5AMh1Qzpx6S4IrHF34/yYUelYriOY3ooGxk3WOPFd/n8OHSoK5XeNBoEU63CwwaFWnFxdoihgc6Jh4usJg2mBI3jFOEAPzR5LbxwgYA9gC4BJLI2RO1vBDAkwDGwD5B4g/vc1x4u+j9hYvOYR6SWiBQrSie04gOykbWNbJPv18SHOPGSUIm+vzlgoDz5hm7iatdy/p6abkTBQbNiDR+WmdE8Uo1cMYWMpLdASaaWsSKELuI32c9JBHyOiRBArQIEMT9Pw/igqQYwHIABXHLuwKYDiAHkoBziFBIqqS7ZIn0GgrFvjd9unVhk4PES6WGzyeVdjdiEZEHcJ/KQczsE5BuzsuXAwVxn01hoXEhonUt5WUlJbHX3w78fuCJJ9SFDWBcpDEM0CLW4y26slivrk5OvxjTsLjxFLUuHUceHEogWW+UBElheLnRJ5ZiAN8ACIT33xXALkgiaSSkebLM3ihCkK7RkvBrU8v/1fdJc8mMHCnNKTRypPS/fFMSjWXRY3r4VU/gmB1sZStL9D6s7lO+bsWNwDeLgECNNKdTICBNNRAtbLQEoozetYyONbKT6mpg5kzl98yINIYBkifWGWdxIcDZU3g7W6qUjGVK2dEC4WPbPWWC3QX9lDLA/NJrFYh8KhlFclaR1cJuPh9RUS5RsEA6XkKdm7j/nShUZ2qfBgo0ilYwtjv7Sug0dGoRLVumvw+GUYKrGKcMjmVLMU6TDHO6HMDqBzDCpn2GIJk4lFxABMnsUQLJaiRyztWQ3Gjx+wvpHIoka0dJCbBwoVjXAZWQIQLmPQf4m4Hi30ldj47RPg3AWgDbS4D8MdYDEfWCYYVQu26yWzLKMmckhsaJuCAt9FyKPp9k0bn4YnZJMcYxkoXHpAwsbjxDNYD7knBcJ1Kz1wDQcgHJ6etroC+otNSLyKHCLhJAJxgVkifucQAz4/ZZCGBeCVA8BpJbDcpacIQPQBWAObBFqFoKhlW5biEAaygsym4Ehv8WgF/bLC8LxDFjpD45lX2lhhE3GAcPpw5eyUxyW6w7iVeuqQfgmBtPoDOAO4IPQBGcSc22s36OjnoRPdT332vEsoRf5wH4HVpChirCr3UICxsjoi3ZKPS1GpI2GwngcgAjdwF9CoEHHzQWQ+NIXJAG/GSdflRXa8fIuYlTQfxu46Vr6gFY3HgCvUFTj9GQ0r3jkQsq2pEJZQQ76+eoDFhybLFoDb7164GcHOCVVxQyhvyxsdOyVWYCJGuMXxaBGoNnTKzzag8EH8b1VfZQxX/N6ncBZWWCu4zap53ZV3ok48laJLCaMYfXMpPcFutO4LVr6gVciAHyFN4MKBadukCtnUpEi4loDhHNJikwuYakoGClgNIicnaGbnnOKrU5rizOWaUU0CvaCgul4NOYMuyV1BLorBX8rNAXAlEliLoqHCep5fyj+tqo0D8zTSmg0o2S9m7P7CwaWO01UmF6AbsmcXWCVJ1/ysvX1GYcm1sqHfCmuAmQNXET3ZQyYezOhBJBzpbSEwx6xAkltcwo0aY6QaKICFQQbbN0jpW0G2O4r1UgyrMoarxwc3RrZmeRWcfVSKa4SBVB5vXMpFQQiPF4/ZraCIsbDbwpbvQsHUaaqHhwQ/DYZTWqkrZttGGg1hysRa5JlGhbJnCsZIqCqlnGhaDT4sHS+Tj8ZG3lCTiZ4sKKIHObZJQRSHda0TVNOXHz9NNPU+/evSkrK4uGDBlC//rXv4S2W7JkCQGgMWPGCB/Lm+KGSN3SYVbgaLl9RGqf2CV+7NhPlWSBEHWtXCm4nuknmSqp3o2o0ErGE5Po7OLRrbzc+2Z5u5+so/c3d665z9MucWHm3FLNJdGKrAyu0YquaUqJm6VLl1JmZia9+OKL9Pnnn9PkyZOpS5cutHPnTs3t6urqqKCggIYPH54m4oZIWXRYaQGVY+gV1zNQ+C2CloixInCCRFW5xiwQ0wTXs/IkE6gR708ynphEb3jxA2AqmuXNomRtMfp5GhEXWtfWrOUn1QY2t+OnWgOt6JqmlLgZMmQITZ06NfJ/KBSinj170sMPP6y6TTAYpNNOO41eeOEFuvrqq9NI3BDFCoG5ZE3cVMTtr4a0xZOPiHI13lNzd2mJITNCKfpy1BgPHp4ruJ6VG76RisfyQCYqGuwQGEb65zXXhRvoVTwW/d6Iigslq5gsXqxYflLRJeFW/FRropVc05QRN42NjeT3++nVV1+NWX7VVVfRRRddpLrdPffcQ2PHjiUi0hU3hw4dooaGhkjbunWrx8VNNHIsjllxU25xeyWBE+/uUrME6e1HMKg4UGpgkAZREaTYnEKoW3siTzKNZNqiJDqo5eVJ2VmiT+VmnuCVxJCR/qXJjU8YMy67mO9N1PfEyrQe8sCTm6t/zMZGZcGbapYbmVTNTPIyreCapoy4qa+vJwC0du3amOWzZs2iIUOGKG6zZs0aKigooF27dhGRvrgpKysjAAnNW+JGzW1TReqWFL2WS/bE7yi1QFS/zYonwXTwCoPipiq8bzmrSvVJZlZL34MgCoCoIocoUG5PrIPcfv978adyM0/wamJIFlRa1om8PGnQbG0YcdnpfQZm9mWm5eUlfsZVVantkmhNLlC3SPNrmrbiZt++fdSnTx9asWJFZFnqW27U3DazyJo4ybGwrV6TTdwBG/YV0L48orEteQgLG1AkI0v1SSbq2irVzCnMFXva0XNt/P73xuIxjAaG6omhWbOcN1Wn4s3UjLVF7QlYT1w41aI/w1bikkjJ7xpjKykjboy6pT7++GMCQH6/P9J8Ph/5fD7y+/20adMm3WN6K+ZGK7jXTjFidwuE+2+1+CCoRSipEAxKYkMroDgvm6hxFSm6lxJuiI0UEZOqs4lDfFBQElCyK8qIy8Coe0FUDFVW2m+qlq9pSQlR166x+/ZibZV4RK/13LliA6mWuHBa4MiCN91dEqlSx4dxlJQRN0RSQPG0adMi/4dCISooKFAMKD548CB9+umnMW3MmDF09tln06effkqNAiZ274gbq/E0yWjxrqSADfsM6F+qqqqw4Ii/uYeboRtcuM9BaAcq+yBuzld7ojQS7FlSIrZuaamxmBqjwcx66GUYpYK1wAlXjpq4KC83JljMtGjBm46WjVSq48M4SkqJm6VLl1JWVhYtWrSI1q9fT1OmTKEuXbrQjh07iIho4sSJdMcdd6hun7rZUgGyLgxmk7Pup/gWHwRsZ8yNTrq44uBh5sktbG0KGBw4zGAkk8bIYFZYKC6G7MySEc0w8nKch4yetaWkxLhAUBIXIkJKDig2a+nxUiaU3aRaHR8R0lWEukBKiRsioqeeeop69epFmZmZNGTIEHr//fcj75111ll09dVXq26buuLGDpfO4zbsQ7TlkHoauNF9xWdLCaaL23JTCEj7r3Bh4BAZ2AoLiXJyjA1mRgZBu7JkzGQYeS1DJx4lwez3x/5vh+tDJCZGzb2ZDtfZCm5ngzktPNi9ZomUEzdu4h1xEyDrgmO2DfsQbas0zqWSiPwG9hUO+CUisaKCNhC5aS0mCnQlqhEcoEtLrd3k9Aa28eONCYb4gditLBkzWUGpYFGIjh9Su452uD5EYmLiB9bGxtTNhLILN+v4OC082L1mGRY3GnhH3MguHSvBw6UWtjXaFCwpMSxT2U4+v3JKdDnpubUE08VjUHBvKd60QJQL7UBlu25yagPbsmXGrTYizYmbpZkMo1SxKLjl+jBjFWgtmVBquGW5cVp4pKN7LQmwuNHAO+KGyPp8UjVk34Sbek3EkqLkXirS2CYgeOyAxjF1jq82dYNP5W8RwRA9SNXUSE1vwLJSaM9ocyJLxux0DqmA1wvheTkTymk3jht1fNwQHl7/jqUILG408Ja4ITI3n5Rs0WgkySKito5VQaN2XK0fuVJgsFqwsGjckYjJWcG9pZsR5SPKzSYqOFJ80M7NJSooUF/HiIXHSnVbrbZsmcLHYnEQMlLPxeyTbrICLVNhCgMvBqG6FT/itPXKDeGRCt+xFIDFjQbeEzdE0mBv1MU0nogKNN4vIslV5ES6ecDAuWkFCwdsOp6KeysgKAZqaqQbV2mpdWFh5IbrpOXGjkkZI5c3Li5FS+CYtSgkM9CSn6qN43b8iJPWKzeEh1vfMS+KYBthcaOBN8UNkT0BxnIrp9gpHKy4vpSa6I9cL1hYFl9qfRONuQkob280I8ouS4qoGdvJ6rbyTdLqICSSUZSXZy51OvoYon104uadylMYJINkxY84NXC7ITzc+I61gkwsFjcaeFfc6AXXijYlQWDG9aXVAjacj9zPSlIWX0aypRYrH0PUciPftOy2pIjcDNVM7nKbNcvcJI+LF1sfhPTq2lgRNDJG+ujkzbu1B+4aId0sXW6JWye/Y60kE4vFjQbeFDdyTMqt5JwAiY57keN0jFpzjGQvBQz002ggcjxzlfctx9zozg4ePh+7LSmiZmw9k3v0E+vUqWLHnjvX2iDk1tO5aB/LytT7YdfN28uBu14iGQUkncYtcevEd6wVZWKxuNHAe+LGbquK3PRuLGqCQp5U0oolhch4sLBa0LEIKpYbQsv8UQlTN6jctPQsKUaakSdXUZP74sVix168WNzNVlqaeFy3ns5F+6j1edh5807zmAUhtK5BMJg4n5hT3w23cUvc2v0dSzdLmgZGxu82YJJINYBxAMiBfefrvF8MYAyANQC2h9cfDsAP4FcApgPYFrV+IYB54e3sOH78en4AIwS3iadA/a1iAMuhcDqFwLx5QHHc+RQXA8uXA9OnA9uiNigoALZvB5qb9bvj80n7Hz48dnkoBKxZI+0nP1963++X3vP7gREj9PddoHGuZtYDgAceaPm7sBB48kmgsVFs2+3bxY+jRL7g94Q0fiNEwNat0rUVuYZaiH4OXkbre6ZHdXXid1/+ThQXS/vdvVt/P3l5id9/r1NcDIwZY/7aiWL3d0z0N2j1t5pisLhJGiEAt8J+YeODJEREbiyyoAhBEjmVkMTGGMQKn27h9b8HUIsWEaTF8HA/6qF8jkb6qYd8rG3KbxcDGFMIrFkEbP9e/6aldJMLhYBRo8S7NG9e7P71Bg3RAWn4cGm7bSrnCgBFRS0DS2EhUF+vLQ6iqa8Hxo0D7r1XbH1RcaKGfD5G+qhGK7t5K6L3PdPbdty4xM9B/k4sXy4ueq+4wn5R4AapKG5Ff4NWf6uphguWJE/hHbeUWn0aK82o64hIf14nvff19m2Hi0sEtcws+XgWjyXqPsnNVXd1KblTfD7loGGtQFmtQN94V5sZN5s851VBgTsZRHa5AmtqrPcllbESVCoat1FTk1wXCLsNE2lF2X4cc6OBN8RNFdkvbEDGgnDlfmilas/SeV9U4FgJFjaCg8cS9WvHD7BmJpwUGZCMxAcorSvSysvdyyBS6qPRqSncEjfJHGDVjm01qNTI91sv6N6pgbQVpDqbppVk+xkZv31ERMm1HbnLvn370LlzZzQ0NCA7OzsJPQgB6A5gjw37ygBwBYCfAHQEMBHAOdB3Gcn96ANVVw4Q3k9I5T3ZrVQncDzZ7RUf22N2PQPHahoKzP8zsHkzcPTRwM03A5mZBvcJyW3UpztQvwfqXrZcoG5nrDm+thYYOdL48YCW2J26OmUTv5HYiqYmYP586To0NAAvv6x//IoKICsr0c1RVCS53aJdd93CrsvvBdx+asSfj1FXYEUFMGGCsWMaxYrbx8lj5+SIfc8CAWW3y5IlwOWX628vfyfGjZP+jx4+fD7pdfly+6+FmsvMyWOmGkrfD/m3mibXxtD47bjU8hjJt9zY6Y7qqLAsl8QsFQGb+hAwcxEUsOL+UmHWrMSCc36/tNwwwZZ5qhIyr8KtKpcSsrzsKAxox6SAZiw38nGVrAV6+7Tjidqo1cvpbJBk1hLRO7bV9GyjGTdups23olRny6S5247dUhokV9wEiSiHnBE18U3vJiOaqq3X7KhloeceM3HDnDVL+yatKXCU0tIDUp+qkDhfVRcQvSL3ORC7KzsKA1qpF6JXiM/MYFFZKbYPOwZ8kf67Mbglc4AVOXZenthnqyYAzcRtuDWQtqJUZ0YbFjcaJFfcBMgeQZEhsE4hadeKsasv5aavhoRoJWMDN87GxkSLTXzz+6X1ElCzIJW0/P97EGXE7w9E40FUMU05FsJKsGxpqbXJLo0KGy1RsmyZ/rW1e8CvqpICtZ0UUXokc4AVPXZenrWgUq/GbfCkk0wYI+N3htM+MiYau1JVBWqtYBuk2BNAikOpBbAk/BpCS/q0T2MfIjETz0M9LkeENdCO+yEAW9FyLgLMny/Fa2gRCknrxSDXHYrvTz2kGj8AbgPwOBI/ghCAVwBc/rQU+9C7t+QD9/ulmAigJT7AKA88IO2zTx9pn6KsWaOdMq5EYaF6/EJ1NfC73+lfWxkiqf5Mba3UliyRXkW3lykuBnbuBMrLpdgS0f7ayeuvi63nRDq66D6vuEJ6jf+eyf/HlyeIR67xFF8jya1rrAanOjNmcEFseYrkWm6cSP/WahWkHcuil6o9XvA4AQvXRNQ9VqK+i2BQyuIoLZXamDFiT3rTpkXvROE6xV2TRp9koTFiCZGfdtViFGbNEk+D1nqCVnIRWKlQHL9POUvGjOUpPuvJSjxOMmIKqqrEzzWZlptAwJ5YmMZGafqOadOkV0ULp4u0olRnRht2S2mQPHGjVYfFqVaucszoWBat9GmjUyhEoxS3okTAwPmopDmruSz02ty5UYNlqTTRZlDj+HNNHCM3N9ZFpTQwGwn4VbqRq6XIlpebH5DNBiGLnkOqpKeKuvbciLkRHdytCECvplt71WXGuAqLGw2SI270rAJGm19gnZ46x4yOZVETIgHB/gTiztdI5pPKtQlCEhsViBIdcbE3Rp6o45vfT7R0qcKNHFLQsNJ5TjN5LJH6K/KAVFoqts/orBW1LBpZXBl94jUThGxG4KTC07aRgHA3sqWcHNy9PrM0T2za6mFxo0FyxE2AxESCaJslsE4nwX0FNPotCw81i5NSsK+ZzKe4ooZKGUkR0RHur9nieHIbM0blRh5uSgLHjOUGkASLKEaCJ0WyaGRxIzooWr2uRpvXM1xEP4+SEuf74uTgbjUbzC13YZqnOjPacECx57AzyLAcwKMAqgDkaqz3k+D+tPrmBxAOhk0IPJb/n4eWwOMQpBkqSWFf8rISJAYgF4eXQzumdxyA6nBgp5lgWUAKqPz974EPP5Ru28Ld9AE3Fzg/X46R4Em9a0AE7NkjzROlFiQ6ZkxssG9trbnrGk/HjmLreX0+KNHPY8wYZ/sBSAG933wjFeKrqJBe6+rsCfQV+S7Jk5PGU10tBbuPHCkVAjQT/C6KPPfThAnSayrOX8W4AosbV+imv4owx4ZfiwF8B6Crxf2JzB6+HIkzbxeGl0ffWK1kPo0R1EZ/lbJtjAyKV14JTJsGzJ0LHDgA/Pa3Ojfy+G6GhVzmH4GZM8WPK2NkIj55Ikm1zCqfr2ViTNFrcOyxyoMikDgoXXqpeF/jKSuT9l9eDvz8s9g2Xs9wMfJ5uIFTg7vZbDC5cnD870mebNMJgcMwAvCs4ClHPlqmGFgNYLfJ/RiZlbsYsbOEq02NICo4lNYbDqzpCmzTOB8CsHWX9PRoZFC87rpYgSEqCiKrFUKyUBUDj4bF3BNPiKU05+YaEzdy6vi4cdLAGW1dik/pFb0GX32VONuxWjn7vXvF+yoTXeI9FJIEkx7y1BJuiQKzGPk8UpVQCPjrX8XWjf7OhUJSuX9FCyhJ16ekRLJqpfL1YVIStty4wvc27MMHoAiSmOkDYCSAByzsjxDrUtLDD2AEgAnhV6XtRAWH0np+YPuVYptv397yRK1H/AAaCkk1U0TILwUQgDR/VpSF6tFHJQvQ3LnAr3+tvY/nnjN+YxetNzJ8eOI6Sjz/fKwQ0xqU9JBFSU2NsmtE1F1IlDqiwKv1X+xizRpg1y799fLyYn9LVlxZDOMwLG5cwS7T+2UALoW260eUcsS6lOzgNGi7yWSBpvK0ni8Yt7BzJ1BZCUyerL/uk0+2DKBybMCMGdrbRFwN90JVyGVmSk+lK1YAVVWJQquwUFpuduATia/w+4EpU/T3tW1b7ABjNl5JtlQ8+SRwzjnKrhFRq1hJSWqJAifjXZJNfb3YehMmmPusvR5XxaQl7JZyheEA8gAIPB2pciSAF6EckGKGw5DcW3Y9OVdDCphRcyspBSDHIVtj6uvVrQp+f6w4yc0FGhsTYzxycyWriTz4qLlhErop4GqIn716zJjYGbLNzoodT7wrSYljj9V+XyZ6gBEdbHJyYt1UhYX6Mwx7KQDXbkQ+j1RExGoDAH37xv7PlYMZD8PixhX8AIYC+LuFfZiIhdDkAQCLAEyGFKSsFkcjgpzipCUcouJW1NCKb5CJj3PZu1da7957gWBQWjZiRKxFwYgbRm8Ar66W9hVt+SgslPqt+RQvx0lpxSyZwMwAI7pNZaV0DY0INj2BajbWJl5Q2iEeUxGl6wBYuzZ5eebWc+qzZhg7cCE13VMkr4hfHiXWfvFaUyu0F00jEc0lomnh1wOkX6AwL7ydIEr1PLQma9SrwSFaqVeuWKzVL1NFzowUNTSI2dmcnSxnr1cEUHNGdpX9ebFqrtsoXYfc3MQK3UavjZVJQdOtcjDX0fE0XMRPg/Qo4udU0yq0RyQVD4yvjiwyQznI8PxT0TeZuXOt3XxFtgW0ZxUWKXJWWChVI465MZopamgQMwOME4NS9Gc2frz2tRLdv5ZQSsXB0yxGqkYb/QxFCjdqid10qRzMItrzsLjRIDni5reUfOFipMVXHSYSq4qs1dSEQ5CIaoioNNxqEo9tpGpvzK4NVtuVxZHS05uRMvwxN8ZcjWuiVOHZJGYGGDsHJavzYykh8vlFz92VrpipGm3U+mZV7HrZ4iHSN69PPcEQEYsbTdwXN1ZFgdUmOg1DfAtEnUMjic1nJbo/mSoiUhr8cynGomHWbG5EkMgDgdrTW0mJscElupVDe0JOS7OqR2FmgLFjUDI7F5Xe1Auin195ufE+pxJmhLXoNY4mXSww0YhYY6xOPcG4BosbDdwVN3aIgmS1kqjzmGthP2rWiSqBbcM3ILMxIqIWH0C62elNQmmlaU3IKVu11ISG15+Kzc5FFW1pUzpH0c8vJ8db18RujHyPta6xCF7+rhlF1BpjJeaIcRUj4zdnSznKfCTOo2QnHQGIlLnPAfADYCiNfBGAUyBNu/CV4Z5JqKV/y/Ms6DEdwBjzVWJFs4LKy6XU5D59Yvcto7TMKNsgJZTFz1gBAMhXzsIqKADOOAN4553ElGzd7CyXMFszB5AqJwPqGWgidYwA6dqsWZOeadqAtVRqo9umS7q7kerJXK8nPXFBbHkKdy0308i8xcPOVk4tAaxmtu9scr0iUg6YDRg4dqBlM6Nmcz2Lj2yiNhtTY7T5QFSEKBdV2KpVtcyYdchLcQBWrAqFhUSVldpP1x07iu3LqIVCFC9YMkS+x0rXrzW7UoxYY9hykzLwrOCe4WgXjpGDxBm7ZeT5o06HZAXRmkVciwaBdfyQargEAFRAcdqCCAJPQCEAtQCWVEkzVYdCkqVi82Zp2gN5IsxNm9QtGLLFB0ic+NDnk5pcwdiNpzJC1ISc4f6EHgemzzBmHZLXLSkRm98qFIqd+VtkG1GsWBW2bQNuvlnbWpYheIvS6ofZ83dztmsttL7HSqTLnFdWMGKN8drkqIw9uCC2PIX7MTeiqdJmm5pVRv4/PmC3MxENcaAfRmqXBLT3VQUpRiX+KX/WLHOpmiIWHzcsNxErA4goR/rsAjXW9qX3NOl0eqsZq4LRlp2t/p6ehcLs+Xsxe0a0zk2qBwHbgVFrTLrU6/GCpdFBOKBYA3fFTZCIOpJ5waDVogN1lYrEaaUgW2nxYi2DpFT3AImnNAcV+htuVZDcN6IDn12pqiJBy7m59gzigajzrcixtq9x41rOqbEx9hzVXD5yKy+35+anNjDY1dQy1fQ+e7MCxcvZM0rf43Qa0Ow6FzNJCEriMSfHvt+J07SCOj0sbjRwV9wEyB5BoWSViS8AFwwfr4KkWjEq4sFy+wtJ2VPnU2KMTSEpx9gooZAtFUSixUZU4Ngx2Ig8vVVVEXXtam6Qjo+5CYJorg2Dv9ziqzhrVXW2++Znpqp0Xp7YeQUC5uOtzHxnOAYjOdg9OJuxxgSDkpjJybGvH27gRUujA7C40cBdcVNB5gREdLuGEoWKWqCuTMCG46q1ANlXdTeuzk3A4uBux2CjN4hWVREVFJjrnw8t6eBKrrdkNbtufvFP3cuWaQ8uy5YZe7o28lRvRaCYLRrJmMepwdmoKE5FkeBlS6PNsLjRIPUsN4upxSqzmCSryWLSdgPZIaqUmjxHlJZVyGjV3SBFKhRXjLU2SNs12KgNomaL1QFEuYgVNkZcb26IG6dufiJi0YlYBysChS037uL04CwqilNVJLSi7yuLGw3cj7mxGvsSCO9LKa5GzQ0UsHhMtVZiYN9yvw1gNajXyR+vlWJ1AFFN+LqYdb250Zy6fnqDixOVca3c8J2eWJSJxSuDs1f6YZRWZGnkIn5pxS4A1ZAqwFHce/VoqQw3BlKO8XYA3SAV3/tOYRsrjIFQGjdgYL0o5JTM+nrp52iEnJyWVM1QSCrqtn27lCI8fLj1lFizxep8PqCwKzBiV3g/kAr6eRGn0uH1CsMVF0vF1EQ+M9HPVu+75PNJ7yul95otGsmYwytF9LzSD6OIlmOwUrYhBeE6N46yBsAei/uYCalGjdJgLy+bAqAPgJEALgcwCsAhlW3MUgRgOADRH4iJH5LReh7RTJ8uvd53H9Ctm/21Sczc0CID4XzAXwjAZ0rzuYbezc/JejmyAJowQXpVEg5G6s7o1TgCtAVKcTGwfLlUJTqawkJpuReqQ6cLXhmcvdIPo3CdHmVcsCR5itQLKPZCiw4SltO41aodG425UcDIDNOAVMW2rCwxwyHajWA1GNCMyyzGtRIOwg4Y3IcdTS9rSsTNYjaTxa7UXrOBnlZdXumUZu1VvOIG9Eo/zJAudXp04JgbDdwVNzWUfGGi1UQm9VSK65GzpURS1E0SPaiUl7f8UM0O8EZuTGq1RERTlydOJKqpUThWFVGwQIq5cSOgODorSb6GquKgnCQxHqAEYWqnsDCTUms10JMFivdxc3DW+j6kskiYNUu5HMQsIwVWydO/FxY3GrC4AUlBzjVEtIyURYrcykndAqMU4KyXom4Bo9YctWaloq9aMTmlpjqIByUh4Ya4ibdQKFoxcomq4oPeowStWWFhZ0ptqgZ6MsZwIrBc5Bjxv1U3+mE3WpmcRn5vHi8EyOJGA3fFzWKyR4yIWFiMtkC4j1ZESlQaN5WG/3ZQ5QeDkkVEzf0k0rQyBrQGZIBo0iTx44hYNYwWAywq0q8NAxB16kT09tvKT1wxT2XlUZN4RrcoC5wZYWF3Sm0rygZp9ThpNTAiuD1svUjArt9bCtT4YXGjgXvipoqIupL9osSuFj0QyHV0VNwSmucomp5uE06liweD5ovzmb2pNDbqu7q6dCH6y1+U6+3ozXaueTOSY6fUvh/h2KmKxcaFhd2WFrbcuDPYptKAbpRUrWEjgh2/jxS5PjwreNKpBnAJgN3J7ogG0RH/fgAjAEwIv4qkuMrp6fF5zXJ6ukMzJ1tJw9TKGHjwQSlt2E6IgK1bpdTlaOSso6oqaXZzeYbyaORlCxYAEyfGZhCpZfJEU18vpTKrZonp5aQTgK1A/i6tM2whOoPE7pRat7JBnMwGs4Ibs5N7ZQZ0p9Ar5aD2W00F7Pi9peH1YXFjOyFIqdleRk7rNksI+unpJeH1bMZKGub11wOVlYkDV3U1UFZmuWuqRN9U4geRsjKpRk9OTuw2einHxcXA5s1A167K71P4cygpURmkRYVFntQXPXZHCXm7U2qtpnWL4NXBvbpaEqnxA4+uePXYMZJNqtawEcGO31s6Xh8XLEmewnm3lFeDiKNbCRlzP8UTEDxOwOT+NQhWEhX6jQfkZmcru22sVh4WMgfXSH3Xi+kpLzc227Mlc3Sg5XNqhDSB57Twa2PcZ1hZqX+M+DmgnEipdSrQ06uxBm64ClLEHWGZdHZt2vF7S5HrwzE3GjgvbkpJbOBPRsuI+18vPkYtFke0fo/dAZ7hFPQqgR+hXpMHLrUUaTtaZBbwgrAoMzCIiGQtWAq0DcfczAKRP259P6Tlcr0iMzc+p1Jq7Y4L8fLg7saAkyKDmmX0BABAlJurUsIhBbD6e0uRGj8cc8PE0TH82hy3XCs+phqxVY9Hhv+vhqNVilXRcoWZgML7kd0dVklwl4Rf5wHwfwesuVTcpy3qJrBkjvYDtw0GHkOi9zAEafltg6T1zJisnarwK1LJ2AhejjVww1WQqu4Io/FRItXP9+wBRo3yhjvSKFZ/b264ft3GBbHlKVqPW2ocSZaTGiIq0FhPqaKwXKRPaV0fSfVxClXWUdunVQLSvr028WRRkeS2iX/6zwFROVpSrSsE97d4sbglobFRv/qw3y+tF09jI1FGhti2Vieh9HIGjpfTzNlyo4yVWiwi9bKS7Y60gtXfm8dr/LBbSgPnxU2QrM8EbkfLoxa3ksj6gaj+C6QIUyU5XqU4xi0WdvcFBG7ERltOjvnqx3L1z2CNJGZy4t4vhORGE+333Lnig42Vgemaa8T7o5ey7hGTtSm8PLi74SpIEXdEBDvio0TqZXntvN3Eww8k7JZKKn4AzyW7E5BmE5dnCRdBXk8wRRh5kGYjj09HzgFwL6QZxK0Q7xZ7ILabdiJPuqmWjj1G41zmzJFM2K//XTrtvXHvy56/XQDCc2cqIqcz5+WJ9Xn7duD118XXjSYUApYtE9t25Urg6KOBXSop4VZN1slOvxZJM8/Lk1yCbvfPDVdBKrkjQiHpt0qU+J68TDU7MAq/X2p743+scftLsdRn27Db9ZssXBBbnsK9In5lpG8tMdOKiOjXguvKgcAi6wbC/TYaLBwkaZqGnLj3rRTzU3OLwX7Ljex6UTPHKrmc4p/wCguJCjSqDcuBxcvCf2sF/YlaEmpqEjPARK0OVgshxl8jsyZrr5R6FymKmOz+JWNaAg+5I4jIXiubl92RjCrsltLAHXGjVLnXjjaXWqY8EFk/QMZn8Q4Y2Ld8rlrxOdE3R5FKyDpuMTnmxs65meSboZI51k4hEMggqnpFexARdROsWiV2zLy8RLOy6I1dZN9K8TwieC392ujcZeXl7prruUKxvYLEy+5IRhUWNxo4L240rA6WWwWJCad4wSL3SSQ+xogYEo3PCar0W8m6E9C/DlUIW0BsGKD1boZ2CQFACiqmgP4gIpLWWVoqdsxx4xLPyVbBFlC/dmp4Nf1a/lwWLxab98usFcfrIsKr2ClI9KZbac0xNx6GY26Shs3pygl8BeUpD6KJyUEO/10M5fiYwvDy6DRBPwA5PTo+DiF+36LxOQ+q9FspFV0gqKYYwPJxQEGO7qpCaKVUW6mIHM9OAH9dBjz1lBTDkZ8vxXzE+7TtTKM+/nhI38taAEuk1+GnaceZGGH1auPxMl5Nv5ZjDQoKYisuq7Ftm/EKvl6thJwK2DkNx+uvA4cOqe8H8E6sEWMOF8SWp3DWchMgXauD6VZAYq4urVgXEbeQjMhs4aLxOfHxONHNglssGBTPLtJ6OpPTnZWepEXcRHLMjZYlKb5QnsjTv9YTfk2N2DnWlCl8joVEVbPMZ4hZtWR4Pd7BiLXOyBO+11xxqYgdxSHVPge55eQY+yzYEuca7JbSwFlxIzrYm2mTBNersfF89MRQwMbzC0QdU9AtJpLSqTUo+XxSKrdeUKvIDbVqmTVXmdEYjmAjUa5OnZpcX0udnYRr6JMEjplrp3dN9QYGr8c7mHHb6fXVq664VMRK8LPIdCt+P9GyZeb7koyg81ZCyombp59+mnr37k1ZWVk0ZMgQ+te//qW67nPPPUdnnHEGdenShbp06ULnnHOO5vrxpK7lZprgem4+7YoIEdGaP/HZVxqDMlVJNw8tn7leKyqShI3ok7TSTSw3m6i8LGrKhFmJBQbVLDZKzdBNMaA/DUWV1vUOi8Sat81fQ7ODtNdrq4iU6o9velYmrwu6VMOstcSIcNX7LbIlznVSStwsXbqUMjMz6cUXX6TPP/+cJk+eTF26dKGdO3cqrn/55ZfTn/70J/r4449pw4YNNGnSJOrcuTNt27ZN6HjOiptGci6YeKrgegGVvhlxSRlBL1hZTago9VsvWDrsFquqMj/4lpZKN7jGRuNP0sFKovJshUJ9uVHZTpVEga5S8PBck+JA6KYYthJWgaggvj/QETZRLVjjzMSheoO0U3NP2YWe68Lo+XrdFddaMOJy1BLYbIlLCiklboYMGUJTp06N/B8Khahnz5708MMPC20fDAapU6dO9NJLLwmtn7qWGxCRX+O9+NiVaEQzlcyiFZ8TJG3rjdzvZaQtDMsp4orKzTU34EanRRt+kq5qydJKuJGFW2RADgvJimnG+yh8Uwy0XJsgpPo/FeFXRVeUWqvQH8gvuECKbVq8WDxLS2SQ9nptlaoqogIBt53I5+WG5YZjP/Qx6nJU+zzYEpcUUiZbqqmpCR9++CFGjRoVWZaRkYFRo0bhvffeE9rHgQMHcPjwYeTkKGfONDY2Yt++fTHNOZyeXE4tG0UpQ0qmGuKZSmYpBvANgACAivBrXXj56wD2aGxLAB4HMCP8txI+AC9If9bWShPcmeHyy1uyHwxNGBgCQreqJ8LJy0qmhzOG/ABGAPmXGO8jkWCm0HBESh6HD4cJ4VdDCR75LdlZhYWxb2WEbw9vvgnMmAHccQfQtq3gbgWyzIqLgW++AQIBoKJCeq2rMz+ppt0UA/h2LzBeZ73LLtPPqrEz00cJzsISQ/4cRFG7T6TqhKOtiKSKm927dyMUCqF79+4xy7t3744dO3YI7eP2229Hz549YwRSNA8//DA6d+4caUVFRZb7rY6ds2BrEf+xKaV0A9qp6ZERGeqiyQhKI6x8fC1yIU3ZIJJSvkYSN2bp06flb0Mzaq8B1tQLdHFbrCgxeiONRvemqJey74N0bVXnewBQBEkkIVZolJRIy5rjZpGvrwfuvRfIzbVvkPb7pXXz86VzXrPG/SkYFIn67r6rs+rSpdZmpbaaeiw6izwT+zmIoHafMHT/YJJBSte5eeSRR7B06VK8+uqraNeuneI6d955JxoaGiJt69atDvZIoDaGLTQDyAZwK4C5AB6GJBDib7CidWicqieid3xAsurUCu7P4lNQ9LxNhp6ktxuYoitqRb9fmp/FDEI3Rb36RfIcZ3r1isLIQmP5cuXDEcX+bccg7VmLQ/i7K/IVFq3JY2f9Ihm75ltqTRQXA5WV2t9RPZHutCWOsY4LbjJVGhsbye/306uvvhqz/KqrrqKLLrpIc9vHHnuMOnfuTB988IGhYzoXcxMkqRaNkXgHu1t8HI1oanop2RdgHI2R44usFxCv7yLi/xYOag2Iz2kVfQyRtFPTMTfRaAWLi9QrikI0lqC83Hq8jKezTcLf3QrBz81IILCdsTFuxX6kYzzPsmXqv0GR75/Xg+LTkJQLKJ42bVrk/1AoRAUFBZoBxf/zP/9D2dnZ9N577xk+nnPiJkD2CBQrLX46BSN9sjPAWEb0+DVkqLaNmYBiNcEgFNQaJAoWaM9p5QNRUWHsMcxOc2D2pqg6ABnIlDOS1WNlwPNqtknknEolQVsj+JklK3DUjSysdK7lYjWo3etB8WlGSombpUuXUlZWFi1atIjWr19PU6ZMoS5dutCOHTuIiGjixIl0xx13RNZ/5JFHKDMzk5YvX07bt2+PtJ9++knoeM6JGycL+BltOSQJhkbSFg3xAiJ+nimrGCjIZ2T+KyOp4CJPUUKDtEa2lCxu4o9hdl6qKsECYjHds2kAEhVkc+dae4r3YraJ0jUsAFGu1uee5JTf8nJnr6OodS2VLTtW+57K555ipJS4ISJ66qmnqFevXpSZmUlDhgyh999/P/LeWWedRVdffXXk/969exOAhFZWViZ0LOfETQ0lX9TEt0IimkXKokFPbNiFkUk7BV0oRsRNzIzbjUSBuVKKdmCu9L/Rc5nVMbEwnz9DKggYjxnLjQ9ERX6pXo4W0TfU8nLtAWjZspZ1a2qkJt+I46eekOv/GKnxYkZEea3ui+ogrvK3/H8y3Q8itXisiC9R69qyZelr2WE8RcqJGzdJLXGTYXF7WUDMIrF5qeQW0DhPM8UAjcR96Oxf5IablyfVZIl+iqqaRVToj7sB+6XlohiNETFT6TbypA2V60PKFgat5veLv1dYqF65WeuaGx3kvWS50f1OQbLexFefTqb7wUg8l9k+Wpk9nuNOGAdgcaNB6rilfES0lIi62rCfIpJcVKKBu2pPy1aKAdpUIdnMoFg1S3vOp5Lf6puTzcaIVFWZm3OqAqRoRTNaOdfsoPT732uLItHz17ueXpiCQfQ7VTM7bPlbnHz3g5HAb7OYdasm4zNUg11GaUXKFPFLL+yuZ/AHSNXD5lvcD0FK914L4BzBbZTOxWoxQEuV5lowWjwr1ARMfwKq9QEBYN7f9VOQ16xJrCMSDVFsSnAoJNXkaTwI3JsN9BTrdoR8ICFNXyvt1y7kff/lL8bSh+PPXw8n674YRfQ79f2JwIgSYMIVwIgR7vRNDdE+H3us+WNYrdFi9DthN2plBpYtk36bS5ZIr5wmn5awuLGN4QC62rQvH4ClkGqVzLRpn9sRU9VW9bhRhd0i6BUDpPD7LtwkjBbPWjMf2CbYL62iZ0ZEVcxN9UqgbJ90acsBLIb21yThI4g6rp7AsgsiYNcuc9saqcjqRN0XM6RiQTY3+qxXy0WUZFTpVStsuG0bcOmlHqyrxNgNixvb8AM4y6Z9ydaW30G/gpgo+dCuaisf93qF5SKVzLYBeNB074Q57TT9J2a/X1oPALZvFt+3bLVQKnomOkh89ZVKtVgA9wL4BOpWJMXaelHHTYVS7kYHUy9MwSBaSXq3W0U6BXCjiJyIdU0EO0WhbBHVsroYtXByJef0xAU3madwduLMYhKLabGzZRNRO433lTKg9GbfNlsMECQWf2MBo6mvgbnm4gXiA1lFgoNzcoi6djUfo5CLqNm842r7BALik1ba1fLyxON7vBBfYYXKSv1z9Nr5uVVETq2WS2Wlu3FTVVVEBQWxxygoSDxPU1mKKf79bSVwQLEGzombKhIXAG41rdo1QZJm2hbZLmDgmHankkdhJAVcTiEONkpZUYYDehWCqo0c30wrRHhG76jrbzQzKv6GbbYvfj/R0qXKg6fScVI9M8ZL2VtGcKuInFpgrt5vwk6BJXocK4HQXvt8mRg4oNh1QgCmJLsTCqhNqAlIfX5KZTsKv5aE15NjdURwaK4q2dQsimwK92cCT4bjloyEDiiZ0seMkSaNdIptCF+68OdWDWUXlxKym2D8eCAnR/qbSH19PUIhoHt35ZiYeLeg2zEyTuDmLM8irhVRRNx6dhzP75eCqCdMcD+YOhQCrr5ae50pU1rOy4obzA3Xr52fP6OOC2LLUzhjubGzxo1IsT2tbfOIaDFpp1tXhdcT2WcgahvRfthVeC0qfdyIe0kxJVuhzo2aFULNPG2l7odoqyiliCvKiMWmqMh4fRrdvsjWr7in9vjCf+lgyhdOB6+xdhwnpzJQsq44fTw3ptAoKzP22ViqLxWwelW0SeepLFyA3VIaOCNuROvHiLQiIqok8WkTlFpAo69yxWDRfUULFTU3lpHjixIXFyQ6gSGgfqOQKxSX/Lrl5ht/M9Zyr1it+2Hk5io62JaWxlYW1lo3N5do1SqiOXO8caP3EqIDolKMhyhOThSqNGiqzcFmlxvRDVdeMEjUqZP4byH6eoi4VONbpU5lcCt4eqLY1IDFjQbOiJvZJDboq7VsIiqhWGuL2rQFIk3NciLP9WRkXwED29s1fYOCAAsI3pxEi5aZiVVw0nIT/5RrdHoCIwONlwroeQmRAdHsQOSklcNMYUc7PmM3ptAw8puLFjfydTEar+bU996rE8WmGBxz4zpHWtx+H6QU7b1oyQEuhhQvU6C2kQZqPudaGEstz0VszRs5ldyHxAAWxTxmE6jU1NEr0QNIsR933SV2GDMpyHbV/VCCKLZondE6Jq+/Lrb+6tXSq1aKLxFwySVSXZ3WFA+gVncnGgp/L5XKBWhhtAikKGYLO5o9XjTdutm7nhJGYmBGjIj9P/43Pneu/j6cKjro1OfPqMLixhZ+sGk/JYgthFcMYDOAuQDOF9herQgfIEWnXmqwP3sAxA+aaqJLK3jZCCo1dbRK9Ph8UnvySfVAR6UgPjlI8tLwdamslN5ralIO+NOq+2GVkpJYYWWkjkl1tSSMRHjgAaloGaA8kGeEbwnz5rXOAmfFxcCiRdrrmBmInApYtlrYUfR4yQqCFRX52dmJ4gaIDYTu3l1sX04EFbsZsM4AANokuwPpgR0akSBlGtWiZZqEakhWDCM3r3lItJzIUycYfLqDD5LgGhO3z+LwsjWQKujmQxJUdmRQaPy4ZV0Vf0kKC6XBWM3qUl0tPd1GDwKFhS1CJf49vz/25i2vW1zc8nQfv41VevduEVxyH558UsqWUkMWNFMMZurV10uWmZKSloH873+X9hc/aG3bJvUh1bOhjPD992LrGRmInKoobHUwFDme2u9H67sZjej1VEIW+Xq/tQUL9DO4klmJOhWrYKc6LrjJPIX3s6U6khRzYjTwF0Q0XqFvZuJs4lvA0tUxhsC1DIIoMEcsW0criM9IfEJ8nEUwKAXn2hVzA0hF85Yti+3/rFmJE1j6/dJyIvGihlqtoEA9+NTpWAQv4kSgrFNxTmbjwESPZ8fvx2pgul5Mkfxb0CMZsWZyBtvixdoFPjnmRggOKNbAGXETJEmU6AzKhlquyW3ifxwBG/piV2q3CKJCUSAl12g6tdHBoKbGnn2r3az1siuWLZOqIjvRBycGqVTBqUHQiYrCZtKeRY8n8vvx+90RC0rBwXl5xrOb3KrqrNZnK58Hw+JGC2fEjZeqEwfi+mZk6gTRfTqJaH8FBJcT2U3RA7yT0yEsXaqfXZGX59zxldrixfZ+1F7GqUHQiYrCRrOlROuqGPn9uCEW1KokG8WNqs5GPhMnKkqnKUbGb465sUwIwK3J7kQU8T74ryzurxDKAcpOoeFzDiEqzGcnMDyk7WdPZmCgVaZMAfbtU3+fyPzM3WZx+3jJRC22Si++S2S/Y8ZIgcDbt0sxFsOHW6v4K/f1hhvEJvdctAg45xzd1YS/6yUl0vHtvE5KyMHBVnHiM4hGL4PN5wO6dpWytwoK7D02E4HFjWXWQJry2StEi4MQgOcs7u8gpIwpt4JJ5ZzveiA6ADohtnoGUPh4S6CvEk4HBo4YIWUfOYGWsEkWeXnJ7kEioZBzg5TaIAhIGUMix1Trnx2DdHxfDx4ErrxSf12tAN/o/u7cKXbsMWOAOXOc+xycwInPQEYk7XvXLknYONUHBnDBkuQp7HdL2eH2satlENEqaom7CQhuN5LUY4a0Jt90irgChlVQnvhSz/RtpQy70rHi4weCQf1AXKdb1672Trmg1bwWc5OMUvZGjul2/6wGQiv1Nz6YXek3kY7TcVjBjeKGrRSOudHAfnETIDEBYbTJAcVmKhQXkiQQ7BJedlUeNkJ4+oUgpNmyjYiOmN1oxE4o/a14DKiLKKdnCtc778pKd8SN1zI5klHK3sgxk9E/K4HQRuN25POYNYvnSoonVWeYTwFY3Ghgv7gJElFPskdERDc5HdxMGrds9RCdC0q0Bey5ZMIExSfM1LpRaAUQKj6txg/skCbeVNt3MoRN9AApmpXRsaP1Y3mBZJSyN3JMJ/onGkxrJhBaNCsq/vejN1Grl74zbsLTmzgGixsNnMmWslNE5FKsCyhIkqgwOjmnjyRhZGUCzvgWbUaV+1VB2jOQW8QuE6/W4BBsJAp0lSbnDICoMfwq/x8EKVqu7Ew112rx6d5K2RXBoHrNm+iBraTE2LG9mMlhx5Ox0cwbI8e088ld/lzjvwNa1hGj2UCi/Z07N3ZmeJGJWlvrAO5mynkrgsWNBs6IG7vcP12JqFHlGHIxPqNCpZzMT8AZ3wLhvihZlGRXmM24YuINkOZ5BxEWO6WxA6GTE2lGt5oa5YFYaYDWG9iMzjbuxcHJquA1Ewtj5Jh2CfKqKvMzexsRb2b6K/o9Ep3INh1xI+W8lcHiRgNnxE2ArImG6BbQOI6ZmcIryLx7S27RMTdqlZMdCjwWCQrOyZEEgJmBOBgkCpSqW20qkRjzIw+EooOC2aYXI6E2QGtaqdLAZG5F8JqNhXHbciPi7rTrszLTX9Hvfmu23hDZV5uHISIWN5o4I24qybxwiG96EfRGhUogvF20G2muge2jRYtsPdJa14HAYzUTb3wzGsioJBCUsrLUBkI7pj7QO4ZaELOVYNVUN5mLZKkpDapWYmGMiEKrAtKou9NqYKqZ/hqxWnLgLGMTLG40cCagWC2N2kwLUIsQWUySEFkctZyIaBlJLiw9UaImNIy4uIqoxRoTMHAONiMSNGtkcDaaHaJ0rMJC+1LNMzJi/4+ePyoakYGvsFBsziC7TeZuPaWaFTd2pEqLikIrAtKou9OOlGKj/Q0Gxaf+4JRnxiZY3Ghgv7hZRWIDvkjLJaIyUreOFBLRLNIXJSIuIj0XVwm1CCpZbE0TPA87b2ZRFqdgDVHNKv2bqp6p3s5A4PJybauSmQyl6IElflCxM9bBTjFi1k1mBrMixY5YGCOi0KyANOrutMsyYrS/opZLttwwNsHiRgP7xc2VJDbgu9lEg3uVXFzRlhq1dfRaIO44ZjOrFI4d0JhZV/SGamcgcEWF8qCQkyPd/K1MrqnkDjAy8LniXgoSVZWrF1kEEq0sVuugmBUpdgWnGxFrZoSdke+nU7NYi56blgUtFeK3GOu4GFfE4kYD+8XNRWRehDjVagz0X0t4qAUPqzUlV5jZzCqVYy8WvOlrTfJoZyCwPBCq/cDtqJIcPdgaGfgcD+asIgoWaBdZVBv0rMT2iArGmrjfQaoEU4t+Z7wQH5WMYoWMd3C5CreR8TvDzake0hNKdgcU0Jg7JgE/gBEAJoRf5flgQpAmczJ6fvOi9lENYByiJoQKUx9eXq2yjxAQuhWoJWAJgNpwdwBAdO7GmEkeQ+GdhHeW301wJxr4fEBRUctcQ/JcNRMmSK/yvDp+vzT/lbyNGaInMBw+XJqUUIQ9e4AHH0xcHgpJcyMtWSK9hkKJ6+gS/mzX1Cd+vHpQ+DtVUmLy2CaJ/izUmDcv+XMiiXxncnOlySrtnJjSDPKknfHfycJCb/SPcY7qamDcuMR5tOrrpeXVavd3l3BEXnmY1mG5CVg8pyAZy6iSW3ncPkxmVlWVK6RfQ5pjyrDlRsFyFCwgKrRhTiirmVl5eWLHiXeTGKmKHG+9seVJK+qzrbB4Dc3EY1iNnZk1K7HirloAdzLRcncm27oUjxnXRCqkSadCH5NBMqqEE7ulNLFf3FxO1sWIXc2OVGwrNXGiB5OA4DaBuMNXqcRvhFu5kUEzyrUVKcQXfl1mcVA24/KJv1E2NprL+qmqIsrONi4gbHMhRH22AYvX0UwmTTLq3BAlZ6BL18FVRGQn+9yTMTFrqpCk+bNY3Ghgv7iZQuaEgBPNahE9ozE28S0QtS/Rqs1Rg5tIFlNXEOXo/KCKiqQpFWSRVgVlS9CsjtZm9bajvohRcWMmhb2iwuYnrajPVp7YVKQ+kB3XMBiUYmm0MubUzsXKNWgtA50bgkJEYCb7enMskTZJmvmcxY0G9oubU8m4CHCqxc9LZQQ9N5JWU7IYBQS3DURtEjA3QMbffKqqWo5fpTPwVpYpz93jxg/X6FQIIvP5qAkIW5+04j5b+RobEThmzNZWax2ZvQZGB7pkWxy00Oqbmut02TJ7j68nMHNzkysskuRySSnYcuM97BU3QSJqT2RKEDjRROrbqFFj8zFlsaRmCVIQRFazmPLypIkhAwGi4OIWq4LWNrkdW6rKyjf9uXPd+eEaPd+ugmnw8dckGLT5SUvhs1WyjslWKTsqIYtarLTqspi5BkYHumRbHLTQ6pve9f397+0RbFYfYOwQFnri0+6B28ti1yxJyjxkcaOBveImQGRKEIi0Dia3MxN3U0VEOSaPF18XJ36/SoUCVQSRlRtfp05xN+088fic+IJ3Ij/cwkLJPWLlhmVnvR21VlIiHUs0fVpYsCl8tjFxTeGgVzsqIYu4K3Nz9ecXMzNoGdnGy64Mvb4Zdc+aFWx2lWEw+2AhIj7tfBDwstgVQc/S5/I0LixuNLBX3Ng1G7gTLaDR7yC11LYpN7jfOSRZeUQL8i0jory4fagIooiosOHmZ2QfakG7aj9ceRurNyw7auCIDroFBTrXy8yTVhURFcR9toWJn63VJ1c7i+8ZfdoUHegWL/auK8POitxWBzC7BP20aca/S6Li067vm5fFrggiwszlmc9Z3Ghgr7gx68pxo6k9VZjNhjJrEYo/VleSJhpV26TKePyGXSJAqS/xP1y1J1yzNyzRSUHNDD5FRUSVleL7NhxbYbZAo0HsfpI28rQpOtC55co0g1MWQjOCzW5BL/pQYcS9WFmpf1yrU7x4PW7HiDDjCsXeoPWIm4BCf61kQxmN5VE7lkBcUNUyosK4OiRON7Unwegfbk2NPTes+JvBsmXOPFkb3a8h65OFz1eP+Otjt0vNyNOmqLVn8WKxPro1iWT0NSwtdfa3Y1SwiVhFRcWP6EOFqMDT+43LTe9BIEkBt7bgYWHG4kaD9HdLqVlY5CBQM/s0moWld6z4Pka7yQLS/8FKKX5jtoM3ZaMDvB03LDVTb2WltJ0dA1FennQco0/swtYnA5+v0ac6petTUKA94GmlfqtNiVFTI13r0lL9WB0Ra4+XBjORrDI7mxnBpiUwjVozRQZbUeuf6O9P73NMUqq0LXjpuxwHixsNUiegOLrFx6yoBf9qPTVb6WtNeB8KIsTSdQmQtmujSqomnGvx5pttYF2tAd7qDWvZMv1jWo2P6NyZ6C9/kW48otYEowOF6OdbVW4smFLLFK70t9bnpVbdd/z4xPgjEYuVnrXHK/NWmamDZLWZHeSMpqVb6YeRsgtWfuNGj+dFy42HhRmLGw3sTwXPJaEbvSVh8xeSpkNYTFIAsNpTs1bmkhkrU7SFxUh8heixSkjftRGUBkkzN10fiIogVSO2owaLlRtWZWViyX+1YxqZXkGriU7vYPimK/D5qtUX0qoNoxX07PMRdexIlJERu1xp2gSjA7yoxUrPCpWE7JGE/hkVBGazpbR+J3aeTyBAdP75Yv3RGmxFxaddLlCviF0zeFiYsbjRwH5x05F0b/S2NT0hpeUHDhg8VrTA0IuvKKdYa47oseItUvH7jnJdlRsUOHJQclV4f0p1WIz+eEUHj8q4gGkjYkUu2Dd9urG+qt1AzW6r+VSm8/nq1RdSurEb/Xzj9xdvQTGzDzsGG5ezR2IwEzgc7woycr2cFGyysFm8WHyqEZHsJa3toy2ndoiSZItds3hYmLG40SB9A4r1spkaiSjDwP5kK5DRWJ1CkkRWIWkHL3cS3F8pEQWIgo366cwxN220CJvoQTcAomkWngTVXEvxA0Z0fIeZwVa0YN8VVyTW+LGjqQ0UwSBRoIaoIke6lkGFzyxg8BhWLVXRN1urmUF2PI0mq2ibkbgSIxWK//AHdwWbGZeUXKxSb79a+5DPx05RkkyxawWPCjMWNxrYK25mU8KNPektoNJXUSE2m2LjaQIGjy9bc2ZF/W3HeRUSVc3S/sGVl0fdtCspUZSFBZuR9N7GRmuZO04W6tNyc8U3UbGk9VSmGAyNOBHpE58pXGTOKyNNDhK2sg8vBnhGoyWc7HAnaAVhuyHYzMYMycUqtc5L73umV2narChJ1QrFHhRmLG40sFfcXEFky8BtZ1O7OZcKbl8at52VWB0lgWG2hUVS1W+JCuMG6iK1gFCVAGiRCSvVBIToHFTyIGlXRVarbfHilhus7AIy8lSmGuyLWPcfFUnViUUHWTvFn5n5wZT65FX0iqp52J0ghBWhq/e5mRF+qSpK7MTMNXDwurG40SD9xU1Apa9mxU3AYl8aiehxsjU2KabMP6SMKiOp6sGgFJzqpJiQb5Kilh6nW/zN30ytF7V9+0BUlEsUrKFI+rfoIOsV8ef1gV+0qJpH3QlCmBW6Ip+baObg4sWunGra4vB0E0bG7wwwFuid7A7EkQtguMp7IwT30QVAKOr/4QAKAfhM9Od1AEcD+D2An01sr4If0ulMCL/6vwMwDkC12PYPPgj8bGN/ovH5gKIiYPhwoLoauPpqZ45jpj+hEFBbCyxZAuTkAJs3A4EAUFEhvdbVAcXFiftYswbYtk39GARg6x5gjR+AH/D7gSefbDl+fH8AYN48ab38fLHzyM5O3JddxPfJa4RCwPTp0lARj7yspERar7gYWL4cKCiIXa+wUFqu9Pl6he3bja3v80lN5HPbtUtsn6LrMYlUVwPjxiXeK+rrpeXVgvdnu7BFTqUQ3goo7khEZUTUzuJ+olt85pJMkMTT1uNTvNWypbzU4gKqtWIH7HBfqD39y0/Hyag3otcfs09UZuteiFiHRMrxy0UOnZimQqlPXsMLLhU3XDRGLTdGPje23DiLS1WN2S2lgf2p4G2JTA3G7YnoADmbcaUkUkS2i04Dl5ll4Lg+IvKb6O+VNpxzQLsK8KRJxm6gWi1eJMk3WycmKjTTZPGiVxwvJhBb4eZjZHCNHwTjA7LVApVFXClqhfnMXJtJk1InliLZRdXcmtlaxJ2Zl9cSP2bkc/Nw7Za0wKXry+JGA3vFzQEiSwNxJyI60+I+tJqSSFEqxqe2rWwJMZIObtbCU0RSfI5eCrlOqyoxNshZaTU1ygO3kxlSRlpurj3zS4nG0FRWmh8ERWOAzM47Fd8nrwuaaJI5MLs9s7VTMUMiSQS5uan1vfASLglwFjca2CtubiIyOwi71pTq3wRJqngssn2AjAUVF5FUedhoP+Uqs7ILTEHgJAQSK7yfK1jwy0rTM7E6GSQrWtDMyrmpTWegNejMmmV9EDTj+mhsFK/EnApBtUoYzYKyy4WUrAkUnUhBZnHjLGy5ST72iptTSHmg9mKbS7ECRzTFu8LAuqVkrEJxdIsWYArWJaUKwzE1VnxE5S4IG/mmrnWjddJys2qV8y4vtUFr1qzE1Hi/X7nIW7IGQa3m9dgaLay47sy6kJJpMbI7xofdUs7iUhkCFjca2CtuziUyPIgns0XH4AQEtwkYXJdIqlBspn/y9kQtIqlEY54itNRYCYIox+H0btGBQiRINr6Vlbk/95SRG70dAdJ2Dhwi/Sks1I8nSiX0LBp2u5CSHetjJ+l0Ll7FhTIELG40sFfcrCT9AdtLLToGR46j0YpvySEp4FkkFiYvvJ6R+Jz4pnBjCQaJCjXMyfLkmDUWBl3RNm6c+ACp9kNXan6/5F7Rm9rht79tGaStzMUk2uQbvV0B0nYNHCL9ycuTrqno/lKlWJtWFqDd1jMvWjvMflZun0sqfafsxOGqxixuNPBOtpSVlkvWZiOXhYhGfEtMKySx6RQKSUpFN9uvQOIlDggGjJZaGHRFm9EbX1WVeDyIvO9Zs/TXlTO/nHZP2T2FhNL1CwZbpk0oLZX+1hsI7ByoqqoS5ywrKEg995UTg7eXKh7Lgj4+O07U5ebmubiVXeZVuEJxcrBf3FgRGUbbcSRZUuQMpgBJ1g4zgqIrUWTGbz1LiyxqZumsazbLSSnomaS+VQim+jopbpRufKI/YNH6GmbmWRIRQnacr9UAabWBo6pKOcgzN1d7ILDLxSA6kWIq4JTbxQsVj9W+J0b74ca5uJ1d1spgcaOBveImQOSasJFbDkliJnqgEK1fE9+iXVSrSHumblmAHCDJ8mPX+Silq8vn5CPhGaZrIAUYK8Xm2DHYR9+U1OqtlJcnDuBGnqiNWkhyc4l+8xv7zzX+fI30S3TgEIkbUhsI7JogMp2yZ5x0uyRzAkWR74kRq4uT55Ks7LJWBIsbDewVN2YmlbSr5VJs7IyZfciCZRlJlhyRbebafB5FlChsos4pCKJcnZtbbng9OfBYTeCITpYZ3fLyEoWNVhxNvNXB6XmW2rc3vo1WU6stY7bOjdb+9PqiVo/GDheDaH2cmhr1fXgJp90uyYghMWrJFBVuTp2LF2OU0gwWNxqkvuUmuvmIaJLLx5xmsH/x//tIfYoIhesaBFFHnZtFexAdgGTlKQFRXtz70ZWD5ZtaaanYjSi6HLuRm62SINKzaiS7+N/cueo3etFzEBk4jJyn2kBg1cUg+vmXlmrvx0t4wYUUjxUhYfT3kOxMJ87IchwWNxrYH3Nj1mqSqm2u4HrlCtdGyUqjRJRFTDQLKiPu/65diUpK7JlSwOg2QGK2jl3zLDnRRJ/q7TLpG7FQac31Y6U/6ShuiJLrQhLpi1pgrZIIMmrJTLZFhC03jsPiRgN7xQ2R+XiXVGuyC0svLTw6ODg66DlAylYaJQIt+zMbKKz3tGrGjG/0Zhvv0hJ5inV7ws1IrSDBwc8Ok75RkajVN7P9EXVLvf228fPTw2kXjxfSkI0E1qqJICPlDrwQy+Kl7LI0JeXEzdNPP029e/emrKwsGjJkCP3rX//SXL+yspL69etHWVlZdOKJJ9Kbb74pfCz7xU2Q7J3V26stOuhXLYVcLTjYKLJFzGctC0rvZmLUjG/GbWTGHWC08q6VVoRwlWcXn+yNuPeccqmIBBQD9qeFt4Y0YSOBtXoiKDdXX+x7KQvJi67BNCKlxM3SpUspMzOTXnzxRfr8889p8uTJ1KVLF9q5c6fi+u+++y75/X569NFHaf369VRaWkpt27alTz/9VOh49oubMrJfSJSRt9xdeaSczWTW7RSPkoUnLKDsKM6nZQY2YsYPBokKBevWRLfcXLHZseOPVVND1LGj9fOPucmGX0sQNT+XWiq+gxipsuzk9A1Oiqt4C0plpfZAvWyZveeXLEQfAmpq9EWQLEDVrpte2YBk4CXXYJqRUuJmyJAhNHXq1Mj/oVCIevbsSQ8//LDi+pdeeildcMEFMcuGDh1KN9xwg9Dx7I+50UqfNtMKqWVwt3O/Zptc8E/p3GtImk+qlFrq7xhFSSQVUqQGT2PPxHgao00vgM+IGb+qxFy6eYcOsf+LPq3bXYk4YqlRagH9/tiJVv0SpebUrNfxRfzsEFdKA5zW9Bry+5WVxs/BC26oaETdt6JxT+Xl4qUXvEKyPhOvfRdsJmXETWNjI/n9fnr11Vdjll911VV00UUXKW5TVFREc+fOjVl2zz330MCBA4WO6f1sqTJqEQxlJNW1sfsYIk3LxaQlSIzE2cjuLYVjB0EUmERUOsb6gG7roBiQxIFeerpIE7EIiBYBvOWWxGrIRXlEy14hCpSqz6Qe05KQxREMEs2eLXaOTmWZiMbfiH6PrMZNGXnC96KbS9RyIypu5AKXaTxo24IXvws2Y2T8boMksnv3boRCIXTv3j1meffu3fHFF18obrNjxw7F9Xfs2KG4fmNjIxobGyP/NzQ0AAD27dtnpethNtuwD5ksAG0AlMctPxJAMYAAgB9sPJ4ePQE8AmAUgOhr9QaAiQrrbwNwCaT+RvezJ4D/AXBR3PohALcAoMRdvUHA7QC+W2Sq5zEUFAAnnwzY8nkDwMnAqJ7AV98BjwF4CsDPJndFBNx6KzByJOD3K6+zdavYvnr2BDY+BqydCezYC/QAcNouwD8DwNUt6+2P2y4EYC2AHQB6fAuc9oN6X5zitNPE1svOtvFzjOKbb8TW27wZGDRIe51QCLjlFumzNYved0LmjTeAiQq/xW3bgEsuAV5+Gbgo/nfnAiefLH0fv/tOfZ2CAuDUU8X2l50N7N8fe+33x3+RWzl2fRdCIWDtWmDHDqBHD2DoUOBf/2r5/7TT3L8/RCGP2yTy+3Jea6lTX19PAGjt2rUxy2fNmkVDhgxR3KZt27ZUEfcE96c//Ym6deumuH5ZWRlBGkG5cePGjRs3binetm7dqqsvkmq56dq1K/x+P3bu3BmzfOfOnejRo4fiNj169DC0/p133omZM2dG/m9ubsbevXuRm5sLn89n8QyssW/fPhQVFWHr1q3Izs5Oal9SEb5+1uDrZw2+ftbg62ed1nYNiQg//fQTevbsqbtuUsVNZmYmBg8ejNWrV2Ps2LEAJPGxevVqTJs2TXGbYcOGYfXq1SgpKYkse+eddzBs2DDF9bOyspCVlRWzrEuXLnZ03zays7NbxRfTKfj6WYOvnzX4+lmDr591WtM17Ny5s9B6SRU3ADBz5kxcffXVOOWUUzBkyBDMmzcP+/fvxzXXXAMAuOqqq1BQUICHH34YADB9+nScddZZePzxx3HBBRdg6dKl+M9//oPnnnsumafBMAzDMIxHSLq4GT9+PHbt2oV77rkHO3bswC9+8QusXLkyEjS8ZcsWZGRkRNY/7bTTUFFRgdLSUsyePRvHHnssXnvtNZx44onJOgWGYRiGYTxE0sUNAEybNk3VDVVbW5uw7He/+x1+97vfOdwr58nKykJZWVmC24wRg6+fNfj6WYOvnzX4+lmHr6E6PiIrOYsMwzAMwzDeIkN/FYZhGIZhmNSBxQ3DMAzDMGkFixuGYRiGYdIKFjcMwzAMw6QVLG4c5k9/+hP69OmDdu3aYejQofj3v/+tum51dTVOOeUUdOnSBUcccQR+8Ytf4OWXX3axt97DyPWLZunSpfD5fJHikK0VI9dv0aJF8Pl8Ma1du3Yu9tZ7GP3+/fjjj5g6dSry8/ORlZWF4447DitWrHCpt97DyPUbMWJEwvfP5/PhggsucLHH3sLo92/evHno168f2rdvj6KiIsyYMQOHDh1yqbceQ2QOKMYcS5cupczMTHrxxRfp888/p8mTJ1OXLl1o586diusHAgGqrq6m9evX06ZNm2jevHnk9/tp5cqVLvfcGxi9fjJ1dXVUUFBAw4cPpzFjxrjTWQ9i9PotXLiQsrOzafv27ZG2Y8cOl3vtHYxev8bGRjrllFPoN7/5Df3zn/+kuro6qq2tpXXr1rncc29g9Prt2bMn5rv32Wefkd/vp4ULF7rbcY9g9Pr99a9/paysLPrrX/9KdXV1tGrVKsrPz6cZM2a43HNvwOLGQYYMGUJTp06N/B8Khahnz5708MMPC+/jl7/8JZWWljrRPc9j5voFg0E67bTT6IUXXqCrr766VYsbo9dv4cKF1LlzZ5d6532MXr9nnnmGjjrqKGpqanKri57G6v1v7ty51KlTJ/r555+d6qKnMXr9pk6dSmeffXbMspkzZ9Lpp5/uaD+9CrulHKKpqQkffvghRo0aFVmWkZGBUaNG4b333tPdnoiwevVqbNy4EWeeeaaTXfUkZq/ffffdh27duuG6665zo5uexez1+/nnn9G7d28UFRVhzJgx+Pzzz93orucwc/3eeOMNDBs2DFOnTkX37t1x4okn4qGHHkIoFHKr257B6v0PABYsWIDLLrsMRxxxhFPd9Cxmrt9pp52GDz/8MOK6+vrrr7FixQr85je/caXPXsMTFYrTkd27dyMUCkWmkZDp3r07vvjiC9XtGhoaUFBQgMbGRvj9fsyfPx/nnnuu0931HGau3z//+U8sWLAA69atc6GH3sbM9evXrx9efPFFDBw4EA0NDZgzZw5OO+00fP755ygsLHSj257BzPX7+uuv8b//+7+44oorsGLFCmzatAk333wzDh8+jLKyMje67RnM3v9k/v3vf+Ozzz7DggULnOqipzFz/S6//HLs3r0bZ5xxBogIwWAQN954I2bPnu1Glz0HixuP0alTJ6xbtw4///wzVq9ejZkzZ+Koo47CiBEjkt01T/PTTz9h4sSJeP7559G1a9dkdyclGTZsGIYNGxb5/7TTTkP//v3x5z//Gffff38Se5YaNDc3o1u3bnjuuefg9/sxePBg1NfX47HHHmt14sYqCxYswEknnYQhQ4YkuyspQ21tLR566CHMnz8fQ4cOxaZNmzB9+nTcf//9uPvuu5PdPddhceMQXbt2hd/vx86dO2OW79y5Ez169FDdLiMjA8cccwwA4Be/+AU2bNiAhx9+uNWJG6PXb/Pmzfjmm29w4YUXRpY1NzcDANq0aYONGzfi6KOPdrbTHsLs9y+atm3b4pe//CU2bdrkRBc9jZnrl5+fj7Zt28Lv90eW9e/fHzt27EBTUxMyMzMd7bOXsPL9279/P5YuXYr77rvPyS56GjPX7+6778bEiRNx/fXXAwBOOukk7N+/H1OmTMFdd90VMwF1a6B1na2LZGZmYvDgwVi9enVkWXNzM1avXh3zdKxHc3MzGhsbneiipzF6/Y4//nh8+umnWLduXaRddNFFGDlyJNatW4eioiI3u5907Pj+hUIhfPrpp8jPz3eqm57FzPU7/fTTsWnTpoioBoAvv/wS+fn5rUrYANa+f8uWLUNjYyOuvPJKp7vpWcxcvwMHDiQIGFloU2ucQjLJAc1pzdKlSykrK4sWLVpE69evpylTplCXLl0i6bUTJ06kO+64I7L+Qw89RG+//TZt3ryZ1q9fT3PmzKE2bdrQ888/n6xTSCpGr188rT1byuj1Ky8vp1WrVtHmzZvpww8/pMsuu4zatWtHn3/+ebJOIakYvX5btmyhTp060bRp02jjxo3097//nbp160YPPPBAsk4hqZj9/Z5xxhk0fvx4t7vrOYxev7KyMurUqRMtWbKEvv76a3r77bfp6KOPpksvvTRZp5BU2C3lIOPHj8euXbtwzz33YMeOHfjFL36BlStXRoLEtmzZEqO09+/fj5tvvhnbtm1D+/btcfzxx2Px4sUYP358sk4hqRi9fkwsRq/fDz/8gMmTJ2PHjh048sgjMXjwYKxduxYDBgxI1ikkFaPXr6ioCKtWrcKMGTMwcOBAFBQUYPr06bj99tuTdQpJxczvd+PGjfjnP/+Jt99+Oxld9hRGr19paSl8Ph9KS0tRX1+PvLw8XHjhhXjwwQeTdQpJxUfUGu1VDMMwDMOkK/zYyzAMwzBMWsHihmEYhmGYtILFDcMwDMMwaQWLG4ZhGIZh0goWNwzDMAzDpBUsbhiGYRiGSStY3DAMwzAMk1awuGEYhmEYJq1gccMwjOeZNGkSxo4dG7Ns+fLlaNeuHR5//PHkdIphGM/C0y8wDJNyvPDCC5g6dSqeffZZXHPNNcnuDsMwHoMtNwzDpBSPPvoobrnlFixduhTXXHMNdu3ahR49euChhx6KrLN27VpkZmZi9erV+Oabb5CRkYH//Oc/MfuZN28eevfuHTOLN8Mw6QFbbhiGSRluv/12zJ8/H3//+99xzjnnAADy8vLw4osvYuzYsTjvvPPQr18/TJw4EdOmTYusM2rUKCxcuBCnnHJKZF8LFy7EpEmTePJVhklDeOJMhmE8z6RJk7BkyRI0NTVh9erVOPvssxPWmTp1KmpqanDKKafg008/xQcffICsrCwAQGVlJW688UZs374dWVlZ+Oijj3DKKafg66+/Rp8+fVw+G4ZhnIYfWRiGSQkGDhyIPn36oKysDD///HPC+3PmzEEwGMSyZcvw17/+NSJsAGDs2LHw+/149dVXAQCLFi3CyJEjWdgwTJrC4oZhmJSgoKAAtbW1qK+vx/nnn4+ffvop5v3Nmzfju+++Q3NzM7755puY9zIzM3HVVVdh4cKFaGpqQkVFBa699loXe88wjJuwuGEYJmXo3bs3/u///g87duyIEThNTU248sorMX78eNx///24/vrr8f3338dse/3116Ompgbz589HMBhEcXFxMk6BYRgXYHHDMExKUVRUhNraWnz//fcYPXo09u3bh7vuugsNDQ344x//iNtvvx3HHXdcgmWmf//++NWvfoXbb78dEyZMQPv27ZN0BgzDOA2LG4ZhUo7CwkLU1tZi9+7dGD16NObMmYOXX34Z2dnZyMjIwMsvv4w1a9bgmWeeidnuuuuuQ1NTE7ukGCbN4WwphmFaDffffz+WLVuG//73v8nuCsMwDsKWG4Zh0p6ff/4Zn332GZ5++mnccsstye4OwzAOw+KGYZi0Z9q0aRg8eDBGjBjBLimGaQWwW4phGIZhmLSCLTcMwzAMw6QVLG4YhmEYhkkrWNwwDMMwDJNWsLhhGIZhGCatYHHDMAzDMExaweKGYRiGYZi0gsUNwzAMwzBpBYsbhmEYhmHSChY3DMMwDMOkFf8Pl0uWi+JZO+oAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# for some n number of points: default to 1000\n", - "model1.y_scrambling(n=1000)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "2f0a391d", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RMSE : 0.2508516645820539\n", - "RMSE External : 0.3291162069672103\n", - "R2 : 0.7932755997633875\n", - "Q2 : 0.7099699197171891\n", - "Q2F1 : 0.7138880300214392\n", - "Q2F2 : 0.7106827057393145\n", - "Q2F3 : 0.9978028024221\n", - "CCC : 0.9007449089766993\n" - ] - }, - { - "data": { - "text/plain": [ - "{'RMSE': 0.2508516645820539,\n", - " 'RMSE External': 0.3291162069672103,\n", - " 'R2': 0.7932755997633875,\n", - " 'Q2': 0.7099699197171891,\n", - " 'Q2F1': 0.7138880300214392,\n", - " 'Q2F2': 0.7106827057393145,\n", - " 'Q2F3': 0.9978028024221,\n", - " 'CCC': 0.9007449089766993}" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model1.scores(verbose=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "972d748f", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model features: ['RDF070v', 'X5Av']\n", - "Coefficients: [ -1.45342979 -96.40117135]\n", - "Intercept: -0.07684397375001017\n", - "RMSE: 0.250852\n", - "R^2: 0.793276\n" - ] - } - ], - "source": [ - "model1.mlr()" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "b29d4de4", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmkklEQVR4nO3df1TUdb7H8deAMhMoP1wUkKWgtavtlfAHyWK5ZYtimeXph5iWyDG7ldta3E3RFHL7gaurYfkD1/zR3qNpWWteJcq42Zpy9IS5m3eTLRUlFdRMUEzA4Xv/6DrbLPiDcWTw4/NxzpzTfPh+v/MeOuLT73xnsFmWZQkAAMAQfr4eAAAAwJuIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYpY2vB2hpDQ0NOnjwoNq3by+bzebrcQAAwEWwLEsnTpxQ586d5ed3/nMzV13cHDx4UDExMb4eAwAAeKC8vFw//elPz7vNVRc37du3l/TDNyc4ONjH0wAAgItRXV2tmJgY19/j53PVxc3Zl6KCg4OJGwAArjAXc0kJFxQDAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADBKG18PYJrYrPW+HgFotcqmD/b1CACuApy5AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARvF53MybN0+xsbFyOBxKSkrStm3bzrt9Xl6eunbtqmuuuUYxMTF65plndPr06RaaFgAAtHY+jZtVq1YpMzNTOTk52r59uxISEpSamqrDhw83uf2KFSuUlZWlnJwcffnll1q8eLFWrVqlyZMnt/DkAACgtfJp3MyePVtjx45VRkaGfv7znys/P1+BgYFasmRJk9tv2bJFt9xyi0aMGKHY2FgNHDhQDz300AXP9gAAgKuHz+Kmrq5OJSUlSklJ+ecwfn5KSUlRcXFxk/v07dtXJSUlrpjZs2ePCgoKdNddd53zcWpra1VdXe12AwAA5mrjqwc+evSonE6nIiIi3NYjIiK0a9euJvcZMWKEjh49qltvvVWWZenMmTN6/PHHz/uyVG5urqZNm+bV2QEAQOvl8wuKm2Pjxo16+eWXNX/+fG3fvl3vvvuu1q9frxdeeOGc+0yaNElVVVWuW3l5eQtODAAAWprPztyEh4fL399flZWVbuuVlZWKjIxscp+pU6fqkUce0aOPPipJio+PV01NjR577DE999xz8vNr3Gp2u112u937TwAAALRKPjtzExAQoN69e6uoqMi11tDQoKKiIiUnJze5z6lTpxoFjL+/vyTJsqzLNywAALhi+OzMjSRlZmYqPT1diYmJ6tOnj/Ly8lRTU6OMjAxJ0qhRoxQdHa3c3FxJ0pAhQzR79mz17NlTSUlJ+vrrrzV16lQNGTLEFTkAAODq5tO4SUtL05EjR5Sdna2Kigr16NFDhYWFrouM9+/f73amZsqUKbLZbJoyZYoOHDigjh07asiQIXrppZd89RQAAEArY7OustdzqqurFRISoqqqKgUHB3v9+LFZ671+TMAUZdMH+3oEAFeo5vz9fUW9WwoAAOBCiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGMXncTNv3jzFxsbK4XAoKSlJ27ZtO+/2x48f17hx4xQVFSW73a5/+7d/U0FBQQtNCwAAWrs2vnzwVatWKTMzU/n5+UpKSlJeXp5SU1NVWlqqTp06Ndq+rq5OAwYMUKdOnbR69WpFR0dr3759Cg0NbfnhAQBAq+TTuJk9e7bGjh2rjIwMSVJ+fr7Wr1+vJUuWKCsrq9H2S5Ys0bFjx7Rlyxa1bdtWkhQbG3vex6itrVVtba3rfnV1tfeeAAAAaHV89rJUXV2dSkpKlJKS8s9h/PyUkpKi4uLiJvdZu3atkpOTNW7cOEVERKh79+56+eWX5XQ6z/k4ubm5CgkJcd1iYmK8/lwAAEDr4bO4OXr0qJxOpyIiItzWIyIiVFFR0eQ+e/bs0erVq+V0OlVQUKCpU6dq1qxZevHFF8/5OJMmTVJVVZXrVl5e7tXnAQAAWhefvizVXA0NDerUqZP++Mc/yt/fX71799aBAwc0c+ZM5eTkNLmP3W6X3W5v4UkBAICv+CxuwsPD5e/vr8rKSrf1yspKRUZGNrlPVFSU2rZtK39/f9fajTfeqIqKCtXV1SkgIOCyzgwAAFo/n70sFRAQoN69e6uoqMi11tDQoKKiIiUnJze5zy233KKvv/5aDQ0NrrV//OMfioqKImwAAIAkH3/OTWZmphYtWqQ33nhDX375pZ544gnV1NS43j01atQoTZo0ybX9E088oWPHjmn8+PH6xz/+ofXr1+vll1/WuHHjfPUUAABAK+PTa27S0tJ05MgRZWdnq6KiQj169FBhYaHrIuP9+/fLz++f/RUTE6MPPvhAzzzzjG666SZFR0dr/Pjxmjhxoq+eAgAAaGVslmVZvh6iJVVXVyskJERVVVUKDg72+vFjs9Z7/ZiAKcqmD/b1CACuUM35+9vnv34BAADAm4gbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABjF47j5r//6L91yyy3q3Lmz9u3bJ0nKy8vTe++957XhAAAAmsujuFmwYIEyMzN111136fjx43I6nZKk0NBQ5eXleXM+AACAZvEobl577TUtWrRIzz33nPz9/V3riYmJ+uKLL7w2HAAAQHN5FDd79+5Vz549G63b7XbV1NRc8lAAAACe8ihu4uLitGPHjkbrhYWFuvHGGy91JgAAAI+18WSnzMxMjRs3TqdPn5ZlWdq2bZvefPNN5ebm6vXXX/f2jAAAABfNo7h59NFHdc0112jKlCk6deqURowYoc6dO2vOnDkaPny4t2cEAAC4aB7FjSSNHDlSI0eO1KlTp3Ty5El16tTJm3MBAAB4xOO4OSswMFCBgYHemAUAAOCSeRQ3cXFxstls5/z6nj17PB4IAADgUngUN08//bTb/fr6en3++ecqLCzUs88+6425AAAAPOJR3IwfP77J9Xnz5umzzz67pIEAAAAuhVd/ceadd96pd955x5uHBAAAaBavxs3q1avVoUMHbx4SAACgWTx6Wapnz55uFxRblqWKigodOXJE8+fP99pwAAAAzeVR3AwdOtTtvp+fnzp27Kjbb79d3bp188ZcAAAAHvEobnJycrw9BwAAgFdcdNxUV1df9EGDg4M9GgYAAOBSXXTchIaGnveD+6Qfrr2x2WxyOp2XPBgAAIAnLjpuPv7448s5BwAAgFdcdNzcdtttl3MOAAAAr7ikX5x56tQp7d+/X3V1dW7rN9100yUNBQAA4CmP4ubIkSPKyMjQ+++/3+TXueYGAAD4ikefUPz000/r+PHj2rp1q6655hoVFhbqjTfe0A033KC1a9d6e0YAAICL5tGZm//5n//Re++9p8TERPn5+em6667TgAEDFBwcrNzcXA0ePNjbcwIAAFwUj87c1NTUqFOnTpKksLAwHTlyRJIUHx+v7du3e286AACAZvIobrp27arS0lJJUkJCghYuXKgDBw4oPz9fUVFRXh0QAACgOTx6WWr8+PE6dOiQpB9+FcOgQYO0fPlyBQQEaNmyZd6cDwAAoFk8ipuHH37Y9d+9e/fWvn37tGvXLl177bUKDw/32nAAAADN5dHLUp9++qnb/cDAQPXq1YuwAQAAPudR3Nxxxx2Ki4vT5MmT9fe//93bMwEAAHjMo7g5ePCg/vM//1OffPKJunfvrh49emjmzJn65ptvvD0fAABAs3gUN+Hh4fr1r3+tzZs3a/fu3XrwwQf1xhtvKDY2VnfccYe3ZwQAALhoHsXNj8XFxSkrK0vTp09XfHy8PvnkE2/MBQAA4JFLipvNmzfrySefVFRUlEaMGKHu3btr/fr13poNAACg2Tx6K/ikSZO0cuVKHTx4UAMGDNCcOXN07733KjAw0NvzAQAANItHcfOXv/xFzz77rIYNG8bbvwEAQKviUdxs3rzZ9d9vvvmm7rnnHgUFBXltKAAAAE9d8gXF//Ef/6HKykpvzAIAAHDJLjluLMvyxhwAAABecclxAwAA0Jo065qbhoYGzZw5U2vXrlVdXZ1+9atfqaCgQNHR0ZdrPgAAgGZp1pmbl156SZMnT1a7du0UHR2tOXPmaOnSpbLb7ZdrPgAAgGZpVtz86U9/0vz58/XBBx9ozZo1+u///m8tX75cDQ0Nl2s+AACAZmlW3Ozfv1933XWX635KSopsNpsOHjzo9cEAAAA80ay4OXPmjBwOh9ta27ZtVV9f79WhAAAAPNWsC4oty9Lo0aPdrrE5ffq0Hn/8cbcP8Xv33Xe9NyEAAEAzNOvMTXp6ujp16qSQkBDX7eGHH1bnzp3d1ppr3rx5io2NlcPhUFJSkrZt23ZR+61cuVI2m01Dhw5t9mMCAAAzNevMzdKlS70+wKpVq5SZman8/HwlJSUpLy9PqampKi0tVadOnc65X1lZmX7729+qX79+Xp8JAABcuXz+IX6zZ8/W2LFjlZGRoZ///OfKz89XYGCglixZcs59nE6nRo4cqWnTpun6669vwWkBAEBr59O4qaurU0lJiVJSUlxrfn5+SklJUXFx8Tn3+93vfqdOnTppzJgxF3yM2tpaVVdXu90AAIC5fBo3R48eldPpVEREhNt6RESEKioqmtzn008/1eLFi7Vo0aKLeozc3Fy364FiYmIueW4AANB6+fxlqeY4ceKEHnnkES1atEjh4eEXtc+kSZNUVVXlupWXl1/mKQEAgC8164JibwsPD5e/v78qKyvd1isrKxUZGdlo+927d6usrExDhgxxrZ39dOQ2bdqotLRUP/vZz9z2sdvt/HoIAACuIj49cxMQEKDevXurqKjItdbQ0KCioiIlJyc32r5bt2764osvtGPHDtftnnvuUf/+/bVjxw5ecgIAAL49cyNJmZmZSk9PV2Jiovr06aO8vDzV1NQoIyNDkjRq1ChFR0crNzdXDodD3bt3d9s/NDRUkhqtAwCAq5PP4yYtLU1HjhxRdna2Kioq1KNHDxUWFrouMt6/f7/8/K6oS4MAAIAP2SzLsnw9REuqrq5WSEiIqqqqFBwc7PXjx2at9/oxAVOUTR/s6xEAXKGa8/c3p0QAAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGKVVxM28efMUGxsrh8OhpKQkbdu27ZzbLlq0SP369VNYWJjCwsKUkpJy3u0BAMDVxedxs2rVKmVmZionJ0fbt29XQkKCUlNTdfjw4Sa337hxox566CF9/PHHKi4uVkxMjAYOHKgDBw608OQAAKA1slmWZflygKSkJN18882aO3euJKmhoUExMTF66qmnlJWVdcH9nU6nwsLCNHfuXI0aNarR12tra1VbW+u6X11drZiYGFVVVSk4ONh7T+T/xWat9/oxAVOUTR/s6xEAXKGqq6sVEhJyUX9/+/TMTV1dnUpKSpSSkuJa8/PzU0pKioqLiy/qGKdOnVJ9fb06dOjQ5Ndzc3MVEhLiusXExHhldgAA0Dr5NG6OHj0qp9OpiIgIt/WIiAhVVFRc1DEmTpyozp07uwXSj02aNElVVVWuW3l5+SXPDQAAWq82vh7gUkyfPl0rV67Uxo0b5XA4mtzGbrfLbre38GQAAMBXfBo34eHh8vf3V2Vlpdt6ZWWlIiMjz7vvH/7wB02fPl0fffSRbrrppss5JgAAuIL49GWpgIAA9e7dW0VFRa61hoYGFRUVKTk5+Zz7zZgxQy+88IIKCwuVmJjYEqMCAIArhM9flsrMzFR6eroSExPVp08f5eXlqaamRhkZGZKkUaNGKTo6Wrm5uZKk3//+98rOztaKFSsUGxvrujanXbt2ateunc+eBwAAaB18HjdpaWk6cuSIsrOzVVFRoR49eqiwsNB1kfH+/fvl5/fPE0wLFixQXV2dHnjgAbfj5OTk6Pnnn2/J0QEAQCvk88+5aWnNeZ+8J/icG+Dc+JwbAJ66Yj7nBgAAwNuIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABglFYRN/PmzVNsbKwcDoeSkpK0bdu2827/9ttvq1u3bnI4HIqPj1dBQUELTQoAAFo7n8fNqlWrlJmZqZycHG3fvl0JCQlKTU3V4cOHm9x+y5YteuihhzRmzBh9/vnnGjp0qIYOHaqdO3e28OQAAKA1slmWZflygKSkJN18882aO3euJKmhoUExMTF66qmnlJWV1Wj7tLQ01dTUaN26da61X/ziF+rRo4fy8/Mv+HjV1dUKCQlRVVWVgoODvfdE/l9s1nqvHxMwRdn0wb4eAcAVqjl/f7dpoZmaVFdXp5KSEk2aNMm15ufnp5SUFBUXFze5T3FxsTIzM93WUlNTtWbNmia3r62tVW1tret+VVWVpB++SZdDQ+2py3JcwASX688dAPOd/flxMedkfBo3R48eldPpVEREhNt6RESEdu3a1eQ+FRUVTW5fUVHR5Pa5ubmaNm1ao/WYmBgPpwbgqZA8X08A4Ep34sQJhYSEnHcbn8ZNS5g0aZLbmZ6GhgYdO3ZMP/nJT2Sz2Xw4GS636upqxcTEqLy8/LK8BAmgdeDP+tXBsiydOHFCnTt3vuC2Po2b8PBw+fv7q7Ky0m29srJSkZGRTe4TGRnZrO3tdrvsdrvbWmhoqOdD44oTHBzMDzzgKsCfdfNd6IzNWT59t1RAQIB69+6toqIi11pDQ4OKioqUnJzc5D7Jyclu20vShg0bzrk9AAC4uvj8ZanMzEylp6crMTFRffr0UV5enmpqapSRkSFJGjVqlKKjo5WbmytJGj9+vG677TbNmjVLgwcP1sqVK/XZZ5/pj3/8oy+fBgAAaCV8HjdpaWk6cuSIsrOzVVFRoR49eqiwsNB10fD+/fvl5/fPE0x9+/bVihUrNGXKFE2ePFk33HCD1qxZo+7du/vqKaCVstvtysnJafSyJACz8Gcd/8rnn3MDAADgTT7/hGIAAABvIm4AAIBRiBsAAGAU4gYAABiFuEGLGD16tGw2m2w2m9q2bau4uDhNmDBBp0+fdm1z9us2m01BQUG64YYbNHr0aJWUlLgda+PGjW7bnr1NmTLFtc3f/vY39evXTw6HQzExMZoxY4bbMW6//fYmjzF48D9/saNlWcrOzlZUVJSuueYapaSk6KuvvrpM3yHg6uR0OtW3b1/dd999butVVVWKiYnRc889J0lN/nlduXJlo+N9//336tChg8LDw91+ryCuLsQNWsygQYN06NAh7dmzR6+88ooWLlyonJwct22WLl2qQ4cO6X//9381b948nTx5UklJSfrTn/7U6HilpaU6dOiQ63b2t8hXV1dr4MCBuu6661RSUqKZM2fq+eefd/sspHfffddt3507d8rf318PPviga5sZM2bo1VdfVX5+vrZu3aqgoCClpqa6BRmAS+Pv769ly5apsLBQy5cvd60/9dRT6tChg9vPiLM/H87ehg4d2uh477zzjv793/9d3bp1O+cvVMZVwAJaQHp6unXvvfe6rd13331Wz549XfclWX/+858b7Ttq1Cirffv21rFjxyzLsqyPP/7YkmR99913TT7W/PnzrbCwMKu2tta1NnHiRKtr167nnO+VV16x2rdvb508edKyLMtqaGiwIiMjrZkzZ7q2OX78uGW3260333zTsizLSk5OtiZMmOB2nMOHD1tt2rSxPvnkk3M+FoDG5syZY4WFhVkHDx601qxZY7Vt29basWOH6+vn+vnwr26//XYrPz/fWrBggTVgwADX+sKFC62oqCjL6XS6bX/PPfdYGRkZXnseaB04cwOf2Llzp7Zs2aKAgIALbvvMM8/oxIkT2rBhw0Udu7i4WL/85S/djp2amqrS0lJ99913Te6zePFiDR8+XEFBQZKkvXv3qqKiQikpKa5tQkJClJSUpOLiYknSyJEjtXLlSlk/+qioVatWqXPnzurXr99FzQrgB0899ZQSEhL0yCOP6LHHHlN2drYSEhLcthk3bpzCw8PVp08fLVmyxO3PniTt3r1bxcXFGjZsmIYNG6ZNmzZp3759kqQHH3xQ3377rT7++GPX9seOHVNhYaFGjhx5+Z8gWhRxgxazbt06tWvXTg6HQ/Hx8Tp8+LCeffbZC+7XrVs3SVJZWZnb+k9/+lO1a9fOdfv2228lSRUVFa5PuD7r7P2KiopGx9+2bZt27typRx991LV2drumjnP2a8OGDdPBgwf16aefur6+YsUKPfTQQ/zGeaCZbDabFixYoKKiIkVERLheZj7rd7/7nd566y1t2LBB999/v5588km99tprbtssWbJEd955p8LCwtShQwelpqZq6dKlkqSwsDDdeeedWrFihWv71atXKzw8XP3797/8TxAtirhBi+nfv7927NihrVu3Kj09XRkZGbr//vsvuN/Zf539azBs2rRJO3bscN3CwsI8mmvx4sWKj49Xnz59mrVfx44dNXDgQNd1Anv37lVxcTH/CgQ8tGTJEgUGBmrv3r365ptv3L42depU3XLLLerZs6cmTpyoCRMmaObMma6vO51OvfHGG3r44Yddaw8//LCWLVumhoYGST+cbX3nnXdcFxovX75cw4cPd/sVPzAD/0fRYoKCgtSlSxclJCRoyZIl2rp1qxYvXnzB/b788ktJUlxcnNt6XFycunTp4rqd/QEVGRmpyspKt23P3o+MjHRbr6mp0cqVKzVmzBi39bPbNXWcHx9j5MiRWr16terr67VixQrFx8crPj7+gs8JgLstW7bolVde0bp169SnTx+NGTOm0ctOP5aUlKRvvvnGFSoffPCBDhw4oLS0NLVp00Zt2rTR8OHDtW/fPhUVFUmShgwZIsuytH79epWXl2vTpk38Y8RQxA18ws/PT5MnT9aUKVP0/fffn3fbvLw8BQcHu13/cj7Jycn6y1/+ovr6etfahg0b1LVr10Znd95++23V1ta6/WtP+iGcIiMjXT8UpR/ehbV161YlJye71u69916dPn1ahYWFWrFiBT8oAQ+cOnVKo0eP1hNPPKH+/ftr8eLF2rZtm/Lz88+5z9mztWd/WebZ6+Z+fDZ3x44dGj58uOsfUQ6HQ/fdd5+WL1+uN998U127dlWvXr1a5Dmihfn0cmZcNZp6t1R9fb0VHR3tekeSJGvp0qXWoUOHrLKyMuvDDz+07r//fsvf399avny5a78LvVvq+PHjVkREhPXII49YO3futFauXGkFBgZaCxcubLTtrbfeaqWlpTV5nOnTp1uhoaHWe++9Z/3tb3+z7r33XisuLs76/vvv3bYbOXKklZCQYNlsNmvfvn3N+K4AsCzL+s1vfmN16dLFqqmpca3l5+db7dq1s/bu3WutXbvWWrRokfXFF19YX331lTV//nwrMDDQys7Otizrh3cptm3b1nr//fcbHbugoMCy2+3Wt99+a1mWZW3YsMGy2+1W165drRdeeKFlniBaHHGDFtFU3FiWZeXm5lodO3a0Tp48aUly3RwOh/Wzn/3MSk9Pt0pKStz2uVDcWJZl/fWvf7VuvfVWy263W9HR0db06dMbbbNr1y5LkvXhhx82eYyGhgZr6tSpVkREhGW3261f/epXVmlpaaPtCgoKLEnWL3/5y/N/EwA0snHjRsvf39/atGlTo68NHDjQuuOOO6yCggKrR48eVrt27aygoCArISHBys/Pd72t+w9/+IMVGhpq1dXVNTpGbW2tFRoaas2ZM8eyLMtyOp1WVFSUJcnavXv35X1y8BmbZZ3nRU0AAIArDNfcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAuq9GjR8tmszW6ff3115d87GXLlik0NPTShwRglDa+HgCA+QYNGqSlS5e6rXXs2NFH0zStvr5ebdu29fUYALyAMzcALju73a7IyEi3m7+/v9577z316tVLDodD119/vaZNm6YzZ8649ps9e7bi4+MVFBSkmJgYPfnkkzp58qQkaePGjcrIyFBVVZXrbNDzzz8vSbLZbFqzZo3bDKGhoVq2bJkkqaysTDabTatWrdJtt90mh8Oh5cuXS5Jef/113XjjjXI4HOrWrZvmz5/vOkZdXZ1+/etfKyoqSg6HQ9ddd51yc3Mv3zcOgEc4cwPAJzZt2qRRo0bp1VdfVb9+/bR792499thjkqScnBxJkp+fn1599VXFxcVpz549evLJJzVhwgTNnz9fffv2VV5enrKzs1VaWipJateuXbNmyMrK0qxZs9SzZ09X4GRnZ2vu3Lnq2bOnPv/8c40dO1ZBQUFKT0/Xq6++qrVr1+qtt97Stddeq/LycpWXl3v3GwPgkhE3AC67devWuYXHnXfeqe+++05ZWVlKT0+XJF1//fV64YUXNGHCBFfcPP300659YmNj9eKLL+rxxx/X/PnzFRAQoJCQENlsNkVGRno019NPP6377rvPdT8nJ0ezZs1yrcXFxenvf/+7Fi5cqPT0dO3fv1833HCDbr31VtlsNl133XUePS6Ay4u4AXDZ9e/fXwsWLHDdDwoK0k033aTNmzfrpZdecq07nU6dPn1ap06dUmBgoD766CPl5uZq165dqq6u1pkzZ9y+fqkSExNd/11TU6Pdu3drzJgxGjt2rGv9zJkzCgkJkfTDxdEDBgxQ165dNWjQIN19990aOHDgJc8BwLuIGwCXXVBQkLp06eK2dvLkSU2bNs3tzMlZDodDZWVluvvuu/XEE0/opZdeUocOHfTpp59qzJgxqqurO2/c2Gw2WZbltlZfX9/kXD+eR5IWLVqkpKQkt+38/f0lSb169dLevXv1/vvv66OPPtKwYcOUkpKi1atXX+A7AKAlETcAfKJXr14qLS1tFD1nlZSUqKGhQbNmzZKf3w/vfXjrrbfctgkICJDT6Wy0b8eOHXXo0CHX/a+++kqnTp067zwRERHq3Lmz9uzZo5EjR55zu+DgYKWlpSktLU0PPPCABg0apGPHjqlDhw7nPT6AlkPcAPCJ7Oxs3X333br22mv1wAMPyM/PT3/961+1c+dOvfjii+rSpYvq6+v12muvaciQIdq8ebPy8/PdjhEbG6uTJ0+qqKhICQkJCgwMVGBgoO644w7NnTtXycnJcjqdmjhx4kW9zXvatGn6zW9+o5CQEA0aNEi1tbX67LPP9N133ykzM1OzZ89WVFSUevbsKT8/P7399tuKjIzks3aAVoa3ggPwidTUVK1bt04ffvihbr75Zv3iF7/QK6+84rpINyEhQbNnz9bvf/97de/eXcuXL2/0tuu+ffvq8ccfV1pamjp27KgZM2ZIkmbNmqWYmBj169dPI0aM0G9/+9uLukbn0Ucf1euvv66lS5cqPj5et912m5YtW6a4uDhJUvv27TVjxgwlJibq5ptvVllZmQoKClxnlgC0DjbrX1+YBgAAuILxzw0AAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABG+T8747GSo3CEyAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "model1.p_value_plot()" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "5ecdce6c", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5Q0lEQVR4nO3de1hU9d7//9eAMCg6g3gA2ZLSTans1DyUTh7KJKmNnaSdliWZ1qWhppanb21SO+ht2zxUSmVF7lszO5d4iDAPKWmx09SU2xJTU6A7hBEPiLB+f3ixfk64zVFg0PV8XNe6Lubz+cxnvRdewMs1n7WWzTAMQwAAABbm5+sCAAAAfI1ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALK+Orwu4FJSXl+vgwYNq0KCBbDabr8sBAADnwTAMHTlyRBEREfLzO/c5IALReTh48KAiIyN9XQYAALgA+/fvV/Pmzc85hkB0Hho0aCDp9DfU4XD4uBoAAHA+3G63IiMjzb/j50IgOg8VH5M5HA4CEQAAl5jzWe7ComoAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5dXxdAABYQcuJab4uAajV9k6P9+n+OUMEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsz+eB6Ndff9UDDzygRo0aqW7dumrbtq2+++47s98wDCUnJ6tZs2aqW7euYmNjtXv3bo85CgoKNHDgQDkcDoWEhGjIkCEqLi72GPPDDz+oR48eCgoKUmRkpGbMmFEjxwcAAGo/nwaiw4cPq1u3bgoICNCKFSv0448/aubMmWrYsKE5ZsaMGZo7d65SUlK0adMmBQcHKy4uTidOnDDHDBw4UDt27FB6erqWLVumdevW6dFHHzX73W63+vTpoxYtWigrK0svvviiJk+erNdff71GjxcAANRONsMwDF/tfOLEidqwYYPWr19/1n7DMBQREaEnnnhCTz75pCSpqKhIYWFhSk1N1YABA7Rz507FxMTo22+/VefOnSVJK1eu1N/+9jcdOHBAERERmj9/vp566inl5uYqMDDQ3Pcnn3yiXbt2VdpvSUmJSkpKzNdut1uRkZEqKiqSw+Go6m8DAAtoOTHN1yUAtdre6fFVPqfb7ZbT6Tyvv98+PUP02WefqXPnzvr73/+upk2bqkOHDnrjjTfM/pycHOXm5io2NtZsczqd6tKlizIzMyVJmZmZCgkJMcOQJMXGxsrPz0+bNm0yx/Ts2dMMQ5IUFxen7OxsHT58uFJd06ZNk9PpNLfIyMgqP3YAAFB7+DQQ7dmzR/Pnz9dVV12lVatWafjw4Ro1apTeeecdSVJubq4kKSwszON9YWFhZl9ubq6aNm3q0V+nTh2FhoZ6jDnbHGfu40yTJk1SUVGRue3fv78KjhYAANRWdXy58/LycnXu3FkvvPCCJKlDhw7avn27UlJSlJiY6LO67Ha77Ha7z/YPAABqlk/PEDVr1kwxMTEebW3atNG+ffskSeHh4ZKkvLw8jzF5eXlmX3h4uPLz8z36T506pYKCAo8xZ5vjzH0AAADr8mkg6tatm7Kzsz3a/vd//1ctWrSQJEVFRSk8PFwZGRlmv9vt1qZNm+RyuSRJLpdLhYWFysrKMsesXr1a5eXl6tKlizlm3bp1Ki0tNcekp6erVatWHle0AQAAa/JpIBozZoy++eYbvfDCC/rpp5+0ePFivf7660pKSpIk2Ww2jR49Ws8995w+++wzbdu2TYMGDVJERITuuusuSafPKN1666165JFHtHnzZm3YsEEjRozQgAEDFBERIUm6//77FRgYqCFDhmjHjh167733NGfOHI0dO9ZXhw4AAGoRn64huu666/Txxx9r0qRJmjp1qqKiojR79mwNHDjQHDN+/HgdPXpUjz76qAoLC9W9e3etXLlSQUFB5phFixZpxIgR6t27t/z8/JSQkKC5c+ea/U6nU1988YWSkpLUqVMnNW7cWMnJyR73KgIAANbl0/sQXSq8uY8BAJwN9yECzs3S9yECAACoDQhEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8nwaiCZPniybzeaxtW7d2uw/ceKEkpKS1KhRI9WvX18JCQnKy8vzmGPfvn2Kj49XvXr11LRpU40bN06nTp3yGLNmzRp17NhRdrtd0dHRSk1NrYnDAwAAlwifnyH661//qkOHDpnb119/bfaNGTNGn3/+ud5//32tXbtWBw8eVL9+/cz+srIyxcfH6+TJk9q4caPeeecdpaamKjk52RyTk5Oj+Ph49erVS1u2bNHo0aM1dOhQrVq1qkaPEwAA1F51fF5AnToKDw+v1F5UVKQ333xTixcv1s033yxJevvtt9WmTRt988036tq1q7744gv9+OOP+vLLLxUWFqZrr71Wzz77rCZMmKDJkycrMDBQKSkpioqK0syZMyVJbdq00ddff61Zs2YpLi7urDWVlJSopKTEfO12u6vhyAEAQG3h8zNEu3fvVkREhK688koNHDhQ+/btkyRlZWWptLRUsbGx5tjWrVvriiuuUGZmpiQpMzNTbdu2VVhYmDkmLi5ObrdbO3bsMMecOUfFmIo5zmbatGlyOp3mFhkZWWXHCwAAah+fBqIuXbooNTVVK1eu1Pz585WTk6MePXroyJEjys3NVWBgoEJCQjzeExYWptzcXElSbm6uRxiq6K/oO9cYt9ut48ePn7WuSZMmqaioyNz2799fFYcLAABqKZ9+ZHbbbbeZX7dr105dunRRixYttHTpUtWtW9dnddntdtntdp/tHwAA1Cyff2R2ppCQEF199dX66aefFB4erpMnT6qwsNBjTF5enrnmKDw8vNJVZxWv/2yMw+HwaegCAAC1R60KRMXFxfr555/VrFkzderUSQEBAcrIyDD7s7OztW/fPrlcLkmSy+XStm3blJ+fb45JT0+Xw+FQTEyMOebMOSrGVMwBAADg00D05JNPau3atdq7d682btyou+++W/7+/rrvvvvkdDo1ZMgQjR07Vl999ZWysrI0ePBguVwude3aVZLUp08fxcTE6MEHH9TWrVu1atUqPf3000pKSjI/8ho2bJj27Nmj8ePHa9euXZo3b56WLl2qMWPG+PLQAQBALeLTNUQHDhzQfffdp99//11NmjRR9+7d9c0336hJkyaSpFmzZsnPz08JCQkqKSlRXFyc5s2bZ77f399fy5Yt0/Dhw+VyuRQcHKzExERNnTrVHBMVFaW0tDSNGTNGc+bMUfPmzbVgwYL/eMk9AACwHpthGIavi6jt3G63nE6nioqK5HA4fF0OgEtQy4lpvi4BqNX2To+v8jm9+ftdq9YQAQAA+AKBCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWN4FBaL169frgQcekMvl0q+//ipJ+te//qWvv/66SosDAACoCV4Hog8//FBxcXGqW7euvv/+e5WUlEiSioqK9MILL1R5gQAAANXN60D03HPPKSUlRW+88YYCAgLM9m7duunf//53lRYHAABQE7wORNnZ2erZs2eldqfTqcLCwqqoCQAAoEZ5HYjCw8P1008/VWr/+uuvdeWVV1ZJUQAAADXJ60D0yCOP6PHHH9emTZtks9l08OBBLVq0SE8++aSGDx9eHTUCAABUqzrevmHixIkqLy9X7969dezYMfXs2VN2u11PPvmkRo4cWR01AgAAVCuvA5HNZtNTTz2lcePG6aefflJxcbFiYmJUv3796qgPAACg2nkdiIqKilRWVqbQ0FDFxMSY7QUFBapTp44cDkeVFggAAFDdvF5DNGDAAC1ZsqRS+9KlSzVgwIAqKQoAAKAmeR2INm3apF69elVqv+mmm7Rp06YqKQoAAKAmeR2ISkpKdOrUqUrtpaWlOn78eJUUBQAAUJO8DkTXX3+9Xn/99UrtKSkp6tSpU5UUBQAAUJO8XlT93HPPKTY2Vlu3blXv3r0lSRkZGfr222/1xRdfVHmBAAAA1c3rM0TdunVTZmamIiMjtXTpUn3++eeKjo7WDz/8oB49elRHjQAAANXK6zNEknTttddq0aJFVV0LAACAT1xQICovL9dPP/2k/Px8lZeXe/Sd7cGvAAAAtZnXgeibb77R/fffr19++UWGYXj02Ww2lZWVVVlxAAAANcHrQDRs2DB17txZaWlpatasmWw2W3XUBQAAUGO8DkS7d+/WBx98oOjo6OqoBwAAoMZ5fZVZly5d9NNPP1VHLQAAAD7h9RmikSNH6oknnlBubq7atm2rgIAAj/527dpVWXEAAAA1wetAlJCQIEl6+OGHzTabzSbDMFhUDQAALkleB6KcnJzqqAMAAMBnvA5ELVq0qI46AAAAfOaCbswoST/++KP27dunkydPerTfcccdF10UAABATfI6EO3Zs0d33323tm3bZq4dkmTej4g1RAAA4FLj9WX3jz/+uKKiopSfn6969eppx44dWrdunTp37qw1a9ZUQ4kAAADVy+szRJmZmVq9erUaN24sPz8/+fn5qXv37po2bZpGjRql77//vjrqBAAAqDZenyEqKytTgwYNJEmNGzfWwYMHJZ1ebJ2dnV211QEAANQAr88QXXPNNdq6dauioqLUpUsXzZgxQ4GBgXr99dd15ZVXVkeNAAAA1crrQPT000/r6NGjkqSpU6eqb9++6tGjhxo1aqQlS5ZUeYEAAADVzetAFBcXZ34dHR2tXbt2qaCgQA0bNjSvNAMAALiUeL2G6OGHH9aRI0c82kJDQ3Xs2DGPx3kAAABcKrwORO+8846OHz9eqf348eNauHBhlRQFAABQk847ELndbhUVFckwDB05ckRut9vcDh8+rOXLl6tp06YXXMj06dNls9k0evRos+3EiRNKSkpSo0aNVL9+fSUkJCgvL8/jffv27VN8fLzq1aunpk2baty4cTp16pTHmDVr1qhjx46y2+2Kjo5WamrqBdcJAAAuP+e9higkJEQ2m002m01XX311pX6bzaYpU6ZcUBHffvutXnvtNbVr186jfcyYMUpLS9P7778vp9OpESNGqF+/ftqwYYOk07cAiI+PV3h4uDZu3KhDhw5p0KBBCggI0AsvvCDp9MNo4+PjNWzYMC1atEgZGRkaOnSomjVr5rEeCgAAWJfNqHj2xp9Yu3atDMPQzTffrA8//FChoaFmX2BgoFq0aKGIiAivCyguLlbHjh01b948Pffcc7r22ms1e/ZsFRUVqUmTJlq8eLHuueceSdKuXbvUpk0bZWZmqmvXrlqxYoX69u2rgwcPKiwsTJKUkpKiCRMm6LffflNgYKAmTJigtLQ0bd++3dzngAEDVFhYqJUrV561ppKSEpWUlJiv3W63IiMjVVRUJIfD4fUxAkDLiWm+LgGo1fZOj6/yOd1ut5xO53n9/T7vj8xuvPFGde/eXYmJiercubNuvPFGc3O5XBcUhiQpKSlJ8fHxio2N9WjPyspSaWmpR3vr1q11xRVXKDMzU9Lpu2a3bdvWDEPS6avg3G63duzYYY7549xxcXHmHGczbdo0OZ1Oc4uMjLygYwMAAJcGrxZV16lTRx988EGVPcB1yZIl+ve//61p06ZV6svNzVVgYKBCQkI82sPCwpSbm2uOOTMMVfRX9J1rjNvtPuvicEmaNGmSioqKzG3//v0XdHwAAODS4PV9iG6++WatXbtWLVu2vKgd79+/X48//rjS09MVFBR0UXNVNbvdLrvd7usyAABADfE6EN12222aOHGitm3bpk6dOik4ONij/4477jivebKyspSfn6+OHTuabWVlZVq3bp1eeeUVrVq1SidPnlRhYaHHWaK8vDyFh4dLksLDw7V582aPeSuuQjtzzB+vTMvLy5PD4VDdunXP76ABAMBlzetA9Nhjj0mSXnrppUp9NpvtvD9O6927t7Zt2+bRNnjwYLVu3VoTJkxQZGSkAgIClJGRoYSEBElSdna29u3bJ5fLJUlyuVx6/vnnlZ+fb17yn56eLofDoZiYGHPM8uXLPfaTnp5uzgEAAOB1ICovL6+SHTdo0EDXXHONR1twcLAaNWpktg8ZMkRjx45VaGioHA6HRo4cKZfLpa5du0qS+vTpo5iYGD344IOaMWOGcnNz9fTTTyspKcn8yGvYsGF65ZVXNH78eD388MNavXq1li5dqrQ0rvgAAACneR2IatKsWbPk5+enhIQElZSUKC4uTvPmzTP7/f39tWzZMg0fPlwul0vBwcFKTEzU1KlTzTFRUVFKS0vTmDFjNGfOHDVv3lwLFizgHkQAAMB03vchOtPatWv1z3/+Uzt37pQkxcTEaNy4cerRo0eVF1gbeHMfAwA4G+5DBJzbJXMfogr/8z//o9jYWNWrV0+jRo3SqFGjVLduXfXu3VuLFy++4KIBAAB8xeszRG3atNGjjz6qMWPGeLS/9NJLeuONN8yzRpcTzhABuFicIQLO7ZI7Q7Rnzx7dfvvtldrvuOMO5eTkeDsdAACAz3kdiCIjI5WRkVGp/csvv+QRFwAA4JLk9VVmTzzxhEaNGqUtW7bohhtukCRt2LBBqampmjNnTpUXCAAAUN28DkTDhw9XeHi4Zs6cqaVLl0o6va7ovffe05133lnlBQIAAFS3C7oP0d1336277767qmsBAADwiQu+MeN3333ncR+iTp06VVlRAAAANcnrQHTgwAHdd9992rBhg/nQ1cLCQt1www1asmSJmjdvXtU1AgAAVCuvrzIbOnSoSktLtXPnThUUFKigoEA7d+5UeXm5hg4dWh01AgAAVCuvzxCtXbtWGzduVKtWrcy2Vq1a6eWXX75sH90BAAAubxd0H6LS0tJK7WVlZYqIiKiSogAAAGqS14HoxRdf1MiRI/Xdd9+Zbd99950ef/xx/fOf/6zS4gAAAGqC188ya9iwoY4dO6ZTp06pTp3Tn7hVfB0cHOwxtqCgoOoq9SGeZQbgYvEsM+DcfP0sM6/XEM2ePftC6wIAAKiVvA5EiYmJ1VEHAACAz1zwjRnz8/OVn5+v8vJyj/Z27dpddFEAAAA1yetAlJWVpcTERO3cuVN/XH5ks9lUVlZWZcUBAADUBK8D0cMPP6yrr75ab775psLCwmSz2aqjLgAAgBrjdSDas2ePPvzwQ0VHR1dHPQAAADXO6/sQ9e7dW1u3bq2OWgAAAHzC6zNECxYsUGJiorZv365rrrlGAQEBHv133HFHlRUHAABQE7wORJmZmdqwYYNWrFhRqY9F1QAA4FLk9UdmI0eO1AMPPKBDhw6pvLzcYyMMAQCAS5HXgej333/XmDFjFBYWVh31AAAA1DivA1G/fv301VdfVUctAAAAPuH1GqKrr75akyZN0tdff622bdtWWlQ9atSoKisOAACgJnj9tPuoqKj/PJnNpj179lx0UbUNT7sHcLF42j1wbpfc0+5zcnIuuDAAAIDayOs1RAAAAJeb8zpDNHbsWD377LMKDg7W2LFjzzn2pZdeqpLCAAAAasp5BaLvv/9epaWl5tf/CQ96BQAAl6LzCkRnXmbPJfcAAOBywxoiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeRcUiP71r3+pW7duioiI0C+//CJJmj17tj799NMqLQ4AAKAmeB2I5s+fr7Fjx+pvf/ubCgsLVVZWJkkKCQnR7Nmzq7o+AACAaud1IHr55Zf1xhtv6KmnnpK/v7/Z3rlzZ23btq1KiwMAAKgJXgeinJwcdejQoVK73W7X0aNHq6QoAACAmuR1IIqKitKWLVsqta9cuVJt2rTxaq758+erXbt2cjgccjgccrlcWrFihdl/4sQJJSUlqVGjRqpfv74SEhKUl5fnMce+ffsUHx+vevXqqWnTpho3bpxOnTrlMWbNmjXq2LGj7Ha7oqOjlZqa6lWdAADg8nZej+4409ixY5WUlKQTJ07IMAxt3rxZ7777rqZNm6YFCxZ4NVfz5s01ffp0XXXVVTIMQ++8847uvPNOff/99/rrX/+qMWPGKC0tTe+//76cTqdGjBihfv36acOGDZKksrIyxcfHKzw8XBs3btShQ4c0aNAgBQQE6IUXXpB0+oxWfHy8hg0bpkWLFikjI0NDhw5Vs2bNFBcX5+3hAwCAy5DNMAzD2zctWrRIkydP1s8//yxJioiI0JQpUzRkyJCLLig0NFQvvvii7rnnHjVp0kSLFy/WPffcI0natWuX2rRpo8zMTHXt2lUrVqxQ3759dfDgQYWFhUmSUlJSNGHCBP32228KDAzUhAkTlJaWpu3bt5v7GDBggAoLC7Vy5crzqsntdsvpdKqoqEgOh+OijxGA9bScmObrEoBabe/0+Cqf05u/3159ZHbq1CktXLhQsbGx2r17t4qLi5Wbm6sDBw5cdBgqKyvTkiVLdPToUblcLmVlZam0tFSxsbHmmNatW+uKK65QZmamJCkzM1Nt27Y1w5AkxcXFye12a8eOHeaYM+eoGFMxx9mUlJTI7XZ7bAAA4PLlVSCqU6eOhg0bphMnTkiSuW7nYmzbtk3169eX3W7XsGHD9PHHHysmJka5ubkKDAxUSEiIx/iwsDDl5uZKknJzcz3CUEV/Rd+5xrjdbh0/fvysNU2bNk1Op9PcIiMjL+oYAQBA7eb1ourrr79e33//fZUV0KpVK23ZskWbNm3S8OHDlZiYqB9//LHK5r8QkyZNUlFRkbnt37/fp/UAAIDq5fWi6scee0xPPPGEDhw4oE6dOik4ONijv127dl7NFxgYqOjoaElSp06d9O2332rOnDnq37+/Tp48qcLCQo+zRHl5eQoPD5ckhYeHa/PmzR7zVVyFduaYP16ZlpeXJ4fDobp16561JrvdLrvd7tVxAACAS5fXgWjAgAGSpFGjRpltNptNhmHIZrOZd66+UOXl5SopKVGnTp0UEBCgjIwMJSQkSJKys7O1b98+uVwuSZLL5dLzzz+v/Px886O79PR0ORwOxcTEmGOWL1/usY/09HRzDgAAAK8DUU5OTpXtfNKkSbrtttt0xRVX6MiRI1q8eLHWrFmjVatWyel0asiQIRo7dqxCQ0PlcDg0cuRIuVwude3aVZLUp08fxcTE6MEHH9SMGTOUm5urp59+WklJSeYZnmHDhumVV17R+PHj9fDDD2v16tVaunSp0tK44gMAAJzmdSBq0aJFle08Pz9fgwYN0qFDh+R0OtWuXTutWrVKt9xyiyRp1qxZ8vPzU0JCgkpKShQXF6d58+aZ7/f399eyZcs0fPhwuVwuBQcHKzExUVOnTjXHREVFKS0tTWPGjNGcOXPUvHlzLViwgHsQAQAAk9f3IVq4cOE5+wcNGnRRBdVG3IcIwMXiPkTAufn6PkRenyF6/PHHPV6Xlpbq2LFjCgwMVL169S7LQAQAAC5vXl92f/jwYY+tuLhY2dnZ6t69u959993qqBEAAKBaeR2Izuaqq67S9OnTK509AgAAuBRUSSCSTt/F+uDBg1U1HQAAQI3xeg3RZ5995vHaMAwdOnRIr7zyirp161ZlhQEAANQUrwPRXXfd5fHaZrOpSZMmuvnmmzVz5syqqgsAAKDGeB2IysvLq6MOAAAAn/F6DdHUqVN17NixSu3Hjx/3uCEiAADApcLrQDRlyhQVFxdXaj927JimTJlSJUUBAADUJK8DUcVDXP9o69atCg0NrZKiAAAAatJ5ryFq2LChbDabbDabrr76ao9QVFZWpuLiYg0bNqxaigQAAKhO5x2IZs+eLcMw9PDDD2vKlClyOp1mX2BgoFq2bCmXy1UtRQIAAFSn8w5EiYmJkk4/Pf6GG25QQEBAtRUFAABQk7y+7P7GG280vz5x4oROnjzp0c/T4AEAwKXG60XVx44d04gRI9S0aVMFBwerYcOGHhsAAMClxutANG7cOK1evVrz58+X3W7XggULNGXKFEVERGjhwoXVUSMAAEC18vojs88//1wLFy7UTTfdpMGDB6tHjx6Kjo5WixYttGjRIg0cOLA66gQAAKg2Xp8hKigo0JVXXinp9HqhgoICSVL37t21bt26qq0OAACgBngdiK688krl5ORIklq3bq2lS5dKOn3mKCQkpEqLAwAAqAleB6LBgwdr69atkqSJEyfq1VdfVVBQkMaMGaNx48ZVeYEAAADVzes1RGPGjDG/jo2N1a5du5SVlaXo6Gi1a9euSosDAACoCV4HojOdOHFCLVq0UIsWLaqqHgAAgBrn9UdmZWVlevbZZ/WXv/xF9evX1549eyRJ//jHP/Tmm29WeYEAAADVzetA9Pzzzys1NVUzZsxQYGCg2X7NNddowYIFVVocAABATfA6EC1cuFCvv/66Bg4cKH9/f7O9ffv22rVrV5UWBwAAUBO8DkS//vqroqOjK7WXl5ertLS0SooCAACoSV4HopiYGK1fv75S+wcffKAOHTpUSVEAAAA1yeurzJKTk5WYmKhff/1V5eXl+uijj5Sdna2FCxdq2bJl1VEjAABAtfL6DNGdd96pzz//XF9++aWCg4OVnJysnTt36vPPP9ctt9xSHTUCAABUq/M+Q7Rnzx5FRUXJZrOpR48eSk9Pr866AAAAasx5nyG66qqr9Ntvv5mv+/fvr7y8vGopCgAAoCaddyAyDMPj9fLly3X06NEqLwgAAKCmeb2GCAAA4HJz3oHIZrPJZrNVagMAALjUnfeiasMw9NBDD8lut0s6/WDXYcOGKTg42GPcRx99VLUVAgAAVLPzDkSJiYkerx944IEqLwYAAMAXzjsQvf3229VZBwAAgM+wqBoAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFieTwPRtGnTdN1116lBgwZq2rSp7rrrLmVnZ3uMOXHihJKSktSoUSPVr19fCQkJlZ6htm/fPsXHx6tevXpq2rSpxo0bp1OnTnmMWbNmjTp27Ci73a7o6GilpqZW9+EBAIBLhE8D0dq1a5WUlKRvvvlG6enpKi0tVZ8+fTyekTZmzBh9/vnnev/997V27VodPHhQ/fr1M/vLysoUHx+vkydPauPGjXrnnXeUmpqq5ORkc0xOTo7i4+PVq1cvbdmyRaNHj9bQoUO1atWqGj1eAABQO9mMPz611Yd+++03NW3aVGvXrlXPnj1VVFSkJk2aaPHixbrnnnskSbt27VKbNm2UmZmprl27asWKFerbt68OHjyosLAwSVJKSoomTJig3377TYGBgZowYYLS0tK0fft2c18DBgxQYWGhVq5c+ad1ud1uOZ1OFRUVyeFwVM/BA7istZyY5usSgFpt7/T4Kp/Tm7/ftWoNUVFRkSQpNDRUkpSVlaXS0lLFxsaaY1q3bq0rrrhCmZmZkqTMzEy1bdvWDEOSFBcXJ7fbrR07dphjzpyjYkzFHH9UUlIit9vtsQEAgMtXrQlE5eXlGj16tLp166ZrrrlGkpSbm6vAwECFhIR4jA0LC1Nubq455swwVNFf0XeuMW63W8ePH69Uy7Rp0+R0Os0tMjKySo4RAADUTrUmECUlJWn79u1asmSJr0vRpEmTVFRUZG779+/3dUkAAKAanfezzKrTiBEjtGzZMq1bt07Nmzc328PDw3Xy5EkVFhZ6nCXKy8tTeHi4OWbz5s0e81VchXbmmD9emZaXlyeHw6G6detWqsdut8tut1fJsQEAgNrPp2eIDMPQiBEj9PHHH2v16tWKiory6O/UqZMCAgKUkZFhtmVnZ2vfvn1yuVySJJfLpW3btik/P98ck56eLofDoZiYGHPMmXNUjKmYAwAAWJtPzxAlJSVp8eLF+vTTT9WgQQNzzY/T6VTdunXldDo1ZMgQjR07VqGhoXI4HBo5cqRcLpe6du0qSerTp49iYmL04IMPasaMGcrNzdXTTz+tpKQk8yzPsGHD9Morr2j8+PF6+OGHtXr1ai1dulRpaVz1AQAAfHyGaP78+SoqKtJNN92kZs2amdt7771njpk1a5b69u2rhIQE9ezZU+Hh4froo4/Mfn9/fy1btkz+/v5yuVx64IEHNGjQIE2dOtUcExUVpbS0NKWnp6t9+/aaOXOmFixYoLi4uBo9XgAAUDvVqvsQ1VbchwjAxeI+RMC5cR8iAAAAHyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAy/NpIFq3bp1uv/12RUREyGaz6ZNPPvHoNwxDycnJatasmerWravY2Fjt3r3bY0xBQYEGDhwoh8OhkJAQDRkyRMXFxR5jfvjhB/Xo0UNBQUGKjIzUjBkzqvvQAADAJcSngejo0aNq3769Xn311bP2z5gxQ3PnzlVKSoo2bdqk4OBgxcXF6cSJE+aYgQMHaseOHUpPT9eyZcu0bt06Pfroo2a/2+1Wnz591KJFC2VlZenFF1/U5MmT9frrr1f78QEAgEuDzTAMw9dFSJLNZtPHH3+su+66S9Lps0MRERF64okn9OSTT0qSioqKFBYWptTUVA0YMEA7d+5UTEyMvv32W3Xu3FmStHLlSv3tb3/TgQMHFBERofnz5+upp55Sbm6uAgMDJUkTJ07UJ598ol27dp1XbW63W06nU0VFRXI4HFV/8AAuey0npvm6BKBW2zs9vsrn9Obvd61dQ5STk6Pc3FzFxsaabU6nU126dFFmZqYkKTMzUyEhIWYYkqTY2Fj5+flp06ZN5piePXuaYUiS4uLilJ2drcOHD5913yUlJXK73R4bAAC4fNXaQJSbmytJCgsL82gPCwsz+3Jzc9W0aVOP/jp16ig0NNRjzNnmOHMffzRt2jQ5nU5zi4yMvPgDAgAAtVatDUS+NGnSJBUVFZnb/v37fV0SAACoRrU2EIWHh0uS8vLyPNrz8vLMvvDwcOXn53v0nzp1SgUFBR5jzjbHmfv4I7vdLofD4bEBAIDLV60NRFFRUQoPD1dGRobZ5na7tWnTJrlcLkmSy+VSYWGhsrKyzDGrV69WeXm5unTpYo5Zt26dSktLzTHp6elq1aqVGjZsWENHAwAAajOfBqLi4mJt2bJFW7ZskXR6IfWWLVu0b98+2Ww2jR49Ws8995w+++wzbdu2TYMGDVJERIR5JVqbNm1066236pFHHtHmzZu1YcMGjRgxQgMGDFBERIQk6f7771dgYKCGDBmiHTt26L333tOcOXM0duxYHx01AACober4cuffffedevXqZb6uCCmJiYlKTU3V+PHjdfToUT366KMqLCxU9+7dtXLlSgUFBZnvWbRokUaMGKHevXvLz89PCQkJmjt3rtnvdDr1xRdfKCkpSZ06dVLjxo2VnJzsca8iAABgbbXmPkS1GfchAnCxuA8RcG7chwgAAMDHCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDy6vi6AEgtJ6b5ugSg1to7Pd7XJQCwAM4QAQAAy7NUIHr11VfVsmVLBQUFqUuXLtq8ebOvSwIAALWAZQLRe++9p7Fjx+qZZ57Rv//9b7Vv315xcXHKz8/3dWkAAMDHLBOIXnrpJT3yyCMaPHiwYmJilJKSonr16umtt97ydWkAAMDHLLGo+uTJk8rKytKkSZPMNj8/P8XGxiozM7PS+JKSEpWUlJivi4qKJElut7ta6isvOVYt8wKXg+r6uatp/JwD51YdP+sVcxqG8adjLRGI/u///k9lZWUKCwvzaA8LC9OuXbsqjZ82bZqmTJlSqT0yMrLaagRwds7Zvq4AQE2ozp/1I0eOyOl0nnOMJQKRtyZNmqSxY8ear8vLy1VQUKBGjRrJZrP5sDJUN7fbrcjISO3fv18Oh8PX5QCoJvysW4NhGDpy5IgiIiL+dKwlAlHjxo3l7++vvLw8j/a8vDyFh4dXGm+322W32z3aQkJCqrNE1DIOh4NfkoAF8LN++fuzM0MVLLGoOjAwUJ06dVJGRobZVl5eroyMDLlcLh9WBgAAagNLnCGSpLFjxyoxMVGdO3fW9ddfr9mzZ+vo0aMaPHiwr0sDAAA+ZplA1L9/f/32229KTk5Wbm6urr32Wq1cubLSQmtYm91u1zPPPFPpI1MAlxd+1vFHNuN8rkUDAAC4jFliDREAAMC5EIgAAIDlEYgAAIDlEYgAAIDlEYhQaz300EOy2Wyy2WwKCAhQVFSUxo8frxMnTphjKvptNpuCg4N11VVX6aGHHlJWVpbHXGvWrPEYW7E9/fTT5pgffvhBPXr0UFBQkCIjIzVjxgyPOW666aazzhEfH2+OMQxDycnJatasmerWravY2Fjt3r27mr5DgDWVlZXphhtuUL9+/Tzai4qKFBkZqaeeekqSzvrzumTJkkrzHT9+XKGhoWrcuLHHcyxhLQQi1Gq33nqrDh06pD179mjWrFl67bXX9Mwzz3iMefvtt3Xo0CHt2LFDr776qoqLi9WlSxctXLiw0nzZ2dk6dOiQuU2cOFHS6dv49+nTRy1atFBWVpZefPFFTZ48Wa+//rr53o8++sjjvdu3b5e/v7/+/ve/m2NmzJihuXPnKiUlRZs2bVJwcLDi4uI8QhyAi+Pv76/U1FStXLlSixYtMttHjhyp0NBQj98RFb8fKra77rqr0nwffvih/vrXv6p169b65JNPauAIUCsZQC2VmJho3HnnnR5t/fr1Mzp06GC+lmR8/PHHld47aNAgo0GDBkZBQYFhGIbx1VdfGZKMw4cPn3Vf8+bNMxo2bGiUlJSYbRMmTDBatWr1H+ubNWuW0aBBA6O4uNgwDMMoLy83wsPDjRdffNEcU1hYaNjtduPdd981DMMwXC6XMX78eI958vPzjTp16hhr1679j/sCUNmcOXOMhg0bGgcPHjQ++eQTIyAgwNiyZYvZ/59+P/zRTTfdZKSkpBjz5883brnlFrP9tddeM5o1a2aUlZV5jL/jjjuMwYMHV9lxoHbgDBEuGdu3b9fGjRsVGBj4p2PHjBmjI0eOKD09/bzmzszMVM+ePT3mjouLU3Z2tg4fPnzW97z55psaMGCAgoODJUk5OTnKzc1VbGysOcbpdKpLly7KzMyUJA0cOFBLliyRccbtv9577z1FRESoR48e51UrgNNGjhyp9u3b68EHH9Sjjz6q5ORktW/f3mNMUlKSGjdurOuvv15vvfWWx8+eJP3888/KzMzUvffeq3vvvVfr16/XL7/8Ikn6+9//rt9//11fffWVOb6goEArV67UwIEDq/8AUaMIRKjVli1bpvr16ysoKEht27ZVfn6+xo0b96fva926tSRp7969Hu3NmzdX/fr1ze3333+XJOXm5la6a3nF69zc3Erzb968Wdu3b9fQoUPNtopxZ5unou/ee+/VwYMH9fXXX5v9ixcv1n333SebzfanxwXg/2ez2TR//nxlZGQoLCzM/Ai8wtSpU7V06VKlp6crISFBjz32mF5++WWPMW+99ZZuu+02NWzYUKGhoYqLi9Pbb78tSWrYsKFuu+02LV682Bz/wQcfqHHjxurVq1f1HyBqFIEItVqvXr20ZcsWbdq0SYmJiRo8eLASEhL+9H0V/wv8Y8hYv369tmzZYm4NGza8oLrefPNNtW3bVtdff71X72vSpIn69OljrnvIyclRZmYm/9sELtBbb72levXqKScnRwcOHPDo+8c//qFu3bqpQ4cOmjBhgsaPH68XX3zR7C8rK9M777yjBx54wGx74IEHlJqaqvLyckmnz+p++OGH5mLrRYsWacCAAfLz48/n5YZ/UdRqwcHBio6OVvv27fXWW29p06ZNevPNN//0fTt37pQkRUVFebRHRUUpOjra3Cp+qYWHhysvL89jbMXr8PBwj/ajR49qyZIlGjJkiEd7xbizzXPmHAMHDtQHH3yg0tJSLV68WG3btlXbtm3/9JgAeNq4caNmzZqlZcuW6frrr9eQIUMqfSR2pi5duujAgQNmuFm1apV+/fVX9e/fX3Xq1FGdOnU0YMAA/fLLL8rIyJAk3X777TIMQ2lpadq/f7/Wr1/Pf2AuUwQiXDL8/Pz0//7f/9PTTz+t48ePn3Ps7Nmz5XA4PNbznIvL5dK6detUWlpqtqWnp6tVq1aVziK9//77Kikp8fhfpXQ6bIWHh5u/SKXTV69t2rRJLpfLbLvzzjt14sQJrVy5UosXL+aXK3ABjh07poceekjDhw9Xr1699Oabb2rz5s1KSUn5j++pOCtc8UDXinWAZ5413rJliwYMGGD+xysoKEj9+vXTokWL9O6776pVq1bq2LFjjRwjaphPl3QD53C2q8xKS0uNv/zlL+aVXJKMt99+2zh06JCxd+9e44svvjASEhIMf39/Y9GiReb7/uwqs8LCQiMsLMx48MEHje3btxtLliwx6tWrZ7z22muVxnbv3t3o37//WeeZPn26ERISYnz66afGDz/8YNx5551GVFSUcfz4cY9xAwcONNq3b2/YbDbjl19+8eK7AsAwDGPUqFFGdHS0cfToUbMtJSXFqF+/vpGTk2N89tlnxhtvvGFs27bN2L17tzFv3jyjXr16RnJysmEYp6/uDAgIMFasWFFp7uXLlxt2u934/fffDcMwjPT0dMNutxutWrUynn322Zo5QNQ4AhFqrbMFIsMwjGnTphlNmjQxiouLDUnmFhQUZPzXf/2XkZiYaGRlZXm8588CkWEYxtatW43u3bsbdrvd+Mtf/mJMnz690phdu3YZkowvvvjirHOUl5cb//jHP4ywsDDDbrcbvXv3NrKzsyuNW758uSHJ6Nmz57m/CQAqWbNmjeHv72+sX7++Ul+fPn2Mm2++2Vi+fLlx7bXXGvXr1zeCg4ON9u3bGykpKeYl9P/85z+NkJAQ4+TJk5XmKCkpMUJCQow5c+YYhmEYZWVlRrNmzQxJxs8//1y9BwefsRnGOT5wBQAAsADWEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAGodR566CHZbLZK208//XTRc6empiokJOTiiwRwWanj6wIA4GxuvfVWvf322x5tTZo08VE1Z1daWqqAgABflwGgCnCGCECtZLfbFR4e7rH5+/vr008/VceOHRUUFKQrr7xSU6ZM0alTp8z3vfTSS2rbtq2Cg4MVGRmpxx57TMXFxZKkNWvWaPDgwSoqKjLPOk2ePFmSZLPZ9Mknn3jUEBISotTUVEnS3r17ZbPZ9N577+nGG29UUFCQFi1aJElasGCB2rRpo6CgILVu3Vrz5s0z5zh58qRGjBihZs2aKSgoSC1atNC0adOq7xsH4IJwhgjAJWP9+vUaNGiQ5s6dqx49eujnn3/Wo48+Kkl65plnJEl+fn6aO3euoqKitGfPHj322GMaP3685s2bpxtuuEGzZ89WcnKysrOzJUn169f3qoaJEydq5syZ6tChgxmKkpOT9corr6hDhw76/vvv9cgjjyg4OFiJiYmaO3euPvvsMy1dulRXXHGF9u/fr/3791ftNwbARSMQAaiVli1b5hFWbrvtNh0+fFgTJ05UYmKiJOnKK6/Us88+q/Hjx5uBaPTo0eZ7WrZsqeeee07Dhg3TvHnzFBgYKKfTKZvNpvDw8Auqa/To0erXr5/5+plnntHMmTPNtqioKP3444967bXXlJiYqH379umqq65S9+7dZbPZ1KJFiwvaL4DqRSACUCv16tVL8+fPN18HBwerXbt22rBhg55//nmzvaysTCdOnNCxY8dUr149ffnll5o2bZp27dolt9utU6dOefRfrM6dO5tfHz16VD///LOGDBmiRx55xGw/deqUnE6npNMLxG+55Ra1atVKt956q/r27as+ffpcdB0AqhaBCECtFBwcrOjoaI+24uJiTZkyxeMMTYWgoCDt3btXffv21fDhw/X8888rNDRUX3/9tYYMGaKTJ0+eMxDZbDYZhuHRVlpaeta6zqxHkt544w116dLFY5y/v78kqWPHjsrJydGKFSv05Zdf6t5771VsbKw++OCDP/kOAKhJBCIAl4yOHTsqOzu7UlCqkJWVpfLycs2cOVN+fqevGVm6dKnHmMDAQJWVlVV6b5MmTXTo0CHz9e7du3Xs2LFz1hMWFqaIiAjt2bNHAwcO/I/jHA6H+vfvr/79++uee+7RrbfeqoKCAoWGhp5zfgA1h0AE4JKRnJysvn376oorrtA999wjPz8/bd26Vdu3b9dzzz2n6OholZaW6uWXX9btt9+uDRs2KCUlxWOOli1bqri4WBkZGWrfvr3q1aunevXq6eabb9Yrr7wil8ulsrIyTZgw4bwuqZ8yZYpGjRolp9OpW2+9VSUlJfruu+90+PBhjR07Vi+99JKaNWumDh06yM/PT++//77Cw8O5FxJQy3DZPYBLRlxcnJYtW6YvvvhC1113nbp27apZs2aZC5Xbt2+vl156Sf/93/+ta665RosWLap0ifsNN9ygYcOGqX///mrSpIlmzJghSZo5c6YiIyPVo0cP3X///XryySfPa83R0KFDtWDBAr399ttq27atbrzxRqWmpioqKkqS1KBBA82YMUOdO3fWddddp71792r58uXmGSwAtYPN+OOH5gAAABbDf1EAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDl/X+mfdKlTcdinAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "model1.feature_importance_plot()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "7f1dd508", - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "zero-dimensional arrays cannot be concatenated", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[23], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m cv\u001b[39m.\u001b[39;49mcross_validation(dfx, dfy, [\u001b[39m'\u001b[39;49m\u001b[39mRDF070v\u001b[39;49m\u001b[39m'\u001b[39;49m, \u001b[39m'\u001b[39;49m\u001b[39mX5Av\u001b[39;49m\u001b[39m'\u001b[39;49m])\n", - "File \u001b[0;32m~/projects/pyQSARplus/cross_validation.py:63\u001b[0m, in \u001b[0;36mcross_validation.__init__\u001b[0;34m(self, X_data, y_data, feature_set)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39moriginal_q2 \u001b[39m=\u001b[39m q2_score(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39my, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmlr\u001b[39m.\u001b[39mpredict(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mx))\n\u001b[1;32m 62\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mxx \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mconcatenate((\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mx))\n\u001b[0;32m---> 63\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39myy \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39;49mconcatenate((\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49my))\n", - "File \u001b[0;32m<__array_function__ internals>:180\u001b[0m, in \u001b[0;36mconcatenate\u001b[0;34m(*args, **kwargs)\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: zero-dimensional arrays cannot be concatenated" - ] - } - ], - "source": [ - "cv.cross_validation(dfx, dfy, ['RDF070v', 'X5Av'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ad197714", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - }, - "vscode": { - "interpreter": { - "hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a" - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/__init__.py b/__init__.py deleted file mode 100644 index ca4fe75..0000000 --- a/__init__.py +++ /dev/null @@ -1 +0,0 @@ -name = "pyqsarplus" diff --git a/cross_validation.py b/cross_validation.py deleted file mode 100644 index c60a72e..0000000 --- a/cross_validation.py +++ /dev/null @@ -1,240 +0,0 @@ -#-*- coding: utf-8 -*- -# Author: Stephen Szwiec -# Date: 2023-02-19 -# Description: Cross Validation Module -""" -Copyright (C) 2023 Stephen Szwiec - -This file is part of pyqsarplus. - -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program. If not, see . - -""" -from sklearn.model_selection import KFold -from matplotlib import pyplot as plt -import numpy as np -from sklearn.linear_model import LinearRegression -from sklearn.metrics import mean_squared_error , r2_score -from sklearn.model_selection import LeaveOneOut -from sklearn.metrics import mean_squared_error -import numpy as np -from qsar_scoring import q2_score, q2f_score, q2f3_score, ccc_score - -class cross_validation: - - """ - Class for performing cross validation on a data set using a linear regression model - - - initializes a cross_validation object, performs the regression and stores the results - - Parameters - ---------- - X_data : pandas dataframe, shape = [n_samples, n_features] - y_data : pandas dataframe, shape = [n_samples, ] - feature_set : list, set of features to be used for the model - verbose : boolean, if true, performs all scoring functions - """ - def __init__ (self, X_data, y_data, feature_set): - """ - Does the preliminary work of regenerating the original model locally for later use and comparison - """ - self.mlr = LinearRegression() - - self.x = X_data.loc[:, feature_set].values - self.y = y_data.values - self.mlr.fit(self.x, self.y) - self.original_coef = self.mlr.coef_ - self.original_intercept = self.mlr.intercept_ - self.original_r2 = self.mlr.score(self.x, self.y) - self.original_q2 = q2_score(self.y, self.mlr.predict(self.x)) - - def loocv(self, verbose=False, show_plots=False): - """ - Performs leave-one-out cross validation - - Parameters - ---------- - verbose : boolean, if true, performs all scoring functions - show_plots : boolean, if true, shows plots of validation results - - Returns - ------- - None - """ - - # create a leave-one-out cross validation iterator of the data - loo = LeaveOneOut() - loo.get_n_splits(self.x) - # placeholder for the predicted values - y_pred = [] - r2loo = [] - q2loo = [] - q2f1loo = [] - q2f2loo = [] - q2f3loo = [] - cccloo = [] - for train_index, test_index in loo.split(self.x): - # split the data into training and test sets - x_train, x_test = self.x[train_index], self.x[test_index] - y_train, y_test = self.y[train_index], self.y[test_index] - mlr_loo = LinearRegression() - mlr_loo.fit(x_train, y_train) - # predict the value - y_pred_test = mlr_loo.predict(x_test) - y_pred.append(y_pred_test) - # calculate the r2 score - r2loo.append(mlr_loo.score(x_test, y_test)) - # calculate the q2 score - q2loo.append(q2_score(y_test, y_pred_test)) - if verbose: - # calculate the q2f1 score - q2f1loo.append(q2f_score(y_test, y_pred_test, np.mean(y_train))) - # calculate the q2f2 score - q2f2loo.append(q2f_score(y_test, y_pred_test, np.mean(y_test))) - # calculate the q2f3 score - q2f3loo.append(q2f3_score(y_test, y_pred_test, len(y_train), len(y_test))) - # calculate the ccc score - cccloo.append(ccc_score(y_test, y_pred_test)) - # calculate the mean of the r2 scores - r2loo_mean = np.mean(r2loo) - # calculate the mean of the q2 scores - q2loo_mean = np.mean(q2loo) - if verbose: - # calculate the mean of the q2f1 scores - q2f1loo_mean = np.mean(q2f1loo) - # calculate the mean of the q2f2 scores - q2f2loo_mean = np.mean(q2f2loo) - # calculate the mean of the q2f3 scores - q2f3loo_mean = np.mean(q2f3loo) - # calculate the mean of the ccc scores - cccloo_mean = np.mean(cccloo) - # print the results - print("LOOCV") - print("Original model") - print("r2: ", self.original_r2) - print("q2: ", self.original_q2) - print("LOO CV model") - print("r2loo: ", r2loo_mean) - print("q2loo: ", q2loo_mean) - if verbose: - print("q2f1loo: ", q2f1loo_mean) - print("q2f2loo: ", q2f2loo_mean) - print("q2f3loo: ", q2f3loo_mean) - print("cccloo: ", cccloo_mean) - if show_plots: - # plot the results - plt.figure() - # plot the predictions - plt.scatter(self.y, y_pred, color='orange') - # plot the original model - plt.plot(self.y, self.mlr.predict(self.x), color='blue') - # plot the line y=x - plt.plot(self.y, self.y, color='black') - plt.xlabel('Predicted') - plt.ylabel('Observed') - plt.title('LOOCV') - # legend - plt.legend(['Original Model', 'LOOCV', 'y vs y line']) - plt.show() - - - def kfoldcv(self, k=5, verbose=False, show_plots=False): - """ - Performs k-fold cross validation - - Parameters - ---------- - k : int, number of folds - verbose : boolean, if true, performs all scoring functions - show_plots : boolean, if true, shows plots of validation results - - Returns - ------- - None - """ - # create a k-fold cross validation iterator of the data - kf = KFold(n_splits=k) - kf.get_n_splits(self.x) - # placeholder for the predicted values - y_pred = [] - r2kf = [] - q2kf = [] - if verbose: - q2f1kf = [] - q2f2kf = [] - q2f3kf = [] - ccckf = [] - for train_index, test_index in kf.split(self.x): - # split the data into training and test sets - x_train, x_test = self.x[train_index], self.x[test_index] - y_train, y_test = self.y[train_index], self.y[test_index] - # predict the value - y_pred_test = self.fit_predict(x_train, y_train) - y_pred.append(y_pred_test) - # calculate the r2 score - r2kf.append(self.mlr.score(x_test, y_test)) - # calculate the q2 score - q2kf.append(q2_score(y_test, y_pred_test)) - if verbose: - # calculate the q2f1 score - q2f1kf.append(q2f_score(y_test, y_pred_test, np.mean(y_train))) - # calculate the q2f2 score - q2f2kf.append(q2f_score(y_test, y_pred_test, np.mean(y_test))) - # calculate the q2f3 score - q2f3kf.append(q2f3_score(y_test, y_pred_test, len(y_train), len(y_test))) - # calculate the ccc score - ccckf.append(ccc_score(y_test, y_pred_test)) - # calculate the mean of the r2 scores - r2kf_mean = np.mean(r2kf) - # calculate the mean of the q2 scores - q2kf_mean = np.mean(q2kf) - if verbose: - # calculate the mean of the q2f1 scores - q2f1kf_mean = np.mean(q2f1kf) - # calculate the mean of the q2f2 scores - q2f2kf_mean = np.mean(q2f2kf) - # calculate the mean of the q2f3 scores - q2f3kf_mean = np.mean(q2f3kf) - # calculate the mean of the ccc scores - ccckf_mean = np.mean(ccckf) - # print the results - print("K-Fold CV") - print("Original model") - print("r2: ", self.original_r2) - print("q2: ", self.original_q2) - print("K-Fold CV model") - print("r2: ", r2kf_mean) - print("q2: ", q2kf_mean) - if verbose: - print("q2f1: ", q2f1kf_mean) - print("q2f2: ", q2f2kf_mean) - print("q2f3: ", q2f3kf_mean) - print("ccc: ", ccckf_mean) - if show_plots: - # plot the results - plt.figure() - # plot the predictions - plt.scatter(self.y, y_pred, color='orange') - # plot the original model - plt.plot(self.y, self.mlr.predict(self.x), color='blue') - # plot the line y=x - plt.plot(self.y, self.y, color='black') - plt.xlabel('Predicted') - plt.ylabel('Observed') - plt.title('K-Fold CV') - # legend - plt.legend(['Original Model', 'K-Fold CV', 'y vs y line']) - plt.show() - diff --git a/dist/qsarify-0.1-py2.py3-none-any.whl b/dist/qsarify-0.1-py2.py3-none-any.whl new file mode 100644 index 0000000..d67fcff Binary files /dev/null and b/dist/qsarify-0.1-py2.py3-none-any.whl differ diff --git a/dist/qsarify-0.1.tar.gz b/dist/qsarify-0.1.tar.gz new file mode 100644 index 0000000..bd2fdcf Binary files /dev/null and b/dist/qsarify-0.1.tar.gz differ diff --git a/docs/html/404.html b/docs/html/404.html new file mode 100644 index 0000000..c9c1017 --- /dev/null +++ b/docs/html/404.html @@ -0,0 +1,133 @@ + + + + + + + + + + + + + + qsarify | 404 Page not found + + + + + +
+ +
+ +
+
+

Sorry we could not find what you were looking for.
Click here for the home page

+
+
+ +
+ +
+ + + \ No newline at end of file diff --git a/docs/html/categories/index.xml b/docs/html/categories/index.xml new file mode 100644 index 0000000..8286e49 --- /dev/null +++ b/docs/html/categories/index.xml @@ -0,0 +1,10 @@ + + + + Categories on qsarify + https://stephenszwiec.github.io/qsarify/categories/ + Recent content in Categories on qsarify + Hugo -- gohugo.io + en-us + + diff --git a/docs/html/css/style.css b/docs/html/css/style.css new file mode 100644 index 0000000..e7c1cd9 --- /dev/null +++ b/docs/html/css/style.css @@ -0,0 +1,3 @@ +html{line-height:1.15;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}body{margin:0}article,aside,footer,header,nav,section{display:block}h1{font-size:2em;margin:0.67em 0}figcaption,figure,main{display:block}figure{margin:1em 40px}hr{box-sizing:content-box;height:0;overflow:visible}pre{font-family:monospace, monospace;font-size:1em}a{background-color:transparent;-webkit-text-decoration-skip:objects}abbr[title]{border-bottom:none;text-decoration:underline;-webkit-text-decoration:underline dotted;text-decoration:underline dotted}b,strong{font-weight:inherit}b,strong{font-weight:bolder}code,kbd,samp{font-family:monospace, monospace;font-size:1em}dfn{font-style:italic}mark{background-color:#ff0;color:#000}small{font-size:80%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sub{bottom:-0.25em}sup{top:-0.5em}audio,video{display:inline-block}audio:not([controls]){display:none;height:0}img{border-style:none}svg:not(:root){overflow:hidden}button,input,optgroup,select,textarea{font-family:sans-serif;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}button,html [type="button"],[type="reset"],[type="submit"]{-webkit-appearance:button}button::-moz-focus-inner,[type="button"]::-moz-focus-inner,[type="reset"]::-moz-focus-inner,[type="submit"]::-moz-focus-inner{border-style:none;padding:0}button:-moz-focusring,[type="button"]:-moz-focusring,[type="reset"]:-moz-focusring,[type="submit"]:-moz-focusring{outline:1px dotted ButtonText}fieldset{padding:0.35em 0.75em 0.625em}legend{box-sizing:border-box;color:inherit;display:table;max-width:100%;padding:0;white-space:normal}progress{display:inline-block;vertical-align:baseline}textarea{overflow:auto}[type="checkbox"],[type="radio"]{box-sizing:border-box;padding:0}[type="number"]::-webkit-inner-spin-button,[type="number"]::-webkit-outer-spin-button{height:auto}[type="search"]{-webkit-appearance:textfield;outline-offset:-2px}[type="search"]::-webkit-search-cancel-button,[type="search"]::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}details,menu{display:block}summary{display:list-item}canvas{display:inline-block}template{display:none}[hidden]{display:none}html{box-sizing:border-box}*,*:before,*:after{box-sizing:inherit}body{background:#fff;-moz-osx-font-smoothing:grayscale;-webkit-font-smoothing:antialiased}hr{border:0;display:block;height:1px;background:#E2E8ED;margin-top:24px;margin-bottom:24px}ul,ol{margin-top:0;margin-bottom:24px;padding-left:24px}ul{list-style:disc}ol{list-style:decimal}li>ul,li>ol{margin-bottom:0}dl{margin-top:0;margin-bottom:24px}dt{font-weight:500}dd{margin-left:24px;margin-bottom:24px}img{height:auto;max-width:100%;vertical-align:middle}figure{margin:24px 0}figcaption{font-size:16px;line-height:24px;padding:8px 0}img,svg{display:block}table{border-collapse:collapse;margin-bottom:24px;width:100%}tr{border-bottom:1px solid #E2E8ED}th{text-align:left}th,td{padding:10px 16px}th:first-child,td:first-child{padding-left:0}th:last-child,td:last-child{padding-right:0}html{font-size:18px;line-height:27px}@media (min-width: 641px){html{font-size:20px;line-height:30px;letter-spacing:-0.1px}}body{color:#6F8394;font-size:1rem}body,button,input,select,textarea{font-family:"Hind Vadodara", sans-serif}a{color:inherit;text-decoration:underline}a:hover,a:active{outline:0;text-decoration:none}h1,h2,h3,h4,h5,h6,.h1,.h2,.h3,.h4,.h5,.h6{clear:both;color:#1F2B35;font-family:"Mukta", sans-serif;font-weight:500}h1,.h1{font-size:42px;line-height:52px;letter-spacing:-0.1px}@media (min-width: 641px){h1,.h1{font-size:56px;line-height:66px;letter-spacing:-0.1px}}h2,.h2{font-size:36px;line-height:46px;letter-spacing:-0.1px}@media (min-width: 641px){h2,.h2{font-size:42px;line-height:52px;letter-spacing:-0.1px}}h3,.h3,blockquote{font-size:24px;line-height:34px;letter-spacing:-0.1px}@media (min-width: 641px){h3,.h3,blockquote{font-size:36px;line-height:46px;letter-spacing:-0.1px}}h4,h5,h6,.h4,.h5,.h6{font-size:20px;line-height:30px;letter-spacing:-0.1px}@media (min-width: 641px){h4,h5,h6,.h4,.h5,.h6{font-size:24px;line-height:34px;letter-spacing:-0.1px}}@media (max-width: 640px){.h1-mobile{font-size:42px;line-height:52px;letter-spacing:-0.1px}.h2-mobile{font-size:36px;line-height:46px;letter-spacing:-0.1px}.h3-mobile{font-size:24px;line-height:34px;letter-spacing:-0.1px}.h4-mobile,.h5-mobile,.h6-mobile{font-size:20px;line-height:30px;letter-spacing:-0.1px}}.text-light{color:#6F8394}.text-light a{color:#6F8394}.text-light h1,.text-light h2,.text-light h3,.text-light h4,.text-light h5,.text-light h6,.text-light .h1,.text-light .h2,.text-light .h3,.text-light .h4,.text-light .h5,.text-light .h6{color:#fff !important}.text-sm{font-size:18px;line-height:27px;letter-spacing:-0.1px}.text-xs{font-size:16px;line-height:24px;letter-spacing:-0.1px}h1,h2,.h1,.h2{margin-top:48px;margin-bottom:16px}h3,.h3{margin-top:36px;margin-bottom:12px}h4,h5,h6,.h4,.h5,.h6{margin-top:24px;margin-bottom:4px}p{margin-top:0;margin-bottom:24px}dfn,cite,em,i{font-style:italic}blockquote{font-style:italic;margin-top:24px;margin-bottom:24px;margin-left:24px}blockquote::before{content:"\201C"}blockquote::after{content:"\201D"}blockquote p{display:inline}address{color:#6F8394;border-width:1px 0;border-style:solid;border-color:#E2E8ED;padding:24px 0;margin:0 0 24px}pre,pre h1,pre h2,pre h3,pre h4,pre h5,pre h6,pre .h1,pre .h2,pre .h3,pre .h4,pre .h5,pre .h6{font-family:"Courier 10 Pitch", Courier, monospace}pre,code,kbd,tt,var{background:#F6F8FA}pre{font-size:16px;line-height:24px;margin-bottom:1.6em;max-width:100%;overflow:auto;padding:24px;margin-top:24px;margin-bottom:24px}code,kbd,tt,var{font-family:Monaco, Consolas, "Andale Mono", "DejaVu Sans Mono", monospace;font-size:16px;padding:2px 4px}abbr,acronym{cursor:help}mark,ins{text-decoration:none}small{font-size:18px;line-height:27px;letter-spacing:-0.1px}b,strong{font-weight:700}button,input,select,textarea,label{font-size:18px;line-height:27px}.container,.container-sm{width:100%;margin:0 auto;padding-left:16px;padding-right:16px}@media (min-width: 481px){.container,.container-sm{padding-left:24px;padding-right:24px}}.container{max-width:1128px}.container-sm{max-width:848px}.container .container-sm{max-width:800px;padding-left:0;padding-right:0}.screen-reader-text{clip:rect(1px, 1px, 1px, 1px);position:absolute !important;height:1px;width:1px;overflow:hidden;word-wrap:normal !important}.screen-reader-text:focus{border-radius:2px;box-shadow:0 0 2px 2px rgba(0,0,0,0.6);clip:auto !important;display:block;font-size:16px;letter-spacing:-0.1px;font-weight:500;line-height:16px;text-transform:uppercase;text-decoration:none;background-color:#fff;color:#0081F6 !important;border:none;height:auto;left:8px;padding:16px 32px;top:8px;width:auto;z-index:100000}.list-reset{list-style:none;padding:0}.text-left{text-align:left}.text-center{text-align:center}.text-right{text-align:right}.text-primary{color:#0081F6}.text-secondary{color:#FF4D79}.has-top-divider{position:relative}.has-top-divider::before{content:'';position:absolute;top:0;left:0;width:100%;display:block;height:1px;background:#E2E8ED}.has-bottom-divider{position:relative}.has-bottom-divider::after{content:'';position:absolute;bottom:0;left:0;width:100%;display:block;height:1px;background:#E2E8ED}.m-0{margin:0}.mt-0{margin-top:0}.mr-0{margin-right:0}.mb-0{margin-bottom:0}.ml-0{margin-left:0}.m-8{margin:8px}.mt-8{margin-top:8px}.mr-8{margin-right:8px}.mb-8{margin-bottom:8px}.ml-8{margin-left:8px}.m-16{margin:16px}.mt-16{margin-top:16px}.mr-16{margin-right:16px}.mb-16{margin-bottom:16px}.ml-16{margin-left:16px}.m-24{margin:24px}.mt-24{margin-top:24px}.mr-24{margin-right:24px}.mb-24{margin-bottom:24px}.ml-24{margin-left:24px}.m-32{margin:32px}.mt-32{margin-top:32px}.mr-32{margin-right:32px}.mb-32{margin-bottom:32px}.ml-32{margin-left:32px}.m-40{margin:40px}.mt-40{margin-top:40px}.mr-40{margin-right:40px}.mb-40{margin-bottom:40px}.ml-40{margin-left:40px}.m-48{margin:48px}.mt-48{margin-top:48px}.mr-48{margin-right:48px}.mb-48{margin-bottom:48px}.ml-48{margin-left:48px}.m-56{margin:56px}.mt-56{margin-top:56px}.mr-56{margin-right:56px}.mb-56{margin-bottom:56px}.ml-56{margin-left:56px}.m-64{margin:64px}.mt-64{margin-top:64px}.mr-64{margin-right:64px}.mb-64{margin-bottom:64px}.ml-64{margin-left:64px}.p-0{padding:0}.pt-0{padding-top:0}.pr-0{padding-right:0}.pb-0{padding-bottom:0}.pl-0{padding-left:0}.p-8{padding:8px}.pt-8{padding-top:8px}.pr-8{padding-right:8px}.pb-8{padding-bottom:8px}.pl-8{padding-left:8px}.p-16{padding:16px}.pt-16{padding-top:16px}.pr-16{padding-right:16px}.pb-16{padding-bottom:16px}.pl-16{padding-left:16px}.p-24{padding:24px}.pt-24{padding-top:24px}.pr-24{padding-right:24px}.pb-24{padding-bottom:24px}.pl-24{padding-left:24px}.p-32{padding:32px}.pt-32{padding-top:32px}.pr-32{padding-right:32px}.pb-32{padding-bottom:32px}.pl-32{padding-left:32px}.p-40{padding:40px}.pt-40{padding-top:40px}.pr-40{padding-right:40px}.pb-40{padding-bottom:40px}.pl-40{padding-left:40px}.p-48{padding:48px}.pt-48{padding-top:48px}.pr-48{padding-right:48px}.pb-48{padding-bottom:48px}.pl-48{padding-left:48px}.p-56{padding:56px}.pt-56{padding-top:56px}.pr-56{padding-right:56px}.pb-56{padding-bottom:56px}.pl-56{padding-left:56px}.p-64{padding:64px}.pt-64{padding-top:64px}.pr-64{padding-right:64px}.pb-64{padding-bottom:64px}.pl-64{padding-left:64px}.sr .has-animations .is-revealing{visibility:hidden}.button{display:inline-flex;font-family:"Mukta", sans-serif;font-size:16px;letter-spacing:-0.1px;font-weight:700;line-height:16px;text-decoration:none !important;background-color:#fff;color:#0081F6 !important;border:none;border-radius:4px;cursor:pointer;justify-content:center;padding:16px 32px;height:48px;text-align:center;white-space:nowrap}.button:active{outline:0}.button::before{border-radius:4px}.button-shadow{position:relative}.button-shadow::before{content:'';position:absolute;top:0;right:0;bottom:0;left:0;box-shadow:0 8px 16px rgba(31,43,53,0.12);mix-blend-mode:multiply;transition:box-shadow .15s ease}.button-shadow:hover::before{box-shadow:0 8px 16px rgba(31,43,53,0.25)}.button-sm{padding:8px 24px;height:32px}.button-sm.button-shadow::before{box-shadow:0 4px 16px rgba(31,43,53,0.12)}.button-sm.button-shadow:hover::before{box-shadow:0 4px 16px rgba(31,43,53,0.25)}.button-primary{color:#fff !important;transition:background .15s ease}.button-primary{background:#ff678c;background:linear-gradient(65deg, #FF4D79 0, #FF809F 100%)}.button-primary:hover{background:#ff6c90;background:linear-gradient(65deg, #ff527d 0, #ff85a3 100%)}.button-primary.button-shadow::before{box-shadow:0 8px 16px rgba(255,77,121,0.25)}.button-primary.button-shadow:hover::before{box-shadow:0 8px 16px rgba(255,77,121,0.4)}.button-primary .button-sm.button-shadow::before{box-shadow:0 4px 16px rgba(255,77,121,0.25)}.button-primary .button-sm.button-shadow:hover::before{box-shadow:0 4px 16px rgba(255,77,121,0.4)}.button-block{display:flex}.site-header{position:relative;padding:24px 0}.site-header-inner{position:relative;display:flex;justify-content:space-between;align-items:center}.header-links{display:inline-flex}.header-links li{display:inline-flex}.header-links a:not(.button){font-family:"Mukta", sans-serif;font-size:16px;line-height:24px;letter-spacing:-0.1px;font-weight:700;color:#6F8394;text-transform:uppercase;text-decoration:none;line-height:16px;padding:8px 24px}.header-links a:not(.button):hover,.header-links a:not(.button):active{color:#fff}.hero{position:relative;text-align:center;padding-top:40px}.hero::before{content:'';position:absolute;bottom:0;right:0;height:230px;width:80%;background:#2294fb;background:linear-gradient(to top right, #0081F6 0, #44A6FF 100%)}.hero-inner{position:relative}.hero-title{font-weight:700}.hero-paragraph{margin-bottom:32px}.hero-illustration{margin-top:40px;padding-bottom:40px}.hero-illustration img,.hero-illustration svg{width:100%;max-width:320px;height:auto;margin:0 auto;overflow:visible}@media (min-width: 641px){.hero{text-align:left;padding-top:92px;padding-bottom:80px}.hero::before{left:620px;height:800px;width:100%}.hero-inner{display:flex}.hero-copy{padding-right:48px;min-width:512px}.hero-illustration{margin-top:-68px;padding-bottom:0}.hero-illustration img,.hero-illustration svg{max-width:none;width:528px}}@media (min-width: 1025px){.hero::before{left:auto;width:43%}.hero-copy{padding-right:88px;min-width:552px}}.features .section-title{margin-bottom:48px}.features-wrap{display:flex;flex-wrap:wrap;justify-content:center;margin-right:-12px;margin-left:-12px}.features-wrap:first-child{margin-top:-12px}.features-wrap:last-child{margin-bottom:-12px}.feature{padding:12px;width:276px;max-width:276px;flex-grow:1}.feature-inner{height:100%;background:#fff;padding:40px 24px;box-shadow:0 16px 48px #E2E8ED}@supports (-ms-ime-align: auto){.feature-inner{box-shadow:0 16px 48px rgba(31,43,53,0.12)}}.feature-icon{display:flex;justify-content:center}.feature-title{margin-top:12px;margin-bottom:8px}@media (min-width: 641px){.features{position:relative}.features .section-square{position:absolute;top:0;left:0;height:240px;width:44%;background:#F6F8FA}.features .section-title{margin-bottom:56px}}.pricing{position:relative;overflow:hidden}.pricing::before{content:'';position:absolute;top:calc(100% - 200px);left:0;width:100%;height:200px;background:#1F2B35;overflow:hidden}.pricing .section-title{margin-bottom:48px}.pricing-tables-wrap{display:flex;flex-wrap:wrap;justify-content:center;margin-right:-12px;margin-left:-12px}.pricing-tables-wrap:first-child{margin-top:-12px}.pricing-tables-wrap:last-child{margin-bottom:-12px}.pricing-table{padding:12px;width:344px;max-width:344px;flex-grow:1}.pricing-table-inner{position:relative;display:flex;flex-wrap:wrap;background:#fff;padding:24px;height:100%}.pricing-table-inner>*{position:relative;width:100%}.pricing-table-inner::before{content:'';position:absolute;top:0;right:0;bottom:0;left:0;box-shadow:0 16px 48px #E2E8ED;mix-blend-mode:multiply}@supports (-ms-ime-align: auto){.pricing-table-inner::before{box-shadow:0 16px 48px rgba(31,43,53,0.12)}}.pricing-table-header{position:relative}.pricing-table-header::after{content:'';position:absolute;bottom:0;left:0;width:100%;display:block;height:1px;background:#E2E8ED}.pricing-table-title{font-family:"Mukta", sans-serif;color:#1F2B35}.pricing-table-price-currency{color:#6F8394}.pricing-table-features li{display:flex;align-items:center;margin-bottom:14px}.pricing-table-features li .list-icon{display:inline-flex;width:16px;height:12px;margin-right:12px}.pricing-table-cta{align-self:flex-end}@media (min-width: 641px){.pricing .section-square{position:absolute;top:calc(100% - 440px);right:0;height:240px;width:44%;background:#F6F8FA}.pricing .section-title{margin-bottom:64px}}.is-boxed{background:#F6F8FA}.body-wrap{background:#fff;overflow:hidden;display:flex;flex-direction:column;min-height:100vh}.boxed-container{max-width:1440px;margin:0 auto;box-shadow:0 16px 48px #E2E8ED}@supports (-ms-ime-align: auto){.boxed-container{box-shadow:0 16px 48px rgba(31,43,53,0.12)}}main{flex:1 0 auto}.section-inner{position:relative;padding-top:48px;padding-bottom:48px}@media (min-width: 641px){.section-inner{padding-top:80px;padding-bottom:80px}}.site-footer{font-size:14px;line-height:20px;letter-spacing:0px;background:#1F2B35}.site-footer a{text-decoration:none}.site-footer a:hover,.site-footer a:active{color:#6F8394;text-decoration:underline}.site-footer-inner{position:relative;display:flex;flex-wrap:wrap;padding-top:40px;padding-bottom:40px}.site-footer-inner.has-top-divider::before{background:rgba(255,255,255,0.08)}.footer-brand,.footer-links,.footer-social-links,.footer-copyright{flex:none;width:100%;display:inline-flex;justify-content:center}.footer-brand,.footer-links,.footer-social-links{margin-bottom:24px}.footer-links li+li,.footer-social-links li+li{margin-left:16px}.footer-social-links li{display:inline-flex}.footer-social-links li a{padding:8px}@media (min-width: 641px){.site-footer-inner{justify-content:space-between}.footer-brand,.footer-links,.footer-social-links,.footer-copyright{flex:50%}.footer-brand,.footer-copyright{justify-content:flex-start}.footer-links,.footer-social-links{justify-content:flex-end}.footer-links{order:1;margin-bottom:0}} + +/*# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJzb3VyY2VzIjpbInN0eWxlLmNzcyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQSxLQUFLLGlCQUFpQiwwQkFBMEIsNkJBQTZCLENBQUMsS0FBSyxRQUFRLENBQUMsd0NBQXdDLGFBQWEsQ0FBQyxHQUFHLGNBQWMsZUFBZSxDQUFDLHVCQUF1QixhQUFhLENBQUMsT0FBTyxlQUFlLENBQUMsR0FBRyx1QkFBdUIsU0FBUyxnQkFBZ0IsQ0FBQyxJQUFJLGlDQUFpQyxhQUFhLENBQUMsRUFBRSw2QkFBNkIsb0NBQW9DLENBQUMsWUFBWSxtQkFBbUIsMEJBQTBCLHlDQUFnQyxBQUFoQyxnQ0FBZ0MsQ0FBQyxTQUFTLG1CQUFtQixDQUFDLFNBQVMsa0JBQWtCLENBQUMsY0FBYyxpQ0FBaUMsYUFBYSxDQUFDLElBQUksaUJBQWlCLENBQUMsS0FBSyxzQkFBc0IsVUFBVSxDQUFDLE1BQU0sYUFBYSxDQUFDLFFBQVEsY0FBYyxjQUFjLGtCQUFrQix1QkFBdUIsQ0FBQyxJQUFJLGNBQWMsQ0FBQyxJQUFJLFVBQVUsQ0FBQyxZQUFZLG9CQUFvQixDQUFDLHNCQUFzQixhQUFhLFFBQVEsQ0FBQyxJQUFJLGlCQUFpQixDQUFDLGVBQWUsZUFBZSxDQUFDLHNDQUFzQyx1QkFBdUIsZUFBZSxpQkFBaUIsUUFBUSxDQUFDLGFBQWEsZ0JBQWdCLENBQUMsY0FBYyxtQkFBbUIsQ0FBQywyREFBMkQseUJBQXlCLENBQUMsOEhBQThILGtCQUFrQixTQUFTLENBQUMsa0hBQWtILDZCQUE2QixDQUFDLFNBQVMsNkJBQTZCLENBQUMsT0FBTyxzQkFBc0IsY0FBYyxjQUFjLGVBQWUsVUFBVSxrQkFBa0IsQ0FBQyxTQUFTLHFCQUFxQix1QkFBdUIsQ0FBQyxTQUFTLGFBQWEsQ0FBQyxpQ0FBaUMsc0JBQXNCLFNBQVMsQ0FBQyxzRkFBc0YsV0FBVyxDQUFDLGdCQUFnQiw2QkFBNkIsbUJBQW1CLENBQUMseUZBQXlGLHVCQUF1QixDQUFDLDZCQUE2QiwwQkFBMEIsWUFBWSxDQUFDLGFBQWEsYUFBYSxDQUFDLFFBQVEsaUJBQWlCLENBQUMsT0FBTyxvQkFBb0IsQ0FBQyxTQUFTLFlBQVksQ0FBQyxTQUFTLFlBQVksQ0FBQyxLQUFLLHFCQUFxQixDQUFDLG1CQUFtQixrQkFBa0IsQ0FBQyxLQUFLLGdCQUFnQixrQ0FBa0Msa0NBQWtDLENBQUMsR0FBRyxTQUFTLGNBQWMsV0FBVyxtQkFBbUIsZ0JBQWdCLGtCQUFrQixDQUFDLE1BQU0sYUFBYSxtQkFBbUIsaUJBQWlCLENBQUMsR0FBRyxlQUFlLENBQUMsR0FBRyxrQkFBa0IsQ0FBQyxZQUFZLGVBQWUsQ0FBQyxHQUFHLGFBQWEsa0JBQWtCLENBQUMsR0FBRyxlQUFlLENBQUMsR0FBRyxpQkFBaUIsa0JBQWtCLENBQUMsSUFBSSxZQUFZLGVBQWUscUJBQXFCLENBQUMsT0FBTyxhQUFhLENBQUMsV0FBVyxlQUFlLGlCQUFpQixhQUFhLENBQUMsUUFBUSxhQUFhLENBQUMsTUFBTSx5QkFBeUIsbUJBQW1CLFVBQVUsQ0FBQyxHQUFHLCtCQUErQixDQUFDLEdBQUcsZUFBZSxDQUFDLE1BQU0saUJBQWlCLENBQUMsOEJBQThCLGNBQWMsQ0FBQyw0QkFBNEIsZUFBZSxDQUFDLEtBQUssZUFBZSxnQkFBZ0IsQ0FBQywwQkFBMEIsS0FBSyxlQUFlLGlCQUFpQixxQkFBcUIsQ0FBQyxDQUFDLEtBQUssY0FBYyxjQUFjLENBQUMsa0NBQWtDLHVDQUF1QyxDQUFDLEVBQUUsY0FBYyx5QkFBeUIsQ0FBQyxpQkFBaUIsVUFBVSxvQkFBb0IsQ0FBQywwQ0FBMEMsV0FBVyxjQUFjLGdDQUFnQyxlQUFlLENBQUMsT0FBTyxlQUFlLGlCQUFpQixxQkFBcUIsQ0FBQywwQkFBMEIsT0FBTyxlQUFlLGlCQUFpQixxQkFBcUIsQ0FBQyxDQUFDLE9BQU8sZUFBZSxpQkFBaUIscUJBQXFCLENBQUMsMEJBQTBCLE9BQU8sZUFBZSxpQkFBaUIscUJBQXFCLENBQUMsQ0FBQyxrQkFBa0IsZUFBZSxpQkFBaUIscUJBQXFCLENBQUMsMEJBQTBCLGtCQUFrQixlQUFlLGlCQUFpQixxQkFBcUIsQ0FBQyxDQUFDLHFCQUFxQixlQUFlLGlCQUFpQixxQkFBcUIsQ0FBQywwQkFBMEIscUJBQXFCLGVBQWUsaUJBQWlCLHFCQUFxQixDQUFDLENBQUMsMEJBQTBCLFdBQVcsZUFBZSxpQkFBaUIscUJBQXFCLENBQUMsV0FBVyxlQUFlLGlCQUFpQixxQkFBcUIsQ0FBQyxXQUFXLGVBQWUsaUJBQWlCLHFCQUFxQixDQUFDLGlDQUFpQyxlQUFlLGlCQUFpQixxQkFBcUIsQ0FBQyxDQUFDLFlBQVksYUFBYSxDQUFDLGNBQWMsYUFBYSxDQUFDLDBMQUEwTCxxQkFBcUIsQ0FBQyxTQUFTLGVBQWUsaUJBQWlCLHFCQUFxQixDQUFDLFNBQVMsZUFBZSxpQkFBaUIscUJBQXFCLENBQUMsY0FBYyxnQkFBZ0Isa0JBQWtCLENBQUMsT0FBTyxnQkFBZ0Isa0JBQWtCLENBQUMscUJBQXFCLGdCQUFnQixpQkFBaUIsQ0FBQyxFQUFFLGFBQWEsa0JBQWtCLENBQUMsY0FBYyxpQkFBaUIsQ0FBQyxXQUFXLGtCQUFrQixnQkFBZ0IsbUJBQW1CLGdCQUFnQixDQUFDLG1CQUFtQixlQUFlLENBQUMsa0JBQWtCLGVBQWUsQ0FBQyxhQUFhLGNBQWMsQ0FBQyxRQUFRLGNBQWMsbUJBQW1CLG1CQUFtQixxQkFBcUIsZUFBZSxlQUFlLENBQUMsOEZBQThGLGtEQUFrRCxDQUFDLG9CQUFvQixrQkFBa0IsQ0FBQyxJQUFJLGVBQWUsaUJBQWlCLG9CQUFvQixlQUFlLGNBQWMsYUFBYSxnQkFBZ0Isa0JBQWtCLENBQUMsZ0JBQWdCLDJFQUEyRSxlQUFlLGVBQWUsQ0FBQyxhQUFhLFdBQVcsQ0FBQyxTQUFTLG9CQUFvQixDQUFDLE1BQU0sZUFBZSxpQkFBaUIscUJBQXFCLENBQUMsU0FBUyxlQUFlLENBQUMsbUNBQW1DLGVBQWUsZ0JBQWdCLENBQUMseUJBQXlCLFdBQVcsY0FBYyxrQkFBa0Isa0JBQWtCLENBQUMsMEJBQTBCLHlCQUF5QixrQkFBa0Isa0JBQWtCLENBQUMsQ0FBQyxXQUFXLGdCQUFnQixDQUFDLGNBQWMsZUFBZSxDQUFDLHlCQUF5QixnQkFBZ0IsZUFBZSxlQUFlLENBQUMsb0JBQW9CLDhCQUE4Qiw2QkFBNkIsV0FBVyxVQUFVLGdCQUFnQiwyQkFBMkIsQ0FBQywwQkFBMEIsa0JBQWtCLHVDQUF1QyxxQkFBcUIsY0FBYyxlQUFlLHNCQUFzQixnQkFBZ0IsaUJBQWlCLHlCQUF5QixxQkFBcUIsc0JBQXNCLHlCQUF5QixZQUFZLFlBQVksU0FBUyxrQkFBa0IsUUFBUSxXQUFXLGNBQWMsQ0FBQyxZQUFZLGdCQUFnQixTQUFTLENBQUMsV0FBVyxlQUFlLENBQUMsYUFBYSxpQkFBaUIsQ0FBQyxZQUFZLGdCQUFnQixDQUFDLGNBQWMsYUFBYSxDQUFDLGdCQUFnQixhQUFhLENBQUMsaUJBQWlCLGlCQUFpQixDQUFDLHlCQUF5QixXQUFXLGtCQUFrQixNQUFNLE9BQU8sV0FBVyxjQUFjLFdBQVcsa0JBQWtCLENBQUMsb0JBQW9CLGlCQUFpQixDQUFDLDJCQUEyQixXQUFXLGtCQUFrQixTQUFTLE9BQU8sV0FBVyxjQUFjLFdBQVcsa0JBQWtCLENBQUMsS0FBSyxRQUFRLENBQUMsTUFBTSxZQUFZLENBQUMsTUFBTSxjQUFjLENBQUMsTUFBTSxlQUFlLENBQUMsTUFBTSxhQUFhLENBQUMsS0FBSyxVQUFVLENBQUMsTUFBTSxjQUFjLENBQUMsTUFBTSxnQkFBZ0IsQ0FBQyxNQUFNLGlCQUFpQixDQUFDLE1BQU0sZUFBZSxDQUFDLE1BQU0sV0FBVyxDQUFDLE9BQU8sZUFBZSxDQUFDLE9BQU8saUJBQWlCLENBQUMsT0FBTyxrQkFBa0IsQ0FBQyxPQUFPLGdCQUFnQixDQUFDLE1BQU0sV0FBVyxDQUFDLE9BQU8sZUFBZSxDQUFDLE9BQU8saUJBQWlCLENBQUMsT0FBTyxrQkFBa0IsQ0FBQyxPQUFPLGdCQUFnQixDQUFDLE1BQU0sV0FBVyxDQUFDLE9BQU8sZUFBZSxDQUFDLE9BQU8saUJBQWlCLENBQUMsT0FBTyxrQkFBa0IsQ0FBQyxPQUFPLGdCQUFnQixDQUFDLE1BQU0sV0FBVyxDQUFDLE9BQU8sZUFBZSxDQUFDLE9BQU8saUJBQWlCLENBQUMsT0FBTyxrQkFBa0IsQ0FBQyxPQUFPLGdCQUFnQixDQUFDLE1BQU0sV0FBVyxDQUFDLE9BQU8sZUFBZSxDQUFDLE9BQU8saUJBQWlCLENBQUMsT0FBTyxrQkFBa0IsQ0FBQyxPQUFPLGdCQUFnQixDQUFDLE1BQU0sV0FBVyxDQUFDLE9BQU8sZUFBZSxDQUFDLE9BQU8saUJBQWlCLENBQUMsT0FBTyxrQkFBa0IsQ0FBQyxPQUFPLGdCQUFnQixDQUFDLE1BQU0sV0FBVyxDQUFDLE9BQU8sZUFBZSxDQUFDLE9BQU8saUJBQWlCLENBQUMsT0FBTyxrQkFBa0IsQ0FBQyxPQUFPLGdCQUFnQixDQUFDLEtBQUssU0FBUyxDQUFDLE1BQU0sYUFBYSxDQUFDLE1BQU0sZUFBZSxDQUFDLE1BQU0sZ0JBQWdCLENBQUMsTUFBTSxjQUFjLENBQUMsS0FBSyxXQUFXLENBQUMsTUFBTSxlQUFlLENBQUMsTUFBTSxpQkFBaUIsQ0FBQyxNQUFNLGtCQUFrQixDQUFDLE1BQU0sZ0JBQWdCLENBQUMsTUFBTSxZQUFZLENBQUMsT0FBTyxnQkFBZ0IsQ0FBQyxPQUFPLGtCQUFrQixDQUFDLE9BQU8sbUJBQW1CLENBQUMsT0FBTyxpQkFBaUIsQ0FBQyxNQUFNLFlBQVksQ0FBQyxPQUFPLGdCQUFnQixDQUFDLE9BQU8sa0JBQWtCLENBQUMsT0FBTyxtQkFBbUIsQ0FBQyxPQUFPLGlCQUFpQixDQUFDLE1BQU0sWUFBWSxDQUFDLE9BQU8sZ0JBQWdCLENBQUMsT0FBTyxrQkFBa0IsQ0FBQyxPQUFPLG1CQUFtQixDQUFDLE9BQU8saUJBQWlCLENBQUMsTUFBTSxZQUFZLENBQUMsT0FBTyxnQkFBZ0IsQ0FBQyxPQUFPLGtCQUFrQixDQUFDLE9BQU8sbUJBQW1CLENBQUMsT0FBTyxpQkFBaUIsQ0FBQyxNQUFNLFlBQVksQ0FBQyxPQUFPLGdCQUFnQixDQUFDLE9BQU8sa0JBQWtCLENBQUMsT0FBTyxtQkFBbUIsQ0FBQyxPQUFPLGlCQUFpQixDQUFDLE1BQU0sWUFBWSxDQUFDLE9BQU8sZ0JBQWdCLENBQUMsT0FBTyxrQkFBa0IsQ0FBQyxPQUFPLG1CQUFtQixDQUFDLE9BQU8saUJBQWlCLENBQUMsTUFBTSxZQUFZLENBQUMsT0FBTyxnQkFBZ0IsQ0FBQyxPQUFPLGtCQUFrQixDQUFDLE9BQU8sbUJBQW1CLENBQUMsT0FBTyxpQkFBaUIsQ0FBQyxrQ0FBa0MsaUJBQWlCLENBQUMsUUFBUSxvQkFBb0IsZ0NBQWdDLGVBQWUsc0JBQXNCLGdCQUFnQixpQkFBaUIsZ0NBQWdDLHNCQUFzQix5QkFBeUIsWUFBWSxrQkFBa0IsZUFBZSx1QkFBdUIsa0JBQWtCLFlBQVksa0JBQWtCLGtCQUFrQixDQUFDLGVBQWUsU0FBUyxDQUFDLGdCQUFnQixpQkFBaUIsQ0FBQyxlQUFlLGlCQUFpQixDQUFDLHVCQUF1QixXQUFXLGtCQUFrQixNQUFNLFFBQVEsU0FBUyxPQUFPLDBDQUEwQyx3QkFBd0IsK0JBQStCLENBQUMsNkJBQTZCLHlDQUF5QyxDQUFDLFdBQVcsaUJBQWlCLFdBQVcsQ0FBQyxpQ0FBaUMseUNBQXlDLENBQUMsdUNBQXVDLHlDQUF5QyxDQUFDLGdCQUFnQixzQkFBc0IsK0JBQStCLENBQUMsZ0JBQWdCLG1CQUFtQiwwREFBMEQsQ0FBQyxzQkFBc0IsbUJBQW1CLDBEQUEwRCxDQUFDLHNDQUFzQywyQ0FBMkMsQ0FBQyw0Q0FBNEMsMENBQTBDLENBQUMsaURBQWlELDJDQUEyQyxDQUFDLHVEQUF1RCwwQ0FBMEMsQ0FBQyxjQUFjLFlBQVksQ0FBQyxhQUFhLGtCQUFrQixjQUFjLENBQUMsbUJBQW1CLGtCQUFrQixhQUFhLDhCQUE4QixrQkFBa0IsQ0FBQyxjQUFjLG1CQUFtQixDQUFDLGlCQUFpQixtQkFBbUIsQ0FBQyw2QkFBNkIsZ0NBQWdDLGVBQWUsaUJBQWlCLHNCQUFzQixnQkFBZ0IsY0FBYyx5QkFBeUIscUJBQXFCLGlCQUFpQixnQkFBZ0IsQ0FBQyx1RUFBdUUsVUFBVSxDQUFDLE1BQU0sa0JBQWtCLGtCQUFrQixnQkFBZ0IsQ0FBQyxjQUFjLFdBQVcsa0JBQWtCLFNBQVMsUUFBUSxhQUFhLFVBQVUsbUJBQW1CLGlFQUFpRSxDQUFDLFlBQVksaUJBQWlCLENBQUMsWUFBWSxlQUFlLENBQUMsZ0JBQWdCLGtCQUFrQixDQUFDLG1CQUFtQixnQkFBZ0IsbUJBQW1CLENBQUMsOENBQThDLFdBQVcsZ0JBQWdCLFlBQVksY0FBYyxnQkFBZ0IsQ0FBQywwQkFBMEIsTUFBTSxnQkFBZ0IsaUJBQWlCLG1CQUFtQixDQUFDLGNBQWMsV0FBVyxhQUFhLFVBQVUsQ0FBQyxZQUFZLFlBQVksQ0FBQyxXQUFXLG1CQUFtQixlQUFlLENBQUMsbUJBQW1CLGlCQUFpQixnQkFBZ0IsQ0FBQyw4Q0FBOEMsZUFBZSxXQUFXLENBQUMsQ0FBQywyQkFBMkIsY0FBYyxVQUFVLFNBQVMsQ0FBQyxXQUFXLG1CQUFtQixlQUFlLENBQUMsQ0FBQyx5QkFBeUIsa0JBQWtCLENBQUMsZUFBZSxhQUFhLGVBQWUsdUJBQXVCLG1CQUFtQixpQkFBaUIsQ0FBQywyQkFBMkIsZ0JBQWdCLENBQUMsMEJBQTBCLG1CQUFtQixDQUFDLFNBQVMsYUFBYSxZQUFZLGdCQUFnQixXQUFXLENBQUMsZUFBZSxZQUFZLGdCQUFnQixrQkFBa0IsOEJBQThCLENBQUMsZ0NBQWdDLGVBQWUsMENBQTBDLENBQUMsQ0FBQyxjQUFjLGFBQWEsc0JBQXNCLENBQUMsZUFBZSxnQkFBZ0IsaUJBQWlCLENBQUMsMEJBQTBCLFVBQVUsaUJBQWlCLENBQUMsMEJBQTBCLGtCQUFrQixNQUFNLE9BQU8sYUFBYSxVQUFVLGtCQUFrQixDQUFDLHlCQUF5QixrQkFBa0IsQ0FBQyxDQUFDLFNBQVMsa0JBQWtCLGVBQWUsQ0FBQyxpQkFBaUIsV0FBVyxrQkFBa0IsdUJBQXVCLE9BQU8sV0FBVyxhQUFhLG1CQUFtQixlQUFlLENBQUMsd0JBQXdCLGtCQUFrQixDQUFDLHFCQUFxQixhQUFhLGVBQWUsdUJBQXVCLG1CQUFtQixpQkFBaUIsQ0FBQyxpQ0FBaUMsZ0JBQWdCLENBQUMsZ0NBQWdDLG1CQUFtQixDQUFDLGVBQWUsYUFBYSxZQUFZLGdCQUFnQixXQUFXLENBQUMscUJBQXFCLGtCQUFrQixhQUFhLGVBQWUsZ0JBQWdCLGFBQWEsV0FBVyxDQUFDLHVCQUF1QixrQkFBa0IsVUFBVSxDQUFDLDZCQUE2QixXQUFXLGtCQUFrQixNQUFNLFFBQVEsU0FBUyxPQUFPLCtCQUErQix1QkFBdUIsQ0FBQyxnQ0FBZ0MsNkJBQTZCLDBDQUEwQyxDQUFDLENBQUMsc0JBQXNCLGlCQUFpQixDQUFDLDZCQUE2QixXQUFXLGtCQUFrQixTQUFTLE9BQU8sV0FBVyxjQUFjLFdBQVcsa0JBQWtCLENBQUMscUJBQXFCLGdDQUFnQyxhQUFhLENBQUMsOEJBQThCLGFBQWEsQ0FBQywyQkFBMkIsYUFBYSxtQkFBbUIsa0JBQWtCLENBQUMsc0NBQXNDLG9CQUFvQixXQUFXLFlBQVksaUJBQWlCLENBQUMsbUJBQW1CLG1CQUFtQixDQUFDLDBCQUEwQix5QkFBeUIsa0JBQWtCLHVCQUF1QixRQUFRLGFBQWEsVUFBVSxrQkFBa0IsQ0FBQyx3QkFBd0Isa0JBQWtCLENBQUMsQ0FBQyxVQUFVLGtCQUFrQixDQUFDLFdBQVcsZ0JBQWdCLGdCQUFnQixhQUFhLHNCQUFzQixnQkFBZ0IsQ0FBQyxpQkFBaUIsaUJBQWlCLGNBQWMsOEJBQThCLENBQUMsZ0NBQWdDLGlCQUFpQiwwQ0FBMEMsQ0FBQyxDQUFDLEtBQUssYUFBYSxDQUFDLGVBQWUsa0JBQWtCLGlCQUFpQixtQkFBbUIsQ0FBQywwQkFBMEIsZUFBZSxpQkFBaUIsbUJBQW1CLENBQUMsQ0FBQyxhQUFhLGVBQWUsaUJBQWlCLG1CQUFtQixrQkFBa0IsQ0FBQyxlQUFlLG9CQUFvQixDQUFDLDJDQUEyQyxjQUFjLHlCQUF5QixDQUFDLG1CQUFtQixrQkFBa0IsYUFBYSxlQUFlLGlCQUFpQixtQkFBbUIsQ0FBQywyQ0FBMkMsaUNBQWlDLENBQUMsbUVBQW1FLFVBQVUsV0FBVyxvQkFBb0Isc0JBQXNCLENBQUMsaURBQWlELGtCQUFrQixDQUFDLCtDQUErQyxnQkFBZ0IsQ0FBQyx3QkFBd0IsbUJBQW1CLENBQUMsMEJBQTBCLFdBQVcsQ0FBQywwQkFBMEIsbUJBQW1CLDZCQUE2QixDQUFDLG1FQUFtRSxRQUFRLENBQUMsZ0NBQWdDLDBCQUEwQixDQUFDLG1DQUFtQyx3QkFBd0IsQ0FBQyxjQUFjLFFBQVEsZUFBZSxDQUFDLENBQUMiLCJmaWxlIjoic3R5bGUuY3NzIiwic291cmNlc0NvbnRlbnQiOlsiaHRtbHtsaW5lLWhlaWdodDoxLjE1Oy1tcy10ZXh0LXNpemUtYWRqdXN0OjEwMCU7LXdlYmtpdC10ZXh0LXNpemUtYWRqdXN0OjEwMCV9Ym9keXttYXJnaW46MH1hcnRpY2xlLGFzaWRlLGZvb3RlcixoZWFkZXIsbmF2LHNlY3Rpb257ZGlzcGxheTpibG9ja31oMXtmb250LXNpemU6MmVtO21hcmdpbjowLjY3ZW0gMH1maWdjYXB0aW9uLGZpZ3VyZSxtYWlue2Rpc3BsYXk6YmxvY2t9ZmlndXJle21hcmdpbjoxZW0gNDBweH1ocntib3gtc2l6aW5nOmNvbnRlbnQtYm94O2hlaWdodDowO292ZXJmbG93OnZpc2libGV9cHJle2ZvbnQtZmFtaWx5Om1vbm9zcGFjZSwgbW9ub3NwYWNlO2ZvbnQtc2l6ZToxZW19YXtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50Oy13ZWJraXQtdGV4dC1kZWNvcmF0aW9uLXNraXA6b2JqZWN0c31hYmJyW3RpdGxlXXtib3JkZXItYm90dG9tOm5vbmU7dGV4dC1kZWNvcmF0aW9uOnVuZGVybGluZTt0ZXh0LWRlY29yYXRpb246dW5kZXJsaW5lIGRvdHRlZH1iLHN0cm9uZ3tmb250LXdlaWdodDppbmhlcml0fWIsc3Ryb25ne2ZvbnQtd2VpZ2h0OmJvbGRlcn1jb2RlLGtiZCxzYW1we2ZvbnQtZmFtaWx5Om1vbm9zcGFjZSwgbW9ub3NwYWNlO2ZvbnQtc2l6ZToxZW19ZGZue2ZvbnQtc3R5bGU6aXRhbGljfW1hcmt7YmFja2dyb3VuZC1jb2xvcjojZmYwO2NvbG9yOiMwMDB9c21hbGx7Zm9udC1zaXplOjgwJX1zdWIsc3Vwe2ZvbnQtc2l6ZTo3NSU7bGluZS1oZWlnaHQ6MDtwb3NpdGlvbjpyZWxhdGl2ZTt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZX1zdWJ7Ym90dG9tOi0wLjI1ZW19c3Vwe3RvcDotMC41ZW19YXVkaW8sdmlkZW97ZGlzcGxheTppbmxpbmUtYmxvY2t9YXVkaW86bm90KFtjb250cm9sc10pe2Rpc3BsYXk6bm9uZTtoZWlnaHQ6MH1pbWd7Ym9yZGVyLXN0eWxlOm5vbmV9c3ZnOm5vdCg6cm9vdCl7b3ZlcmZsb3c6aGlkZGVufWJ1dHRvbixpbnB1dCxvcHRncm91cCxzZWxlY3QsdGV4dGFyZWF7Zm9udC1mYW1pbHk6c2Fucy1zZXJpZjtmb250LXNpemU6MTAwJTtsaW5lLWhlaWdodDoxLjE1O21hcmdpbjowfWJ1dHRvbixpbnB1dHtvdmVyZmxvdzp2aXNpYmxlfWJ1dHRvbixzZWxlY3R7dGV4dC10cmFuc2Zvcm06bm9uZX1idXR0b24saHRtbCBbdHlwZT1cImJ1dHRvblwiXSxbdHlwZT1cInJlc2V0XCJdLFt0eXBlPVwic3VibWl0XCJdey13ZWJraXQtYXBwZWFyYW5jZTpidXR0b259YnV0dG9uOjotbW96LWZvY3VzLWlubmVyLFt0eXBlPVwiYnV0dG9uXCJdOjotbW96LWZvY3VzLWlubmVyLFt0eXBlPVwicmVzZXRcIl06Oi1tb3otZm9jdXMtaW5uZXIsW3R5cGU9XCJzdWJtaXRcIl06Oi1tb3otZm9jdXMtaW5uZXJ7Ym9yZGVyLXN0eWxlOm5vbmU7cGFkZGluZzowfWJ1dHRvbjotbW96LWZvY3VzcmluZyxbdHlwZT1cImJ1dHRvblwiXTotbW96LWZvY3VzcmluZyxbdHlwZT1cInJlc2V0XCJdOi1tb3otZm9jdXNyaW5nLFt0eXBlPVwic3VibWl0XCJdOi1tb3otZm9jdXNyaW5ne291dGxpbmU6MXB4IGRvdHRlZCBCdXR0b25UZXh0fWZpZWxkc2V0e3BhZGRpbmc6MC4zNWVtIDAuNzVlbSAwLjYyNWVtfWxlZ2VuZHtib3gtc2l6aW5nOmJvcmRlci1ib3g7Y29sb3I6aW5oZXJpdDtkaXNwbGF5OnRhYmxlO21heC13aWR0aDoxMDAlO3BhZGRpbmc6MDt3aGl0ZS1zcGFjZTpub3JtYWx9cHJvZ3Jlc3N7ZGlzcGxheTppbmxpbmUtYmxvY2s7dmVydGljYWwtYWxpZ246YmFzZWxpbmV9dGV4dGFyZWF7b3ZlcmZsb3c6YXV0b31bdHlwZT1cImNoZWNrYm94XCJdLFt0eXBlPVwicmFkaW9cIl17Ym94LXNpemluZzpib3JkZXItYm94O3BhZGRpbmc6MH1bdHlwZT1cIm51bWJlclwiXTo6LXdlYmtpdC1pbm5lci1zcGluLWJ1dHRvbixbdHlwZT1cIm51bWJlclwiXTo6LXdlYmtpdC1vdXRlci1zcGluLWJ1dHRvbntoZWlnaHQ6YXV0b31bdHlwZT1cInNlYXJjaFwiXXstd2Via2l0LWFwcGVhcmFuY2U6dGV4dGZpZWxkO291dGxpbmUtb2Zmc2V0Oi0ycHh9W3R5cGU9XCJzZWFyY2hcIl06Oi13ZWJraXQtc2VhcmNoLWNhbmNlbC1idXR0b24sW3R5cGU9XCJzZWFyY2hcIl06Oi13ZWJraXQtc2VhcmNoLWRlY29yYXRpb257LXdlYmtpdC1hcHBlYXJhbmNlOm5vbmV9Ojotd2Via2l0LWZpbGUtdXBsb2FkLWJ1dHRvbnstd2Via2l0LWFwcGVhcmFuY2U6YnV0dG9uO2ZvbnQ6aW5oZXJpdH1kZXRhaWxzLG1lbnV7ZGlzcGxheTpibG9ja31zdW1tYXJ5e2Rpc3BsYXk6bGlzdC1pdGVtfWNhbnZhc3tkaXNwbGF5OmlubGluZS1ibG9ja310ZW1wbGF0ZXtkaXNwbGF5Om5vbmV9W2hpZGRlbl17ZGlzcGxheTpub25lfWh0bWx7Ym94LXNpemluZzpib3JkZXItYm94fSosKjpiZWZvcmUsKjphZnRlcntib3gtc2l6aW5nOmluaGVyaXR9Ym9keXtiYWNrZ3JvdW5kOiNmZmY7LW1vei1vc3gtZm9udC1zbW9vdGhpbmc6Z3JheXNjYWxlOy13ZWJraXQtZm9udC1zbW9vdGhpbmc6YW50aWFsaWFzZWR9aHJ7Ym9yZGVyOjA7ZGlzcGxheTpibG9jaztoZWlnaHQ6MXB4O2JhY2tncm91bmQ6I0UyRThFRDttYXJnaW4tdG9wOjI0cHg7bWFyZ2luLWJvdHRvbToyNHB4fXVsLG9se21hcmdpbi10b3A6MDttYXJnaW4tYm90dG9tOjI0cHg7cGFkZGluZy1sZWZ0OjI0cHh9dWx7bGlzdC1zdHlsZTpkaXNjfW9se2xpc3Qtc3R5bGU6ZGVjaW1hbH1saT51bCxsaT5vbHttYXJnaW4tYm90dG9tOjB9ZGx7bWFyZ2luLXRvcDowO21hcmdpbi1ib3R0b206MjRweH1kdHtmb250LXdlaWdodDo1MDB9ZGR7bWFyZ2luLWxlZnQ6MjRweDttYXJnaW4tYm90dG9tOjI0cHh9aW1ne2hlaWdodDphdXRvO21heC13aWR0aDoxMDAlO3ZlcnRpY2FsLWFsaWduOm1pZGRsZX1maWd1cmV7bWFyZ2luOjI0cHggMH1maWdjYXB0aW9ue2ZvbnQtc2l6ZToxNnB4O2xpbmUtaGVpZ2h0OjI0cHg7cGFkZGluZzo4cHggMH1pbWcsc3Zne2Rpc3BsYXk6YmxvY2t9dGFibGV7Ym9yZGVyLWNvbGxhcHNlOmNvbGxhcHNlO21hcmdpbi1ib3R0b206MjRweDt3aWR0aDoxMDAlfXRye2JvcmRlci1ib3R0b206MXB4IHNvbGlkICNFMkU4RUR9dGh7dGV4dC1hbGlnbjpsZWZ0fXRoLHRke3BhZGRpbmc6MTBweCAxNnB4fXRoOmZpcnN0LWNoaWxkLHRkOmZpcnN0LWNoaWxke3BhZGRpbmctbGVmdDowfXRoOmxhc3QtY2hpbGQsdGQ6bGFzdC1jaGlsZHtwYWRkaW5nLXJpZ2h0OjB9aHRtbHtmb250LXNpemU6MThweDtsaW5lLWhlaWdodDoyN3B4fUBtZWRpYSAobWluLXdpZHRoOiA2NDFweCl7aHRtbHtmb250LXNpemU6MjBweDtsaW5lLWhlaWdodDozMHB4O2xldHRlci1zcGFjaW5nOi0wLjFweH19Ym9keXtjb2xvcjojNkY4Mzk0O2ZvbnQtc2l6ZToxcmVtfWJvZHksYnV0dG9uLGlucHV0LHNlbGVjdCx0ZXh0YXJlYXtmb250LWZhbWlseTpcIkhpbmQgVmFkb2RhcmFcIiwgc2Fucy1zZXJpZn1he2NvbG9yOmluaGVyaXQ7dGV4dC1kZWNvcmF0aW9uOnVuZGVybGluZX1hOmhvdmVyLGE6YWN0aXZle291dGxpbmU6MDt0ZXh0LWRlY29yYXRpb246bm9uZX1oMSxoMixoMyxoNCxoNSxoNiwuaDEsLmgyLC5oMywuaDQsLmg1LC5oNntjbGVhcjpib3RoO2NvbG9yOiMxRjJCMzU7Zm9udC1mYW1pbHk6XCJNdWt0YVwiLCBzYW5zLXNlcmlmO2ZvbnQtd2VpZ2h0OjUwMH1oMSwuaDF7Zm9udC1zaXplOjQycHg7bGluZS1oZWlnaHQ6NTJweDtsZXR0ZXItc3BhY2luZzotMC4xcHh9QG1lZGlhIChtaW4td2lkdGg6IDY0MXB4KXtoMSwuaDF7Zm9udC1zaXplOjU2cHg7bGluZS1oZWlnaHQ6NjZweDtsZXR0ZXItc3BhY2luZzotMC4xcHh9fWgyLC5oMntmb250LXNpemU6MzZweDtsaW5lLWhlaWdodDo0NnB4O2xldHRlci1zcGFjaW5nOi0wLjFweH1AbWVkaWEgKG1pbi13aWR0aDogNjQxcHgpe2gyLC5oMntmb250LXNpemU6NDJweDtsaW5lLWhlaWdodDo1MnB4O2xldHRlci1zcGFjaW5nOi0wLjFweH19aDMsLmgzLGJsb2NrcXVvdGV7Zm9udC1zaXplOjI0cHg7bGluZS1oZWlnaHQ6MzRweDtsZXR0ZXItc3BhY2luZzotMC4xcHh9QG1lZGlhIChtaW4td2lkdGg6IDY0MXB4KXtoMywuaDMsYmxvY2txdW90ZXtmb250LXNpemU6MzZweDtsaW5lLWhlaWdodDo0NnB4O2xldHRlci1zcGFjaW5nOi0wLjFweH19aDQsaDUsaDYsLmg0LC5oNSwuaDZ7Zm9udC1zaXplOjIwcHg7bGluZS1oZWlnaHQ6MzBweDtsZXR0ZXItc3BhY2luZzotMC4xcHh9QG1lZGlhIChtaW4td2lkdGg6IDY0MXB4KXtoNCxoNSxoNiwuaDQsLmg1LC5oNntmb250LXNpemU6MjRweDtsaW5lLWhlaWdodDozNHB4O2xldHRlci1zcGFjaW5nOi0wLjFweH19QG1lZGlhIChtYXgtd2lkdGg6IDY0MHB4KXsuaDEtbW9iaWxle2ZvbnQtc2l6ZTo0MnB4O2xpbmUtaGVpZ2h0OjUycHg7bGV0dGVyLXNwYWNpbmc6LTAuMXB4fS5oMi1tb2JpbGV7Zm9udC1zaXplOjM2cHg7bGluZS1oZWlnaHQ6NDZweDtsZXR0ZXItc3BhY2luZzotMC4xcHh9LmgzLW1vYmlsZXtmb250LXNpemU6MjRweDtsaW5lLWhlaWdodDozNHB4O2xldHRlci1zcGFjaW5nOi0wLjFweH0uaDQtbW9iaWxlLC5oNS1tb2JpbGUsLmg2LW1vYmlsZXtmb250LXNpemU6MjBweDtsaW5lLWhlaWdodDozMHB4O2xldHRlci1zcGFjaW5nOi0wLjFweH19LnRleHQtbGlnaHR7Y29sb3I6IzZGODM5NH0udGV4dC1saWdodCBhe2NvbG9yOiM2RjgzOTR9LnRleHQtbGlnaHQgaDEsLnRleHQtbGlnaHQgaDIsLnRleHQtbGlnaHQgaDMsLnRleHQtbGlnaHQgaDQsLnRleHQtbGlnaHQgaDUsLnRleHQtbGlnaHQgaDYsLnRleHQtbGlnaHQgLmgxLC50ZXh0LWxpZ2h0IC5oMiwudGV4dC1saWdodCAuaDMsLnRleHQtbGlnaHQgLmg0LC50ZXh0LWxpZ2h0IC5oNSwudGV4dC1saWdodCAuaDZ7Y29sb3I6I2ZmZiAhaW1wb3J0YW50fS50ZXh0LXNte2ZvbnQtc2l6ZToxOHB4O2xpbmUtaGVpZ2h0OjI3cHg7bGV0dGVyLXNwYWNpbmc6LTAuMXB4fS50ZXh0LXhze2ZvbnQtc2l6ZToxNnB4O2xpbmUtaGVpZ2h0OjI0cHg7bGV0dGVyLXNwYWNpbmc6LTAuMXB4fWgxLGgyLC5oMSwuaDJ7bWFyZ2luLXRvcDo0OHB4O21hcmdpbi1ib3R0b206MTZweH1oMywuaDN7bWFyZ2luLXRvcDozNnB4O21hcmdpbi1ib3R0b206MTJweH1oNCxoNSxoNiwuaDQsLmg1LC5oNnttYXJnaW4tdG9wOjI0cHg7bWFyZ2luLWJvdHRvbTo0cHh9cHttYXJnaW4tdG9wOjA7bWFyZ2luLWJvdHRvbToyNHB4fWRmbixjaXRlLGVtLGl7Zm9udC1zdHlsZTppdGFsaWN9YmxvY2txdW90ZXtmb250LXN0eWxlOml0YWxpYzttYXJnaW4tdG9wOjI0cHg7bWFyZ2luLWJvdHRvbToyNHB4O21hcmdpbi1sZWZ0OjI0cHh9YmxvY2txdW90ZTo6YmVmb3Jle2NvbnRlbnQ6XCJcXDIwMUNcIn1ibG9ja3F1b3RlOjphZnRlcntjb250ZW50OlwiXFwyMDFEXCJ9YmxvY2txdW90ZSBwe2Rpc3BsYXk6aW5saW5lfWFkZHJlc3N7Y29sb3I6IzZGODM5NDtib3JkZXItd2lkdGg6MXB4IDA7Ym9yZGVyLXN0eWxlOnNvbGlkO2JvcmRlci1jb2xvcjojRTJFOEVEO3BhZGRpbmc6MjRweCAwO21hcmdpbjowIDAgMjRweH1wcmUscHJlIGgxLHByZSBoMixwcmUgaDMscHJlIGg0LHByZSBoNSxwcmUgaDYscHJlIC5oMSxwcmUgLmgyLHByZSAuaDMscHJlIC5oNCxwcmUgLmg1LHByZSAuaDZ7Zm9udC1mYW1pbHk6XCJDb3VyaWVyIDEwIFBpdGNoXCIsIENvdXJpZXIsIG1vbm9zcGFjZX1wcmUsY29kZSxrYmQsdHQsdmFye2JhY2tncm91bmQ6I0Y2RjhGQX1wcmV7Zm9udC1zaXplOjE2cHg7bGluZS1oZWlnaHQ6MjRweDttYXJnaW4tYm90dG9tOjEuNmVtO21heC13aWR0aDoxMDAlO292ZXJmbG93OmF1dG87cGFkZGluZzoyNHB4O21hcmdpbi10b3A6MjRweDttYXJnaW4tYm90dG9tOjI0cHh9Y29kZSxrYmQsdHQsdmFye2ZvbnQtZmFtaWx5Ok1vbmFjbywgQ29uc29sYXMsIFwiQW5kYWxlIE1vbm9cIiwgXCJEZWphVnUgU2FucyBNb25vXCIsIG1vbm9zcGFjZTtmb250LXNpemU6MTZweDtwYWRkaW5nOjJweCA0cHh9YWJicixhY3Jvbnlte2N1cnNvcjpoZWxwfW1hcmssaW5ze3RleHQtZGVjb3JhdGlvbjpub25lfXNtYWxse2ZvbnQtc2l6ZToxOHB4O2xpbmUtaGVpZ2h0OjI3cHg7bGV0dGVyLXNwYWNpbmc6LTAuMXB4fWIsc3Ryb25ne2ZvbnQtd2VpZ2h0OjcwMH1idXR0b24saW5wdXQsc2VsZWN0LHRleHRhcmVhLGxhYmVse2ZvbnQtc2l6ZToxOHB4O2xpbmUtaGVpZ2h0OjI3cHh9LmNvbnRhaW5lciwuY29udGFpbmVyLXNte3dpZHRoOjEwMCU7bWFyZ2luOjAgYXV0bztwYWRkaW5nLWxlZnQ6MTZweDtwYWRkaW5nLXJpZ2h0OjE2cHh9QG1lZGlhIChtaW4td2lkdGg6IDQ4MXB4KXsuY29udGFpbmVyLC5jb250YWluZXItc217cGFkZGluZy1sZWZ0OjI0cHg7cGFkZGluZy1yaWdodDoyNHB4fX0uY29udGFpbmVye21heC13aWR0aDoxMTI4cHh9LmNvbnRhaW5lci1zbXttYXgtd2lkdGg6ODQ4cHh9LmNvbnRhaW5lciAuY29udGFpbmVyLXNte21heC13aWR0aDo4MDBweDtwYWRkaW5nLWxlZnQ6MDtwYWRkaW5nLXJpZ2h0OjB9LnNjcmVlbi1yZWFkZXItdGV4dHtjbGlwOnJlY3QoMXB4LCAxcHgsIDFweCwgMXB4KTtwb3NpdGlvbjphYnNvbHV0ZSAhaW1wb3J0YW50O2hlaWdodDoxcHg7d2lkdGg6MXB4O292ZXJmbG93OmhpZGRlbjt3b3JkLXdyYXA6bm9ybWFsICFpbXBvcnRhbnR9LnNjcmVlbi1yZWFkZXItdGV4dDpmb2N1c3tib3JkZXItcmFkaXVzOjJweDtib3gtc2hhZG93OjAgMCAycHggMnB4IHJnYmEoMCwwLDAsMC42KTtjbGlwOmF1dG8gIWltcG9ydGFudDtkaXNwbGF5OmJsb2NrO2ZvbnQtc2l6ZToxNnB4O2xldHRlci1zcGFjaW5nOi0wLjFweDtmb250LXdlaWdodDo1MDA7bGluZS1oZWlnaHQ6MTZweDt0ZXh0LXRyYW5zZm9ybTp1cHBlcmNhc2U7dGV4dC1kZWNvcmF0aW9uOm5vbmU7YmFja2dyb3VuZC1jb2xvcjojZmZmO2NvbG9yOiMwMDgxRjYgIWltcG9ydGFudDtib3JkZXI6bm9uZTtoZWlnaHQ6YXV0bztsZWZ0OjhweDtwYWRkaW5nOjE2cHggMzJweDt0b3A6OHB4O3dpZHRoOmF1dG87ei1pbmRleDoxMDAwMDB9Lmxpc3QtcmVzZXR7bGlzdC1zdHlsZTpub25lO3BhZGRpbmc6MH0udGV4dC1sZWZ0e3RleHQtYWxpZ246bGVmdH0udGV4dC1jZW50ZXJ7dGV4dC1hbGlnbjpjZW50ZXJ9LnRleHQtcmlnaHR7dGV4dC1hbGlnbjpyaWdodH0udGV4dC1wcmltYXJ5e2NvbG9yOiMwMDgxRjZ9LnRleHQtc2Vjb25kYXJ5e2NvbG9yOiNGRjRENzl9Lmhhcy10b3AtZGl2aWRlcntwb3NpdGlvbjpyZWxhdGl2ZX0uaGFzLXRvcC1kaXZpZGVyOjpiZWZvcmV7Y29udGVudDonJztwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtsZWZ0OjA7d2lkdGg6MTAwJTtkaXNwbGF5OmJsb2NrO2hlaWdodDoxcHg7YmFja2dyb3VuZDojRTJFOEVEfS5oYXMtYm90dG9tLWRpdmlkZXJ7cG9zaXRpb246cmVsYXRpdmV9Lmhhcy1ib3R0b20tZGl2aWRlcjo6YWZ0ZXJ7Y29udGVudDonJztwb3NpdGlvbjphYnNvbHV0ZTtib3R0b206MDtsZWZ0OjA7d2lkdGg6MTAwJTtkaXNwbGF5OmJsb2NrO2hlaWdodDoxcHg7YmFja2dyb3VuZDojRTJFOEVEfS5tLTB7bWFyZ2luOjB9Lm10LTB7bWFyZ2luLXRvcDowfS5tci0we21hcmdpbi1yaWdodDowfS5tYi0we21hcmdpbi1ib3R0b206MH0ubWwtMHttYXJnaW4tbGVmdDowfS5tLTh7bWFyZ2luOjhweH0ubXQtOHttYXJnaW4tdG9wOjhweH0ubXItOHttYXJnaW4tcmlnaHQ6OHB4fS5tYi04e21hcmdpbi1ib3R0b206OHB4fS5tbC04e21hcmdpbi1sZWZ0OjhweH0ubS0xNnttYXJnaW46MTZweH0ubXQtMTZ7bWFyZ2luLXRvcDoxNnB4fS5tci0xNnttYXJnaW4tcmlnaHQ6MTZweH0ubWItMTZ7bWFyZ2luLWJvdHRvbToxNnB4fS5tbC0xNnttYXJnaW4tbGVmdDoxNnB4fS5tLTI0e21hcmdpbjoyNHB4fS5tdC0yNHttYXJnaW4tdG9wOjI0cHh9Lm1yLTI0e21hcmdpbi1yaWdodDoyNHB4fS5tYi0yNHttYXJnaW4tYm90dG9tOjI0cHh9Lm1sLTI0e21hcmdpbi1sZWZ0OjI0cHh9Lm0tMzJ7bWFyZ2luOjMycHh9Lm10LTMye21hcmdpbi10b3A6MzJweH0ubXItMzJ7bWFyZ2luLXJpZ2h0OjMycHh9Lm1iLTMye21hcmdpbi1ib3R0b206MzJweH0ubWwtMzJ7bWFyZ2luLWxlZnQ6MzJweH0ubS00MHttYXJnaW46NDBweH0ubXQtNDB7bWFyZ2luLXRvcDo0MHB4fS5tci00MHttYXJnaW4tcmlnaHQ6NDBweH0ubWItNDB7bWFyZ2luLWJvdHRvbTo0MHB4fS5tbC00MHttYXJnaW4tbGVmdDo0MHB4fS5tLTQ4e21hcmdpbjo0OHB4fS5tdC00OHttYXJnaW4tdG9wOjQ4cHh9Lm1yLTQ4e21hcmdpbi1yaWdodDo0OHB4fS5tYi00OHttYXJnaW4tYm90dG9tOjQ4cHh9Lm1sLTQ4e21hcmdpbi1sZWZ0OjQ4cHh9Lm0tNTZ7bWFyZ2luOjU2cHh9Lm10LTU2e21hcmdpbi10b3A6NTZweH0ubXItNTZ7bWFyZ2luLXJpZ2h0OjU2cHh9Lm1iLTU2e21hcmdpbi1ib3R0b206NTZweH0ubWwtNTZ7bWFyZ2luLWxlZnQ6NTZweH0ubS02NHttYXJnaW46NjRweH0ubXQtNjR7bWFyZ2luLXRvcDo2NHB4fS5tci02NHttYXJnaW4tcmlnaHQ6NjRweH0ubWItNjR7bWFyZ2luLWJvdHRvbTo2NHB4fS5tbC02NHttYXJnaW4tbGVmdDo2NHB4fS5wLTB7cGFkZGluZzowfS5wdC0we3BhZGRpbmctdG9wOjB9LnByLTB7cGFkZGluZy1yaWdodDowfS5wYi0we3BhZGRpbmctYm90dG9tOjB9LnBsLTB7cGFkZGluZy1sZWZ0OjB9LnAtOHtwYWRkaW5nOjhweH0ucHQtOHtwYWRkaW5nLXRvcDo4cHh9LnByLTh7cGFkZGluZy1yaWdodDo4cHh9LnBiLTh7cGFkZGluZy1ib3R0b206OHB4fS5wbC04e3BhZGRpbmctbGVmdDo4cHh9LnAtMTZ7cGFkZGluZzoxNnB4fS5wdC0xNntwYWRkaW5nLXRvcDoxNnB4fS5wci0xNntwYWRkaW5nLXJpZ2h0OjE2cHh9LnBiLTE2e3BhZGRpbmctYm90dG9tOjE2cHh9LnBsLTE2e3BhZGRpbmctbGVmdDoxNnB4fS5wLTI0e3BhZGRpbmc6MjRweH0ucHQtMjR7cGFkZGluZy10b3A6MjRweH0ucHItMjR7cGFkZGluZy1yaWdodDoyNHB4fS5wYi0yNHtwYWRkaW5nLWJvdHRvbToyNHB4fS5wbC0yNHtwYWRkaW5nLWxlZnQ6MjRweH0ucC0zMntwYWRkaW5nOjMycHh9LnB0LTMye3BhZGRpbmctdG9wOjMycHh9LnByLTMye3BhZGRpbmctcmlnaHQ6MzJweH0ucGItMzJ7cGFkZGluZy1ib3R0b206MzJweH0ucGwtMzJ7cGFkZGluZy1sZWZ0OjMycHh9LnAtNDB7cGFkZGluZzo0MHB4fS5wdC00MHtwYWRkaW5nLXRvcDo0MHB4fS5wci00MHtwYWRkaW5nLXJpZ2h0OjQwcHh9LnBiLTQwe3BhZGRpbmctYm90dG9tOjQwcHh9LnBsLTQwe3BhZGRpbmctbGVmdDo0MHB4fS5wLTQ4e3BhZGRpbmc6NDhweH0ucHQtNDh7cGFkZGluZy10b3A6NDhweH0ucHItNDh7cGFkZGluZy1yaWdodDo0OHB4fS5wYi00OHtwYWRkaW5nLWJvdHRvbTo0OHB4fS5wbC00OHtwYWRkaW5nLWxlZnQ6NDhweH0ucC01NntwYWRkaW5nOjU2cHh9LnB0LTU2e3BhZGRpbmctdG9wOjU2cHh9LnByLTU2e3BhZGRpbmctcmlnaHQ6NTZweH0ucGItNTZ7cGFkZGluZy1ib3R0b206NTZweH0ucGwtNTZ7cGFkZGluZy1sZWZ0OjU2cHh9LnAtNjR7cGFkZGluZzo2NHB4fS5wdC02NHtwYWRkaW5nLXRvcDo2NHB4fS5wci02NHtwYWRkaW5nLXJpZ2h0OjY0cHh9LnBiLTY0e3BhZGRpbmctYm90dG9tOjY0cHh9LnBsLTY0e3BhZGRpbmctbGVmdDo2NHB4fS5zciAuaGFzLWFuaW1hdGlvbnMgLmlzLXJldmVhbGluZ3t2aXNpYmlsaXR5OmhpZGRlbn0uYnV0dG9ue2Rpc3BsYXk6aW5saW5lLWZsZXg7Zm9udC1mYW1pbHk6XCJNdWt0YVwiLCBzYW5zLXNlcmlmO2ZvbnQtc2l6ZToxNnB4O2xldHRlci1zcGFjaW5nOi0wLjFweDtmb250LXdlaWdodDo3MDA7bGluZS1oZWlnaHQ6MTZweDt0ZXh0LWRlY29yYXRpb246bm9uZSAhaW1wb3J0YW50O2JhY2tncm91bmQtY29sb3I6I2ZmZjtjb2xvcjojMDA4MUY2ICFpbXBvcnRhbnQ7Ym9yZGVyOm5vbmU7Ym9yZGVyLXJhZGl1czo0cHg7Y3Vyc29yOnBvaW50ZXI7anVzdGlmeS1jb250ZW50OmNlbnRlcjtwYWRkaW5nOjE2cHggMzJweDtoZWlnaHQ6NDhweDt0ZXh0LWFsaWduOmNlbnRlcjt3aGl0ZS1zcGFjZTpub3dyYXB9LmJ1dHRvbjphY3RpdmV7b3V0bGluZTowfS5idXR0b246OmJlZm9yZXtib3JkZXItcmFkaXVzOjRweH0uYnV0dG9uLXNoYWRvd3twb3NpdGlvbjpyZWxhdGl2ZX0uYnV0dG9uLXNoYWRvdzo6YmVmb3Jle2NvbnRlbnQ6Jyc7cG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7Ym94LXNoYWRvdzowIDhweCAxNnB4IHJnYmEoMzEsNDMsNTMsMC4xMik7bWl4LWJsZW5kLW1vZGU6bXVsdGlwbHk7dHJhbnNpdGlvbjpib3gtc2hhZG93IC4xNXMgZWFzZX0uYnV0dG9uLXNoYWRvdzpob3Zlcjo6YmVmb3Jle2JveC1zaGFkb3c6MCA4cHggMTZweCByZ2JhKDMxLDQzLDUzLDAuMjUpfS5idXR0b24tc217cGFkZGluZzo4cHggMjRweDtoZWlnaHQ6MzJweH0uYnV0dG9uLXNtLmJ1dHRvbi1zaGFkb3c6OmJlZm9yZXtib3gtc2hhZG93OjAgNHB4IDE2cHggcmdiYSgzMSw0Myw1MywwLjEyKX0uYnV0dG9uLXNtLmJ1dHRvbi1zaGFkb3c6aG92ZXI6OmJlZm9yZXtib3gtc2hhZG93OjAgNHB4IDE2cHggcmdiYSgzMSw0Myw1MywwLjI1KX0uYnV0dG9uLXByaW1hcnl7Y29sb3I6I2ZmZiAhaW1wb3J0YW50O3RyYW5zaXRpb246YmFja2dyb3VuZCAuMTVzIGVhc2V9LmJ1dHRvbi1wcmltYXJ5e2JhY2tncm91bmQ6I2ZmNjc4YztiYWNrZ3JvdW5kOmxpbmVhci1ncmFkaWVudCg2NWRlZywgI0ZGNEQ3OSAwLCAjRkY4MDlGIDEwMCUpfS5idXR0b24tcHJpbWFyeTpob3ZlcntiYWNrZ3JvdW5kOiNmZjZjOTA7YmFja2dyb3VuZDpsaW5lYXItZ3JhZGllbnQoNjVkZWcsICNmZjUyN2QgMCwgI2ZmODVhMyAxMDAlKX0uYnV0dG9uLXByaW1hcnkuYnV0dG9uLXNoYWRvdzo6YmVmb3Jle2JveC1zaGFkb3c6MCA4cHggMTZweCByZ2JhKDI1NSw3NywxMjEsMC4yNSl9LmJ1dHRvbi1wcmltYXJ5LmJ1dHRvbi1zaGFkb3c6aG92ZXI6OmJlZm9yZXtib3gtc2hhZG93OjAgOHB4IDE2cHggcmdiYSgyNTUsNzcsMTIxLDAuNCl9LmJ1dHRvbi1wcmltYXJ5IC5idXR0b24tc20uYnV0dG9uLXNoYWRvdzo6YmVmb3Jle2JveC1zaGFkb3c6MCA0cHggMTZweCByZ2JhKDI1NSw3NywxMjEsMC4yNSl9LmJ1dHRvbi1wcmltYXJ5IC5idXR0b24tc20uYnV0dG9uLXNoYWRvdzpob3Zlcjo6YmVmb3Jle2JveC1zaGFkb3c6MCA0cHggMTZweCByZ2JhKDI1NSw3NywxMjEsMC40KX0uYnV0dG9uLWJsb2Nre2Rpc3BsYXk6ZmxleH0uc2l0ZS1oZWFkZXJ7cG9zaXRpb246cmVsYXRpdmU7cGFkZGluZzoyNHB4IDB9LnNpdGUtaGVhZGVyLWlubmVye3Bvc2l0aW9uOnJlbGF0aXZlO2Rpc3BsYXk6ZmxleDtqdXN0aWZ5LWNvbnRlbnQ6c3BhY2UtYmV0d2VlbjthbGlnbi1pdGVtczpjZW50ZXJ9LmhlYWRlci1saW5rc3tkaXNwbGF5OmlubGluZS1mbGV4fS5oZWFkZXItbGlua3MgbGl7ZGlzcGxheTppbmxpbmUtZmxleH0uaGVhZGVyLWxpbmtzIGE6bm90KC5idXR0b24pe2ZvbnQtZmFtaWx5OlwiTXVrdGFcIiwgc2Fucy1zZXJpZjtmb250LXNpemU6MTZweDtsaW5lLWhlaWdodDoyNHB4O2xldHRlci1zcGFjaW5nOi0wLjFweDtmb250LXdlaWdodDo3MDA7Y29sb3I6IzZGODM5NDt0ZXh0LXRyYW5zZm9ybTp1cHBlcmNhc2U7dGV4dC1kZWNvcmF0aW9uOm5vbmU7bGluZS1oZWlnaHQ6MTZweDtwYWRkaW5nOjhweCAyNHB4fS5oZWFkZXItbGlua3MgYTpub3QoLmJ1dHRvbik6aG92ZXIsLmhlYWRlci1saW5rcyBhOm5vdCguYnV0dG9uKTphY3RpdmV7Y29sb3I6I2ZmZn0uaGVyb3twb3NpdGlvbjpyZWxhdGl2ZTt0ZXh0LWFsaWduOmNlbnRlcjtwYWRkaW5nLXRvcDo0MHB4fS5oZXJvOjpiZWZvcmV7Y29udGVudDonJztwb3NpdGlvbjphYnNvbHV0ZTtib3R0b206MDtyaWdodDowO2hlaWdodDoyMzBweDt3aWR0aDo4MCU7YmFja2dyb3VuZDojMjI5NGZiO2JhY2tncm91bmQ6bGluZWFyLWdyYWRpZW50KHRvIHRvcCByaWdodCwgIzAwODFGNiAwLCAjNDRBNkZGIDEwMCUpfS5oZXJvLWlubmVye3Bvc2l0aW9uOnJlbGF0aXZlfS5oZXJvLXRpdGxle2ZvbnQtd2VpZ2h0OjcwMH0uaGVyby1wYXJhZ3JhcGh7bWFyZ2luLWJvdHRvbTozMnB4fS5oZXJvLWlsbHVzdHJhdGlvbnttYXJnaW4tdG9wOjQwcHg7cGFkZGluZy1ib3R0b206NDBweH0uaGVyby1pbGx1c3RyYXRpb24gaW1nLC5oZXJvLWlsbHVzdHJhdGlvbiBzdmd7d2lkdGg6MTAwJTttYXgtd2lkdGg6MzIwcHg7aGVpZ2h0OmF1dG87bWFyZ2luOjAgYXV0bztvdmVyZmxvdzp2aXNpYmxlfUBtZWRpYSAobWluLXdpZHRoOiA2NDFweCl7Lmhlcm97dGV4dC1hbGlnbjpsZWZ0O3BhZGRpbmctdG9wOjkycHg7cGFkZGluZy1ib3R0b206ODBweH0uaGVybzo6YmVmb3Jle2xlZnQ6NjIwcHg7aGVpZ2h0OjgwMHB4O3dpZHRoOjEwMCV9Lmhlcm8taW5uZXJ7ZGlzcGxheTpmbGV4fS5oZXJvLWNvcHl7cGFkZGluZy1yaWdodDo0OHB4O21pbi13aWR0aDo1MTJweH0uaGVyby1pbGx1c3RyYXRpb257bWFyZ2luLXRvcDotNjhweDtwYWRkaW5nLWJvdHRvbTowfS5oZXJvLWlsbHVzdHJhdGlvbiBpbWcsLmhlcm8taWxsdXN0cmF0aW9uIHN2Z3ttYXgtd2lkdGg6bm9uZTt3aWR0aDo1MjhweH19QG1lZGlhIChtaW4td2lkdGg6IDEwMjVweCl7Lmhlcm86OmJlZm9yZXtsZWZ0OmF1dG87d2lkdGg6NDMlfS5oZXJvLWNvcHl7cGFkZGluZy1yaWdodDo4OHB4O21pbi13aWR0aDo1NTJweH19LmZlYXR1cmVzIC5zZWN0aW9uLXRpdGxle21hcmdpbi1ib3R0b206NDhweH0uZmVhdHVyZXMtd3JhcHtkaXNwbGF5OmZsZXg7ZmxleC13cmFwOndyYXA7anVzdGlmeS1jb250ZW50OmNlbnRlcjttYXJnaW4tcmlnaHQ6LTEycHg7bWFyZ2luLWxlZnQ6LTEycHh9LmZlYXR1cmVzLXdyYXA6Zmlyc3QtY2hpbGR7bWFyZ2luLXRvcDotMTJweH0uZmVhdHVyZXMtd3JhcDpsYXN0LWNoaWxke21hcmdpbi1ib3R0b206LTEycHh9LmZlYXR1cmV7cGFkZGluZzoxMnB4O3dpZHRoOjI3NnB4O21heC13aWR0aDoyNzZweDtmbGV4LWdyb3c6MX0uZmVhdHVyZS1pbm5lcntoZWlnaHQ6MTAwJTtiYWNrZ3JvdW5kOiNmZmY7cGFkZGluZzo0MHB4IDI0cHg7Ym94LXNoYWRvdzowIDE2cHggNDhweCAjRTJFOEVEfUBzdXBwb3J0cyAoLW1zLWltZS1hbGlnbjogYXV0byl7LmZlYXR1cmUtaW5uZXJ7Ym94LXNoYWRvdzowIDE2cHggNDhweCByZ2JhKDMxLDQzLDUzLDAuMTIpfX0uZmVhdHVyZS1pY29ue2Rpc3BsYXk6ZmxleDtqdXN0aWZ5LWNvbnRlbnQ6Y2VudGVyfS5mZWF0dXJlLXRpdGxle21hcmdpbi10b3A6MTJweDttYXJnaW4tYm90dG9tOjhweH1AbWVkaWEgKG1pbi13aWR0aDogNjQxcHgpey5mZWF0dXJlc3twb3NpdGlvbjpyZWxhdGl2ZX0uZmVhdHVyZXMgLnNlY3Rpb24tc3F1YXJle3Bvc2l0aW9uOmFic29sdXRlO3RvcDowO2xlZnQ6MDtoZWlnaHQ6MjQwcHg7d2lkdGg6NDQlO2JhY2tncm91bmQ6I0Y2RjhGQX0uZmVhdHVyZXMgLnNlY3Rpb24tdGl0bGV7bWFyZ2luLWJvdHRvbTo1NnB4fX0ucHJpY2luZ3twb3NpdGlvbjpyZWxhdGl2ZTtvdmVyZmxvdzpoaWRkZW59LnByaWNpbmc6OmJlZm9yZXtjb250ZW50OicnO3Bvc2l0aW9uOmFic29sdXRlO3RvcDpjYWxjKDEwMCUgLSAyMDBweCk7bGVmdDowO3dpZHRoOjEwMCU7aGVpZ2h0OjIwMHB4O2JhY2tncm91bmQ6IzFGMkIzNTtvdmVyZmxvdzpoaWRkZW59LnByaWNpbmcgLnNlY3Rpb24tdGl0bGV7bWFyZ2luLWJvdHRvbTo0OHB4fS5wcmljaW5nLXRhYmxlcy13cmFwe2Rpc3BsYXk6ZmxleDtmbGV4LXdyYXA6d3JhcDtqdXN0aWZ5LWNvbnRlbnQ6Y2VudGVyO21hcmdpbi1yaWdodDotMTJweDttYXJnaW4tbGVmdDotMTJweH0ucHJpY2luZy10YWJsZXMtd3JhcDpmaXJzdC1jaGlsZHttYXJnaW4tdG9wOi0xMnB4fS5wcmljaW5nLXRhYmxlcy13cmFwOmxhc3QtY2hpbGR7bWFyZ2luLWJvdHRvbTotMTJweH0ucHJpY2luZy10YWJsZXtwYWRkaW5nOjEycHg7d2lkdGg6MzQ0cHg7bWF4LXdpZHRoOjM0NHB4O2ZsZXgtZ3JvdzoxfS5wcmljaW5nLXRhYmxlLWlubmVye3Bvc2l0aW9uOnJlbGF0aXZlO2Rpc3BsYXk6ZmxleDtmbGV4LXdyYXA6d3JhcDtiYWNrZ3JvdW5kOiNmZmY7cGFkZGluZzoyNHB4O2hlaWdodDoxMDAlfS5wcmljaW5nLXRhYmxlLWlubmVyPip7cG9zaXRpb246cmVsYXRpdmU7d2lkdGg6MTAwJX0ucHJpY2luZy10YWJsZS1pbm5lcjo6YmVmb3Jle2NvbnRlbnQ6Jyc7cG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7Ym94LXNoYWRvdzowIDE2cHggNDhweCAjRTJFOEVEO21peC1ibGVuZC1tb2RlOm11bHRpcGx5fUBzdXBwb3J0cyAoLW1zLWltZS1hbGlnbjogYXV0byl7LnByaWNpbmctdGFibGUtaW5uZXI6OmJlZm9yZXtib3gtc2hhZG93OjAgMTZweCA0OHB4IHJnYmEoMzEsNDMsNTMsMC4xMil9fS5wcmljaW5nLXRhYmxlLWhlYWRlcntwb3NpdGlvbjpyZWxhdGl2ZX0ucHJpY2luZy10YWJsZS1oZWFkZXI6OmFmdGVye2NvbnRlbnQ6Jyc7cG9zaXRpb246YWJzb2x1dGU7Ym90dG9tOjA7bGVmdDowO3dpZHRoOjEwMCU7ZGlzcGxheTpibG9jaztoZWlnaHQ6MXB4O2JhY2tncm91bmQ6I0UyRThFRH0ucHJpY2luZy10YWJsZS10aXRsZXtmb250LWZhbWlseTpcIk11a3RhXCIsIHNhbnMtc2VyaWY7Y29sb3I6IzFGMkIzNX0ucHJpY2luZy10YWJsZS1wcmljZS1jdXJyZW5jeXtjb2xvcjojNkY4Mzk0fS5wcmljaW5nLXRhYmxlLWZlYXR1cmVzIGxpe2Rpc3BsYXk6ZmxleDthbGlnbi1pdGVtczpjZW50ZXI7bWFyZ2luLWJvdHRvbToxNHB4fS5wcmljaW5nLXRhYmxlLWZlYXR1cmVzIGxpIC5saXN0LWljb257ZGlzcGxheTppbmxpbmUtZmxleDt3aWR0aDoxNnB4O2hlaWdodDoxMnB4O21hcmdpbi1yaWdodDoxMnB4fS5wcmljaW5nLXRhYmxlLWN0YXthbGlnbi1zZWxmOmZsZXgtZW5kfUBtZWRpYSAobWluLXdpZHRoOiA2NDFweCl7LnByaWNpbmcgLnNlY3Rpb24tc3F1YXJle3Bvc2l0aW9uOmFic29sdXRlO3RvcDpjYWxjKDEwMCUgLSA0NDBweCk7cmlnaHQ6MDtoZWlnaHQ6MjQwcHg7d2lkdGg6NDQlO2JhY2tncm91bmQ6I0Y2RjhGQX0ucHJpY2luZyAuc2VjdGlvbi10aXRsZXttYXJnaW4tYm90dG9tOjY0cHh9fS5pcy1ib3hlZHtiYWNrZ3JvdW5kOiNGNkY4RkF9LmJvZHktd3JhcHtiYWNrZ3JvdW5kOiNmZmY7b3ZlcmZsb3c6aGlkZGVuO2Rpc3BsYXk6ZmxleDtmbGV4LWRpcmVjdGlvbjpjb2x1bW47bWluLWhlaWdodDoxMDB2aH0uYm94ZWQtY29udGFpbmVye21heC13aWR0aDoxNDQwcHg7bWFyZ2luOjAgYXV0bztib3gtc2hhZG93OjAgMTZweCA0OHB4ICNFMkU4RUR9QHN1cHBvcnRzICgtbXMtaW1lLWFsaWduOiBhdXRvKXsuYm94ZWQtY29udGFpbmVye2JveC1zaGFkb3c6MCAxNnB4IDQ4cHggcmdiYSgzMSw0Myw1MywwLjEyKX19bWFpbntmbGV4OjEgMCBhdXRvfS5zZWN0aW9uLWlubmVye3Bvc2l0aW9uOnJlbGF0aXZlO3BhZGRpbmctdG9wOjQ4cHg7cGFkZGluZy1ib3R0b206NDhweH1AbWVkaWEgKG1pbi13aWR0aDogNjQxcHgpey5zZWN0aW9uLWlubmVye3BhZGRpbmctdG9wOjgwcHg7cGFkZGluZy1ib3R0b206ODBweH19LnNpdGUtZm9vdGVye2ZvbnQtc2l6ZToxNHB4O2xpbmUtaGVpZ2h0OjIwcHg7bGV0dGVyLXNwYWNpbmc6MHB4O2JhY2tncm91bmQ6IzFGMkIzNX0uc2l0ZS1mb290ZXIgYXt0ZXh0LWRlY29yYXRpb246bm9uZX0uc2l0ZS1mb290ZXIgYTpob3Zlciwuc2l0ZS1mb290ZXIgYTphY3RpdmV7Y29sb3I6IzZGODM5NDt0ZXh0LWRlY29yYXRpb246dW5kZXJsaW5lfS5zaXRlLWZvb3Rlci1pbm5lcntwb3NpdGlvbjpyZWxhdGl2ZTtkaXNwbGF5OmZsZXg7ZmxleC13cmFwOndyYXA7cGFkZGluZy10b3A6NDBweDtwYWRkaW5nLWJvdHRvbTo0MHB4fS5zaXRlLWZvb3Rlci1pbm5lci5oYXMtdG9wLWRpdmlkZXI6OmJlZm9yZXtiYWNrZ3JvdW5kOnJnYmEoMjU1LDI1NSwyNTUsMC4wOCl9LmZvb3Rlci1icmFuZCwuZm9vdGVyLWxpbmtzLC5mb290ZXItc29jaWFsLWxpbmtzLC5mb290ZXItY29weXJpZ2h0e2ZsZXg6bm9uZTt3aWR0aDoxMDAlO2Rpc3BsYXk6aW5saW5lLWZsZXg7anVzdGlmeS1jb250ZW50OmNlbnRlcn0uZm9vdGVyLWJyYW5kLC5mb290ZXItbGlua3MsLmZvb3Rlci1zb2NpYWwtbGlua3N7bWFyZ2luLWJvdHRvbToyNHB4fS5mb290ZXItbGlua3MgbGkrbGksLmZvb3Rlci1zb2NpYWwtbGlua3MgbGkrbGl7bWFyZ2luLWxlZnQ6MTZweH0uZm9vdGVyLXNvY2lhbC1saW5rcyBsaXtkaXNwbGF5OmlubGluZS1mbGV4fS5mb290ZXItc29jaWFsLWxpbmtzIGxpIGF7cGFkZGluZzo4cHh9QG1lZGlhIChtaW4td2lkdGg6IDY0MXB4KXsuc2l0ZS1mb290ZXItaW5uZXJ7anVzdGlmeS1jb250ZW50OnNwYWNlLWJldHdlZW59LmZvb3Rlci1icmFuZCwuZm9vdGVyLWxpbmtzLC5mb290ZXItc29jaWFsLWxpbmtzLC5mb290ZXItY29weXJpZ2h0e2ZsZXg6NTAlfS5mb290ZXItYnJhbmQsLmZvb3Rlci1jb3B5cmlnaHR7anVzdGlmeS1jb250ZW50OmZsZXgtc3RhcnR9LmZvb3Rlci1saW5rcywuZm9vdGVyLXNvY2lhbC1saW5rc3tqdXN0aWZ5LWNvbnRlbnQ6ZmxleC1lbmR9LmZvb3Rlci1saW5rc3tvcmRlcjoxO21hcmdpbi1ib3R0b206MH19XG4iXX0= */ \ No newline at end of file diff --git a/docs/html/images/feature-1.png b/docs/html/images/feature-1.png new file mode 100644 index 0000000..fa78916 Binary files /dev/null and b/docs/html/images/feature-1.png differ diff --git a/docs/html/images/feature-2.png b/docs/html/images/feature-2.png new file mode 100644 index 0000000..ae9edfb Binary files /dev/null and b/docs/html/images/feature-2.png differ diff --git a/docs/html/images/feature-3.png b/docs/html/images/feature-3.png new file mode 100644 index 0000000..2f0704b Binary files /dev/null and b/docs/html/images/feature-3.png differ diff --git a/docs/html/images/feature-4.png b/docs/html/images/feature-4.png new file mode 100644 index 0000000..b170786 Binary files /dev/null and b/docs/html/images/feature-4.png differ diff --git a/docs/html/index.html b/docs/html/index.html new file mode 100644 index 0000000..8cc75e4 --- /dev/null +++ b/docs/html/index.html @@ -0,0 +1,243 @@ + + + + + + + + + qsarify + + + + + +
+ +
+ +
+
+
+
+

qsarify

+

A high performance library for QSAR model development

+

View on Github

+

View Tutorial

+

Read the Docs

+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+
+
+
+
+
+ +
+
+
+ +
+

Easily Clean Data

+

One function to perform data pre-processing

+
+
+ +
+
+
+ +
+

Powerful Model Development

+

Reduce the time it takes to develop a QSAR model using intelligent feature selection

+
+
+ +
+
+
+ +
+

Simple Model Validation

+

Built-in functions for model validation and visualzation

+
+
+ +
+
+
+
+
+
+
+
+

Pricing

+
+ +
+
+
+
+ +
+ +
+ + + diff --git a/docs/html/index.xml b/docs/html/index.xml new file mode 100644 index 0000000..de7f277 --- /dev/null +++ b/docs/html/index.xml @@ -0,0 +1,10 @@ + + + + qsarify + https://stephenszwiec.github.io/qsarify/ + Recent content on qsarify + Hugo -- gohugo.io + en-us + + diff --git a/docs/html/js/main.min.js b/docs/html/js/main.min.js new file mode 100644 index 0000000..c841e3c --- /dev/null +++ b/docs/html/js/main.min.js @@ -0,0 +1 @@ +!function(){const e=document.documentElement;if(e.classList.remove("no-js"),e.classList.add("js"),document.body.classList.contains("has-animations")){const e=window.sr=ScrollReveal();e.reveal(".hero-title, .hero-paragraph, .hero-cta",{duration:1e3,distance:"40px",easing:"cubic-bezier(0.5, -0.01, 0, 1.005)",origin:"left",interval:150}),e.reveal(".hero-illustration",{duration:1e3,distance:"40px",easing:"cubic-bezier(0.5, -0.01, 0, 1.005)",origin:"right",interval:150}),e.reveal(".feature",{duration:1e3,distance:"40px",easing:"cubic-bezier(0.5, -0.01, 0, 1.005)",interval:100,origin:"bottom",scale:.9,viewFactor:.5}),document.querySelectorAll(".pricing-table").forEach(i=>{const t=[].slice.call(i.querySelectorAll(".pricing-table-header")),a=[].slice.call(i.querySelectorAll(".pricing-table-features li")),c=[].slice.call(i.querySelectorAll(".pricing-table-cta")),r=t.concat(a).concat(c);e.reveal(r,{duration:600,distance:"20px",easing:"cubic-bezier(0.5, -0.01, 0, 1.005)",interval:100,origin:"bottom",viewFactor:.5})})}}(); \ No newline at end of file diff --git a/docs/html/man/doctrees/environment.pickle b/docs/html/man/doctrees/environment.pickle new file mode 100644 index 0000000..7ba530b Binary files /dev/null and b/docs/html/man/doctrees/environment.pickle differ diff --git a/docs/html/man/doctrees/index.doctree b/docs/html/man/doctrees/index.doctree new file mode 100644 index 0000000..60af6d3 Binary files /dev/null and b/docs/html/man/doctrees/index.doctree differ diff --git a/docs/html/man/doctrees/man/modules.doctree b/docs/html/man/doctrees/man/modules.doctree new file mode 100644 index 0000000..2c4258d Binary files /dev/null and b/docs/html/man/doctrees/man/modules.doctree differ diff --git a/docs/html/man/doctrees/man/qsarify.classification.doctree b/docs/html/man/doctrees/man/qsarify.classification.doctree new file mode 100644 index 0000000..d249d2b Binary files /dev/null and b/docs/html/man/doctrees/man/qsarify.classification.doctree differ diff --git a/docs/html/man/doctrees/man/qsarify.clustering.doctree b/docs/html/man/doctrees/man/qsarify.clustering.doctree new file mode 100644 index 0000000..90d998a Binary files /dev/null and b/docs/html/man/doctrees/man/qsarify.clustering.doctree differ diff --git a/docs/html/man/doctrees/man/qsarify.cross_validation.doctree b/docs/html/man/doctrees/man/qsarify.cross_validation.doctree new file mode 100644 index 0000000..5d7b4ec Binary files /dev/null and b/docs/html/man/doctrees/man/qsarify.cross_validation.doctree differ diff --git a/docs/html/man/doctrees/man/qsarify.data_tools.doctree b/docs/html/man/doctrees/man/qsarify.data_tools.doctree new file mode 100644 index 0000000..e4913b0 Binary files /dev/null and b/docs/html/man/doctrees/man/qsarify.data_tools.doctree differ diff --git a/docs/html/man/doctrees/man/qsarify.doctree b/docs/html/man/doctrees/man/qsarify.doctree new file mode 100644 index 0000000..c65e5f2 Binary files /dev/null and b/docs/html/man/doctrees/man/qsarify.doctree differ diff --git a/docs/html/man/doctrees/man/qsarify.export_model.doctree b/docs/html/man/doctrees/man/qsarify.export_model.doctree new file mode 100644 index 0000000..8950daf Binary files /dev/null and b/docs/html/man/doctrees/man/qsarify.export_model.doctree differ diff --git a/docs/html/man/doctrees/man/qsarify.feature_selection_multi.doctree b/docs/html/man/doctrees/man/qsarify.feature_selection_multi.doctree new file mode 100644 index 0000000..9ca8a26 Binary files /dev/null and b/docs/html/man/doctrees/man/qsarify.feature_selection_multi.doctree differ diff --git a/docs/html/man/doctrees/man/qsarify.feature_selection_single.doctree b/docs/html/man/doctrees/man/qsarify.feature_selection_single.doctree new file mode 100644 index 0000000..74d80ce Binary files /dev/null and b/docs/html/man/doctrees/man/qsarify.feature_selection_single.doctree differ diff --git a/docs/html/man/doctrees/man/qsarify.qsar_scoring.doctree b/docs/html/man/doctrees/man/qsarify.qsar_scoring.doctree new file mode 100644 index 0000000..7f10d69 Binary files /dev/null and b/docs/html/man/doctrees/man/qsarify.qsar_scoring.doctree differ diff --git a/docs/html/man/doctrees/modules.doctree b/docs/html/man/doctrees/modules.doctree new file mode 100644 index 0000000..25de414 Binary files /dev/null and b/docs/html/man/doctrees/modules.doctree differ diff --git a/docs/html/man/doctrees/qsarify.classification.doctree b/docs/html/man/doctrees/qsarify.classification.doctree new file mode 100644 index 0000000..af5f51b Binary files /dev/null and b/docs/html/man/doctrees/qsarify.classification.doctree differ diff --git a/docs/html/man/doctrees/qsarify.clustering.doctree b/docs/html/man/doctrees/qsarify.clustering.doctree new file mode 100644 index 0000000..19047c7 Binary files /dev/null and b/docs/html/man/doctrees/qsarify.clustering.doctree differ diff --git a/docs/html/man/doctrees/qsarify.cross_validation.doctree b/docs/html/man/doctrees/qsarify.cross_validation.doctree new file mode 100644 index 0000000..eb66f0c Binary files /dev/null and b/docs/html/man/doctrees/qsarify.cross_validation.doctree differ diff --git a/docs/html/man/doctrees/qsarify.data_tools.doctree b/docs/html/man/doctrees/qsarify.data_tools.doctree new file mode 100644 index 0000000..2711d6a Binary files /dev/null and b/docs/html/man/doctrees/qsarify.data_tools.doctree differ diff --git a/docs/html/man/doctrees/qsarify.doctree b/docs/html/man/doctrees/qsarify.doctree new file mode 100644 index 0000000..0ebd7f5 Binary files /dev/null and b/docs/html/man/doctrees/qsarify.doctree differ diff --git a/docs/html/man/doctrees/qsarify.export_model.doctree b/docs/html/man/doctrees/qsarify.export_model.doctree new file mode 100644 index 0000000..f666df2 Binary files /dev/null and b/docs/html/man/doctrees/qsarify.export_model.doctree differ diff --git a/docs/html/man/doctrees/qsarify.feature_selection_multi.doctree b/docs/html/man/doctrees/qsarify.feature_selection_multi.doctree new file mode 100644 index 0000000..aa612bc Binary files /dev/null and b/docs/html/man/doctrees/qsarify.feature_selection_multi.doctree differ diff --git a/docs/html/man/doctrees/qsarify.feature_selection_single.doctree b/docs/html/man/doctrees/qsarify.feature_selection_single.doctree new file mode 100644 index 0000000..4ae1669 Binary files /dev/null and b/docs/html/man/doctrees/qsarify.feature_selection_single.doctree differ diff --git a/docs/html/man/doctrees/qsarify.qsar_scoring.doctree b/docs/html/man/doctrees/qsarify.qsar_scoring.doctree new file mode 100644 index 0000000..f42049e Binary files /dev/null and b/docs/html/man/doctrees/qsarify.qsar_scoring.doctree differ diff --git a/docs/html/man/html/.buildinfo b/docs/html/man/html/.buildinfo new file mode 100644 index 0000000..1cd4fa2 --- /dev/null +++ b/docs/html/man/html/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 0db3787d68fcd6ba3f8af74eb88ea209 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/html/man/html/_modules/index.html b/docs/html/man/html/_modules/index.html new file mode 100644 index 0000000..73e3b61 --- /dev/null +++ b/docs/html/man/html/_modules/index.html @@ -0,0 +1,113 @@ + + + + + + Overview: module code — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+ +
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/_modules/qsarify/classification.html b/docs/html/man/html/_modules/qsarify/classification.html new file mode 100644 index 0000000..c6d9efc --- /dev/null +++ b/docs/html/man/html/_modules/qsarify/classification.html @@ -0,0 +1,226 @@ + + + + + + qsarify.classification — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for qsarify.classification

+#-*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: Classification Scoring Module
+#
+#Copyright (C) 2023 Stephen Szwiec
+#
+#This file is part of qsarify.
+#
+#This program is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#This program is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+"""
+Classification Scoring Module
+
+This module provides summary information about Classification
+"""
+
+import numpy as np
+from sklearn.metrics import accuracy_score
+
+
+[docs] +class ClassifierScore : + """ + Provides summary information about Classification + + Parameters + ---------- + y_data : pandas DataFrame , shape = (n_samples,) + pred_y : pandas DataFrame , shape = (n_samples,) + => predicted Y values as result of classification + + Sub functions + ------- + score (self) + tf_table(self) + """ + + def __init__ (self,y_data,pred_y) : + """ + Initializes the classifer + """ + # Initialize the variables + self.y_data = y_data + self.pred_y = pred_y + self.real_y = [] #hash y_data + # Hash the y_data + for i in np.array(self.y_data) : + self.real_y.append(i[0]) + +
+[docs] + def score (self) : + """ + Calculate accuracy score + Returns + ------- + None + """ + # Initialize the variables + n = 0 + cnt = 0 + # Count the number of wrong predictions + for i in np.array(self.real_y) : + if i != self.pred_y[n] : + cnt += 1 + n += 1 + print('Number of all :',n) #all data + print('Number of worng :', cnt) + print('AccuracyScore :',accuracy_score(self.real_y, self.pred_y))
+ + +
+[docs] + def tf_table(self) : + """ + Calculate Precision & Recall + Generates a confusion matrix + + Returns + ------- + None + """ + # Initialize the variables + one = 0 + zero = 0 + n = 0 + cnt = 0 + realzero = 0 + realone = 0 + # Initialize the confusion matrix + for i in np.array(self.y_data) : + if i[0] == 0 : + zero += 1 + if i[0] == 1 : + one += 1 + # Count the number of wrong predictions + for i in np.array(self.y_data): + if i[0] != self.pred_y[n]: + #print ('real',i[0],'///','pred',y_pred[n]) + if i[0] == 0 : + realzero += 1 + if i[0] == 1 : + realone += 1 + cnt +=1 + n += 1 + # Print the results + print(('Number of 1 :',one)) + print('Number of 0 :',zero) + print('True Positive(real 1 but pred 1) :',one-realone) #TP + print('True Negative(real 0 but pred 0) :',zero-realzero) #TN + print('False Positive(real 0 but pred 1) :',realzero) #FP + print('False Negative(real 1 but pred 0) :',realone) #FN + print('Precision', (one-realone)/((one-realone)+realzero)) # TP / TP+FP + print('Recall',(one-realone)/((one-realone)+realone)) # TP / TP+FN
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/_modules/qsarify/clustering.html b/docs/html/man/html/_modules/qsarify/clustering.html new file mode 100644 index 0000000..0376f2f --- /dev/null +++ b/docs/html/man/html/_modules/qsarify/clustering.html @@ -0,0 +1,280 @@ + + + + + + qsarify.clustering — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for qsarify.clustering

+#-*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: Clustering Module
+#
+#Copyright (C) 2023 Stephen Szwiec
+#
+#This file is part of qsarify.
+#
+#This program is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#This program is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with this program.  If not, see <http://www.gnu.org/licenses/>.
+#
+#
+
+"""
+Clustering Module
+
+This module contains functions for clustering features based on hierarchical clustering method
+and calculating the cophenetic correlation coefficient of linkages. The cophenetic correlation
+coefficient is a measure of the correlation between the distance of observations in feature space
+and the distance of observations in cluster space. The cophenetic correlation coefficient is
+calculated for each linkage method and the method with the highest cophenetic correlation
+coefficient is used to cluster the features. The cophenetic correlation coefficient is calculated
+using the scipy.cluster.hierarchy.cophenet function.
+
+"""
+
+import numpy as np
+import pandas as pd
+from pandas import DataFrame, Series
+import matplotlib.pyplot as plt
+from scipy.spatial.distance import pdist, squareform
+from scipy.cluster.hierarchy import linkage, dendrogram, fcluster, cophenet
+
+
+[docs] +def cophenetic(X_data): + """ + Calculate the cophenetic correlation coefficient of linkages + + Parameters + ---------- + X_data : pandas DataFrame, shape = (n_samples, m_features) + method : str, method for linkage generation, default = 'corr' (Pearson correlation) + + Returns + ------- + None + """ + distance = abs(np.corrcoef(X_data, rowvar=False)) + # drop any columns and rows that produced NaNs + distance = distance[~np.isnan(distance).any(axis=1)] + distance = distance[:, ~np.isnan(distance).any(axis=0)] + # calculate the cophenetic correlation coefficient + Z1 = linkage(distance, method='average', metric='euclidean') + Z2 = linkage(distance, method='complete', metric='euclidean') + Z3 = linkage(distance, method='single', metric='euclidean') + c1, coph_dists1 = cophenet(Z1, pdist(distance)) + c2, coph_dists2 = cophenet(Z2, pdist(distance)) + c3, coph_dists3 = cophenet(Z3, pdist(distance)) + print("cophenetic correlation average linkage: ", c1) + print("cophenetic correlation complete linkage: ", c2) + print("cophenetic correlation single linkage: ", c3)
+ + +
+[docs] +class featureCluster: + """ + Make cluster of features based on hierarchical clustering method + + Parameters + ---------- + X_data : pandas DataFrame, shape = (n_samples, n_features) + link : str, kind of linkage method, default = 'average', 'complete', 'single' + cut_d : int, depth in cluster(dendrogram), default = 3 + + Sub functions + ------------- + set_cluster(self) + cluster_dist(self) + """ + + def __init__(self, X_data, method='corr', link='average', cut_d=3): + """ + Initializes cluster object: + Makes a cluster of features based on hierarchical clustering method + and calculates the cophenetic correlation coefficient of linkages + + Parameters + ---------- + X_data : pandas DataFrame, shape = (n_samples, n_features) + link : str, kind of linkage method, default = 'average', 'complete', 'single' + cut_d : int, depth in cluster(dendrogram), default = 3 + This is a tunable parameter for clustering + """ + self.method = method + self.cluster_info = [] + self.assignments = np.array([]) + self.cluster_output = DataFrame() + self.cludict = {} + self.X_data = X_data + self.link = link + self.cut_d = cut_d + self.xcorr = pd.DataFrame(abs(np.corrcoef(self.X_data, rowvar=False)), columns=X_data.columns, index=X_data.columns) + +
+[docs] + def set_cluster(self, verbose=False, graph=False): + """ + Make cluster of features based on hierarchical clustering method + + Parameters + ---------- + verbose : bool, print cluster information, default = False + graph : bool, show dendrogram, default = False + + Returns + ------- + cludict : dict, cluster information of features as a dictionary + """ + Z = linkage( self.xcorr, method=self.link, metric='euclidean') + self.assignments = fcluster(Z, self.cut_d, criterion='distance') + self.cluster_output = DataFrame({'Feature':list(self.X_data.columns.values), 'cluster':self.assignments}) + nc = list(self.cluster_output.cluster.values) + name = list(self.cluster_output.Feature.values) + # zip cluster number and feature name + self.cludict = dict(zip(name, nc)) + # make cluster information as an input for feature selection function + # print cluster information for key in cludict.items if range of cluster number is 1~nnc + for t in range(1, max(nc)+1): + self.cluster_info.append( [k for k, v in self.cludict.items() if v == t] ) + if verbose: + print('\n','\x1b[1;46m'+'Cluster'+'\x1b[0m',t,self.cluster_info[t-1],) + if graph: + plt.figure(figsize=(25, 40)) + plt.title('Hierarchical Clustering Dendrogram') + plt.xlabel('sample index') + plt.ylabel('distance') + dendrogram(Z, color_threshold=self.cut_d, above_threshold_color='k', no_labels=True, leaf_label_func=None, show_contracted=True, orientation='left') + plt.show() + return self.cludict
+ + +
+[docs] + def cluster_dist(self): + """ + Show dendrogram of hierarchical clustering + + Returns + ------- + None + """ + + # have we actually clustered? If not, please do so first: + if self.assignments.any() == False: + self.set_cluster() + nc = list(self.cluster_output.cluster.values) + cluster = [[k for k, value in self.cludict.items() if value == t] for t in range(1, max(nc)+1)] + # list comprehension which returns a list of average autocorrelation values for each cluster, unless the cluster length is 1 + # in which case it returns nothing + dist_box = [ (np.array([self.xcorr.loc[i,i]]).sum() - len(i)/2)/(len(i)**2 - len(i)/2) for i in cluster if len(i) > 1] + plt.hist(dist_box) + plt.ylabel("Frequency") + if self.method == 'info': + plt.xlabel("Shannon mutual information of each cluster") + else: + plt.xlabel("Correlation coefficient of each cluster") + plt.show()
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/_modules/qsarify/data_tools.html b/docs/html/man/html/_modules/qsarify/data_tools.html new file mode 100644 index 0000000..df61e50 --- /dev/null +++ b/docs/html/man/html/_modules/qsarify/data_tools.html @@ -0,0 +1,357 @@ + + + + + + qsarify.data_tools — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for qsarify.data_tools

+#-*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: Data Preprocessing Module
+#
+#Copyright (C) 2023 Stephen Szwiec
+#
+#This file is part of qsarify.
+#
+#This program is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#This program is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with this program.  If not, see <http://www.gnu.org/licenses/>.
+#
+#
+
+"""
+Data Preprocessing Module
+
+This module contains functions for data preprocessing, including:
+    - removing features with 'NaN' as value
+    - removing features with constant values
+    - removing features with low variance
+    - removing features with 'NaN' as value when calculating correlation coefficients
+    - generating a sequential train-test split by sorting the data by response variable
+    - generating a random train-test split
+    - scaling data
+
+The main function of this module is `clean_data`, which performs all of the above functions.
+
+"""
+
+
+
+import numpy as np
+from numpy import ndarray
+import pandas as pd
+from pandas import DataFrame, Series
+import matplotlib.pyplot as plt
+from sklearn.preprocessing import MinMaxScaler
+
+
+[docs] +def rm_nan(X_data): + """ + Remove features with 'NaN' as value + + Parameters + ---------- + X_data : pandas DataFrame , shape = (n_samples, n_features) + + Returns + ------- + Modified DataFrame + """ + # get the indices of the features with 'NaN' as value + A = X_data.isnull().any() + # delete the features with 'NaN' as value + return X_data.drop(X_data.columns[A], axis=1)
+ + +
+[docs] +def rm_constant(X_data): + """ + Remove features with constant values + + Parameters + ---------- + X_data : pandas DataFrame , shape = (n_samples, n_features) + + Returns + ------- + Modified DataFrame + """ + A = X_data.std() == 0 + return X_data.drop(X_data.columns[A], axis=1)
+ + +
+[docs] +def rm_lowVar(X_data, cutoff=0.9): + """ + Remove features with low variance + + Parameters + ---------- + X_data : pandas DataFrame , shape = (n_samples, n_features) + cutoff : float, default = 0.1 + + Returns + ------- + Modified DataFrame + """ + A = X_data.var() >= cutoff + return X_data.drop(X_data.columns[A], axis=1)
+ + +
+[docs] +def rm_nanCorr(X_data): + """ + Remove features with 'NaN' as value when calculating correlation coefficients + + Parameters + ---------- + X_data : pandas DataFrame , shape = (n_samples, n_features) + + Returns + ------- + Modified DataFrame + """ + corr_mtx = pd.DataFrame(np.corrcoef(X_data, rowvar=False), columns=X_data.columns, index=X_data.columns) + A = corr_mtx.isnull().any() + return X_data.drop(X_data.columns[A], axis=1)
+ + + +
+[docs] +def sorted_split(X_data, y_data, test_size=0.2): + """ + Generate a sequential train-test split by sorting the data by response variable + + Parameters + ---------- + X_data : pandas DataFrame , shape = (n_samples, m_features) + y_data : pandas DataFrame , shape = (n_samples, 1) + test_size : float, default = 0.2 + + Returns + ------- + X_train : pandas DataFrame , shape = (n_samples, m_features) + X_test : pandas DataFrame, shape = (n_samples, m_features) + y_train : pandas DataFrame , shape = (n_samples, 1) + y_test : pandas DataFrame , shape = (n_samples, 1) + """ + # every n-th row is a test row, computed from test_size as a fraction + n = int(1 / test_size) + # sort by response variable + df = pd.concat([X_data, y_data], axis=1) + df.sort_values(by=y_data.name, inplace=True) + test_idx = df.index[::n] + train_idx = df.index.difference(test_idx) + # return train and test data + return X_data.loc[train_idx], X_data.loc[test_idx], y_data.loc[train_idx], y_data.loc[test_idx]
+ + +
+[docs] +def random_split(X_data, y_data, test_size=0.2): + """ + Generate a random train-test split + + Parameters + ---------- + X_data : pandas DataFrame , shape = (n_samples, m_features) + y_data : pandas DataFrame , shape = (n_samples, 1) + test_size : float, default = 0.2 + + Returns + -------give count of NaN in pandas dataframe + X_train : pandas DataFrame , shape = (n_samples, m_features) + X_test : pandas DataFrame , shape = (n_samples, m_features) + y_train : pandas DataFrame , shape = (n_samples, 1) + y_test : pandas DataFrame , shape = (n_samples, 1) + """ + # every n-th row is a test row, computed from test_size as a fraction + n = int(1 / test_size) + # return indices of test rows + test_idx = np.random.choice(X_data.index, size=int(len(X_data) * test_size), replace=False) + # return indices of train rows + train_idx = X_data.index.difference(test_idx) + # return train and test data + return X_data.loc[train_idx], X_data.loc[test_idx], y_data.loc[train_idx], y_data.loc[test_idx]
+ + +
+[docs] +def scale_data(X_train, X_test): + """ + Scale the data using the training data; apply the same transformation to the test data + + Parameters + ---------- + X_train : pandas DataFrame , shape = (n_samples, m_features) + X_test : pandas DataFrame , shape = (p_samples, m_features) + + Returns + ------- + X_train_scaled : pandas DataFrame , shape = (n_samples, m_features) + X_test_scaled : pandas DataFrame , shape = (p_samples, m_features) + """ + + # scale the data + scaler = MinMaxScaler() + X_train_scaled = pd.DataFrame(scaler.fit_transform(X_train), columns=list(X_train.columns.values)) + X_test_scaled = pd.DataFrame(scaler.transform(X_test), columns=list(X_test.columns.values)) + return X_train_scaled, X_test_scaled
+ + +
+[docs] +def clean_data(X_data, y_data, split='sorted', test_size=0.2, cutoff=None, plot=False): + """ + Perform the entire data cleaning process as one function + Optionally, plot the correlation matrix + + Parameters + ---------- + X_data : pandas DataFrame, shape = (n_samples, n_features) + split : string, optional, 'sorted' or 'random' + test_size : float, optional, default = 0.2 + cutoff : float, optional, auto-correlaton coefficient below which we keep + plot : boolean, optional, default = False + + Returns + ------- + X_train : pandas DataFrame , shape = (n_samples, m_features) + X_test : pandas DataFrame , shape = (p_samples, m_features) + y_train : pandas DataFrame , shape = (n_samples, 1) + y_test : pandas DataFrame , shape = (p_samples, 1) + + + """ + # Create a deep copy of the data + df = X_data.copy() + # Remove columns with constant data + df = rm_constant(df) + # Remove columns with NaN values + df = rm_nan(df) + # Remove columns with NaN values when calculating correlation coefficients + df = rm_nanCorr(df) + # Remove columns with low variance + if cutoff: + df = rm_lowVar(df, cutoff) + # Create split + if split == 'random': + X_train, X_test, y_train, y_test = random_split(df, y_data, test_size) + else: + X_train, X_test, y_train, y_test = sorted_split(df, y_data, test_size) + # Scale the data and return + X_train, X_test = scale_data(X_train, X_test) + if plot: + plt.matshow(df.corr()) + plt.set_cmap('seismic') + # show legend for the matrix + plt.colorbar() + plt.show() + return X_train, X_test, y_train, y_test
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/_modules/qsarify/feature_selection_multi.html b/docs/html/man/html/_modules/qsarify/feature_selection_multi.html new file mode 100644 index 0000000..0d2ab59 --- /dev/null +++ b/docs/html/man/html/_modules/qsarify/feature_selection_multi.html @@ -0,0 +1,279 @@ + + + + + + qsarify.feature_selection_multi — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for qsarify.feature_selection_multi

+#-*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: Multi-Processing Feature Selection Module
+#
+#Copyright (C) 2023 Stephen Szwiec
+#
+#This file is part of qsarify.
+#
+#This program is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#This program is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+
+"""
+Multi-Processing Feature Selection Module
+
+This module contains the functions for performing feature selection using
+the clustering module's output as a guide for feature selection, and implements
+a genetic algorithm for feature selection using reflection.
+
+"""
+
+import datetime
+import random
+import numpy as np
+from sklearn import linear_model as lm
+from sklearn.svm import SVC
+import itertools
+import multiprocessing as mp
+
+"""
+Reflector class for the evolve function; allows for the use of a pool of workers.
+"""
+
+[docs] +class Evolution: + """ + Initializes the evolution class with the learning algorithm to be used + """ + def __init__(self, evolve): + self.e_mlr = lm.LinearRegression() + self.evolve = evolve + + """ + Function call for the evolution function + """ + def __call__(self, i, cluster_info, cluster, X_data, y_data): + return self.evolve(i, cluster_info, cluster, X_data, y_data, self.e_mlr) + + """ + Evolution of descriptors for learning algorithm, implemented as a function map + + Parameters + ---------- + i: list, descriptor set + cluster_info: dict, descriptor cluster information + cluster: list, descriptor cluster + X_data: DataFrame, descriptor data + y_data: DataFrame, target data + """ +
+[docs] + def evolve(i, cluster_info, cluster, X_data, y_data, e_mlr): + # Get the descriptors in the model + i = i[1] + # Get the groups of descriptors in model + group_n = [cluster_info[x]-1 for x in i] + # randomly select one descriptor to remove + sw_index = random.randrange(0, len(i)) + # randomly select new group from cluster to swap with + sw_group = random.randrange(0, max(list(cluster_info.values()))) + while sw_group in group_n: + # make sure the new group is not in the current group + sw_group = random.randrange(0, len(cluster)) + # list comprehension which generates a new list of descriptors by + # swapping the indexed descriptor with a new one randomly chosen from the new cluster group + b_set = [random.choice(cluster[sw_group]) if x == sw_index else i[x] for x in range(0, len(i))] + b_set.sort() + x = X_data[b_set].values + y = y_data.values.ravel() + score = e_mlr.fit(x, y).score(x, y) + return [score, b_set]
+
+ + +
+[docs] +def selection(X_data, y_data, cluster_info, model="regression", learning=500000, bank=200, component=4, interval=1000, cores=(mp.cpu_count()*2)-1): + """ + Forward feature selection using cophenetically correlated data on mutliple cores + + Parameters + ---------- + X_data : pandas DataFrame , shape = (n_samples, n_features) + y_data : pandas DataFrame , shape = (n_samples,) + cluster_info : dictionary returned by clustering.featureCluster.set_cluster() + model : default="regression", otherwise "classification" + learning : default=500000, number of overall models to be trained + bank : default=200, number of models to be trained in each iteration + component : default=4, number of features to be selected + interval : optional, default=1000, print current scoring and selected features + every interval + cores: optional, default=(mp.cpu_count()*2)-1, number of processes to be used + for multiprocessing; default is twice the number of cores minus 1, which + is assuming you have SMT, HT, or something similar) If you have a large + number of cores, you may want to set this to a lower number to avoid + memory issues. + + Returns + ------- + list, result of selected best feature set + """ + now = datetime.datetime.now() + print("Start time: ", now.strftime('%H:%M:%S')) + + if model == "regression": + print('\x1b[1;42m','Regression','\x1b[0m') + y_mlr = lm.LinearRegression() + e_mlr = lm.LinearRegression() + else: + print('\x1b[1;42m','Classification','\x1b[0m') + y_mlr = SVC(kernel='rbf', C=1, gamma=0.1, random_state=0) + e_mlr = SVC(kernel='rbf', C=1, gamma=0.1, random_state=0) + + # a list of numbered clusters + nc = list(cluster_info.values()) + num_clusters = list(range(max(nc))) + + # extract information from dictionary by inversion + inv_cluster_info = dict() + for k, v in cluster_info.items(): + inv_cluster_info.setdefault(v, list()).append(k) + + # an ordered list of features in each cluster + cluster = list(dict(sorted(inv_cluster_info.items())).values()) + + # fill the interation bank with random models + # models contain (1 - component) number of features + # ensure the models are not duplicated and non redundant + index_sort_bank = set() + model_bank = [ ini_desc for _ in range(bank) for ini_desc in [sorted([random.choice(cluster[random.choice(num_clusters)]) for _ in range(random.randint(1,component))])] if ini_desc not in tuple(index_sort_bank) and not index_sort_bank.add(tuple(ini_desc))] + + # score each set of features, saving each score and the corresponding feature set + scoring_bank = list(map(lambda x: [y_mlr.fit(np.array(X_data.loc[:,x]), y_data.values.ravel()).score(np.array(X_data.loc[:,x]), y_data), list(X_data.loc[:,x].columns.values)], model_bank)) + + # create a reflection of the evolution function + evolver = Evolution(Evolution.evolve) + + with mp.Pool(processes = cores) as pool: + # perform main learning loop + for n in range(learning): + # initialize best score to the worst possible score + best_score = -float("inf") + # Evolve the bank of models and allow those surpassing the best score to replace the worst models up to the bank size + results = pool.starmap(evolver, [(i, cluster_info, cluster, X_data, y_data) for i in scoring_bank]) + rank_filter = [x for x in results if (best_score := max(best_score, x[0])) == x[0]] + scoring_bank = sorted(itertools.chain(scoring_bank, rank_filter), reverse = True)[:bank] + if n % interval == 0 and n != 0: + tt = datetime.datetime.now() + print(n, '=>', tt.strftime('%H:%M:%S'), scoring_bank[0]) + + + # print output and return best model found during training + print("Best score: ", scoring_bank[0]) + clulog = [cluster_info[y] for _, y in scoring_bank[0][1]] + print("Model's cluster info", clulog) + fi = datetime.datetime.now() + fiTime = fi.strftime('%H:%M:%S') + print("Finish Time : ", fiTime) + return scoring_bank[0][1]
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/_modules/qsarify/feature_selection_single.html b/docs/html/man/html/_modules/qsarify/feature_selection_single.html new file mode 100644 index 0000000..befd596 --- /dev/null +++ b/docs/html/man/html/_modules/qsarify/feature_selection_single.html @@ -0,0 +1,332 @@ + + + + + + qsarify.feature_selection_single — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for qsarify.feature_selection_single

+#-*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: Single-Threaded Feature Selection Module
+#
+#Copyright (C) 2023 Stephen Szwiec
+#
+#This file is part of qsarify.
+#
+#This program is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#This program is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+"""
+Single-Threaded Feature Selection Module
+
+This module contains the single-threaded version of the feature selection algorithm,
+which is a genetic algorithm that uses a linear regression model to score each set of features,
+using the output of clustering to ensure that the features are not redundant.
+
+"""
+import datetime
+import random
+import numpy as np
+import pandas as pd
+import sklearn.linear_model as lm
+import itertools
+
+
+[docs] +def mlr_selection(X_data, y_data, cluster_info, component, model="regression", learning=50000, bank=200, interval=1000): + """ + Performs feature selection using a using a linear regression model and a genetic algorithm on a single thread. + This is the vanilla version of the algorithm, which is not parallelized. + + Parameters + ---------- + X_data: DataFrame, descriptor data + y_data: DataFrame, target data + cluster_info: dict, descriptor cluster information + component: int, number of features to select + model: str, learning algorithm to use, default = "regression" + learning: int, number of iterations to perform, default = 50000 + bank: int, number of models to keep in the bank, default = 200 + interval: int, number of iterations to perform before printing the current time, default = 1000 + + Returns + ------- + best_model: list, best model found + best_score: float, best score found + """ + + now = datetime.datetime.now() + print("Start time: ", now.strftime('%H:%M:%S')) + + if model == "regression": + print('\x1b[1;42m','Regression','\x1b[0m') + y_mlr = lm.LinearRegression() + e_mlr = lm.LinearRegression() + else: + print('\x1b[1;42m','Classification','\x1b[0m') + y_mlr = SVC(kernel='rbf', C=1, gamma=0.1, random_state=0) + e_mlr = SVC(kernel='rbf', C=1, gamma=0.1, random_state=0) + + # a list of numbered clusters + nc = list(cluster_info.values()) + num_clusters = list(range(max(nc))) + + # extract information from dictionary by inversion + inv_cluster_info = dict() + for k, v in cluster_info.items(): + inv_cluster_info.setdefault(v, list()).append(k) + + # an ordered list of features in each cluster + cluster = list(dict(sorted(inv_cluster_info.items())).values()) + + # fill the interation bank with random models + # models contain 1-component number of features + # ensure the models are not duplicated and non redundant + index_sort_bank = set() + model_bank = [ ini_desc for _ in range(bank) for ini_desc in [sorted([random.choice(cluster[random.choice(num_clusters)]) for _ in range(random.randint(1,component))])] if ini_desc not in tuple(index_sort_bank) and not index_sort_bank.add(tuple(ini_desc))] + + # score each set of features, saving each score and the corresponding feature set + scoring_bank = list(map(lambda x: [y_mlr.fit(np.array(X_data.loc[:,x]), y_data.values.ravel()).score(np.array(X_data.loc[:,x]), y_data), list(X_data.loc[:,x].columns.values)], model_bank)) + + def evolve(i): + """ + Evolution of descriptors for learning algorithm, implemented as a function map + + Parameters + ---------- + i: list, descriptor set + """ + i = i[1] + group_n = [cluster_info[x]-1 for x in i] + sw_index = random.randrange(0, len(i)) + sw_group = random.randrange(0, max(nc)) + while sw_group in group_n: + sw_group = random.randrange(0, max(nc)) + b_set = [random.choice(cluster[sw_group]) if x == sw_index else i[x] for x in range(0, len(i))] + b_set.sort() + x = X_data[b_set].values + y = y_data.values.ravel() + score = e_mlr.fit(x, y).score(x, y) + return [score, b_set] + + # perform main learning loop + for n in range(learning): + # initialize best score to the worst possible score + best_score = -float("inf") + # Evolve the bank of models and allow those surpassing the best score to replace the worst models up to the bank size + rank_filter = filter(lambda x, best_score=best_score: x[0] > best_score and (best_score := x[0]), map(evolve, scoring_bank)) + scoring_bank = sorted(itertools.chain(scoring_bank, rank_filter), reverse = True)[:bank] + if n % interval == 0 and n != 0: + tt = datetime.datetime.now() + print(n, '=>', tt.strftime('%H:%M:%S'), scoring_bank[0]) + + # print output and return best model found during training + print("Best score: ", scoring_bank[0][0]) + clulog = [cluster_info[y] for y in scoring_bank[0][1]] + print("Model's cluster info", clulog) + fi = datetime.datetime.now() + fiTime = fi.strftime('%H:%M:%S') + print("Finish Time : ", fiTime) + return scoring_bank[0][1]
+ + +
+[docs] +def rf_selection(X_data, y_data, cluster_info, component, model="regression", learning=50000, bank=200, interval=1000): + """ + Performs feature selection using a using a random forest model and a genetic algorithm on a single thread. + This is the vanilla version of the algorithm, which is not parallelized. + + Parameters + ---------- + X_data: DataFrame, descriptor data + y_data: DataFrame, target data + cluster_info: dict, descriptor cluster information + component: int, number of features to select + model: str, learning algorithm to use, default = "regression" + learning: int, number of iterations to perform, default = 50000 + bank: int, number of models to keep in the bank, default = 200 + interval: int, number of iterations to perform before printing the current time, default = 1000 + + Returns + ------- + best_model: list, best model found + best_score: float, best score found + """ + + now = datetime.datetime.now() + print("Start time: ", now.strftime('%H:%M:%S')) + + if model == "regression": + print('\x1b[1;42m','Regression','\x1b[0m') + y_rf = RandomForestRegressor(n_estimators=100, max_depth=2, random_state=0) + e_rf = RandomForestRegressor(n_estimators=100, max_depth=2, random_state=0) + else: + print('\x1b[1;42m','Classification','\x1b[0m') + y_rf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0) + e_rf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0) + + # a list of numbered clusters + nc = list(cluster_info.values()) + num_clusters = list(range(max(nc))) + + # extract information from dictionary by inversion + inv_cluster_info = dict() + for k, v in cluster_info.items(): + inv_cluster_info.setdefault(v, list()).append(k) + + # an ordered list of features in each cluster + cluster = list(dict(sorted(inv_cluster_info.items())).values()) + + # fill the interation bank with random models + # models contain 1-component number of features + # ensure the models are not duplicated and non redundant + index_sort_bank = set() + model_bank = [ ini_desc for _ in range(bank) for ini_desc in [sorted([random.choice(cluster[random.choice(num_clusters)]) for _ in range(random.randint(1,component))])] if ini_desc not in tuple(index_sort_bank) and not index_sort_bank.add(tuple(ini_desc))] + + # score each set of features, saving each score and the corresponding feature set + scoring_bank = list(map(lambda x: [y_rf.fit(np.array(X_data.loc[:,x]), y_data.values.ravel()).score(np.array(X_data.loc[:,x]), y_data), list(X_data.loc[:,x].columns.values)], model_bank)) + + def evolve(i): + """ + Evolution of descriptors for learning algorithm, implemented as a function map + + Parameters + ---------- + i: list, descriptor set + """ + i = i[1] + group_n = [cluster_info[x]-1 for x in i] + sw_index = random.randrange(0, len(i)) + sw_group = random.randrange(0, max(nc)) + while sw_group in group_n: + sw_group = random.randrange(0, max(nc)) + b_set = [random.choice(cluster[sw_group]) if x == sw_index else i[x] for x in range(0, len(i))] + b_set.sort() + x = X_data[b_set].values + y = y_data.values.ravel() + score = e_rf.fit(x, y).score(x, y) + return [score, b_set] + + # perform main learning loop + for n in range(learning): + # initialize best score to the worst possible score + best_score = -float("inf") + # Evolve the bank of models and allow those surpassing the best score to replace the worst models up to the bank size + rank_filter = filter(lambda x, best_score=best_score: x[0] > best_score and (best_score := x[0]), map(evolve, scoring_bank)) + scoring_bank = sorted(itertools.chain(scoring_bank, rank_filter), reverse = True)[:bank] + if n % interval == 0 and n != 0: + tt = datetime.datetime.now() + print(n, '=>', tt.strftime('%H:%M:%S'), scoring_bank[0]) + + # print output and return best model found during training + print("Best score: ", scoring_bank[0][0]) + clulog = [cluster_info[y] for y in scoring_bank[0][1]] + print("Model's cluster info", clulog) + fi = datetime.datetime.now() + fiTime = fi.strftime('%H:%M:%S') + print("Finish Time : ", fiTime) + return scoring_bank[0][1]
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/_modules/qsarify/qsar_scoring.html b/docs/html/man/html/_modules/qsarify/qsar_scoring.html new file mode 100644 index 0000000..186e8f7 --- /dev/null +++ b/docs/html/man/html/_modules/qsarify/qsar_scoring.html @@ -0,0 +1,232 @@ + + + + + + qsarify.qsar_scoring — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for qsarify.qsar_scoring

+# -*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: QSAR Scoring Module
+"""
+Copyright (C) 2023 Stephen Szwiec
+
+This file is part of qsarify.
+
+This program is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+"""
+import numpy as np
+"""
+Commonly used scoring functions for QSAR models
+"""
+
+
+[docs] +def rmse_score(y_true, y_pred): + """ + Calculates the RMSE score + + Parameters + ---------- + y_true : numpy array , shape (n_samples,) + y_pred : numpy array, shape (n_samples,) + + Returns + ------- + float + """ + return np.sqrt(np.mean(np.square(y_true - y_pred)))
+ + +
+[docs] +def q2_score(y_true, y_pred): + """ + Calculates the Q2 score + + Parameters + ---------- + y_true : numpy array , shape (n_samples,) + y_pred : numpy array, shape (n_samples,) + + Returns + ------- + float + """ + press = np.sum(np.square(y_true - y_pred)) + tss = np.sum(np.square(y_true - np.mean(y_true))) + return 1 - press/tss
+ + +
+[docs] +def q2f_score(y_true, y_pred, y_mean): + """ + Calculates the Q2_f1 or Q2_f2 score + depending on whether the mean is calculated from the training set or the external set + + Parameters + ---------- + y_true : numpy array, shape (n_samples,) + y_pred : numpy array, shape (n_samples,) + y_mean : float, mean of the training (for q2f1) or test (for q2f2) set + + Returns + ------- + float + """ + press = np.sum(np.square(y_true - y_pred)) + tss = np.sum(np.square(y_true - y_mean)) + return 1 - press/tss
+ + +
+[docs] +def q2f3_score(y_true, y_pred, n_train, n_external): + """ + Calculates the Q2_f3 score + + Parameters + ---------- + y_true : numpy array, shape (n_samples,) + y_pred : numpy array, shape (n_samples,) + n_external : int + number of external samples + n_train : int + number of training samples + + Returns + ------- + float + """ + press = np.sum(np.square(y_true - y_pred)) + tss = np.sum(np.square(y_true - np.mean(y_true))) + return 1 - (press / n_external) / (tss * n_train)
+ + +
+[docs] +def ccc_score(y_true, y_pred): + """ + Calculates the CCC score + + Parameters + ---------- + y_true : numpy array, shape (n_samples,) + y_pred : numpy array, shape (n_samples,) + + Returns + ------- + float + """ + mean_true = y_true.mean() + mean_pred = y_pred.mean() + var_true = y_true.var() + var_pred = y_pred.var() + covar_true_pred = np.cov(y_true, y_pred)[0,1] + return 2 * covar_true_pred / (var_true + var_pred + (mean_true - mean_pred)**2)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/_sources/index.rst.txt b/docs/html/man/html/_sources/index.rst.txt new file mode 100644 index 0000000..e81350e --- /dev/null +++ b/docs/html/man/html/_sources/index.rst.txt @@ -0,0 +1,28 @@ +.. qsarify documentation master file, created by + sphinx-quickstart on Wed Oct 18 06:41:01 2023. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +Welcome to qsarify's documentation! +=================================== + +.. toctree:: + :maxdepth: 4 + :caption: Contents: + + qsarify + qsarify.data_tools + qsarify.clustering + qsarify.feature_selection_single + qsarify.feature_selection_multi + qsarify.export_model + qsarify.cross_validation + qsarify.qsar_scoring + + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/docs/html/man/html/_sources/man/modules.rst.txt b/docs/html/man/html/_sources/man/modules.rst.txt new file mode 100644 index 0000000..25f8d39 --- /dev/null +++ b/docs/html/man/html/_sources/man/modules.rst.txt @@ -0,0 +1,7 @@ +qsarify +======= + +.. toctree:: + :maxdepth: 4 + + qsarify diff --git a/docs/html/man/html/_sources/man/qsarify.classification.rst.txt b/docs/html/man/html/_sources/man/qsarify.classification.rst.txt new file mode 100644 index 0000000..f94e57d --- /dev/null +++ b/docs/html/man/html/_sources/man/qsarify.classification.rst.txt @@ -0,0 +1,7 @@ +qsarify.classification module +============================= + +.. automodule:: qsarify.classification + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/man/qsarify.clustering.rst.txt b/docs/html/man/html/_sources/man/qsarify.clustering.rst.txt new file mode 100644 index 0000000..dab42c5 --- /dev/null +++ b/docs/html/man/html/_sources/man/qsarify.clustering.rst.txt @@ -0,0 +1,7 @@ +qsarify.clustering module +========================= + +.. automodule:: qsarify.clustering + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/man/qsarify.cross_validation.rst.txt b/docs/html/man/html/_sources/man/qsarify.cross_validation.rst.txt new file mode 100644 index 0000000..1db5a6f --- /dev/null +++ b/docs/html/man/html/_sources/man/qsarify.cross_validation.rst.txt @@ -0,0 +1,7 @@ +qsarify.cross\_validation module +================================ + +.. automodule:: qsarify.cross_validation + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/man/qsarify.data_tools.rst.txt b/docs/html/man/html/_sources/man/qsarify.data_tools.rst.txt new file mode 100644 index 0000000..f87ab95 --- /dev/null +++ b/docs/html/man/html/_sources/man/qsarify.data_tools.rst.txt @@ -0,0 +1,7 @@ +qsarify.data\_tools module +========================== + +.. automodule:: qsarify.data_tools + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/man/qsarify.export_model.rst.txt b/docs/html/man/html/_sources/man/qsarify.export_model.rst.txt new file mode 100644 index 0000000..8f54d23 --- /dev/null +++ b/docs/html/man/html/_sources/man/qsarify.export_model.rst.txt @@ -0,0 +1,7 @@ +qsarify.export\_model module +============================ + +.. automodule:: qsarify.export_model + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/man/qsarify.feature_selection_multi.rst.txt b/docs/html/man/html/_sources/man/qsarify.feature_selection_multi.rst.txt new file mode 100644 index 0000000..39b7c43 --- /dev/null +++ b/docs/html/man/html/_sources/man/qsarify.feature_selection_multi.rst.txt @@ -0,0 +1,7 @@ +qsarify.feature\_selection\_multi module +======================================== + +.. automodule:: qsarify.feature_selection_multi + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/man/qsarify.feature_selection_single.rst.txt b/docs/html/man/html/_sources/man/qsarify.feature_selection_single.rst.txt new file mode 100644 index 0000000..4f45d95 --- /dev/null +++ b/docs/html/man/html/_sources/man/qsarify.feature_selection_single.rst.txt @@ -0,0 +1,7 @@ +qsarify.feature\_selection\_single module +========================================= + +.. automodule:: qsarify.feature_selection_single + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/man/qsarify.qsar_scoring.rst.txt b/docs/html/man/html/_sources/man/qsarify.qsar_scoring.rst.txt new file mode 100644 index 0000000..bcfc7f3 --- /dev/null +++ b/docs/html/man/html/_sources/man/qsarify.qsar_scoring.rst.txt @@ -0,0 +1,7 @@ +qsarify.qsar\_scoring module +============================ + +.. automodule:: qsarify.qsar_scoring + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/man/qsarify.rst.txt b/docs/html/man/html/_sources/man/qsarify.rst.txt new file mode 100644 index 0000000..b43542d --- /dev/null +++ b/docs/html/man/html/_sources/man/qsarify.rst.txt @@ -0,0 +1,25 @@ +qsarify package +=============== + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + qsarify.classification + qsarify.clustering + qsarify.cross_validation + qsarify.data_tools + qsarify.export_model + qsarify.feature_selection_multi + qsarify.feature_selection_single + qsarify.qsar_scoring + +Module contents +--------------- + +.. automodule:: qsarify + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/modules.rst.txt b/docs/html/man/html/_sources/modules.rst.txt new file mode 100644 index 0000000..25f8d39 --- /dev/null +++ b/docs/html/man/html/_sources/modules.rst.txt @@ -0,0 +1,7 @@ +qsarify +======= + +.. toctree:: + :maxdepth: 4 + + qsarify diff --git a/docs/html/man/html/_sources/qsarify.classification.rst.txt b/docs/html/man/html/_sources/qsarify.classification.rst.txt new file mode 100644 index 0000000..f94e57d --- /dev/null +++ b/docs/html/man/html/_sources/qsarify.classification.rst.txt @@ -0,0 +1,7 @@ +qsarify.classification module +============================= + +.. automodule:: qsarify.classification + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/qsarify.clustering.rst.txt b/docs/html/man/html/_sources/qsarify.clustering.rst.txt new file mode 100644 index 0000000..dab42c5 --- /dev/null +++ b/docs/html/man/html/_sources/qsarify.clustering.rst.txt @@ -0,0 +1,7 @@ +qsarify.clustering module +========================= + +.. automodule:: qsarify.clustering + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/qsarify.cross_validation.rst.txt b/docs/html/man/html/_sources/qsarify.cross_validation.rst.txt new file mode 100644 index 0000000..1db5a6f --- /dev/null +++ b/docs/html/man/html/_sources/qsarify.cross_validation.rst.txt @@ -0,0 +1,7 @@ +qsarify.cross\_validation module +================================ + +.. automodule:: qsarify.cross_validation + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/qsarify.data_tools.rst.txt b/docs/html/man/html/_sources/qsarify.data_tools.rst.txt new file mode 100644 index 0000000..f87ab95 --- /dev/null +++ b/docs/html/man/html/_sources/qsarify.data_tools.rst.txt @@ -0,0 +1,7 @@ +qsarify.data\_tools module +========================== + +.. automodule:: qsarify.data_tools + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/qsarify.export_model.rst.txt b/docs/html/man/html/_sources/qsarify.export_model.rst.txt new file mode 100644 index 0000000..8f54d23 --- /dev/null +++ b/docs/html/man/html/_sources/qsarify.export_model.rst.txt @@ -0,0 +1,7 @@ +qsarify.export\_model module +============================ + +.. automodule:: qsarify.export_model + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/qsarify.feature_selection_multi.rst.txt b/docs/html/man/html/_sources/qsarify.feature_selection_multi.rst.txt new file mode 100644 index 0000000..39b7c43 --- /dev/null +++ b/docs/html/man/html/_sources/qsarify.feature_selection_multi.rst.txt @@ -0,0 +1,7 @@ +qsarify.feature\_selection\_multi module +======================================== + +.. automodule:: qsarify.feature_selection_multi + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/qsarify.feature_selection_single.rst.txt b/docs/html/man/html/_sources/qsarify.feature_selection_single.rst.txt new file mode 100644 index 0000000..4f45d95 --- /dev/null +++ b/docs/html/man/html/_sources/qsarify.feature_selection_single.rst.txt @@ -0,0 +1,7 @@ +qsarify.feature\_selection\_single module +========================================= + +.. automodule:: qsarify.feature_selection_single + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/qsarify.qsar_scoring.rst.txt b/docs/html/man/html/_sources/qsarify.qsar_scoring.rst.txt new file mode 100644 index 0000000..bcfc7f3 --- /dev/null +++ b/docs/html/man/html/_sources/qsarify.qsar_scoring.rst.txt @@ -0,0 +1,7 @@ +qsarify.qsar\_scoring module +============================ + +.. automodule:: qsarify.qsar_scoring + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_sources/qsarify.rst.txt b/docs/html/man/html/_sources/qsarify.rst.txt new file mode 100644 index 0000000..fa599da --- /dev/null +++ b/docs/html/man/html/_sources/qsarify.rst.txt @@ -0,0 +1,18 @@ +qsarify package +=============== + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + qsarify + +Module contents +--------------- + +.. automodule:: qsarify + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/html/man/html/_static/_sphinx_javascript_frameworks_compat.js b/docs/html/man/html/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 0000000..8141580 --- /dev/null +++ b/docs/html/man/html/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/docs/html/man/html/_static/basic.css b/docs/html/man/html/_static/basic.css new file mode 100644 index 0000000..30fee9d --- /dev/null +++ b/docs/html/man/html/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/docs/html/man/html/_static/css/badge_only.css b/docs/html/man/html/_static/css/badge_only.css new file mode 100644 index 0000000..c718cee --- /dev/null +++ b/docs/html/man/html/_static/css/badge_only.css @@ -0,0 +1 @@ +.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} \ No newline at end of file diff --git a/docs/html/man/html/_static/css/fonts/Roboto-Slab-Bold.woff b/docs/html/man/html/_static/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 0000000..6cb6000 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/docs/html/man/html/_static/css/fonts/Roboto-Slab-Bold.woff2 b/docs/html/man/html/_static/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 0000000..7059e23 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/docs/html/man/html/_static/css/fonts/Roboto-Slab-Regular.woff b/docs/html/man/html/_static/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 0000000..f815f63 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/docs/html/man/html/_static/css/fonts/Roboto-Slab-Regular.woff2 b/docs/html/man/html/_static/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 0000000..f2c76e5 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/docs/html/man/html/_static/css/fonts/fontawesome-webfont.eot b/docs/html/man/html/_static/css/fonts/fontawesome-webfont.eot new file mode 100644 index 0000000..e9f60ca Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/fontawesome-webfont.eot differ diff --git a/docs/html/man/html/_static/css/fonts/fontawesome-webfont.svg b/docs/html/man/html/_static/css/fonts/fontawesome-webfont.svg new file mode 100644 index 0000000..855c845 --- /dev/null +++ b/docs/html/man/html/_static/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/html/man/html/_static/css/fonts/fontawesome-webfont.ttf b/docs/html/man/html/_static/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 0000000..35acda2 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/fontawesome-webfont.ttf differ diff --git a/docs/html/man/html/_static/css/fonts/fontawesome-webfont.woff b/docs/html/man/html/_static/css/fonts/fontawesome-webfont.woff new file mode 100644 index 0000000..400014a Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/fontawesome-webfont.woff differ diff --git a/docs/html/man/html/_static/css/fonts/fontawesome-webfont.woff2 b/docs/html/man/html/_static/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 0000000..4d13fc6 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/fontawesome-webfont.woff2 differ diff --git a/docs/html/man/html/_static/css/fonts/lato-bold-italic.woff b/docs/html/man/html/_static/css/fonts/lato-bold-italic.woff new file mode 100644 index 0000000..88ad05b Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/lato-bold-italic.woff differ diff --git a/docs/html/man/html/_static/css/fonts/lato-bold-italic.woff2 b/docs/html/man/html/_static/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 0000000..c4e3d80 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/lato-bold-italic.woff2 differ diff --git a/docs/html/man/html/_static/css/fonts/lato-bold.woff b/docs/html/man/html/_static/css/fonts/lato-bold.woff new file mode 100644 index 0000000..c6dff51 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/lato-bold.woff differ diff --git a/docs/html/man/html/_static/css/fonts/lato-bold.woff2 b/docs/html/man/html/_static/css/fonts/lato-bold.woff2 new file mode 100644 index 0000000..bb19504 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/lato-bold.woff2 differ diff --git a/docs/html/man/html/_static/css/fonts/lato-normal-italic.woff b/docs/html/man/html/_static/css/fonts/lato-normal-italic.woff new file mode 100644 index 0000000..76114bc Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/lato-normal-italic.woff differ diff --git a/docs/html/man/html/_static/css/fonts/lato-normal-italic.woff2 b/docs/html/man/html/_static/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 0000000..3404f37 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/lato-normal-italic.woff2 differ diff --git a/docs/html/man/html/_static/css/fonts/lato-normal.woff b/docs/html/man/html/_static/css/fonts/lato-normal.woff new file mode 100644 index 0000000..ae1307f Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/lato-normal.woff differ diff --git a/docs/html/man/html/_static/css/fonts/lato-normal.woff2 b/docs/html/man/html/_static/css/fonts/lato-normal.woff2 new file mode 100644 index 0000000..3bf9843 Binary files /dev/null and b/docs/html/man/html/_static/css/fonts/lato-normal.woff2 differ diff --git a/docs/html/man/html/_static/css/theme.css b/docs/html/man/html/_static/css/theme.css new file mode 100644 index 0000000..19a446a --- /dev/null +++ b/docs/html/man/html/_static/css/theme.css @@ -0,0 +1,4 @@ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} \ No newline at end of file diff --git a/docs/html/man/html/_static/doctools.js b/docs/html/man/html/_static/doctools.js new file mode 100644 index 0000000..d06a71d --- /dev/null +++ b/docs/html/man/html/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/docs/html/man/html/_static/documentation_options.js b/docs/html/man/html/_static/documentation_options.js new file mode 100644 index 0000000..e21c068 --- /dev/null +++ b/docs/html/man/html/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '0.1', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/docs/html/man/html/_static/file.png b/docs/html/man/html/_static/file.png new file mode 100644 index 0000000..a858a41 Binary files /dev/null and b/docs/html/man/html/_static/file.png differ diff --git a/docs/html/man/html/_static/jquery.js b/docs/html/man/html/_static/jquery.js new file mode 100644 index 0000000..c4c6022 --- /dev/null +++ b/docs/html/man/html/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/docs/html/man/html/_static/js/html5shiv.min.js b/docs/html/man/html/_static/js/html5shiv.min.js new file mode 100644 index 0000000..cd1c674 --- /dev/null +++ b/docs/html/man/html/_static/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/docs/html/man/html/_static/js/theme.js b/docs/html/man/html/_static/js/theme.js new file mode 100644 index 0000000..1fddb6e --- /dev/null +++ b/docs/html/man/html/_static/js/theme.js @@ -0,0 +1 @@ +!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/docs/html/man/html/_static/minus.png b/docs/html/man/html/_static/minus.png new file mode 100644 index 0000000..d96755f Binary files /dev/null and b/docs/html/man/html/_static/minus.png differ diff --git a/docs/html/man/html/_static/plus.png b/docs/html/man/html/_static/plus.png new file mode 100644 index 0000000..7107cec Binary files /dev/null and b/docs/html/man/html/_static/plus.png differ diff --git a/docs/html/man/html/_static/pygments.css b/docs/html/man/html/_static/pygments.css new file mode 100644 index 0000000..84ab303 --- /dev/null +++ b/docs/html/man/html/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f8f8f8; } +.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #008000; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #9C6500 } /* Comment.Preproc */ +.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #E40000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #008400 } /* Generic.Inserted */ +.highlight .go { color: #717171 } /* Generic.Output */ +.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #008000 } /* Keyword.Pseudo */ +.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #B00040 } /* Keyword.Type */ +.highlight .m { color: #666666 } /* Literal.Number */ +.highlight .s { color: #BA2121 } /* Literal.String */ +.highlight .na { color: #687822 } /* Name.Attribute */ +.highlight .nb { color: #008000 } /* Name.Builtin */ +.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ +.highlight .no { color: #880000 } /* Name.Constant */ +.highlight .nd { color: #AA22FF } /* Name.Decorator */ +.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #0000FF } /* Name.Function */ +.highlight .nl { color: #767600 } /* Name.Label */ +.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #19177C } /* Name.Variable */ +.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #666666 } /* Literal.Number.Bin */ +.highlight .mf { color: #666666 } /* Literal.Number.Float */ +.highlight .mh { color: #666666 } /* Literal.Number.Hex */ +.highlight .mi { color: #666666 } /* Literal.Number.Integer */ +.highlight .mo { color: #666666 } /* Literal.Number.Oct */ +.highlight .sa { color: #BA2121 } /* Literal.String.Affix */ +.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ +.highlight .sc { color: #BA2121 } /* Literal.String.Char */ +.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ +.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #BA2121 } /* Literal.String.Double */ +.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ +.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ +.highlight .sx { color: #008000 } /* Literal.String.Other */ +.highlight .sr { color: #A45A77 } /* Literal.String.Regex */ +.highlight .s1 { color: #BA2121 } /* Literal.String.Single */ +.highlight .ss { color: #19177C } /* Literal.String.Symbol */ +.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #0000FF } /* Name.Function.Magic */ +.highlight .vc { color: #19177C } /* Name.Variable.Class */ +.highlight .vg { color: #19177C } /* Name.Variable.Global */ +.highlight .vi { color: #19177C } /* Name.Variable.Instance */ +.highlight .vm { color: #19177C } /* Name.Variable.Magic */ +.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/docs/html/man/html/_static/searchtools.js b/docs/html/man/html/_static/searchtools.js new file mode 100644 index 0000000..7918c3f --- /dev/null +++ b/docs/html/man/html/_static/searchtools.js @@ -0,0 +1,574 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + `Search finished, found ${resultCount} page(s) matching the search query.` + ); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent !== undefined) return docContent.textContent; + console.warn( + "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + /** + * execute search (requires search index to be loaded) + */ + query: (query) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + // array of [docname, title, anchor, descr, score, filename] + let results = []; + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + results.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id] of foundEntries) { + let score = Math.round(100 * queryLower.length / entry.length) + results.push([ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // lookup as object + objectTerms.forEach((term) => + results.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); + + // now sort the results by score (in opposite order of appearance, since the + // display function below uses pop() to retrieve items) and then + // alphabetically + results.sort((a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; + }); + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + results = results.reverse(); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord) && !terms[word]) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord) && !titleTerms[word]) + arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); + }); + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) + fileMap.get(file).push(word); + else fileMap.set(file, [word]); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords) => { + const text = Search.htmlToText(htmlText); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/docs/html/man/html/_static/sphinx_highlight.js b/docs/html/man/html/_static/sphinx_highlight.js new file mode 100644 index 0000000..8a96c69 --- /dev/null +++ b/docs/html/man/html/_static/sphinx_highlight.js @@ -0,0 +1,154 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/docs/html/man/html/genindex.html b/docs/html/man/html/genindex.html new file mode 100644 index 0000000..8618097 --- /dev/null +++ b/docs/html/man/html/genindex.html @@ -0,0 +1,296 @@ + + + + + + Index — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Index

+ +
+ C + | E + | F + | M + | Q + | R + | S + | T + +
+

C

+ + + +
+ +

E

+ + + +
+ +

F

+ + +
+ +

M

+ + +
+ +

Q

+ + + +
    +
  • + qsarify.data_tools + +
  • +
  • + qsarify.feature_selection_multi + +
  • +
  • + qsarify.feature_selection_single + +
  • +
  • + qsarify.qsar_scoring + +
  • +
+ +

R

+ + + +
+ +

S

+ + + +
+ +

T

+ + +
+ + + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/index.html b/docs/html/man/html/index.html new file mode 100644 index 0000000..febdf7a --- /dev/null +++ b/docs/html/man/html/index.html @@ -0,0 +1,177 @@ + + + + + + + Welcome to qsarify’s documentation! — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/docs/html/man/html/man/modules.html b/docs/html/man/html/man/modules.html new file mode 100644 index 0000000..ca0bda1 --- /dev/null +++ b/docs/html/man/html/man/modules.html @@ -0,0 +1,155 @@ + + + + + + + qsarify — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/docs/html/man/html/man/qsarify.classification.html b/docs/html/man/html/man/qsarify.classification.html new file mode 100644 index 0000000..0e4e7bd --- /dev/null +++ b/docs/html/man/html/man/qsarify.classification.html @@ -0,0 +1,152 @@ + + + + + + + qsarify.classification module — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.classification module

+

Classification Scoring Module

+

This module provides summary information about Classification

+
+
+class qsarify.classification.ClassifierScore(y_data, pred_y)[source]
+

Bases: object

+

Provides summary information about Classification

+
+
Parameters:
+
    +
  • y_data (pandas DataFrame , shape = (n_samples,)) –

  • +
  • pred_y (pandas DataFrame , shape = (n_samples,)) –

  • +
  • classification (=> predicted Y values as result of) –

  • +
  • functions (Sub) –

  • +
  • -------

  • +
  • (self) (score) –

  • +
  • tf_table(self)

  • +
+
+
+
+
+score()[source]
+

Calculate accuracy score +:rtype: None

+
+ +
+
+tf_table()[source]
+

Calculate Precision & Recall +Generates a confusion matrix

+
+
Return type:
+

None

+
+
+
+ +
+ +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/man/qsarify.clustering.html b/docs/html/man/html/man/qsarify.clustering.html new file mode 100644 index 0000000..1a27ce9 --- /dev/null +++ b/docs/html/man/html/man/qsarify.clustering.html @@ -0,0 +1,188 @@ + + + + + + + qsarify.clustering module — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.clustering module

+

Clustering Module

+

This module contains functions for clustering features based on hierarchical clustering method +and calculating the cophenetic correlation coefficient of linkages. The cophenetic correlation +coefficient is a measure of the correlation between the distance of observations in feature space +and the distance of observations in cluster space. The cophenetic correlation coefficient is +calculated for each linkage method and the method with the highest cophenetic correlation +coefficient is used to cluster the features. The cophenetic correlation coefficient is calculated +using the scipy.cluster.hierarchy.cophenet function.

+
+
+qsarify.clustering.cophenetic(X_data)[source]
+

Calculate the cophenetic correlation coefficient of linkages

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame, shape = (n_samples, m_features)) –

  • +
  • method (str, method for linkage generation, default = 'corr' (Pearson correlation)) –

  • +
+
+
Return type:
+

None

+
+
+
+ +
+
+class qsarify.clustering.featureCluster(X_data, method='corr', link='average', cut_d=3)[source]
+

Bases: object

+

Make cluster of features based on hierarchical clustering method

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame, shape = (n_samples, n_features)) –

  • +
  • link (str, kind of linkage method, default = 'average', 'complete', 'single') –

  • +
  • cut_d (int, depth in cluster(dendrogram), default = 3) –

  • +
  • functions (Sub) –

  • +
  • -------------

  • +
  • set_cluster(self)

  • +
  • cluster_dist(self)

  • +
+
+
+
+
+cluster_dist()[source]
+

Show dendrogram of hierarchical clustering

+
+
Return type:
+

None

+
+
+
+ +
+
+set_cluster(verbose=False, graph=False)[source]
+

Make cluster of features based on hierarchical clustering method

+
+
Parameters:
+
    +
  • verbose (bool, print cluster information, default = False) –

  • +
  • graph (bool, show dendrogram, default = False) –

  • +
+
+
Returns:
+

cludict

+
+
Return type:
+

dict, cluster information of features as a dictionary

+
+
+
+ +
+ +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/man/qsarify.cross_validation.html b/docs/html/man/html/man/qsarify.cross_validation.html new file mode 100644 index 0000000..a76bf12 --- /dev/null +++ b/docs/html/man/html/man/qsarify.cross_validation.html @@ -0,0 +1,104 @@ + + + + + + + qsarify.cross_validation module — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.cross_validation module

+
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/man/qsarify.data_tools.html b/docs/html/man/html/man/qsarify.data_tools.html new file mode 100644 index 0000000..2bb37f5 --- /dev/null +++ b/docs/html/man/html/man/qsarify.data_tools.html @@ -0,0 +1,280 @@ + + + + + + + qsarify.data_tools module — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.data_tools module

+

Data Preprocessing Module

+
+
This module contains functions for data preprocessing, including:
    +
  • removing features with ‘NaN’ as value

  • +
  • removing features with constant values

  • +
  • removing features with low variance

  • +
  • removing features with ‘NaN’ as value when calculating correlation coefficients

  • +
  • generating a sequential train-test split by sorting the data by response variable

  • +
  • generating a random train-test split

  • +
  • scaling data

  • +
+
+
+

The main function of this module is clean_data, which performs all of the above functions.

+
+
+qsarify.data_tools.clean_data(X_data, y_data, split='sorted', test_size=0.2, cutoff=None, plot=False)[source]
+

Perform the entire data cleaning process as one function +Optionally, plot the correlation matrix

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame, shape = (n_samples, n_features)) –

  • +
  • split (string, optional, 'sorted' or 'random') –

  • +
  • test_size (float, optional, default = 0.2) –

  • +
  • cutoff (float, optional, auto-correlaton coefficient below which we keep) –

  • +
  • plot (boolean, optional, default = False) –

  • +
+
+
Returns:
+

    +
  • X_train (pandas DataFrame , shape = (n_samples, m_features))

  • +
  • X_test (pandas DataFrame , shape = (p_samples, m_features))

  • +
  • y_train (pandas DataFrame , shape = (n_samples, 1))

  • +
  • y_test (pandas DataFrame , shape = (p_samples, 1))

  • +
+

+
+
+
+ +
+
+qsarify.data_tools.random_split(X_data, y_data, test_size=0.2)[source]
+

Generate a random train-test split

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame , shape = (n_samples, m_features)) –

  • +
  • y_data (pandas DataFrame , shape = (n_samples, 1)) –

  • +
  • test_size (float, default = 0.2) –

  • +
  • Returns

  • +
  • dataframe (-------give count of NaN in pandas) –

  • +
  • X_train (pandas DataFrame , shape = (n_samples, m_features)) –

  • +
  • X_test (pandas DataFrame , shape = (n_samples, m_features)) –

  • +
  • y_train (pandas DataFrame , shape = (n_samples, 1)) –

  • +
  • y_test (pandas DataFrame , shape = (n_samples, 1)) –

  • +
+
+
+
+ +
+
+qsarify.data_tools.rm_constant(X_data)[source]
+

Remove features with constant values

+
+
Parameters:
+

X_data (pandas DataFrame , shape = (n_samples, n_features)) –

+
+
Return type:
+

Modified DataFrame

+
+
+
+ +
+
+qsarify.data_tools.rm_lowVar(X_data, cutoff=0.9)[source]
+

Remove features with low variance

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame , shape = (n_samples, n_features)) –

  • +
  • cutoff (float, default = 0.1) –

  • +
+
+
Return type:
+

Modified DataFrame

+
+
+
+ +
+
+qsarify.data_tools.rm_nan(X_data)[source]
+

Remove features with ‘NaN’ as value

+
+
Parameters:
+

X_data (pandas DataFrame , shape = (n_samples, n_features)) –

+
+
Return type:
+

Modified DataFrame

+
+
+
+ +
+
+qsarify.data_tools.rm_nanCorr(X_data)[source]
+

Remove features with ‘NaN’ as value when calculating correlation coefficients

+
+
Parameters:
+

X_data (pandas DataFrame , shape = (n_samples, n_features)) –

+
+
Return type:
+

Modified DataFrame

+
+
+
+ +
+
+qsarify.data_tools.scale_data(X_train, X_test)[source]
+

Scale the data using the training data; apply the same transformation to the test data

+
+
Parameters:
+
    +
  • X_train (pandas DataFrame , shape = (n_samples, m_features)) –

  • +
  • X_test (pandas DataFrame , shape = (p_samples, m_features)) –

  • +
+
+
Returns:
+

    +
  • X_train_scaled (pandas DataFrame , shape = (n_samples, m_features))

  • +
  • X_test_scaled (pandas DataFrame , shape = (p_samples, m_features))

  • +
+

+
+
+
+ +
+
+qsarify.data_tools.sorted_split(X_data, y_data, test_size=0.2)[source]
+

Generate a sequential train-test split by sorting the data by response variable

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame , shape = (n_samples, m_features)) –

  • +
  • y_data (pandas DataFrame , shape = (n_samples, 1)) –

  • +
  • test_size (float, default = 0.2) –

  • +
+
+
Returns:
+

    +
  • X_train (pandas DataFrame , shape = (n_samples, m_features))

  • +
  • X_test (pandas DataFrame, shape = (n_samples, m_features))

  • +
  • y_train (pandas DataFrame , shape = (n_samples, 1))

  • +
  • y_test (pandas DataFrame , shape = (n_samples, 1))

  • +
+

+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/man/qsarify.export_model.html b/docs/html/man/html/man/qsarify.export_model.html new file mode 100644 index 0000000..1b51ba3 --- /dev/null +++ b/docs/html/man/html/man/qsarify.export_model.html @@ -0,0 +1,104 @@ + + + + + + + qsarify.export_model module — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.export_model module

+
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/man/qsarify.feature_selection_multi.html b/docs/html/man/html/man/qsarify.feature_selection_multi.html new file mode 100644 index 0000000..7434b2c --- /dev/null +++ b/docs/html/man/html/man/qsarify.feature_selection_multi.html @@ -0,0 +1,154 @@ + + + + + + + qsarify.feature_selection_multi module — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.feature_selection_multi module

+

Multi-Processing Feature Selection Module

+

This module contains the functions for performing feature selection using +the clustering module’s output as a guide for feature selection, and implements +a genetic algorithm for feature selection using reflection.

+
+
+class qsarify.feature_selection_multi.Evolution(evolve)[source]
+

Bases: object

+

Initializes the evolution class with the learning algorithm to be used

+
+
+evolve(cluster_info, cluster, X_data, y_data, e_mlr)[source]
+
+ +
+ +
+
+qsarify.feature_selection_multi.selection(X_data, y_data, cluster_info, model='regression', learning=500000, bank=200, component=4, interval=1000, cores=95)[source]
+

Forward feature selection using cophenetically correlated data on mutliple cores

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame , shape = (n_samples, n_features)) –

  • +
  • y_data (pandas DataFrame , shape = (n_samples,)) –

  • +
  • cluster_info (dictionary returned by clustering.featureCluster.set_cluster()) –

  • +
  • model (default="regression", otherwise "classification") –

  • +
  • learning (default=500000, number of overall models to be trained) –

  • +
  • bank (default=200, number of models to be trained in each iteration) –

  • +
  • component (default=4, number of features to be selected) –

  • +
  • interval (optional, default=1000, print current scoring and selected features) – every interval

  • +
  • cores (optional, default=(mp.cpu_count()*2)-1, number of processes to be used) – for multiprocessing; default is twice the number of cores minus 1, which +is assuming you have SMT, HT, or something similar) If you have a large +number of cores, you may want to set this to a lower number to avoid +memory issues.

  • +
+
+
Return type:
+

list, result of selected best feature set

+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/man/qsarify.feature_selection_single.html b/docs/html/man/html/man/qsarify.feature_selection_single.html new file mode 100644 index 0000000..d38d0db --- /dev/null +++ b/docs/html/man/html/man/qsarify.feature_selection_single.html @@ -0,0 +1,168 @@ + + + + + + + qsarify.feature_selection_single module — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.feature_selection_single module

+

Single-Threaded Feature Selection Module

+

This module contains the single-threaded version of the feature selection algorithm, +which is a genetic algorithm that uses a linear regression model to score each set of features, +using the output of clustering to ensure that the features are not redundant.

+
+
+qsarify.feature_selection_single.mlr_selection(X_data, y_data, cluster_info, component, model='regression', learning=50000, bank=200, interval=1000)[source]
+

Performs feature selection using a using a linear regression model and a genetic algorithm on a single thread. +This is the vanilla version of the algorithm, which is not parallelized.

+
+
Parameters:
+
    +
  • X_data (DataFrame, descriptor data) –

  • +
  • y_data (DataFrame, target data) –

  • +
  • cluster_info (dict, descriptor cluster information) –

  • +
  • component (int, number of features to select) –

  • +
  • model (str, learning algorithm to use, default = "regression") –

  • +
  • learning (int, number of iterations to perform, default = 50000) –

  • +
  • bank (int, number of models to keep in the bank, default = 200) –

  • +
  • interval (int, number of iterations to perform before printing the current time, default = 1000) –

  • +
+
+
Returns:
+

    +
  • best_model (list, best model found)

  • +
  • best_score (float, best score found)

  • +
+

+
+
+
+ +
+
+qsarify.feature_selection_single.rf_selection(X_data, y_data, cluster_info, component, model='regression', learning=50000, bank=200, interval=1000)[source]
+

Performs feature selection using a using a random forest model and a genetic algorithm on a single thread. +This is the vanilla version of the algorithm, which is not parallelized.

+
+
Parameters:
+
    +
  • X_data (DataFrame, descriptor data) –

  • +
  • y_data (DataFrame, target data) –

  • +
  • cluster_info (dict, descriptor cluster information) –

  • +
  • component (int, number of features to select) –

  • +
  • model (str, learning algorithm to use, default = "regression") –

  • +
  • learning (int, number of iterations to perform, default = 50000) –

  • +
  • bank (int, number of models to keep in the bank, default = 200) –

  • +
  • interval (int, number of iterations to perform before printing the current time, default = 1000) –

  • +
+
+
Returns:
+

    +
  • best_model (list, best model found)

  • +
  • best_score (float, best score found)

  • +
+

+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/man/qsarify.html b/docs/html/man/html/man/qsarify.html new file mode 100644 index 0000000..3a0a716 --- /dev/null +++ b/docs/html/man/html/man/qsarify.html @@ -0,0 +1,169 @@ + + + + + + + qsarify package — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/docs/html/man/html/man/qsarify.qsar_scoring.html b/docs/html/man/html/man/qsarify.qsar_scoring.html new file mode 100644 index 0000000..1ebc139 --- /dev/null +++ b/docs/html/man/html/man/qsarify.qsar_scoring.html @@ -0,0 +1,212 @@ + + + + + + + qsarify.qsar_scoring module — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.qsar_scoring module

+

Copyright (C) 2023 Stephen Szwiec

+

This file is part of qsarify.

+

This program is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version.

+

This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details.

+

You should have received a copy of the GNU General Public License +along with this program. If not, see <http://www.gnu.org/licenses/>.

+
+
+qsarify.qsar_scoring.ccc_score(y_true, y_pred)[source]
+

Calculates the CCC score

+
+
Parameters:
+
    +
  • y_true (numpy array, shape (n_samples,)) –

  • +
  • y_pred (numpy array, shape (n_samples,)) –

  • +
+
+
Return type:
+

float

+
+
+
+ +
+
+qsarify.qsar_scoring.q2_score(y_true, y_pred)[source]
+

Calculates the Q2 score

+
+
Parameters:
+
    +
  • y_true (numpy array , shape (n_samples,)) –

  • +
  • y_pred (numpy array, shape (n_samples,)) –

  • +
+
+
Return type:
+

float

+
+
+
+ +
+
+qsarify.qsar_scoring.q2f3_score(y_true, y_pred, n_train, n_external)[source]
+

Calculates the Q2_f3 score

+
+
Parameters:
+
    +
  • y_true (numpy array, shape (n_samples,)) –

  • +
  • y_pred (numpy array, shape (n_samples,)) –

  • +
  • n_external (int) – number of external samples

  • +
  • n_train (int) – number of training samples

  • +
+
+
Return type:
+

float

+
+
+
+ +
+
+qsarify.qsar_scoring.q2f_score(y_true, y_pred, y_mean)[source]
+

Calculates the Q2_f1 or Q2_f2 score +depending on whether the mean is calculated from the training set or the external set

+
+
Parameters:
+
    +
  • y_true (numpy array, shape (n_samples,)) –

  • +
  • y_pred (numpy array, shape (n_samples,)) –

  • +
  • y_mean (float, mean of the training (for q2f1) or test (for q2f2) set) –

  • +
+
+
Return type:
+

float

+
+
+
+ +
+
+qsarify.qsar_scoring.rmse_score(y_true, y_pred)[source]
+

Calculates the RMSE score

+
+
Parameters:
+
    +
  • y_true (numpy array , shape (n_samples,)) –

  • +
  • y_pred (numpy array, shape (n_samples,)) –

  • +
+
+
Return type:
+

float

+
+
+
+ +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/modules.html b/docs/html/man/html/modules.html new file mode 100644 index 0000000..e6da554 --- /dev/null +++ b/docs/html/man/html/modules.html @@ -0,0 +1,122 @@ + + + + + + + qsarify — qsarify 0.1 documentation + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify

+ +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/objects.inv b/docs/html/man/html/objects.inv new file mode 100644 index 0000000..22104ed Binary files /dev/null and b/docs/html/man/html/objects.inv differ diff --git a/docs/html/man/html/py-modindex.html b/docs/html/man/html/py-modindex.html new file mode 100644 index 0000000..c8bd2df --- /dev/null +++ b/docs/html/man/html/py-modindex.html @@ -0,0 +1,157 @@ + + + + + + Python Module Index — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Python Module Index

+ +
+ q +
+ + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ q
+ qsarify +
    + qsarify.classification +
    + qsarify.clustering +
    + qsarify.data_tools +
    + qsarify.feature_selection_multi +
    + qsarify.feature_selection_single +
    + qsarify.qsar_scoring +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/qsarify.classification.html b/docs/html/man/html/qsarify.classification.html new file mode 100644 index 0000000..e79ff7c --- /dev/null +++ b/docs/html/man/html/qsarify.classification.html @@ -0,0 +1,175 @@ + + + + + + + qsarify.classification module — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.classification module

+

Classification Scoring Module

+

This module provides summary information about Classification

+
+
+class qsarify.classification.ClassifierScore(y_data, pred_y)[source]
+

Bases: object

+

Provides summary information about Classification

+
+
Parameters:
+
    +
  • y_data (pandas DataFrame , shape = (n_samples,)) –

  • +
  • pred_y (pandas DataFrame , shape = (n_samples,)) –

  • +
  • classification (=> predicted Y values as result of) –

  • +
  • functions (Sub) –

  • +
  • -------

  • +
  • (self) (score) –

  • +
  • tf_table(self)

  • +
+
+
+
+
+score()[source]
+

Calculate accuracy score +:rtype: None

+
+ +
+
+tf_table()[source]
+

Calculate Precision & Recall +Generates a confusion matrix

+
+
Return type:
+

None

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/qsarify.clustering.html b/docs/html/man/html/qsarify.clustering.html new file mode 100644 index 0000000..f2c3b02 --- /dev/null +++ b/docs/html/man/html/qsarify.clustering.html @@ -0,0 +1,219 @@ + + + + + + + qsarify.clustering module — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.clustering module

+

Clustering Module

+

This module contains functions for clustering features based on hierarchical clustering method +and calculating the cophenetic correlation coefficient of linkages. The cophenetic correlation +coefficient is a measure of the correlation between the distance of observations in feature space +and the distance of observations in cluster space. The cophenetic correlation coefficient is +calculated for each linkage method and the method with the highest cophenetic correlation +coefficient is used to cluster the features. The cophenetic correlation coefficient is calculated +using the scipy.cluster.hierarchy.cophenet function.

+
+
+qsarify.clustering.cophenetic(X_data)[source]
+

Calculate the cophenetic correlation coefficient of linkages

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame, shape = (n_samples, m_features)) –

  • +
  • method (str, method for linkage generation, default = 'corr' (Pearson correlation)) –

  • +
+
+
Return type:
+

None

+
+
+
+ +
+
+class qsarify.clustering.featureCluster(X_data, method='corr', link='average', cut_d=3)[source]
+

Bases: object

+

Make cluster of features based on hierarchical clustering method

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame, shape = (n_samples, n_features)) –

  • +
  • link (str, kind of linkage method, default = 'average', 'complete', 'single') –

  • +
  • cut_d (int, depth in cluster(dendrogram), default = 3) –

  • +
  • functions (Sub) –

  • +
  • -------------

  • +
  • set_cluster(self)

  • +
  • cluster_dist(self)

  • +
+
+
+
+
+cluster_dist()[source]
+

Show dendrogram of hierarchical clustering

+
+
Return type:
+

None

+
+
+
+ +
+
+set_cluster(verbose=False, graph=False)[source]
+

Make cluster of features based on hierarchical clustering method

+
+
Parameters:
+
    +
  • verbose (bool, print cluster information, default = False) –

  • +
  • graph (bool, show dendrogram, default = False) –

  • +
+
+
Returns:
+

cludict

+
+
Return type:
+

dict, cluster information of features as a dictionary

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/qsarify.cross_validation.html b/docs/html/man/html/qsarify.cross_validation.html new file mode 100644 index 0000000..9b6a96d --- /dev/null +++ b/docs/html/man/html/qsarify.cross_validation.html @@ -0,0 +1,116 @@ + + + + + + + qsarify.cross_validation module — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.cross_validation module

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/qsarify.data_tools.html b/docs/html/man/html/qsarify.data_tools.html new file mode 100644 index 0000000..59571ea --- /dev/null +++ b/docs/html/man/html/qsarify.data_tools.html @@ -0,0 +1,317 @@ + + + + + + + qsarify.data_tools module — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.data_tools module

+

Data Preprocessing Module

+
+
This module contains functions for data preprocessing, including:
    +
  • removing features with ‘NaN’ as value

  • +
  • removing features with constant values

  • +
  • removing features with low variance

  • +
  • removing features with ‘NaN’ as value when calculating correlation coefficients

  • +
  • generating a sequential train-test split by sorting the data by response variable

  • +
  • generating a random train-test split

  • +
  • scaling data

  • +
+
+
+

The main function of this module is clean_data, which performs all of the above functions.

+
+
+qsarify.data_tools.clean_data(X_data, y_data, split='sorted', test_size=0.2, cutoff=None, plot=False)[source]
+

Perform the entire data cleaning process as one function +Optionally, plot the correlation matrix

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame, shape = (n_samples, n_features)) –

  • +
  • split (string, optional, 'sorted' or 'random') –

  • +
  • test_size (float, optional, default = 0.2) –

  • +
  • cutoff (float, optional, auto-correlaton coefficient below which we keep) –

  • +
  • plot (boolean, optional, default = False) –

  • +
+
+
Returns:
+

    +
  • X_train (pandas DataFrame , shape = (n_samples, m_features))

  • +
  • X_test (pandas DataFrame , shape = (p_samples, m_features))

  • +
  • y_train (pandas DataFrame , shape = (n_samples, 1))

  • +
  • y_test (pandas DataFrame , shape = (p_samples, 1))

  • +
+

+
+
+
+ +
+
+qsarify.data_tools.random_split(X_data, y_data, test_size=0.2)[source]
+

Generate a random train-test split

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame , shape = (n_samples, m_features)) –

  • +
  • y_data (pandas DataFrame , shape = (n_samples, 1)) –

  • +
  • test_size (float, default = 0.2) –

  • +
  • Returns

  • +
  • dataframe (-------give count of NaN in pandas) –

  • +
  • X_train (pandas DataFrame , shape = (n_samples, m_features)) –

  • +
  • X_test (pandas DataFrame , shape = (n_samples, m_features)) –

  • +
  • y_train (pandas DataFrame , shape = (n_samples, 1)) –

  • +
  • y_test (pandas DataFrame , shape = (n_samples, 1)) –

  • +
+
+
+
+ +
+
+qsarify.data_tools.rm_constant(X_data)[source]
+

Remove features with constant values

+
+
Parameters:
+

X_data (pandas DataFrame , shape = (n_samples, n_features)) –

+
+
Return type:
+

Modified DataFrame

+
+
+
+ +
+
+qsarify.data_tools.rm_lowVar(X_data, cutoff=0.9)[source]
+

Remove features with low variance

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame , shape = (n_samples, n_features)) –

  • +
  • cutoff (float, default = 0.1) –

  • +
+
+
Return type:
+

Modified DataFrame

+
+
+
+ +
+
+qsarify.data_tools.rm_nan(X_data)[source]
+

Remove features with ‘NaN’ as value

+
+
Parameters:
+

X_data (pandas DataFrame , shape = (n_samples, n_features)) –

+
+
Return type:
+

Modified DataFrame

+
+
+
+ +
+
+qsarify.data_tools.rm_nanCorr(X_data)[source]
+

Remove features with ‘NaN’ as value when calculating correlation coefficients

+
+
Parameters:
+

X_data (pandas DataFrame , shape = (n_samples, n_features)) –

+
+
Return type:
+

Modified DataFrame

+
+
+
+ +
+
+qsarify.data_tools.scale_data(X_train, X_test)[source]
+

Scale the data using the training data; apply the same transformation to the test data

+
+
Parameters:
+
    +
  • X_train (pandas DataFrame , shape = (n_samples, m_features)) –

  • +
  • X_test (pandas DataFrame , shape = (p_samples, m_features)) –

  • +
+
+
Returns:
+

    +
  • X_train_scaled (pandas DataFrame , shape = (n_samples, m_features))

  • +
  • X_test_scaled (pandas DataFrame , shape = (p_samples, m_features))

  • +
+

+
+
+
+ +
+
+qsarify.data_tools.sorted_split(X_data, y_data, test_size=0.2)[source]
+

Generate a sequential train-test split by sorting the data by response variable

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame , shape = (n_samples, m_features)) –

  • +
  • y_data (pandas DataFrame , shape = (n_samples, 1)) –

  • +
  • test_size (float, default = 0.2) –

  • +
+
+
Returns:
+

    +
  • X_train (pandas DataFrame , shape = (n_samples, m_features))

  • +
  • X_test (pandas DataFrame, shape = (n_samples, m_features))

  • +
  • y_train (pandas DataFrame , shape = (n_samples, 1))

  • +
  • y_test (pandas DataFrame , shape = (n_samples, 1))

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/qsarify.export_model.html b/docs/html/man/html/qsarify.export_model.html new file mode 100644 index 0000000..b4b0ab7 --- /dev/null +++ b/docs/html/man/html/qsarify.export_model.html @@ -0,0 +1,116 @@ + + + + + + + qsarify.export_model module — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.export_model module

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/qsarify.feature_selection_multi.html b/docs/html/man/html/qsarify.feature_selection_multi.html new file mode 100644 index 0000000..609b448 --- /dev/null +++ b/docs/html/man/html/qsarify.feature_selection_multi.html @@ -0,0 +1,185 @@ + + + + + + + qsarify.feature_selection_multi module — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.feature_selection_multi module

+

Multi-Processing Feature Selection Module

+

This module contains the functions for performing feature selection using +the clustering module’s output as a guide for feature selection, and implements +a genetic algorithm for feature selection using reflection.

+
+
+class qsarify.feature_selection_multi.Evolution(evolve)[source]
+

Bases: object

+

Initializes the evolution class with the learning algorithm to be used

+
+
+evolve(cluster_info, cluster, X_data, y_data, e_mlr)[source]
+
+ +
+ +
+
+qsarify.feature_selection_multi.selection(X_data, y_data, cluster_info, model='regression', learning=500000, bank=200, component=4, interval=1000, cores=95)[source]
+

Forward feature selection using cophenetically correlated data on mutliple cores

+
+
Parameters:
+
    +
  • X_data (pandas DataFrame , shape = (n_samples, n_features)) –

  • +
  • y_data (pandas DataFrame , shape = (n_samples,)) –

  • +
  • cluster_info (dictionary returned by clustering.featureCluster.set_cluster()) –

  • +
  • model (default="regression", otherwise "classification") –

  • +
  • learning (default=500000, number of overall models to be trained) –

  • +
  • bank (default=200, number of models to be trained in each iteration) –

  • +
  • component (default=4, number of features to be selected) –

  • +
  • interval (optional, default=1000, print current scoring and selected features) – every interval

  • +
  • cores (optional, default=(mp.cpu_count()*2)-1, number of processes to be used) – for multiprocessing; default is twice the number of cores minus 1, which +is assuming you have SMT, HT, or something similar) If you have a large +number of cores, you may want to set this to a lower number to avoid +memory issues.

  • +
+
+
Return type:
+

list, result of selected best feature set

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/qsarify.feature_selection_single.html b/docs/html/man/html/qsarify.feature_selection_single.html new file mode 100644 index 0000000..e423629 --- /dev/null +++ b/docs/html/man/html/qsarify.feature_selection_single.html @@ -0,0 +1,199 @@ + + + + + + + qsarify.feature_selection_single module — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.feature_selection_single module

+

Single-Threaded Feature Selection Module

+

This module contains the single-threaded version of the feature selection algorithm, +which is a genetic algorithm that uses a linear regression model to score each set of features, +using the output of clustering to ensure that the features are not redundant.

+
+
+qsarify.feature_selection_single.mlr_selection(X_data, y_data, cluster_info, component, model='regression', learning=50000, bank=200, interval=1000)[source]
+

Performs feature selection using a using a linear regression model and a genetic algorithm on a single thread. +This is the vanilla version of the algorithm, which is not parallelized.

+
+
Parameters:
+
    +
  • X_data (DataFrame, descriptor data) –

  • +
  • y_data (DataFrame, target data) –

  • +
  • cluster_info (dict, descriptor cluster information) –

  • +
  • component (int, number of features to select) –

  • +
  • model (str, learning algorithm to use, default = "regression") –

  • +
  • learning (int, number of iterations to perform, default = 50000) –

  • +
  • bank (int, number of models to keep in the bank, default = 200) –

  • +
  • interval (int, number of iterations to perform before printing the current time, default = 1000) –

  • +
+
+
Returns:
+

    +
  • best_model (list, best model found)

  • +
  • best_score (float, best score found)

  • +
+

+
+
+
+ +
+
+qsarify.feature_selection_single.rf_selection(X_data, y_data, cluster_info, component, model='regression', learning=50000, bank=200, interval=1000)[source]
+

Performs feature selection using a using a random forest model and a genetic algorithm on a single thread. +This is the vanilla version of the algorithm, which is not parallelized.

+
+
Parameters:
+
    +
  • X_data (DataFrame, descriptor data) –

  • +
  • y_data (DataFrame, target data) –

  • +
  • cluster_info (dict, descriptor cluster information) –

  • +
  • component (int, number of features to select) –

  • +
  • model (str, learning algorithm to use, default = "regression") –

  • +
  • learning (int, number of iterations to perform, default = 50000) –

  • +
  • bank (int, number of models to keep in the bank, default = 200) –

  • +
  • interval (int, number of iterations to perform before printing the current time, default = 1000) –

  • +
+
+
Returns:
+

    +
  • best_model (list, best model found)

  • +
  • best_score (float, best score found)

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/qsarify.html b/docs/html/man/html/qsarify.html new file mode 100644 index 0000000..4033044 --- /dev/null +++ b/docs/html/man/html/qsarify.html @@ -0,0 +1,130 @@ + + + + + + + qsarify package — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify package

+
+

Submodules

+
+
+
+
+

Module contents

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/qsarify.qsar_scoring.html b/docs/html/man/html/qsarify.qsar_scoring.html new file mode 100644 index 0000000..b57cb42 --- /dev/null +++ b/docs/html/man/html/qsarify.qsar_scoring.html @@ -0,0 +1,244 @@ + + + + + + + qsarify.qsar_scoring module — qsarify 0.1 documentation + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

qsarify.qsar_scoring module

+

Copyright (C) 2023 Stephen Szwiec

+

This file is part of qsarify.

+

This program is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version.

+

This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details.

+

You should have received a copy of the GNU General Public License +along with this program. If not, see <http://www.gnu.org/licenses/>.

+
+
+qsarify.qsar_scoring.ccc_score(y_true, y_pred)[source]
+

Calculates the CCC score

+
+
Parameters:
+
    +
  • y_true (numpy array, shape (n_samples,)) –

  • +
  • y_pred (numpy array, shape (n_samples,)) –

  • +
+
+
Return type:
+

float

+
+
+
+ +
+
+qsarify.qsar_scoring.q2_score(y_true, y_pred)[source]
+

Calculates the Q2 score

+
+
Parameters:
+
    +
  • y_true (numpy array , shape (n_samples,)) –

  • +
  • y_pred (numpy array, shape (n_samples,)) –

  • +
+
+
Return type:
+

float

+
+
+
+ +
+
+qsarify.qsar_scoring.q2f3_score(y_true, y_pred, n_train, n_external)[source]
+

Calculates the Q2_f3 score

+
+
Parameters:
+
    +
  • y_true (numpy array, shape (n_samples,)) –

  • +
  • y_pred (numpy array, shape (n_samples,)) –

  • +
  • n_external (int) – number of external samples

  • +
  • n_train (int) – number of training samples

  • +
+
+
Return type:
+

float

+
+
+
+ +
+
+qsarify.qsar_scoring.q2f_score(y_true, y_pred, y_mean)[source]
+

Calculates the Q2_f1 or Q2_f2 score +depending on whether the mean is calculated from the training set or the external set

+
+
Parameters:
+
    +
  • y_true (numpy array, shape (n_samples,)) –

  • +
  • y_pred (numpy array, shape (n_samples,)) –

  • +
  • y_mean (float, mean of the training (for q2f1) or test (for q2f2) set) –

  • +
+
+
Return type:
+

float

+
+
+
+ +
+
+qsarify.qsar_scoring.rmse_score(y_true, y_pred)[source]
+

Calculates the RMSE score

+
+
Parameters:
+
    +
  • y_true (numpy array , shape (n_samples,)) –

  • +
  • y_pred (numpy array, shape (n_samples,)) –

  • +
+
+
Return type:
+

float

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/html/man/html/search.html b/docs/html/man/html/search.html new file mode 100644 index 0000000..6b092e3 --- /dev/null +++ b/docs/html/man/html/search.html @@ -0,0 +1,127 @@ + + + + + + Search — qsarify 0.1 documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + + + +
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Stephen Szwiec.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + + + + + + \ No newline at end of file diff --git a/docs/html/man/html/searchindex.js b/docs/html/man/html/searchindex.js new file mode 100644 index 0000000..ada4ae5 --- /dev/null +++ b/docs/html/man/html/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["index", "modules", "qsarify", "qsarify.classification", "qsarify.clustering", "qsarify.cross_validation", "qsarify.data_tools", "qsarify.export_model", "qsarify.feature_selection_multi", "qsarify.feature_selection_single", "qsarify.qsar_scoring"], "filenames": ["index.rst", "modules.rst", "qsarify.rst", "qsarify.classification.rst", "qsarify.clustering.rst", "qsarify.cross_validation.rst", "qsarify.data_tools.rst", "qsarify.export_model.rst", "qsarify.feature_selection_multi.rst", "qsarify.feature_selection_single.rst", "qsarify.qsar_scoring.rst"], "titles": ["Welcome to qsarify\u2019s documentation!", "qsarify", "qsarify package", "qsarify.classification module", "qsarify.clustering module", "qsarify.cross_validation module", "qsarify.data_tools module", "qsarify.export_model module", "qsarify.feature_selection_multi module", "qsarify.feature_selection_single module", "qsarify.qsar_scoring module"], "terms": {"index": 0, "modul": [0, 1], "search": 0, "page": 0, "packag": [0, 1], "submodul": [0, 1], "classif": 8, "classifierscor": 3, "cluster": [0, 8, 9], "cophenet": [0, 4, 8], "featureclust": [0, 4, 8], "cross_valid": 0, "data_tool": 0, "clean_data": [0, 6], "random_split": [0, 6], "rm_constant": [0, 6], "rm_lowvar": [0, 6], "rm_nan": [0, 6], "rm_nancorr": [0, 6], "scale_data": [0, 6], "sorted_split": [0, 6], "export_model": 0, "feature_selection_multi": 0, "evolut": [0, 8], "select": [0, 8, 9], "feature_selection_singl": 0, "mlr_select": [0, 9], "rf_select": [0, 9], "qsar_scor": 0, "ccc_score": [0, 10], "q2_score": [0, 10], "q2f3_score": [0, 10], "q2f_score": [0, 10], "rmse_scor": [0, 10], "content": 1, "score": [3, 8, 9, 10], "tf_tabl": 3, "cluster_dist": [0, 4], "set_clust": [0, 4, 8], "evolv": [0, 8], "thi": [3, 4, 6, 8, 9, 10], "provid": 3, "summari": 3, "inform": [3, 4, 9], "about": 3, "class": [3, 4, 8], "y_data": [3, 6, 8, 9], "pred_i": 3, "sourc": [3, 4, 6, 8, 9, 10], "base": [3, 4, 8], "object": [3, 4, 8], "paramet": [3, 4, 6, 8, 9, 10], "panda": [3, 4, 6, 8], "datafram": [3, 4, 6, 8, 9], "shape": [3, 4, 6, 8, 10], "n_sampl": [3, 4, 6, 8, 10], "predict": 3, "y": 3, "valu": [3, 6], "result": [3, 8], "function": [3, 4, 6, 8], "sub": [3, 4], "self": [3, 4], "calcul": [3, 4, 6, 10], "accuraci": 3, "rtype": 3, "none": [3, 4, 6], "precis": 3, "recal": 3, "gener": [3, 4, 6, 10], "confus": 3, "matrix": [3, 6], "return": [3, 4, 6, 8, 9, 10], "type": [3, 4, 6, 8, 10], "contain": [4, 6, 8, 9], "featur": [4, 6, 8, 9], "hierarch": 4, "method": 4, "correl": [4, 6, 8], "coeffici": [4, 6], "linkag": 4, "The": [4, 6], "i": [4, 6, 8, 9, 10], "measur": 4, "between": 4, "distanc": 4, "observ": 4, "space": 4, "each": [4, 8, 9], "highest": 4, "us": [4, 6, 8, 9, 10], "scipi": 4, "hierarchi": 4, "x_data": [4, 6, 8, 9], "m_featur": [4, 6], "str": [4, 9], "default": [4, 6, 8, 9], "corr": 4, "pearson": 4, "link": 4, "averag": 4, "cut_d": 4, "3": [4, 10], "make": 4, "n_featur": [4, 6, 8], "kind": 4, "complet": 4, "singl": [4, 9], "int": [4, 9, 10], "depth": 4, "dendrogram": 4, "show": 4, "verbos": 4, "fals": [4, 6], "graph": 4, "bool": 4, "print": [4, 8, 9], "cludict": 4, "dict": [4, 9], "dictionari": [4, 8], "data": [6, 8, 9], "preprocess": 6, "includ": 6, "remov": 6, "nan": 6, "constant": 6, "low": 6, "varianc": 6, "when": 6, "sequenti": 6, "train": [6, 8, 10], "test": [6, 10], "split": 6, "sort": 6, "respons": 6, "variabl": 6, "random": [6, 9], "scale": 6, "main": 6, "which": [6, 8, 9], "perform": [6, 8, 9], "all": 6, "abov": 6, "test_siz": 6, "0": 6, "2": [6, 8], "cutoff": 6, "plot": 6, "entir": 6, "clean": 6, "process": [6, 8], "one": 6, "option": [6, 8, 10], "string": 6, "float": [6, 9, 10], "auto": 6, "correlaton": 6, "below": 6, "we": 6, "keep": [6, 9], "boolean": 6, "x_train": 6, "x_test": 6, "p_sampl": 6, "y_train": 6, "1": [6, 8], "y_test": 6, "give": 6, "count": 6, "modifi": [6, 10], "9": 6, "appli": 6, "same": 6, "transform": 6, "x_train_scal": 6, "x_test_scal": 6, "multi": 8, "": 8, "output": [8, 9], "guid": 8, "implement": 8, "genet": [8, 9], "algorithm": [8, 9], "reflect": 8, "initi": 8, "learn": [8, 9], "cluster_info": [8, 9], "e_mlr": 8, "model": [8, 9], "regress": [8, 9], "500000": 8, "bank": [8, 9], "200": [8, 9], "compon": [8, 9], "4": 8, "interv": [8, 9], "1000": [8, 9], "core": 8, "95": 8, "forward": 8, "mutlipl": 8, "otherwis": 8, "number": [8, 9, 10], "overal": 8, "iter": [8, 9], "current": [8, 9], "everi": 8, "mp": 8, "cpu_count": 8, "multiprocess": 8, "twice": 8, "minu": 8, "assum": 8, "you": [8, 10], "have": [8, 10], "smt": 8, "ht": 8, "someth": 8, "similar": 8, "If": [8, 10], "larg": 8, "mai": 8, "want": 8, "set": [8, 9, 10], "lower": 8, "avoid": 8, "memori": 8, "issu": 8, "list": [8, 9], "best": [8, 9], "thread": 9, "version": [9, 10], "linear": 9, "ensur": 9, "ar": 9, "redund": 9, "50000": 9, "vanilla": 9, "parallel": 9, "descriptor": 9, "target": 9, "befor": 9, "time": 9, "best_model": 9, "found": 9, "best_scor": 9, "forest": 9, "copyright": 10, "c": 10, "2023": 10, "stephen": 10, "szwiec": 10, "file": 10, "part": 10, "program": 10, "free": 10, "softwar": 10, "can": 10, "redistribut": 10, "under": 10, "term": 10, "gnu": 10, "public": 10, "licens": 10, "publish": 10, "foundat": 10, "either": 10, "your": 10, "ani": 10, "later": 10, "distribut": 10, "hope": 10, "without": 10, "warranti": 10, "even": 10, "impli": 10, "merchant": 10, "fit": 10, "FOR": 10, "A": 10, "particular": 10, "purpos": 10, "see": 10, "more": 10, "detail": 10, "should": 10, "receiv": 10, "copi": 10, "along": 10, "http": 10, "www": 10, "org": 10, "y_true": 10, "y_pred": 10, "ccc": 10, "numpi": 10, "arrai": 10, "q2": 10, "n_train": 10, "n_extern": 10, "q2_f3": 10, "extern": 10, "sampl": 10, "y_mean": 10, "q2_f1": 10, "q2_f2": 10, "depend": 10, "whether": 10, "mean": 10, "from": 10, "q2f1": 10, "q2f2": 10, "rmse": 10}, "objects": {"": [[2, 0, 0, "-", "qsarify"]], "qsarify": [[3, 0, 0, "-", "classification"], [4, 0, 0, "-", "clustering"], [6, 0, 0, "-", "data_tools"], [8, 0, 0, "-", "feature_selection_multi"], [9, 0, 0, "-", "feature_selection_single"], [10, 0, 0, "-", "qsar_scoring"]], "qsarify.classification": [[3, 1, 1, "", "ClassifierScore"]], "qsarify.classification.ClassifierScore": [[3, 2, 1, "", "score"], [3, 2, 1, "", "tf_table"]], "qsarify.clustering": [[4, 3, 1, "", "cophenetic"], [4, 1, 1, "", "featureCluster"]], "qsarify.clustering.featureCluster": [[4, 2, 1, "", "cluster_dist"], [4, 2, 1, "", "set_cluster"]], "qsarify.data_tools": [[6, 3, 1, "", "clean_data"], [6, 3, 1, "", "random_split"], [6, 3, 1, "", "rm_constant"], [6, 3, 1, "", "rm_lowVar"], [6, 3, 1, "", "rm_nan"], [6, 3, 1, "", "rm_nanCorr"], [6, 3, 1, "", "scale_data"], [6, 3, 1, "", "sorted_split"]], "qsarify.feature_selection_multi": [[8, 1, 1, "", "Evolution"], [8, 3, 1, "", "selection"]], "qsarify.feature_selection_multi.Evolution": [[8, 2, 1, "", "evolve"]], "qsarify.feature_selection_single": [[9, 3, 1, "", "mlr_selection"], [9, 3, 1, "", "rf_selection"]], "qsarify.qsar_scoring": [[10, 3, 1, "", "ccc_score"], [10, 3, 1, "", "q2_score"], [10, 3, 1, "", "q2f3_score"], [10, 3, 1, "", "q2f_score"], [10, 3, 1, "", "rmse_score"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "titleterms": {"welcom": 0, "qsarifi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "": 0, "document": 0, "indic": 0, "tabl": 0, "packag": 2, "submodul": 2, "modul": [2, 3, 4, 5, 6, 7, 8, 9, 10], "content": [0, 2], "classif": 3, "cluster": 4, "cross_valid": 5, "data_tool": 6, "export_model": 7, "feature_selection_multi": 8, "feature_selection_singl": 9, "qsar_scor": 10}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 60}, "alltitles": {"Welcome to qsarify\u2019s documentation!": [[0, "welcome-to-qsarify-s-documentation"]], "Contents:": [[0, null]], "Indices and tables": [[0, "indices-and-tables"]], "qsarify": [[1, "qsarify"]], "qsarify.classification module": [[3, "module-qsarify.classification"]], "qsarify.clustering module": [[4, "module-qsarify.clustering"]], "qsarify.data_tools module": [[6, "module-qsarify.data_tools"]], "qsarify.feature_selection_multi module": [[8, "module-qsarify.feature_selection_multi"]], "qsarify.feature_selection_single module": [[9, "module-qsarify.feature_selection_single"]], "qsarify.qsar_scoring module": [[10, "module-qsarify.qsar_scoring"]], "qsarify package": [[2, "qsarify-package"]], "Submodules": [[2, "submodules"]], "Module contents": [[2, "module-qsarify"]], "qsarify.cross_validation module": [[5, "qsarify-cross-validation-module"]], "qsarify.export_model module": [[7, "qsarify-export-model-module"]]}, "indexentries": {"module": [[2, "module-qsarify"]], "qsarify": [[2, "module-qsarify"]]}}) \ No newline at end of file diff --git a/docs/html/sitemap.xml b/docs/html/sitemap.xml new file mode 100644 index 0000000..b839eef --- /dev/null +++ b/docs/html/sitemap.xml @@ -0,0 +1,11 @@ + + + + https://stephenszwiec.github.io/qsarify/categories/ + + https://stephenszwiec.github.io/qsarify/ + + https://stephenszwiec.github.io/qsarify/tags/ + + diff --git a/docs/html/tags/index.xml b/docs/html/tags/index.xml new file mode 100644 index 0000000..d4c6f4b --- /dev/null +++ b/docs/html/tags/index.xml @@ -0,0 +1,10 @@ + + + + Tags on qsarify + https://stephenszwiec.github.io/qsarify/tags/ + Recent content in Tags on qsarify + Hugo -- gohugo.io + en-us + + diff --git a/docs/poster/NDSU.pdf b/docs/poster/NDSU.pdf new file mode 100644 index 0000000..601c1a7 Binary files /dev/null and b/docs/poster/NDSU.pdf differ diff --git a/docs/poster/beamercolorthemendsu.sty b/docs/poster/beamercolorthemendsu.sty new file mode 100644 index 0000000..8b2b08e --- /dev/null +++ b/docs/poster/beamercolorthemendsu.sty @@ -0,0 +1,58 @@ +% Gemini theme +% https://github.com/anishathalye/gemini + +% ==================== +% Definitions +% ==================== + +\definecolor{lightgray}{RGB}{245, 246, 250} +\definecolor{green}{RGB}{30, 80, 59} +\definecolor{darkgreen}{RGB}{25, 65, 48} +\definecolor{lightgreen}{RGB}{103, 170, 143} + +% ==================== +% Theme +% ==================== + +% Basic colors +\setbeamercolor{palette primary}{fg=black,bg=white} +\setbeamercolor{palette secondary}{fg=black,bg=white} +\setbeamercolor{palette tertiary}{bg=black,fg=white} +\setbeamercolor{palette quaternary}{fg=black,bg=white} +\setbeamercolor{structure}{fg=darkgreen} + +% Headline +\setbeamercolor{headline}{fg=lightgray,bg=green} +\setbeamercolor{headline rule}{bg=darkgreen} + +% Block +\setbeamercolor{block title}{fg=green,bg=white} +\setbeamercolor{block separator}{bg=black} +\setbeamercolor{block body}{fg=black,bg=white} + +% Alert Block +\setbeamercolor{block alerted title}{fg=green,bg=lightgreen} +\setbeamercolor{block alerted separator}{bg=black} +\setbeamercolor{block alerted body}{fg=black,bg=lightgreen} + +% Example Block +\setbeamercolor{block example title}{fg=green,bg=lightgray} +\setbeamercolor{block example separator}{bg=black} +\setbeamercolor{block example body}{fg=black,bg=lightgray} + +% Heading +\setbeamercolor{heading}{fg=black} + +% Itemize +\setbeamercolor{item}{fg=darkgreen} + +% Bibliography +\setbeamercolor{bibliography item}{fg=black} +\setbeamercolor{bibliography entry author}{fg=black} +\setbeamercolor{bibliography entry title}{fg=black} +\setbeamercolor{bibliography entry location}{fg=black} +\setbeamercolor{bibliography entry note}{fg=black} +\setbeamertemplate{bibliography entry article}{} +\setbeamertemplate{bibliography entry title}{} +\setbeamertemplate{bibliography entry location}{} +\setbeamertemplate{bibliography entry note}{} diff --git a/docs/poster/cl.png b/docs/poster/cl.png new file mode 100644 index 0000000..8c8a63e Binary files /dev/null and b/docs/poster/cl.png differ diff --git a/docs/poster/map.pdf b/docs/poster/map.pdf new file mode 100644 index 0000000..d349dc6 Binary files /dev/null and b/docs/poster/map.pdf differ diff --git a/docs/poster/poster_2023.bib b/docs/poster/poster_2023.bib new file mode 100644 index 0000000..70689a4 --- /dev/null +++ b/docs/poster/poster_2023.bib @@ -0,0 +1,3 @@ +@electronic{ dragon6, title={DRAGON software for the Calculation of Molecular Descriptors, version 6 for windows}, author={Todeschini, R. and Consonni, V.}, year={2014}} + @article{rasulev2006, title={Structure-toxicity relationships of nitroaromatic compounds}, volume={10}, DOI={10.1007/s11030-005-9002-4}, number={2}, journal={Molecular Diversity}, author={Isayev, Olexandr and Rasulev, Bakhtiyor and Gorb, Leonid and Leszczynski, Jerzy}, year={2006}, pages={233–245}} + @article{rohlf1968, title={Tests for hierarchical structure in random data sets}, volume={17}, DOI={10.1093/sysbio/17.4.407}, number={4}, journal={Systematic Biology}, author={Rohlf, F. J. and Fisher, D. R.}, year={1968}, pages={407–412}} diff --git a/docs/poster/poster_2023.pdf b/docs/poster/poster_2023.pdf new file mode 100644 index 0000000..f0af5e7 Binary files /dev/null and b/docs/poster/poster_2023.pdf differ diff --git a/docs/poster/poster_2023.tex b/docs/poster/poster_2023.tex new file mode 100644 index 0000000..6a36fbe --- /dev/null +++ b/docs/poster/poster_2023.tex @@ -0,0 +1,266 @@ +\documentclass[final]{beamer} +\usepackage{outlines} +\usepackage{graphicx} +\usepackage{float} +\usepackage{mhchem} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage[T1]{fontenc} +\usepackage{tikz} +\usepackage{lmodern} +\usepackage{geometry} +\usepackage{caption} +\usepackage{wrapfig} +\usepackage{qrcode} +%\usepackage{chemfig} +% max size is 48x36 inches. We want a 1.61:1 ratio +\usepackage[scale=1.0,size=custom,width=121.92, height=91.44, margins=2.54]{beamerposter} +%\usepackage{mol2chemfig} +\usetheme{gemini} +\usecolortheme{ndsu} +\newlength{\sepwidth} +\newlength{\colwidth} +\setlength{\sepwidth}{0.025\paperwidth} +\setlength{\colwidth}{0.3\paperwidth} +\newcommand{\separatorcolumn}{\begin{column}{\sepwidth}\end{column}} + +\tikzstyle{block} = [draw, fill=white, rectangle, + minimum height=3em, minimum width=6em] + + +\DeclareCaptionType{equ}[][] + +\usepackage[backend=bibtex,style=chem-acs]{biblatex} +\addbibresource{poster_2023.bib} + +\title{\huge qsarify: High performance machine learning software package for QSAR model development.} +\author{Stephen Szwiec \and Bakhtiyor Rasulev} +\institute[shortinst]{Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND} +\addtobeamertemplate{headline}{} +{ + \begin{tikzpicture}[remember picture,overlay] + \node [anchor=south east, inner sep=3cm] at ([xshift=0.0cm,yshift=81.0cm]current page.south east){\includegraphics[height=4cm]{NDSU.pdf}}; + %\node [anchor=south east, inner sep=3cm] at ([xshift=-60.0cm,yshift=1.0cm]current page.south east){\includegraphics[height=4cm]{qsarify_logo.png}}; + \end{tikzpicture} +} + +\footercontent{ + \href{https://rasulev.org}{https://rasulev.org} \hfill + Conference on Computational Science 2023 -- North Dakota State University, Fargo ND \hfill + \href{https://stephenszwiec.github.io/qsarify/}{https://stephenszwiec.github.io/qsarify/}} +\begin{document} + + \begin{frame}[t] + \begin{columns}[t] + \begin{column}{\colwidth} + \begin{block}{Abstract} +qsarify is a new software package for the development, validation, and visualization of machine learning models for Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) studies. Written in Python and freely available under the GNU General Public License, this software package provides a focused workflow for the generation of predictive statistical models to better explain and predict the relationship between molecular structure and biological activities or chemical properties. qsarify implements an innovative algorithm to reduce input dimensionality during the feature selection process, utilizing cophenetic clustering followed by a genetic algorithm (GA) for variable selection. Implementing both serial and parallel processing, this algorithm allows for rapid predictive model development and validation of large chemical datasets on low performance computers, while also allowing for complex model development and validation on high performance computers by utilizing multi-processing. Finally, the software also provides for output the of statistical validation metrics and generates plots for model diagnostics, including Williams Plot and Y-scrambling tests. + \end{block} + + \begin{block}{Background} + \large{\bfseries{QSAR and QSPR}} \smallskip + + \begin{itemize} + \item QSAR and QSPR models are used to predict the biological activity or chemical properties of a compound based on its molecular structure, respectively. + \item As a data driven approach, QSAR and QSPR models are developed using a combination of molecular descriptors and machine learning (ML) statistical regression models. + \item QSAR and QSPR modeling is a powerful tool for the prediction of activity and properties of compounds, and allows for high throughput screening to be performed. + \item QSAR and QSPR models are used in a variety of fields, including drug discovery, environmental chemistry, and materials science. + \end{itemize} + + \large{\bfseries{Challenges}} \smallskip + + \begin{itemize} + \item The development of QSAR and QSPR models is a time consuming process. + \item Chemical descriptor calculation results in a large number of variables, which can be computationally intensive to process. + \item Researcher hardware is often limited, and the development of QSAR and QSPR models can be computationally intensive. + \item Current software packages are often proprietary, and are not freely available. + \end{itemize} + + \large{\bfseries{Objectives}} \smallskip + + \begin{itemize} + \item Develop a Free and Open Source Software (FOSS) package for the development, validation, and visualization of QSAR and QSPR models. + \item Scale to the hardware available + \item Automate workflows + \item Rapidly develop and validate models + \item Visualize relationships in data + \end{itemize} + + \end{block} + + \begin{block}{Methods} + +\large{\bfseries{Dimensionality Reduction}} \smallskip + + \begin{itemize} + \item After processing the data, qsarify performs cophenetic clustering on descriptors \cite{rohlf1968}, reducing data dimensionality. + \end{itemize} + + \begin{equ}{Cophenetic Clustering} + \begin{equation} + c = \frac{\sum_{i\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
No.AMWSpMvMeMsnBMARRRBNRBF...PCWTeLDIHyAMRMLOGPMLOGP2ALOGPGVWAI-80Infective-80BLTD48
016.5108.2840.6490.9712.00061.00000.000...10.1000.062-0.92126.0582.2555.0852.04700-3.46
126.14310.0450.6260.9691.95260.85710.067...11.3710.057-0.93631.0992.6086.8022.51400-3.80
238.7949.4380.6581.0373.07480.88910.071...2.2090.144-0.63633.3831.7973.2292.00000-3.03
348.06811.1990.6361.0242.93380.80020.118...2.4410.130-0.67238.4242.1504.6232.46700-3.36
458.06811.1990.6361.0242.93380.80020.118...2.3130.123-0.67238.4242.1504.6232.46700-3.36
\n", + "

5 rows × 676 columns

\n", + "" + ], + "text/plain": [ + " No. AMW Sp Mv Me Ms nBM ARR RBN RBF ... \\\n", + "0 1 6.510 8.284 0.649 0.971 2.000 6 1.000 0 0.000 ... \n", + "1 2 6.143 10.045 0.626 0.969 1.952 6 0.857 1 0.067 ... \n", + "2 3 8.794 9.438 0.658 1.037 3.074 8 0.889 1 0.071 ... \n", + "3 4 8.068 11.199 0.636 1.024 2.933 8 0.800 2 0.118 ... \n", + "4 5 8.068 11.199 0.636 1.024 2.933 8 0.800 2 0.118 ... \n", + "\n", + " PCWTe LDI Hy AMR MLOGP MLOGP2 ALOGP GVWAI-80 Infective-80 \\\n", + "0 10.100 0.062 -0.921 26.058 2.255 5.085 2.047 0 0 \n", + "1 11.371 0.057 -0.936 31.099 2.608 6.802 2.514 0 0 \n", + "2 2.209 0.144 -0.636 33.383 1.797 3.229 2.000 0 0 \n", + "3 2.441 0.130 -0.672 38.424 2.150 4.623 2.467 0 0 \n", + "4 2.313 0.123 -0.672 38.424 2.150 4.623 2.467 0 0 \n", + "\n", + " BLTD48 \n", + "0 -3.46 \n", + "1 -3.80 \n", + "2 -3.03 \n", + "3 -3.36 \n", + "4 -3.36 \n", + "\n", + "[5 rows x 676 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dfx.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "daf17e1a-182a-43c3-9b92-68f76eec6b74", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(28, 676)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dfx.shape " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "bd7cbef0-6a23-4430-a582-d7c6f9970097", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(22, 549) \n", + " (6, 549)\n" + ] + } + ], + "source": [ + "# this is the basic workflow for the data_tools module\n", + "dfx = dt.rm_nan(dfx)\n", + "dfx = dt.rm_constant(dfx)\n", + "dfx = dt.rm_lowVar(dfx)\n", + "dfx = dt.rm_nanCorr(dfx)\n", + "xtrain, xtest, ytrain, ytest = dt.sorted_split(dfx,dfy,0.2)\n", + "xtrain, xtest = dt.scale_data(xtrain, xtest)\n", + "print( xtrain.shape, '\\n', xtest.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "09a250cf-a5c9-465c-ae07-d96f210c413f", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAGNCAYAAACISt+uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9f1ic5ZU+fidCnGqIJIJO0qDEBjvaYIkNlrTShja40JVd6cpaPi3fSiu7YSuttNKVrlTZJWuw0kqXtGLLKpXUUMWIEiMamhCDARMMJBllmpCAhAQMkzAJJEzC5P7+cT/vO9ptt12T1lLnXNdcIfPjfd/n53nOOfe5zzSSREhCEpKQhCQkf8Uy/f1+gJCEJCQhCUlI/tQSUnYhCUlIQhKSv3oJKbuQhCQkIQnJX72ElF1IQhKSkITkr15Cyi4kIQlJSELyVy8hZReSkIQkJCH5q5eQsgtJSEISkpD81UtI2YUkJCEJSUj+6iWk7EISkpCEJCR/9RJSdiEJSUhCEpK/egkpu5CEJCQhCcnvlC1btiAjIwPz5s3DtGnT8Oyzz/7B37S2tuITn/gEHA4HrrrqKjzyyCP/4zsNDQ249tprceGFF+Laa6/FunXr/gRP/24JKbuQhCQkIQnJ75Tx8XF8/OMfR1VV1R/1/QMHDuALX/gCkpOTsXPnTnzve9/DN7/5TTQ0NNjf2bZtG2677Tbk5OSgu7sbOTk5+Md//Ed0dHT8qZoBAJgWIoIOSUhCEpKQ/CGZNm0a1q1bh1tuueX3fudf//Vf8dxzz+HNN9+031uxYgW6u7uxbds2AMBtt92G48ePY8OGDfZ30tLSMHv2bDz55JN/sucP+5NdOSQhCUlIQnLeZGJiAqdPnz7n65DEtGnT3vXehRdeiAsvvPCcr71t2zbcdNNN73rvb/7mb1BTU4MzZ84gPDwc27ZtQ2Fh4f/4zsMPP3zO9//fJKTsQhKSkITkL1wmJiYQ/aEPYew8XGvmzJkYG3v3le677z7cf//953ztoaEhXH755e967/LLL8fk5CRGRkYwd+7c3/udoaGhc77//yYhZReSkIQkJH/hcvr0aYwB+A6Ac7G//AAqxsYwMDCAWbNm2e+fD6vOkt+2Gq1I2Tvf/13f+e33zreElF1IQhKSkEwRuRCA4zxcZ9asWe9SdudLnE7n/7DQ3n77bYSFheHSSy/9X7/z29be+ZYQGjMkIQlJSKaITD8Prz+lLF26FC+//PK73nvppZewZMkShIeH/6/f+dSnPvUnfbaQZReSkIQkJFNEzlVh/V9/OzY2hn379tn/P3DgALq6ujBnzhxcccUVKC4uxuDgIH7xi18AEPKyqqoK3/72t5GXl4dt27ahpqbmXSjLb33rW/jMZz6D8vJy/P3f/z0aGxuxceNGbN269Rxa9oclZNmFJCQhCUlIfqfs2LEDixcvxuLFiwEA3/72t7F48WJ8//vfBwAcPnwYb731lv39BQsW4IUXXsDmzZuRkJCA//iP/8CPf/xj/MM//IP9nU996lNYu3YtHnvsMVx33XV4/PHHUV9fj09+8pN/0raE8uxCEpKQhOQvXI4fP45LLrkE9+PcYnYTAO4H4PP5/iQxu79kCbkxQxKSkIRkisif24351yQf5LaHJCQhCUlIPiASsuxCEpKQhGSKSMiye+8SUnYhCUlIQjJFJKTs3rt8kNsekpCEJCQh+YBIyLILSUhCEpIpIiHL7r1LSNmFJCQhCckUkWk4N4X1p2Wf/MuWD7KiD0lIQhKSkHxAZEoqu5/85CdYsGABHA4HPvGJT+CVV155vx/pf5U/VNqeJO6//37MmzcPH/rQh7Bs2TK43e53fcfv96OgoABRUVG4+OKL8Xd/93c4ePDgn7EV/1MeeOABJCYmIiIiApdddhluueUWeDyed31nKrbtpz/9Ka677jqbLHfp0qXvKjQ5Fdv0u+SBBx7AtGnTcNddd9nvTcW23X///Zg2bdq7Xk6n0/58Krbp98m08/D6oMqUU3b19fW466678G//9m/YuXMnkpOTkZ6e/i7Kmr80+UOl7R988EH88Ic/RFVVFbZv3w6n04nU1FScOHHC/s5dd92FdevWYe3atdi6dSvGxsZw8803IxAI/Lma8T+ktbUV3/jGN9De3o6XX34Zk5OTuOmmmzA+Pm5/Zyq2bf78+Vi1ahV27NiBHTt24HOf+xz+/u//3t4gp2Kbflu2b9+ORx99FNddd9273p+qbfvYxz6Gw4cP26/du3fbn03VNv0uueA8vD6wwikmN9xwA1esWPGu91wuF++555736Yn+bwKA69ats/9/9uxZOp1Orlq1yn5vYmKCl1xyCR955BGS5OjoKMPDw7l27Vr7O4ODg5w+fTpffPHFP9uz/yF5++23CYCtra0k/7raNnv2bP785z//q2jTiRMnGBcXx5dffpmf/exn+a1vfYvk1B2v++67jx//+Md/52dTtU2/LT6fjwD4I4CPnMPrRwAB0Ofzvd9N+rPLlLLsTp8+jc7Ozv9R9v2mm27Cq6+++j491bnJgQMHMDQ09K42XXjhhfjsZz9rt6mzsxNnzpx513fmzZuHRYsW/UW12+fzAQDmzJkD4K+jbYFAAGvXrsX4+DiWLl36V9Gmb3zjG/jbv/1bLF++/F3vT+W27d27F/PmzcOCBQvwpS99Cfv37wcwtdsUkvMrUwqNOTIygkAg8L6UdP9TifXcv6tN/f399ndmzJiB2bNn/4/v/KW0myS+/e1v48Ybb8SiRYsATO227d69G0uXLsXExARmzpyJdevW4dprr7U3v6nYJgBYu3YtXn/9dWzfvv1/fDZVx+uTn/wkfvGLX+Dqq6/G8PAwysrK8KlPfQput3vKtun3SSj14L3LlFJ2lrwfJd3/1PJe2vSX1O4777wTu3bt+p01qaZi2z760Y+iq6sLo6OjaGhowFe/+lW0trban0/FNg0MDOBb3/oWXnrpJTgcv587f6q1LT093f47Pj4eS5cuxUc+8hHU1tYiKSkJwNRr0++TkLJ77zKl2h4VFYULLrjgfSnp/qcSCzX2v7XJ6XTi9OnTOHbs2O/9zvspBQUFeO6557Bp0ybMnz/ffn8qt23GjBlYuHAhlixZggceeAAf//jHUVlZOaXb1NnZibfffhuf+MQnEBYWhrCwMLS2tuLHP/4xwsLC7Gebim17p1x88cWIj4/H3r17p/R4heT8ypRSdjNmzMAnPvGJ/1HS/eWXX/6Tl3T/U8mCBQvgdDrf1abTp0+jtbXVbtMnPvEJhIeHv+s7hw8fxp49e97XdpPEnXfeiWeeeQa//vWvsWDBgnd9PpXb9ttCEn6/f0q36fOf/zx2796Nrq4u+7VkyRJ8+ctfRldXF6666qop27Z3it/vx5tvvom5c+dO6fH6XTL9PLw+sPJ+oGLORdauXcvw8HDW1NTwjTfe4F133cWLL76YfX197/ej/V45ceIEd+7cyZ07dxIAf/jDH3Lnzp3s7+8nSa5atYqXXHIJn3nmGe7evZvZ2dmcO3cujx8/bl9jxYoVnD9/Pjdu3MjXX3+dn/vc5/jxj3+ck5OT71ezmJ+fz0suuYSbN2/m4cOH7dfJkyft70zFthUXF3PLli08cOAAd+3axe9973ucPn06X3rppSnbpt8n70RjklOzbd/5zne4efNm7t+/n+3t7bz55psZERFh7wlTsU2/LRYa86cAHz+H108/wGjMKafsSHL16tW88sorOWPGDF5//fU21P0vVTZt2kSYSfbO11e/+lWSgkffd999dDqdvPDCC/mZz3yGu3fvftc1Tp06xTvvvJNz5szhhz70Id58881866233ofWBOV3tQkAH3vsMfs7U7FtX/va1+z5FR0dzc9//vO2oiOnZpt+n/y2spuKbbvttts4d+5choeHc968efziF79It9ttfz4V2/TbElJ25y7TSPJPYTGGJCQhCUlIzo8cP34cl1xyCaoBfOgcrnMKwD9DaUKzZs06Pw83RWRKojFDEpKQhOSDKOdK+fWXhS3988oHOl4ZkpCEJCQh+WBIyLILSUhCEpIpItNxbvyWH2TrJqTsQhKSkIRkikgoqfy9ywe57SEJSUhCEpIPiIQsu5CEJCQhmSISsuzeu0zZtvv9ftx///3w+/3v96OcVwm1a2pJqF1TT6Zy20IMKu9d3tc8u5/85Cf4wQ9+gMOHD+NjH/sYHn74YSQnJ/9Rv7XyTv7a8kVC7ZpaEmrX1JOp2DbrmesAXHQO1zkJ4Cv4YObZvW+KfipWHA9JSEISkpBMTXnflN0Pf/hDfP3rX8cdd9yBa665Bg8//DBiYmLw05/+9P16pJCEJCQh+YuWkBvzvcv7AlCxKo7fc88973r/91Uc9/v97/Kvnz171i68ePz48T/tw/6ZxWpPqF1TQ0Ltmnry52obSZw4cQLz5s3D9OnnR82EACrvXd4XZfd/rTj+wAMPoLS09HdeKyYm5k/yjO+3hNo1tSTUrqknf662DQwMvKvOY0jeH3lfFf0fWz24uLgYPp/PfllxvUIAnQCAKrwAQLbeG3gYwEsAdgF4w3zHd+GFaAFQBeBJAMBPAZTD9/Wvw7d8OYByAPfBZz73JSdjAADwALYD2AgA8MA3cyZ8V1wBX0oKngLwHIB9ALYD8KWloR+A77bb4EtJQUmJD1/9qg++Awdw3XU+xMX54Hv4YRwGAHSgqsoH3549SEnx4cMf9sFXXAzgGbQB8P3zP+u3114LX3k5fKWluPZaH/YB8D3xBHylpfA98wy6unx4BEAtgKfNv8cAHD7sA/AGdgF4xjz/8uU+lJT4ALyKpUt98H33u/CtXImHHvLBFx+PFwH8xPRZD4BWANsAlJf70NXlg+8HP4Dvqqvgu/56+D78YfiuuAJN5ju++Hj1zc03o9/0ySYAvpUr4UtJge/JJ/W7227DIIAmAM8CeAXAsWM+bATwoBkf3yWX4AAA369+hT1We6+4Ar60NPgefRR79/rwL//iA3AUhw/7dO3SUjNyO+Dr6ADQhCNHfLjqKh+OmbavMf3ue+EFdAEAHsILgPltGXxf/jJ8M2fiy1/2wXfsGLwAgA2IjPTBd8UV+NnPfGrPN78J4A34li+Hr60Nycn6PtCK66/3AXgAvptvRi0AYBgvAvA9+ih6enxobfXBN3MmgG67n667zqf23nsvXnrJh5UrffClpABohe/LX8bKlT6kpem9IwA6O3247jr9f2DAhwMHfBqXJUvgu/BC9PT49KzPPAPft78N34UXwjcwAF9VFXxf/Sqee84H3wsvwHf4MI4c8aELwH4AcXHm+fbtUzuTk/V3SorGYM8eXaOjA75jx/Av/6L77APgO3IEA4DGaflyteeKK3AEgG/pUvheegkDA5pzR4740AmgHsAAgC4Azzzjg+/ee+EbGEBPj8Z0zx4fqqpM2196SeOwcqXdB759+9Bv5s/TAHw336z5kJysOZGcrPU9MADf8uVaV2lp8D33nNrS1QVfZyd8K1dq/V5/PXwtLfB9+9toAgAcgu/JJ7HfrIE9e3w4csQH36OPwldcDN8TT6ANwBNm3e3Z40M9oPnzz/+MgX/8RwBAREQEzpdMOw+vD6y8H6UW/H4/L7jgAj7zzDPvev+b3/wmP/OZz/zB31vlLjoB3gcQOMQBgGxsZHQ09bfTSebmki4XGRdHJiayH+B6gAcAAq8R6CIHB8nubgI1BFaTZWVkYSGZn88zAIGt9PvJXoCrVpFMSND1qqr0b3Q0twH8GUAmJLAeIPPyyMpKJieTaWkks7MJPMHERPIwwA6AlZVkcTHJsjICv2Renu4BbCQbGkifj8zNZQtADg+T4eEE9pL9/WR9PRkXx8FBkoOD7AV4DKAH4GHzd38/GR1NMjaWZwCOA6yoINeuJadNI7OySIaHk04nKytJdnTQD+j56+rI1FQyPp50OEiHgwcANgN8BWCL6fudAN0AnzSvn5r7rAO4GuA209+vANwO8BRARkaSMTHcDXAYIAFyfJzD5rl3ArpnZKR9n4YGkpmZGteGBsbEmGcvKWFnp/pX/bONQCmZn8/aWhLoY38/db3qajI/n+vXq3vZ2MicHPIEwNpaDTnNswNbeQTgywCbm0m3W98DBnS9hgYCL2hcamvpcJC7zZgC+wnsYjNAL0C2tnIYYESE5qXXS9LlItCkm1ZUEDjEfoCMiWFLC+n36zsFBWQgoOcCmvgmQB9Aer2k16v+a23l+LjmAZubybg4+v1kTQ25YgXJggL2A7pOSgqZkKD+S00l/X69n5rKNQCBHt3c7+eAmUMFBSQTE8mqKvYCZE4OAwCXLtUcmjaNbDVznx0dZEqK5nxjI+nx6LP4eCYnk8AY29pIFhWRHR18DCArK8mSEgKH9HdSEufO1Z8ZGdScDwTYARA4xd0AnwKYnU0mJ5OMj2dzM8nmZv3b1MTSUv12aIjMzCQjIjRmLQDZ3c3Zs7UuXS7NK0ZGqm39/WxuNms2I4MLFpAMBNgCMCODXLBAS76mRp8zO5tnAD4PcNCM/5tmP2JsrNlnzk85HWvPexrgC+fwevoDXOLnfatnd8MNNzA/P/9d711zzTW85557/uBvrYEHqggcMgpvhMCDZFMTge8TKDb/5hHoYkwMCawl0EzgIVYC/BFA4BkCT5Dp6aTTSeBBAo0ENhFo4l772lvN52MEBuhwkMDtBG4j8F0Cj5jfbuLKldp3WFBA1tRowWZlsRvgypVm8aWkkPX1BDrJujp2ACwtJfcCXLxY+wHj4rhyJQm4db2MDBYXS2ExK4vAgFHUxQS+SWA1gUeZmUmyupqnAAJlBO6VEiguJnNyeAYgS0pYXKw9kjExpl++RuABAj821/sGgRX0+6Vj29utPtxrvt9p7r2JwCQzMvTc6qPTBJ5gXp42j6VLtb8WFNCMy1ECdxH4hnnvO+ZZ72JBgTbRVatI4Jdkbi6zskjgNba0kKWl1IHC5eKCBWRFBclAgM1GOTI2lkxKIjs7SY+HwFEyP1+beXo6WVYmRWAUJFtapDw9HjY0GAVTXMz2djNOKSlsayN7e6X/gQEyNpbAa1y9mlI2vb3c8A7l7vHop9rIx6SUvV76AAI1dAMEHqfDQXoBPUdpKVlezrY289ukJB16SkpIr5fTppGAT4NWWkpgkkVFpMcjJdvdTc2njg4yI4NZWdLxwCkGAtb4jXD1as3P+Hi1VWPxlA4jVVVkdTVratTfWjeHmJioa7W3q+t7e6ln8/kIHGV/Pwk0cuVKmrHyEXiCwAssLpaC0Hi+Zn6zyRwMtnDpUpoDxCF6vVLSQB/b2sxYFBVxaEiHBfX/Kd3f45Fi8fsJ/JJAF+l2MytLc2727HfOuRpzGFpLt1ttyM3VvNFaXs1Vq6TrdVDaYq7/mv4eHiY9HhYVScn29mrcATeBYU6bpj6NiFBb8/JIX1VVSNn9Bcn7puzOpeK4NfAvABwwyug+gOzoIPAE18FYdhkZWtHFxbb1MWhOmsAp2pZSRweBrZrUDQ3cBpC5udwEEPgah+0T/xZuA9hvTth+yzpxOKRAysrohyxMxsYyPl776OCgFl9FBcnCQraZ09/4uBZXRoY5QWdnE3DrGjk5HBqiTtX9/WRiIoFm3S8ykqyokKIqK2MjZEUxNVUbVnExly7VomV5uX6TkECgi3PnGmXr8ejmgYA2m9RU7gTYa/rIb150OLThVFaqXcbCOmCsrFbI4gtYSqaujiws5Bmrb/LzZYlmZNDnozaNqioyOdm2Dtnby1aAZwBZAlYb6+roBkifT/err5cCGB4mfT42NBgrLT+fjI9nfLxO3yws5IoV6vfCQpJJSbIooqP1/4YG059deu7OToaHqw/OALK4a2pIh4Ph4WRrK8mcHJaUUDtcS4uUUXc3vV5NMebns7RUY7x0KcmMDA4DzMsjGR6usWxt1SZdUiLrIT+fjInRvEhJIRMT6fOZNuXmMjtbbWFbG1esoPpgeJiMi5OXITmZbG0l4JZiTkqS5ehwcM0akgUFDABmHk+yu1uKdWiIWh9+PwE3jaYiMELm5PAEoGtnZJAdHVoz4eGyKOvq1AeVlZoXbrfGJD1d41NQoLmSm6vJn5OjQ1Z+vp7N7SaTk+kF+CZAVlTogBIISJsmJNiHKzY36/2WFjI+nr291PzOzZWirajgbrPu7HlqFpPXqz5kaSnZ3a1/4+L0fC0t6sfubs1Zl4udMJ6HggKyrIx7Aa5fT7KtTWuwqYmsqpLVbcaESUmyCMPD9aqp4QDA1FR1kS8l5bwruwaAL57DqyGk7N4fea8Vx62B7zeKBXiQ7OiQwist5RGj2H4G8DFLwY2Py90VEWGUzRMEfskagLVmA2htJX8A8MQ7Jn5lJbX5Fhdz9Wpqwy8vJysqWAO5/fYCZEQENwE61hoXjs+ndXUMcpEAXdpoAgFWV5Pr11PPVllJYCt7e41FZ1uETWxokJuovZ26WFsb29p0cm4FWF1NDkPuxO0Au82z6tQ5zDWQ2/F5gBwc5OCgNue8PKodPh8LCshu81uvUUCtkLvoKYCFhfL2NDSYvmhstEw4jsNYAx6PLJzGRvVBfT0ZEaFNq7ExuBGVlcl95XLRa/VdQwNPAdxg/d/jIdPT2d1NMilJyicQ4CnIYpLi1on7TaMACgtJoIsul07lMTEk6+ul5FJTGRcnZZGYSI1jfj7j4+We5OAgw8O1p1VWkszLI9DD1avVT4mJsmiYmMgBgLshK7wB0JzKzDSW7HfMc22VUq2slFJLTyfT05maaqx0gMBp/T41lbNnk4yOJjCm+3d2krW1zMjQng50yrrr76cXYHKysUrKyjSGMTF8AnJVvgxw7lwzVllZ2pzdbj1nf7/GKidHCtzhIFNT1YcJCWxrk+sbOM2GBnInwCOAFH9rK4eGjKVVV0d6PBpbs64KC8knAZ2wHA4eAVhjzY/6es2X8HCuA4KKu6hIrsW6OtLv5xlzOPADbLTmVV0dgUkuXizrdXCQUjYej+ZHcTFbWshGs96LijRnDlsHsMhI0uFQXzud3GDWGyMiSKdTh8zGRv3frFmWlOjwGgjwFci9PDQktyjDw8mEBPp8Zq4kJ+ugkpys/i0t1RrJzzfW7flVdusAvnQOr3UhZTe1JOjGfENxqaYmAk+QpaXGpdmnXaK+nhweNm6eQwQ6GRcnncHKSn0eGUkmJnKD2WyZk0PgKFtapFB2AmYD6GMA4LRpOrlnZGgPWbtWLo2KCpL5+ayulq5yuSitUl2te7hcbG7WYRWQ5ceWFtLp5AmALS3aUwag+E5iouXOOUrGxHDlSm1kciEOaAN0OtnernUWHW0bXgwEjGstECCrqqQg3G5tLE6nHnh4WBtQa6sUQlUVV67UtRobtbmPj5McHmYgIAWxciVJr5crV+rAzt5e0zcjXLqUXLxYxuLatbJkU1LkulqzhkH3oM9H1tba7qC8PI3f4sX6bkaGuszt1r5ZXEyz0R01BwYfWVTE1atluQ0CHB83/d3URFZXy1WWna3xzctjS4vunZtLMiODOTnqJ8bEMCdHhw4mJxPoIbCL4/aY98gaaG0lsF+WbnGxHtKyWAoL2QnFsBoa1FZt0HJ3s6pK92pp4apVGleWlcnV6HazuFj9LBdfsxpVXKwxcbmYlqa9fdwoAnq96vu6OlmatbVSKOnpcuNVVHDxYur6/f2cO9fcMzubra2mrZbVmJWlTT4Q0HPHx5szzAjj4qjNOzubS5fq+QIB857Xa/fp0JDmRU0NyfJylpToHuPjlA8xENDa8PkU18vOtuOJCxbQHPR8UniBgBRIXJzaZMaztjY4tyyPRW+vhmDpUhloDQ2043d5eZTScbvVj3l5ZGmpbe2uWUM9cFMTKyo0jPHxZk6Mj7OiQnPTbw4B3d0aP8vCZ1sbs7N1JomI0G9jYrRGAJ+8LMPDBJ78q1F2q1evZmxsLC+88EJef/313LJly+/97le/+lWzP7/7de2119rfeeyxx37nd06dOvWe++gPyZRWdg/DcmN+n+vMKRTo432QW+9NyIVDyO1WA8VTOmHFsh7STHU6CXQRaKYPsgaPmdMl8ABfgWX+b+FuY30cMe/VmOvthtxwXhi3SmIi4+KMK7GqitnZOkizooLdAMPDjdItKTEbzCkTh3lG13A6tanl5Ghzrawk4JbFGROjjaewkBwf52MAHzDP8RRAVlezsVF7zWHIstsNARDCw7XJVFeT9PvZ1qa94IRp9zrILWm9WgFtGMPDZEeHDXZ5EyATE/lfpk8ZHq4doqyMjItjwDo8lJZqNzEbDquqbDfpE+ae7O/nY1C8qwZQe51OsqGBuwGd5h0OG2jEpiauWqUNkK2t2rhqa6mYzAAHBxXzGxzUbc9AJ36POUgEAjRjvlWWZH8/gV3S8hkZlmFu3MpHpRiKiuh2U+3LzNQhKzGR7O1VDNHnI7DXxNW2kOXlHIQsyUGAbGujT3raxFKP8oiZLykpxvrv6GB7u3GbpqQQmCTr67lmjRkvQCeIjg5ZjjExZEODFE1mpj4zscrUVKrx6ek8ArCxkVKAJjZpjcXKlSRdLjsc4POZPi0qktVbVMTDkOufHo+0TFMTWVdnA6QYGUk2N8saKi/Xdw24yQ+5KllcLNdffDzZ2ck2Myct8JPHQ42vdSI0rsJAQMPC+nop7fh4nWw8HrKpSd6djg7NwZQUKWOHQ/fLzNShsrqaJ8y89VvPaM3LpiYyPl6eD6dTizI7m92A7So+Yw5U7Oy0D1CsqyObmtho9gMPZM11w7g/a2vp+9WvzruyawS48Rxeje9B2Vkhp5/97Gd84403+K1vfYsXX3wx+/v7f+f3R0dHefjwYfs1MDDAOXPm8L777rO/89hjj3HWrFnv+t7hw4fPtZv+V5nSyu4lM0GBYtLplBvFp5PVfQD/A+AaCP3I5GT6IVffYwAFKFnBdZDLs6BAxkCNmbyMjjaxPbc2mYgIWQZFRYq1VFbyAbM5P2+uu85SAuXlZGMje3t14jwDcM0aakOtrSUrKrhggawnP+RiBbaQdXVyeyUkkG1tBBRX8ABkXp7cRiUlbG/XoXwYchHVQ8jBNUZh0OHg+vVCsq0GWA7wB+Y+snLdsoTMRjR7tlyljaYt1r8/Mr9radHpmR0d3GmU+hnoANFt/mZGhjaopCT9PzJSfVFVJVO3qEibSVISnze/a7PGpqGBOyE050+heGiz2cS2QW4vuqXoW1pI5ucbUMEhuaoSEow19QSB/bZO5OCgFEd0NFNT5ZZbscKAh0wMczsUMwR61MbeXrK5Wcqis5MLFhjXstdru+i2QYeVNhg3Zne3AXTcRWAjgdWKGcXFMS2Nesa6OjY2ytVaCxB4QchXc9AahmKFq1bpviwqkoutt1eoQ6+XjI3lEbOZJierH5ieTtbW6lnGx9kNoUtXr6ZOO01NGme3m/T5pMAqK7VZx8XZfb8dcle3t+u3Ho9xNVqKo6VF7c/JIWtqODioy6xdSymUjg6ugbF8S0roMfOxFebAU1REZmfbiFovdGB8yvzG7abmUHMz6XQqVpuTQ3Z2Ehjj2rVyY7KxkYyJ4fr1xpuSkcHWVrmU20w/s7GRTE/XISMvj0xO5iYz1zYAMhFzctR/NTVkRYXWUnOzGu7x2LHNN81cZUuLXMLp6WR4uABHnZ1keDiPGCXq81GK2Bwyvva18+/GfB7gr8/h9fx7UHY33HADV6xY8a73XC7XHwUmJMl169Zx2rRp78JjPPbYY7zkkkv+6Gc4HzKlE+qdAJCeDiAcSEzEGAC8+CIioWz5SQCnAUQCgNOJGU4nrgYQBZh3Z2EIwFEAX/qSXscBzASAEyeAqChMm3atbhYbi7AwAA4HEBYGnDhhJynOBDAPwIT5FzfeCDidcDqBD39Y5KtpaQBwBli4EFi+HIsWAXPn6n54+mkAY8A112DZMgBxcebKb+CNsOtwEABcLlyBt4CFC+H1As8+C7wNABdfjEjzDJdZbVu6FKOjADAX0yHi2BkAYCfsz0Vioq6JG2/EqVPACJR0eYXps9Pv6OeeHmDHDuC46wb1bWwswpxORAGYBSAsKUltvuUWID4eYSkpQEYGLgOA1FTgb/4G+PjHgcRE4JprcBbAQvPM0wHg8GE4AMwxzz8rOhpzoPvNAeD1avwc4eGYmACwdSsmJt4GMII+QB2ZmgrgSjgcC7B379tYuBBAe7vdhoEBXT86GhgZMb/BXM2hsTEAc1FXB3QcuQqoq8PLL0/gNzOvR1SUhvulHXOAtWsxNjGB4wA+/3kzdiMjwNq1ePFFmBngADAfdXWaBz4fMN3pBDo7sXEjABzCWQDAlXqw6GgA83FZRASamsx/HQ5gclJtmD9fzairAxYsQFR4OBwOIDLSjN/EBDA5iZMAjk5cBIdp74kTZuBiYjSfHA4cGpslFomtW4EFC9QpYWGYY+ZtbCzg9wOjoxrvEQAHJybUAaOjQFISEBUFxMZiHg5h0SJovi5dCsyfj5MA8LGPAT09mAGtqygAWLRIF3z6ac3lqCicBhAVG4sJAIiMxLVRb+sesbE4NDSkce3qAjZsADADbW2at1i4EFi2DAkJ+hMzZ8LK1x4y10JfH7Btm55n+3ZMvPIKjpq5/bZ13fZ29cP8+UBUlNb8mTPAwYPA3r24CMDl/a/hIMw+8+abmNH3G2DTJoycOaMp43QCTieinE7McLkwa/IosHgx8PzzQGws1q/HX6wcP378Xa/fVwHCYru66aab3vX+72O7+l1SU1OD5cuX48orr3zX+2NjY7jyyisxf/583Hzzzdi5c+d7a8wfKVNa2YUBwLZtAA4DfX36/7JlGAJwFYBYAH0Aro6PB2bOxNDQEMLMZ0A7gAswy/x/3z6tgTAAZwHsmZjA25s2ITYWQGQkJnfv1ib51FPAI48AdXWIhDa8IWgRnYbp0GPHgEcewc03AxERwEGY/RTHtHE88ghWrNA+NQRoE8EFgMOBNWsALFmizQGfhtNp2pmWhkdfvAK48UZ8YeQXmDlT9zub/reYBd0jClLw+Pzn9XM4cBmkBOcB+HHTVVi7Fpg7dza+8Q0AhYU47roBgYC+M2Z+PwfatmdCivIrX9Fr5kxtgBgcxEGjOH8DaONYt04d+NnPAocPAz09GAWAl18G2tqAxkYpxKQk7AdwUUoKzkIJ7Fi8GG+bZ5wDAGVlWOJyYdaLv0IUtCfhySfxxpkz+ELYS0BkJDIyLoPLFa/N8ktfwm9GLwMQwMTEAYSHXwanEziU9EVERQG44AIUFABXGGW5bx+A22/H0qWXwQFgF65DWtosjIwAn1zwNvA3f4PkZAfmz9cByOmUIsDy5ZgOHZMCAXMompyEGR4AnwbgAfBRLF8OYP583HEH9OMvfQlf/jIAzIK45sfFXp+QACAcEydOYMkSzQlMTgKTkzh4EHhraIauvWyZ5o75+I47ADzwgDbnmTNxNYA5YyJbGBmR0sKyZToVGW0wL/IkHE6n5tfOnTg6MQHceCOucLkwCX312WfVP//P+WtMWvP5kUeA++8HDh7EybIfAg89BAwN4XNJJ3G5/y1gxw6cjJyHJEATHkBsZCSuNWsJp05J4SUl4SSA4wmf0dxwOPAp88C/Gb0MPa+8guPOqzEvMhJXADo8JSSgsjIc//ZvAHAKuPdeoKcH83BIY6ITBK6A1vHJlL/V2gkEsDAyEggE4IiPxxCktKYD6uSJCSAyEqeX3QTcey/aYQY1IQEYHNS8OnIEx80aQGYmTsdeLeUWG4vPJJ3GUcc8jA4MSMHOnavOm5jQoe7DH8bixTjvcr64MWNiYnDJJZfYrwceeOB33u//ynb123L48GFs2LABd9xxx7ved7lcePzxx/Hcc8/hySefhMPhwKc//Wns3bv3j+qH9yR/VjvyPMk7k8oZF6fAfHExB2F8/8Zl4YFiDfcBikPk5vJNgP8FoeGA/WR8PA9AcOG5c/Vb23VTUyNIukkgbWigXBeNjWRvLzsh5KbfuGQYEaH4Rnq6YiF5eXZiLzCpoH9yMlldzfBwXZZ5eczNNekAViJrSgpZWqrfxsfLPVhVZcOpU1Lk1WJlJXt7ldBM4zLywCDgWloIDLPDuFbdMAH/3l5GRMgl5IPQgGvW6LoMD1efGqTaXigVob/fINHy8hTzyc4my8sFu46L06u01EaleY0b047hJCaSbW1KM4iNJePi7Dii1beMjOQGy62Zmalns2IyVppEejrXrg2CC10u6rO6OhOz20SHQy7exET10dAQSZeLs2eTbgjkUV1NMjqa0dEmVub1EjikD7q72dJiAA81NZw7V6Ex5ucrRtXURKamapyio0mvlzU1Fnp/rXGv/khuv+Rk5ubKjc2WFg4NyaN7GAI6HQYMCvM0fVCMKDubim0VFjIrS7iOmhrjes3N5V7zvZwckvX1NjpxEKDfr7jkqlXm+/X1crdlZgrNWVCgv91uvT8+TiYncz0U+169Wp7KlSuN29ogQOnxKG5WVKT4nM/H6mp9bCNajcuZmZlkSwtPGDe3z4yxwbWQhYWKf+Xl8cQ73Nh5edQYDw7qlZJCn4/G/b/VuDFF8OAD2Npq0nVqalhbK2DXKePipdcrd3RGhubH+DhZXs6XAbKggG1tZl709uqeHR1kSYmFnVLfREZqP2huZqdxn1dXmzY0NJC9vdprzL5zxvQ709NJr5cBgAcOnH835gaAW87htcG4MQcGBujz+ezXxMTE77zv4OAgAfDVV1991/tlZWX86Ec/+gef+z//8z956aWX0u/3/6/fCwQC/PjHP86CgoI/vlP+jzKllZ3vwgvJxETGxBjY8/g4gUOKNSQna9fLzSVbW3kfDJAiP58sLzdIxzFtSnV1zMxUiINtbdqEsrO5HSBQygAExwfciueFh2uji4vT4k9Kop1RHRsr3351NVetMmCDQIAlJSaBu7KS4xAbBH0+sr+fjY0mCJ+XpxytmBiypkbAkIoKO+gOjGnjTE7WIvX5yMREdkLMKayoUJsDAW2Gfr/aFx1NFhQwPFx6fOVKkt3d9Pm0gHNzScbFqd8SEtgLkyMXF0e6XGpPba1AKiUlHDRKkP39wZy72Fjtyi0t2syKi3WzhgZtHunpao/Xq/ZUVrLXUsKFhRqbrCx7gzxllNBumFhIdLQ2JwNHN+lu7O42MbHUVDY3m1iVlZ/V0aF+zc2VQi8qUgqBx0MWFwsAkpVFejzabCsrbdCPtUEuXWo2uN5e9vYacEtTk67X3c3+fnPP8nKuX88gQ0tnJ5mZqbSJ7GyNld8vJVRZqY2xooLMz9f36+vt3EmPh2RJieKTDQ1kRwfHx8lOiKVjN8Qgwupqk3rziJ6nooIlJYol5uZSY5KQYMBVa5maSgG2DNOK8uxqND4JCYyI0IHgZQhQw5wcsqrKhvGPj5MsLAzG12prdQAaHLTjkhwc1DwoKNCzm/QWZmRokg8O6mAYGakFV1qqw1VTE9nZGUx1sJRVaan6pqyMbG21Y9ysqyOzsnTfzEwyPZ2BgMnDKy/XnHU69XxFRbpOaanGu6ZG7Wts1MEsNVXrx8rDKynRfHO7NSfKyoLpBcr7UZtycjTHS0rsXEImJdmhP98zz5x3Zfei2cfe6+tF/N9idufCdnX27FkuXLiQd9111x91rzvuuINpaWl/1Hffi0xpZdcC5doBa6XssrMJdLIGBnXldGoS5+byFQi0YlFUWSwpLC8ni4qonJj9ZGYmN5kNXBbggxyEFdjt4QYI4dltNvzmd/zN6GidZEtKTJ6NWCBYXc0FCwzUuqqKDYAsDTftBPDoaBrE5TNSpnFx+tzl0mIztGJnoFM4fT4t+JYWvgzlCo7DWJgeD9euNTD4jAw9U3g4gS0ExlhcLCVswftLSnSfJ4xS7zQbnoUWZFubNoHGRgZMey1atAoIVekxm4adZ+d0CpxgbWgGsWcj8pKT+SQEYmBuLlcbJfey+T+zssiiIhvddgSy0hkdbYMFLJ1mUYGJ6UYHiBUrBJ7o7iaZmKhDR0yMzTjCoiKGh8uys/KGWVZGJicL/u52kzk5XLrUHERycqTUurvJ6mohQUtL6fUaa6ysjBkZ2i9nz6b6Kz5eSMmYGD1HU5OunZIiq8HlIp1OpqWZTdpYKfT5yIICQeHdbtLj0WHJUgRZWVy/njbjictlnis+XoohK0vzKTeXjIykB8rNYyBgzw8mJJD19fa8GzbriJ2dUvgul01e8JQ15xoaNCet5PHqah0+kpJo899Z3GtlZZpYFiS5pERjVVBAVlXZiGZWVXHYjDGdTq3H3l49R3OzDljNzWR6OgsLpYyZmqqDQmmpQClVVVJ6TU1SsCbZnpWVGpyODhtwxvh49WFVle5lULNPAmrz4CBZUMADZl7YLoTOTq23tjYpz7Y2srlZ3oqICB1Q09PpBzTmbvefhEHlz63syPfOdrVp0yYC4O7du//gPc6ePcslS5YwNzf3j36u/6tMaWVXBaEPgWZtBBERjIujzcXowztg8vn5HDYKTzyAjxJ4XBM+L4/Ajwg8QEZHy7VlePqAJjI7m6cgbkkbttzdbTOOWEhMxsXxFShtgXl5LCoy/ITl5bRzl3JyDGeeXEHiRlSemnKlntEm5nYzEDA8n62tZGmp3GkWDVZ+PtnQwPZ22hyStUYptwImz2cbPRBK7RWIY9LrJYEXCAzQD1lQlZV6jsMwqM3kZDIiImi1NTerzQ4H3Qgm3XdDrshXoEPHdsgCeBJyl2w3fWFReA2bMRqGUJe95jptbVJmTxglesraXB0OMboMkiwo4CnIuiguto1DuaPKykzfPagxNKwiaWlG2eXlsbeX3A7RTdHnM+7vTiFDuw2NVUSEGZtDZFER+xFM4N4L2IcVHY6e0EbY2qqUkqIiKrduL4Efc9C0u7FRrCU1NRr7hgYhcIG1midOJ4HXBH23SAyMqxw4pbb19hIYIBMS+ArAkhKdBbyAGlhXJ+VVU8O9UMK732/aXlmpjbiiQkqipERWX12dlEBlJTuhA1xysqzU9etpK8716xlkS0lIkIJLSjK5j5METsl9adhITsHwfxo/fZuZE5beYVubHi47m6stBWO5hUtKyO5uuSd9PublyfuSlkaT/7rN5otdvNggUhMTWVxsXKk1NfR6Zfi53SRraqwsCrKgQAc0QxXX0GDQnL29ZHGxxqK5mR6PDjfHrHng8XCTmTcLFggt6/GYOVRWxjNmvneY/WEvoENKQgJ9N9983pXdywBfPYfXy+9B2f0htqt77rmHOTk5/+N3X/nKV/jJT37yd17z/vvv54svvsje3l7u3LmTubm5DAsLY0dHx3vroD9CpjRA5VIAwkruxrz4eLx64gQeeUQB5T0AtkAAlY0AEBuLywBcDQOqwAUA3sbYv/4r9vzsZwC+ASAbXUeOCIn45JPA7NkAFgAHDsARGSl8QGSkEAIjI9hjrj8KgUh69u7FJIDI2FigqgoPlp0WUODnPwcwC3v3vg2MjCA2JQXTps3Cnj0A/uu/kJFxKbZtO2gACIlwxMQAO3fiG98A5judwL/+KzAxgbIyAPHx+GXP9Tha9hPg5z9HTIxAMmehfydhEKETEwDG8RoEXukD8MVlRzFn5mkA8wEcwwgAh8slwMbDD+NtCHQx8sor2H/iBLogRnokJQmhsnQpTkL964iMxAiE8rwCwBXR0UgAMN3hwDwIbQkAkYmJuBoAUlLQB+D0iRMYMtfog0Axn+r5b4xC4JcxAI6ICBwFgOxsHIIBkd5+O05C2IM77xRG4uc/By5f/9+Az2dggacAXItvPv0ZOBzXIi/PoBafegrf+IYAPR/+MPCLZ2cZuOJliASg2PsMoKwMsUVFqKyci11feRBX5OTg4EHdc2F6Oh5/HIDHAzz8MICP4/iTTwJDQ6iogAAc+G+o9oYH80pKcB2E3TkN4Gu3HgfuvRcPPSRoFDBD4ByvF8A45gD49S0/FhhnZAR48UXExzuA/Hw803UVSkrmAxMTmDBDGxYGzElJEfKppQVvdHUBt9yCfRA+aN064LqRXwthA3PN+fOB55/XdExNFVpz40bsgwBJTqeu/eKLEPrz8cfxhZlbgAsuEMBq9mwhh9PTkZYGZGVdgAULHALcTE5ic18fHAkJmNP3Og6dOYOu55/HSQDT4+Nx880aM/UTgDffxHUAtvb0AMuXC1kZGQk4HPjxPYeAz34W998PlJRcjBdfPIDTP/8FAA/w+c8jUtMBF18MYOFCXHKJ1vTJr38do6PARRNHce3IFuBnP8Nn5u/Hg6vOAk89JXRmVRWSk4Evpp3Et+84LuSrw7QhKQn79qmbzgKIi5sLrFqFUQB33SW8zL8WncXV29eoowoKEBYTAycEDnM4NO+fefosTnZ14ewTa3C+5f0o3nrbbbfh4Ycfxr//+78jISEBW7ZswQsvvGCjKw8fPmxXorHE5/OhoaEBX//613/nNUdHR/FP//RPuOaaa3DTTTdhcHAQW7ZswQ033PAenvCPlD+ZGv0TSpBB5acEXmMlFAMDnjCuwDIqj24tlft02sToGo1FV8P7jCUkMtq9pMNhk/TK3beLwBZ6IZcjsIvMyDDMGmPmZFtKkSXfZe75BIGtTE42nIxOpzmhHyLT09kPixm/Tyf2pib9nZfHIxD113bAyiEny8tt1vbubpKRkVy7lvbJHBix+UBFRv1jAg/pxFtXZ9rzKEUQ/YhiG/n5cvnk57OkxCS2JyQYq+QBijT6NfO7Bwk8yPXr5fnRsz9CMbi8YPrp+xQpdA8dDot01+q/Jzh3rlglHA6xXeTmWvlohwg8TuAh+v18x3M+aPNLivTXTSYkGHLhZ7h6temLhgayuJgpKTqJ9/eT62BopowVyrw8MhCQy3F4WH2dlETW1NiMIcAWfd/l4vi4qQZRXk4ODytZvKKCrKpSDLSxkSkpclMq7jqg67S1sbdXp/p1xqLNyzNJ7x6P3IytrXKHRkcTaDYs/k2Mj5d7EnhcLrSqKq5ZY+KqkZGKPbW2kiUlpj86ZV02NBDYxsREmhy/SUP63CxTprKSjY2yphIT1UcWQ87QkIwoYNKQQ/toE0GnpJBZWVy6VHmMVmWDjAzDTNLbS+C0rEITbAZ2GULpU8zNlXWo9TFA4AlmZqpporA7ZAiW+whsY3S0YS7JziawlfT5gm5ly1VfUyPskL0Wu2QhVlZy2jQa1pxOWdgdHRbfOUtLNWdlua+liMu7yPFxFhUZN//goNk7fmQn3uv7fTY5NbDNXgA1NYbmb9Ai0d5q5vopNjTIoB0cNPSdPT3n3bJrAdh+Dq+W92DZ/bXIlLbsZMvMMHlLBwFcoOMpHJBN8jqADwE4iEceGYeywmYA8OIqqIaXKrf1A5GRBhI+AZ1/ogBcgd/AQpdfAIyNwekEXK6LsWQJ9DuEm3vMMM+zDwkJxlrIzRUcGRcLtw8dsBcsuBKoqlI+EGYDn/0sjgLYuVOWZ1+fUPpYtw6LFgEnTrytA3FuLjo7gXvuAeD3IyLiUrwx8wbIVnBAlewuwPbt6p0RALI7dwN4A1ixAvjYx5TDNDqKujplCygprwvAOGQd7YOSKYYB7MXy5TDthdqCw6bNVj8BQBRmz5axIFtvBoBwLFoEJCbOwty56seDBwHlmO02zzuOdesAwGtG5A185ztnsG3besH38RKQng6HAwCuwr+sOKtn3roV2LABIyNAWRmwebOs0jmmbUhMFD5/61bs3DlhzIrjwDXXAAsX4okngLd279YY3nMPRvXgsgRvvx14+WUZx48/DrS14ZZbgJPL/w779gHHju1WTifeRlMTgIQEzJ8PvAWlJYxCVsDOnQHgkUfQ09OP4Y9+BsuXA8ePHAHQL8sVh4LpHLhWz93bi6Qkk3mSkiLrv6cHuPFG7N59EMACIC8P+MEPMHduEj7xCd0L8CqDBVfKDBkZwZ49SsXbvn03/i7pbXz968Arr+wDICskI+MCfHLxaTNvvXDExmq+rlolLwJmYXJSmRMf/rCW1vcfvwpZWeF684IL9MI8TXNssjIxsHPndgDdAE4hKgrYs0fpZ8BleGbP1ZDtFMCRI8/JobF8OWJiPo1fPDsLL76o9r+wdZYs0BdfxPLlmmmxsWZ+RUYC8+drWd14I4D9mJg4jlcnb8CiRZqv9913ECMjJlUPM6G0kEOAhgwzZwK/2DgPLpcDwGycOqXcTi3Vg2bNntbfX/oSsGwZLr5Y3etwmLWDOABnAIzji7ecxZkzAfT1mSX1W9bO+ZBpODerLlTPboqJjcb8+tfNyewZsr9fVFORkWR8PNeZuNAaGGBDS4sdkD5hW3Qv8D6IKYTl5WRNjWJWljlVXi6kXF4e2dQki8IKVNfX83kT69hr7vEYoCC1n6TXq39NLS5WVelUHgiwpSWIpt9m4lnARqEOAwEF1rq7CTQyNVWsLlaMoLubBob9lNgghofph2KT4xD4hk1NrK7W6Xg9FLN7GULL+XxqXmsrycJC9vcrpGOTMCcmcjtgM6o8Cdhw9NpaWTQ2hD02Vj82KQ3t7dSF6+sVNElPt0/A9vv19bK+KirI6GjFWsvKyIgIemGg6nV1ZEyMAAIxMZw92xAxQ0w04yaeAvj4BEAWF7OmRqkjshyfUMymulrmRE6OLLbUVPb2Gqu7tVVIycRE0u83pZT6mJlp1a7bwowMPfaaNSaVAUKPPgHFP+uhuOKgbXH8iMBWxsToWQIBExeqrCTz8019tge5BmJgWQ+Q9fXviPl1iZHEzK9AwOJSPaq+rqggMzPZ2Giu29CgOFpBAVsQJAUvLTU0dfHx6vvycrK7W/E3l0u/8fsFEKmrsym4hoZkwGRkyPLrhKmmUVtLVlfbSFQ2NMiy8npl4bW00OcTGTMDAZnH4eFcDYOq9fvJ5GS+CTGmBAKUCdTWJqYcn08NjYyk1ys06WqzLpiayuTkoKXP8XENyuCgkK11dcqOgKGe8/tVnQCwEZZ7YepNZmbquupUeXN8DPaBzyczsKXFpl/7KSBvgAHODEMgt9WrTVywtNQmaGdrK+nziZWnro7A0+fdstsMcMc5vDaHLLspKv39hg5jHDAJ44iLA44cwQR0dpwDoG/3bgUyRkaAfftk2SAAYIZ9EkdkJOByiW1l506bTWHHDgC7dwNut2JbBw8Cw8PAkSM4CcXIJgHgyBH5w/ftw4yRQ6h/eQ5mPLUGpyenKyk1Lw/AQmDzZrhcOrkODZmk26wsAHMxq28XXm2fLjPFWH23326S4EdGgLg4XLfwJAYHAWCG7X8/ap7hJGSXYngYgA6mxxG0VRERgclJhXl27NCzRkUBR47o8wkA6OvDqLmelWQeFWUfpBXP7OuTmdbXp9hFby8wNib2j4EB9dHQEHDwIKKigOljx/X9rVv1HgB0deHQkSNqQGcnxk6cwHEYK2d4GBgYgMMBjA0M4PLLTZJ0dDQmJ4GLnE7T8gAWmb65+GIzFQAAxxXnczj0jCMjOoX39WF01MQABwYUh3I48Ma+GRgYAGJirsToKDAzIgLAxThzRgnWIyOyBOZERsIFjUdkpGHmKSzEvLg4Y3Fo1g0MTCA2Npi7jMlJICzMWKeXwgFZKA4AePpp5WG3twM4hvFxKC545AiGhsRPEB4+W23p6QFGR21WF1x4oShXLr8cYdB3p0PMIn19wMndu2VJ9/QAM2di0SJgoqcHE11dOD4xQ/PS78fZ3buB3l54PHbYTHntMMw7J04ATiemDx0COjp0g5kz9YqNBQ4fxqyR/WKUGR0FwsJw9swZTFhr4+BBIDISl8Gw5owelUV44IDm3MSErrN4MebgaJBZJyICiIpCV9c7vAJhYWpcWJjGzzB/WOsdYWFAeHjw2SMjcRFEmoCdO+W9iYzUNJmYwKyZ8gvh4ot1E6dT1xgbA5YsEXtKT4/2g7AwzDDXnZgwU21sTA82MgJrcc0AtCZsPpuQ/EXI+61t34sEY3blBGoMEm8rh4Zokia7WFCgw1ZtrUBomZlWbOJHijk4HEGoc3U17wO4EkrMXbBAlldmpuIEqtrhI3Ny7DSclhYZfHl5VrHKQ2R/P8PDgwh5ZmQoybSqSmivxkZjeXQKkl1eThYWinvP7WZKirj4YmJox22AbWR5OXNzhRCzqgMAT9llW9Su01QRzr0ETisW53SypsYOw+iE2tIiq9Ukvicnm/y/lhbm5Cgu5vHo8FtZqXu53VaM5yhXrFCzsrKClapFwDxGK5dLMYxGAj67KkJhoe6Vk2MVFN3I+HiTHG3SL2Rtq1CoBeNPTJS1FhenZygtJQkEmfSTk9nZqTjaGXOaB/YrHzEri0xJYU4OTVzwFBkTw8pKkw+OYNxNf+8i8H2+Api+LJYlVFxMoEmWkEmy7gbI3l72978DqdnURNbXm2v9ksD3jUXfRVZV2RUM2tqEyFy7NljHULHNJl2/sJAlJUotyMxUm5uh3LqYGGrAqquF4K2ttZG70dFCqnJ8XNZTZqZdGaC/X+tgaEgxwooKKrY3Ps7ERENSnpFB+v12NXs2NpIOB2tqaKNgGxpMXmFxsQYnIYFAD1ta9J2ICD3fqlWaU4sXm5Qbg6ZlYSE9HmsO/4jt7ebeppafnWYSE0PGx+vv7m6RO2RmmnW8V8/e2am6gm1t6sfyco6Pm/mcm6s/mppkRXZ0KA5XV6dGpKaSLhcbGjQfIyIML2l/Pzk8zNmzTU5idrba5HAIAe1wkEVFXLrUWp9jBB5SzLWqisCj3AAYcvcfnXfLbgvA18/htSVk2U1VMbbMzp0AzsLjsd4fxsiIDlt9fYoXiK7Lq+/jEI5PTOiIHxUFLFqEGZDVMjICHDhwBu3t8smfhqGXwkGgrw89PXp/zx6939NjjDCM4LTzCpw5cwwTE2JHspGb11yjGM3kJA4f1ndx4oTNN3gSACYmMDKiuM9B3cpYAm8DYWGYP19W2ugodPrHlTYPYTC+Ng59a7oOrxMT6OlRm06cgJB/+/bZR/cLLtAjOp0A5s838bZjdrv27QMGB/Vb9d+HMDio61nPSL4NK/YGmBAOxk1ves0J+DRGR2VBTk5aFJ2nsXv3uCyuJUsMvZlsO6dTjzg2ZhslmJjQPcfG1K8zZ8I2nRwOxaZOmhkREbFAp/yJCWD+fIyOAjMmjgM4BQwNweXSc1jn7iVLLJTaGQBR5u9ZAC4L3hinZaWMjQETE7KKZs7EFTOP4jSMpeX1Anv2yFpBOIAo4EMf0k3MvzNnmniO+XpPj57z8OEJAAvVubGxGBuTx2HhQl17ppmbo6OwacMOHoRNV3bkCHDppbLu4HBget9+YNEiREbqvbAw9bvHA8wLD9eYGxNxaAiYmDgOa7JERwPkhDo1NhZ79sB8x6aFlSUUFWUm6XEAtsGFs855ci4sXGh1FzA5qX79yEcQGwvjnQjA6xVLF06cQF+f+icM0L2tjjJzFQcOGOt9HLjySsDh0NozbUBsLC46+Bu9FxsbpPGynhWj+v/MmfosLg4ul+b5iRPjeo7RUSAqCseOjWsORUbixInxoJkeEQFccgkmJy0WtgCE7HaYMZ6BmbAefQ7Ot7wfaMy/Gnm/te17ETtmZ+I9wINkQ4PibTk59EHVCH4EJYYTJjE6M5OMjjZsKDUEVvMHxp9vMRXdZ50qzUmuuJg6BRYVKX5nFW+tqeFjJqb1inmWJ6w4Q3c32dbG7m792Q0YBNoWu8p2W5usx267DZtIn0+xlqYmE7PbwupqUyR0cNAuE9PZKUtyA5TTNADlEm5HkJGktVWnzicghOAac0IeHJQVVFpKWT6Dg0xMVNWDDijRtwOK8T1h+sY6/fb3Gyb8nBzlEcEknRcW0ubMKi8PMl9YlpCJ1TE/nywq0pgkJgZzINvaeML0426YHMfISJljERGMiZERNwjYFbmFoBtR3LKigg0Nqj8nuq4uIQc7O3XKT0lhYaEspZUrTbyrtpZLl5oYpN/PxERZRuvX0yADx9jYqPhoZaVB7iUk8E0ot3PFChOzi4ggXS4mJpJCpj5FYK+shJqaYD9XVJjT/lM2CrgesAkNGBPDiAhzf1PHrbpaw27n21VW0g9VJygtpdwKCQlkSgobAfb2Kt6VkmKuk5cXLLZYVaX4lEnW5/CwYlomx+wMRImVlaXp396uKhH9ULzZZtAxFRno97O93cRj8/LY2UnlCjY02Mwmj1nj29BgwXT5PKACDGYevQzQMgtPAezslJW9DiY2XFfH+HirVrBPiyYvj0NDhvatpERcBWaO9/eTLCuTFRkeTuNqUKwuMlLx7+5ure/kZOXMVVXp+729ikO2tWkd19drTTsc5PAw+/sN9ZshfOjvp50nKDdQN1laqu8UFRnvwPm17LYC7DqH19YPsGU3pZXdk2ajBRq5DTDAgqN8DAJbHIapUu5w8DAEJjkGGLaILQS22kCLBQtUoZkxMbwPAnvInfVL/gBWMuYTdBuFcBhiT1lvFhETEzXpTQkUFhbadGGBAO2SJH4/DZtJjxaaSWRNS7OgzNvkPomPVxJ6TY1WdUsLZ882gBZDScSsLNKtytdWMvZOgOzsZE2NYUaBkr+VyNzH8HA9olU2rLpaie/HTHsGzLW2Q+CEQQhGbyqh6KKFhfIr1tSI5ssoHHo8QQBPZSX7Yai+hoe1iViBfJeLdLm4HoJCW0CFDuv/hYVkYqLt7qPXqx24tlZu4aQko9T6lMDc1mbcuZPMy6MppdNnKxgLSt8GUb7R4zH0a9uUhtHRIXdxXR0tTrDCQpprbpELuKxMdFkdHWRDg5RfSgqLi2nD7YFhFhfLbRsI0Oa9ZGoqmZfHkhLDxpKVpecKD6cbcmcyPNx243k8NJXq3WRVlVx1/f3a8SsqSLdbrsGyMrKuTtfKzQ2y7TQ1sbDQJJ1nZJAJCVy71mzOcXF6npoasqxMvzXUerNnm6KrDQ2kz6eDWEyMxsDwktocl6mpQTqtwkIODRlGl9pasQlZB4HiYht8wpISm1uzEdDzxsdLoXZ2kqmpWh9Wdd2cHLKoiJWVWkfFxdShqa5OCjg7W4eV1lYdCOPiyN5eAa2cTtLhsEFXjI6WG99SXrGxGvv+fjI/X89gaiiOm/nf0MAgm09VleZeaqraMDgol6nVDivVxeFQB7W2/km4MV8FuOscXq9+gJXdlLZqv5CcbHwks5CUm4swAC0ts3ELgIXR0XA6HHIfFhbCmZ2NWACRlZW4LCkJghdcJdb0oSG8+CJQWxsOHDmC7wJ4EHJzZWdn4+7YWCwPD0dGxlcwBwLmHwWwBErgfmt0FGe3b8fbL78sf8/ChcDdd6OzE2hqAqZf/CGrwglmPLUGuPVW0L8A994L4OabbXfr9A3rsWBBEpY1NABpabj7biiH4bHHgK4u3HYbkOTzAddcoxIyu3cDIyO4yeHAEgCOhAQkJCXhDcf1cDiEc4HTietiYzHD5UJq6pW4/XbgFz8/jZsWHUJUVBAbEBkbi/kA5sfE4DOm7S7IEfPo8l/ha2G/ENP+ww8DTz6JQ3v3Alu3Yj4MaOXxx4G9ezH84evtOjHzAMxa+6jcYytWyMcVGSmY/8qVuBrGZXX77YgEcENCAj4XHo79d/4QePhhfKrnvzEJ4Gt3zwFuvx2HvvpV+eQWL0ZzM9DSciXm3PNPsHxKKSkXYHQUWLsWYCAGryZ9Gw/eexwYGsKddwKfqq3FmjXX4jN3XA10dGBoKAnT8/Pxy303oL8/Cc986Mtyce3YAZcLOB55BRobk5W1kJ+Pi8beBvbuBdaulWt7bAz/eech/Pfdb+Bf7jiN1NTLsGoVkJV1qVyM7e3o7w8Hbr4Zp6sexf33mwyIri5B9T/8YVzb0qJk9eXL8fTT+vzqyTeAPXtQUXEtvjf4DVRVQc/11FOaW5s2Yf/Tr8sP2tysvHGHA1i5Un0/ezZ+9KN9mJOXJ/ddeDh8PuCKsEN6/oUL5Yvv7FS6wt/8DfDKKzh27AC6uoAXHF8EduwQMOrMGewA8NaGDbjtQ89h2zZgTtm3gRMncPJjH7OrDlzufQOOnBzg1ltxVVaW8kGWLBHu3+UCSkqARYswOToKjIzgBgCor1fVhfp6/HDz9Rh5+WXMGDJw/bAwGyjyzWW78JmE43jxRWD0ttvkAy0sBD72MVxk/PBfjI8HXC6cdF6FhYmJ8s0XFWFhbCxw4404eOQIkJgoF3NGBhARgenx8YDDgdd++lMRTbjd+N6OL+Ki9HQsCQ/HFxfuwvHHHrPiCYpNOBxAcjKwbh2WLQPm5eZq0Do65Nfs7NRa2L0bv/zl/2U3++Nk2nl4fVBlSiu746+8gsmf/hTAODY/9hgcBQX4/OePYwugyb50qVBYCxdix5NPogl4BzPKKIDTKhmSl4d77oGdy/Y6gJsBNAF48skNONjXh1+cOYPnn1+P5yBltx/qPAuROQbgsogIYPt2bSbt7XjqqQkpiIICbN5s6m8ND2PLk08i/1szsGoVgGXL8Pjjpo6Z240DB9YBq1YBe/Yoz2z1aiA7G4iMxCOP1AN/8zfoe+wx3HortGhnzsSuiQmxccTEAH19NgvGs89CeUpeLzB3Ll5++SX87Gcv4dUdM4CREbS3CwTY2Qmgrw9vADg5MGDX+AMMog0ANm/GLMdp4IILsH9oCK8DwEc+gs0AXgMwsns30NaGy32/kfLZsQM9gGCfJ05I85o6f5FKCEMXxKICl0vXcziw78wZXLXvJQWkDh7ECLRfj/zHf2BecjJOtrcDUVH4TOxbcLmg8jMjI8DWrRgZ0e3KyoBfrp2OiQng6KTYUtLSALS3Y8cOQyoyOYnKSgBjY+jrU399Mew54Gc/w5aJG/BPtx7FrB2/RlOTOU9t2IBfbrwMh1K+DNxzj2Ky99yDnzw7D9+ruxZ4+GEsWxYEKl6x8b+BDRsUo923D/v2AdO3bsFddwFIS9PzZGYCX/4ysrMB7NmDr938tpRhVBQwNITNm4FbbwWuHXsNbwzNwdG+PsFC6+txfOH1opCZORPLlgEnH/qJFM8dd5hEzLnq823bMLR9O1atAo465uEt08/o6QFiY/EP/3AcKCgwTC7P4FOO1/GFHf8O3H+/DiLx8bCiwoiM1Dx1uYAPfQgX5eQo9jUxIcqWZctgF9tbulT/v+Yadci+fcCSJQhLTwc2b9YB6StfAW69Fadvuw233GJKJq1dC9x2mxq+bBnwt38rNpdbb8XddyumjdFR/ba/H7tGR9UPF1wA3HknLtqxRZ/n5OgUFx0NuFyYHxEBOBxiJ3K5xAo0fz7w7LOYY9YvPv1p/OetrwMOB04b9OWslJQg9NLhgBL+ooC5c/Fa1Wvoe+wxla+qq9Oh9Mtfxm9u/jaQnY070/bhfMsF5+H1gZX327R8LxJEYz5AYCv3AgS+xspKmnjcAwTcnDZNSLDwcIvt5EECTQTc9Bo3nSHiYLdxXcgN9UtmZ4tD8j7j/gMe4QBEBg1M0uUSn6JYGQYI7DJ5VFvtaiosKiKrquQaMiguITebbQRmfz/lZsnM5NKlZC9AYK9cNp2dDA9XKCA8nIb0ehfz8uQ2CwRomGG+Q7GRDBDoVOkg414Sk8VGAiNyK1munIoKm12CGRnme0/RYoFRO90E9pOBAFevVnOEGtxEYJtBxj1BMbcMMzxcXp8ge8YmpqUpvpSYKA9cRYWF7OyhGFM2GrfjanPdYuNi3mQYW1ZzcFDdt2qVmhUIUO6nsjKysZELFgg96IdiT7W1tKsZsLxcLj/DQWqVeHE45BIG3OzuljvKmissKeH69fp7GLCRlCwpCcaKoJw/er1kdLTGOzGRzMmhF2BaWpB1BzhEjo8rt9GwsDA8nImJBvWYnGy7l9nSQrrd4pHMzGRRkRmj3FwCzayuFrqW6enMyJAHlw4HPR6Bcy0vMYuKuGIFDcr1R3ozECCwhfT5xFASCJCxsQYh/Bp9ULzP4dCYZWfTVLY/zZwcxS8zMhQ/dbsp32Jvr5WmZ3lr2dAQLCAwe7a80tXVtMviaA6dJvCMPVfY0cG2Nn0/EBBqtLGRClq2tKh/y8o4e7ZhV+ntpdst17Hi08Ps7KTNKMP+fiYm6r69vVYIeS9zcw2faiBgFRMx63Yb4+MVm21pMcw9duz7KFtaDNuQ12v3i+Z/j3kdMrH0XWRuLpubyS9/+fy7MV8D+MY5vF77ALsxp7Sy2w4YSPmIXc0gOprBOJIVT8vIYMDEn5idTSYlcfZsA5POyyOTklhaajab1FQBXWJjjXLr432AUahSeAwP52GI6d9tNkN2dmqVeb0KzJWV2Zy3VjmYtjazEAsLtcAtiHhjIwsKFJKaO9dAnmNjCQxIGdbUWET4imllZAgAkZtLer0csGJ1OTkMQACANWvMJpmerlhKaiqBETocuo/fbyPzWVmpmJ3HXPt5E7sbNnEMwGdjdnw+KrBTU8PeXgM0KC21cRC9vQI3uN20ab5WrdJm099vYOHFxWR1NXthqkW0tLAfiqceAwTQMPRYzM/XrpeYqN9mZpr4YyeBRvp8wTzjFSvULsXPDpEREVIMppyPG0pLYX09z5iDA7OyyJISAq+R4+OKn1VWcvZsxc+AJim64WENXkeHGtfbS+bkMDdXSsDawH0+KZjSUpo+f40sLOQpQM/gpl2iiCkpmj8eD1layuZm2jXVRCU3QJaWqi0FBerA8XGyo0NVE7xe0uMRfVx+vjSOx0PW1opTGdDJoqKC1dXmugYowuFhsq5Ovy0uJoeHmZdHuzxVQwPZAZMUHhtL5uRwwQKF34qKDPGylYw9OMiaGgPe6O1VPC46mnQ6bWKFvdZ7UM3JpwD1Z2qqPe9YWBisfpCYaFdeqK7Wsh0aUhd0dpLMyFAs0WjmdVaM0O/neiiuHoAAMV4rbtfSQkZGcicEKHMDUnwdHWRMjNqUn89tZr1bBOTs7SVzczlurmmVn+rvN+WlKioU90xN1WGyqYlDQ+RTT51/ZbcDYM85vHaElN3UEmvgN5rNEtiqyV5cTKBPweqICDI+XgswO5s7zcQ/ZRSgcqrc2ljLy6lcNTdZVCSEWHi4Qc09wr2AsfC+y59CzCKbzIJym2uOAzrqORwCj5jcuNWrSfb2MiXFADyystgLMDHRLNrGRmZnG0WbnEzgGS3i4mItfCs3Lj1dG3VEhBbu8LCC9Z2dbIGp1ZeYKOXT2GiDUJiQINRdZKSxUPu0eQ8Osr9fiikj490AlV5zMDgCWUoMBIJVLZOTOW4dHEpK2Gwp/MhIBfAzM7UbxsSo/Ep5uY76eXlqh2EBYXY2N8AAUmpquM70YQcQBALU1vKAUd6nIIQbo6NtxpbaWtqs/GxoYEyMyekaHBSoZHiYmZmyztraSDqdnDbNsMcYQAbz80mfT8ojL4/MyAhWHsjJIXBah5XqalZW0i7B09hI0u9nZaWxNKqrmZWlcQwPp13oNifHbIhWUdLeXrKoSJZKbS09ZvNncrJdu27VKhrl6NPhwusV0MmMLYuKdJAxlS9cLkoJlpZq487LUz5ecjKZnc1hmPp3gYBdSohFRWRzs0BQTU0GsLM2WMKmsFBKrqyM2yHwF/v7g0UE8/P1f6tkU1mZfuPxSEFUVkrRZmaqzXl50uTl5arbZxQKCwqklAcH1XlWSYvOziBLS3MzmZgoJK5VB6+hgSwp0W/T06X0WlvVtuRkDVRZmQ4zVtmp+Hid7qqqaFefzcmxWYOOAbQG0WeNS3W1+qGhQf1rlVFITSVTU23FeQJCnXZCSF1WVtL39a+fd2X3OsDfnMPr9ZCym1oSdGN6ZOE4nQS2yLUHIS1zc7W+MjNpYOluAj2sqDAkyxkZZEoKu7tNsc2cHDI52Xz3CePaaDLW3SMEvmsU3r20CKVjYnSab2wMWjO9vSTj46XkrKJx5eW0sl17e02pk4QEodq6u3X6rarSJhwZSWC/oPPx8TYSurGRRhnu1Ube28vmZp125TIcYVubSR7v7ibz8ujxqK0ul9anF4ZCqapKRMMZGXqVlVHJ6LuMG7fLQtRLCScmqg25uWR/P9evN5ZLczMBlWIZHyfp8diuuvFxkwBdWqoNrKlJjQgE2NpqPfd+Aj2GyNhtkyzX1AQt4Oxs7XXh4SQ7OxkdbYrsVlfrBoYCjd3d9vU5Pk6mptqVyIFTtmUyCNjgToaH0+OhXU28vV2WTWenru/1KsmfpaWqTG/eZ3e3xre/Xz8uL5eVYyDxzM8nBwcZF6f7xcUZJZyaytWrta+73cFyS5Ye8HoN2bJRyuMwUPr8fFZUmD5pbpY11tSkHwUCDEAejoICki0tIgKPjyfQx+pqQ7RsCLCtKu5W9fkARN81OCg3cHOz6V+/n8AkU1KEbJ02jWRKiuZsQQGB/aytlf7o7laXFxTQpNjsZ3W1IbPu7SVbWgjsZ2amviP3Y7NdQB14lNHR8kaYswBra/XdjAyNv9stD0FbG8nhYSYn0xzedpn5f5SrV1tMYJ2WR5lADxcs0LP09lqux6O2C7mmRuMto/MJioauk8BpDg4GScYV1jjKzEy56YNEFX3MydG8VaL8Lm0ofj+feOL8W3YhZffeZUorO9/MmTZj/zZz6p02TZWcWVSklWQKL+6FaqxZjClWLUerdlhBgVnkjY10G6VQDcXoBiCeTeBe3gewAoZPMz5ep8GkJK2G4mKytFTxtsZGm1uR/f1ctcpYBRUVPAEE62I1NLC21tS9Ky0l0KeTal6erJaqKq24sjJ9ZmrNtbfTtgSGLUurpYXMz2dbm2nL4KA24eRk46rrIrDNroqel6cNwcpB6zDW6aB1yo2J0Yr2+8n6esUsqqrI6Gh6odpyO995IjapBYEAg6wxHo/aWVGh9oyP6xp+P7ute6amynVbWCit1tmp1/AwaTZgr7FIBgE7f8yiI2RbG9nby4qKYCxz/XqNQUkJyYgIuQ9LSpicbBS1VS28uzvIYdnaSjY00OsN8nkuXWpcrz4fu7u1afp86tvBQQ15RQXJlha7YG5lJWVhFRcL2p+dTXZ3SxEaehq3W9cYN33E+nr929Gh+JbTycWLTaxrfFw7dWysxiA2Vv1TXU3W1xMYtmvXtbbSHP7G1JcKEnPatCC/qJ1r19hIYL8OaMXFBFbrua2SASZPrdZY4N3desTxcTMeCQkKzlVWSmu0tko5p6ToeZuayI4OjX9kZNDCr62VVZeernxUKGWBCQnBnL7OTllmRUXBtJ7OTnk9WlulncLD+YplVZnP2dgo70dRkfo0JkaHj8xMzU+r4rjF7Spty26YGooZGTR5Lfp9cbH+zcjQPYuK1D95eWRxse5dWirNnJdHRkZqfXm99D355HlXdjsB7juH184PsLKb0mhMzJlj6ESOqYZbTw+SkgwzxtiYzSKPgwexMDxc7xtGjCNHxnHmDIA33wT27bM5AdHTg8sglOBFAICFmB8erusjEbMQ5JuE4f+zKVW6uoCDB4XUm5w0TCEAnn0W4+OGJX3HDkyHgGZDQwA2b8boqGGU2LcPwAVCih08iEsvhaDkPT0GrjlLFPcXXyzwXF8f4HLhIhhYrehZ8JGP6LZvTc4zHH0wN7sU4eFJYiEJC8NHPhIkqnCEh+t7IyOYZV3vxAmhItvbgZ4eoUk7OnDa8IJeNLTfRqRavKM4dgzTd7wG9PYKcbdnD66OPQ3s2yfGib4+wbQNh+BZADhyRKjPiQkNwqJFQspt347TugTmhIcDdXViMXE6gdFRzJ8vcCLCwgCHA0NDQVabRYvUyR/7mJo1cyaA2FgsXGij5VUCb3ISXV3Apz8NQSknJzE2BkzHWWBy0gYYAsCpU3qsWUO/wSHMw7yo00hKMhUhRkfh8+nao6Nm/jmdIuQPCwMWLcLl097G0airge3bVbdu3z5cFB2NQzOvDqasxMYKZQrda/Nm07dRUYDXqzGIjhbUds8eYGICixdfhutijwMf+YieZfFiACOwG+9wYOFC4JPXHAfCw9V/hsomOnoBrnKeNFQuAbzlvEGIzq4unD1zBpicxEkIu7xokTI/Ljr4GyEnBweFvGxvt5lc5s9H8Pp+P9DVhavnnwwymvT1GViy+h4TE7pWUhLgdhvS0Uj1X1ycmFKOHAEGBnA24Xpxp3Z1iavS5cIYgJnh4Rqkw4d1nchIDUJsrJ4lKkrr/M03NZ+t54uMBBYtwn4IfTwHAD75SSA62l7f2LdP/bxkiV5hYUHI7cc+hpkOh5Cgl1+uZ3W5xJPa0wNccQXOt4QYVN67TO22f+QjwLe+BYdjvkh5w8JEWgxoF7/8cn1n0SIgMlKT+ZZbgGXLsHjxxUhOhhb/hRdi2TKhihEVhUmILCoSgMt1AYbOnDHlf4YxHVKmEwAwd67ez80F7r5bO+bdd2uDuvBCLFwIfPSjAG6+Gbffbtb4rbfioqQk+P3ms09+Erffbrhpb7sNMTHztSCPHcP69dDGMzEBLFsGl2u2Fl54uPamyUmcnTkLM6OjRa6cmgokJWH9eq39KyZFGYVFi4CPfxxAAGfOBKQgenpQX689MzYWOG218bbbMGnaiLg4ICEBr8/8DHDXXXjgAQB33YUZOTmY73TihZ6r4AQwLy4O+M53MPz3/wSkpmLLxA3APffgMqcTr8d+ET+smgHcfTeefRY4FHktsGQJXu2ZgyjTzxgd1di4XMCNN+KNfTNwaPIyvDr7bzEjNVUbuMOh0jsA8PLL2B95vcrrADi75AbsGpmHtDQNw9CQUTgPPaS0iksv1ZhAXfuxj+mP8XHgbML1uH7+2/B6gf0T83Dy5n/EFX1b8Mu103E04XPo6dFvXt0zC5+M3o8LLwQQG4t5e17C2bAZGBqSwn1ryRcBCBGflAT8Zv7nAKdT6R9OJ1BVhV+8eBnmOE4CS5eqKbGxykfs+TXwla/gN/umA3v26FBkyIqdTuDX+64QvP7WW9XmEyc0t2++GXC5dI6ZmAC8XrXTHHpOd3XpHikpGB0FdvXN0sO+8orSQKKicORIAIdGL1LdGiwUE9nQEHDLLSJI37MHDigfctUq0Y1tGboauwCMHTmCke3bNS7Ll9v0dJNPPimlMDmJk1/5J7zRdxFGuroEzx8aAhYtUmrLrbcCYWG6T1WV6gilpOjE0NcnJVpbqzWam4vpT/8K81wunF7xTRwcHcXB3bsxHcDBM2d03b4+ICoKBwcGgJdfBo4cwej27ZrkkZGGjB2YeOopHTK7uoBFi3BVeDjmQ0XC0NaG/QMD2hgt/sEVK4CuLkxs2KBn27MnmGIRHa11N3euiOnnzsV1i87iZMKncPbaRQjJX5C836blexHLpH8KYk0Abqcfoghzu0Wv9QDAcuOK7DTf6zVm/BMAlYrwNT4PMYbk5cnD8RgE1PAa9xzwGj0QWCMmhnY5FKak8D5zj+eNG+R5y51YUUE2NLC52cQDHQ6uWWP8+c3NZG4uIyLkjRkHDCR8I9nSotiUcbcCe20XLGtrhRRMTSW9XqakKBWBg4N8DCpE2wBTvDQ52ZQBGuHPjMv1pwDXr7cKsA7bBTPpdnPuXPJliBrseYjm6THTtgoIyt/cLNfeXgj8c8L0UbPlRsrKstMd6HSSCQlCiDY1yR1VUaEOzsvjOuMyesoaw8pKPg9ROv0XxEjhgRCD2yEibqtsC/1+A9YZI+CWa6mgwBRn/SWBQ5w9WzEUdnfLpeRw0OUSg4oFyqPLRaBT5ViGhwl0ys3n85FNTQJ9eL2cNs24hPv75aqLiOBegPHxuh4rK8n+fgNt/w6VPvGoXIMuF+PjDbCktNT0/X42QqhQi/UGGOEgBGxYtYo2yCMxUX8vWEAFrRISeAqKLSYmMlhRtaND7ejooMe4fYuLqXGoq5Nbb3iYHB/XfMvPVyfExZEeD/dCSNzUVHkBa2vVDdtggFeJiXLVud360JRwam83bCqxseT4uCjpSkrI+Hi+CdF3uYEgUMQAOuj12qCX9UAwFuh06sbR0XJt5ueTTU12PA8YsN2dgYAJA0RHc3BQZbA2mbFkZiYZEyO3pNNJxsZyg2mjTWlmSKzZ20vm5+s5y8vVxooKuqF4qRsQRV5np/zZiYk8A4PiHB/nMdMOP6DgpeU2zc/n1752/mN2uwH2ncNrd8iNOTXlQsAc4U9hFEpK3b1bLpfLoGKPJ6GCqDhyBPsgS0IuybcBzAoW/ESQHHgSSl59AwBwASbNtwcGzmB0924M9fTg5KZNuAhB8uFJyCXnAGx3zc9/rsPq5MSEyUsd14lwwwZ8+tPyrkwAGD4yHUAAcDhw5szbOs739ACYD0xMyNU3fz4aGqDPHn4Yk5PGBThzJhxQm+dY97/5ZgwPA3PnXgqneX8OZBxs2ADMnn2ZXHhf+hJ+E3atyCrMNRymHcchN+5FgF0Mc2LClBI6cQL7Icv3LdM3ppKlrLPoaCA8XO5Nr1cEuT09usiiRZgEMD8yEhPWbycmMALAacYQKSm4Ojwc6OtTGd4uAB0dSvz92c+AyUnEx18M4KNyNS1caCyhiwGcxuWXG95fl0tvBwJITDTXnymvGJYuBbBAbZi4DMBHRV48NARERyMuDkBYGBISjEs0LMyudRQJ/TnL9D9geebiID6Zq0S0HBMDlwuYHhERdG/BYbwEsxAJU+I2/FIAMg7mzjUTcXRU7lOnUx6AyEjA64XD6UR8vIw6dHXJmlm0yHbjz4GMuZ07obnW3Q1MTODQ5GVBfywg91xfH/aHXY2roPF/+eUzGBlRk2bteRUT0Px8e/t2WWWArLGhIaC9HZ+MO4o5Pa/axOJXwdz8xAm4oHXmsBo2NgY4HHJDh4WZsstmbe7bhzNngBHL73/xxbanBuPjWLEC+PznAeByJZ07HJje/iqujjqKkSNHMM9xFHNgygjPnAmLuXq+5c50OHAcwHyYNdPXp/no9er7GzaokPO+fbrnnj2YDuCKqJM4bl3XYjAfGkKY04nLo4Mloy8CMMO42TExocnhcmkOnmcJuTHPQd5vbftexDrl7ANMYvB3bR683l4VnbQKqz5pnbqSkuzEcfFc3kWgmHshsloLpfYKBKPvh5XWMGATxTY2UmAUQxJtWYUWaOWnMGTQiYk2uKG2VuVZFPPeRqak8AjAmhqTwAoYVJfbWCz7dbzu7haIIT5ez5+bywULDHDCEAyfMifOTRD4Zr1pH10uk2t2ii+bz543z2+VM8nJoUAD5eVKTzJW4RPG6lpv/r/GXM+y1sohC/IJc80G891myPplcjK3IUgm7TbXs/qVSUl8Csrhs56NVVVcD1ngT5mT/ikIJPQ8VKiVlZVKL+nvt/PNfD7KqkhKMgCcRwh8305sjomhrIqkJJkgSUl2qRv6/SwqkqWamGhSRIxVUFNj/i4r4+Cg4ZQsLVUKQlaWKSPUI5BGUZGdjyVU4AoCrwmlWVkpkzgjQwjcjAwCbmPZ/VhjVVpKoIbNUHpERgb1gOXlXLPGoHBbWlhcrAKlA4CN5vQAQZJzl4s+n9CjVi4cW1vJggIhcMfH7VQOer1kSooszuFhMjqaq00/NzYa6zI1VWOel6f0k9RUAY5aWngYweKlpaUiImdhoZ6ltNTO7xyGKZqalxfMsYyI0CRMTdWzOBxkRwejo01pH6sYakICOTzM2lragCqgkXsh78zatca6tZDPMTF6o6NDVnVHB1lUpPXi83EbVMR4L2AX75VJWMNeM39N5SSNf0wM/X55TzaYz4qKKAuvqkr36O8nw8O1Po2XxE6xSUric8+df8vODfCtc3i5Q5bd1JRjAPYAAK7C5MQEFkZE4NlndWJ0QqdGF0wBkuhozIROYiL/iQIwGwvj4+FyOvHUU4exfftuXAcAcXGYb74BHAOWLsVZKEyCBQsUy0pKwhUAFgI2aGUREAygnzhh81NeBWBiYjOAK3F20yYchQ6cO3YA1wFYt64f4eHX4uyGDQD6dYqMisK1Q7/Gvt27MSMvD9i5U/yZOAvExuL7X9kPR2EhEBmJMMhym4DsiqM9PYrLod8+8UZCB/CFC4ETJybQ1QWMjI4Cjz2GpCRgRl4eYs3zz09IQAL03FcAONvTg6NDQ9jX1YUw6HRstXkOZBG+DWArAGzfjt8A2AVZgfsgC/kkgEOjo0BnJ+YD+I25xhUAkJiIKHPd6QCwbx9OA+gx7yUmzgVOnBB9VVgYfvysYlizel5TkA4Q3xdOAXgL994rTMfAwAGN1fi4VYcJIyMGwGNo1U5DRtPICID778ehdet0yXvvxel778XYmAmBVVWJ3i0tDc6YGADbMScxEbjkEjz8MIBHHkF09HzIpzCCo489JjLUI0eA9nZs3gxMPP88Fi++Vm3G2/r30ksBTGACwKcmfi3QVEICMDSEfftkKOHxx/HAA8cxYcbHGCuyUjIzZTUtXYpZYSdVhHdCv9uCzwBhYXZRXjz7LC4D8MPH5cuYnp8P9PRg8sgRU6RHRkl0NBTXKy3F2UceRZjLBXz2s7J+tm7FScjAev55UaX+BlBgMyUFaG/H008DmDkTl1lclO3teOABExZ84AE9YFoa9gEan7AwHDnSjai4OKCvD78c+hxQXo5fbrwM994rYBCeegrACCbMfNq82Vj8UVHYvRuKQX7rW8DMmdi4Efj12A3AjTfikUeA7z80C0kREegDsDApCU1NwAtjn8GPn54HjI5iBmSdWeXANm7UYrn7buCKrCwMQV6Rp58G/rvreiA/H1dNvKFJ43DIA7RpE16fuBbYvBnPjH4O6OzEZ73P4HxLiBvzHOT91rbvRezUg7Q0k3rwIFlWJp99fj7PQCVCnoRiWTYUOTqajIvjm1AFA2C1He9ifz/9fsoyS00Ve0hEhE7aNTVkZqYsreJiQabLymQtGYvuFWPh7YQg8oZkhL295M+guBewTb8vLrbL/1SbkzawhayoUA6VycnLzCTZ36/YUHU1m5sN1H58nEAPW6E4TS8Uj3jTsq4M5D0+nlwHwcbXm/s0Nyt0tno19QW3m4CPnZAlfACKPzZCVmuNuR7Ly8mmJj5hToc7ISvSA1h8bMGKCJGRZHy8LIqEBDIzU8nuGRlkbq5K26Sk0ANZ5szP527z7J2WlWBg84JKbyX9frZBMVlmZrK6Wswl3TCWtM9nUiv08vsNbD8/n8zKUnynoMDOf+vvNxZDZCTT0oKVawYHNd55eSYpf3ycQ0Mmv6u+noyO5ibIGu+wTvQFBYbJZ4vxGEzS4zEWoakC0dpKU7bpx4as4DWNX00NgU08DFn/K1ZQlnRdHQMBdWlbG8mWFlkQERF2cQk6nerXmhoeg8oX9Rqrp6iIMt/b2jTvDdVML6D3Kyr0d2cnmZTEVihmt369sfo9HptYwE6tSUqSyRwdLestENBzmETtNwFN+PFxMjnZtvhtri0rgbyx0SYgGIDyHisrTTpDbS0ZHa15UVJCdnfL0gwEFMOOjydjYuh2q1IIi4rsceyF4mY+nxlrl0sx48xMroFi8E+Z/mFOjr7T2mpXRXG7tSabm83n+fl8yprjjY16Pz2ddLlYUWG8LFaaRne32jg4KEs4J4fAyHm37DwAD53Dy/MBtuymtLLrNxsysEkbQVYWq6u1aN5EkNngMEDGxtJnlNIms4ECj2vyxsWZ/fqoTY1klfIAtsrt43DIdVFaKleF2Qy8kEvvR0YB3AfIpeLxsLhYeVkqKbSRERHBxO7sbGE2BFA4ygULrAToPrueHevrtdDKy8nISFU/7+3VjuzxaNOor2cbBIx5BXK9DkMuy/BwbX5uKDA9NGQl9J4SsxQUwI+PJ1lYyMOmLZYbsd8onwCCbDHV0OGg1fS9FfRvNP8Swfp528172yCFO2g263HIpdRtNiCrnQcgpew199punicnh/Zm2t9v6NdKS9V+s1kxIoLi9iy1uwg4JI3ncmkMCwtJt1t5cN3dXLFCbqqsLKP8k5J4AnJrMj+fjIhga6vZ/FJSVBm8rc2AojZKAVRVccUK0abFx5Oqk7hVG15engAiMTGMiRHFVlwcDfXco/pOTQ2Bx+Xm7e6Wi7WwkMzNDZbTSUykwyEQ0WHI9bh+vaFqKyzUl8rL2d9vSiIFAqypMQCOykpugym1VFRENwx3aEqKnm1wkIyL4wMQ1R47O/Xd5GSyo0NAjJwcsqlJCsiUxnG5LM/lmJR+RITWTG6uDmkJCWRSktzgycksKDCEB/39WnOdnVL2cXEGIKRwAWNipIxaWtjSIt1WUUEyJobAJg5CrnNxj54ic3MFxrEANFVVVmUgsqAgWN0+O1sHy5wcTpum89uKFSTT03nGzO+WFindBQvU/pUrSVZU8EcQuGvxYrWZjY0igqipIdPT5cZNT5fSzcxUjmdkJH2/+lVI2f0FyZRWdr7bbiPz8jQpGxvt5HCWlUlBtLVJcaSna3KWlGhzjY1lcrIOdn4/ycFBxsdr3bG7206Q5eCgkpL9fm148fEsLtZmm5dH2rQWiYnSLDU1dj08trSwqMgg/8rLOXu22TQDATI8PEiOW1PDadOClJpxcQwm1Rr6r9paHZZTUqj21NaSJSUMBIz1UFkZjK0kJGijqqjQterq7BpgbW3qJyHbjmqzTk0l+/t1Sna7eQpi1GBTk07xdXV6qJQUtTMyUvGozMxgvbLoaN3b4SD7+4OxmOJinZgBWRcxMWp0WZks58pKsq1NiNX6eptGjG1tZG2tNu6iIllzXi+ZnEy3W18bH9cztrbSroWmA8sI2dRkin3uZ8AcLKz4FX0+0icartZWHT7mzjWWkpkEgC9YU627m93digMDPo2xKazLggIODooLk5mZ7O3VhrhiBRXvamsjs7Ot0A7PAHZRV+A0mZTE9nZZhB2AIQ7YxWHzTM3NZvyKinQIMn1SWGjQluHhukdFhSZaYyMZH685W15uU5KxqUm7dGqqTaFmV+MtLla7o6Ptg0RDA8mMDHZ3q8u8XjXbbw5RdDgYHq5LREdT88KqfpyUZCsJBgL6QkKCGZsxu+ipZWn391vMI8/YHLBWrNtiJiks1BgDG/WfiAj7Mx3e9pLd3fR4aCOOi4v1OCtWmGf0+0mHg62t6obCQinftWtJi8tPjEivSSnX1RE4JYRuQoI5yEzaxOZLl8pREQiYtg4P0+/XMFhMO77W1vOu7PYCHDqH196QsptaYis7w2Lc3ExZZB6PIOOJiVr4HR1kbq4WX3W1TuuG7baw0ATivV6uXasFkZJCbR6FhVopDQ3vUp6rV1PXbWgIKoOKCu2aTU02ZRZbWgy12DZyeFibR0EBW1oMnVhhoTbwzk49Q3MzOzvtn+raxcX2hqwS1G1ycdbWSskUFmrDqK0NFjVtbpaic7tZW2uuZdGDNDdz9myxaKxZo3vU1ooyymY2aWwMumQsBozGRra0mEU9PBzkd2xqUlsKCrQTWugXU7jS5mUzrCAWvZlFjWZbDUVFBMa0Q1RW6rOGBpsVZXyc2h0rKnSd5GSyuZl+v2EE8Xr17IWFbGgwG7WhffN6tbEFAqR1bK+tpeZBWZkUfHY2mZ9vs6kwMVHzqaODTEmRFWjSEVpbKaVcXi5rs7WVzMtTP/h8Nhzd/l5MjMagtlbuUbdb7W9u1mGpspKDg0ap9feTMTH0em1+bz2rsfBKS01be3vp8xnXZkUF2dSkzTUQkIL1emWZ1dRIMYWHkx0d9Hpt3mht5gkJ5OCgXQ2dvb0MBIwl2dRk827aXoSaGra3G/BGYyM5PGxXAWBDA30+Mx4WKKe1Vc/Y1iaFbeUzjI/rvbw8sqhIh7WMDN2nspL0+ej3m3Hs7LSJ0llVpd83NJDd3ZqzRtF7PCTLy9Xv1dX6biCgz801WVcXpJRrarKLr7KhQXMjM1MH5JoajZ05yNDjIXt7NbZud5BPrrNT7czL0+9KStQXOTksKNC68v3zP593ZdcL8O1zePWGlN3UEmvgS0p84gEsKGB8vKFxMhW+rdBBSgrJvDxzeuyTe8Pv18ZQXKzNp65OCy4nh93dUoJiWTpFFhWxrU0bEFtbmZEhXWpxNmZl6ZSXkqJ1UlxMY1VsE0qzwsSGhoe183o8BHrIQICVlUYh1ddLwba1kYmJ9Hppu0AbGsxm6HZzADBlRB6140n9/XYYhZWVho+ws1MLOxAg/X663dqIjgCiAxs0G5xFqWSqc6elqZ3t7fqorU33LixUG632ipdwwFQFGDFI0zFZND6f3QcpKbJ0cnJUFYCDg+9i16+uNi6jpiZLR7OyMsizuXhxcANNS1P3xcQEq1aXlJjDw/CwlFVeHpmQoDEeHiZjY22qr4wM2lUmurtNH/X3a1wrK9nbq350uXQdi/2pv1/fLykhmZ/P9evNeKSmsrvbWAaGzNuO6Q4PMztbh4hVq0xfp6TIPWopzcxMKTO3mywutnlc2dKijbW3V1Xom829k5K4alWQblUWzX5ZeG1tZFsbY2L0vs+n+7C6msCk7tPRYcekWFjIuXPNs5tK4kVFlALs7DScnW62tGgsLJ7UykraNGY+n67V2fkORVxRoUoAAdoV3SsrzRgGAmR9PXt7NfarVhnr1DpolJcrx9TrDXovDPF0crLJm2xspFUN3pr7Lpfmyvi4rmFz3Zrgm9ut3xUVqW+am4NeFPp8pN9vrE6fxrW3l/39wXm4dq1Zvx0dwYOe10u/P3iYMuBp5uWZg6SpJr9y5flHYx4AOHIOrwMfYGU3pdGYb70FXHwxgIQEPPyw0I24807ce6+QWrt3i5gh/4JHsXQp0NZ2JU6cAL62YgZQXQ0MDWFG2FmczvpyMI8GSsGKjQU8Hgdw5ZU2UxCionD33SpM/KMfCQT3ne+IYCE2VvRTM2cCaWkAh6/CrAri+HemKd/m1luBF1/EdbdejYaGjwL79mHGt6YJNVlXB9x/P6Z9+qPAokUICwP+M20Lbr1VqLebXG9h2sdmYX5HB65fdBqsJtrbAYyN4YqJ36C9Xc+0b5/64N+brsd3664DXC7s6pmB3buVUjTdSxz9+TOYt/EXmLdpDeo/8SDKD/wj/r3uKqCvD+XlAsotXgz8wz+oS8LCBHS7914VRU1LU23Q9vb52LwZaG6+FAUFQHHxxejrA7521yy7VmdkJGzmmMcfB7545zx86pbLcOutNjOX0Hxxf4s77lAbRkZ0zxf2XY1bb1Vd0ediv4mSEiEQ778f+MzT38Ty5cC/338WV725Hv/ddBnS0yEWj9RUFWdtbwfa2jBv3xZ8t2wWnrv3NfzwkYsw/aercV3Pr/DDzdcDmzcjMlLXv+rn38OZMwIHYuZMJCXpWa7oeQnX9fxKyL+EBHxhydu4adlpYP58q4Yp0NODv/974NrRV0WfcvvtWLhQxB3/mr4Ld94J4PHH8dBDwK6YvxWlFjSnTsZeC/T1ITZW5D7YuBGXD+9C+VNXAevW4SbnLhXqzczEhz4EbNumuXbt0K/B/gvwn65fYPgjn0L9wKfw1ub92LoVmGVhK4eGQN84RkeBowtvsFjVgLAwHNpxCLdN+xU6/v4/8blVNykP9O67cdJ1PWbOBNg5gc8dXoOLyr6HtWs1fpdfDvxnwWHccQcwa1Llfa8f/TUOHgQefXoOXl/2bdx9NzC95w2Ub7oBJ9O+iI0bgeZmaNL09OCqsV3o6VHd4ago4Meun6CoSH04Ogr8uG6OqgnHxqoDu7qwZe0hrF0LYOtWrFp1GYaGgF8+exGucLyNN1vfxsn5V4tp7847cd3uNfhiwn6grw+7nDfh2qFfAz09ePDe47jrLq2lOV2/xoyqHwKPPIL6dTNw773AqlWzcNPYM8DDD+OKrucQGQlctOwG3Bb/hlhptm8XXLOuDujqwqJFwJwNa9DUpLeamoBH8U/aQrq6MH3Rtdi169z3uJCcR3m/te17EduNeeAAmZ1NYC8HBwXwYGQkWVXFMwjWrGJBgU6W1dVyOcTFUezmPnZA4A1WVZEtLey2Ylam2Or4uDmt9fbqt9axr7eXdDh4BkKc7YVyioYhQElDg058bW3kfYBh9j9Ku3BdVRXXrCHLIeDItGkki4pYUSFLyM7v8ngESnC76XbLstHJu49uiJyX2dkyo5xOHTVrarh+vdBqhyHAzCkICBIIBEOSTEkhW1pk9SQk6Pem1MEJ038HYMoiuVxkWRnrARtk0wko3qMSETIBi4p0nZQUMjZWsbzYWDGvmJhcK4QutUitLdYNFhbqPb9f4wGYKhbPsLGRXA9Tqqe52YZTvgmBDoJFQfcSkImYnGwYalpa7LariOt+xfEqKoL14kpKbPehVb1h/XrTL6bvLQaNvYANSmFqqtra1GQKpX7TjvPm5pKMieHQkMmfy80l8AzbICDSCTN+wBYGAIaHayiPALI6mptlEbe1qb1mjGxLw+nUfM/OJhMSGB0tMFRhobHahodl5VlVJ9ra5O43Lv5j1rwvL6cHQnOuWmXixvX1dskjFhWRBQWaB7297LVijx5PsFBuTQ2ZlESfj7Zr3iqQzN5ePU93t65h0MZsaCBTU5mbqy70WmNVXk4fRDTe3m6KrTY3C8TidJJOJz0es2Y8HhtwxLg4treb+xtS6OZm/d0NgWEGoAK1lqU2OGjmSFwcc3IU47NJ1HNz7RI+Q0Pm/aYmsqWFK1cai9XjIQcH1b7eXsXhDYF2WNj5t+z6AB49h1ffB9iym9LK7rrrfASeILOyFH8xfo3sbCkor1dvAZMsKZHLTHDg04pxZWXZDPzHjD+bHo9dwiYlhVJ63d36e3ycq1YF3Wdr1miNy423yaQXbJTLxVBYMTmZNTVSeGxuNi6THinM1FQ2NlIVFHp7CZziAQgEMD6uxQzcTpaUMC2NdmHWQMAkTJeUkH6/jRKbO1f72oIFJkielcXKSumVykoGN82CAntzjIujNtaaGlPex23lH9vUUToYuA3a0UerWjtwiImJKoUEvEDgcVMbdCOBZ4zyaaQg+QMEBpiXR+OKHSAwZruzYmI0HHPn6vGE9NtEYD+9XrlnU1O18Q0DNviPKSlcs8aARIxyrqyk3FFQ8rMFaHG7zcZZV6d/29rkBjdxQJWL2WtSUw4J7GIAS0Cf5kdBAVldLSXe3EzW1po4yAt24rqQoVtYUqK+X7qUZHQ0gR47Nsv4+CCy1OUisF9u4IwM1tQYAFRbGzk4+I5nGrGAvmxtfUeM2eu1UZSFhca1W1FBlpdzaEjz0+/XuSItjcEiqeXldgwP2Ggr3/Fx43YuKyNjY7liheYc0GyT/jMpya69BPQwI0P3yM4mGRNjJ11Pm6bnPAZDeJCba8eMgUMaB69X6TWDg8zLM8o+J4eMixOCt6ODwCR9pg+AF+yUgspKjaflDqbfr4nhcklhR0QIMFVbq0NQSYnGLiKCjI3lmjU6Z6WlmT4zhWNra81zFBRovWZlkTExOuDk57OkRH2ycqX2lIwMkvX1ar9RqFor51fZvQVw9Bxeb4WU3dQSa+Dj4nxMTFSuVUWF6rA1N1vKZxdVl2qj6ooNSgnExYkbsh+C1us7Pht4AmxhRYU2qJwc2jG7igqSg4OsrdWGIoaSXQS2mdchAtsYEaE9oKWFNjoCOEo2N/M+o6ysumSCXE8yECB/AFMZuaqK4+PBuJA2mVIpzuFhWSemtkxhIcnubjvmALgZE2Ng116vzf8oxWIAJVYhzfJyO0zIoiJzjS4CPtNHI8ZK2kYGAvT5rMrdhyzwnq244+LUV6tWqd1WZSCr+ktenj7LzLQU3RZTH+w0gdPMzaVRniMERtjYKJ2ydq1ifqys5Pr1Jm4TCGizNAFSwE16PBwaIrfDcDmmpEjLNDSQnZ2yAEpLWVholJ0B3YiVY0zxm+xssqTELmjLsjJZc1VVAmu0tRlFPkBgo1FeYwSOypJra+N2CMI+YDbuykoaRTmmaw4Pm/qIL5g0k04bRJKaSm3WBoiRlialZqP93G4TCx4ja2s5NET74CBlNWxq0G0NFkE1CMlVq9QdFm7IymmoqdH/XS7NH4vTkamp7Oy09TpXrNDyKCxU37S2Ugckg66JiaHJ1xyw80fFA+omMMa2Nj2n1sxpsrWVOTnWfUcUY2tq0nozxWunTTNK2yrq6vfzFGAjQH0+krW1TE3V3zrIHiXb2uyashbOqaVF/SNE5Wmys5NDQya25/Fw9epgkXeruF9ODk1/nta8Gxwkm5rY3k4baGWx8SxebCx3v9/Ga61ZQ/qqqkLK7i9IprSy8z38MA8b9wsLCzk0ZJRERYVMkra2IILPQvrl5JDp6XYhZQYCZEsLc3PN6c5AiFlXR1ZU2B4aZmUFT8zZ2UHkiDliB6Dkay+U59TbS9LjUQ5bQQHDw3X4vA8mudqQDLOiggsWaKGVAzbwhR6PTars9dKuNr1mjQE81Nbabk5mZtquUeblkfn5bG01VkNVlU7oJn9haEhN6O6mkDbFxUKZjo+rzUlJQRi5VXg1Pt6m72JkpFy1WVlyiVVUyJUWHS1i6thYAUOgZORTlvIxCFKmpmpMTII5a2uDvFN1dRqf+nprt6QP0KbU2qprV1drY4mIILOyZMFmZJDp6WxoYDAXrrZWinJ8XFZ8S4vGtaFBQJDubrWx0yic7m49Q1yc5kFiorS1hWooLWVmZrB2XVaW2YwbG1lToxw6kx2hw0ZkpNpWXk4WFMiCjIlRv+flBT0RVlX1sjK13++XgktOJvv7Ze05HMzIoCyUlpZgddOiIhtybxWTt05TllXJlhaeMBYuq6tJp1PrpbSUgYBR/k1NPGLmFzs6dA2DHq6uptpQW0u6XJrfpmbj2rUG2Rkfz03G7cjKSvWvhURxOsmcHJaWatnU1JB0uTR3Leqwzk4bDOSB3LBWCkFamp5pHCYZ3JyyVq40oLG2NgukqnHs7WVJSTDLJC8vuM7HzSEkLU0WmWWFMTVVSn54mF6vUVzNzWxr0zVOQDl4paWawq2tDJ7iamv1g9pa3b+4WM+VkUHfbbedd2V3EODxc3gdDCm7qSXWwB+GOBgjIgwDfSBAoFH+eWtHz88nq6s5DiWjHjCbL9DHBQts0gNjATVrdpvgSSug9woL2Ws2gxOW9ZCUpNXmdPIIDMuCyStjeDhZWEigRxt1bS2titzMyOB9UFJsSwtNDGnTOyqRlwZzvBIS2AEltApZ9//I5GS5gwoLOT6uzcoPE5uMi5OLprHRTiBna6s2xYoK28pds4Y25NxCUvv9il14zLUZG6sdo6Ag6AqKiZGrC4bTMj6eLVByeSNM0nhhIf0IxvS6jcLqNv3D8nK9EhLEngHFcN4EyOxsuYkqK8nGRvZDSecNDdQm53SSMTFSOKmpZEGB3H3V1WRKCiMiDEtNQYGx9Mek7Ds77cK669ebE7yVQxkTw7g4bZTHbGu/Szl+gL1n7zWWWGurfh8REcw/A9xS9H4/Y2K0B+62+tHA2YFJDkIVxe2qCvX1ZG4uFy82TDBJSVJYRUWkz6dNc3DQuAoPqbpEYaF90NkJ2BZRbS31WXMzWVnJlStN/NFUSli9mtqtExM1D02B1cxMkm1tHDTts/IcdkJx4rVrDfdlQgIZE6ON3vxrp62Y3Eu3W/O5tVXK1+3Wd1lcbFtk/f20U3Z6YfL20tPtRG4WFHDx4mDS9+LFJIuL6YbIBaxKDJYFyYgIKdmOjiAqtL/fApkG+UZbW+2At8W+09BAsrGRA9a+UF3N9evNuszOtnMMGR3Nigp5J1asML8zceUzZt3Z8erkZLmA6+rou+yy867sDgEcO4fXoZCym1piDTzQIVdRSgqBQzqFxsYyPFxujYwMLUa5205x9my5a6ZNo07SJtC9Zg01YZ1OtrWZmJrfzxUrtAkBA4KNJyRw1aqgK8eKgVjuoO5unRYNUQftOiRVVcH8I6+XaWmy8OzK1S0tZGGhTvSxsQTW2iwhhYW2Z8UkHX+THo9xtRkoP7CLc+dqLScnG+vGYPsLCtQXixczmDcVG0umpHD9egNkaGiw2dRmz1a7LNxJWhpp76aDg+zs1J+rVwfdjGlp6g8rH3/1apv/mAwE7Grt1dV63+eTWwk4aifpSlENE9hrpzKwpcUeR5eLcuWWlGhjT0iwQURuN+3q3iwuJgMBnoFAQayttSmtgC7S5TLuwL2GRPwQa2s1zrNnM5gb1tzMxkYplDMQIMWiorKYSWyrJyFBFpGV8xIRYaXN2ZRzxcVUJ/n96vPqaqamCmjEigomJ5sxbmgI5qPFx2velZWRHo9N0uz1ymVbWUlNPBODsziUq6tJ+nxculS3tC22wUEWFJg2WvmXtbXMyDAx3eZmm07O79cz+3xmfZj8uNZWkjU1Ulrl5UEl09nJBQs0VYRX2sbsbCm3lSuDBCetrSS9XrpcclXm5MiF3dZG20Vvucx9PvOcOTmaXE1NZG+vnsfjYUuLnVZKYD8rKtQ3RUUaQ+AQV6wwCjkQYEyM/rYAPlYuJoeH7blcVERTHmuvTXBgJY8PDtImeGd9PVet0ny3UmzY0mKDX7xesqXl/MfsQsruvUvY+cN1/vmlqsqlCt8rVmC8aa4gwjU1eBFKSZg71+acxXN1p/HGQQe2bp2FPXsgst1770VsrIFj33EHMDqKqCjA4/ko/vErKlZ5VYEbjJ2D13uAo7E7kTmiDIWPflRw46gou0A5AMHJZ84Erp14HT+uuh4zvvVRzFpD/L/HbwK+9CVMj5qDjRuBjz1O/NQ5DX/XSVz/8/uBhx7CBReMg8XZ4K1xeCsK2DL/+xh9HJg+ehSLFs3B0Y3pYOok0P4L1F/4/+GTcQ5gdBRr1sRj5swgke1XvgL8+6oZ+P7Wp3H3z/8Jd9yh5zyEL8LpBKZ3dgLbttkVX8p3fxEPfnY97rnnb/HQQ8B/3n8a+w/OwJEjqpv5462/wOUXAvV3qi8XLbLrkeLhh9X+ri6h/VesEDz+6afVFz98eDr6+oCwL12BrVtt7lykpV2G7Gxda2JC6Q179lyG+fMvwxf3/Dtw++343iOfw7JlQq3v2wekf/UyXHPNv+OHQw/i1xU7MX8+cPXkG3C5dA089BAwPIzTk9Mxo7sbX9v3DHDLV7C1Crj+oYewdu/HgcT1ePCR7+IOz4NYuJBYuUoZC/M6O9E+U6ken8JG/PrG72PfPuDvhoeBvj54HwKwezdmzZyJyairgNFRLFoO/Hriu/jcwoV4afQG3FRXp9yPW27Btm2C6x9fchzLfg58e9FLeGHsJnwh7KzSG57uw913Ay895ANW7UBamgie5/3HfwC33IJfrp2O//fzn+O17avRseTf8MmmHwILvw2/H5gzcQhz+vuxJOoksOdGbJm4ARMjwPfvOo4f/nwWvr3sdaBrDK+mbcbZG7+PsDCggzcgfEipG3OeXA0syQOWLcMzfdcHibDPnMFN4S/hplWRQI8D/7lsCFjbh6jYf8KufRdhY/un4HIBPx77Gr7peBu/nP9d/L+xX6OvD/jx1uuxcaPmwy/ueQM/SUvCHXeIm3nuXOD7Y98F1jqAFStwFPOwebMKnY+MAL+42w3ccQeGn38Nm1+Zh9tGVuMLycnAiz0q4XT//fjN5FW4uvpe/HDZc9izBxgbuxr/tOw3+Ny9fcBEFLxetWP67f8fHly1Ctg3id7eubhq9HWxRi+/EwkJM/AF137ddO9efDHQg1d7/j888shlWL4ceP3GbwLPvggsKQPW/iNQPwHMn4+FC4HpT67BvAULgB078GrVTNx0zz/ipbAvAI8/jsnJy1Qb2XNQlZDWbUfSV27AP//z+d/zzrVMz5TONTtXeb+17XsRO2a3Z4+xdjoVZgJ0ui8poR8CC+wGgtnBxcU6zcbGEugjECz9wcJCsr5e7iSDMmNqajBJ1socbWiQa6+ujuPGDddi7lUNA9OvqbHBGl6vYnGNjTrBsqJCL4+HnZ0mhmcC4ayuZm6ubuX3mxNpfz8PA+akSDthGmjiJiBY0NXl0iszk2xsZHW1mnsAouqyygF1d8sya2+nLub1MjFRSE+7UKcpdDsIpVQwNlanXI+HG8z3hq3PnE4FbuLi1G/l5TrqlpTItDEm4jEYJGNRkaixGhrIyMhg4dfwcBslOj5Oxa+Sk+3Ug+5uWTPt7bRppjg4KLdxSQlXr7ZSD44SeIZsbWVhoUlH6egIxuiamwkcEjNOXR1ZWUlgF1lTw8LCILvMqlUmJpSbSwYCum93t2IxkGt5HLBdkRweNoCL77K0VNZfSgrJlBS2t5tk/8pKAk3cDdGBWWMCHDJIQzcLCzVmgYDGPi6Omgw1NbQYDZqbqYkVHS0Xoomrzp4tN/uqVSa2WFamuGJZmfqgv1/fT08nfT65J5uayIoKHjHWq5UFwpYWjXtkpE24QJeLfn8whmXNJxvp5HSyt9e4F2truddyD1rsMjU1Kp3Vqz62qPwsMoRBQNZ7bq7c6ePj9PtpJ9kDp2TKJSfT7zfWVGOjrMXaWgbMeujsVF+zslJu44oKuf6Tk/kmoDVkPm9upuJ28fE2sGTlSqo9KSncDqW/cHxcc6akhKysDMZsu7uDpONNTaysVHyd+fkEdp93y+5tgBPn8Hr7A2zZ/Z+VXWtrK2+++WbOnTuXALju/2fv/+Oyru/9D/yugV0zcJcKddnAXTqwyyYOmzRs0qRJw022aLHJWWyxxYZb7MQWO3FOrDjDki1abHgWWyxZWHCSioUVUzJSEqYkpCikGAgoJCiXggICz+8fz9f7fdU5O5/vmad9d/qe3rfbdVPe1/t6v1/v16/nr8fz8Xzuufd8PzU1Jffff7/MmzdPHA6HfO5zn5ODBw++55rR0VG56667ZO7cuTJz5kxJSEiQ7u7u/3YbrIGPjfUKPCVSVqYus8JCOWdNZgs/395uCxDNgzIwYYuk1+0WycqSFkxOUF6etLf7GI0s6rHkZN1zSkt9DEQyOSl9fWLq0XWa6gWn1U1aU6MbYUKC9PVpesHkpIUa26mbibnp/WbzcDh89cgUhblb43Qul2Rna+yko8NyszTrJlRfL7m5uhda5NIREQbkYvIEBwfNhlFQoBt+fr5IcrIkJ78rTSEqyvA0erVfJid14xkbE0Vl7hYol4gIlUvh4SpcFFX5mkCNwCaTMvCaQLVJSygXTUsYsDEqVlqFab54vSrnNm3SmEh5uZj8s2ckKko3lYwMfVZVldYctNydkyg5dGysvkOvESRSXS1NYLOpWa9uc2aZXC97jNvbzTs8JVtAYLPATjvvDp7SyhGJiSKxsT6i54IC057f+uJtSUkCeZKaqpekpyuMHar1eRaEsqlJXYo2Q/64SEGBVFYaoVtYKCMjmhbwHEo0bdFQlpcbN6mhvpLsbKmt1d/ZtHWRkTYTVleX9nldnYg4naok5eTYLF1wWiegQd5Cq0hsrPSileK1qkOzNDUZN3l4uE46f3+BI+qmzctTVKnTqb7FlBRZtkznYzumNqIJHWgMWsmfvV7R3EuvVwoLRV4ySqRVB1HdlLsNGXS/wA4bbGYDb4qKVPi3tGjfBgaKxMTIGUx8OS1N12V4uEwapfQUGvtbtsy4eg3Fm8TESG2trkUJDZXAQJ1nF1GC+QtgFdCQnBztOysHLzZWXd/qnq36UNj9Lzr+amH34osvyr/8y79IZWXlXxR2GzdulMDAQKmsrJQDBw7I17/+dZk3b56cPXvWviY9PV0+9rGPyfbt2+WNN96Q2NhY+dSnPiUTExP/rTZYA/+xj3klLU1LrSgsfLeBGV8wG+6LAjUSGKibZHCwJfC6bVCJ5oS16uJsahLYKfHxaiTFxIhIYqJkZIjNvJ+e7lN09bc1Aq0mLviaLFhgpz3pzu41McKODvkF2MUKLP5NGJfaWrXwentFpKBA6uvNNVj5d9k29VdVlWhbY2LU8ujqEoXDnxDolNDQdyXVxsaafmgWeFYFXl2dHYMrLDRCMDlZNI3iRbHy5/TvnQI1KpgNL+C0adqH4eFWGkebrFihwqSpSS9NSVHtODTUR0e4bZsKLE09eNOkGxwT6Db36TbWdpttxIyN+Wii7Fy6yUkdl+RkkagogRO6u09OKkgnNFQ37eJim+cRJkTi4hSMYbgcs7PFAIIuaHw1KsoOLG3YYP62+KBMKkNsrJX7uMMItAFZsMDE4/LzpcZshF1osnZJidW34wqGKSszAJgaIyR2a/qI262bbXS0KiK9vRIXZyitxsZEEhNtytYFC8zYdnTY3AYKxjlmlK1jtuZTXKzzzur3kRGVA7W1et6ihfR4tMskKcnHouzVFBQrbmuFnLdt0ybV1RmFz+vVjb6jQ2CHHaPTdIgqCQ3VNlpAXGgVaWmRBQvE5KI12cI0JUXnttLRvWmnS0hSko3Gra3VNtXWiki/phNYtHXwZxtUU1pqV18ya7XbKF9HZHBQlay4OJ0PpaUqkC0+2Y4OHX4VsqdtirqREZWrKSn63q2t+oykJOMFmJyUnByfwub9znfed2E3ADL+P/gMXKKw27Rpk7jdbrn88svluuuuk9dee+2/vHbnzp2Cec67P4cPH37PdVu3bpXFixfLjBkzZPHixfLss89eUt/8d4//kRvzPwq7qakpcblcsnHjRvvc6OiofPSjH5XHHntMRESGhobE399fysvL7Wt6e3tl+vTp8vLLL/+3nmu7MbOzpcNonpKcLB0dBtpswdibmnTGJiSoil1YqC6chAQ7f8jrFTtpPCJCRLxeH+t/fr7NwC4xMbrwcnPtkidSW6urZs0adXUUFMgZFHHX3i4mSD5gyI4vqFFl3ClquQ2LFBeLw6Fa4v0gMTEqIMbGRK0Eh0O6urRUT0KCbjhWCkRHh6gQjInxoWRSUuz6bZs2iZ63TL/JSent1Q2gtVVs9FtNjdiJ5RIRofe0dtGcHJHISBmzNvHQUHUdJiSotMvPV6HscKj7DWykpc2gkpSku6lVY6ylRZ+dnKxjYqDuUlSk983L03f395delA9UGhu1bSUlClZxOERSU9XVGxpqp1ssWyY2SbddHcFUsJbJSZGmJgWb1NTo2FvW1diY/cyYGNF3swbGuMAtMJK0t0t8vLGeDVDBGvfYWIORQd2rUlEhEhenEH23WwVwXp5aogbAlJws2o+FhSJdXdouj8dOWhZ/f0lIEBXmjY3ab9XVtpuutlabn5MjdspIVpaP6LwXVCCbenzp6dpHdl28yko5hdbok8JCXTvGNWwToZvqHh0gkp8vGzaoFWklmO80ngspKlJQU2+vvp8x5y3uzw0bxE49mDSeFKmrs7krW0w7yst1yXo8IlJXJ2dA119goIjTKSUlxqVvFkR7u1mnprRWSooqcklJvjSEMTRksGKFCqeYGDOPLGllGBss9OaWLboMLLBTVpbY6T+SnW2zFUl0tEhBga635GSbqMC7YsX7LuxOg0z8Dz6nL0HYlZeXi7+/v/zud7+TQ4cOyT/+4z/KFVdcIV1dXX/xekvYtbe3y8mTJ+3Pu42Z119/XS677DJ58MEH5fDhw/Lggw+Kn5+fNDQ0/I/76r863ldh19HRIYC88cYb77nuy1/+snzzm98UEZHa2lodtNOn33PN0qVL5ac//elffM7o6Kh4vV77093dbbSFZwV2GFi4Jt12m/Px8brYIyJUG1aL7lnz6Za9KCReJielvt64D/EVWVV347PSASYW9Kypb9cp0C2hoRbKs99YKDuNtdIp4eFG84yKEklNlYICEzsrKjJuv1x1n5qcnMNGUMbEqMAzmQsmCbdKpKlJWluVLssyXMrLTUwvNdVYbi8a7fZN3TxHRkRSUmwrNT5eYy3i8ejCNlUVamtFpLHRWMRHBJ6RhAR9RmioL7l+2TIx73daNBlcE4a1P8tFE+v7DRLvmLHUys31neJw+BCey5ZZSfDPCjQbl+WL5lqF91dWWhb6CZGODgkO1phnXJyIVFX5kHSpqXacqBdl6ejtFTXjTUmgDRtskKS+WE2NbkypqWo5xsaKJCaa/puQLrPhLlsmdnIVvKaxmLo6FTjR0Ro3TE2VDkwNvKIiLZEEAsckPl73/LQ0EcnMFI9H21FcLCLh4YaxZsJY4Jt1sy4psVGrbxsBmpsrIi6Xza4mvb2mBE2zLbC7unS+xMeLSr6CAunr85Wj8Xp1o05PF5GODptQWpqazJh1awy2tNSk8AyoYG9qEtCyQElJYqMu7ThoUZHAm3aeW1qa2GTqtbVqmSclad9YJY0s4m94Tbq6jJIZESELFhglLzZWGxcZqfHjDmN5BgaaOWfM1PZ2gQs28bYl8S0CiLExo+xkZZmyVt2+2KtF7Fxfb+Zis/6uutq4bCfsVAU4oUpyZqYK59paKS9XhdYqKxUern87HNr++HiRmJj3H4359xB2119/vaSnp7/nnMfjkXvvvfcvXm8JuzNnzvyX9/za174m8fHx7zn3hS98QdatW/ffbtdfe7yvwq6+vl4A6e3tfc91aWlpcvPNN4uIyJYtW2TGjBn/6V5xcXHy3e9+9y8+5/777/+LZnE9CnRYtsxobRkZdoFUiYzUVWYBJox0umCsk4QEs8iMWys01HDtVSvwQyorjZvsiOwEGTMbmKxZ4yvgigFoWGV/RkZ8jO3V1TI4qJtMSorYFGBWFWQotxOarXyglhZdPPejwIWUFBHJzbVDTBs3ijwDdk01qaqS9nYDdHA69Z2NFdvba6yQNWu0jTExkpWlWmlcnNmAjWVRWSlW4FGFMBqwt5JtIyJ8hvHYmOiqrq7Wl/N4tJ+9Xt1Ympr0u/Z2kZQUu8xQaan2rXR16TVOp7bb5bJ8m3KKd4FkIiPVCsjK0g0mNtbuQ6mrM6kK3Taf5diYaupW2Rmo8SX45ueLw2Hlyp2wq9nDDtXK6+p0POLiRDo6pKnJ5FJ1dQk8ozHAjAwVDmNjUlnpg9CHh+u8Mal+IiMjuuGZnQ86tWFRUWqJVFfbsV4pKdE5bFFxtLSIeA37fk2NegWioiQx0Qj2ri61zkw+n3R0+Bh5Cgu1r+rqROrrNSZnCqNKQYG0thpvQ1WVSGGhNDTo8FuFaaWuTgWhiXXbnKv19TrfJydVQZic1OsM/6q0t4uUlen4hoerNyAw0EciYFUxyMhQAdPers+25lpGhl3At6PjXeWOTFko6e21ORxs9paWFh/pQmioSFmZWpxGUEt4uPan5YKuqPB5D2prVWvLyhIpKvLloxoviomHyBmU8qu3V/T3FrducbFIbq4vXzA2ViQ8XMYsy9bfXxoadD56jWL/fgq7IZCp/8FnyOyd3d3d7zEgRkdH/+Jzx8bG5LLLLvtPLsYf/vCHcuONN/7F31jCzu12i8vlkptuukleeeWV91wTGhoqjzzyyHvOPfLIIzJ//vz/QS/9v4+/SerBtGnT3vO3iPync//x+H9dk52dzY9+9CP777NnzxIaGsqS730PVq9mdQPMWJICkZF4PDCn2wWbNunF+/ZpOYLbNZfA8fzzsH8/qwcV7k5PD/j5sXGjQvcJDWVVRITi6IOCyM4OY9XTbkhOJm1gARCi3505A/n50NamDO1BQYodDw1VrPXWrTxc/yUejH+NjRtvxOmE3bvhZvdbMDzMli1f53gQxC9Rlv/qaoXq33UXPHB7Ew98+tPEbxFYdx+LDr7JH7YupaoKXk9IgI0bOd3wFhevWspwLzjy8jQPoKQE8vL49sRv+f3QIb4dDeO3v8iMnmPgdvOLy94mJ2cBf3rgdQgLY2HYlQwMLOLsq28oTt7t1tyCxx+HkBBNz3A4uCdaUw3cbq1UMCMoCI4c0RyCwEBYu5ZxxyyGBmDf8HW4I/S6hQEBXHEFHO+ZzpIlgHMxbw7NZ2kQnO06w6w7v6b3GB2FtDSC4uOhp4df8UOWLIHlEwCrtb8feIAvu4/D3Gvg4YfZvPlGBgZC+MpXYPt2ZdF/4AG4KfI0rzTPYXLyZmgLYW0bMOEmORnCPl1Ew/J5EPEwfn5+bPJ8Hj7aB0NDlJd/HRITOdYzg+t4g+ah6zgfNJ9Nm+ZrWsm9eVx78HXoC+FWv2YIWw6by3lr350QEMCfdkznC1+Acb+ZVFRA45lFfKaxkeKGj4NDr1kbBK/7fYkbnn+Wq9auhaNHuaG0lHHXfGZs3szrnVcztFtTV8BBR8dccDzP7Q0wZ+Idnc+rV0NbG9XVS6Gzk+a+hZpCsnwV3H235mk0N2tKzj/+o3bO6tUALOItvfmSJXwm4jwvvjxT3628HIDfFI5zengmc5xOlvb9SefAwIB+HngAd/S/8sqr01m1Cqh8mS96OmGfH6xaxdolgKuI08tvZs7mzfDYYzA6yrGhOSyMi9NKBn190NfHoN8ipkdFaVWD0VGcnZ0QHc3Co6/QF3CTXjc6quvp4EGeevw2TgzNBODqgTe1ZMYdd+g1q1ZBYCAL09LA7ebfHpvO9zs7dUG1temCGh3VEiW3367/Hj2q/9+3j/p6uHXgt7p+s7I4ffe/MmdiAufQEEX3wdWjx7R8x8SE3ue22+Dhh5nf8O88NfE1/iFgM1RXM+PIEfAsgvJygoNhxtA7jM6d+//c8y7lmMZ/3l//qt+LABAaGvqe8/fffz8PPPDAf7p+YGCAyclJrrrqqvecv+qqq+gzVWL+4zFv3jx++9vf8ulPf5qxsTGefPJJPv/5z/Pqq69y4403AtDX1/dX3fN9Of4nkpL/H7kx/+NhaTnf+pZXtbTwcOnrE4FqSU+3AtL9ogCLcUlPVwXVIlFOTxe1+KKjxSIq3rDBCvS/JuHhqsB1dIhx42jtNomIkG3bVMNUFNYRsQEOtbUa86io0ArjXnWftbf7kHB2ieTISJHcXJtZH3arNZWVJZs2afu3bFELT62RGpGqKgkONlWbc3IMum/cpj9KShKbpNr261VXG0DFuEybZpKJW1tF8vJ8iL3MTOOKKpd588T04x7xcVWOywsoQ4rtxsvPt5nzS0pEO87fX62ypiY1A+PipLdXmUQuWhabcQGuWKHjkJGhirFllAQHqzHR0qLN2oMCetrbRS2ElhZjhTXJFpBNINCv1ktEhEhtraIuwbh3y0VQtpoW0IrVCQnS2qrutUmUaxG84kVTLfpB4EkpBpHAQI05RkfLIAg8ZFyr46Y+YrcxBE5LKZqCYhXw3GNc4rVgwBq58oTxOFjuOgvs09QkIqWlMohJJUlO1hhbdbUSolhWaGWlWg/t7dpRWVkiIyMGRbvTnnPS0iJSUSFwRMdpcFB/l5Jirr0gsn69FSJUD0JNjVqzjY0itbUmFWK3wE7p6zPMZpjUj+BgCQwUnwuypMT092aTFlNuLO8ndWzq6oyb+m6dyyUlAs3GctaQA/zZ5mmFTQIPi8X3KuHh0oSibq1Jkp7umzs6BiUCue8CbClwTMnLHxLoNm3bYb5XAJbU1IgkJ0tDgzop1F3eLTExYtzMbXZcVSuZvyhWqpMFSLHQwlatWBgQaWw0IZX317Lz+vmp++cSP14/v7/Ksuvt7RVAXn/99fecz8vLk2uuuea/3f61a9dKQkKC/be/v7889dRT77mmrKxMLr/88r+iV/66428CUMnPz7fPjY2N/UWASkVFhX3NiRMnLg2gcu21Ugs2ek7jPKdtxoXWVuP+iYiwGW+7jessMVEFQ1ycGH/+HgHNT5OSEjsHyN/fUBxFR+u9ior0Xl6v7lL19SIRERrv6OqSdjQWaMWdkpLExBbu0A3H5ZJGlP/Ph6b8B7tkEFTZbqMjIPeDxkhSUnSDKC3VytDgA9gkJurK9Hh01TmdIk1NKhhra+2Phd7LyTHVDmJiRJxOmZw0bSkrk24U6m1L6fZ26UbzFXeBLhgjCM6BkgYbl/ILKDR/j3VtcLC8BLITpQ87gwG2eL0qkNxuVQ7a29XdmpGhLsyMDJGCAnUn+/vrhmkg/dLSInBEXaBut453dbVIaKhhXmkSiYsz6Rk7tS8rKrTf6uqkt9e4rbxe3bjj4my0XRVKcQY/l0Y0R8yqMLDdnI+K8hX29aEOH5YaI+iTk3UYnsPkbq5fL5KTI9CtLsu8POnr0673ekWkuFiRf+Z9kpNF21xTo7G6kRHD4vOkzUFqp4UEB0tHhyoomzaJTxEZHJSmJrGBKBIZqWPp7y+Sm2un6WzaJPZO/TYIDOuC6e+35xdMiOTmitdr6MmqqkQiI2X2bIvxv1/j0WlpNvn57NkiMjio93e5RCIijGL4c42D1tTIli0aX6+pERMjfFIVsOxsgRfNWI4L7FDOaaPcjZi5Zpi5REpLJTtbp3hEhCoR8fHqRdX2TQg8KxkZ+jxFhF6wFUCprtYfpqZKcbGuC4vKDZrVE4zGZC2C+RUrxGYUkuJiXQfJyar4paSogIyJkUP/i4Xdf7dNl+LG/EtHXl6eeDwe+++/hxvzrxZ2586dk/3798v+/fsFkEceeUT2799vI3M2btwoH/3oR+XZZ5+VAwcOSHJy8l9MPQgJCZEdO3bIG2+8ITfddNMlpR548/ONttYq0tWluTqhoSIJCdJuNO06a9Pp6rKRXxIdbdNTlZjNWPLzNccJ1KyLjhYpLNTYRUmJSG2tap5VVXptbq4cQdMXxsxirzf3KS0VkY4OO/5gJT5DrgwOqjU3OSkig4P6ncslkK1CtalJLZmWFoEaWbBALbyuLhHJyZGGBgu80WTX/JLISBUcERG6+/b22rnvR4ygaQGFvncZwMPkpEh1tc0dWGcsG8nKspn7W83mv2GDytLCQlFhZMiNJSNDn1tXJ5OT76rIbjETZ2VJTY2xXMbGVMqMjOim2dVlJ41LcrK23e32kS9nZmo/pqVJcrIRDGvWaFF1FDQUGCjypLGmCgt9ISPYY+cVWmjN+HjRF7CqEdTXq5KUmipSXW02xiZJShJTkeBNm2pKrb9xaTH9WAk2qKnbWN9qETwp06YpsGX2bH3ntDTRDjaVyuEpqUPjQe1gk5DreHdLV5dRrkygyrbETL6nZGdLU5OPWssyi1uNJXkRTSrPyhKRzEyNcVVV+WrKZWaKZGbqmMTE6HrIzBRJS5PWVhWalpfgAoa7ND/fFtJSV6djkZ+vil5ZmUhdnTQ1adJ/S4vp08xMVX5iYvScxyOHzXpsbxcd68ZGnQu1tbo2ExKkqUn79TnzW0lIsJpnMcHphCop0f8bUuwxNJ/OVkg9Hl3DsbEyCLLdzP+XQAVcTIyIy6Xv1NqqL23imVJZqRphTIxUgS6YvDwf2YRF6N3f72OGtopXNjVpn7W3C7S//8LO4RD5yEcu+eN1OP7qNl1//fWyfv3695xbvHjxfwlQ+UvHV7/6VYmNjbX//trXviZr1qx5zzXx8fH/uwAq/1UOxbe+9S0R8SWVu1wuufzyy+XGG2+UAwcOvOceFy5ckLvuukvmzJkjH/nIR2Tt2rVy/Pjx/3Yb7IHPzRXx91ehYpKiLaYKK+FXWlt18jscOmENk39LixpE4vWKdHRIauq7oNu1tfrbkhLx9/dttFVVovcoLhYb62wFvCMj9bzTqQLI+E2hW6S11a6o0G+EaW+vboiDgyZPa3JSOoxVZeXDS1WVSEqKdHWpwCstVUW8qUns0kMtxrqS0lJ9gfXrRQoK7DIrUldnA3WsBPMtW8w94uLs8jlSV6cbV0KCCvf6en1Xi0LepB9IUpJaVQkJ+l1Jic0rKoGBPonj76+bTVSUbh7h4T56jslJ7S9rY/F6dVyMa3nQ2mSTknypB1ZqQGWlQr8NKUBTk7pK2811GzeKXZumrs4wxaSmqgQxLjVLAFgleKSqSq/LyRHxeNSdl5oqEhxslwKSsjLJzTXjUlkpERFGKJnz4nJZ4D4VNGlpeo+xMZHMTD2XlaW/KSiwuT4HB808NJ4Ey01utbm1VccpJ0eF4+SkaB+OjNjAivR005axMf13zRobgSqpqXLYEq7tYleRGAEf6KSqSiZByWKMdW4J3a4u0Zc2c+MMCt7q6hKRkRFdEyUlyorj9YoUF9ulekZGROdERYWMjKgg3bRJVKGcnLRLTU1O6vBv26aIY7uMU1qaLoaxMZH163UeGBKIhgZdHib9VMTrlfJyFZQpKYZBxuRntrZqX4vHI9LUJJs22fJSXctmrCyQmBUK6O0VWymzKot0dZl1mZfnq3xiyjlUVopIfr6ma0RFifd733v/hV1AgA8AdAkfb0DAX90mK/WgpKREDh06JHfffbdcccUV0tnZKSIi9957r6SkpNjX//KXv5TnnntO3nrrLTl48KDce++9AkhlZaV9TX19vVx22WWyceNGOXz4sGzcuPF/d+rB3+uwBv7aa70al0hIECv5Wd1NrTopDfmwVvYeFnhKQkPNhuV0+qDEFRU2473U18vs2WJcOOXShZWw3mySkDsFTovH4ytxsmCBxl9qatTLFBure1U3mhfV2mo2EQORhn/Q5zY1SW2tuW5sTImrjWa+YoUVP2i2yY/vBwOa3KSbZ2urjI2JsRg6ZePGdxEm19er9jk4KLW1ug89B+pyGRvTE1b+lIHqeTy6Jqx0vS1bfMn4cETi4620gW6BnSamsVu0eGu1wLiUG1CjunyOCRwzaRxtNpquqcmylibE31+MUtAv27bp/VtaxIa/L1ggIjU1EhxsuQw7RUpLZcECkxRsCuAmJ4sKetNHUlsr4u9vl0RKTDQxy9pauzag1NaqohERIeL1mjnSb+KhmlRtCRXoV8Sf1WcWxHb9euNia/Nt0LW1Am/Kli0q+NrbRQRFglrvJjk5vrSCggIBr45dU5MUFxvUaUaGmbsXZBLE4dB3sErVwTG11jwekYQEFTKDg+q+LCgQGRmR0FAdP8nM9KUm1NTIsmVGkLlcIi0tMm+eugot3Qh26/fV1QLdNiG3lJWpK3JwUK2o3l5JTDQCOy/PB+2vqREpKpKMDF91AQkNFWlslOJi7cLAQB2z5GQdx/h4406PjtZG5OWJpKaa5PM9xrVYo2keprajFf+VyUnb8q+tFe3YoiK7Hl5fn1EqBwftuKTU15tUo06BAZ8r2CTsW6jn1FTxQaazs23kaHm5rvvMTH1HKz1HAgOltVUkIOD9Tz34ewg7EU0q//jHPy4zZsyQ6667Turq6uzvvvWtb8nnPvc5++/8/Hz5xCc+IQ6HQ2bPni0rV66Ubdu2/ad7PvPMM3LNNdeIv7+/eDye9wjDv8XxgRZ2R407LDvb8NHV1/viOTk5YptCqalyEWywgaSlSXm5XQ5MZGREli1ToeX1KjBCvF4DYHlTgQeBgSpYY2J0I0lN1d02JcVebHV1os8z6QeWRRIa6gPHbNkiRmj+UKSxUbKyfLW4amp0P3jGWE6ZmSJSWioNDXpNYqJJS0hNtd2qXV2iksVi/E9L08U8MqKfxkZ90eJiu5hqQYH++27+TptnzIr5WcXbyspk9my7tqluXJOTIo2Nvpp4OTk2K4X09tpVwSUtTTZt8pWKszao+nrxUTolJOhN3W7dtF0usXi2UlJErT1TVdq6h2RnGwE6LBERZgwNU4jXK4bNo18kKek9uWEKMtG8NmUyeVHnQ06OwA7t/LEx6e0149TVJfCkCmTjxrMYYSYndd5ERGjzLGeCRV03MiImVtWtQjgyUjfbsjIVfiaN4ADYoCFpbbXLBsnIiAqp0FDth5ERfWZ/v6ncfcJ+55gY0UGMjFS3XFaWr/ROba1IaalUVpp+qqqyCQmyskybTcHg8nLRSRgernNi/XqV1AaFkZLyLs7PtDRbGEprqwoKU4twBI3X2ikJra3az+ba+np1t1osCR0m1DA4aFzhViJ/U5NIVZWUlpqUhI4O5SQdMe/h8dj5qoPGHTo5ae7d0SG29lZYqPPRirNFRNj7Ql+f8XJUV/tiyqaUVXq6GQurntD69frwhASfxbt+vUq7qCi9UWSklJfr7b1PPPH+CzunU11Cl/jxOp3vW5s+aMcHWth5n3xSpKJCF6nTacrzdIuEhkpDg0m6Li3VxRkToxZUU5Ns2aL7aXu7LnCrVlVOjpn4plbd2+CLuURF6cYZGGjXVZPBQZ8rr7bW5luU0lIjHH9r01ZZMZbeXo1ttLdr26zyItLa6kuetVyDRrqYgtsCm0RSU1Xg9ffr8y3J4nLpRl9SIlFRYrvfCgvFpiiDXIFxm1FFQQPjPrLd9etVs7VYpK0NtqREJC1N3WKNjdouf3/bYpHYWN1xTbKy5VaSpCSfKzk52Rau0tVlcz+Kx6OgoNhYmynFKpRpxdgqK82YlJVpXLGqSrX2/HwpL/cRBXu9ZrM0eVCZmXq/8nJRl2iv2fBNqRoLkZqSIr73Nuwgdk0aK5EtK8ueM1u2+MChGzYYlpHsbK271irq8jNJ+5Kfb7P1WNLYqnQ9OCg+ctCcHJteTurrZcsWI3zq6kTy8rSPKiq0L3JyfHUXc3Nl2TJjWYWGqkWSlaVuvJYWu75heroZF4POlMhIMwfG9f17e9VyMzVyLoCOXV2dnSivrD+n7fqIkp+vY2wAMxYHp5SW2lPIyoGUmhq7WrsMDqqUbW1V685YXlYJctsFb+47Br4ySpYL1JTFkjVrVLJMTupa7epSwdPfr32Vm6vPr6jwFUXOydH5U1Oj89sC/qxfL7ZPtapKrMz7jg7Rl6iqsuPRXV1i55lasrkdRFpapKREp8zfolK5d+5cbeslfrxz534o7D5Ix3tiduHh9qaqUOUmmZz0EelbcTHbdbd+vf5dVmYW+zOi6QfPCPxZ4ITU1Pi8VJs2mThQf79IR4ctRAsKfHt8bq4Ya6LNt5gyM60C12JxVkp2tgq4zExpaLAInattF6kUFOgG19Iig4NKHqwQ8CaRrCx1XRo33P0g8JhIe7ttbdhVrrOyRLKypK5O3Tw5OfpoKzbX3m5YPGpqbBAA7NENs6rKdi9aRQukpkYkK0sGTdzQlDaTri4TXzIb3xlMesH69TZDvs0TZSVEt7SoGyolRUpLdZysempjYybOVFKifyQnS2urSZovKrIrlsOz6hZOShLYI+3thlRgclLruaFVJiyWOBkZ0XuOjPgqmxcX+yyZnBw73qNu8GdlJ8gzYHNBKoz8TYmL033DqsembsZmtWYiI0Xi4qSlRaQJTZIXU48tNVVs1K5ljVr0b1ZCfolxMcfGis3xKMnJBqW7SWwoqddru2JjYnQMli0TkfBw/Y0ZYGjS9+7o0OtTUox7/reGgeWYT+pabsmqKrsIqRY0/qWUlxsXYFGRWJVZk5JselK9vrZW0Y0JCXYdSSttQVJTjVu7XGCzSE2NKghxcSpga2tlxQpfFQN4TCDbuM87tf1Opy8LPjNTMjON9eT1FSKBHSJNTSYt6JisWGFVwnhK3aCVlQLPmu9bBXaKFBVJe7t2raWnFhZaROzPiJVOYWrQmvXqVYvSymcKDRXxeHT9hIcLpIl0dEg+fwM05ofC7pKPD7awe/ZZU2W8W3p7DXO6yyWSmSn9KFy+CXxlCsrKdGWsWSMWC/9LKE2YJCeL5OUpWispSXezrCwVHqmpPs3QVFmW/HzpQuHpF4wbps5o0VbNVhkZEenvV1h5To4NCh0ZEV1Zg4OKBE1IkNRUXbzbtoldadzKEfSCnSNXXy+GIeQxud86n5rq4+KKixPp75eSEhVoVvsuGJdvXZ3ufxbis7ZWf3IYgyrNzZVBsMuzdKOIz9paY50EB6vQshhwLc26vd0uACrt7RrcT0kRr9dYtZWV+tCSEi230t4ukpioz6yrU80hLk4kIcEu8dPbKyK5uQIvqjB3OrXdwcF2bLTLjG9srNh8kFCj7idrFxwZ0U03IcGOh9ruMIOGtHIhV6wQQ99l4omGGbi42PSz263md0eHWpmtrSJRURIVZZFEt0pJifZVQYGIeL0qpA36ExSktGGDcbdlZakFumaNuslHRkSCg6WlRX9vFd+V4GAVWLm5snGjmSe5ueq+N3mXmZki4nLZeaXidPqsbBOfkpwcGQHxeo273AgPycuTbdt8hXIrKxX8ZCGMJVvRwjU1ohqEIaO2OFfr63WednWJKjtWtfPwcB3HtDQZQ5HPNTWiisHYmLKPGMuv38QMT5rrJDPT5m7NyjIWdH+/Ley3bdPx6erSd91vrYf8fH12aqpIcrJ4QSrMu24z820viDid6mGwOFl7e/WdKitV6oWHax+VltoUSHtRAI+peCVSUSGDg0ZJM8w0+8HEOt//qgfeq65SCX6JH+9VV30o7D5IhzXwzc1esX1TxtXT0CC6YVRUiFRX25zGlm+vocFQABngiA1WMCt5cFB8JZUt0mBTxqCvT39nk0X39vry7To69LuKCtuV09UltuUlY2M2zVFfn9iWYnm5+Mwkk/BmE/Saqs0jI7rxjI2JjYKT9naprzcxvJYW2+U4OalN37BBfG2uqBDp7/flmNXV6fMrK21D1A7eWagJA3KxcwlLSmxBJuvXixQVab/29+v50lIbMNPUJD73XF2dvQH19urtKyvlPe21hH9vr6hrCVRbNuWILOHc3m7GxqJ/qqvTDnE4dIPp6PChSJOT34PUk44ObYcpn93S4su3k8pK/cPa7MrK7Hu1t6tQsipp19aKjyrL6xXp6tI5U1xs96l4vdo3BknY0WFAUZZL1uoTr1eKi30hIcnL87llBwd1szYE3SMjIhIdrV6GmBiR/n7ZtEnbFhdnLPWCAh1LC+5fUWGnpFhVuCU4WKSxUdGTFRWSmmoEWGmp1NaKnTtZUiK+lAAzVy2C6L4+seNptgXq76+E5R3aFqsrpbpa+zkjQ6S/XxoaNF3EcgPLyIhs26bDaOXeyZo1Orxgk2dbsVhLoFhk6TU1YtNz1dSI/AYlhh8c1HeSwUFtd3u7/r+mxqf4trSoEKyttYFBRm/zVS0xa6cebLexREdbnlOR/n47lis1Nfq7/n4ZGxM5cuRvAFD52Md0bVzix/uxj30o7D5IhzXwj4F0gEC2zfARE6Nw4gpjse15l4W3Hc29ew5N0oUfyBiah6Yu0COa6AoiDodJ5v2xdJvfQbf0YxCNwcHyBMjTRgvdZdpSb1mSBhSQlSUiycmybJmuFcuasdB6EhdnXJ3dxnXUrFZYXp4i5xITbfdYVJSoVdHa6stnammR+9FaYXssjdjhMHXlxmUvyO9AtoENSIDdaoWtWSNSWiqBgZqP94S5zwvm+ifN+1lCWyoqpAut6dWOAn6qrGdaAsoAT06a9tgB/IQE+//95h6/QV2FkpkpT5jnPWT6d6/ZjEsxqQcul27cpoBudraxeCoqbF+yMua86SsHNDYmmzapxZGQoBp3TIwRmv7+AjvU8m9vV1eysVhbWoxQS0kR6FfUZ2GhbvI5OSJOp8aa/P3tBGkFs+wQRfZViZSVySmQZcu0YoXU14vXq009jCKGW43FDRfUBTw56UNiRkWpC7muzg4fHQG9gYWINLl3dkmiqir9t7RUz8XGimRkSJ2xJMfGNE1DmprsyiAbN4pIYKDUYxh5Ghtt4oILZvwuGAEotbU6ZwxGv6HBlAYEkexsjVklJIhkZMgRFN3cBT50U1WVTfDQaubHfjPe7e3a35KZ6ctzNV4SSxkLDzfv6XDYoLAuo+zVmjUplZXqb6yuVqs3NVUkN1dGzPNOWkpRba0+JytLJCpKBWtsrArBigrZjrrsJTLSp0hZKKzQUH3x/HzpN+u+H41pWoWWJTdXvG+//aGw+190fKCrtH8EmAPACFcCAygdXp85PwvoAZYAVwMnACcQAsABYC4TwEz7bg6GgSHg2OgoxwGIYACYYa6ZAIaBiVOnmA68A4ya7ycAN8DBg1BeTno6ygnZ18eqVXDx4lm45RaOAvPmRSgHYnc3ISEAlynfHydwOJ1QVERgIODxKEfg7bezd2+X8vR9/vPK47lvH4SFsQh4Cxg378jWrdxyC6xY4c8cIAy4EvjFL06ydSvExX2WoSG9ruLyb7JuHQSZ3weYvh0w/ReAxdUIhIUxHXABpwE/f3+Omf4bBoiOhs99DubOxRUYyGlQ4s/hYX2HgAAICeE4sMjcewBg3Tom0Da4gID161nudsOpUyw13UlwMMOdnZCXB4cPA0rdyMGDsHat8niaY2JC6RXfODgDtxtmRUQQH6/P6+vT74mPB8LwA04HLdJeijYkoCgNIpGRLFhwJZ/4BDA0xOQkyqvocOBwwNmLF8HPj6AgmAqZb3p5RGfYRz5CkNPJqlWwMDAQwsKYFTDFqVPgMO0cBxxOJ9OmORgCxiemMzwMM4ffgbVrlbfS4WBgQNsT5u8Pp05BbCwhITC+dy80NBAdbRq8ebNylq5dy65dKJnpwYNch1JIzug5xiLQ8Rgehm3bCA4G5s7lSgAmORZ0vXJp7tun43f0KENgiGNRzsmtW6Gvj6goWOQ4zkyPB9auxQU6Fg0NhLndzMKsm1Wr4PLLYWKC0QMHID6eYWAhEOnvT4DDQU8PDD35pHJPDg/D5CRMTDB96DSf/CTgdNLdresFj4fpR9+Czk6CgKklS7VPL7tM2/7441Bfz5XR0fDSSwB0AkvRtcpLL+l7NDQoR+aBA/quISGQmAgHD+JG6TInmptZBEy5F2of79uni3piAtLTOWrmrROYvu5rOIE5zimYO5cp5xze98PP73/++b96/L2l7aUclpazFasA6yaRuDjZiwITmoyFst1ojnUosmwEpBTk1yDwKwHV+DSv6rRYpX8ugF1BALpV44yK8uVplZUp2stYNdtQVo3DxsK7iMYHLN4+cblMoLxV4wPh4RIaahBnHo/Jves0IJsBfXZTk2rdHo9qwzk5+reF8hsbE0lIkMlJTZWoQ6nFnrEsz4ICsSpc15r3ttyGGlsqV408IUHdWDExcsBYWxdNvzaaPpT2drvKp/V+XpSxYj8a2xvExPwcDtluztWjcZGTIBIRIXtM23aBlKBsJKfQuNfb5tlbzP1bQCQ6WlpRkIh0dUkHGu/p7VU3bWKiqNqfkiKSlibwU4HHDP3bhGRlGfeXqV94AOWpbGgQY0V3SxWYuO8Ru96hAaKKxMTYvKMSGalxw+hoY5k/pXD3zEy7SKoCGl4UuE8kJUXnW6m6Bjs6RKSqSsLDdbzg50qpFhcn8KRW1hgTH79qRYVa8iYJPj5en70NRQjHxorYSaOxsWqx1dRIFdh148bGRC3hqCg16ZOTRRITdbwbGzUoGBMjT5uxTE5WQFZqqmiagBVkLilR6z40VH8THS1JSTbhv/ZDf7+OmSnRcNFYdc+hMfBt24yrLzFRByUhQRqNVSQ1NWq1paSI7etOSpKuLssTMSAyNibwmEhenrSi8ckVK0QkN1dSUkwJLYtKzfL3r18vMjiofe/vr2wobrcUF/vwatLfL5KXJxdA+vp0Cmzbpms2NFTbWweSkyM+Jh/j056cFJHgYNlp3nXbNhFxOPQaEK8pRfa+WnYLF/oqJ1/Cx7tw4YeW3QfxGEGtD/BndPt2ZqDK7TFU05oFnEetBRoaOI9afGrZjQOzmIllzQwC7zATaANl49+7F3iHqSef5OzevTz6KKrV1tfDyy/jZ+5ypXlGEGpB+kVGQl4ew8NaVIGICO64A0JDr4WWFiaOHLGUbli8mOXLITT049DcDJzQygl5eYyMAHFxat0NDLB5MzAwwKytv2fKb4YxP1RbtSzYg0DAmjWG6f6zLEQtzkWo4fjAA6rwz5v3dWbm5MADD3DmDDA6ip/ps9OotTZkdXRYmGq9cXH6fm43s/z9udb07xxgjr8/M/z9YXQUD6rR9wFEReFyOMDtZqm53QzgWtTCGQKear6W6WbMZgB+a9aoBbJ4MTNRY5Z9+/ADbu78LVcHnOWyy9QA0C8xFtn1QBghIeDvfxmrVsGrr+o1brdany+/DF4vpu8uYyFwteM0MFvfcWICh8NYfxcvEhgIn/404O+vz1m8GF00n1JrwuUiKMh6/jwzA5aAw8E4ep8Ap5MrrgBCQoiMBNWt5+m8GxoCPkUQMGPgBMuXo5aQnx97946Ax8PJk7B4MRAYyCLgE58wP3M49D/p6XgAjhzBgxq5n/88zOg7rgvi4kW1WpcvBz8/beru3Wrm3nMPy9E14fHoa9x+OzAyotc0N8PJk8xv/iN873tw1VUwOcntt+tz1q411ltbG/NBLYeyMvwcDoLQNYGfH19cdV69HD09MDDA+AsvEGB9v3kzt9yCWlpHj+o1AQHMD5li1SpISJir51kFI+rFWbIEvvIVHcdPftJ4FpxOzo9Oh1/8Qi3RoSEoK2Mhxzh/8SJXAlOdndxxB8xoe5NZQ8f1WU1NvANc1fE6K1fCF+OnmOrr06oow8M4Td/cdhvMGj6hv2luZvrwWd46dYpZwHTgi87XOTs6Smen7gscP86Hx/+i4+8tbS/lsLScM+aTmCh2ntPkpKgv3uFQ1TMvz6ZGkvZ2qUORhjExJqetutrON4IJ1WZNsdSmJg1BtLaKxhtaWqS+XgEEJSWi8ZP8fBGPR7Xb7GyNE8TEiHWD3FwRKSmRBQtM/G79epGqKlmxQmzaqogIk96QlKRsEmlpql1bkOveXtWoTUKxDffu79d7OBwi1dVq0a1ZI/eDSWt4US4Ya+qUsSIkOFjgIYmPF3kBpBAFOEhTk0hhocZd+vtVDV+zRq1KC53mcmmcas0aRaGhqDPxeEQSExVc4HRKvbFyJTNTabRM34jTqVZGXJzG+XJzbXJmqayUXmPVjZkYiMX52dcnqk0nJ0t4uGHyGBuThgYDRCgpEcnLE2jT2FtHh10xfGxMbHCMuN12nTpJTZVly3xWV3i4aJzI4dBkbsWny6ZNJmYUHm7D5LVKxIBtgVl1B2NjxWaLEadTK633ii8lwKK8io0VOK39WFAgcEG9CWVlaj02NYnU1GjcraREpLFR45O5udJrLLuSEhFJTfVVtF+/XjlXUcYfWb9eY05WeYnMTO2QJuX/tBL8JSFBxoyl3trqIxuwkug3bvThkyQuTqxyALpeBgR2a9zTVHsYRGPDk2Z8vWjFi4wMtZD7+sT2TOwBnQ81NRIfb8ayv19SU9Wy1moIp9WqzcnRmHd7u+xHyQHggkheno5PRoZIXZ2MjIgPsFNYaFcll64ujeu1t8u0adqWFSvEx4lWXKztmpzU/cTjkQULdBkfMPsFXJDERB8uygIQdRurEnaKxMba8XBvfv77b9ktWiSyePElf7yLFv2fteymiZgCRx+g4+zZs3z0ox/l5Ekv4+OzmP/yb7lh83fZsUO/37FDFcyhIXWxP7L2Fb65+Sa+9CX4euw7qtXv2gXAb0e+Aajx4nT6yl05HGoF/GH5r3gq6If6f8d3ubnzt4B+/41vQH+/PisyUstzrVwJXz76CH8I+hHfjHyTn5QtZdUq1Zivc5/mtYNzuOYauGr2OP+6cYZdJ+7moDd4K+A6FoWc58TQTK4eOqRmwcQEz3ZeR1gYLB1+HSIjeaVhJje9/BN+7/k5fX1abuyWW+DGfY/A6tVUHF7K4XXT+OGgsH071NSotn5T5++1gQ88wLSnM+nri2JsDF78+DR+HyWsXq0l0DIyVGO3+vHhh9UIuHbnJiqCfkBtrRoK3177Dq+1XcnAgP7tcMCczY/AunX86eDV3Ox+i7OuRcxq+zN/Grqem7/yEYiN5Y/pL/LlfT/l9+5/ZfduLX32y1/CP60/S8VLs1i8WJ/r8Wj45bvlN7H45CscbhnnzbYZlJdr2TZQw+W229D+MhYwR4/yOjcQHQ3TJ8b51WMzWLkSruMN/thzHVddBZ/p/yNTa7/M9J7j0NzMKwFf5qaeP8Att/D7rbP49vI3dSIsX86z++Zz675/5tidD7LQPUXj3um0tqoBtnDoDQ45rsPphKuDxuHll3kj5MtcxxswMcF45PXMGHpH45XDw/DoozR+5UECA/UdJybg3DmIiICZPW/x7MFF3Lp2nEeKZhAZqXGjkBAtOdfQAH9w/YR/6Pk5d9yhY/Lww/Dm6CId4Pvug4cf5mv7fkJ6OvzgBzB7tt7jj22L4LbbWPzcg0RE6KsFBMBrez8C4eG8VvQmNzb/iuO3/JA9e9T6/cd/1D7OyIAXXoDDm17heNhNOJ3anuXLNUYeEKDGzvdvP8uxgVl2OTqHQ6/ZvVvbkpyswxMUpP9aY/joo/qOVjhp9251TOzYoesmIEDXZ0CAekPuuQdmDp3greGrSU/XPhgY0N8//7x6MF59VcOXixdreM7l0nm2apVe//TTGha04tFDQ9quffvgzjt17ZeX69y66y71iMTHq8F45Ai8lPkn/vnVm7nzTli4Zwv4+3Noyde4NuQsjzw+ix/tvpWzy5fz0X/5F7xeL7NmzXpf9jzvtdcy67LLLv0+k5N89NCh96VNH7jj7y1tL+WwtBw4JMHBmnSsHHf9IpOTpozHEVGuwwk9Pzb2rlI+O8Rr4gVRUSb+4XKJOJ0CwxbhuWqamZk21V97u4j09qpW19EhMGBicRcE2iQiQg2f8HCxK3RLeLhqpiZ3zyamLS4WiYvTZN2sLJHYWJtyqaRE9KLqaivVSAoLfVBtSUuzCT+03t64rFghBg14QeBFGRwUk3h+RJSjco/NaH/SxFa05l+rSG2tzfMJO6WgQGMl06bpp7XVV/cMxt9V+08rA1hlb2bPtsolvSlw2g4TwbBs2iTvKgvTKlAjiYmG09JUv9a8pH7Jzta0IFOqUKSrS0ZGtO6c5OWplWlYTSzKt23bNOeuF5OKkZiondbUZNN0wQXta4s/MjZWbA5Il0s6Okxic1aWjIyYZ5eUiGRnKyVXXZ0EB2vbNMl8XBGT/f0yMqLzcMzEK9UwnBCpqdHYT2+vWnXr1wuclgOgVujkpHSjvJft7SISHW2lxYmkpNi5ZBIXZ+b4bp2w+fmSk6PjkpCgz9JE6D0ikZFqUZaUyOCgdkNiolpplkViEQPoWmnTvu3v18lm6rs1NJh5aFCIqaka00tM1LZZZaVgwGZDiYrSOWpVf7AS8S00ZnGxiNTXS2GhmMojXl0nJpYmra0ijY2KcC0r0wkSHCwyOKjx9zrD4lJaKpKQoP2TlCQLFpjYqkmH8HoNg44pO6/zsEmt5eJiXdAm16C42LS7uFgnfn29WveBgVJSYmKGVk5pdbXI2Jiu77Iy054BHWO3W+dVV5ckJYm0tf0NUg+WLtWOvcSPd+nS/7OW3Qda2L1pAs6QJ5KfL1tApKhITqKFPX+DAkcaMbk0pvTPkyDwW4GfyzYUXm/2Ti0Zg0lOT0nRzW/NGpHISHVPlJWp+62yUn6HwvS3o6kNz1kB97IyO1De0qLCRYs6NtksFBkZuvG8DWYjf02kpEQF45o1dnFPqa1VyHldnU1iW1ioLpi3TVB9r3nucwbYccF2Yx7RagkgvwR1R46NCfRLeLhC8hXYcUEaTT/tMm7e/eZ3vzNuvo4O8SXjhobakGyv5YqyXGUxMSpMnU6F0xcUaP/l5alrKyZGnjEB/VYjGKSqSk6i6SIvgYjHo/1YWSndYAvEEdBE7eJiWbZMvbcXwebm1HSSNoHTEhWl3l8rTy4pSSHy2dmm9tv69bJggboxW1pUSbFy6aSxURIT9f9xcT5MhVRUiISHSxeIx2NywgoKRFpajJDPFWXr2KTuxdRUdV07HCJlZaZcT6dsQ1lxGsHQynnlpFG8ampErLpLmZmq2yQlic1mfdi4BIuLxVcvLzJSdqLgrBq0WG1Ojr5je7v46h0WFGj6Rq6WmpLQUJGYGC3NA7ZiFRysj7sAPje2KdkkqakieXlWvVZ1ETocWqkAbNfuOTN/GsF2xUpOjvSiCe3i8cg5M2etIrVWbqQkJtqlfyzSCC1rtVukq0vGjHs5Pl77oLxc7JqKIyPi4+J0uez0Aqs8U5MZb8nOtutGSnW1vnRHhy7KsTERt1va25Vzdz/4OEvXr7eZfaSlRSQmRsMkLpcK3oQEu6RTfPyHwu5/0/GBBqgcBSY6O4FR3vmnf8IFvBX3Aw5h0gPMZxbAunWcfeGFd6URXASO4UQBJmVl6roIAN4E9cE8/zz799cy+tJL9DU385vfAMXF6l/ZsYNhFMwxAUyZ54yCghkefZRDR2dw+DC4QkNxONAnDQ1BdTXV1fpfd3CwwZnMgp4eRXjv38+MnmOIXAQMgKaoiFea58DWrcTHq5vHBVxV9+80A8fN8/tMe2pqwAJgHEPBIKdX3cpTW2cAzdx+O8zy99f35Azn0bSF0yhAZxhfWkVPj7nM6SQAGO7uZqq5mYUopHto7171ixn/bxBwfmhI4dyg7kWvl+mJiRASwhw0gH/atBuXi+PAWdPW021t9vlOTIpBUREzHQ7uvBP13wGjoyP4ud3Q0MCcl7YAVwCXkZQ0m9FRuJoTtmt7YkLv3dOjLlf27OHttxsUku54i4sXD/CJT8D055+FoCDCwmB62R9obobPfAZm9b2lfq7RUc6j7usJUL9WWJhJH/kImugxixnDp5l64gkaGmB4dBT8/RVwxGz9HRc4a8/kSRyoW290FG2gnx8DAzCz7Q0cDhgPuhpeeolFqFutoQGdQD09UFWFB/jyytMsBTZsMJkVbW0sqn6EoeeeYyrvQbj7boY6O8HtZs5vNsDcufD88zaIqadHXYRbt8LVzvMKMDp1Sv2ARUU66YaGIDycdesUJHLLLTAxOgrV1Zq+UF4ObW30oVAdQH2Kjz8Ow8MEALO2/p4ec80MgLw8Ba9MTDD96S0KiAGorubq0WN4PCE6ZlwPL7zAjMBAQkIgJQV4+mlWrFCA1pXAzLLfqm913jz6+vp0TjY3M2rm8llgqWdc/Z7m2dTXc/TUKX3xfftg3z7e6uzkox/VfpkOzGl+hW/fPq7v/9JLCvLZt4/zu3ZxGhjq6yMyEqZeeEF9n2FhCrp5v48PUw8u+fhAC7tZGNQT/lwZGcl5YNHEIa5EX2zqXf+ybh2z/P2Zsn9zGTCD8+ZeQUHwsY8putADvoADkTji4nA5nSQkoE5/jwc++UkcqBCZAHsxTYGi35Ys4dw5CAyE0e5uI9BaFGnpcuF0mr3z1CkuXgQ4BiEhuN1AeDi43UybpgjAdwCWL9fmhIXR1mbQgmh7rkYFYg8+gXv77QD9nEaFYh8w5+if+YfV7wBXsHkzDF+8CAMDzJs3Dz8sJQDmm/e4GkUOOp1G2LW1MWzOTZjnTcfkKQ4P60VtbZw2/TIFuqm0ten3O3bA4cOcRYXpLEyeZGcnVvQgwNx/OsDbb+NEY1qsXMnw6KgiUt1uA8J0MNXZqQ2cN8+0qIe+Pn3ceNDVuFzajquu0ns7nWafCwwErvINPgEqjPz8ICBA94TLLiMkBNrb0aDPhQswNMQ4cOaMImFpa4OeHjMelorQD0NDTA8MxOUySMErrtDHMGLm3zv6jg4H8A5T2CBErMQ6p9NqG4qY9XjoRLvRzn10u+Gxx+gBjg/P4Rgat3r+eZ0b3HknztBQplf/Efbtw+ly6fxNTtY+ePxxjpvxdDr13lu3wpRjpuaMRkXpM1au1GCa0wk9Pezbp6++b5/mW7JypaJ34+NhyRKCTG+MAnzhC5p/6XTqnFi1ihCHg/OYtRgVpejSiQlYsQLCw3VdrlrFCcdCOjrMu3IC3G5Gz51jaMiAl91u/Px0Ho2CrlmPB0JCFAXs8cDy5facmgkcOjpDrwsJ0feKjFRBHRSk479kCQuBwUGdi1PA1KqbeGX3DA3Ox8Roe0+eZGZgoL3uGxpgusOh49fTo6jf9/u47LL/maD7H8T7PvDH39u0vJTDMulXr/aqWys7W+Mfvb2G6aRN/T9WXarqavH3V1dhZaWIXTGzpkZdjlVV6vYIDzcVoztNLKPGuJkGBDpNiZhm0XpunbJtm97GKs8jg4PS16deqNmzlch5cFDUtVNfb1NIwQ5FH/aKxhQKChRxODkp5wyaDY5Jfb3YrtOREa1HFx6u7jIr96y3V8z1JyzOYfW9lZSou66yUtvQ2Cj3o+jVmhr14nRgcvJMWR4LxZaYaFcR0oKfXl/pFVOfU927jY22y9CiS5TqapHeXmlpUVerVVW7tFTUD2S1p7ZWYmN9iNjZs9WDtGGDqHuorExaW/W5XV2+AubwrDQ0aB/39urYS3+/9m1vr00EbAdZDXeiVUtP1q+32KFEios1LmWo3goLjfuvuFgqKw2tWXGxyOSkomqzsnQsLabgpiZ1a61ZI1u2aH+NjenUKyw0VQt6e/V9DZK3pkbbNjamcyErS9/Fqozg9eq1vb0ikpgo27aZdldX63hWV9sVDFJStE8uokwhMCxSVKRuz7w82bRJ+zc3V0SSkmwUcUuLDxlpVSLv6BARj8fyzEl4uM4BJXQ+rfHH+nqR2FhpadG5YhHj2EVei4pERkb0+RaCt7dXZHJS12lHh7S0aHeHhpp8towMmT1buzM21rjLu7pESkulvV0fuWKFXSRBUamTk5KVpR5Wj0d8FSJM+SQYVldlY6MsWyb2mpSWFrsWq1WVobfXR+odG6tbQ1ycIb42sVjp6pL2dnXxtrfr/YqLrbV8wU5DhSMaJ0xJEamtla9//W/gxoyK0g65xI83KupDN+YH8VixQq0xenqYN+9TnOBqbnK58Pe/hrd6ZvLWxELVwBYvNgrNdaxaharFLhccOcLZhG9weuWX1fdzzz2cCFqKv//H1cICteAccwHLIryAv38IEMLRo6rs9/Wp0vSnfXMYHIQbBv7ISy9BUGIiAFO3fQ1CQljIMfrPzSQ8/PMQHY3LBW/6XQfr1nFV+2uc6JtOgMdDZCTk5CzgBuch1q6F4zHfYHQUVqMuLMjmiwGv8VrnfIaG1LMye/Y8QJVwmpth5UrNMVu7lpdf1i/uBh5FFfTly2FhdLRq2kFB3HefvkdYmHrmBgbUI9XXB7P8zut9d+5kYEAV8KuuAiYm8PefzerVqvCGhQEf+Qj09FgKMkuWwPR9f7bT4bj8cvVCDg/T1qaIuGOLv8SZM5O+gXU4YPFirg0bp6cH5o++hctl3JlEUFGh73m18zykp3PWcaVaYk4nhIRw9936vmddi8B0x+LFSuJBWBg3TfyJ69ynYdUqPhM1Zc+H22+Hu++Gs+u+y63x57l17Tg4HBzvma79npenL7puHYfapuv/PR645x6io30sJaOjiuiLiAA6Oxkdhf6rlnKD+wSf+hScjb5ZLTWHg4AA7evVqyE723hoR0c1B/PTn+aLzteJjIT+5V9Si3RkhLExmDFxnvh4ta78oqPhq18lK+sKCA1Vq29khAMHICvLTsfkqpFj7N6tBCKrV0NLC8wxcODhYZhoa2PHDn2tn/1M5/S+fQABREUZi+LHP8bj0f53u3Wo5g8fUndxWhrs3KlzJSyM/i98U9fZ7t2MjsLrfQs5fFjHw54v997LbbfpuWuu0bn54sH5HFv5TRoaFH35la9guwSXL9cBdbn0/3fcofPR3x9ISjLG4RUcPgynw64nLExd+vv2ab/u2KG/6+lRa7mtDZKS1HO8ZInO/SVLdCxfP3olW7cCfn4895y+/o4dVogAzjMThxnDK64AmKvz/J57YGiIH/6Q9//40I156cffW9peyuFDY74u06apZhsYaMrRdHSYXKdWgdMyb56ivjZssEp0vCjwpkwaUEdioql4HRgoEhwss2cb62hsTLVBFOkZHy8iRUVSVSU2ohL6ZfZsC1V2wVRUviBbtohdIVtKSzWwnZEhkpYmBQWmMKjbLTI4qBZPfr5ISormR6WmansMoXFOjmrmW7ZomwoKRCQ31yogYEre7Ja4ONVO9d0fEklONpyf/QI1ArutajZKHl1ba8AcfxYJDpaoKKscSpMkJloIv9MCnTZJ8qZNqvHHxmp/RkT4KrUXFup3ahEPC3jt+q+WEV1QoL/T/mqTZcsMEnZw0ORU7RQtKzMhcEyqqgxIp71dMjON1ZWbqxZVSYnImjVSV6fP7uhQK8Wq7mCz6RcVaQXwvDy1fLKzpaVF266W+mlpadH/19SYcTblgBISRME10dFq5ZnKDlZ5mtRUk5Nm8rvGQFn+waBOTxuLa8AmLpbCQpk3T0RCQ2XePFNZPjbWric6MiIi/f06BzMz9f7V1SKVlZKebiyb6mqR3FzJzrY5rhUt2tSk96urk+Ji7abeXlXqLZBRQYGI1NSI1ys2t6WFIpaaGrs6hUUx2d6uw2+RHdt5p0VFdoV0OCZer46rw6FtgmMSHq7nFizw4T6seazI3mqB07puDdNJb6+IeL3q0aiqUvPRgFAkJcVYbhNq6uXmyrx5VtX2C5KSYvqvo8NnBRqi7tRUEfizjm9+vjaytlZaWrRthkZU0ZRer8AxkYICu5K5FBRoWwYH1csxOCjh4RZC+ZhAv0H3Dou0tEhpqUh9/d/AsouJ0cZe4scbE/N/1rL7QAu7FSu86jLJyRFpb9faZf39Ulys6zAlRQwC7phIS4uBCXcLvGmjqurqzAawZo1NylxTI75qCgUFukn19qqLLS1Nfxsba6PbU1J0w9i0SZ8Lp0Wqq3XhGniyREaK5OdLS4vYxUqlulrdaMnJIqWluolkZ9vvYcPfJyfV7WZtAiUlUlxsoOr9/VJYaNXNK5d586xk3D+LJCZKeLh+t2CBbl6VlSJSW2vSEsYlKcls3u3tpsDruO2mKS3V31ob3rx5KszKy60Ug9NSUKDXpKToa6ib9YQkJdkVe8Th0L5RtOSwSVvYbNNyeb2Wu+yCrFih4M7Zs3Vvycoym2tOjiIb4+J0vKur7UT/jRtVoF60kKKTk9rfVsVuk4y/YIGOhwwOqpsqMVHggr5gZKRERRmkZlKS1NcbEoDiYpG8PJk9W8fGqmc4iKYXDA7q9U1Npm1paXIKfEjFwUEVWLW1eu+mJh1ff3+rrJ6cQ8mg+/p0fmVni75bXp7N6C8xMWajb1KXe3S03q+/X2BCpk1TYQbd+n19vQokUypp3jx1PY+MiE74+nrz2zaBTTrPenvVZ5qWpoNiUYYVFcmkcaGXlOicP4ePNm7TJp2jy5aZtVRSItnZ+tPgYNOnERF6X6sInSF2Tk/X621y5clJkfx87Yv8fJHwcEXs1tXZaSVRUeKrQl5UJOJyycaNxtXe1aXpKWVliuzMy1ONbGREBZGVq5GXpxO3t1d/6PXqgCck6F4wOaku3sZG7Zs1a7SNeXl6vfHxq9I7rm3KydG13dgoEREitbUfCrv/TccHWth5f/ITEX9/3RzGxnRxZGVZqp4uiOJi8Rq4c2urat+9ZqNasEDswMOGDT4Wk5oa1Yo3bdKFnZRkYhIJCZKWptctWya6u1dViTidylASEaEMJMnJarFlZalGGhsrwcEm7ycqSnp7dcOsrdVrkpNNbC4mxmZxWLBAdPHHxOimExcnkpdn6rUdUYlsKgDImjUiIyMKgc7JkRdMSgL0a2qAv78yhaB8k7rBjdtcmikpYpfyuYBhm7Fy1cLD7bSCQQwTS2io8iXiY86QuDhNOQgPlxYMg0pFhUyiDBoWp6RlDrZYkPTJSV9RUqdTJDxcBq3fh4aKOJ1SWGjiVgkJAidUO7fyv8rKVLBFRpoCoadtayc+Xuyq5vYmX12tArC9Xa2M8HCpqzMxn5ISkYQEnU8lJSIxMb6ySoWFdsxM+Sy7xSoj0d4uImlptmCHCZ0bho1HkpNVcKamSkaGsotAp24+XsO4EhUl0tWlc7CwUMe3o0PbXVxsc2NeMMKlvl50o6+stLWKzEwRQUvcSHGxFBSYGJhhapG8PJGsLFVurPnjcskYmm5i0VJmZ4tIV5fU16tSs2GDyoBzGGabjAzRQsdejWs7HCrZExJEoqLUSoyKUkvMrMOYGF/MS7KzpaDAKCcOh2zYoMK4qkr7sapKRFpapKpKzzscYjwYAyJNTYbL9pjAi9LaahTC+nrti5ISgVZVTIuKBCbsivV7jdCEJl8OZ2amvnRrqyQmirHkTovU1urv2tvlMFbq0LCt4NTViUhZmQplf3+TwtMpUlGhyklCgnhPnXr/hZ1V9/ESP97Y2P+zwu4DHbPjox+FuXM1nuLnB+npsHYtr++bAQUFUFrK2XXfZVZcHOXl6refAq72eFi1SuNfx+9+hPPlf+Tll5XykkcfpbNTYwe7d6vvfmAATp7UR46OapzJzw+47z7e8nwZsrMJ8nigvJxFLhcMDPCFLwDLl2sqwX334XQqIpnVqwkKUoTh6Chw7700NMDXvw5ERmps4ehRjc889hgcOMDrs7+klCbz5hEVBfBxyMvjlYGlvLXkVli3jooXZjIzIQFuuYVjwNgYwACz0tIgPZ2A5GSuBM42NABnSUryt7k0V66EiiPX8WbADTjCw/nn+6bz24alGqN67DEb+jkLCIqLg7vuYuqObzM/MFDTIcLCfFUH5s7FD4OyXLmS6YGBitJbu5YZoaEa6LntNuUtXfdtKp6ZzqGhq3l96FqIjYU772ROZCQej0c76Z57uPNOky7wmc/g7z9Px8kEdF5f8A0d69hY3G6YNm02s57/A7t3mz4wnJ4zj76pMb3YWL4YfRoGBjS+YtB8IyPAr38N27fz0EOT+t67djHDb0rH4pe/5Ne/BmJi4LHHmDYtRPsnPp6HHwb6+rjnHli/HpYtu8yuDMDAAISF6T327+dXeWeZXlpKePjH4e67mZiA0NBrNPi1ebOCSpcsgeho3ppYyMx9r8HRo7z88iTk5uKHIvmtmHL/Z2/Vyfi97+HxAFFRtLUBv/kN5eUG7HnvvTqZ+/s5ftfPKS/XufbGxFLw92dGVBRhERFcHXCWsjLDOfr88zz5JGzcqK/hcEBAaChXJiSYxedAEc0jnBgdVVqShx9mdO9e/drths2bWeR2M9HWRnOzZi88/jiMP/CglT0CxcWsXOkrjMHGjaSnw69eXco998DJk4dISwOqq1mwYK7GFwFlUl3ItW6NJ5+PvIE33Lcyfvu3gSs0NSMpCThKURE823M9VwIVJ28E/Nm6FY4cOQn33MOU3wzGw64lLEzjutOmzYaeHrZuhZ+WLSIEbTe8Q1GRDvs11wCTk1RW6pzXQGktoGwrOBzw0EP/ccf6nx8fojEv+Zgm8sGlC3v4YS/+/rP44cPzuSHkOMuXw7p1SiG1dauCRyYn9e8dO3TfCwrS1Jtf7VoGQ0PMn3ybU6ego0Nj6dHRSvzrdkNTE/z76Jf51eo/smMH/PEzG/jR4L9ofpxb90OLliw6GrZvP0tExCzerD7Oiwfn80XPMf61bCH79sEfy85CXh7/5v450dFwXeez5B+5lcpKvc91D/8Df7rjKW52/plne67nVvcbsGcPU+t/wC23qBz/ovsQp13XEhAAM277MjeP/pHoaKVbWrdOhemZM1BSArdun0Z6bS3TPn8DcIZ58+ZxYt8Jm3/qh+veYWhIBd2J700jlwHmzZvL6tU+Kqg9e04CI/T2htHXB9e5TrBw5dUMDSnAISxMN6mLFxWhfsUV8PVEpedqbtb2DA2pHCwrgwc/uQVCQ7n+nhvZulXb3NenY3P77doWi3Ktp0dBEmlp8OapeXwt5iS33AL/sORN/rl8KQ/epnRca+6/nsREBSrMuPv7OiAOh+44R4/Sf9VSsrN1s2pu1vaGhWkOHg0N/H7oVr59YZNC8ffsgdhYnnp+Jv/geNbmjzu25Mss3PFb3lr1XTo79V7//ugJfrjxan716BTHOqfjdMKce77t45u65RadUKOjvHF0FteFndV2ffSjXB9xgT/f+Vtuffm7rF4N3w/4Az9q/iaPLPk9x1d/m54ezflct07l/WfCT/PH3XO4+259h+pq/e7OO3VuTz3+e07Ef5urHad5s2cOR49qn69apePY0AAn7vhnWL2aaZ9fQnz8lQwO6r3G798Ayclcv24hf179z0o5BlS8MJN1604CV7Bx4yx6e1VmPv+89t/q1Qo8wu3m2/deyTXXKFT/059WYM7GjQouWb5c18qrr+oaKS/Xrunp0fM9PdrW+HidIx/9KFRVqX7ldquO9821p2k8MofPjLxC/t6bmJyEf5YNsHgxa353Ky8VvsWt9y7iwgXNQCkqUtn7/POq0JaV6dAmJ8MTT/QgY1ey/h9nMDamwi0wUPvojjv035/9TCv9gAJYPB7VP+69VwXdvn3w5u0/5ycDP2HlSs3DvCp4CiYmODEwg3vugae+sY2zmzfz0a1b31+6sNWrNT/2Uu9z8SIf3bHjQ7qwD8phm/QREQb+XiMSF6eusaIiOYeWvKlEGUFsn4XHo+6c0FADotgtL2GKtRoffJ2B54vbLYIW3zxjzsERdfP5+8sYypyyE1PaJi1NCXEzM9XlNDIidpn0yEiRkhJ174yMyNiYiQdVVyurSFSUxhG9XnVtGsoOKJfUVFOxua5OfUAmTQH2qKvPMKycwRBQR0WJNDVJVJS65hrxFZcdGVGvTVSU2OWYlWllQO5HSxVJQoJU4CtdtB3suF5MjKiryqrvUlqqLsrCQpGxMXXdFhXZsHoJD7djPDIyYpdH6TftPokyWkhysnQYd2c3pkyMScEQh0MBO5WVIkVF6qLEIgI+om7arCyr0o1xQx3T2JHbLbm56rqOiRGRqCjJyTEx05wcdUUXFYnU19vo7JQUMSV8jkhqqnpdt2zR2NOYaasXJRQWp1PdgQkJJlZbZU+zqCixUyokMdEGP8GEdIG6K/39xQsat62qUjBOZaXG/zweKS9X7xwM67MzMtT1WF+vLtjJSZE1azS9A2XNkcxMkZYWWbZMWUXGxkQkLk42bdKfjxg3voyNifj7633y80XS0tSdPTkpfX2GV9nMA+uFSkvFl65hylBJRoZd2HSn1QanUyQiQtlRDP1dKz6GHqmrU/dmdrYyrHg82sGJiSKtrVKHFgUeARsgVlBg3MkjI/qxgsoul0h0tDSZNS9FRSIxMdJt3vOMeYdaNMXiCTOGJy23fmmp7c613P3i8dhtqjVr2uJCa0WZWBoaRCeL2+3LY6ioEElL0z2io0PgxPvvxoyP97G0XMLHGx//f9aN+YEWdi8bQQPflv1mEm7YoJXKq1Aqr6eNcHobpQk7aa6DhwTukyNoJXNTsk4ajfBrReNZ8Iy0m3Pwpk2rdRil0vqFeVaLWVQnQawEsfh4w2fpchkkaLPmzIFF9ycjZuHAiybecETjjZmZitorK9PNqaxMkXYRESLr10tiotl8BwflCZBi8x6HjfDJzlaZ1IhSMm1DqxtERLwrPlJfLy0t+vc2tB7eLrRi+S/R2nJbMJXKTS5eF1rrbrtRCH6NqUgeGCg2UiYxUSQmRjcKK660Zo1uCsXFKuDCw2UTSAGIREbKL8xm9QSIxMWpEtDYKDtRln8JD9fYSFGRSFycpKebmEtiolgkkfCaQL8kJJh4XX+/1NZqrCktTZWWpCQj7JKTBbwyiNKhTZtmkICNjSKtrSpoOzokNNTEWi3CytRUEX9/SUkRu40mpVMU9dqs42wSF23gTGWlNDRoN7WigJQjaAzU41FqrpISE4vr7xeJipLERL3Nhg3a/+eM8JCKClUg3G5fdQOXSwVvRIRITY3GucCulLBhgwqLI9Y9iotFYmI0vhcVZRSIJo1BjYyIVFbKfpBJMyfOoeAQu8p3RoY2trRUBV99vQqwujpdSC6XtGDo5OrqtF3JyRrnbWqSnebd+61r+vt1PtfV+Si4srNFyspU+Dc2qtLjcvkSQqurVVjm5cku6z4tLdqe6GgVui6XSGSk1Jl32WnWh0RF6QSqqRFxOlUwu1wqVZOStD5ge7scAbsihVRUiJ0cOjYmUlKi683fXwfWosQz1/7ud38DgMratTrnL/HjXbv2Q2H3QTqsgf83lE8RHpIOtIBoTIwmX7+AjwuvyWyo+41w+g0I3CfwY530wcECzwqUyCmMdREaKiMg8KRIQoJ0g43gk5gYkaIimxfzSSMcLIF6wWwyqamG6NjjEU2F8IpER0s7yOzZBggQFWUC/RMiERECz+gmVlMjfX2Gf9GgxAIDxS5lIlVVKljGxmSLEbhW8dN2LIDKTtllvqsCKS62kl+VPPqCETopKSKSkCC7jMCzAAt1RshLfr7yFpr7NKF8gduNEH0G5SXchQIOnjbnXjB9sh/VsLvN93tR3sQa853098suVHn4tXl+u9lgt4FaH6mp0mquLS9XRaG0VFQ4JSWZYqw6pmNjiuaMijJoyfBwaWjQjT4pyQgUA3Z5AQwSdEAkLk76QZWMkhI5A5KQoMLuAqYUUm6uGacSHafSUj2fliZKuv2MwEMyZt63oUG5UQsKRCQ5WZKTLWH3kG6UUVECz+hmW1qq86WmRiQrS8mF6+sN0cG4nEIVi5oabVM/2FyrEh4uUlYmB8BOiB8ZEZHMTFXA6utVyAUHK9DGItisrZVWtJjutGk6P2prRed4ZqaPILSqSjf13FwRl8sm+V6wQFSAFBfrRh8cLF6vUQScTlU2nU6prDTJ7Xl5+oDISNmCzysybZqoQlRSogCiykqpqvKRjGv/los4HLIN5fGMjxeR0FDJzRW7kK5Vusjr1XcfHDTgo9BQKUGBUjk5qo/W1upzJDhYFbaODikv1+7vteZBTo5UoF6GxESxwU3S2ipSVyeDqDJ5GCWptsc6OFi8GzZ8KOz+Fx0faGF3yGhR8CvpNRunRYZbZTbcWtTq6LCEXkyMQXP9WeAp2Ws27fZ2nciNRoCeNPeD3fICGM23WXrNJnwGtUJKrE08MlLdqLGxCnluafHBxlNSfGkEY2MimZkquMbG7E0KTohMTmpuF4gkJQnskdZWZWKRkhJdRE6nSHGxwIQu8NxcecEIlosYtFx/vyQlqZJ6BJ/gT0xUFGliotiMLdnZuodVmPcZMwKvxAik50DS01UZttCk4vGooDQatVUxu7VVfAld9fV2jbS6OlGh1N8v0tGhGnhmpryAupolMVGeQ63pl0BkzRq5YIRzB8bll5GhQr+y0ozfCXX9Rkbqd2NjMnu2GnmBgYpyl9RUTbWIjJR583RDTE01iMA1awQ6janVKjAumzYZqy8mRsArJSVq8ZWUmE3OJCBeBGlqMoqIsfi0YsQztgGaliYi+fk6zgatqpUptP5ZSooKPYsxR4mDfUw8kpOjylBHh94jMdG22qS4WCsPlJaKrFmjvw8NVYsiK0ukqEji4owQysyUi2YMN2zQZ54CG9afliYqtSIitL5bS4tIXZ3U1Ihs4V1WnculfdnSoghPt1s7xkqibGmxBcYpMxd3ola69PdLu3luoxGM21C3bIcRhpKXp67D2lppMWvvpLnPhg06rhs3ij6zq0tPZGer1VxcLBXW+s7Pl4umzUeMENpvtSUpSeebyYVstZSFtDRtR1SUtsPlUgs0L08RnImJOk/cbuk279DQoOPkxVigKSlqTaam6pzs7ZWlS/8Glt0tt6j0v8SP95Zb/s8Kuw80GnM6QGkpcJQglOT1qqt8303HVMu+4goCUOJhmpsNAW8zcIzz5rrOTgWunAUWAgPmfhBEJIo9Cwz8FDNRROdM04ZhlDj6RHMzncDozp1Mf2kbBARQWQn798Pwk08a9NegovOeew63G471zODYkSMaOWcAOjvZvh2N8IeEAFFc6/eWcv55PMoFGBsLnZ34+1+m75OeznTzbscwLC99faxdaygpUdzaEDbBCBMTCgLg4EHcbgURXGmuOY5yYx43vxsFcnIUIHPXXdCzdy9n29rYB1BYSCfQ190N99/PtY5jcPiwFgvbuZPjwLVvb+NGx58VsfD887Bvn1aCP3iQs9b47N9vE1iPm3d1OJ18N/44ZzGMFaOjWoE6LIwgt5uoqHmEhkbYpNCnh2dw5szbbNyolwYEAPfey62rdRTj43XMgoIU4MGXvsTs2R9n4Nw5Xhu4logIfwICTPXr224jImIWYWEKprAYP4iPh6EhJoDt2w3nZXMzAF/9KsBsjhxp4OLFs8r44XKRno5dTfyeewDOMIQCNc6iCMfHHoPxnTv5yEcM08fTT8PllzM6CqedC/Vea9dCd7f+0OPRyffQQ+Dnp0Xpu7thwQLt45gYOjthOdiwzWXLFGThAIIiI5V6aGhI3+vttzl94AB79lzkrHsprFzJzZHv4AbcKEE4Q0PcGnmMcc9SFu7+gyI4Lr9cb7p3LwQEaOV2ICgiAr/AQKYD57dvh9FRFsXGEuTxaJX2VatwmTkwCzOnMzIYaGuDkBCWou10JSbil5WFx6OAnIoKFM1VXq4DHB+vpNphYbjxEb77RUcTEB7O1SjPbaTDoWv5wAHlf01P5+rgYK51OCAhAV5+mR7TLhITISlJ13dkpK69PXsUBVZYSEhoKIuA4GAYD5ij73P0qL54RIT+O28e7N/PlVfy/h8fMqhc8vGBFnb9YDY7pZp6B998O4pu2OeBo319XBkeTiTQc+4chwDd2nXj6UMFw9GjvqoBIcBSACaZgZIkf+xj4AwNZZbTyYyoKN5BO3ACFTajpg2MjcHhw9xyi/53Cgxd1hmF8iUk4HYrobwDDDPxIDz/PMHBKIovMlLbaC3UnTuVyX7lSrjvPlwu7IV2Gp9AOwRw773s2KGPehNoQCmSb79db/3CC2cUkv7AA3x35SH27DnJeVTgnUDvex3whvm7r08/QUH6DOv70VOnWIRJM1ixQmFv9fX64KIi3TAGBxXi5nbbDPTvAFPbt+M0/Ux+PovMmJ0G2L2b40NDMDzMeavvPvUpJQcOCIDQUHp6oLt7lCnTuDkDbwFdXLx4BntaBATQeHgWdHYyMKBtt6izqK3lzJmLTKD7dVubPueq4Cmt7hAAN66coqfHjLsThZ0eOUIbsG2bIR5uaIDRUZPq8YaOI2+ojHn5ZW3HgQMGzw8wSBtw8eIhTckYGuLcOa2k4HAY3ucVK6C31yb7HhpCBdzICOzYwdnIG1XeRUTA0BA3hx2jE5iKvoGBI0c45LeU9HQIcDrhsssYR5GxX159XudMeLje69w5vn/nOOMNDZwAYmP9OXwYKp6ZDkFBTJl5vygqSksMDAwwI++n2qi77uLQsm/Q/4N/1UogBw+q4lJWBmFhnDh3jndQBYzHH9eXmzdPN5wjR3Ru7NzJGwB+fpxlFkEulw6Ev7/2rZ8ffOpTPPqo9sH+/aOqjWzdyuk7f8IrEzficLs54bmJPlRBpa9P00MuXlRlJCoKHA5VaNva9L4rV+qgejyqXRjiaj7+cR2nlSt1roWHMwM4ZuVJREYqxZsZkxk9x5Ru79VXVen5ylcUXurnB/X1fxu58mHqwSUfH2hhNwO0bDCTzNAaOswcfseuRGBZCtMBLrvMFkwT9h3Och4VRhcu6JlR1LJxYDRFPsKVLhdOdN2wfLluFpGR+KEb/zC6kQ5jFpzJeRgeVivqNGbDYsDebS9eVD6/82B2Ui0fEhKCYrsdpgWjo7pAx8bUWrnqKqYcM3E6jbBzOGxG97PWuxpuSsz7O8x3ISFWNYSzmv938KCRCiN2xYNR897nzb9nwealnNX2Z30X9J36zP3PY+7V06OLvq8PhoZUSB89quctbaK5mWHzmxlWe0+dskdkyvx9HqCtjXGr7yYnOQ30X7EQIiPxeCA42OHb4AAYAY5z2WUKYT8bcLVq4ENDfOxj+jyPx1h9LhcwnVEzFiY9Uk18p1OFzsAAYWG2XNABGxlh2FxmC7uTJ/V2TKIq2FnztzGsenvV+nDrHFCx16W//8QngCNMoe1yONANt6cHt1unhssFBAUxevGi3Vdnzmj/gHaQVviY4jzvqogRFQUjWmXBz08rGUwAfOpT1oS0LdUhfQRjY5quw8AATrCrUTA6qmttaEif63IxNKQVzenrg4kJnY8mZ2DK/Ow05n3cbggIsDccB7peptAXHxgwz5iYgLlz9TqXCxYswOk03cQF6OrSEkJ9Ph7R4WGfp4WJCZ2sltYbEgIuF+PoXB63BiU8XK+ZmIAzZ/S8VT7e49HnT0zYpaiIjOR80Hww1qlVnWI6MHXqlE6QBQv0X4cDOjtNWa8Pj/81x9/bj3oph+W/zs/3ijgcMjamcXQrnl5fr8HnTZs0pGLx8tm0816vbNum50pLNR7T2qrUYpWVJt5iilDK5KTY1ZSjovRHdXXS1KS/tWDik8Z3P2liArW12p7KSgU3WDE5iYhQ/39Kio2ogyN20N6iHistFXnBxAM3bBCRjAwJDlbghZSUiNTUKAChvl66ugwQw6JbMpUFWls1fFZXp6EYr1cUtdDaqnGrjAyR9eult/ddLDH5+ZKebhcQkN5e5dL8hYmBdJu44AUUbCJ1dSKhoVKHFmQ1JRhsNN0TJjbyJAYFaNHX19ZqgyYntfEdHTbtlExOSm+vSDEYYMKw8kaiCDmPR6QWBePU1YmdF6FpFMMKpoiIENgk9SjKsR2UhzMiwqQAdMsFrMK5JRrrXLPGVKs/ofHXlBSN5YSGioSHC+yU7Gztp/h4TUlob9dxftrEfBwOEWlqsovOPoEiQSFdNmGQre3tkpCg882q8C7BwSLFxVpFAAPKKSmRBQtESlH0poSHa0zJ61VUoMulkPKREYmPN7Rv9fXi9eo0tdIfLCCTrF8vkpenMb6YGJ3fpur2GAaAMzIiLS3a10lJZi0UF4uUlUkFykS0CwVYSVeXpm8Yph2rSjmUSFKSoQIzc0Sr19fos62YdWWlxMToq8OTGkeMiRGHQ0N98fFiA1dazPjtNXNPuUdPSEuLmP49oW1qahL4s/j76zqCHQJtGmdcv95UHq+RZcsMH2hxsdKRFRWJpiMNCOy09xKrenx5uV4fGqpx79pajXvX1IhdbaSvT+dCaan2ifexx97/mN03vuGrmnsJH+83vvFhzO6DeHzhC9A5OkpfH0wv+hWdnerSvyHsHYKCVMFyODS0MKP8D+rrb2iAgQH6+uxSZHR26lcVFardR0ejWubLL/Nvj00nNHSWumduu01jIq++ynVhqr273cDQkLqknE7VAkNCWLVKH+VwgMPjAc5wdng6owcO0HnuHKxerfHFFSuAftU+m5s5eFCfb9VhG8J4wHbt4tSpo+rKbGiAHTuUJaKtjfmjb6kbr6dHrafhYfr6fDXPwsJUwX31VXjz6ExwOlX7NwnYfX36vPl+J6C5mcWLVcsPCtLzAfisV9CCrT2gmvCOHfR1d9OHib91djJu/X/fPtuCGwa92cSEmitHj+p7KK0+vPqquuZ279ainZxQrb+hgXnzrmAhx9RyOHiQkRHV0v30T2hr4/yuXcaVeEYZBVwuYBIPas1NmX4gJIQlSyA8PARHbCwzB44D13ClwwF79qj7lB6NU5WXsxBUW+/sBE6qRYVWDOju1j7et8+4ry+7jNmz9T170KTvqzGFVFF3YkiIzq3OTt/YADpRystZsgTmO51azNTtJjLSih0fYeDIEbVItm4Fp5NRQ23yxx0z6ezUsB6Rkcx69Y8cPGjGv6YGysr448sz9Bn19bS1wdSuXRAWxp9eVZv+tA4B7NjBUr9DHDdN6uszY9Laykxg1vAJjIOBqZD5+ozhYU4fOaLGYl8fMBuHQw1aJieNyRwCXNSvX3pJqxds3coVV2g8GK4EPz9Gd+1i1FR9mD0bRC7C229zDHU3n0A9MwMDEBg4j6VBJ/jEJ2DatHmcOaNuXgjh4sV3jGU1GzAOlb4+cy7Irt3K1q1q1dXXk5R0BRERc4Er+cxn1IgeGACGhpg9W61La115PHBV6yuaXL/7NTPGOuZbt5qBfv553vfjw5jdpR9/b2l7KYet5fziF1KDLym3stLkJDU2ijQ22oaDpKUpErCqSjXN2FgpLFSEYWmpBcc/LXBBuroUxej1isjYmGRlia2tS2qq1NaqZp+ervceGRGRyEjNX6quVoRXVJRIf7/U1JhE7Lw8gWdk2zaFJktoqEhvryLq2tsVUj02Jl0GLVhYqBplv0HDFRaq5h0fryA0i+E/PV1Utayo0PZ5PKreu1wiRUWaUmCZdRUVaqaVlcmmTWKjEy+CSG+vxMSYPHgU1m3x9UpjoxwB2WtQml7LqouJ0XcuKZExg1DbYlB7ezB5eHFx8hyawtCOpiFIaKhIY6Mi/Ix12tAgvkoGWVlqYaWlKRw/IkK6uoyG7XQaLskX5YBpS0mJiCQlyRnTP9Cq/V9TI/CsDnBpqUhSkubRFRTYbP9jY/rbwkKxqPplFwi8JnvMO1tJx5qG0qyoTK9XYI+2OzdXQkNFUaStrTYNYa1l5Zq8SHhNEYFer0hpqaY69PcbS2NArbbgYLsqgZSWirS3y8iIWjNQoqaFw6HWYVWV2INmar/JyIhNbi5jY4pWNTXopLJSUY8VFQLNIuvXKyQ/N1ckI0MOWB6E1la9f2CgsYBPSG+vNqfGzG3l9twpy5aplTSGIp4rK8WgiLXmYHGxQaxGRYmm9jypcP6kJPF41HocGdE5DSXan6GhAs2yYIFVheMZaW0VU8FjQsTfXxrRNAlosqd9erqxZCsrRVNr/mwqHewQeEqKi3U9pafrPTUVqFot45wckYoK2+kCT5nc1wnJytLfhYaKsU7/rO+wfr3O2dZWXQ9ZWZoKkZ2tnprgYGmD99+y+9a3dD+7xI/3W9/6P2vZfbCF3cKFZnMqt1k3ZHBQLhq48dvWhuXvL5KTI5PGpaabx2MCT8oImkaQnq7z/m3w4dedTpk3z2z6MTEq5YqK1GfR1GRDm/PR5Ogn0eRucTpFenslKUn3b80F9Kor0+mUcyh0vbhYN8mICOOuCQ0VOG0XAJW6Om27STZatsxULWhsVFdJcLBIe7t0GffiLgwrhL+/cemNy17Txr3GBdXR4SvFc8oIpAULRCQhQbrQlA2JipJuNEm9zty72wiX+9GUjiqwXZT1aApBC5pnZeUfNpnrdqHpHOfMpliLwsotlgupq5MuMw57TZsEH/MFtIq0tsrTYJeakZIS3YFjYlSApqYKlAvcLTk5YvIMjygMPDtbxy0vT6S1VZYt065tahLxmrGxCsparmQpLtYNrbparBoxKSkikp1tqhQ06RzJztaUi9BQU14pRaBfO7mpSd+lsFDggvldp+wEgYf13RsbBX6u6SEtptyUv79Iba20txv2mZQUiYtTV2w7SH298UaDzvmiIpGkJNmyReQwmrJRXm6S5AsLtd8bG0WysmQQTbORuDhtf1WViMcjv0TLZG3bZtyhHo+vusSaNSJ5eVJvlJs9aCK8VaygA3TxxMaK5OdrrmB2tkhgoBSCSGqqZGWZ1IHkZNUmrSoGMTHS0qKsN5PmWq9XRDIypKFBfOkYUVECT8kRfKw+0CaSm6tKY36+trepSdLTTaWMqirZsEFfsd/MJTGCsqPD3LekRN4266agQGXCggWifTWoY/EMmotplptIV5cv3y4pyU4HGhkRn+LpdEpd3d8g9eA739F5eYkf73e+839W2H2g3Zg4naag6qfpee45qKriwcfmMA6oF8jNcn9/uO02TvzsZxxEwSfXAfAl4BpmZmTgTEigt1ddFu6UFPUbXnEFx4aGOHnyVWb5nef8rl28eHA+5OYy/uST8OijhAUGMh8Ie9d9HaDwZeNedbm06CqcJCJiHu8MDXEMdb8tWQI3ou7U6GgD4SeAGZ1vMXP0NDQ0cPbiRbjtNkafeYb9+3u49ZYpqK5WUumiInj0Uc6jrsZoYKHbDatXU1sLGzb4szw0lBDTH+XlyrkYEgLf+Q4EhYbC6tXqfnI4GMWgI8+dYxaaghGGuiFPmH+XoOTRfUA86lJ6i3cBgebO5XrTDzNQ4MDKwEBGgYD162HVKm6KiMDldDJsfs/zz9MHOKOi8ANGt29XYAzqLg0MvBY2b+ZG4KqWP2l7q6vVf5iXR093N1NPPMG0aV8HVvOv941zVesr+jYxMQqaCQ3VFI/qaj7zGe3vzk6Y5fGwYMEs5jintHNaW9XVtWOH3j82Vn/vdis25O67CUhIAOYqMeVnP8vLL8PR7m6TWvAtVqy4Un1gR48qoKm5mWnTHEwBoaEf5wYAPsvViYkGKPJ5rgeW9v1J3WG33QbV1SyaOITbDRNPPgnAn4BFD4/xTQABAABJREFU+fnc8INlzOw8xHyAyEh+2v8DKCpiyRLwFBfz3R1fo7gYrp44Dvv28Txw/V3Xwy238KpZOhPbt8Pdd/OT3UpkHgCcO9fAF1/9Cb9a+e+KyrnmGli8mL6XXoKiIq42YxUdGsqGDQp2uvdeWOjvz6EXXtBJ5Xari3z5cvinf9K15nazbp0Bvtx3H2d//GMbVMPKlSzt+xMREQuYnpFB2xNPqOvwnnv4zOKzrFkDN/u9wjt79xITk8xBMwe/+lVIS7vGJrxm+XLG7/tX+MEPCA5WDzkBATid6o6/Mjpa+ys21iaenpiA8e98h7Ooi/5H605w773GHTw0xJzRE3DLLbiBL4a8ya9/7QMGWWhmBgbUp+l0MrPvGHR2cshxHaxfT6TDAIjez+NDN+YlHx9sYdffjxOAY7pp7t5NW5umHAAwOkrPxYt2vkwbGueZ7nQCB4ARjXOBDzl14ABUV3Oir8+kKGgsZQjd+06fOqXxme3bGT53jqP4kIXjaF4SQ0Nw+DC7dvUwd65V4VzJlK9MSuIEuthcLo1lud26ZlwJCcARRb3t2QMeD7MCA6GnB0dCAnBUG7Fxo6Z3Pf88fPKTTDfvdh40UHLHHURHm3eaO5eZ6EA/9hi88IKS+E5OAg88wNQ9P9E8rYEBjpvrRtvaeNN0xxSKyJsDOGJimIHGoU6gguwgKrDOozlNxMRwpcPBIjQOFIS2YQYo3NvtZvzAAYiIYAgVlAwMaAzQIFUdcXHMiopilnnWuXMjcPSoxgybm7kx8qwyDl9zDXR2EuJ0Mj0mBpERYJLTwzNg1SqCgx06Fp/9rI9x+s47GRszaMpRoLOT4WE4OzxdUYof+5jGoT71KYWaj47qBtHXR2AgqqX4+WnLduyA4GBcLlUKtPmjGpcLD1dmbIcDIiMJCoJZTqepaA3wEU3CHB0F/O20ip4e4O23IT5eK0EAfnFxhISY/h0ehmXLOBtyLZ1o+4eG9OFLJ96wy80PDaFaVEMDYZgQ5pIlzAcWhU2poNm9W1PEAgJUkHFSJ8cVVzDV3a35Fa++ShvwTl+fCoutWxnv7uaWW2DG9m18/47zEBnJteHh+lput1YhcbkUQQwQGcmSJabKeFkZs2JjoaxM58by5dDZSVAQnP31r/GEh7PQdV4HaGDArkzuNK8+DLj8/fl60hTr1sFoXx8zGIfmZmZ0vgUxMdx7r4mTBgRw552qVA43NBDm7w/793PnnbDU8RZfXHmWGcnJDKBxaPr66OyEb3xD+5WhIXj1VRaZsVm8GD6z+CwMDSlad906XY+zZyukd/NmGB3Vvv7Yx/jbJNp9eFzy8fc2LS/lsE36+fMNy0mT+vdQBgeJipK3jdvsnOXa6+oSSUuTFts19prAbpvwOSlJvYVe46qR1FSRvDxJTDQ1wXJyfAjIjg67gOckylCyxbjgKoyrrqNDXUJZWUrICycU/eV2i0RESHm5IreOoLRE4eFiEH/DYsPprNhWRobNqNHSot6Tri4RSUqSjg7DvejvLy+hiMhBMIU535T9xv3Yarmy6usNSu20oicDA5Wpo7RUxO3WWFtenkhwsFwwrmBxOESCg+WIcV2efJdLU8z/m1C0prhcUmlcoP0ovdUL5rvtpp2tqJt5DGWekdZWEZdLTlrPS04WcTqlybzPihX6zhaysrhYdLzr69VdlpFh4mDPCOTZRWrhhN4rK0v9lklJMjnpI+EoL1dX7rJlpoJ2QYFITIwyiRhmDenoUHeXx+MrFBwebrukJS9P27NmjYlxPSSwx8dVuX69SE6OusYcDpk9W8ccqhUB2toqsFleMO7J+Hh9llRXS02NiSvm5SnqMTxcqlAKs9JS5fq0GTuioqS+Xt3iy5ZpfxUXi8aqExPVFWkYYMrLRduWnCwSFSVelEM2N1dj3itWiL57e7sy7XR1SUuLKENKZqYcNu5YjdmpO19KS3USW27MjAwRp1NRuGlpEhxsqPNKSkQGB2VkxNCdRUaawr579F1qa+1YogJ7JzQWl58vkGfHgTWGViPS36/ryrip29v1NqWlIlJbK+npBhUaFycvmLUEF6SgwND1DQ6qCzYmxiapgdMiJSWKRM3OlqfBREmO2RyjMjmp7lYTs5bsbJvhZWxM+Vj/JvXsvv99u3r7pXy83//+/1k35gda2FWbTRyypQ5sguVfo/GjtzHcjuHh0o3G1Q6YuAf8VOBXGnQIDjYB734ZRGNMb5uNHZ4ULxYRtNcmnO43536Hxqt2mvtabO66qAZ0o4yIkKgoE2MoKJBasyHV1YmIyyXJyea7/HyBZ22W+ZIS0diKoWaC3WJupMH8NWtE+vulCuXm3I/Gz6S6WurqdJF7TXsPgMBp8fcXm0pMBgdtTt8RlJdym3n/J3kvS73k5IiUlNis71uMoLvfvL8NzMnNFQkOlklzXiIjfcTOGRkihYW6OQYHSykmxpmTY49ZhdlQJSZGJDlZmkBjSA6HKiJxcSKVlb7N3EIZFRYKVAvslLo6H1dwV5f2cX29poCkpxuuxOJi8ffXeFNV1bsKgCYlSWmpATZlZ/uIo7OzlUsxL08kOlpBCuHhIo2NOk5VVSYu+6aOZU6OSFSUxlgdDo0z1tQoexYIdCtYKThYAgNN3GtwUJ/V2iqSkqKCb2xMRkZ0vEZQwI4Vsz0FPiJok0Yi4eEira1KGp6dLRIXJ4OYagSDgwqmMPeXlBTJyRGRxESjNO5Uxa6r6z1jtstSTHJyVPitX6+BsPZ2/VixP7fbx9makSESHKxxuYoKn4bhdovU18vblnIUFyfi7y+lpSog7CrgGRk2yfbYmD5z3jwD8LJSXjo6tN/q67UvkpM1UJmcrHMiN1eFdm2tdJl3sMmiCwrsYr5nrHmXlGQDiPrRGKo4HNqukREVjFVV2q9NTSI1NVIHttIrSUlyDhMTLSoSb1PT+y/sfvhDVd4u8eP94Q//zwq7D7Qbcy4Yd9vNjAIzi4o4dWqQSOBawB0dzc3m2gl8lFjqsfwsoD5/7rsPkQagiTmZmaxE3WeKCj/DrNxcQoC0tFm4UdfcleHh3ADcZO53Aljk769uuccfh8hIHI65ioR2u9m7dxvh4dfAz37GAArdbm4GYmJ4+uldrFhxDfzTPwHjmux61118e+gR3ti+XSnRNm7U1sfHQ2wsn6l/RGN2zc3MAm5AWVSWANxzDwMDWo9vVlSUuq6AqKjZ3HOPel6Gh4G77+am3f/KxYsws7CQ5ag7cmVoKKuBSOt+t99O389+xvh3vsMQyhNyHoXELzVjsA9o2LsXmps5duoUO0w//bm5mfPbt/M6qMv44EHCwsM5ceoULgyl1cQE89F44SxQ7PaBA/Q8/TTHMS44f391vS1ZQv6RW1lU9lO+6/4Tx2/5obqP7rsPjZz2cGPnH7j9dqU3m9/zOrjd3OA5jSMhgcxMzZggKIiVK9Wt/dJLSgvGD37AoWee4Y47YHr09Qw89BBr16pnb/yhh/jSl1AmkdRUTp58VYubOZ3k5cHAV75Cbu4sNHoaQt/PfgZ9fdwaeQzQWml85St8/vNwpccD9OCKioK77uLcuXZ1Y955J/v3owEnp5M1a4DhYWZ+dhk//vEZXgHNVXjsMdauNekcYWE6j+6+W7+77TYoKyMqSouk0t1NA+qRZN8++oBHXr5W45N33qnzICBA5y39LOx8BV59leHt25leVsZbd/2KAGCG08nUz37GVTu2QFubFi12u3nx6CJNpbnrLsjPh6IiXlv1Uw0MP/GEuvwffpjXwr7NrXfPh8ZGePhh3AkJmp6ydi2sWsVdd0FASgr84z+Sv/cm3rjjV7w+cT133QUz2t7knd/8hokJZQNqGx2l/5obeb1voaajREcTlJbG6aKn4OWXOV30FC8GfRPWraPxO78lf+9NzE9J4S1gVm4uj+xYyhurfsSz7h9BaSnHMAQN69bxx1dncWj5Nwkwy5jHH6cHeL15Js++Ooenhr+ssTqHA3p67DUzPTQUHn6YAIdDp2JvrxbG+/+T49/+7d9YsGABDoeDT3/60+zateu/vPbZZ58lLi6O4OBgZs2axYoVK6ipqXnPNZs3b2batGn/6TNqUxy9/8cHWthda7EkEKMgkLg4VqyYy0p/f/wSEhQoEh0Nt9+O2+3menQ7nB8cDHwc+DQsXqyceETo30uWQEEBMyIiNEbC1zl2+0+51unk0UfBmZTE1bGx8MtfEpCUxMLwcPwwTBAXLzIFTJw6pYwXoyMa3nnhBWC65u/5++MAsrNN05ubgQsKOHE4tF2PP874um/CvfcyCkytvNFQeMDpu/9VI+vWp6+PVahwnwVa2HHxYqKjTQ5gdDTONWuYERNDZKTuQXffbej8+vpgeFiZYdLTiQ4M1NhNXh4ut5sZyck4IyJ4rbub11A20T5UuE9H6b08KJDlGIZpoqeHIVS5cKJCsNn8y759yqN42WXMQcE51wGsW8f1wJyEBK4HDfjHxLADVTg2bwbuvlvjKtHRNDXB+M9+Bl//upLPvP0258+dM2PaA3193H47XLy4VREUGzZo3O5732OR3zGam+Gp0Vt57DGY7+/PY49d5Of3vGOzvoi0cGLvXqaAbzr+nYWv/l7p4EbrGXfNxw68BQXB6CiXX67vqACVHhISrtC23nOPxhYff5z9+7eyY3RUBW1wMHAGIiM5fddPgS4VdkNDmn/361/DPffg8aDFWJubgXabT5Lbb8fpNLmMzzzDLbfAm8PKLENPD9x+O6tXG/3IzI077tDfzkfT5oZPnYJ9+3wUdKCj6XTCypX0AWcTvkFDg3JLkpDAawDLltGwcyd33QVvHJzBY4+pEsnQEP2f+xqsXs0dd8DUPT9has2XdE4sX85dd8Fzz53hxMSVGgszOYzj6T9kvPpPnDv3J42Xj4xQW6vyftcuk7N29Ch9wKlTZ2z2nYICzc+bn5nJj+6ZztmHf6tAlaEh7r1XqSxf6VlETg4UFgJhYUprt2oVDzygabNlZfrWU2YePzV6Kw8/rIrPzJISXT/z5tn5nA8/rO35Q/kMm9JvZkICIYGBOtZBQZCVpQCd5uZ3Udm8j8ffAaBSUVHB3Xffzb/8y7+wf/9+YmJiWLNmDcePH/+L17/22mvExcXx4osv0tTURGxsLAkJCezfv/89182aNYuTJ0++5+P4G9LOfKCFHW+/zRCQkHAZ091uzocs0nh/dLRqudHRisB79VXIyWFRXBzvoMLI4biGefPm0nhqIccClgLVwE5V49euhYceIig7G3//KzU3dMUKZva8pSts3Tr6l39JN4m77uI6VJ8nJ4fpgJ/Jxk1Pv0I19cxM4B0++Uk4fuoUy9E9paEBtc44yqpVmiAPCznvN4uBATh/8SKnMcTFIyPAzcoQtXkzQ//0T/zq5UUa4A8NJSApSdsA9Dz3HA6Hya+1JrghJb79dn3kxAT0bd9O3y9+wRVXmAWcl8cUcGj5N6G2VoVOdLRNCHwUFT5LgG+iwvXaqCgWAdcDfwY4coRDqLXnMf1yArU8p7q7lStzxQo6AceaNZCfz7NHl+JKSYHubt2QRkdhdBQ/FJG5eTMwMaFI0bAwnnmmXROtnU7tm9hYk/A+CVwBTzxhuHkvKirn5ZeVCRkgJITISPiH1e9ogrPTSU6OP4cGrmSos1NJqmniOOjmvno1rFtnKL7O6nguXgwc4ezym+DAAdrbDQ3dBEA027cbTsj77lOi4fx84ONMB76fPmUyyafgc58zwKgQ3MDwzp3ExKCWfHk5Z87opUq99SeuBkaP6HOnH31Lre7CQm50vaVCPygIBgZ4y+9avrn2NA88oPP2auAm1yG4916mZ2Tw3HPtBHg8HL/tR9zseA0aGggAIiI+xVTkdfRfsZDp6OZ+992mPQ8/rCCjvDwWAtu3d3HXXfDCC7vUanc66e8HHnqIt98+y/RXX6GhQefI+G9+w4EDPUCtGjtLlvDavpkcRfklZwyfBgaVY9PlYvv2Q2zerELq3LnnGF97q1KrMcoNKBjr17+GAwfegchImptVfjY3A9HR7NgB27ePMjEB27ef5eTJes7e/VPeAl7jRs6da+eXvxzluecOgMPB8sBArnU6GRrSLjxyZAQGBvjxjy/yVN9NnNDXZs+eHp577qjOud/8RknPXS4OnTsHRUWs//FMePJJnnvuKBw9ysnqat734+8g7B555BG+853vcOedd7J48WIeffRRQkND+c1vfvMXr3/00Uf5yU9+QlRUFOHh4Tz44IOEh4fzwgsvvOe6adOm4XK53vP5Wx5//Zv/bzpWreKb1dUc8wBfz2Pmjj/S0PBl+MUXVEIMD8PnPmfz9XHXXVy3fTvTHQ7S0hSs9pmx12BPN3Fx31CO1PKfw+rV9C//EleFh3N7n3Fx7XbwWt8ibnQMwMc+xlWzxxWx5fEQFBPDLXv3wvAwawHa2yEggN+sO8u3754Ffn5kZHyLqCiY73ZDYiIv7zPMEQ3NZGb+hKEhdRsmJFzJzLY32Dd8HTc2NbE2Lw+i3wGXi/Lf+XOD+wSvHV3IjXV1/HD0T4yH3cyM6Gj43OeY8cILMDpKiNMJmx+hqOhH8Ng+tRibm7nu5DYY+ghu903s2weu8HCYO5evJ47D734HQ0OsdDjAql4wOgo9PczPymJ+ZyfX79qlMM65cyEmhrAXXoC1a4kOCYGeHr545AgPDA3xgMMBgYH8+dQpvul2qxY8OcnxvXvZ2t3Nj4KC1BpYvRqWLGHtKmBolWr2ERGM79rFFHB7RAR0d3NoAp5d/iC3hpbxBtdRWAhBjmKFhR+F4See4OqMDFbsm82ePd+H1h/QtxtaWpLBfV7N2Vtugeef56eNX+LVV+GLKx+l0/MgN5aVcZtLjc5vRkdzR2goFee+TfSCfbB7N+cdc5jpmCIsO5vkzjW0tsJnLj9MREQanZ2wdMUKHn4Y4g+m8tOHISLCn54e+AenC9asUffe449TcEcUN+1Y4yuvwQ0QdYqZa2/C43mFK53RUFrKP/OWkm4GBbFtmxKg/L6wkI0XfsjVrUehuZmWwzBv3iLmV1XpvH75Zeb3Pc93j/6E305M0NcHR4/O4eWX4cSS33O1w6EIz1/+EoaGqKy8BiK3MT/oPGx+FV56iXigMx2mD59lcHAW17a0ED9sCiyEhEBnJzdER8Pbb3NlUhIbIj9uHAMxrO52wp13snTHI1BaSnbDLBga4obhP3AamFFTQ+VwCJ2dt3HnncDzy7lx+XlFTT/8MKxaRWVlMgQdg9Wr2ZR+Lenpap3t3p0IwPUREWxKn8dCv2Kc3/se2dnQ3HwljI7yysNvQOcwv304Enb0sW4dhIU5WL0a0tNnsWrVZ5nV+SZhQMjAs8TF3cratdDXFwFXXKP+ylOn+P6S1/j+x8/x3aAvwS23UBPpz82rxjnxDdWZDhwIITgYPvlJYEGaeoHS03UuW9Z+YCAFBWE8/+Mj3LRhA/zLv7y/e55FBH2ph7E2z549+57Tl19+OZdffvl/unx8fJympibuvffe95y/+eabef311/9bj5yamuLcuXPMmTPnPeeHh4f5+Mc/zuTkJJGRkfzsZz9jmaWU/i2Ov3fQ8FIOK1jbhdZbg2EFNSQlaSA+PFwRirGxIh6PDKJMDZKUJE+jidKKxuzU4HlBgQEW7FFkVlmZWLC/ZcsMw0dWlkhVlQIXGhttcIlERMgetPabVfH4bQPqyM42jC4ul8AOLcbpdssYyKZNJsk2NlbgNU1YjowUOCZSXa3AirQ0RcC1t4sUFEhcnLwnYC/t7crNaWptbUcTtetRVhR4064J1m/OaRLzsFj8j60YhpYxEUlMVI7Hjg4FYrjdCgYwwX0LWdlvQAKVBmBh1Qp80py/H62HdwZNKi807WpE0ZhnzH3E7RZJS1MQz5o10oVJMo+NFXG75SUUdLRpk4jU12uSe51J+jVVrGVkRMcwKkrglwI/FGltNewZ1XpNXp7+m5Iira0GoNLUJIWFykMZG6t4EgkMNEjJPSLBwXISZHBQkZ3dIDCgiNbcXIHHFOBQVSXh4YqIVcRetcCLWlvNAuzExAhMyNvWu4DAZgUilZYKVClbTGGhzoOcHJG6Op07Y2MicXECVSJRUVKBolNHRgxYw0LXZGTIyIgiVsPDRcTrVYCLVV3d7Vb0bWmpIjuLi/U7g4KtRLk8U1KU+3EM5fHMyBCRri6pqTH18UpLpQtEq7JfEPitEhHU1NjgpPBw0R8WFMg2M/8UvNOpLD2TilV5CUX+KgHAk9qfLS0yb55OQWVQqdI+CQ0V+LlIVJT82owFVIlUVSkhQ0WFiNcrLS2KbUpPV6yJ8m6eFqmosOc2tEpsrGLTbDRmVJTk5OjUgwsiWVkCF2Ry0iKFmBB4UUJDdSuQkREFumRm6li7XNrOuDhJTdUxfj95KG2ASna29vMlfrzZ2QL8p8/999//F5/b29srgNTX17/n/IYNG2TRokX/rbb//Oc/lzlz5kh/f799bs+ePfLkk09Kc3OzvPbaa/LVr35VPvKRj8hbb711yX30/+34QLsxL2JqbTGDiV/+Em67jc2bYerIEfys4m2BgcxxOpmZ98+waxdOMDlFTmBUtTMt6gX0qFtwcFBjH9XV7N/fo3GW8nLOr/4y03+zCcrLudGj1pZVPmQcIDSU84Db4YB9+5iYMNSPixcDZ1m+HE50dnIadU91dGDiJWfxeKCnuRnwh/BwVcA6O+16Xdx7L7t2qWEwY/Qs7NzJiYBFXDf6On3nzsHgIGGoX3oO8KeDVwMhuEzifRDw5sDVHAq4HpgkKWkeM8z55maYMXEeBgbU1LeqCJhg8XntGYbReN1bwDujoyxCGd+PovGjHgCTaH/c9Mk46vo8gbo6+djHcAYHa/yptxcOHFBX3v79OM2zOHwY+vqYwrgD0f6fBdwYdEjjWs89By0t9J+bCZs3c3rvXjQKOBeKitQax6lJ4fX1OqYhITidxiNsjjloyDYsDHA4TG4lDJ06xSHUPbZ6tXFTc5ap5deb2OoFdZN3d+NwqGtN+RHnA9dyFpjYu1et4L17gbNMmKHUmN24ulYjI4G56pJ8+GGNE61dC1u3EhAA/WdmMLV9O3CBtr17WY16ZWcOv6NM/wMDGki6805mDhznBpdL41wBAfj7A5s3c+KJJ6CujvkuF/zmNxw+jFp5LhdUVuKKimLYdGlRkcayrOoJFy9q39/selNzWsvKTCWEzxIT4wCiFfD1rW9pu0fVfchVV1kdwgQwb94s4DL27YPpd36b+UHndW5PTnJV7xvAPPUh3nYbfn76jhpKXMAPfgDHu7uBm+ncu5cgIDh4LhAD+/ZpErjLRePhWSzt3mbzcjoc2v3Tps0Gh0P7SxunYzyEklm+8AKn9+4lOlqX/4IFDujsZN48B9OZIgCIj78MiMXPz8TCn3tOF/eePfoeQ0N6vqGBl19GQWYvv8z7frxPbszu7m68Xq/9ybZBBH/5mDZt2nv+FpH/dO4vHU8//TQPPPAAFRUVXPmuvMPo6Ghuv/12PvWpTxETE8O///u/s2jRIn79619fQqf8N4+/RjI++OCDsnz5cgkICJDg4GD5yle+8v9h7//j6iyvrGF8RUN6qkGJDS1xgiWOWHSCEkda4ogNrViYSkd8SiszpZWO9AkdcaQVR2akSl/SIa3U0pIqVao0REMjUSqoaGhEgwEjCknQYEIMJifhNJDkJDmGk3Cyvn+sfV9Hn+k7b5vab8enPZ/P+YTAOfd93devfe29116L27Zte89nTp48ybvuuovz5s2jz+fjpz/9aW7duvU9n5mamuLNN9/Mj3zkIzzjjDOYl5fH3bt3/87t8E45683bAFbK24iNZVaWToxvGCR41E6W9PnYA9XCbbLvAKsF309NtZPnTtI8xhPw4PrrybQ09kK1PQc9zyYhwUH9n4MUtvfZtVlZSdbXMytLpU1MSorW0mVkcACqlaquJpmYyPR0Oq8PWK3jtakRMD5eR8mMDLWvpIQsKHAK6AwGuREqGfBou1heTo6MsKRE7R2FYN6LF+vr+flGS2V8mZ2dlFKDeVxBe/ZRqJzBg7AzO5sDiNKIBex+PVDZgMeR6fXRXfY7xsfzoI3HRuunMaisoR+CpnfbNTo9jygmhoyL43qIxonLl4uOrLRU3o7fL682EHCcoMB6Au3s65Nj0dRkJQSpqaJ+ApiZac9eVqZ6Mp+Pq1ZZfVtJCZmernqwjg4yI4N1daZSnp2teq1w2Pgfj2oA/X4puFdUMCZG9WLABpUIpKerFisxUeUJJSVsavJKD56iFYsR2M0tkOfd1ERB70tKOGeOlDvY38+KCkHzIwAZDKqkITaWbGjQsxUXy9OIiWEkYrVy/f3y+CCqOLa26vuRiDqooUGlBDExFu3YxcnJd0UOiorI7m552z6fXKaeHk3kQIAMh9nTY/yXdXUat/p6lTaUlJAZGYpM1NWRk5OKkBQXy1WOiZFHlJVFpqWpD+PiyLo6RWFaWhgMynFlKESmp3POHM3nN6A6Uk+dwaPn4vLl6oP2dnlsLS3yXiMRMjZW94uPV9RkbEyRjqYmx0HL5cvVT5EIGRenPi4sZL95uX6/jX9Xl+7R3Mztth7CANndzSNQmccQwOBDD73/nl11tZ7zFN/B6urfq03hcJinn346165d+57f33LLLbzqqqv+2++uXr2aH/7wh9nR0fE73eumm25iTk7O7/TZU3n9Xsbuc5/7HB966CFu3bqVg4OD/PznP8/zzjuPR48edZ+pra1lbGws29rauGXLFn75y1/mvHnzePjwYfeZpUuX8q/+6q/43HPP8dVXX2VWVhYvvfRSTk9P/07tcAO/bBk7IQkVlpZybMxCg9XVKjIdGdG/y5drgWVnqxA3PZ3z5mnT8/s1f+PjtXdwbEwTvrGRLClhTo7Kb7h8ua47MkK2tWmj7eggm5s5DOOUTEvjk7aZc2SEixZp7SuM0876etV6DdmGU1dHM7SrOTTkfe4Au7sVOt1iRjTKDbhTm5+R+AWD1OZTWuqKeJmdTSYkMBi0Il6vnqiykgMDeta6OkVuInZAWLVKhoENDXwLEK+gPRurqvgQwBVQyLjdjPtrZriYlsZ++3szFJpsh/gzw2bwmqEavrD9ncXF+rmkhKyrU21XcbHGKiNDP1dUcBlECpCcTLK/X7V8k5P0+VSYvR3iGGVWlnFcThO4R+M0NETgdh10wmEe8zb8ujpXY8ueHgsjD5KNjc5YA2u50TvUFBSQNTV8yw5IHmk1sN7F4+bNo0K4Ji+zdKnkmTgy4jZm4E7+BNAGWlxM4GWytZU9PSqO7gfI3FwZ3ZgYTk46tSY+DfG/7jNjNz5Osrtb187PJ0dG2Nlp5Ae5uTICIZ0BWF4eJXVMSyNzc9WfcXG6+PAw2dLCJ6HDXCQie/GGHTLy8mwODQzwAdvQVXM6bATOwzJ2nnGorCSwjn6/5vCL9lxKE6zRnC8qYkWFDFdPjy4PfF/h25QUAkdZVOSVlG4g+/vtULudL9qBSAX8L5Cjo1ywQOmC/HxaveNeAsdNBmgzgQHS7+cowNFRhUYVIj1AlpXJmKemMjPTI4JeT4bDrKwUx+prAIuKVAsLHI8STfT3a52kp5PDw0ptDA2pz1JSGMzJ+cAbO5L85Cc/ydLS0vf87qKLLuIdd9zx//qdRx55hD6fj48//vjvdI+TJ0/y8ssvZ3Fx8e/crt/39XuFMZ955hnceOON+Ju/+RtceumleOihh/D2229jYGDA8xLxox/9CP/xH/+B66+/HgsXLkRzczPeeecdPPLIIwCAYDCIpqYm1NXV4eqrr8aiRYvQ0tKCLVu2YN26db+fW7puHc6CpFawZAnOG/wVEhOh8NvIiGi3/H7gscfwatL1wJVXYieAo5s2Yd++wzh0SJGcWVOHsX//JI4c2Qf09eGsqd8oM/8P/4DFi4UexwUXAFNTeBMXAtdeKzmUwUFgYgJnwWr3FizAXBgE/9AhLFyoUMnMpCQAc7B1K+DLykISgBc2nKZwXFISgLOwaxcws6AAwGF8ZslJzJsnNKMPpl59xx1YsGCBQjs5OcDEBGbPBl6aeZXiNVNTGD90CHjxRewdH8dZ217Go4+a5ImJqqalAbMGX8aGDcBzzwkHsffIEaSlWd3dvHk4BJM1iY9X46em8EkA10Ahv3MAXB0bi7SkJAmnxsdjIQSuOQMAEhKwy36eFR/vyhKuhkJ98PmA9esFzY+LA5KSsGEDFM5raREA5rOfBT7+cSQAmJ2VhRtu0HDPBPDqrnPw4Q8DFyQl4YL0dFF7PfYYzsrMBNAJ4BCQloafbrgEwHzMzM8Hjh6FLzMTZ63+GQ7f9C2kpCh0efLKq3By/XrMmHEp9l77DSnKAwBCOB8mDnzDDThQ+h8aU8yTJujUlEbm6acBqO+WAHhp6jIAs3D//ScU6tuwASkGDgKW4EIoaq742enAunW4KuM4gLPUl2lpksW58kpMTQkUcfnlHrdqCAk1NXjCpsw7GZ/RnPtf/wv42tfw92l7MX8+sO3pp/GpTwFnrPuV0JFLlogU9ROfwOHBQWD1ao31bbcpzH/jjUBTE86Ffvz851XueQ4kZXPoEHDy1m/hV3suwzkATi6x++J1g+6/iB0AMDCA6689bnH7dJy77df4VOo76ocdOzQuOB1pacDOu3+Bj3xEv1m40KPqO6oQ49AQgINISwM2bToMYAda3/qk6jHxLK5MTsZeAAcPHgawFyeTzsdbb+3DF78IfPnLwNrpL2DOnHlITIxRX+NjAA4Cs2fjN/C0b89yUk2Ha36Mc9PTgauvxvg4cOTIFICzgFdeQW2ttpGjAFauPAxVmE5gYgI4f+5hHE75pMZ/0yagpUVRy74+hX5HR2GaU+/v60+AxvzWt76FBx98ED//+c/xxhtvoLy8HG+//TaWSpsJlZWV+OpXv+o+/+ijj+KrX/0q6urqkJGRgfHxcYyPjyMYDLrPVFdXo6urCzt37sTg4CD++Z//GYODg+6af5TXH2Ipt2/fTgDcsmULSXJ0dJQA+Oqrr77nc1/4whf41a9+lSTZ3d1NADxw4MB7PnPJJZfwO9/5zm+9z9TUFIPBoHvv3r1bp5NHH+UmKDzHvDx3EmZJiUJ/LS06mff2OmFOz7Pw+Qzo0NNDdnezvFwOBVtbFQIpKCDj4x3GgCUlOsXV1cmTGh11HtaLEJtKEMasHh9Pjo5y3jxFPLZbqKq2lmRsrDy7sTH29up0C0woVObz0eeLisKGPC8xHDaKqm1qS2GhwjBtbTqxGd0RU1P1c2Ulu7osBFZTo74wpo32dkb/lpFB1ohei6EQmZsrz7e/X8fk8nIyN5crAd4HscO0mqf2qHlWEQsB3WtekaeY4IUzf2Jhp7s8Lyk9XaGr3Fy1OSNDz5KQoOdJSdHzFRezCTCPahs5NKSQ6sAAy8tF1eY37ylo7cjMlDyL5y4Aj4jdIqIQ4OgoycpKZmebx9LebvI7GzW+RUXcbx7ipOeFpqfLW05OJrDdeYfALvXTwACrq6nw69AQgQ52dko9IxiUUoEAGPfwcfMQ5KUPkHV1Rmu2TuCR6moWF2tO+P0k/X5WVdG8muMCHpWUaIL09vINe25Pk7ivT21jby/b200xIS+PfkAsK42NPAjRgh00r7Cri+TYGJ+EQCSSCAhwn7W7r4/yCAsLBSjp7eVzEAPQ6Kh5U2lp3G/tkHe710URXgTIpiampioSOjlJMj5ebDSJiRwbo8kcvUympjIISUx1dorCLTWVZHU1hyBavVW2JsQ6dIzs6HAh6/p6rdPEREe0w3nzTGbLRIUlcbSX1dUWscnK4iaLIFRU0GSiglH9rvp67rcIwqJFukxbG6OUa01NZHW1xmt0lAyHtZaLixn85S/ff89u+XI6fbJTeAeXLz+lNq1YsYIf//jHOWvWLF522WXs6elxf/va177GT3/60+7/n/70pwn8VxDM1772NfeZW2+9leeddx5nzZrF+Ph4XnPNNXzppZf+0G76b1+nbOxOnjzJvLw8Xnnlle53vb29BEC/3/+ez5aUlPCaa64hSa5atYqzZs36L9fLzs7mN77xjd96r7vuuuu3dl7wsst4DFJYDgbpDB6rq6MqzsuXK7fWS7KriwHbiBcvNv2r1layrIyZmRb2KS1VzqSnx4Uax8ao37W3s7NTYZ7qamrTrqgg4+K08drGwsREbSKeZl1+PoHd+rm8nKysZGOjUiIsK2NsrKHeysq0uDs6nMT4QRi9U1WVNp5AQEaztZUcGdEiKy0lKyq4EaYQHhfneBgjXqgrNlYLs6nJwkYrFUpMTHT5ETY2KiQVCCiMW1Gh7xYVkRUVjm/UU7x+DlDD8/PJxERGoFxcP0BCObowLGxbUMC7INQm8/K0CRYUyGAMDZH19Wp7YqLGzfJZTEsjw2EdROLjuWqVqWcPDUkDcIw61FRV0UPYtrer+c6gmfH3tN6qqzUXVqwgmZrK5mYbi5QUsqJC86KxkSwsZF+fhTyTkxUWNnJN4JjGYGxM9zH+S4XB1mpyNTa6g0NdnebL8DAtdD2hm9bUEJjgKBQ+XrSI2pja2hxg0tNaY1sb10BSPF6o2e83mq2UFHZ20nhfp9nTo6FZtkx9ddDr25ERd93RUaFRPQ7S7m4ZGE9xvKlJz97Xp/OHy5kWFHDGDJrB2aCDQTis/mtp0TxvaSELC0Wf19REYJrJyYqm+v1mLGJiyLw8Vlcr3Dg2psssXUpydJRlZR4YOEiOjRFYSY6M8EUz2EDAMZ+xu5scGHAySfX1Mqw5OZYrj0S40Qx4TIymrMcO5hHOpqe/K50RDhM4wOFh6QkWFdHxezY1af709mp+jdk8LS7WPGhuJh8H/jhK5X8iY/d/w+uU0Zg333wzNm/ejEcfffS//O1UkDv/3WcqKyvfgxzavXu3/pCcDF9cHFJSoNDjpz6F044eFgQrKUnxv7g4pBldFGbPxkdjY5EGp8qhV1ISkpKs7nj2bMVV5s61cJN5/oODwLXX4u+XvINLZr6ueiFPAjwlBefGxABz5+Lc2FjgzjtFyjJzpoCNPh9KSuaLRmjrViAuDklJVsPk8+Gmm4zh4rnnFNVMTRUjhs+HuLw8PcsTTyAcBk7O/agYT1JSgA0bFOL0+YCEBCyEFSAnJwNZWbjtNuC0zEz9/a//Wg/8sY8ZyDIfs1JTFT5MTMRZW1UzM9/nU1wuLk4PPjWl709MICkxEbNNhQGBAK6OiVEfzJ0LfOQjOC0xEY8B+GRMDJCUhDcBzEpKwiUpKcCuXfgCgF9BfZwEwGmtpKRInSE5Wc/qMc4nJQHj4+h/bRY+8QmxfixcaEryFmI9ehR45ytfAY4exeLFmZgx4+NIS1N47NZboee47jpcM/dVYPZsPPaYFalv2iQg5G23ISnJ+j85Ocpaf+gQMDGBTyUfEBNJWhqmpoC1T5wGTE9jzhyfYJoQQ5f37+zZwJw5+YIxjo/rnZOj0KHPh4vnH1atFCZU+xcKAfDh/MREXJz0Dn70IzilhNWrjXHqxAkx8ff14Ytxcbj/fgPMHjqEc6fflnRSejp27AA+k5SExsbTMT2tEOi/33YcWLcOccuX6yGffx7z5wNX+F7F+bN/g/OysnA+hCEdH1cEeelSXfvKK/WIn4p5FY/csRmXpKdrTgwOoqZG0fTMzL/DOfHxUuAoLta8uBpCv159tVCsR4+itvZ0fOUrwIVzD+DcHS/gy5l79ZwXXIDv3HoYJSWpOO+VtZi1+hdYvBiu+L+oCBgZOQu45x7k5X0FeOYZLLSll5f3UVx89GWtq2PHgJkzccnM13HttZo658w+jsxMsXvh+eeRAOBjvWvxz/+sscrIAM565dcK8z7xhPeP+nrHDqxYMQcXz/0N5kPPeuutwD/8g9XZpaTgiolfAUeOqM5uwQI3b+bONeX6/6Ou7H15eXV2p/o+/fT3v00flNepWMibb76Z8+fP586dO9/z+z9WGPP/fHmnHM+LAr5DNjTwIagOyA+hCj2CZCYnyz1LTRXBK0DgVgL3sh1CMTY26sT/EzslHwTIjAzVX1VWkvn5SkB74q319XwcAmKsgcAarZ5nVVNDNjSwpESRjh4LgwAv6KRvqK+eHrIfqgEENpNDQzrZDwyQY2MKzwZFPs1IhAMDdtIfG2N6uk6cbW1C923Cu9CN2dlsbxd4YA0UWn0cqhkbHtbJta6OOtq2tkpY3U74m6BwbL/14aOeZ2k1et1QMj8M1eht9/o3JcUBSw4Crk7Nq/FiVpZcrcJChTQTEyViC4UZPaTmMKCOyc/Xd+PiCEy78FkkQrKpiZWVGobXALKjw9TmVeM2Z46+3tSk/mNenjzg2FiWl1ud1NgYKysVzvM8mKVLKQ8hHJb3NzbGyUlTRBgbI3t7OQmh7xITVdPG5GSyspKdnVJQF8H4dn2+pkaeQ2GhwnfhMIFhqw3tEEl5YyOBYfqh8F1TE50wrQewLCsTUILV1dwOKbJ3dqoWjikpZFoa37B59DREht7XRwc+YUODPLKurqjUvYeyLCvjCfPsKitpwI9jZFOTxjEpSd+trHQ1cSHzAru69D4BAU38MORlUxOZksIBm3seapX19dwEqD9tDuyHQC91dfIcOztJlpVp7gSDHB42TzwcJrCBLC3lMYvUlJSob5ct0/x9w7t2S0sU6NTYSNbVcaVFJbrNu2NREdnUJA8zLY3DNrcGBmzOJCSQwaBDHTc3m0pCaSnZ2MhIxIRcfT5FUrKy1K/FxXrn5/Of/umPIN76ox/pmU7xHfzRj/5sPbvfy9idPHmS//Iv/8Jzzz33txb/nTx5kgkJCVy+fLn7XTgc5tlnn83777+fJHno0CHGxMSwtbXVfWbv3r087bTT+Mwzz/xO7Xi36oHH5u/FISsq6EJnIQja3A3Ijc/M5H1QzkmIrS4tzqIiAusIPKUYTkqKAvNtbcoXWUhrfJyKs0xOsreXDoXmoMtZWey1xcH+fobDVlLQ2Ehgt8JgeXlWPB4Q8q6tjTNmWL4wM1Mhm7g4Bi1t4Ifye0xLEyO+KVKzqEirLRRyuZsmMxjrAQvrdXHMDNJrtqkIrbaNwMNOGcKFaZOThagsL3es90e87zU28ggshxgXR2Zm6prGbH8M0XKPJ81oekzzIxAi70WouJyJibzLvsOCAj1ocrIzzPvsOZiUpO+OjWkXio1lXZ2a19sr5O3AAF0+FnhEIcThYQLTLCuzHFF1NVetkrJ3YaGFrmJjCex0BhQY5glrkycZsx9gerq6ejcsN9zVZWUOTWp7d7cUEGpqCBw19Yx7SKh0o61NCNy2NpJlZYLSAwQe0fwsKCDQrkNKXR2zsuhCcqmpdKFS4CiZmclegFVVdOryDIdlvWNjyaEhjgJctkzGsauLMngpKe7AxspKzbXeXkH8s7LYZv29bJk+3tlJhdJDIaeO0dRExfFyc8niYsbHeyHG7SJR0OmKJyD0cAA6dPVDiN+lS3X7SET3ZmurcoB2WImJocLnbW0yKsEg6+q8sPAxsrubwDqypYUDNi4LFmj9FBSQLtkdDLK52Q4oZWVsarJDTEcHmwCyq8tLa+v3ts6Zne2U4Ssq9KzAIEMhhYYLChRiXrrUnsGDrZaX82kb60WL1A6vTOT9VBj4i7H7w1+/l7ErLS3l2Wefzeeff5779u1z73feecd9pra2lmeffTbXrl3LLVu2sLCw8LeWHsyfP5/r1q3jq6++ys985jOnVHrwhBkW4FYO2EabmSkYeK8ZvNcQrRl71P5VXuNhAve6zVo6VkcZgqDN2yGPDVjBUcDg3zs5ZJv6fvv7SgiK32+b+pAZ1vFxza8VK2hG7CiB42RxsbFxHBBoIC6OeXnSymJhIYG1zgiUlVEn68xMk7CZ1uqvr9d38/MZiZD3WTuGPMNSXc2mJm0uw2aIhyCmkHnztGgrK0k2NTEUUk3WPqh8oAtRfb5OezYGg+4Yv9uef6MZsmb7zjEzaKyrU5tjYnQA8MBCmZkyDvX1PGKfv8u+T5+Py6F6vQdgOcaYGLKxkW22eTI+XqftxkaytdU7f2jjrKkhe3sJbCCwi2VlsgPDwzpsT0Le0EHbtFatIpmXR+A49wMG/5/WptfUxJGR6Ibv9NQaG3UoaG8ni4t1UElN5eiolbsMD1Mw953y4Ds6HJvGEQi8Eokon3TEDOpBm0cLFsiYdtnZi0NDZHKygBXhMIeG9CxveX3c0KDxS0qK5h6zs6MeTVMT58yhvM6GBm4BXBtfgw5CbG8nm5r03fh4qz1dp7EeHiabmtTuoiJ9JyXFsQp5xkqdO6mxamjQwayhQQMTG8t9sAPn8uXR/GViItnfz+12qDloxrC9XeuEzc16p6XJww8GHYNObKzWC+PjXdnEW1AkYNgOUQyHNfj19Wqz9ZfnvR5D9PDG4mLdw2pwvbpV1tdzC0wWKT1dObmxMb3b29VOS3oGvGv6fOr/mBhdo66Ou3f/ETy7hgaXez+Vd7Ch4c/W2P1eObv77rsPwWAQS5Yswbx589y7tbXVfeb222/Hrbfeim9+85u4/PLL4ff78eyzzyI2NtZ95t5778V1112HL33pS/i7v/s7nHHGGXjyySdx+u8ZT/4IjHEdJ3AaBPlPSRFjw0yIvWMzgIV5eVIPgNhTLgEATAA4jL3CIiMtDUhNPRNvIyrZ8w4A4BMADIaO45iCINO/sTYchu432+5/HgBcfjk+Vnc7amuV0sPgIGprjTtvyRKcASAnZ44UlI2lHYixZNT58Bkzy9atAJYvx8kXXwTmz0dMzOmCkt93Hzo6gOOPPw5ALChH7dlOs3ts2KCUyBn23KdB4ucTE0pj3XkngBtvxJNPKlezFypF+Kj12yF7rilAiai4OLxz5TU4DbrmUQCzTAF+rvUZlixRsiw7G/jbv1WfGZk0TpwQ3H3hQrwJwFdQ4MoSUFiI0+w6c73BSEsDEhIwHyKrgM+Hd8bHBW1vacHBg0aG0dAAADiZcQWAZABzMDEBp/owPg6cExOD9HQgLj4eM2daKnbhQsTHx6hcAsDixadjZ9r1wNy5uBBvCkGfmoqsrNNV7vHFL+K86Z1K6jz9tHKr27bh/PGX8G/lx3H8gout9QcBXCHmlvnzMX8+MDsxEZiawv79StkeBXDixAkcBTA3IQFxcRq7qSkrM0lIAFJSEBcHHJ6aha1bgYvn/kYk2RkZQCQiJhZTXz90CMrHxMYCiYnAzJnKRx85AvT34xyoAuft2RerFGBqSjykjz2mEpqbbjJWoY9qrAFg3z6Vh6xciUMA3t62DbjyShy/8RtiMH/+eb0bGjTuyclq30UXqdQgLk6k6N54Pv+8mG527wZmz8Y4gITYWMTFxAAnTiAnB/jNiy/q2Z95RsS1W7YA69bhmzcdB44exZIlWi+49lp1ZF+fCLp37dK8P3FCOeDBQY2T3y+Jh7Y29AE4LzFRkmCvvKI8nbXz0NSU5uGuXfqblUB9edGb2LVpE86LjYURjqo8ZnDQJfzfAeBLTwcWL5Z80V/9leQaLr9cRO/v9+tPUHrwf8trBkn+qRvx+74OHz6Ms88+GwcPBhE3ayZuueMM/PjWnZqEH/qQqHpeeQXYt0+ok4YGLaJDh/DSTT/HFdt+juNf+Toefxz48o5lEn5LSVFG32PevvFGICUFv7rpV/jC7F8Du3bh5/g6vr76GhXrHDokNYOpKZHApqcL+bBkCdbO/BL+1/8KgR3P483kz+PClu/g36e/i/Fx4Oe3vQ4kJeG795yBq68GrvjRl3D4wV/i8suBN594HZunL8Yl068CU1P48StX4JacN5Vhv/9+AUO2bcPPJq5HRwfwq9tewDuXX4Uz7vwWcMMNwOzZeGTwYixZok1z1syTIsROSNBCPvNM7Lzo8zg/7gAOzzwHZx3di9cPnQufDzj/zn8UTVdXlxAKr70mtv79+6UcAaB/+zkizn7iCVnNO+7QpjE9DdxwA9buuATXXqt9zecDrhr/JXZe/iVs2AB8dcnb6rOUFJycOQun4aT6rbAQdz/0EO5OSNC9X3wRKC0FXnkFL0x9Elf922Ic7tqIs57/FXDBBeg/cjE+1XY7Xrj2+5g5E7giYScQF4fXx8/BxARw1eXv4PyFZ2Dnt1cABpRBSwsu2/oLvLruADAxgc8svVDkwVY7+fbURzF/vqbPAw8A98Xcgq8f/THmzpXt3rZN/fmtY8uwt/g/cO7WZ91cfH3+Nbj4rU68mfx5b/gBiMErI0OP+OXQz4Fjx9A6918QiQD/yFWSn1q3DpiaQv/HvwQPK3TDDcB3r35BF7jxRnz1R5fhzjuBC2u/DsyejVdv/DEuu/PvgSeewDvTs7Bhg4bq3y76FZ6a+QUsWQKc8ZXrcc7za3Hggk/i2ZqXcc0T38SXJn6KjAzgW/dfCCQk4IWaFzBzpp7t62mvArt24cI7rsebDc8Cs2ejdfcV+PLECske3XknzsrKkhF65RV855kr8N2Hz8M7u3fjjLw8zU0AuPNObL7157hk8BeaExs24OSDP8e2bcDFj33XkRCfvPu7OK3mu9h703dw7j3fElDHwGSYPVsSA3v2qANfeQWorcXmiXMxfz5wzsM/xMlbv4UDp8/A3IICq2GE9Iyefx5v3/ZjaRjOnSuCZyMpx6c/rdrRDRscqAw1NTje8kvMuuNb+v8FF2gAW1p03yVL9N2UFI1HXBycdtLDD+OlPecBiG4ZnqLPhfd/C7jxRvxLYxJ++tOzEQwGcdZZZ70ve17w/vtx1oc/fOrXOXYMZy9d+r606QP3+lO7lqfy8lz6dS6M+W32WDhh0SLyIQtfvmGhMcbF8UUL0+23ECXwMwL/ScbG8giUj4mJUYipy8KS91kYM0o4Pcz1FiJ9w8J9D1m4rx9RFXS2tpIDAy4qw9RUQ9JPk9XVfAOCj3d3k4yJYVkZCey2XNBTymOUlCh3YHRmIh8OOLBHfT2VFPf7+ZCF/96yUA3b2lhbq/zCPmvbG/BYJ6YdwIHDw+ztVRhzFOAPLOT5uD17t705OqowyMCAKy1oA8iEBP4EAgLt88JATU1qc0KCvltcrJBSQoL+bWkRVD05mcvtnkxI4F3Wfyuh0gTGxTkQUH091ScxMQqJ1tSws9NyKy0tQnD09BDYTmAvly1TmNYLY4agGirGxrKsjE7Z2+dTKLGz0+DpAwNkXR3Hx01FvqODCxYYEKKjQzlbiw/n5VH53UhE4a7eXopyTm1gdzeZn69wIyCARjDIzEzl8IBpR/+VkqJ2DA9b2NvYTvLzSUYiHBvTc7wB6MFKStQnFtIuLtbzeKw/LC9XyDw5mSwp4SaIpDoUUs0ea2oUyqyu1nMUFhpoa61CjW1tZHW1xikri09CKQK2tirE2tISJeJuadH8rKsTW017u8KYKSk85oUxW1v1+bY2zYPWVg7B8sGxsWRMjAA1HnKqrk6hwpYWcmDAlcVkZhr5tdWHsrVVpSyNjZr3WVkaw6ws/T0lRZ+tqqIfCrvve3d7iorIlhbuhwGxsrPV9+XlHAYcldoRC5Wyu1tz2BTqOTSkMGpsrH5XVaWfjT38rbf+CGHMBx5QHP4U38EHHvizDWN+oI3d9y3mD9TwBJRXq61Vge99EDryRfs9CwoYtM30XjNiwLc5Ca9weSeBwSiiMS3N+CjX86At2qwsCh1RWkrW13OFbfoeinG/XYv5+WR9PYeHDXhSXs6CAhKYcPVHQEAbVlkZV6wggV1kQwOBA0KotbUxPl5/Z1ISuXy5DFRKiivYZXY2/X7lKJ+2Z34UhlINBgm0s9UM4QOASzuIQ/KYDEp+PisqZBC8nNkwlONrs/eKFWaYPYReejqZmsp99rlJz0ClpZFpaRyDEJ1DQJQCrK1NG19yMjdC+c4euxeHhrgFyuGtMAOwyTaYNyAkKuvrydhYIeBGR+3wsC1KhdTWRuDHBF62/txMhkICIUB5MeVgjzIc1qYJrFQxeEsLgRUOfOKldAQe2Umfj2RpqYAJ6emM2HwJmOFob6ehMWso4NMtZGsrXwPo8xlitL7egUwHIDRmN2CGbzfHILRsba1RURUVEThKNjYyJ8dQmgUFLv+WmMgoSKm+Xpt+czM3QUCT9nbKqhvwyEN4Mj9fwBS/X3Nx+XI+CR2Gli6Npnc4OancWFOTDEcgoP6pqCA7OjgwoLldWSkwyuQkhS410oYBRPPlzMhQjqu3l0xO5uSk+t/jlWVqqg4MFRVqW0eHDFUgYCjbCQ4NkcAg2dsr8oZuRjldu8lHAdcOZ8y9w0F7O4/hXbnlyUk9S3e38mutrRrLhgaXnx6wQwizszkE5e+6u6lnKCuTsRsb4xFbe+vtM9thCitpaQzu2/f+G7uHHpKxPsX3+8nX+UF7faBVD84AlFfABF6C2PV7e03BGXBqBOcA2LVmDV6Gcm9y3kMAJqMq46a/HQflVDA8jB19fQAUstoKi5h4tPDPPIOTUM5uJ8Ty/zYg1nyfDzj9dKxbZzm7V14RJRYAdHXh8KOPAjisv734IrZsAYAphfHwlvJIe/aoXqmvT+G4xx9Xnu3QIVw2/TL27NF9zt36LPZAz3wWlCP5KIDWp88CkCHxTHvuqDrzWVi82KewTkYGnnhC+cadagXetn49DOXuvrn0JD4z8wVg2zbsADC4aRMGt2zBFEQB9jKAA08+qQ6KRDATymnuAaIUYP/xHzgjMRFISMBZNiZv2hsvvohBa7f3vUMA8MwzeBnAU8+cBmzYgONHjuDCuN8AExO48UYgNfUTihM+9JBCq/AB+A3i4oDk5FS8uu0M5OXp+ZcskaJ6fv6Z2LULSIiLA/AR5RULCgCki15u1y5MTVn6dGoKwDzk5yOaQ01Ls/li1GLJydi1C/j7+Zuh/O6YZuL27ZgPabfGAcANN+CqC/ZicNAUMnAcZ8BTTz6IwwDOiTuJUAg437cXOHQIixefCSQlobJSTdm5Zg0uBPBvhW8rZ/jii0BHBzYvuQWX+Xyq4wPw7zfu1XzbsEF9uH07Xkr5OpCWhjcffxxnTLwtsTi/H29edzsus3FsbAS+fvXb+PrVbwPr1uHk/v3KU91zjz7//PMKh+/ahaQklUmmpGjOndPwXeXPL7oIyMjAR6H1eQgA5s1TzmvuXODMM3HOfcsAKN81F5rTwaDm/Bl3365wd1wcsGkTkpKAnJyP4JKjLwGYB9x6K6ahYff5gHe2b1d6F8BH4+JwzhM/h9e4aUDXmZqSioO15/DMc/TlY8cUMr33Xs3DQMDVd54G1fjBVEq+nPeO6utmzpSKRUoKsG4dDtgzJAH4coEUEqanASxY8H+NUvn/Na8/tbU9lZc75Zx9NunzCbUIOHYI5uUxCMHi2dhI5ufr/8XFOtkZhB04rtNtXR3T041xo76eLC/X6bqrK4qsy83VidfcquFh6vRZWkonjlVeLi+nt1eeTMg8sHCYZWV22m5tJevr5S1UVzMUEptEUxPJmhqFz9LTWV+viBHLysjhYU4C+n9xsfOyQiFGywNKSxVGys1V6cWQIS5Nzy9oHhRHRhzCcNI82OJiOimEsF2D5eXy4JKS5Fm1t+v32dnqw+xshavKy+n4mTIz9f2sLIWr0tN1/Ddvlnl5Cnn19CiclJ+vIqpIROw3UBj2LvO+3Yk7EtF4DA2xqEiez/i4IjN+P513mZNjY9jW5hGsqM+tDo5lZY79X5Rd2zSG7e3yotPTyYIClTN0dZGpqUxPpyPc7uqibl5ZKaj82BjZ06P5V1np2DXi4ynPIiZGDCYpKbpGd7fak5en8a+pIUtLhewsL5eHGomoJtBDf1ZUkD09rK83iq/GRrK+XvWffj/Z1iZ0aXu7+rGri6ypcYxB7O3ldphyRDjMIzCi7+JiB7xkXh6PQPWGYVsnoZCeLxwmGYloXpaXMwAwHJYHmppqlFsNDVFatcZGRSyKivRMsbEKX/r99Pu1NLxymv2Ao4kbG1P0Mmx/YyBA1tVxaMju0dOjvuvqIktLuWiRaRA2Nqpvi4vJQIAbzUNta1Mburr03BwY0LxtbPS6lJ2dQsGOjVE3NzhsczPJ5mbdb3TUqUswEpHnWFWl/rCwukdwvmwZydRUfa+ujsFHH33/PbuVK6PlEqfwDq5c+RfP7oP4OhAMAj6fAHlxccCttwo5t2kT+gC8sn8/cO+9OPz44zrBHz2KCQCbjxyR5heeBSorgW9/25OmA+66C9iwAeePv2SwvYhQVu8+pR06hLg44M1t24AHH8TU+vU4vHs30NAgr3LHDiAhAWfseVPArgcewMyZBvIaHweSkjA1FQJuvBFnPL4KF11kjkkwKBLmEyewcKExfSQlKdEO4JKFJ4GZM3Vq/8pXcMbjq3BaYqIIlp9+Gq8DmHr6aRyCDnAPPwzs3LYNmwEMAkK3HT0K4G3s2GGI0qkpeYmPP46Tzz2HXXYNPPQQ3t60Cdt27cLe8dME3pk/H3juOXkmhw6JCPmVV4T6M8/iJCBV7EOH5Ol5TDQeIfKuXcCPfiSPvKND71deAV58Ea9Cnl4czCOYO1de857TdCB94gns3w+cj51obARWrgTOfa0TJyHEZVeXQHpvLrweO3YAsyb2aky3bVP/rlkj8u0lS4TMwAQObNtmSMmDosm49FJclvIO3ky6BkhLw/i4HBrMnStP+4kngHvvxYkTh0Wp0dcn7bwvfhGPProHDz8M7N//umNX2bYNwK5dOGv8TSAjAw0NwMSTT2Jq6nVBYg8dwjPPHBZU9qab0LrmNJw7V+jDPXsApKRg5/yr8KlPWQTimWeAtDS16ehRx3SCu+7SOD34IJCermHetAnw+TANAW1OzpyFAwAuTnpHHvb4m7h4/mG88+ST2GtLaFZ6OvDZzwpJuHIlZj3XCUxMCIQxc6aiBEcPID5eU9Png8ib587FnueeA3btQk4OcHjlSrxz773Yc+SIQB47duDcic24Ai/JA3zsMZwEMDg+DnzoQ5iaUpfNSkgQGOTuu4EdO7BwIfDkk0DgE1cpKuHzAbt2YeFCc7ynpjA+Dhx/6CHgjjtwAYRJy8kBjq5ciWuuNpDW/ffLe7v3XiQlaTpfeaWiCefNPqA5OH8+cMEFetbHHtOzPfgg3j5yRNEJAOcc2hkl0/7iF4HpaSGWDx1Se848E1/I+A2wYQN+c/nf431//cWzO/XXn9ransrLnXJ++Ut2Ww6DLS0cGjLwQVsb2d8fPcV3dChOX1GhepjiYqamRouTBwaU1pg3j2Q4rFOxEbzW1xsZbXOzvhAIkB0d+kwgQPb3c5/F7FlQwE0wKZvRUS5aZNyEkC7e6tV0enns7pbnlZlJYI1O0DExBI5x2TIdMr0C8eZmWv5oQjyA9fVkYaEjC2Zr63vlcdLSGIlYvrCtTQ/Z0qJTfDjM9nbje0xMJOPi2NdnYI/+fh6B2GQ4NqZjf1sbG6F84OPWnjegvOAAQBYWcjcE1Flp+ZenYbp0cXFcBhW7N8EKiC2nw6QkeSnt7Tol19fruF1Zqefp7hbTSkqKcidDQ45AGzjOjZbX6+ujvhMXZ7ItK/Qwvb0EbiVjYhgOiwNyaEjjWFRk+nU1NQbmGJQHHRNjpMsPs9tyQExNJSsrLa/bJI9hcpLANgEYxsaYkiKCYuX+hllbS0k+maehovVbea/nRdTUENhODgwYCfJmAZuys1U7mJjIyUlN2bo6GknzI2RsLE9YvopNTfpOUZEKppuMwzU3V55eMKjIRXm5PtPaqj6vr1cNXmKivMGODrKnh/0QuKu3Vx7zaxCjS2YmHVDkIct3tQIEBllb+y6Jn+xszeeaGgJd7OnREtpi60J54iat1YYGzWPAFXED1Y6MG9jJrCyvoLyLbG7mestt9tvc0lhvIEMhxsfL+8vM1HoAAvRkgqQv2EWGQpy0vgM6rCB+N9nUJE8zK4vJySpgB9ZxfPxdICcIwAYMEJgQmCkQcOvfA4q1t5McGRH5QGIig5df/v57dmvWyCU9xXdwzZo/W8/uA23sttqGCzwioENGBisrtcA2QsjISTMuWyDAxCgEWgGGCdzraKvS040ANjaWYQiQMgYBWVhayrcg9g16xiw7m5vsuh412Wvehm+J9r4+A+xBgIZFi8ggBKpZsEB7fsTuPWeOwjvAXq3+ri6BMWJiyJIS+u07XL6c9PtluEzbqtnuPQwDyCQlsbFRBny3Pe8WgO3tQvvNmGHGLS6OrKmRMff5uN42klG7Xq9nxEtKtOmnprIbKgR/zvpnwIzgFgigw7g4huz/62Eh1qwstSstTWGruDiOQOCXfhu3x82INpuR2WiG7i7vMFNVpdCnMct7VFJemE7kynsJbOTq1Qpz1tXR8aOtXk0H6KmoIFlY6FCQbW1GJlxV5ajWODJC5uWxvNyYSJYv16Gju9so6gLaYTs6dDjIzjbx1g0EdtKrbPcopVatIllZyXnzaIazSyTdZgi88ODSpdQhIDeXnZ0WZmxsZGOjaeYVF5N5eQp7Z2SQ9fU6UJWVydgVF5NFRWLzqKoia2r4EITGZH+/ruHJFXhtT0w0VqFAVPXWq9pvbY2CkpKT6bGWeyKnbW0KPQYBHSTLy3UI8/neSywwOanf19QozpuRwVFbn6ys1HNXVkbD7XZgGR42ZGxJCePj6cBPwaCRA3jox4QEWafSUo6PW78lJtJx5CUlCUATE8NVq4xZx2jB9ts8Zk8Px8c1xMcAx87zHJSaMECtwvlGCM6sLK1R7/CZn6/PpKUx6Kmz/MXY/Y94faCNXXDlSieGyWCQlZViB/H7tWkUFJi3NjLCYFDj7fcbxVRaGllZyTlzorSOZWWGcpuc9GgeNYHb2zk8HOUCrKujY8/PzyeBvU5osqjIFtrYGFlfbyxKa7W46utd+DwvT/spsFb5qPZ2tWt0VBtCdbU2ykCAhYWM5pFiYx0FFfCUVxHA5mY9X2+v8ShmZZFjYyws1HMsXWon/5ERcmSEw8NypkIhkgkJzM7WnrRqlfIxnsp6VpaYZebN85Ccw3biPsrFi6PM+snJundPjwzqihXqJw+RDWwjw2H29VkJxtgYu7rULiOtICMR5dYMbp+SorbcBeVjZ8yICpq2t9NKNo6zqIhO3ZpZWWRJibyfwkLnQfl8GpPaWj3vKOA8ge0w5F1BATk56bwqsdYECRzTuAwPc9Uqk7Xx+1lcrO6srraIwuQk3wI4MmJzIC2NwAHlsmJiRDUF8WqyulptGRggCwqknr58uXmBA2R3tzb5tDQ2NTlmKj2X38/mZpq3UcmhIcvvFhbqmh0dpN/P7m61a/Vqm48tLSwqUp9mZ5PAt+WdDA2pL7wykdJSdnZG109VlexeZibJ/n4Cu8iODs1PG6uqKptfTU36T2urjfs02dPDUEh9snixMc5Y/isUoutA4JgrmfGqWDwJoLo6fc4jcvH4NxmJaNxHRx3glMuXK4/q95NdXbYGB42f9ihZVcXUVHX9qlV6xoICu+bQkFvgwASBDayvp2NxWbTInjM1lcPDjLLqFBWpjeXlnDNHvw+effb7b+zWro1uRKfwDq5d+xdj90F6uYE/7zwyP58FBUalFIloc/H5tLImJxXeMyny/YB2yIEBFhRoQfX1aYNOTpahCwapH6qquB+CjjM93XEmTtrp0CWtjRSaNTW6T0ODiz/l5MgAtLfLIHR2UjeLj2dKCp1cUFmZnVL7+wVuyMrS5yz0GgySDIf1t6QknegbGtjebmS0CQnyvDyNu95epqTYRuLB9gcGmJysDau8nC7JHg7bQm9rUyd4Vr+kRM9SXy9jPDqqew0PO+kfR4QbG6sNrrJShw8Pnr18ucI8VpNUXGwbnRc7jo+PhtMgeD4LCiQ9M0Z1TlUVOTIigzc2pnsHg07eyOM25sgIKyrs2crLmZWl21RVkSwtVZi4vFxeXXs72dOjsFtxMTk5qY2qpSUajuvuJquqmJ1toejly9nUpGsadSUZCjmjy+5uBoPvkq+pryfz8mTECwpUtjA5KTLpSRs3L2wbDmujzctzSvKsqIh6eZOTIkOuqZERLStzwJdwWENQVUUyPl5eqVde0N2tKERhoYcdIZuadI2CAgaDCtutXq3PmgxjNCZYVUUGAtIEhKD1zc2aiywtlVGtryfT0hgOG0l5Vpa+n5fHvr53eUKVlTo4Dg3R76cDQg0PS/PPm+teRKS9XYe2SIRaY5mZ+kxqqpNAYna2QpDNzWRpqQPAMD1d411ZSUeQ2tOjz/X0aJJ4gzA6SqalCbwSH+/0IbeYZxeJkGxtdfyxQ0PqQzY0aPKlpOh6+flqU1ISly7VnAn+8z+//8buV7/SBDzFd/BXv/qLsfsgvdzA5+QYz+TLZGurJuzYGJmcrJ9jYhTezM3VpE5N5TELnQBrlauxSV5VpX3PWzx+gMzMZG2teXcVFdrhvNBFczPDdq3HLZTpFZszM5Ps73cioZ2Q5t6cOZSxSkggAyKC3mTh0cWLaaG4aW1YY2N0ULTcXLKiggUFxgDf0iKjEhenTTMpSeKkFlpkYaGxxAdV2+bzORReMKg9rKKCalxNjQxtQ0O0v0zoMgQRN4dgodu4OFfHN2zP64VlX/PCmImJ3GLtGLLPjdjfGR/PIxYCZWwsmZCg9g0PuwNE2AtjmWDnPoAzZqg/7rIQ3NgYtXG1tamvi4vNM9hF4GcyBOGwTvElJdENrr6evb3GgRqiNrzYWHFfjo05AVtHEFxW5owtCwrUZ5WVDAPyGH2+6NwqKjKO0zuV08nOlpHPyCB7ehQi9/mYmOjV2d3jhGWBFRyx8cnJoZ4pHOayZboMGxp0IElK4n7AGZwtMFRsWRmZm+v06bxIZFsbNRc8N8mMUHe3jX16uixrSgp7bY46Dy4uztXUMT2dzMzkCUhUthMq0g+H1T37AN2svp7Mz9d9KyrIggLlblNTo95vWposSE2NDlfV1SZuO6FQYn+/1lt9PVevtrDuyIjltjdw1NZYV5cRAVRWqm/q68nKSvb0aPp4h6XubhnAfbAQv6G3IxHzviMRbrJr1tcrMlRcTLKoSN59TAy3QIoQ3nkyHNZ86ezU/ZmeTra16fddXaTfzyMAt237IxSV/8XYnfLrg23sfvYzsq1Nizcjw8KCQTI9PVp02tWlk2tDAxkfz1AoGmpjJMJVq7QIq6u1Pvv6qA0sI4MhWwDMzyfj4xkfL2M45hkVz5MbG3N5NA/XwcxMJibSeQPj47ofGxud5+gJY7a30+UAsrPNI/P56K3c0VFa0fQuMhCQIe7piXpaZhS7ukg2NjI52cJaNTWsq4uGCWXgt+ths7MJ7BWEfmhIJ/CGBsc8z6EhcnRU7R4ZEWw5aM/R1eU8HWZny5AYa8zAgOVYhod1+p+clBc0MMBVq3TZSMS8F2P86OsjWVHhwrYOQGLUIZGI/s7R0aiHZ1Dx5mbb2CYnnTSSV9IRDNoGa3UcwWB0LCIRuqJlBgL6vo1Pdzfl5bW3a+NtayM7OtjeLq/NA4A0Nmr8GhupQfQYRjzQkAeSGhrSnAgEouUHw8NqmyfDE4lo4xwa0tysqmJnp3mAXV3Oo6itpYxXQYGetb+fZWVm2DIzNV+rq92G7nkcS5daHxkhNauryeFhZmebJxoOMzHR5l5Pjzyc9nZyeNgxoRjBjDo2OVnvjAzHsGNDRNbUsKhIhnBy0g6LTU0aJ28BmgTCsmUks7JkKGpqyLY2jo8zGuJtb9cB0dPLSk9X+43AgKWlupERRodCdEX0FRXU30MhcmgoWoaQna351NQULbo3INLkJJ2aBUMhMhDQ/Ozu1vdaWzUWWVkupxcOW98mJZHNzWLcCYUY/NrX3n9j99RT6r9TfAefeuovxu6D9PIGfvv2IBMTzdsJBDT5vdNoaakmcGamNpqWFoeA9PvpkJshWK2PeS7MyNDbFlEkYiGXjg6dsktKtLgyMlzdGcfGnFF0OZ0uIdJYVuYU0let0oG6ri6aW2BZGV+0/FFKCl2ITWwqAwS2M2LfdaJa7e0E1irs0tqqna6mRptKMOgkTNjcTCfU19wcVd0eGCCrqpiTIwerslKIM2Znc/VqykPz1BbKypiS4gmHP8WhITNmttl71GRiiNnG+npJr8yYQTIcps8nj7a8XF3n5VvKy6m25+U5CjCOjpL9/S5sChwnw2Ft5MGgNkvz8ICdukdWFkMhPUMkQkNX7iQnJ3kQQmBOTtpzWx5sZIROA4/hMNnW5vJJwAZDZDYReJnl5TT2jqDQma2t6pfERDIhQZtjUhKBYS5ebKf+QIDAI6yokJewYgVNUkh0YU51wJh22N9vygvbHTuOdygYHpYixnrAKbB7Wny9vbpWdzdduC4YJNnfz1WrTG/P+rO93RTIa2r0+0CALCx09Zx1dbpvKKQ+ycmh02hkTQ1ZXMzERA1VY6MpOeTmMgSwuNjWoHlw+yGUaMQOi+Xl5HMQ+GmLeYeE1L+5fDnZ0iJgSl4eV6wQ081r9n4aAu7ExGg+r1hh6OjcXK331la1LyFBbTIpqBMWlej1niEmhk1NmudBCATVZm2JRKhJUVmpqI2FM7db1KK7W6HWgEUqOiGl9IEB2f3sbHv+sjLW1gogt2oVCTz9/hu7Z5+NstGcwjv47LN/MXYfpJc38N/8ZtChFQW1FlVUba2ntRXw9EJdgffYmOVY2tpsY9xLYC/r6rSIgWPOqfL4tYABbcSNjfp3YICjowqHpaZSF6+v10ZkXkU4rLXT3a3rxMZSO31srFZHWhq7uz3Qx3Y10udjW1u0DncVRG80bx7JkhIuWGAaXg0NjEAinRweZmWl7rVsmZ2Iw2Ftek1NXLRIoRkvh+WdstnR4aRcODBAYJpLl8oweICbefP0PU/8dQvguCG9U/jICMmqKoa9MGZjoxqTkuLAH0xKUq7TLKW3UTc2qr1ega85vBwf1+axESCDwSg6srmZrKsjsJN3AfyJhd44NCSj2dXF6mqBd5iQQOAFsrpaxgOme5iVxVWrrPA7JoZVVXrGIIT+FI3YZqEWvXdqqkHiN3LGDA2f6MF2c3xc/3/IwrVe0fEQJDC6BTBQzkqVI2RnOzHWGTPkwYZCmkMRC9N6QrGsq+OyZeQKM+4sKYnycwLOo1HK82WOjprn1d5u4dFdsnLt7c4wMhzWIaGoyIGa0tNJ1tXpQGBebMBCtcBeeqrBkxBQiElJHv5JIcS6OkOodlgecLWBOzZqcEdH7VqrCWwzDtiARSv2srZWy3hkhAbqWUegy7hcAzziGSy/X23IzuayZVG2NB0IHibQZLJMAXqoWF1rrQ6SgQCBaQK77T2gvaO4mAyFWF2tNQTsZmamU1py8yozU0AXYEI3r6vTwczAVt3dtH1omOzo4FbgL8buf9DrA11U/tOfRsS8/+KLWLvuLABTuO46oLUVmJraByCA7dvFCu+pkjzxhBUJv/IKsH49gDMB+PCtmw7jG9f9BkAIU1NjmJ4G9s48T5XL2INfbDgfqKnBS+Pn4+25l+GZZwBgDFu2RHB4+gwgIwNnnw0gLQ1nrO/Ea6+pfvMzS04Cg4Oin9qxQ9WuKSnAtm2YPx84b+Ze+HwX6G+FhViyBDhyZA8mJlRY7UtKUgHrpz+NCy4A3norBIRCOK2gAAsXApiYwOrVYoZ65RWguxvof02CRNi2DW+8Abz2Wgjr10eQlAScG/eOinYjEdG1X3CBFcy/he5u1d8CExgfB/btm8LWraIiOw6TL5o5U8W3cXFAQoL68sorMSsuDnOTksRg/zd/A+Tl4dVxCccgPl6FtykpQFoa9uwR09Xzz0twYuZM/bx79wieeELPsHGjaKhe33MW1q0D9s6+UIz4CxdixowFmAuJNP31X1ub5s4FBgexcCHgS03FofFxABM4etdduO020aEBW3F0/XpMTAD79/dh8MQJbNsGrF+/By8DwKJFSEhNBZCswueyMrwKYGrLFtPeORPz56uuOSkJmDFjPkZHVaA8G5JJOnECwMMP43wAN98MvAqgpAQAdqoPcnIwMQF87MOHMXMm8MwzKorG0aM4LSsLr0+dD9x2G1p3XwF0dGD3btFcxcQsAFJSMDoK9X1MjPr2+efVNIQwOCjOAsTF4bRtrwM4S43NyJByz/z5ODlzFi6/HMDUFK68UpfaskXz9sorIdWQBQsk14MYxMTMU0X6/PmYAvAmLgR27cKhQ5q7CQmQ5M5HPgJgAm+8AWjmHgRwQh2VlGQz6MMA5lgl+gg2X3A9gNexfDlw4sSkrpWYCODjAOYiJQWYM0ciXhdAz3UGtBYA8ROsXg1bizsAnC6ZIwSgETkGEeDNwYc/DLw+8VGoNP8EgI8B+Chw6aXA+Dhe3XYGGhp0PWASL754ApfM3aumZ2TgE1L6AjAfQIyUHm66CfffD/zwsfNw000qUv/STWchO/tiYNEiJGZl4X1/nX76H1ZQ/nvKqP1f9fpTW9tTeXmnnH37ghwYkLfT1kZX7MyeHkYgwMawnUa9sJB3Ms7K0oF9pYVLmJlJpqfzae90XlLiaLK8sgW2tHh6kvKc4uMV+kxKIhsaVPTc0yOvcHJSp76ODoFWsrIIDHPADpOsqCCHh7kPsDq8vbpHcTGLi2lJ+wCBA1xp+RJmZzM1VTkWYGNUVLK1Vaf2qiqyro6Tk1HF5RPmWUWgeiaOjal9xl7f2yvvIgjIY+vvd/VwEQvdeDnOpiaqnzxkW2UlWV8vmHVQuazeXpKhkPo5EODAgJ3YR0ZcPvM173l6e+XRjo46UmI2NMj77OhQrqS3l8Bx5VsyMxX+zcpidrbAC3eZN1RdrWdW3+yKSh4EAmRjY7Sso7GRbW0WDvRg65abAe6Vkrl5gXl5VB5zZITAcW6HwDWPQ+UFGyEQzpOAFSQHOWOGTvjz5smpCgbpxkhFzj/maxAoaTfgNEQ9jysUojyp/n6x7w9bOYwHhDFwUjhMfcYQtGEYcCU52StrU44rEtFF+/sVam9t1cMHAo5wnP39es7WVtbVKZzb2Kj5fRBwNGTBoOY1W1reI2Zq4FjS55N3Y+Ch7Tbvh4ZIlpdzn621d1NuhS08y64uMi3NoTNf9NZkYSHr6uRBVlWpKR4F3+rVjKJACwu1jiMR9V9qqjq2qoonbIwYDEoFZWjI1Rt5CFHW1Gi+hUJ6xtFR0ueTh2/0fwyFtJ7y8rhqlUV/2ts5MmJ548ZG9vRIMNnvV0E83m/PrqdHz3eK72BPz5+tZ/eBNnbBRx91i4GlpWQgoM2iqUkbdm6uFl5Lizb7xkaF3yoqojkMk0wZGDBgSV1dtGCsrY0LFtgGVF+vxd7bS/b3K85fVqYd1svzpacrfjow4DbQpiaSRUXKuVmhMhsbOTxsuYKqqmjiPjHRiT+vXk3H1sLJSVcUPjQkQzgyojbR59OmsHy5QiuGvPPykl6hNAsKyEDAgVVqa6k+6u7WxlZRoc8WFOi5ysqiEPSysug1EhPFmBEXR6eXk5XlmFGOwPJaubnaULKylEsCyJYW5UiNa5Q1NXpPTkZLFVJSnMI8Kyu53XI7VVUki4sdaNLJd3ugldhYMhLR5yYnyeXLHaqPwSBdnYbls9jdrVxgd7f6MhjUmNfURFF11dXa9EpKSL9fnw+FyOJioWdNsTscpisgz8+PFoK7/KvfL7DE8uXKU+XmqqSlo4OhkIaQzc1kb6/mRGmpM1K9vRqbcFgozuFhkgkJasvQEJmRIZCHgXVGRzWu9fXWvuZmDkC1fX6/rsFIRGPvIXFrahiG8mtBgCwtlUHyErRtbTJw5eUav4oKVz0yNKSue83Gl+Gw8lfd3WRTk0LK4XDUSoXDMmSTk26++f3WZyMjkoXyJrqHcLHSjMlJap0NDHDZMisJCYU0zgMD5OQk3wBYVWUGsKFBh5yeHl0rN5csKFAOdXKSY2NWslRRQZaUuHzrsmW2Nj2qofx8umR/fz+5fLmrqaPfrxKPsPV9KKR5VlrKwcE/AhrzL8bulF8fbGNXXa1gfyRCpqayvNxAHmbgGAhoI2tu1mZdWqoJv3w5x8b066YmGZY5c3SibWujjmmRCNnTwxkz7AT3LoQi/X4ZkkAgir/2GIO9nFx5OWtrHfcyFy82rzI3l8zKYmOj5t+KFbIHjETI0lJHYBwKUafTxETW1+u0W1hI3X90lGFIcug1QJtye3sUPFNTQw4Ps7PTTvgGzvHSQR6BBtPSyPJyhsMGmBkbc7D3yUm6AnRmZjIEJetZXKyDgyfWZ9I7Ic+rLisj09OVWykr0+aZmanvVFWR5eU6/cfFuc19eJjRTbWoKFrLGBdHpqaqL7yc3eSkwDd5eWRxsTbW2FjHtFJYaITJ3d0ySGNjLq/oabWNjpLs7dVY5+e7Q0DYPNmUFHnEW8yDY3Y2mZzMmBgDm7S2EhjUePb2Mjvb4PfDwxwfNw/Y59PAtrYaofi0+sDcbp+P5MAA29qM+KChgX5vjAMBzS+/n8Gg2gLs1Pe7u8m6Oh2QWlrImhouW2aeWGWl2lRdHUW8mle/YgV1yMjL46JFyiV2dxs7TFcXGRenfvUOiVVVbGqy/LaRMrj8eH09ly7VusnJIdnYyEnPQ6uv1/NMTupAlZvryBXi4+mAL+3tJNPTOT6uZZOYqCnwlo1jcrLWXHOzrYXMTD2jeWQeCHhy0gBWo5oS252XfdzVkOblGeI5NZVdXRryvDwLZHgRj8ZGNje/az1a7WVzs801I143EKn6ub1dVjU/n2xq0rxua3P0gsGLL37/jV1vLx2LwCm8g729fzF2H6SXN/DAowQ2sgtgaqrpXXV0UHx4Kwm8QHHyrWdXFy1p/n0C1XzcQlLz5mkNnwAsfLWNwLQLc4YhFvXERJLt7ayr00FQHHuPEGgncD+Bey15vYYxMWY0S0rI1lYtfojL0QOgMCGBbGnR39LTOWzhQj+EzOzuJtndTZ9PC39ggGRpKcvK6KiaKipoyf/19v4OgQ6BACIRoztbSZUc/FinUOMIPAEVzKek6LpiSnmBwJ0GDNhp1+xwxcQ5OQIfzJghcA6wxu63mWIaOWCIxnspJOl6AwS0W3L/Bft7h/XdBgIBh0SUHt3PmJMj8Ib4D/eSLS1W+reLHBjQqdvKHzzmFY9pZQ1Ak7Qg8/MZiZgH39Kiaxn3Zm0tDSG5kmxs5DGIC7KwkGRRkefAaaPLzNQG2NjI6mqFzf2QAG9XF8mKCvb1aeN8DeIBLS622sn+fgFCenpkmPPyCGzkJogvNT6eJiZ8rwx6Sgo7O81QFRU5/k2PCg+o1GRsbKTPp3mWn685pdKbGv19YMBVY1RVaZzz880b8vvZ2xstvfPmLTMz9c7KckjSdztYwDSDQavDKy11qgbAw2bQdwowFAoZdVqAgKGYBwbI1lYZx64uFheTwBonmce4OIWNOzrIQEB939urSEVSEru6yMfNawNW6JCVnq5xWb6cQFDjbJ50KGQIXCv3WLBA38vMpP4wPCwr6vezqMjQw4GA032bMYOOLg5YoTBvXh7Z26twZyTC8XHaWmnX3OrpEfApEGBsLLl9+x/Bs+vvV9tP8R3s7/+zNXYfaIAKkAzgWcyFCOBTUi4F/H4oifx38PkyAXwcPt8S7NgBADEAIgDScBqkfpaTA3zlKwI7TADw+T6BkpLTMXeurnkagPp6Iwu/9lr4fMJzpKQAwBIAl0LQhCFr0+s4cWJSP27aBLzyCvbt24FdAC6GpMGOHOkDiouBQAD79h3E3k2bcHFiIm69VVe6+27gM2kH8MPBz2Bq6lUsXQo89xyA++5DTY3AHL9+/jRhAsbHAXzE3ufaU00BExMQv3k6gFS9x8eBo0dxBoCZiYmYmjqIkREAM2fixhsB6bEdw803GyAClwKYjxtuCOFrX9uDZ555HUAfyE4A3QBGIIDPEICfAmjBxo0RAG8B6IAU8X4EYBNefPFRAOeJTd/1/nwAPlx1+Tt2nQwA5yImRpiGfft+CmAMaGoy0Ylngblzcdpt38J3+67B2gtux8c+Bnzn7tMwNAQshHQHT976LaC4GDsefxw/+IHwE98Z+Sekp88TmmT7dpSVAfi3fwOwALjnHvjq67FjB/Doo69i78qVWLIEeOihSRx/7FdAbS3Wr58E/vf/9ojxsQNi6d+xA8DEBDIzgU9mZWEbgKsAPPTQJsyeDdz+2Cfxuc8Bxz/9adx11w4DuszBTgDAZbjnHl0LCOGRVy4EFi9GS4uaCQAfm/Eb/OMd52FPXx/uucfG6CtfAf7qrzA19Rg2bBAw4o471C4gQw+ckIBzHvw+nnlGkoKFhRr+rVsB3HYbVq9W26++GoiNvVRjuH27FCGuvBI/+MEe3HwzcMnErzE+DtNjfB67dgEvvvgYcN99wLZtOHDkCIAI1h69BhUVC9To227DjTcCxcUfBTAgJY+lS4E770RhIXA44xrccAMATOKmm/SsOw4dwjPPAL/+8OeB225DTQ2AO+/E+MqVQHMzPve5KZwF4P/5f8YA7AEeeggHTO8OfX2orj4LtbUQeKqlBWfc813ceivUMTU1Ar8ASEsDcO+9Uoe49VbsxblYuTIE8nV1yOAgUFMj0QqfT9fHMSmaPPkkcM89+NREJwCJocyfDwBzkJw8Dzh0SP9fvRozZwJr1+L9f/1F9eDUX39qa3sqr/ecckpLlS8qLzfP5GX6/bRQRoAxMQaP7up6r/5YdbV9ZyWlWr7TOB8H2d4exU14oQ3PK/LCbt3ddLyaJSVeCcGgA6UwM9ORrgDD8kA8/L9V/IbDKvSeN48Ke3V0KP8wOcnubmNzyc4msJEsK1PocXSUrK5mI0Qm7OVdmpsZTZqPjuo+Q0MEDryH/Wlyki5MGwxSX6yoILCTeXkKocbGytuNibF8knH/MT1dOTELc1ZW2v2am12+zXVQaalOwF6I1fTIxsaMSWZ4mGVl6ucFC+RxrFhhBdteSUNFhXKXJSVkebm8kupqAjuVC0pNlbdnNXWsq2MkIg9vaEhfq6szcFFqKkdGzCvOyCDDYRdC8yjlIvBIwgf4nAeSiETIsjIXSszLU//IMzlg4x7kES+Ma17XiJfXHBoiBwbk5WVmcp951B5bf3U1XcH6Mqi0w1KE6r+iIrt3Fzk8rLloZOAcG2Nfn/oQ2EvGxak0xQqmHS9nb6/m39CQQes7yKws5uRoTni1dsPD1C+MV06RkBc4MmL5X88bCgbZ1BQFBDEUsnF5gWxuZnGx1z8r1PcdHSwp0ToA1pJFRXruujoC02RrK+vrjS2ltJTAywRuYUWFeeUGwPEAWAwEnNc2Pq62ievzYbK0lKtWyVNLTvaiETsJBKxEYZDd3SrHAfaqVjBkoJfRUU5Oqt+Hhrza0kGuWqX5qXKjaUVmKivVltFRdUR9vZ61tJTA97Um8UcoPfAQX6f4Dg4M/Nl6dh9oYwd0KKaekRENNRYWcsYMLRJPWzQ9nWQkwqVLteB8Pjpgh2e4TkCUWFqUuxy7iljp98pgZmezszPK5DVnjhaUh+4Lh+lY9dvaqLBIe7sWg1en19zMujpDSXoAgI4O/a2tjYyPJ9ClUF1xsWPwZ2Mj2d1NIOCB4BT+KSzk4sW0MM00Y2KiNpX5+UxPVzh2wQLK4I+MqNFpac6YMxRiXZ02hjlznG1hYaFtQKmp2k26utSW7m7HeJ+drWtEIrp0T482OscZ6TGC1NWxsTGa4gCmmZdnYbWGBgvRbXbsLx7HpsdCn5VFMhyO0nwlJMjADQ9r81dcmSwu5tCQDF53N8mSEl2rsZHAz/gapACQk0MGDLjR1ka+CETZUcrKyNFRof0AMiNDOaT+fvW5sWg3NlIP71GWWeOPWI4MCJA+H3Ny6KjGHBCqq8tCZLtJv98hijs76SiztsCULhITHVp1wQLqUOHzaewiEYegzMmJFlx7xDqTk+rHggIzWNXVmqRNTW4T94w2u7tlyY3ntbr6XX3uTbj2dhf+Y0YG2d6uOZKczMWLNW/i4zUvKiv1PIa9YThs452ezvh4Haaqq2WYTIdWi3V0VGH71lZ9OT1da8To25Yto0OB1tdrPIDNWqOFhVywIEqCUlFBJ5DsibZ6B6ueHuqw3NLi0vqrV2veuwOo8Z+ysJAcHtYBZHjYgT4Vlp8msN1Qu8cc886jj/4RwpiDgy5vfyrv4ODgX4zdB+nlDfz+/UGXx/H76eLtTuetrY1+vy34/n6XUHf5tP5+Z4BcJts4kTzCX46MaAMIBBSP9/DkVVX00CQ6Ae60ovS9BHY6Zg36/czMFGch29rsRHlUm2ZbG8vLhZCbnDTQSGamE9JSEe56sq4uqoxcUMDy8qgidyRCMhzmwIAWc2fnu9hE6utdX4TDdECDcJhkRQVzcsyIDA2prYGAO0lzZMQBJOT5/pge3RhwjPHxetbGRlp+Zg2BR4xtpIPABqt9vt2++wjz8hxIzxNg10Zq6FSGQo5BRLpktyp3VVjoOC2DQQFQ5MWvJUdH6fdbfiw/n9vtwNLdLYM3YwatfGEvWVWlnM3AAJmSwqVLjfoSUjnX2Gw27sp2xsbSeV/AXpWWGLXYfqjIeWSE5gXdL4MWG2tF+muNkKBdagkAgcoomXBCggxMQYF5bhPKbZnWIru7ndcEPMxOAyQtWqTnkZF6OQpOqanh2FiUOWdsTEwmhr1gc7PGqa9PyguZmVG1DOXjAnpQk/UAntKETEzUAWd0VLmrsTECHQJGmXK5z2flNLm5rKoS9J7NzWRZGWNiNKV7AUnsFBfrIJaaqvxoQQGZnc1VgMM77YYK/ImoZiEwzCPwCt1fZgQq4ufAgDzq1FQ3h72DK9PSuN3z0IeHNberqlQKFBtLvwGQYmMNnRwTQz+M37anRw/V1qZ1HxensgkPPGVw5/FxM7ie/s/YGJmfz85O8tpr/wjGbuvWaNnHKbyDW7f+xdh9kF7ewJ9/ftDJ1nhCrCwpcdy/PT3aUMfHo2hmRxJraEunPZKVRRYVRfXOgkEZrOXLndzNQUuQe6dED1nOmhoZ2tJSsrGREYjZw++n5E08NJxXktDQ4Nyhg7bIPRj68LBsTVsb5alUV7OzU5vUqlUWku3v1+ZSVsZwWKfUzs4owt6rQ+LAAEdG9HcPZs/ubrKhQR5Eezs5MOAYS7q7tfF59Fx9fRYR9RZ5c7PQemVlCmsWFqove3u1o3nWq6WF9PsZiZgHm5+v73sdZn3rRVvZ1cXRUXmRnZ36WFcXtakMDxPYrvBpSQmbm6MeyhHP+NTXk2NjjES0adXV6bMzZtCoxQ6QsbEyBMnJFvJ6mUELdwLV2jBN2cHj01y2TMwrzM4mly9ndrbmUihk3vbQEGtr7TCVlUWWlmpDLS01Srd1bAcoIM5GHjGwEwMBB1N3QJa0NNbVWRUJ4IxzQQHJ+Pio5zUwoIOBBz9MTib7+9nZaaTRVlPqhYI91L/bjG3M2dEhz8zzVkzdYmSEjppuYIDvKRk4AdUFhsw7Znd3FC3Z2srGRo1NbGw0wuchQ9PTDfATiZB+vxMvEEBmu6Ithpjt7XUlrm5tOA/SxGpXr9b0KC+nA5MZB7MDvXjSUx4oh4EAJycVvTBdYq3f9HQLUQYo8dbjUXLp/n6yp4eTk+rf4WGPaWkbq6s1djokDVjkZZ07NOfk/MXY/U96faCN3UGA9Pm0mWVkkNnZLiTJ+Hi9ExKignXp6TqtxcXZBD2mxZOby6Ii85Y8iZLMTDItTWGjykqjTzqmlRwbq1OkCVQyI0OrraCATElhYaFtMMGgDGd3N/PzDfGVm+sIk+vrSfb3s7lZoRCmpzs5GYdca21VGMsrgB0YiOZJLH8S9E62eXl6HkMpVlaqL7yTrhf+9KiTvILp4mKF644ALsTJtDQyLo5hwJFZu0Jyr0auokL9m5ERjRl5cke5uQZnDZOTk+qPykptHnl5ZHV19JRcVKT6Le9EXllJ5ufLaJunxNJS7Uz19a70qqyM2nmCQY6MaHirq2UwvTAocMAM3nGyqSkqO1NcLC+vtdUJg/b1UR3U3y9j29JC4Djj4+nyhd5u19Vlfbh8uSsVAY4ZEHTQkSUDx6VinpcXzR8WF8sge7JKFgMeGaGVNRzjMkAG1e9nZ6fNp5QUPW9TE9na6g50oRBNCTjikIaxsZorPT0kk5IclRWzs99zkPH7KSOTlCSv0QxCby8dmbVn7Dk0RMbEROdoIKB7xser32Jj1RijdWNKitMIZEuLnre7O6runZAgLy41lRwdVRvb26Nzqb8/Kr80NOSiIW6g29u1Br0614oKupqi5cv1GSMMZ1VV9KDmyU552pFeEbpXuV5TQ6ana6yMCs0hNfv7yZoarbmaGp6wdbPPDk6jgL5XVcXgL3/5/hu7bds0aKf4Dm7b9hdj90F6eQN/9dVBLf7SUvb2RveNigqtz5QUeTVz5kTBG6OjVhsUCDjZnORk84aCQZaX67Tm1Iwtid7bS7KoyCkbNDfr+kVFdIz7IyOMamd1d8t49veTra1Rkcru7ijhrFXl1tXRScIYcYNg3+ZNeQoA+fmWeysoIJuaXHgpL0/P2dgYPd0ODJBsaWFBgbzSpUsZ3ehrasj+flecHYnItpeU6DPz5jlBbC5dqjDfG4Du29BAx0jc06N+mZxUZxQWapdsaXFG6RhUZ3cEkmXxQs6rVtEBJBYt0ph56u2dnQb6sTyaz0enR8ehIf0DKaEPDFDtqaoiW1rkAaamWo5ur0Hjj/MuGPFwW5uFRHfxCMC6Os2PtzzPNT2dwHEndfQarMA9N5fATi5bpo8NDMgAehKCk5CETGcnHSlxba3kcAT0uFfcou3tnpgAly5Vt3V1Uf2WmqpnycjgggWay83N2kDT0+mAQSMjGlsmJEgmKWQHqVCIbW32dxM6ZXa2jLi57F1dVl6RmEgWFXFszNbD5CSHhjQ9/X6FQCsq9IyeF8u8PC5dqhILExZgVZUZ2+ZmemAW4JiFtoPkwADDYa2pmBjLM3d0yLCGwwRe9uQRtSZaWpierjFZulTfOwJTGfHyhF1dDhxWXe0JDO8WWbTVPSqHfZyxsa4Sg11dWieLF+u5CgqotWo6esuWebSj02qfMSZ5ArLZ2ZqfsbGW4jCl98ZGtSEcVnuqq9VnwcrK99/Y7dihvesU38EdO/5i7D5IL2/gVwGGftpGxsfzLai+ydNPGzPPwWm0JSZyE8SELu2zza5gWOGLAzxmf/cEIYEJfT8hQYamqkozv6mJvRAlmTtZlpVpQ/aYVQz44QEUy8tt066uJjAoD83vp99viz0SUX0OQDY0KFdg3gwDAfb2alP1+6kdJi+Pvb0qLN8OFUFvBOR1DgwQOMaQ/f4tqI5P+Y+jepa6OrKpSQYjPZ0H7TqTEAH1PvvZxL91X0+doLGRLCiQMcvLU6ipo0P9XFREQ5zIuDY2KqRVWKgLxcZy2PPM4+OdrtwaQAwfZWVkQoLCcaYq4enRBYO0cNEBAi/Qxd76++kRWGvD/RlZVaXQZVMTi4q8kOYjHqyOwAsycuXlBB7WwaS5me3tFgpdvjyaS7MCaE++obDQFDNCITY3e4jIl009/WUdXAB57MnJZGWlU1Cgz8f0dBnziBcSTEx06MqocsIasr7ei+ZqzE3xHHghWig/MqK25OeTPp/zhFhTo8OJeVUjI9Szh8NR3af+fs230lKuXq2uN6Cn2tTc7EApbW1U55pujykSkXl5bGoy9HB+PiMwZGpMjMbP85ZaW8m0NLa1aY4fsfcJQO3x0Lft7fLkTd7Jk8pavNju58lBTU6ShYUcGpJSwjHvQJWcrHmWmBjV7MvIUFF+WprmZnW1KP6GqHtnZGje9vaSJSUc9g4YdXVkVlbUM25q0rMEAhoPIw/fbuvrCIwOrbqawbfe+oux+x/0+kAbO0C5CubmRlGXeXmMjaUDHxgTEPv69HNqqp1kMzLI4mJPxEALw0I0wDBXrbKi1LIyAoNCjAEOeJedrft57O8DA6TjPQoGHUKRDQ1kXR3Hx+2E3NamNqekaOPp6tKi9SqAfT4Ce3Uaz8uLgm3MWwSmPTS7kuqFhczM1PouKIgqJrS3k6yoYGWl1nBZGbWB1NVpsbe0yDiFQo5NqaBA7+Ji9VVZmZVdpKYqLFlXF0U/Wmhy6VK+ZxOtqtJH/H4rPq6rk4EyYU3vPFBYqHsVFpIcGTEjcZT5+dpThoYoEV2/nrOiIkre3tNDMitLYdfGRseMwspKp7v3mo0Vk5PVl21tBB4RtVggIE/IaLVKSnSIMJF31zerVwvMwaws5Yu8gl7TdunuZhS7X1Cgjp6cJHNz7VAxQcbGRgFFpaWOTZ/d3SYDs5tjY/J0nbZhdTX9fvI/IXkbT4fRGe+yMjI5WW3t7nYSRsXFFm5tbCRDoSjisKeHK1bYODU2Oomj8XHNXY9pxhVOj40xHJbt9GhQu7upAW1sZDhMR0c2NGTeWnIyy8q8fNYu5uXpe5Y6Zl2drlFURPOedzI/36v/38vmZjvwZWQwErE+8ggEPF6yoSHHRdndrW7Iz6d56jt1bZN4suAH583T1Fi92pREVsnrs8ojekSi5eX6bF1dNDvB3FwyEnG0c319ijqMj9OlKrKzPfKDgJX6BMimJtbVkQ0Nf4Sc3VtvRfeLU3i/nwb4g/aaQZJ//Gq+9/d1+PBhnH322Qg+9RTWHcvF9W8sAy66CD8dvx59fcDDDwPr1gETE6oTTUgAvrHkTbyJC3FhwmH84omz8NXpnwMXXIBvPXEVxseBjAwVim/dCnzr2jdx1U0X4oYbVIR6xZ5f4oWEL2HhQqChQdf+m78BCgqA/fuBpiax73d3i+n+lhsPA3fcgc1Lf4pLtv0SM76cDra8BMTG4vqHv4DaWtW0fh+3Y8YPysGRI8DWrSh97nrcl/+spBnuuQev7zoDgO6XlgZclfIb4IYbgJoaoLYWV0z8Ci+tfhtvTp2H6WngyBEgGASuSXkb/fvOw6eSD+Cnq89BRob6YuZM4DPTz2JzwjW4ZP4BPNV3Dv4+4wD2Tp1jagciuJ87F+7/s2erLnfhQuAHPwBKS4FPfQoIh1XMfOaZIpofHFQba2uBf/kXIBQSg/zCherXxx7T5x9+GPjiF4E779Q9Dh3S3268UY+2axdw4eAvgSVL8NXbPoqEBOD7K+cBjY2Y8Q+fxfj4mQgGpfAwMaGi3qkpjd/5r/xShdEdHbh+3kasvfNVXHPHZXjsMY3rFQk7gdmzcffHPoa7Gxtx1m3fwOEHfwnccw+u8r2MF+55GZiexjtpV+CMqQPArl346o8uww03AH+f8KokAh57DN+duh3fuWkvXj90Li5OOIDba8/BlVcCX0h4Gfjc54ChIU26W29F7ls/xdNVLwHr1+PfQ/+B7920E5dcdz42L7kFry/9MWbOBC588HY8e/X3cU3DF4C0NHxp23fx8MPAGTs2o/bSS3HeKiIpSX0zPQ189cqd+NId5+Puu9XvcXEa26s+NwPfrya+c+WvgY4ObL7xh7hk/FnsvOAaHD2qovIdO3SNpUs1Fikp+v6DDwI/3vH3Gohdu3B46e3YuhVWaC+RDJ8P+NVjx/GPN85CbS1w000aw8cf13inpABXHH0W2LYN+OIX8dMnzkVfH/CL2zZrIs2fj9vvnIU77gDOmX0c70zPwuAgcMVbq4DJSXxh3S247Ta15+mngX8r12d+8hNgzhzgG0d/iC88/y1cfbWe5XuXr8WbC6/Htm3q+0d2fBL/mPBrYNcu7FzydZw/821gyxYcWPx51NRofm7bBnxv7g+x87pvYWpKhfjz52uOf2vuL/SQZ54JXHQRbr//fIyPi+AgJwe4Iu51vI6LccEFwKzpd4Bdu3Ag4WL4fMAZfb/G2xd8Budtexbf2XANfvADIHDLv+Hs738fwWAQZ5111vuz5+3e/Qdd6/Dhwzg7MfF9adMH7vWntran8vJOOYOWA1m6lHKzSkt1OkxIiHL8tbYqVFZZKfcgOZlMSHA5I/b0kC0tjI+3YufmZh3tzH3y+QzwUlCgOj4rIGVFRRT4Eg47Vn+n+m2J77o6nQK9ejFPyRrYzpER87hCIZ3Yu7q4YoXdr6xM7QkGdXRtbycDAY5ZuISNjezstBNwTIyjtXKwN69fSkvVF5mZ8j4nJz1RZh31PZG7qio1NC9P/dbQoGNzaSmB3UxOjtbR2eM6pne2tQnBFwjowh7xbFkZy8vV9Lw8PR9ravTF2Fg6lVn77D5YIXZ6Ohkbq/EpLFSouKeHoZB5yx0dVvqwUbD77m6yt5e1te8VH2VKikKKxcUEdpGwUoTGRgtpriYTE/mW97NH/Dwyov6pqKBIB47q921t7t+qKjqwRVcXrWZumhwY4IwZ6p9Ndt3dFrLNzqZTJq+qovclRz/lERfMmKH5s2iR2pCSYvPgXYS+hYWeqOy0PI+kJI2hqXvX1VF9a4kkv59yWzo6yHCY7e1Wlzo2JrCFx39p3/fyft7887wYVlUpgtLQ4BTb2dqqz8fHaw7GxUnotrRU41Faqrll9ZBjYzbHrbxgt81343JWH3nJ59FRLl0arQddseJdfVFQoKjD8uXKKRcV0amYj46qT9LTNeciEc1nY4wIhWyNWhiazc0CR+XlkdnZnLTxGhhgND/e0iJP24uQNDfrGva8lZV0NZbs6GDwBz94/z273bujsiun8A7u3v1n69l9oI0dcI9CFzExBAZVn5SYSEG9BwkEuHgxbWOctqT5AIHdZGoqx2yClpUpjBUCrEh0I8fHtVdItXqzDE9MDGtrFW5SDfMAgQMu5NferrBeTw8dqMQh0ywXQL+fVVW6biRCB9NnZqZDCQLruGKFQmh9fQpN1dfTwphPuSJZr1RBApW7KEHKvVy0yIxCVpYl6jcS2CnDNDIiFKSpqnd28l31f0GqTnCXcf4dJzCtvFxWlgtJeeEgD/6dlRU1hF6tVH29hcd6ehyD/IoV6gal83bSQzoyGDSx3ZUEnqL4STeQNTVMSYmWHnJykgwEdGiIiXGSLm1thr60gujxcRWML10qFv/MTFqN1gtkWpox5aw2g9fOGTPIeoj1v6nJDGZdHcvKpLDNuDiuXq2+Kiw01pP8fBYWGoOI5YBGDUQxYuFHYI3lh1/WcxYUkF1dOoQY+QFwnGxoYFmZHYYmJ8m8PN2joED56ORkcniYjY2yj6GQ0LOO5Lyri+np6m8r0ST9fi5dKpuRmUkHvVy2jI69x1OCAI4rpDc6ylWrLDw+Osr8fM11J49UXy8jXVGhe5iSRm0trf5uN1NTZV+A3VywQNfy9FHr6jRvNGeP2lybIGDqICMjrvSlrk7/jo9TByAvd9jbq1Dv0BBXrdIzi6VoJXNy9LHiYj33jBlqYm2t5mNKitZnU5Pmq5s3zc2OyccL4QO7yKwsDgzoO+GwxsfTCe7rU19rDIcJeH25wRnHP0oYc9++KBL7FN7BfftOqU0rVqxgUlISP/ShD/Gyyy7jCy+88N9+/vnnn+dll13GD33oQ1ywYAHvu+++//KZxx57jBdddBFnzZrFiy66iGvXrv292vT7vj7Qxu4pS3ADGxmxn4uKlPzeZCfG/R4QoqCAByFdqxfhFSWv1MrMzKSnXhwy0ABLS02delgrprRUm4t5fJGITu7b7T1sm+KYgTpYWMjiYssLVFcbEfJRrczERAJ7tfHU1xtryzFyYEBGNSODbGmR1+JBwJqatOFnZGiletLIwSAHIF21dgOjHAFs89nAI/Y7TzGbkQgF7jimTTQ7WxtNQwMnrX8YG8v9BlB5C9Dmb7LUnqI3fT7uhwA6HhCI8fFkVxfHvDYY87/rz9RUsrmZByES7v12wGAgwIMAO+33TElRH5aXa+z8fgeD6+6myw0WFNApOjA/34zlBsei79X9ezptb5lB88o5gHbl8EZGCGx26hWeQ8O0NC5aZF5pfLwOBklJZFwcgRcE7MjPlxfl9xPYZpvfUwLTAI5w2qu5TE/3iuKf4uOA5RLXqkC6u1tzZGiIoZDJGmVksLvb8tGFhRyDSkFmzGC0zrC3V9GMzEzuhxCsTgupoCDKQNLRQZaXqw887rjubo7ZGDY1aRMfG6Ob//T7Jc0UYpSmrKyMFRVRvNEJL7cYEyPAz9CQU6jfb+PsaRmyokKWIzNTHp1pQWZn09HoeUQDXv1nSgoNuTnggE9eqpSlpczOtkL0vDx9NxjUuCcnk2Njep7MTKGb8/NddcPkJKPlIxCYystz7oax1yxfzn02jiUldjhsaHCMQczK4ihEIt/dTTIlxamkBJ966v03dvv3u7rHU3kH9+//vdu0evVqxsTE8IEHHuDrr7/Of/3Xf+WZZ57JsbGx3/r5nTt38owzzuC//uu/8vXXX+cDDzzAmJgYPvbYY+4zL730Ek8//XR+73vf4xtvvMHvfe97nDlzJvv6+v7gvvp/e32gjV2wulohCCu29WqSnI7N0JAmveG1PXUMTwbFmwDDwzpxjoxQvzPNs2XL3qUJFwy6UqaBATp009iY9pLsbHlzBQVGNVRa6qRNgL1kZibDYR1Ok5N1ApXA42apHgwbOCIrS6utvZ1AUKEmK6plaipZVSVvtqpKRbqGNTeAXFQ0tr3d0Zo5BJ2JmXq/6+mJ6n6xt5ejo7aYh4fZ06OvSES2icAG1tfL+1uwQHZt0aKoNwscd8YlK0vdKwDGoBmAjWxu1qM1NUVr+j1otyeO6zrJZHQ85B4nJ7XhBwJkW5uDmzMU0riZSCuTk8mGBnULQKCaLCnRIaK8XMX46el8ywtpjoyYh3eMTU1WCJ2Xp3B4VxeB3c5z9/hLHe2a36+Hra/njBl65iO26XkkBMDPHCIY2Og2cfb2yqIGAi5UzJYWsqqKwI8da4xUEg6QjY1csSJam1lVJYO3aJHNx/p6MitLhs6LNQeDUr8Yi8pJeeUp3d2aTn4/o2UyJSWamFVVLnQaiUS/A2yz0O42MjvboXM96T5X8R8f7xCLhYVmVFJSonJNgQBZUqIDRX4+mZ7OExAq1StEZzAoY5ufz9pa807z8pxMEJubHbMRy8ujvHUdHfp5aEgHpKQk15edndTEi4mJhqXb5dl3djKKOktLI+vr2damfqus1HpyOkRlZVGZiZERjVtqqtOI9AzmHyWM+Scwdp/85Ce5dOnS9/wuJSWFd9xxx2/9/O23386UlJT3/O5//+//zYyMDPf/L33pS8zJyXnPZz73uc/xhhtu+J3b9fu+PtDGDqiR5xQT44iL5aVttlBY0Ihg97KkxAuvvExgkExJ4UGAy5Zps540D1Cf2cixMS1yv4Wh5s3TCbaujg6VpTDmUa5YofXpbSgeUnJ0lFopVVV0BU5DQ2JzAfRBL6aSnk4PAges5urVCsF5XH59fSSDQQLryJ4erl5tJ/DhYSpke5SiUppgcrKFxBISLHS7WWHM/n5ybExeU1oaV682JN3kJBcv9kIyEwSOMzVV/ZmYqJAgfb4oq4yRSK9aJdtSUUEyIKJd2yudJBAbG7UplpSwqEjtUqpqmMA0Fy/W/iPi7hUu5AccIMvKWFSkfbKujnrgyUkBXj0vMBBQLiJoNX319U4gNCdH4xcfT8vLPcxJC2sCq1lvIWrgGO8yz8bzHFlZyWXLBGn329/a2jRX2tpIlpc7pRiWlZG5uQqrhkLsgULUwGpjUHmKwIQexLxSVlfbMw+S/f0eHac8pPR0oVR9PgLH5f2OjjIcNrowb6P3+8nKSqukOM6iIvt7dzc5PKzIwdiYiwD6/Tq8OJRwe7vJK21WnsnyyR5BeFmZ63Jt6HV1jr5tZIRO2b6sjGRNDYGNzMvz0IkTjI3V/Kqr0/rwaMs8VLEYS7YTOKA+NVRtX58+74kaBwDHi8mKCkU8jLOyoID2DE3OQOfk6PvJyWriqlUaM4+1xcsqtLXRsRPU1dHlsqUoH2DEvL3ycrqDc1+f1rZHWq5n3UigyUgIupy23R8ljHnwoAbwFN/BgwcJgLt372YwGHTvqamp33rfcDjM008//b+EGG+55RZeddVVv/U7mZmZvOWWW97zu7Vr13LmzJk8fvw4STIxMZE//OEP3/OZH/7whzzvvPNOsYf+v18faGMX/Kd/EqXWyAiZnW2GahvZ3s6hITpNLjY2Rpk9YmPJ+noXxgZ2GbflZgIDyq20tGghtLcrlBEKkSUlMjimlzU6+i6ouJ3OKyoYZVMZGnKQZzHAW5isupoHAc6Zo2Zr4+/S6qyo0KaYnU2Gw/RbaBIYsBP/Uceq/4bnmfj9CsuNjekZ29rUhuZmR8c1Ph4lZ5+clN1NT2dU0b2jg4sX2yk/O5srVkRTJE1NFGAlLk597bFb2ObH3l5dIylJIceMDDpSyZIShqH6J2e1rDD5hIXwXOmHV/Xb0KDGVVXJ2nrxypYWegiVxYvpitiBe8meHoYBB/GPWChv0SKSo6Mat+Zmsr8/uqlWV7twnpVN8i4LuQGPcNjCuJ4Ar3K3KwgEOG+eDPmCBbT837flfRqrSHW1HWaKihwjS2qq8aNCeeJVq6yso6pK3lhSEk94YU+rtyspIdnVxUlvDjQ2OtXynh6S1dWsrX0XAMgLNxolmwPvGJ0a09IcYw5bWhQ1iEQ0fwxM5CrFk5PNe54gJyddGz0+tcWLPaqvYxqvtjYZ15ISjc/IiHhXTZlEhn01gQDZ0cFlyzQHSko09vHx1h8tLVQOert9Z8JbqDKUdXVkXBwLC83LHRhge7umPRAge3psve1iZ6eHgVH+nklJBI7ZPrFdz++xokQinJykM6A6RO7W4TIzk9UKEBDY4PKbknYPOitZVkanvsKSEpsz76+xO3gw+IfYOh486DkK733fddddv/W+fr+fANjb2/ue3y9btowXXnjhb/1OcnIyly1b9p7f9Zpo7N69e0mSMTExXLVq1Xs+s2rVKs6aNesUe+j/+/XBNnazZ/NxqD7qhOVjgM1a+d4mFwhotyovJzMzlVMw5pSSEp38tKi/Q+DHCmdYuI81NYyJMRBCXp5O3W1tUUaUYFCLPz+ffqjY21Fupad7e7sR7W7XSTU5mWMAe3vfHep7RC5CTAyBaXJ0VE2AiqwLCmjIwoBOosuX8zkITMPR0ai8Q26uDKV5YQ6oYuEaL02Tk2MbS16eY3YvKiLZ388AxH84Pk59eXTU5SJfNI+QMTHa+DIzyYICDkPF7A9BudHtZqSZns5+iLB3v/W7h8Q4BjgW/aVLqU2srExtKigga2pUIJ+dTUdMmJtrzCgbhNz0yIRrahgArLB7gC8C1q+b5YG0t2tDbm5WaLC3lxwdlSE3XsTubrGG3GWhzzaAdYCj8uo3I+iFwoF2oRFbWwlMcD1U87dsmYaiEcp3eiKjwHYxqFjeCzhAhsOOOIWZmXwU4PAwXR1cRQXJpiYT4b1VB4jiYnJ4WPPPxq6720AzHrn56Kht1jv13ImJijLYd4H7yeRkF6ZjVxdDgAzm8DDZ1MQR5wFvk0EQqkSHjthYV9c5Z44pw+fmyohmZDA1lY6Vh7Gx9vzHCKxRiL+yUrJBXp6ruZnALhnk7GyKSHzAQEtdZGsr15th9PLIixebIodxmPb2GouM9RtwlMuWeeC0Lq1hgGVlNKHnYzJKxcVqaGIiQyENV2EhjTlpl9ZeYiJjYjxWls06ABcXayyLi3WIiY939HzA/WR9Pdf8EYzd/v3BPySKaeT5v7tn5xm7l1566T2/r6mp4Sc+8Ynf+p3k5GR+73vfe8/vNmzYQADct28fSRm7Rx555D2faWlp4Yc+9KFT7aL/z9cH2tj90z8FCWxgJGJx9ZIShgB5W11dOlm3tGhBhUJmDPfqRGin8CMQIONFGHOKVy3a36/Ts2XC6+vpoNFjY4xK85jsy5w5JJua7NQYFJODp5UzMsI3IICIwqqDdNauo4OrLJzqqSN4no4AF9/nQTPo+82gqvB9raNX8uptPWIIp/7s8Qt6xruxUSEqk6hWrn+aq1aZlM3wsDajzEytenPvhJp7mcALLCqKPtbixfqIwp+DBJrs+TYS2GjGZ609xzTT080DCYcZE2ObutVfeKUZnZ22ARvbf3s7nXbe0qX6jIeQBY4xCIEjUlIoIm/PCyor44DnDfT3EziueeF5PyMjngwbPSE/qadXm8H7NoGfufIO4Nush7GUZGbKWBcWko2NXG+GsKDA+raxkUCRo6wbGKApKTRJKshzH9rbNddKSijk61Nkb6825oEBgR9GxZbygHmrqam6h5ydaZc3ZlGRU4liuwyx3zzFnh4dbubNI9nWxmHAcXP29Og7mZnUBt7aan3/Ahkby0025wTimTBmF+NjNX0+YMJpBublkU7CPSaGBQWapkMA7zPP1kPfALvIzEwJCEAglr4+sskOT/2Q8ry8trVkfr55ey+/R6aKBQVkRYXC85YuCEKAsX0wpqWsLPW9tWE/BNqyoI3WS1eXI9f2+8k3IKBVVpbWZcDatcXGoqvLPaY81IoKFhaS3YB5lz/7H2vsftc2/SWM+Sd+vTt+vR/QTtjURGAb4+NdVJPAMWZm2gbg4fQrKgTQCAQsZPICvRIC5RGO6mTeSHJykp2dZsgGFEaKROi07jzPzUu4l5QwimKzXIbHyQnsdQSzYVuU3d2K/wMP6wSenMz8fLW3qUneQb9t7CpJCMqbqK62DXbaEeh2djpeaAdDDIW0N1dUOHIRB0Hu7aVuYiEoYLvzJIAgU1NlzPLytBE9bQvdownzqKgiEZLp6fR7fy8tJePjddrv6OBG2yQmve8uXy4DY8oL1dXaY3t66Fjz2dUllgzAgW/Y3a0HaGkh0MSVkGQMcIDs6uIJ27jS061cYHSUQDtZX8+uLkY3+I4OcnJShyNjd8nPJ1lZyWGAbWbo7oK4N736xdcAAnc6bUCFxwJWgvIyG6HcXiikufIT81wPQnkfYAVbATIhweFAUlI0/p2dJGtqJIHj95O9vRwbM+86HGaTeZuORmZkRD/n5ZHBoM2v3VECa6sDATZqnJqb1a7cXKNSe4HMz2djow5uXV0ky8qUS7SazhE7NACPOKHb/RDKV5qLKleYMYP0LBqwwTzd9dY/T7k6FJUD/QuBdWRVlYiqMzIIHLDDxHZFYnJzqShLNRVGXENmZ7PNvF7a4dQrSRkf99bQbgIryI4OW8frqbzwGgLfUT6/sZHKEe6lcvqPqB8rKpynr1DlUcdjDewmm5QPlJfYQaBLHm51tdZTRUVUWLe1lcDPyNZWPvZH8Oz27Qv+IZUH3Lfv988jfvKTn2Rpael7fnfRRRf9twCViy666D2/W7p06X8BqOTm5r7nMzk5OX8BqPyfL2/gJyGQQl8fSZ/PBDO36cRtxMyhELWpL18u4lvAKSVXVmq/kDdSSeBenf7HxhwHY0yMbUZFRdp0jbZrcpJyOYJBsqaGYRgvX2ysi416YVKBWSa0WHU0dfyLOgGu17V8PuWZxsbU7thYvgWThYmP18nUMNxrAEd8y6IiOn2YjAxtCG1tjhibzc3RPGQ4zLw8A5UoTkV2dysENTrKgxAYo6eH+nIgoOvHxHCTZ8w89YiSErKykvvNoK2BQov7ABmqjAwGYKUfhorzuC73mzHk2Jja0tER1RRMTSWLigRMyMvThllV5YoZgZfV7rIyHTaqq7nFnaYnnBBrbKzRZ7W06IGXL496TRUVyrGkpZFdXVy2TCGyOghBuR4KaXo0cEJTvuylwwiskddYU8MZM+QFeCoDBQUCtvSY0WVMDOfNE6iGpaVGKzXh1BoyM0lWVXENwNHRaJvLyki2tlpo7Dtqa3Gxo/NiQYGr/Vq9mu6Q5aGRgd2u8DoUovo+ECBwP5mdzcJCA8RYLruykk4C6ghgtZcv65AYiWhcysvJoiJmZkYj5mEofF1bSzI9XWUEk5Mam9RUR2wNvKCceFmZyMrtIMDqasbEWMQkN9cOoJtdvo0jIxyx6AcTElzBd20tXXH7+LiRpDc1sapKB5H6em+5DXDZMuVyi4vpQGvAZi1QT6VjcjIqOlxXR2BQue3UVCYnayoCA1qjWVmOB/Y124sKCmie7vfJsrI/ilL57t3BP6SmnLt3//7Gzis9aGpq4uuvv85bb72VZ555Jnft2kWSvOOOO1hUVOQ+75UelJeX8/XXX2dTU9N/KT3o7e3l6aefztraWr7xxhusra39S+nBb3tF0ZhPy8BkZUVDCcnJBA5wwYIoB+y8efJSFi/WxuJIkFNTHRSeKSlkUhJXr9aibG/X9STt00HgON8AXOGuJ9mzaJEO4yMjdDyTHBpymAB2dWmTGhoS+GJ4mKOj4m5kIEAWF8twegJ41dUE1jgmlZERGUsvFAusJIeHZYC7u+2kHuCCBdHShxUr6Kjas7OjZQIODme5r3CYTjgsNVXYl7w8PZchwllYKNZ9AlFodyjkShkKCgxh19pKTk6++0/ypAoKnCyLx74/OekhY6eZlaXvazPcSQ9AkJhIMjXVADxBx97h9xs6DkYa3dDgdOhcXjUSYRhCYQ5B8j6vWbgtAhjabiWfcxv6bq6BgUMiEfVtXh4HBgRaeQMqffCQq55ahFNcMJLGEBQ29QN2wt9mG95GGQ2fz0nrcGzMeCEl9zQ6aqjHUIghSEGdaWnKy8bGcmAgSngzPExN5IYGB4IpKND4O9BUVZVCnqGQPGlT125utvHq6pLhHR7mokU2f2tqHKKYlZVu6FzdnkkTOWCJqXS0t9M8qgOmGnCUQFAAFdPXS0nRuHnwf+Aos7O9EPhuGZimJuchrVihdVZfT9UQFhc7pp9QiK6gPCvLK71b54mJc948L9R/nMABlpXJqHvixqmpOsw5hpSaGqeusXgxLVcY0DoZGXHF5zk5WocLFuiePT3qfm/uKkIScGtkzZr3H435pzB2pIrKP/7xj3PWrFm87LLL2NPT4/72ta99jZ/+9Kff8/nnn3+eixYt4qxZs5iUlPRbi8rXrFnDT3ziE4yJiWFKSgrb2tpOqW9+19fM95V77P/Pr7i4KzB/vn5etw647TYADz6IwvvnYP588QV6744OYMMG0U4eOgTgQx8CFi7Enj3A0aMA8vOBPXsQCAAFBZlISxPX30cvbUBOx+dRVASk7KjGYzeJPs/73sKF4ho8eBAInH0GpqaAzbgEt9x4GJt3nYXzDh0CVq0C+vqA4WEgORnzl1yM0wCRHT74IM7Z8aYuMj0NHDqEefO+iD17gJkZGRgf172+8co38HrCzxAT8xWg7+e4+isXA3uScP5fz0B2NvHXfw1MTgJ/+7fiDVz7ynm4fscOzJ4NfPvbwMgIgJtuwtt7TsN5990H7N+P8XFgYuI0xC38Au64Q3yTUBdicFAcmKEQcH5ioog309JEJNjXB8yciWenrsLVV4vzEs8fBXw+nOE7iWeeOQ1XX63+w7FLcWDJ9Tjn/vvR2gosqj0Hzzxmf8Ppjq/w6quBlSsXID8fuP9+4PnnAfRdi5wlwL33zsKSJQC++BWc27cWN954PbAuFRdv2QJkZwO1tbhw1y5gagqzXnkJWL0aszIycHMucMmGbMQPxgD7gezsj+C06SzccAOwcmU+ro6Lw/z5wNVXz8cVPwAuzAWwYwfmz78QOHQIlyXsxRkAVgO4e2ICR4+eg5e2iWsUSUnY+gRw2Q05epg77sAZAL665G28AwAnTqC4+BPIeQgAPgbgTKCgAIsWaTwxNYVDh4A5cy7DZQuP49nnZ+Gavu8CaWk4o7wcSa8ASMtEzlwAEwkAgAuPvoo7f3QZfnntL0RgmpuLt2++GR0Zv8Arr2jMvvxl4OniXwLXXouHrwNw3XX4TkcHlt97MVJ3iVfz+PzzcehDn0NcWhp+lvZT+HxaI6iowGWrf4HLllwOvPY3uPsrwMVzf4PDvo8Czw8C116LjARgZkEBbr4ZwBRw/tTruPuxi/GFLXcC2IjpaWDx4jOxceNh7NsHICEBO9YBbwyfxNonTsPs2cD06aejpISYP19tvuGG+Vi6FMB4EnDddfjmhg0oveujuC/+O0Da1VFizoYGYGoKq1drDd98s6biwoXAvHmfxfQ0cPHffhhL8o/hs58FHnssBmlpc3DHHcCsowdw6NA5WLJE/K1XTf8aP/rRZ3Dxko8CNTXIzgaWL9e1nn8eePDBjzoC1sHBC/HdV/4e15ffCmAm7rzzM9i/H7hq7uvY9/mLsX8/MDW1AJh4DtnZHwUyM/HS4BnIyDj8B+5w//XlbRN/yPdP5fXNb34T3/zmN3/r3x5++OH/8rtPf/rTePXVV//ba37xi1/EF7/4xVNr0Km8/qim9I/0cjm7887jEcBpzYlpfqeOcJOTrvbXkwthUZEg4ibW6ulAKk7fQWCtcmI1NU5w0mnfNTbqGnZE6u2lTrvmjTE+3hWFD1iIrqpKnpKAbLscKGW7hSYLCjzJnUd0/cpK5VPKylTTZmFa4LjlqgJONHU3hJrs7aWOv9XV8iAt98fKSmZmWg5vZIQMBlldHVUinzPHvpeURDY2OtquY5Amm9E0Km+UnEzGxKjeq7hY9yot1XG9spJhwMmcsLLScUEyO5tveR5YcnJUmmFsTIwXjY1Rcc6ODl2zvNxJzL8FQy+OjurfggLzIII6UpeXq2/8/vdA5U8AFr7aSy5frvBXbi6Znq6QsLlSq1eTjI9nWZmcCg8UAXybr8FYcYyQ4C6orrOtzaOTCjjvFVgpoFNbG1esMBV7C+OytNTqI3c7DsixMXkkHBoig0EmJ8t73ud5TKWlXLpUHgabmsiEBJePYkIC6+vluRzx2hcIuAgH6+rkPdXXy5vPzZUX19hI5uU5Pk2WlcnD9EAZWVmsqpIXFw4r5FpdbaUFnvp5aiq7uxUOjI/XEMTGkh7aaNkykvY9jowIsJObayjjowQedkXmfr+u48H4gRf0fIEAgS5GVcNfVig+Pl4Am+xsBqEaysJCrcH4eAUosrLkZXZ2ahlUVtLo/zY4JpucHLV78WK1PRikE21dtSqqJakwZpfTBASmjULvqMZldFReYW+vQielpfL8q6uVSikp4et/hDDmjh3BP0Thhzt2vH/e5gft9YE2dg88oE1kdNSolQz8MTzMaLiurs7jk+WKFQo59PSQbG9XyA1CbXn0WExLcywPq1bR6dd5aEyvsJSjow46v2qVoeRaW21xCTTA0lKrTPdzFHCSJIBdqKWFHBpiJ4T4yslR2HR4mKay/Z8Evs8h20BGIfVqV7dXXMxIRAbJ79dC92quRkepB21tVezF05rzWJwrK7lihezVyIjlXUz4kvn5andDgyX111NIxUEWFUXDpQUFurTCPhsIPGUIzAkCO41ZZSW9uqnCQgOD9PZy8WIL85patFfsPDSk/VdF2U0KuQ0Ps6nJjEi7F1reSGAzt0NoPQ+AQIBeAf2Q5Xa0Ae2U4fbQqSa11NlJ0uczxN8KAo9YsfmdBF5mUxMNxVvDu2DaawkJjmqN6el8GiBwrzbj1lYrLbjdyh8OkD099pn/1ObpycibTqEYVI5rXjQ0qI/q6hz3JNDE52wOVFSQ9Ps5OakQYG+v+ofJyVy1KlpP1dZGMinJhZlHR+kK+BkbqzzhyAgZiXB83EieMzIcOQCwUXyteDfN3F5XfxYByKoqRuxgUVlJp7UXhkoUjpkxKygQ/dYDABkToz4vK1M6wecjx8b4muVHly0jn7ZDRwiiwVMOrsMON9M67KSlkRkZWqtZWWR+PkdhWnJZWULLJidHyQeysvSMsbFOw8dju0lPV1iU9fXqg8RErROfjycsF8e0NFeCcwRwe4qBabVmGxrY0yPGH4Xfe/5i7P4HvT7Qxi64bBnHxuhyE7vNs2BNDenz8YgtGHZ0aJF7ebOyMmZlaU4Pw7gwDfjxBqANsaXFMU6wv1+brtVRNTdbHsOTQfbEs+Ljtfs0NZGtrVrUgYBWU1kZgd2sq3M1v1oteXlkfj5nzLDcoUf1NDbm8ldDlgtiTQ2HhqJoUyYlRTXVCgudRp+O3xF5a8nJamNsrDbikRHW15vB7uggg1YmUVgY9do8BYWEBAdcWLrUDENlpZ6pu5tOlNMAE3199gz9/ervcJh9fe9CiRpps4OIt7eTxcWCtnvI0JISl/Bra6PTfevt1b1XrybZ2soZM/RYzwGODb+6WpfJy7N2BAIaP49NxKM8MW+xsFB9yI4OM8wSyGV+vsvrcHLSsW2cgEArm8wD22Je6wnAareUgzQn3alYsLGRrK62Iux2hswz2W7jmpWlca+qsvnmKWi0t5PZ2fKevLoXyy9VVzMqXFhWJk86HCaTk2UQh4cZDtOp2bOnR3MlEHC5PxYW6hplZU6s2BvWnh7rL8vjeSQKDARIvz+q4jE25tDJjImJ1sCUl8vg5Oc7cV0mJ5Px8Y6BhsGgYynxDj2rVzNqrHp6yKEhl28vKdHlw2G62khOTmptJCVFozzNzVER5YYGsrhYYCcxRusiRnlUX299ZMLAo6PWloYGMhAQkGp4mN3d1idWp1BXR5c3d7W81uceO9Ell7z/Obtt24L0+3nK723b/nyN3Wm/T8jzvvvuwyWXXIKzzjoLZ511FhYvXoynn3763SFR3H333Tj33HPx4Q9/GEuWLMHw8PB7rhEOh1FWVoa5c+fizDPPxBe+8AXs2bPn1GKwgQDOe2UttmzZA/T14RAg4bKBAfRNTeElAFsBoL4epz3dqQD/2Bhw//0YHAR2796CVwH0ARJFm57GTkBJlfZ2nDv+KtrbAcyeja9edxjIyMDNNwNfzXgTX84/jh1HjmBi926Mr1kD3H03nt+/X3pgl18O7NqlPEhcHHZs2qRkAEbwrbRfIyFBebUDcefj8JNPAocOgezG1698E/D5sLZjlpIZOB1JScAOAF+dvRaYNw+7dsHlZzA+js/s+jnwk58A69fjeF8fph96CHjjDfRvOg0zZwJvb9+Obbt3Y/ORI7ppXBx27FB+D/X1wMQEHnwQOPzoo0BLC/DYY5h+8klMvfgiBsfHseHIESxdClRWAn9/5WEc/c//lJBZQ4ME6zo6gGeewaw1q/CpmFfx9Q+tAp55Bqfd833gK1/Bp2JexRmDL+GsB38IPPwwrp/4GfYC+t4TTwBPP41ztz4LdHTg5KZNmH7gASUN/+M/cP2SA8CNN+KxxzQ8x//zPxGJAGhowNVXK4V4FABuvhnfnPtLPPywmvT888DXM14HZs5EbCyADRuU2z16FJiawnenbgcGB5U3PHQIiIlBdjYwb95HMXs2gIkJHD2q67/jU46urw+YmZCAawF0QP3/NoB3AIwDuO46AOjG+vVvoaVF7cXMmfjbv9U44brrcOONALAHDwN45plXsQ2aFuvXbwF278amTRoSTE/jvOmdwOmn46W7n8XVV9ucvOMOoL8fSUlK2WHfPj1wUhLeAfBC3ywc374dKSnA3riLMeu5Tnxs5AUlqebPR0ICgH/4B1w4cyeu2PozPfvs2br2v/4rcPPNSEmRftvs2ZDQYGMjLvO9jvO3/gqfCv1aCdXHH0dsrDQd9848D2hpwT8m/BpvnzihL+bkAI8/jq0ADj/+uBJFJl64Z/9+XI+1ylc/9hi2wu41fz7Q04Mvx/8a76xfr3V4993AunVISQG+8hUt7UuOvoRZLT/H0aPApk0Atm3Tc/n92APgioOdEkz87Gcx/ZOfSHjRu94//zOeB/DOBZfoITdswC1/3YmPPbYC6OjAoUPA+fOP4/Wp85Vfr63FNgD4/OfxmT2/wOWXQ7nDf/kXxMVBeeQ9e4DnntPcSknBrKMHgNFRfDn4M+zc+XvsZb/jy8vZ/SHvP9vX72MZf/WrX7Gzs5MjIyMcGRnhv//7vzMmJoZbt24lSdbW1jI2NpZtbW3csmULv/zlL3PevHk8fPiwu8bSpUv5V3/1V3zuuef46quvMisri5deeimnp6d/53ZE0ZivE3iKTEpy5MMsKmJ8vA6ZOTnygBYsUJhCyLuVBDYzBMHl29pMusNyTkuX6rPV1RYKguDj7e2GUvP75Yl0dTE11WNf2UZgpYUo19ErvvYUCxw9Vny8UxP38mydnVG9PE9BvadH91H90LEoy4bpdU1OWhH16Cg7O6PsXAo1DhOYYFOTQkcpKbRcwzEyElG4xfS6gN1RyrGREUMpNjluTyOWYE7OuzkAByg5oeME9trv19v7Z+bh3E/gXsvTrLfv7SJwjHPm0OjZVIC+dKn6UrDunQR2Gp9n0PpVnoQO5dvpSRp0dtKxjSh0PEg/BPcvLlb/7rewb1eXDvWFhdT3TWZJPKQvON42QdLbecz6DVjj8mpAgExOdhyrd1l4LTWVZGWlI5o+YflKtX03BwY0NkxNVai1ooIxMeQDgMKeo6N8EnB9yezsqOdvRd/FxTSljiCBCXlT/f2cM0feVn09neabz0eX+2JSEsvLtRZ6elwql/u88G44bHm5XfRqziIRkr29gtz39JB5efKWJicJ7GVVleV7rcTmhLW9pIQu58XiYlZUePno1XrutDR6RbCVlbRi+ZdZVibPf8TWYnEx5Zq3tJDLl2ttVFUxP1+esOjZNiqKER8vJGhKivK+4bDWrCfJEAopQWchXkD1m0xLk8eZnMxly+h4YdnYqElvlHbHbP4Aw1rLiYn6t6GBjEQYich5dDSDy5er3CI/n5mZ5LXXvv+e3datQY6N8ZTfW7f++Xp2f3AYc86cOXzwwQd58uRJJiQksLa21v1tamqKZ599Nu+//36S5KFDhxgTE8PVq1e7z/j9fp522ml85plnfud7ujDm1VdbTuNlcVF6Ycz0dPZChdAvmpFxoQtjV1AR6gBboeJkj2Wk1eL7XrH1qlXUgrHQot9PMhxmJEL2QmwKk4CjxmJhoVZAT48LuQQtbAccdRBzD1wSAoxBY4JdXZbHmpy0BPluLlumGi4X1gqFODSkxekHtCvGxDBo7QhBsHePHHg3RK/0lhfGiURYXEynS8ZwWLDvuDiFc5OSuBuC278GFYp7Gmd9fdQm19amfGRcnHZQywsGg1YU7nFmVlcrqWFMM155Qq8Zd8c2bWSdAUD5nrExMj9f4aWCAm2AoRDp86nYPyHBGeqNlmscH4+WOAIH9Dm/Xw0KBLhsmfraOJLJ7m4WFpqigt/P8vLooUicmwE2N6vLvJwXs7O5BZIiqqqSwaPP52oggXYCu7lokeUmh4e1Gff3k11dBpF/hE9DvKZ1bjPdTubmMjVV3cmKCifk4enNsaFBv0hJYUWFbc5ZWcpLV1aKiqy9nfsRLQtwlDpdXdGwuuWg2dqqtjc1aRPPzSWHh1lWJsM5PKy+mYQK+zk66spKWVXFYPBdc9WM8gig++Xmch+MkSguznHCMj6evZab8wSS90GF+KOjAqx0dmq99HtzpKbmXUX8R9UAK7lpa1P/ZGZqjTznhTFrasiCAuXg09PJuDiFu7OzVfvY0eGo9bq6qD7IyGBXl42/Fc6zt1fPkJvr+HCZkcEIVIuan0+Xt2dXlxO5Ddmc0h7z/hq7wcEgR0d5yu/BwT9fYzeDJE/FI4xEIlizZg2+9rWv4bXXXoPP58Nf//Vf49VXX8WiRYvc5/7hH/4BcXFxaG5uxq9//Wt89rOfxYEDBzBnzhz3mUsvvRTXXXcdqqurf+u9wuEwwuGw+//hw4eRmJiIYG8vztqxAz89+lXccANwzs3/CCQkCJN8553AxIT89scew9tHz8Hs2cA5W18AxsfxyPSX0NEBPPL4h4Hycry99Hs4b/YBICkJ/37zYXzv5r346RPn4ps3HMDXbzsHaWnALYNfx78n/BwZGYpMfWPqx4rBbNsGnH22Qh9/93fYm/8vOPfub6D1sz/Dhz8MfKHhGuArX8GMr+WB7S/i5xNfwNcnvo9fX347PjPxS2DPHpzf8C3srP0l8MwzuHDDz/HmK4dxy51nYXwc+OGaGZjf0gL09uKSDT/FDTcAS5cC54y/Hr2/V1+RkKAQzQUX4JIbL8PmG3+okNG2bcAFFwApKVh+7BaUlADn3PENhZyuu061G3Fx+tx11ylO19cH9PXhzdq1mD0bOPfB7yo+93d/B8THK3yTna3vTU0BW7YAixcr3rR7t8o5vLjJxITF3qA6g/vvx86kz+D88ZfwetwVuDjlJPCf/wkkJ+sZ+vqAG24AtmzBm8mfx7ZtwBfu/3v03/UUkpOBEyeA0VFg9t/NwCWtrcD8+Xj26BXYsQO49lrgvOd/gTczvorHHwf+bcb38fYNt+O8ue8opHfrrcCOHWh965P4cuv1wKFDeL3h18jIAA4/+Evg0CH8+oJv4DMblwGpqUBODn7YMAvfWv1JvLppE94B8M3/H3v/HxZ3eaWP4zca7GhDRA1KbLDEDS71I1lipRJXVGxwk26w4koVFStWUmjFihWbcYMRl1hwgxUL25CKFQWFKtFJIToa1IkZAzGjIXE0mBAzIgk0IWZipmQSxvvzxznPM/Gzu993m02/7/Wqc11zhcDM6/W8nl/nOefc577TiM3bTsYDhw7hJwA+6iVqa6XrL7pIwpOz2u/Dh7c+hPNKrgSefx4f7j0df//3hxDEyZgaSxx2TMG5Uw9g0iTg0UeB7809jH0HT0JrK3DnGW1Adzdw111Y+cl3MHMmMGvTU8CJJ2Lf/JsQHw+c8N5mGdMHHgBefhmHN27GSbffgqfmPoVbrvgYV956Dl5r3SV9edFF+Bjn4Jz4Azg3fQp2dL0v4/HqqwLt37oVOHQIny97BF1dwNULPseBgyfA4ZCvX3opcMInHwPLlgHXXYdXDl2GiQl53vP3vyXjvGkTMH06Ns+8FrN2rpIvrlsH3HUXRv/xWpzV9oiEK5OT5d/t24Ef/hAfuj/C9OnAKTvfl4W1f7/87eab8fHE2XjvPbn/Sy8B139rM7B/P145dBk++UTCmxs3ApccfEXi1yUleG37Ofj614GLh1diR/q1OPfQ+8CPfgSUlgJdXVh96+9tBc3C1LVy8SefxDvptyE5WaK3C6/4MBqSvecerIq/Bfv3y/1O2Pq+tO+KK6TfNm0CJk3Cqqm34eoTu2XOTJoE/6eTccEFpyIYDGLKlCnHss1+Yc879dRT4fMFMXnysV/r4MED+Pa3j0+bvnSvv9Q6bt68mV//+td54okn8tRTT2V3dzfJKKv18PDwFz5fXFzMq666iuR/z2qdk5PDhQsX/rf3XLJkiYYtv/jOygoaLlwJJ+Xl0QeFPptEudPJ5mYJQRYUyIGysZHqVoXEO0pJiQqwpqaKJ+H3C8ggIYHt7aoSUFv7RYCJxgaGhxUlV1bGkhIJixhNOdbWWoFHc6gG/BJK0bjNmxAm/JoaQVzGxPAokdVl3KbPNKxhHAmdbCIzMjg2JqdRgy7v7BRH1O9nNHEeCsnpfP582kx7fj4HBqJ4ECN8mZOjfeP1ymdbWw2HtgB6/FHF6aYmeR5z8o6Jkb+lpETJNqZNE4/L4F5aWkg6nZw2TRkwwmGyq4vt7dJd9fWWK5qpqRbbId7n4KB4bMnJzMmR4f0DhBszJ4dW5gIISoOzsjg2Jrfo7NR719ezokIpspxOCX/pTYUPc69SsW2QcSgrU+/qab6kYBQLhEpI4CgMebR4jz4fFTXoZmHhUUCK3Fw6HOqRmZoQp1PCXsGgFleLazw8rMwm8+ezuFic3wCEFcb2md8vbTce81EesM9HqwtoqOfGxmT+B4Myj03huVE0qKoimZHBgQEZ2+xseQ5T0M6uLubliaNueV9VkDcnh9ajKimhXGx01Cp9l5eTzM5mHwQM1ttL0u2WkGdBQVRRQaVxtkGR0VlZEm0IhSw7SmOjer9OJ9nVJfd1ucj+foaB6LrLzZXnU75UOhzMz6dFkTInxwq59vfLOIVClPBpUxN9PunzjwBZ20qPx7g4cv58i+T1eGRvKCkh2dEhKl4Q4JGUMx1fz87nC1oZvWN5+3x/u57dX2zswuEwt23bxrfffpuLFi3i1KlT6ff7/5OEg3ndfvvt/Kd/+ieS/72xmzt3Ln/84x//t/c8dOjQFxi6h4Y0PPDppxK+GRy08O05c0gGg4brmM3NGm6prbU1agyFrHbYaadJLm/GDCtWIMZQ1QXKypRAt6kpqord2clAIKpawLIyMjY2GrLMyyODQRYUKGqzq4uG5PczqLK34TEcHSWwgqyttXp6RiyzRUOsCQnU0N1WYZRwOhnSzxqCw0iE0RVbVWXr5Aw3Z0+P/Gw+4vNRNqzcXJsDHByU3+XnS7tbWqQdzwKs17Awk5Ik9GfCOxo6e9X8vaiIRzS8y4oKPq3GodtsMpWVlgvSoNcGBkh6vfJ7c0jx+YTANycnKtCrbCGAn7+D0JOlpJDMzeVu3URjY7X+rKiIwHIyO9uWmBQUkMzPp8sVVZDn8LAYoPnzuQ2wpM5NGsplXh6Zl8fPIOUFqp/L006T+SJ5qVEJacbGCupzbExC6oEAB2G07aotX2Zvrxieigo5HBQUkMzL4x7gC0aIHg/dbnIpQKA9iig02lWpqaTHo7V+4xwbU6NTWclAQHPDVVVkfLwcElTqIyZG5lN3t8yJ7m7JT6WkUAxYbS0HAM2djtqYu0fbf0QPXW635iOzs5WA+7CG659mUdFRoda6Ogpx98MEhsiEBGGIycjgnDlG+WOt5d+UOrv1Ub2/nBw+qwZkPWAVGlJSZP1Ixck+Al16aNlB4HX9vptAu+1jyduv189skD6MiyNra+l0GtmibWxvl2HIyiKZmcmlSw1TynrZD/r7ZU8ZGyNra010VQ9GO8j6en6I419n19cXpN/PY3739X1l7I759d3vfpcLFy7k4OAgAfCdd975wt+vvvpq3nLLLSTJnp4eAuC+ffu+8JlZs2bx/vvv/7PvGQWoeFhfL3U5kmj/udZLbSNwF4ESCiClnd3dhtvuIIHHuA3C3yhAil9KHL+lhUJCO8qcHOUozMggcFhqbYqL2d4ua18W2M8pYIwhBYisZVqaGI2REdp6uTlzSI6N8W1oHZBCxNnXx9RUNSrqobChgdnZcoLv0c0NeJrDw7IpFBdTjEF6umwmo6MUUMxmCuntOjmVh8MchxAIyyZzv6lIkLxYTg5zcxVOXVSk+Sa39t1zes2HpW8yMgQQ4Pdzxgw5DNTVGeBL0PLhBoOyQZgyvdhYkj6fbMD9/ZwxwxRkr9Zx2Exgl+ayggSqCTyntXqi3B0bK30XDCrpttYyDljDJCdd+v2S59GN10LwS0sJjKt46wbLHwlMcBACJKmqUvq22lqyqYn5+ZoP9fkk/wIpGBcwzgQBt3pvLubl6TyJjeUS9VxeAMjSUs6bR80P7xIvJi1N/79CC60bCUyQqakyRxwO8R76+uRZa2sl1wIhsRa18CExSCqgOjxsNuhfqXLDSqvGkJEh/W6ot0ZGopSmdLtZX29qNtfIBu73R8tYKisJbKPDIfcNhfgF6jG/n7Jm+vvFILS2ErjNel6ikvFTOhwybw2PJrDWKsBLHs7JkhKx4XV1VJq1wwSaWVKiXA6Q+tcjkLxkQUG0pKKw0MjdVRG43+YdpQ3brC0TYNUogdWm4kWiQVosN29e9HAnazuo5T9DBA7S55O+NhRnhhBe7qO1f2NjnD1b7Ht+PhnMyjruxs7rDVqVk2N5e71fGbtjfl155ZX84Q9/aAEqtbW19m/hcPi/BKh0dHTYz+zateuYASoXXhgksIPduhkAG9jWZvj21lAKnZvpcMjp1SwAYA1fsJvlOlmAHR26wJ+j0ynXSEkhWVjIYFD2yJERWbimlE2Qhm41qvergW0W5opQSHYYl4vAnWRmJvcANhzIwUFd2PeSFRUchxSWj2vYJhwmOTbGgoKjioeLi8nWVouoBPzKx7eTgsJcTWCThHxcLobVS5GNp0uuOTgoD1ZcTIdDPRwluhWZnuf05/WUMIz037RpRkmiUPu2i1L0LiroQt57WNGYXfr79TTK8EAX4+IMqvN+HaMdBHy6iRs2+vVsbjYc1X4C6/gRpIgXWCzhqrAcqEdGojyeIyNisJ5V75P9/WRcnOVH7e7WUOjYmIAmdPeKiVFPMBSyQBYjoePxaOgzELCM9oK+3aEoxCGWl9MWQ0c0pGmYQUzo0NSOZWRQDexyZcZZJzIxOk4sL1ew0oSMsdK1eDzSJukznxjEgQECazljhkwLoxMHrJZfuFwMBmXezJ4dVZCPi5N2SZjtIOvrjceyTHZpJfo2JAdVVVHlDGBUUbGraeU58vII7LJlpi0tMvcE2buDwP1y6FCyWGCCDId1vU7IWrBKCpvp8UTxIezslGfp6WFFhZF2Uh26qiqGIKkBlpayqEjXa08P2dPDQECVS7xePQSs0fW61Ya3zZiLQfNL+LO6miwsZHGx0aHcIWNTW0s6HDYjYKSiCgtlrip2jB6P1b5l8N57j7ux83iCIhl1jG+P5ytj92e9nE4n165dy48++oibN2/mfffdxxNOOIGvvPIKSSk9OPXUU7ly5Upu2bKFBQUF/2XpwfTp07lmzRq+8847vPLKK/8HpQey2b4JWFqgqGxPI8Vb2UrgV5YiC3iMwE/5tobeBAY/zjFAQzHbCOxlfr4YtTG9dmwsydJSy8wlG/QKXUQb1NBMEFjHkhL1mEZHyfnzZUHGxXFI4//FxfJ/o77A/HwGIHm7CECHQ8l1CwuZmiqbVUUFyZ4eq0jd36+F08GgPqePwvrRTmArfT6qN9NI8W6XWZLmYRhF7gkxzPX1Ryk6//Io6P/rBFzWMIixGz1KpXq99u9BqwMrfbxaDfA6LdY+rMoPK/Xv2wgs03Ga0L7cReBOAo+pl+zX0osdHBgQg5GSQjlej47KjpKUZNGVzc2ig7YNQkP2mQn5lZYS2KRh4A0Seg0EGBNDlbFZLWlMjQ6Ul1N2SZ/PenghHTcOD1t0+qcQEum2NtJYthfU0C2xh68hMi2NQDs7O9UbUDYXMXo7CIwyAtXgGxyUa5l8Vk6OhMbq68nycs3VrrAoxaYmGX+jkSgh1RVfYA5iMGhZbywKd3iYDAqhsBByLxcDoh6dKXFxOuWj7e209F9FRYrKbW6Wz6ekEHAr+tDFOXOioV05rGyQkhqFbzqdcn85NDxH4HU5hBQX2zxzOKyhXS2iH4Kgjt8GFGW8WhZgZaVEXLxe2vDi4CBHRmT9zZsXzV0b7zcvj/LdYNAArNnbe1QYPxDQMouDpMOhOfYnbS7P5Djr6qyghc7lZ3RsN6u80l6uXn38Sw++MnbH/vqLjN1tt91mma8TEhL43e9+1xo6kvz888+5ZMkSJiYm8mtf+xovu+wybtmy5QvXGB8f5x133MHTTz+dJ598MhcsWMCPP/74L2q0LT1YsIBuwDLeC0XPQbK2lmNjskcYmDl9PpEW0dxRcbGc9o0ignhAz7GmRjalQIBkc7M93bK4WFZ+X5+FPtukdlERx7Qdlk5Kk9WVldST5Vr5fnw8t0BKCdrbqaoFqg2nGyAHBtjbKyfZFwCpayouJrBZ7ud00gepCRwcpCxEg0wpLraeS2UlrYfIwUHW10t7ly7VeqaCAhptlYwMikcJ2L7x++WrQ5AShB4NDzI+XnbJxESyspK79e9t+uw+9ZqZlsY/QGrfPoLCwNPTpXMByw5fXKxj1NEhJ2ul8HABZFmZjGF9vbiWHR0EnmE/hLbJ5lMdDg3JbeAAoHJPK+XUEAyK8evrk406HBaKtLBc1wAv+gE2AQQK+WuoZFFHB9naShdA4F5DDkJgK/PyjLCrW3J0paUsL5eNcIk+P1NTVSPQJXnLwkIOD8uvXS5pS16eHHLWA2LItU6uuJjk4CC9UKXynBwJ0w6T9PkkHK2UXyUllDnQ1SVzV0NwdDqtugETEnQurieLiqKbe2cnjwBWeIPBIH32ILie7OtjOKyhXa9XQ7GjekDaIXnqwkIJnxcXExhnW5seThISyNxcPYyprpzLxZoaYS8qL6dSkG2QtpSWqvFYp4evX5EtLXRB1CrGIRRisbHq/fX0sKSESikm4rJi/A/qwWorgUYxsnFxutYP6sF0jbiieXmWK7SigpYnFtgl9axJSRQKvFF9js1RlpbaWplbeXlW4gh4miws5Coc/5xdT0+QfX085ndPz1fG7kv1MgPfAqkDys4WvkQRiRyyORt7lM3KkgmdlmbpnSRRPSF1MSEJrQGPRWm/lDII2CybTGxsFAVWXy+bYGqq/K2+nszKkk2muFhCJ1r4XFwcbUZ9Pe0iSUqS/T07W/7e3EyyslJOwVqD1NJCWVDhMFlUJF5EWhqDQUnk19WRDIWE0ig+niEoAXNsrM1LsahIEGhxcWxvN6TU+8TYlZfTipp1dZE5OXKKrq2VdhYUkAUFor7cQ9kJfD559q4uWx/HpCR5uLg4eZiMDDH6GRmyGTc3CwrQQCurqyUPo0X3zc0k8/L4rnqcjI2V9+ioJOrS0+VfXbFGw3T2bDUYLheZnc05cxSVGR9PYFQ3/DVkSopFugJ7ydJSvg0QeI5BmCLwdrKwkB/pps/mZnogOb2iIpKZmdL/bjfZ0yOGxO8nnU4hEAgEOG+eCX2JR7dEQ51uCLDD75frsq5OwCNOJ1lYKCFSBfqIV7BPw9TielkB4epqmirs4mKSXV2sq9ODWWWlzNuGBnJszHKlsqqKzMmRQ5LytCYkkPR45BAn6BmrdM7R0ah6cDAoRsLrNQBQsrjY5gpnz9ZQYUaGld9hSopYezP2hhB2bIw9PRoC7O8nU1LEuKenMwDYqAO9XtbUyPTr6ZEpV1Mj68bU1bGgwCrQMyNDZJeM4fd6yepq6ZOWli/QpDEhQf71eqM1dQ0NYuBTU6Ntr69Xg75VvqvEECMj8ryhEOWzpaU8AvAPAJ/WQ2Kbjjndbu74Kxi7V14JWrD0sbxfeeUrY/elekXDmKM2SF5cLGELNjQwI0N+njNH1mxRkRUzp8ulvIXKmlFXpwCDhgayuVmBLodteENOpRtYWCgnW0NGbBLc+fmUDbC1VQxBaytZUGBVyNnfTyYlyaZgRGRra8m4ODEAKvLKggKyo0NzUzvZ1KQAldJS+Xs4rHmTIfl+JCKhoXCYs2eL3WppkVtY6LrbzYoKsfX5+bQq2BKfHZP2akjntNNkT+rtFZulupSsrCR/By28T0ujxfyr8kFnJ+VgEB8vX/D55G8NDQwGVdTU4ZCC474+m0sybBmGad/pFBufny/jUVgonq14vvvkoJCZyWBQvrdFDzvBIKOE12oI2d9POhwEXOqRHWa3hm0N8z3QTi+godIV4kVq7UNqqoQpOTjIFgjTjngc+9jYKH3k88nHjYc/CDAIRXyqRwcMqcHbQOBe/gGSezRzS/Jm4xLGU3X5+np5ttNOI1lWxjlzhD0lL4/Sf+r1s7CQVq7b62VKSvRc5HbTPgddLin093hsnqm+ntHBNeoELS0Mh6XrOjtJxsVZ8M3gIMnRUQ5pf61Xz4rhsBwEBgY0371LD1NuJiWphmJd3VF5sb2y1vr6COykyyVzXcLaQzJvWluZkSHzIC9Pr5GSwgiE3MBEEwTENMqCApNzXM24OHl+YMjSwQI+xsRIf0citKFxo0PHSIRMSdHw6BAFHLNODiPNzRYp3Nws56/cXPmeEecoKjKqKbs0jzoua8/lYnDPnq+M3f+i15fa2L2sGxFwUGbi/PnMyxOjFDHhxMxM8TIKCsikJI5BangkBLNTVr6qEgObZJUZb62sTCZxeblld2dBgWwUFRXWY2JurpwaW1vJpCR7qhwejoInTPjE6Mnk5so+0NtLm9diTo4YtqwssqVFNiGjE1RebuWKmppIFhayszO60TIuTsIphtVkdFSS/0qIvRuw0irAXjHEGmf1+Wipn3brKZ+5uVL7FBvL4mLdAEtLaSF8Rj3c4ZB3a6ts8qWl0n6HQzy+0VHS7Rb0nIFpFhRwXMOQTEoyxYd814Q7U1NJh0NyXA6HjEd+viUGNgYnLY1RmSW3mzExeuDx+eRfvwBc2oxHl5IiYTOvl0NqhBgXp8jI1dZT8Pm0Hi02lgamzmBQ7q/eaUIC5fPZ2RblCuxS8d92srlZgScbJKSZk2MVtZmXJ3OprIxMS5NN3KgIDw4S2MmXADFK1dVsadEDmjm1qGhqKERbp8f0dBkD9aKMkKnfTzIxUe7rcpF1dSwpEa+pqIjSd7GxZGKizD3tz0hErtvZSTFCpp+hoJCBAba0MEp3pwcMe+rKzJS2zJ8vHqnmCRmJyJzIzOQHAAcAjkPKM9rapE/7+2UM+/ujUUYTlmdfn8zL/n7pM0ioO2IiEpGIHHwMNNjtFo+xp0fCvi6X9TI9HpKdnWKczMFBEblhSO6cwSCZkMD6ejGkPT3ShiMAWV7OoB4En9N+eQECQmN1NYNz5hx3Y7d6tSiqHOv7eOYRv2yvL7WxC65Ywbg4OWWPjDBaNO31ysIvL7c5NgaDXwB10OOR75SWRtnRNcTE4uJo2CYUEoTk8LCcBPv7ZUEZpIrm5qZNk8mUlCR7x/AwJUYZCMiGlJDA3l6DMpywrPhLl0pIsrJSva/ycktVJnDqITI7WzwWDfuUlOhG5fVKOMfrJUdHbclDe7u0m8PD0g8m7Njfz5ERpfRShFtREe2CZmenhEZzcqJV2F4vBW36UwqgZJwxMfLxGTPkWhISfo7ABouyi6pWL6aAeJaxro5f0NRjf7+MT0ODtFUlb4JB6in5LsumH4mIXfL7ScbFUUA30v/i8U6QHg/DEEBRRYUJKa1X7/xX0SLu6mp+CqlfHB6W3BGwV5Gk2+iDAHsEObqBkqsZkjrCqippd1qauFBjY3r9atkcs7O1/MWlubp7yZwc9fCKrUNuE36pqWR8PGfMUE9DPSQWFMhmXFdH4H5+oN5dfb2Ml8Djd33BO2EwKHN6dJTt7ZIHNErwWsMuqN7kZAJ75VqqVD9jhvSLiScCPqtzNzhocsvtWgqzPKpckZDA4mJ5jBCk1vFNQCZzUhJTUqRUJQDN4+blyZxLSGBjoxZ5Z2ZagFB2tqBjj0DqOIMaVga6yMJCAhvEq0xIsIrwhi4vCKlT3A2lOUtK4hZovaTXK2tO9SSZlsZPYUqWgrJmHA6G9dDFykoaGfaCAvneEcAeDOhyyYGgr0/G0+mUTq6vt6Hp668//gCVVauCBnB6TO9Vq74ydl+q19FyF0OALcDNyZEwRTBolU/Y26uG0OSlCgvJgQELFc7NlXU5b568KypknkciJD0ePTxO2CIbs5m0tMi8drlI5uaKQezvjy5Uv58ZGUfXsW2VE21SkixSj8eKbAJdYpSSk5maKm3weCR86IUWj1dU0NSkGY9g6VKSw8NWPocul0UgclRg4r29SnTdrxvd8DDDYS2cLyoSjyActqTCLCjgnDlijDo75XKNAH+lm9VnuqkwPp62CMvh4KtQAMv8+fwIioosLuav9eT7AhDlcgyH5TQeOco4B4OWAJs9PWQoxF8BpFPqsDg2JvcbHSUQpAtgBwS0wNpaRuzGtU1OFE4nASc/g+Q2t0DBEKWldDo1t6feIrCeTE1lAFIMDzSzwzynw0EWFqon+Evm54s3Exsr+9vAgHzk17qBZmTIUHRDdAn/oOE3oFg8vL4+MhKxEkKmHCACyTMXFZFMTBTvfWCAdXXkb6A5xcxMsrBQPJWqKmlfaysZDHL2bB1fc4jz+yWSUFcnRswYVrfbEjOPjdFyPhpgkkEpRgEqE5Zf9AVIbk1KAPxqcIdk88/IkNBrSwuBFayqUs87KUlrElcTEJ5L1tZatGlSEi0BOd1uLWVwU4rED4rHXVTEbjV6A+r9S9u2MRAwB0ghDmd/v0Zp1mr0pp1As62ZFe5UQSwDG8jmZun71lamphpCdRebmqTrjGGW0LefwFqjVUv29UlfNzdbwqHBQS0Dyc9n8MwzvzJ2/4teX2pj5/EEhZwWBpIsBkZO+pt0ga1jWZmso/p62cDnzCGZkKBJ6IcJNLO83CC6nqPLJQuos5OkyyXexOCgGIiBAVujI9DxXQT86t08xpQUMbjhMMmuLkXrraTPJ6hGQw7NcFgpwbpYXCwnXwVNRmmQ0tPJ6moCzzAQUI9MN7dtkJxlZ6e01eTX8/OVHUVReJITEWSZ2x3V7qLPJ7miYFDzWxOMi6PmQoL6PR8Bt5EsU4TaTiYl0aopmANGYyPlQ9pPbrc4yp2dsjFYCrNgkIDfSLVx2jQJXxkM0YwZVsaNgYD8PaIn86Qkkj09EibKyVGv5zExeOphsaiIu6Fkw4rU6+6mzV1lZclY0u8n3e4oC40ke8jaWgkxJiaSpaXs7dXxKivTzdNFoFEPH89YT5fNzTIPjfdXWEg2N1tNROMFiIfXpQi/LtLj4R5ork+NuxFZzcrS+VBby6qqKLvPyAhtPva000zubx/Z2SkGRp+tqkr6PjdXn9nnIzBuFT1MQb4xuKGQ9qNqvRkKM8PAY3Qc6+pIDg8zFJLvmNIPYNQK8Mo8chMY5+CgdLHk1rZZejIBhgXFO1OAj4SBdxHoYna25tM1bcC0NLa3ayhR0dUjIySrq9XgbbXjZbAy0TrC5zRdsJIcG2NhYZTw2ogk0OWyyS2jMwisYE6Ozu/RUWZkqDFLTCQ9HhkfzdU3NlI983VkMKiq98fX2K1cKfqTx/peufIrY/eletkw5uTJCgRoJisrBURRXc1xCHjhdwA7oXmo+noyO5thQFF2bgIr2Kaf8XplU2wxIZiUFCvyytZWsqLCSvuwuprs6aFLvR2Xhj5ajEfTLKdUj0f2GC8M0EILfpUL0ucTj0M2IXe0dkqlpmfMkI3NA8gOE4lwYECakJamCFSPhx/oaXc9RFiU2dla67SP3dq+5zTsFAzKYi0uViPS0sKMDDG2fn0PqYfznPYhBwZoEiivQ5QJwvqso0A031FUZI7ZljeSRUVixTIypNHp6eLlqZe4W0/V4xAh1PUAmZsryMTqanuKHxsTb8PQaZWVyQb1rnqT4iFL3Z/DIZtYfz/Fmy4qku85HDYCydZWlpQIEGVkRDZHUwNGl0u8nP5+yxYfCJCsr2cIYCMEoPGS8f6ysmyNm9Ss7ZC5Ulcn38vLs9430KUG72kpgO/qIuAik5JYUKB1foqkMlJLS5dSdnANvRmuV2ZmSr9WVnIbQLdb+sOGK1tbZQPPyJBJMzoqHrmhutJ8aUTnr8slxsbUFBpvk/X1Yq1KS6WBubns6YkeaJiaSra20gdYgWA6HHQbb7+hwSplfKTPbEpXvEBUHSIhQdqbliaAJs31mbw3MCQDlZjI9nY14lVVbGuTVMAWSHQlEtFnj4+30Ry3zteXIMoXVvnB5SLz8zmuXqtJzTI9nXS76dU1wYEBOTTpqcMK12ZlSR9pbSJra+UglpnJ7OzjH8Z87rmg5eU8lvdzz31l7L5Urygas59AF/2AhhkOK9Jrn3p1Ur8TEyObhuRg2gmsZJ9O/NhYmatmAwd2sKLC2joyNpahkPxsEv5RR2CTenePUXJTG3TDOyybpfIqAjvtRjVvnmrRqZy1CXkwNlYMa0qKDbuGw7KWsrP1O5WVVhW8v182Qa/XhFf86qU+TWAf/X5qSM5HqVlaGVWu1sQisFO8mKYmq50H/JKFhaZYVlhZcnOp+ay9lBqo9TSsKIJgW6/93aV9/6T2w2rtE5++91LCR10EntF7HFYveUJ/v1JppfwUlJ6brKrSw8IyGQCXS55D+UcNRuZtSGiToZDsxImJRvScfr+Seff0kGVlAnYoKKDhLDWbJrCPzM9Xb0m14wYGZGycTp1nPv4WQtgdGxttB2Nj+ap6d4amqrdX681U/Vw8uqfV4K1jOGzClJslkpCaypYW9YI1/OhyUfOUowQ2WWoXIMilS2X/nTbNGIRNYly8XrKuTpGCUtRvVJWYm2swUBr63Urgl3ICGhggm5qYm6sh+qDcw3iCMk+2yoZeVaVF5X5b4ZOSQrK5mTNmGFCWUzxyJVI2JThLl0o/xsVJu0OA1duzz+zziUVraBBKMRgGlTXS1sREKZ+YP5/Z2fLdnh6KoWtpEQ+0q4vs7NQ5tULWUV6ePHxDg4ZiJwj4xPiVlZFFRTZ1IOP9tDxrZqYFnoVCciYVCkKfJarOy6OGUoPHlZrrK2P3P399qY1dANB8wJMCg9dT4h7d9DogNTC7jWeUmspPAS3S7SKwgt16+mxvl9NyBzQJnZxMlpfLpNcsv8lxGE4jo4X3tno4Hmi+LjOTrK+3m9ZngNZR+2Tz7OhgTo7sx+PWs1tHRiKy2JubSaeTMTFy0hwALLMEOzpsxO4IQAaD9OvJ/E39l/Pnq3HYxD4gmk/TFTptmp6Ks7NJl/A7MjaW2yDJfL96WC9Bcm29vZrPGx2VfGNeHpmczFHTtxkZlsqMAwNimRX9yo4O+VtdnYSjOjvpBmxN4BAEIfeZtnG9OdFrv0QgcHd6PByDkAEzL88amiHjKfh8FMaXIBMSxAEJBCjP3NnJkhLxXtva1JCUlzMmRtBzDAYtkMKoBaSmkgwGWVenxAD9/WR9PbfpnJo2TfToGBdHOp0aOm/Ug8UO2aydTmlvWRnZ36/53y4+q4ZuiXoiQJfNmcXEkGxoiOYyvV6B34fDZFWVBVU4HJR7l5eT9fUCwmhtpR9RthfW1loKMlPWwtxc+yycP5/s6OBn6mUPD8uhsK6OouYBRMewr88y6bC8nP39Ua4GU+jug+Zly8ro1/UwrJ4vW1rIwkJ+oPcJqwc/AAlRd3aSjI+XsGBamniAtbVkfz+nTTMphs1igfPyLHiV1dXMz5foSR9U9aClhaytlbmpkQUvpIazD5rjb2ggnU6ZI+XlDOsadblkzoxC0goD2je2pKO21orGNjYyGrXIy5MJ19wsB4HW1r+KZ/fss0G6XDzm97PPfmXsvlQvM/Db1Yg5HLQqwk6nUHwxMVGOsYWFEh4pLZXfJSaSsbFMS9PcncqjlJVFZWL8gKzkxETGxAhaz1BLhSAhOsbGCmQasHVlwlklrPbDwyT9foZCsre0telCGh5WwMpO+YMSJZeXUxGIExLaaWmR9jU1kT09NpWyRTcHt1va2tSkBjM+Xh5AySD9ftJCGFXKvKJCrmGkc4JBWfeNjZL33KOGy5YExMWR6enMz4/WKRohUrpcUVaOqiqOjWnOx8D/JFkpISGjIF1dLRdqaiLz8+V+yjYTgUDQw4AlOm5uZjQJ6XRKmMjvJ+vr9cQ9bot8Ozuj3IzirQxFZW9SUpiaSmWoGRJwAZSlv7NTQS+byMpKCf9FIqypMQhEnwAvgkELTPL5aGmpZsygLSOJUp+NinEqLCQwbuvuKispB6Uu5Snt7xeD19ND5uYKOrKqSuZJTg6Bg4xEFKWr7WRlJfv7NQ8ZiUTnWmmpeLuVlQyHpU1BPcRZVeCuLun7xERpy+hodMyUYLuzM5qHY0qKxDTz8siuLplzRuW9ttaOLcvL2dam8zAQiBagJiZahhdmZckaKS21CNsjAJmTI4atvJwcGLB5chYUfIH5JxikDeGzocHWDUYgCOVRPeT5/ZTDZmamtD03V/5taRHDV1Ymhr64mMzONo47WV9vpYBMEtzr1flmwjrKn2tRq+np9mBsQGkhNYysq/ur1Nk9/XTQgseO5f30018Zuy/Vywz8rFkCvBgDLAt/KGQSy5s0bBYkcJidndQNcgOB1zkMoR1SoWlZXHl5NDBkw4LOrCxyYMBqv3FgQDaXnh4CezUU16yn+tc1hLfW6qVJqGytWJjYWObnH1VsW1BAYJcY5ORkCYVpuUI4LJtqRkY07WXjccEgGQyyvNzYlHEFEzxNIWAeZ28vFUEY1NDiVnq9anCzs1WyZquEmFpaLD8g8BwrKkxB7jiBzTztNMN5uZcSKvXpfZ7Uz22l5ED9R4E41lFCnCLXIuUHeykIOz8BgbvPns2j7j1EYLOOU1Dv8bpsnOEwgUbxHvv6rLp1UREtUbXJybCrixwe5hFIGQIjEQP0k5N8RYV4qg0NBFaKce3rY3u7hvmKi9ndLUNvtOGM/I3Mrc38A4RHNSWF0TBmairdegDKy5NDRFmZ1o/FxzMuzkjYuDR02UX29GhI081QSGDzMTGMInsGBsSDSE/X8dgqO35ZGYGtLCmRaWZKEIBtUicWlnEtK5P53d0tnzNK6Ab8IR7pTulbo4ZeV8eCApkrpv5N5tlODWeuk8hHU5OWMRyk0yn9awipp00z6duHpUC7uNjK6GhFC+Pi9IDpcjEAcMYMpeYbHIwerPLzydpaNjZK7lrm+SYyP5+fadSBEKSt4fJkWRnpdIpRrq8nW1sVvfm0AJSOykOKty16grZeNj5exrOhQcOUz4lHFx9PNjSIcWxoILu66PcfxeTT0GBBZqedRgY3bfrK2P0ven2pjd1HkFAmsF6MREICa2oEdDCqIaZxKIigo4PjGoKSMOaTBDbQUIxIPm88Wig3fz6ZlCQ5maoqMitLQAYdHbJQxsY4rGEaNwQEshsSSuzTE25xcZQNH9ghC7u6mv2QwtOlS40EzF5ZXLW1BJ6kJSlsaREvs79fgQxByx0ZCpGcP5/9/fK8H0HAMlvUQwqFxAjshoQLxwCRSxk0+bdxsaRZWeJVulwcR7REIHzU95iQIP2SksI/aN9+pH05qPfsM32emckXIGAA8/tuHadB9RiH9fdDahhCIXkGA/1neTmZmckBvaah7xoAyEhEPAplrGc4bPMvItdUTZfLIPD2yunb0EglJVmhW0Yiosuq3l5ZGWUDz8oSj0/7eXBQPj9oPEH1KIBdVsQzJoZkXt5RHKsSfqXLZXk+Z8yQeVBQQM3bbbahPMDNJeoRTJsmYW+/Xw84Wn84bZqMtwdgfr6EG63enmGwHh3lFr1HMEjpm4aGKM1HXh5ZWChzxwApVD3gdUie0dDbMT09WhTpdJKBAIcAS2JgWERiYyXywdFRuX5mpnhn+fm2vUxNZXGxImFra8UD7eiQEHRrqxppn/R/KCQgrZ4eVlXJODqdVPRrI5mayle1D4Bxsr5eDHh+PtnaaksAxsZI+nxsaVHAjWmL02lRrtYrlhMrm5ok2lNURDI3VzxqpY0rLxcD1t0t08nStEndhNwkHCabm+XeCQkMfvTRcTd2v/tdkB0dPOb37373lbH7Ur0sGnPxYtmEFSElXoOb7Ouj0ymbelGR0nbV1UkcrqxMktjDw1qLtEk9si4CWxkXJxtFczPJ0VEWFurm2Nkpk1jDMgMDAl2uqlLkW0+PhFP7+2WjTEqyefDYWFUydjplcWdmmturl3P4C3k+9vfT69VwbHIygSFy/nzJI/n9ZHk5m9WzYHU1GYkwHFaIvCkkV29U69NZXy9tCASientWgVblY5qbSba0cN482bcKCtSbbWqyh4n+fkqHeL3y3GNj8mH1FjkwIDdLSpK2zJ9v6cVMkX55uYyHiYampERJpxmJREUxc3LkmWprydxc+b7TSWCbGJPsbDE0Xq+EoAYG2NYmYqednbY6QU7iaWlkIGAp4Dg8LPNA1dgHByUHKvm01ZYVw9S07YaAfSorxeufNk29wHCYQFBCsoZBZHCQ66FhYWUymDGDRmOKBQVR9RpDzh0OK3m0Fj/bWsiCAj0sPU02NUn/19eLwWppYTAo+21cHElANurqajXIeyWUWF0tIVIVDAaeIRMTWVFxVKG53y8hz7o6MXSJiVpztsmCpQxBNV0uCzJpapK1IbnzXaTTyfJyU4rgtuKmYhM2W6/M4yE5f77kxBVI095OMj9f12Q1y8vVYy0vl7Xg9cpcUyRtJCLzvbvbAF5eJ0tLLZeomcPATqtdZ0LNcjDZZenWDIrU79f89PCw2sBxBoPiLHq9spZnzGCUiMKw1hQWineXkUHgYQEv4/iXHvz2t0G2tfGY37/97d+usYshSXzJXgcOHMCpp56KV14J4sQTp+DKjQ/jQMm9ePJJ4M7rdqFv6Gy88QaQkAAcOgSsWwcsWwasWQPs3y////3ljcDgIDoufgShEHDb3I+BvXuxeuRCAPL5ZcuAC/e/hgMXXYkpWzdg4ePfwYrbNwDJycB776H27SsxbRrw/PPAkSPy68FB4NVXt2BsLA2nb3oNWLMGN+58CM8cvBr4p38CiovxVPtJuGXySuDf/g13Z7+LR6Y/AkxMADfcII287jqsXjcFn30GuFxATQ3w3nvA9xLfwb7kC3H6pAOAwwFMTKDjD6cgGAQOHpTnuugi4IIL5HLX/vscvFK1HocOAZMny99GRoDp04FT7lqI2r9bgWnTgCuuAM7ZuBJvJV6Lhgbg1luBjRuBqVPlNs8/L9ecOhV4+WVg3jzgk0+ADz4A8vKAd98Fdu4EsrKA+677ELdUn4fkZOmP554Dhofl3ps2AY8+CmzfDrS2AgsWyDW3bwcSE4HPPgNCIeDBBz5Hx3MnwOUCTj0VaGyU5/n+94GXajfjnYlZuDB+B94/dC6Sk6WNN98MPPPut4A5c4BLL8XqxNvwvedvw2Xbn8DaO34POBzoO+tqjI4CV2+8H1i0CDh0CDFnfA2srMXhxQ/iV78CcnOB8/e/BSQnY8ehs3Fu4p+ANWuwsOtqrPiHRoxe91PU1wMPbbwK5+18Bb29wOmfbMaqnbNw9VAj0N8vnb1oEbB1Kx7bdBnuXLADePJJ3PbJg3gi8T7cfeghPPLSt3DCwAf4/IEHMbJkCS6cRux6/i088I//iNeyiLXpd+LDOx7DeTtfwWuTrsKVO5/Aqqm34YEHgHcW/R44dAiP7b8Ft98u/XrokPT3XXcBq+54BX2nXoWLU/ah49XTkZAg45WZKXPktusO4KGGKbhv7gasGvkONm4E3n5b+hYXXABs346PHedhYkLGZft2YFbqYXzrH07CB8u6cVvnP+OJa1bhofeuxn3fbEPpuptQXw90dcn7ie+24eqOm3D77TJ3AOCpv18KnHwyNs+9G2edBZx18gHg0CF8fOhMnHPzZRh5801scBFXzzsMTExgx8gpmJgAzks8ADz+OHDRRdh1+eVYVk4cPChz9JLtTwHp6cCPf4wPW9YDAM6btAN49lkgPh73j/4UD17zDrBzJz684FrcfLMsrynLH5YFc889wKFDOO/SM3HPPcD3fhyDgwBSq6qwIvF+LDz0GD6+5k7ceqtc8qy+VcD27Xgm8W7cmPwWPvnHf8R0jwfvT70M5+N9WVg1NXht7kNobQUezfsDTr36agSDQUyZMuW47HnLlwdx8snHfq3x8QMoKTn1uLTpS/f6v21tj+VlTjlLlwrbg9erBeAKZPB49GdTbOX1yuk+GLTkx21tR8njVFZaVBu7uqzyNUdHSb+fLS3qHSqzhcejtE0DA/K5nBwJY6SmkuXlHNUT9sgIyf5+7gEsTVkkQvms8gR+pF6IYUJpahLHyeOhHEurqixxcFOTel9er0DhExIEth2itLWjQ/71+chwWEJZXm+Uj9DQc42OSmiovp7s6aHXq7kp5bG0aDURwBLUa3y8/C02VtqVmSnPayqK09OjcsiVlVGatthYMjtbiJVNvVZzc5TWZXRUHnZgQMZjeFhCS+GweIdNTQR8ghDMymJjo3qwgUAUvKKMMd3dR3mjfX1MSyNrIXB1ZmbK96qqmJ/PaI6mv5/AY+ICBwJWO49eL5cuFUg8y8vJ0lIJK+qYezwyjvX1GgrTZwYmpJ+6pAxDyj92iheRmCg5xOZm8eAbGuhy0QrIOp3iaCzRsDf9AulncbGMpctFNjSwuztK+8XY2C9KAunf2dEhDRsbk77y+2lZoLW+LAJI3/v9ZHExfT4J09XX6/cN5NJg7ZOSRAwBSkwdDMp8VAYjo95tlcS9Xlkbg4MsLlZPVREwJv1sdCaTkiifHRiQ+ex2R9e1JmjnzKF4VFpWAEywuVk87PZ2WjaY/Hx5ZJ9P5oLHw+hzGyKB0VEGAgr0ycwkR0eZkCBtmTFDr9fRIVGF+nqrUs6xMRWwXcu6OmlOebnOp54eGWelkjv//OOPxly+PMiWFh7ze/nyrzy7L9XLnHKC2dmYsns3rpz2AV5Lvg244gq8NfMWXLL4SnElJibkPWmSnLb37wfmzgVefhkPTf8PbNwIrLzh98CePbh/9Kc4eBB4JHWFfP6994CREdyIZ/DMTd04tGABTokhPj9rmjQiPh7IyZFrXnCBuEzf/jbQ04OzX34C770HnL5/B2qfOxe/KD2AhfdMwdAQ8FLoMjn+TpqEZ148BTfcALS3A08+Cbwy9C28Uv8BrsIrgMOB+16+DA9d8Yr80eHAnxqewCn4E5558RTcmP4+Nk+cj1nT94mrtWABkJpqn/WR965CZiZwSc3V8rtDh7Dr8dV47z3xqp66bpW4RJmZuH/ZFDz43LeAuDhx8xwO4GtfE5fsk0/wzA2rcMEFwKxNT8nptatL7nnkCNDRIX1xzz3yIFOnAjNnypH+0CHsq1mBQ4eky87uXSkn8XXrpM9uuEHanJwMvPkmkJYm/blgAXDwIPbdejdOv/l7cu2XXwaqq4Hqamy+7kHMOvgWOoYuwfUzNgAXXYTN752ANWtk2GfO1PttfQ0x3/0WluJsPD6D2NH7R+yaOBPx8cApv1qKByP/invuAU65/UbciGfws58BF+/tBqZNw8dTL8Q5b7bhHOdNSE4G/p//B/hNyiP4+Lq7cc7EDhyYei42bgSu3N2Gw/k34aSD+3D1raejpkamwXjgj8DNN+P0ja/gmU9jMK+gACuueAa33w6c0LUK78+8GmecAZxVeBVQUoL3U6/FzJnASffciZhfl2MJzsUDoRDgcODjT07AOYmHZe62tgLLlwOHDuE/Zj6CM84AZs8Gztv0exyY9wNM2bQW2L8fU26+Ggd27sPq3tPxvZrL8NTta3HLDYeBu+7C5w3/gd5e8QanTgVmHXwLePxxXLnzCbz26GZg5kys3XgKLpu5S9ZNSYmM2803A9/4BkpLiN+cdp+4V/HxMo433wz09uLjxStwzs61cuH2dmD6dIx+f6F4RfHxwKWXinu1Zo24pGbcly0TL3jyEzIHt2+XeTF1Kt7ZeTou3LkSB+Zeiym9r8h1ExPl78uWyZxZtEjamJgIfPSR/G7aNGDvXplre/fKvM3MlM9Mny7/Ll4s82vRIlnDiYkyJ/fuxTs3PIwLJzZIOKKmRubg3LnAe+/hk+9/H9PLyoAXXwSOHMHEyAh8vcQ3M2Pw+3rizhMbcSAUwqm/+MVx9ewaGv7nnt0dd/xtenZfamMHeFBWdhkee3sObpyxHgcPAqu2fQsxW99DWdmJmDlTwjc7d8p6bWgAXnjhENLSHNg8dBqQnY3Pn1+JkRHg9G/EYD+AVU3Ej3/8PurqzscbbwCrJl2LmBceAzAFIZyKS2cT06dLO0ZGxC6UlMjaXLxY7rd1q/ztloveB154AcjIACZPxodTL8F5jo9x2wPn4ImNsyQ8k5gIvPgiDpfciUmTgI9PjMEM7MXg4Bk494NuPOj7Z9x/wUrZxZctw5ntj+HXv5b7Dw8Dd793G2ZtfAKffCKb/Ntvh7B06deRmQlc+eQtuHvqU9i7V/aZxz65VnbisTHgjDOAggJ8OHEuJiaALVvEbm3cKPvWoUNyTkhOBu6Of0J+mD4dH+I8nDfxPt7afz4OHgR+9Stg/nzZHz79FOjulp8nTwYeeED2mOXLgZ9cswsrus5Ge7tcauNGaVN8PLDqgXdwbfWFeOGFEObM+Tra26UfU1OB3l651rPPAklJsp/Nmwec8Ogjsnmlp4sRNBsegL6fPoWvZ8bA305c778foz99EAkJwIknPo9fIh+L+vtx4a2z8M7MH+D+1N9j3jzgku+ejIWF44iPBx7eeCVGn30NS5cCj705G8jKwsm/fQzjuT+QzjnxRCAcxjvJ1+LCZTdG793bK4OwfDkWJr+C3/72AFi2GI/NfAzp6cBliR/istvPw6OPAhe+tBQdM/8VN9wQAgeGce2i8zB3ruyl5028DyQn44Gvf10MXk0NcPHFwMkn4wfLr8Tvp98NvP66hMAfOIB9E1PQ2ip9On068NDMJ4Bbb8XadSdg0ybgzlsPYEX7FJx6KnB9wmtiTA4dQt+WU5CQAFx3ndjQ86v1WR59FM9sPA+9vTKGy5eLvbh67xPA+DhWxP4Ul14KnL99FXDFFSj9xRT8JnQLnrjiKXzyiUzruXOBH/8YCAZlDmRmAudiBx5sPRf3v/cDxDz3FFJSHGhoAP7pnyJgOIJZF52EzZkLJV6dnS2N+sY3gIwMfLj/TJz3xgr86eaFWL4cuP124I035By4sv0wYr52IhobT8RPRu7HSTUP4t/+Tc6ijz4qn+nqkjPWggVyWXNWu953L9YueBjV1TKstbWyjl99FRhP/hbg8WDlujNx7Rt3AjU1GP3sFJwV2oG7G87FIzWHcfV1J+Hll4EjRw6BfZsRc/EssOJ+3HnoYcTEHMBjjx0fw2L2vEcf/Z8bu7vu+ts0dl/qMGbwppssZyPLyxkMqsRLR4fEKMNhBgKKTOvslLhJdTU5Nmah/W63hCzy8iS6ODxMsqGBTqf8vaKCQroblNCIKtTYujgGpcjTRO/Gxiih0aIiAbZoUayRTSkpkZ8zMuQ+KSkahgyHuXSphuhUDNPtJhkKsbf3KABHUpLEZQoKotyWHo+EDT0eCQs2N9tarFCI8iCBgIRsVByzt1f/5vGwt1ciTqGQ/J2Dgxwbk/tFIhLWycuLRsFMgarl+BwbY3+//L2oSH43MiJhq85O6bfKSrn0vHlK49XRYUOthYWUG5kYbkUF2dxsQ11MTyebmkyUi36/ABIMt6HXK91gSLpZWCggglDI6vi1tJCsr2c4TP5S0XPAVglh5eYKSEj5rwYH9bm09qyqihJ6HR0lc3Lo9WpobGCA7OtjcbEiNgdJVlQI8GVwkMzIkNBbdTVZV8e6Ovm11Tn0emX+GjXUggLS7ZbQpaoKL1GUYHOz9GM4TFsEz+Fhy/3NSISfKVqSAwOWdcYMgAFE9fYq/VgkYvX46PfLmJSXy4OoTEIwaLEnzM3Vfhge5tKl8vwmih0MapmOEXCtqyObmiz/ginqNGUMIyOM1mseFTI3c8Tvt1zg9PmiylAMBq0YQUmJPmc4LCHuykpBR/p8ZFOT/OxykV1dHBmRtRCJ0IZ4DQNeMGgjrTInfT5pREMDs7Nlvg8MyPMZ5iKbjjBor56eaH/X1nLpUilHCC5efNzDmI8+KooXx/p+9NG/3TDml9rYLV0aFNivrhLAx/LyKLGwEVu0NTuqtNnZSatNBuxjbKwsZEF0jTM7WzdZ1dYCdsmiLC2VFRgIsKdHjMC8eZTJXlgoeRRlojYbfH8/tW3bZBNwOKRh1dWC+gqHCayRFR0by6oq+bGzk6yH1AIC41pkPC6GobqadDgsRZHLJc/o8Wiuoa/Panjl54sxKSyUvweDjBY1NzWJYRkbI3BQNsH+fsbFRSXtiosFVfZrKO9mYaEtBmZ1tRjI9HRugxTes76ezMmRfFBfH1+CsMqsh/ImtraKkQ4EbLH9wIDsG/Pm6eaoBLt/AMimpmheqKGBdLsJ7GAjwHoIbyYrKqRNgQALCpRZJilJyjgSEtjdLXB5Iw3T1qb0aykp7OkRirCQlllIKctaNmu7GRcnKMrERALNjIuT8SkqEhquzk4ZzqVaWmHyQ16A3d0idyPUY/fzN4DdDF0u2RDz8zWXVV/PCJS3sbjYqo83NZkc3npRow/J8zIjQwapr4/19YJ07O2l3fjDYaUyU8X55mbK/G1qksNXRgY7O2W+lJSQzMmRsgjVLBSdyF0y9/UA9Da0AD4+ntOmRctYWF3NMUWrCtH3Y1aVgHV1msvyUajmNinF2JCuv4Pal5vp80lhutRkrtHay11kcjL/AOGX3QYpIjfiyUa2yzAiCRGzcM2KEOtzBNrlcNDaqnV6Gyg0fxsEZaxI3bw8qpzQJqtuYaSPWlqMlJVP+nVsjOzokPEeG2N9fVRZBBgnu7q0pvL4Grtly4JsbOQxv5ct+8rYfaleZuDnzQsS6CLHxmTBVlYypCdhjo3RzEC3W2yUUA4NyclZhR2ZnGyLgb1QqqpAgBwbE4OnrAsej24kg4NiMYzbMTxMp1PZ27X8ANgpp+DMTElwBwJSE+X3a5HqrmixTnMzX4AQUefmkkxMFEM1OqqL/mkyI0NkhwBbhwQ0kgkJDIXEQLjdYiwMXLuxkbZez3Ji6inXSCVI8faEeGkAOTwsHk5enuwgXq9VXxbYeDNzcuSyRUWy+AUosI9SOF6l3IkuAu1asCwSK8BhpqWJVyMcjgelf5WoeXCQluC4vp5KrPwMm5pkE6mqEsPQ30++rgCO2FiS8+crT+kOMjNTC+ndZGur1PcF5ESfkRHFaHi9lDFUGSZTgCib5F38LUDREryfPh8VkNDIVwErUf4mQDY0sL+faiDbZX40NysM/y4Lf3c6pSYOaJd5EQ7Tymp3dpLp6Vrn+bSoJwRpJalkI1/PJQDLyhTI4XZzcFApw0ZH5UBVWWk1dQ3biQ9gSYn8zihts7+f3QZgUlvL7m75W1wcZTCHh7XubT1p1oQSkwN+Dg8LiGMYwrYjzz4q803LY8Z1rjM5mWlpUqbRDyEVD5kDQUWFGDynkwyFhM5OGWoMsfoYpEZT1BF8ZFKSlkOsE8BUUpKsleRksraWQSh7ic4D828bQBYXCxNOQgLHITWer0PIr8vL1dutqpJSjbg4Dg4qyXhCAtPSpAxojx7a9gC2zq6xURhzTA3hvHnkq4AeQH5z3I1dbW2Q9fU85ndt7VfG7kv1smHM7Gx+AGFV+AjRQm5C6tOYnW13Zh+Upy89nUxN1cLqISvWWlCgaKv6ejk5JyfradVNBgKMGERlcrLsDEYLLimJA+qBhSE8lGxpIcfGWFOjm096OoG9rKiQdn6mi8xo4aWlyYLzQ1WOAwF5d3bKona5OABhe4lEGEXaqeLzNkB2ssxMWyhcWEjLI0mHg0xPZ2OjrOeSEg1fZWaSbretG/pMFzLT0uS+SonGlBT5fWwsB9TLe1V/H4IUl79t+rewkMzI4Ac4StWgulo2zc5OWs6yrCx+BC34LyuTw0B+PgdxVDF7XByfhurQVVdL36sna/k2BwfpgxSnO526ofv9ZG2tIFZ7esSNC4ftiaetjaTPJ4eigoIowrOpiUxIEO+4ooJMT5d+8vnIri4xVGNjZHGxHG58PrKlhe3tokDhdgsqr6yM1vNlXx+ZlSXGJTNTjGtaGoFR6YfRUfEE5s8nm5rk2YzGVE+PeHjx8Swroy08H9CDCXNyyLIyy51pai2DUA1ERaz+ElqTGQ7ztxD5IyObNGeO9JEwwgzJ7+fPFw9Pq7NDOtZMTJTxqq4WI6PoVebm0gXYEGhNDa0X/xGkkHtkRB4rGFQOTWNhNYxRXCz9/AdjsFQW3OfT/o+PFydR56elDktPtyjikRFZ++3tylrT0kKfT8P/Or9ZVGSp4Hp6xOMfhkYl/GLM29sp6zscJp1OmfudnUbBKsoEb8IwBQXR1El1tSWjDq5a9ZWx+1/0+lIbuz26WQJBcnRUNsixMTI7227OhuC4vp5kczPf1I1aTvH7bEG0oYIMA7KJulxkICAbYigk/3e72dMTPdGNA2RiIof0JMq4OO5Wo8fBQXo80ZIFCesclBVWXs6aGs2BZGQwI0PDJX19csLu6CDHxsSwJSRYXkivl+SoaNjR7yerxJMyXH7dEOaSYZic1Dp+oIZgEEqj1dGh7CI+jkNCdcEgxWUqLJRwo9stiz0pSQxldbW0yeGQTaG2lqyslA0uLU36MCVF+iMtjR1qrCL67tST9XOQEoZtxmOYP5+sqrL6e1tM3zU1kXl5EkYsKmJPjzzuHggpdFOTeIdGxsbvp4bKnASeZGMjLRWZyeGMjZGMjbV0VfRJyDugc2P2bNJIt6elUS5eVESvV7kptQib1dWa49trpW1qaqhE1EM6r1ZYQmQODJD5+TL/VMH6U4DAJinHqKwksJUewKq+s6GBDAQMS5pB/dvCc+AZ2ZC1XOIDgIQQLP87tADd52NVlXjIgYB4w9R71NdrmN7t5gd6UBtWIyhe/E7LEtTTI5GDkhKVlBI3i8BOpYpbzX4IOTUdDrKoSJ61oIBMTGS/juGMGdqPTU0sLpZn2a1zQELJ28iqKpaX65ppaDiKNk7UJ4B7pcQE0KLwTYxExNM0LDElJeKlGf7SigpNNVRVydzu6uJpp0XTFkuXyrpjUxPz86XYPC1N2hkTI+PaByhdnp8VFWpIBwclDVFZKf0fFyeHnMJC+nzybEGP57gbu6VLhZz8WN9Ll35l7L5ULzPwPl9QjNvwMJmSwqwsBTv09bG7m1Zzq6ZGCZTz81lZqaCThgYyHLZ6jcZTKi+n7AQNDWRWlngHfX1kRYWAL5KTZZNJTbUgD5P8HxigvYZGyaydHBggLXfRUQoKbrd6FT6fbBDDw9FMuLK1+Hwk09KkNq6vT0KwwWDU0LW2ksPDLC6WZy0upuXZNPttY6NsWEVFFKOXmcnGRtmA2tpoWSTcbtIUEyoFp6WUCQQYFZUtKpKwa1+fXLSnh8GgbK5z5kS/NzKi4baWFsbFyb3mzVMlgYaGKPt+cbE8TyAgv/N45ISsbCcsKxMjVVgYZZfv7BTDn5goKzkpScJitbViiLxe2dSbmy3jDcvKrJBpKHRUPrelRcbB1A1qItHvl7bX18t4tbcrw0YgYNKdMl4VFeINNTSQ+fkCdFJwEfv6yKAIDY+M6D09HlZV0TLS5OfT1oJ1d1Oew0ykigrS7VZqs2es4vnAADXk2CgbutdLwMVaQIxmdTVZVqZ53+sFiKEeDPPy2N0tvK7Z2bS6cW9C86vhsK0zPQKhoGtulv630ZOkJI4DrKyUXNrSpWpEfT76/dEz4/Awacg2W1o0CtPUxN5enSeqk9fdrevU7bZsKpw/X6IM1dVyEEpIkDWemyteqPJZ+v06pwDh2gzommpoIKuroyoSgYD0qwK6gnoQM8TQrKiIAnXKyqKHy5SUaF2i/t6gVxobaXUWGYnQ75clEezrO+7GrqoqyNpaHvO7qupv19jFkF/e0oNZs4Lof30CaGhA7dfux8CAsDfc7bvJQtsNi8PEhKDGn3xSys6euW4l8O//jkfy12PSJOBOxwoAwIMjC/Hkk8CO59/BgZkXYsoN38PZm1bj5ZeBWUNSg4UXXwTOOgvfafkpFiwQ6LbDIajtkZEoxDk+Hjh/5DVg8mSsPfQd/P3fA2e5n8LHV9yCP34zBhcFAsDkyeh49XRcn7FDKEn278c5zpvQ1QXMqrkRePRRfD71TJxw6E84POkUfO1ru8Hg14FDh7B645n43kV/xIXzzsT06UIKsX8/cMcdAkG/atPDWBF/r4XvL1sGnDTxJ/nhpZfwVt16JCdL9UN7u0DEd+6UNxAtJ/jNwJXyMLfeij/NvRqn7HwfB6afjxdflM+ZZz1h+4f42HEepk4FTjn4R4Fsx7+GP2VeiVM2vYX34y/ByIiUNdxxh5RnzZwJ3HbzYTy2/CQsWyZlCVdcIbDytbc+gSdwGyZNklKE++45DNx8M+6b+Xs89MsYIDYWhw8eRleXVGac8/IKgarPng383d/hocpx3HfDDsHkHzmCmJvPAVN+hB+kf4hJk4Ann42BI4ZYvBh48NEpWNt1ABddJM90ygP34nD1wzhp7mXA1Kl46KKVtnxl6lTgJxdtwAmZ38HEBHDC1velTw8dEqz+c88B8+dj4fILseLQLdjxwFNYswZYOPIgkJmJ/9h+FX4y+Smc/ONb0NkJfO/lO1H7jcdQVgac8vxTUiv6vJQXnBd6Fx/Gfwc72jfgXMcudLx5Nq6fsQEPXHwxzmkmbr4ZOGnTBtzf9R3s3ClzPDMz2s5Dh6Rq4eLZh4GSErxzxxNITwf27AHCYeAcfIyF1efg3/5NSk/mzZM18tDMJ1C75zZccQVwcVhq97BxI3bc+iCmTgWmTOyTko9Fi+RGL72Eq+r/Gd/9rlzn3Xe9KCr6R9xzj5TlADKvJk8Gbrv0Q8z/2Xm49Vagp0faO326/O2SSRuw8pPvYOtWaYvDAZx/11Vyj1tvBbZtAwoKgBdfxOg/3yZMLL/+NWIW34Xi4q9jxQO7cNvis/FEw58Q8/VtyMn5B1x6qdzj5ZeBs84CIhFhmtm6Fbhw8ofAzp3YdcFV2LpVbmMYWj4skbrKN96QMqLPU8/HxISUYXy4+Cng0ksx+vVz0dMja+fOeR9i9fbzkJgIXHjBYRzo7cWpl19+XEsPqqqCcDiO/VqHDh3AkiV/ndKDTz/9FHfeeSdWrVoFALj66qvx61//GvHx8f/l548cOYLFixdj9erV2LFjB0499VTMnTsXNTU1OPvss+3nrrjiCng8ni989/rrr0d7e/tf1sD/29b2WF5H5+wENTYhHk51tZzukpIsqsxIyLCpieMmF5SdTWC9oNI6O8muLs6Zo8n/4mI5EZeXk3Fx4r0YJKahOCkrk5Nfbq7N2X2gIc2gCZ/W1QloIhAgExOZna3MHhUVfNeEVUMhMiGBSUma26uvJ7ApCmeuqJAw5vCw8mjukL/FxsrJsqpKgAEZGXLqVbJmFhWxpUVPuuXlcswsKmJhoXhWTqcCWBoayIYG8fYiEatRx5YW8YyM2mdiooQos7Loh+TitkBya3sQVUn/TE/VuzW8zLg4q6L+gQmjtrZaAmQmJ5MOhyAMDQQ0OVlcgYEBCZlmZkpeKTVVTv2BgHiXlZVRppb+frK1VcFBz5GBgCIgN5C5uQKISEy0Ej6GWGdgQJhLYmIo91ShOGBC2pefL300OBj9XGcn2dAgobPsbLK/X4ApqakqCbRWUjrmeVNTNfK3i0Go1lxmpoTe4+LUM9sq/WM8yORkNjZqecvwMFlYKN6xSjgNDIh3uASaI9UyBRYVkQUF4l15PPR4JPTL4mL5e10dWVUl90hIIPPzLUQ/qKHBkhJxXjohuTYGg+LJFxSQ+fl0OkUkNzdXQoB1dZr/6+8XT9Pwp9bXyxyNjWVQw8+Gt9Pno7gZUNWC1lYmJCihdDhMp1M84Lw8XZN1dfwMgrwdhIBcsrM1ipOZKUjLzk4yKIolDIVkfitpuI2AJCSQFRU2zGlCtKMm9B8KsaZG101amsyzujoyNlaRoYdZX88o45Dmby3ZqUJDXS6SgQCDzz573D27ysqgDb8ey7uy8q/n2c2bN48XXHAB33rrLb711lu84IILuGDBgv/28/v37+fcuXPZ0dHBrVu3cv369bz44ov57W9/+wufu/zyy1lcXMzdu3fb9/79+//i9n2pjd3QUJD0eGQD8XhkAbW0yMSbP182o5QUCaMo1ZLBB2dkaFgrPV02kZaWKO1Va6uspNJSmfADA3LNSEQMZ0uLbLLFxQarTOblyQZfXi6roatLwo4tLRKG8XplgaiCAevq5Brx8WRXlykLtOHPtjaSoZAkxBU0096u4IeqKmZlySI9ogbGJqO0lkzR1GKkc3NFUNNv9wTZiDo7OTKiVEcGlNDQID/n5soGkZUV3fg1X8P0dGl3UZF8p65OwC5KRWZrIRoaLHFvRHNKDASigBGtqXO7GS1oqquTRjY3yxjU1xNwSogxJ+cLYVzLIp2ZSVZX25qw3l6SkYjkY1JSosZOKcxEkXxC+mt0VEJ+TqdsikZNIRiUMGphodCljY3JXFCttd5e7bNQyIbEhoc196ria4biLDdXf9/aKkYyI0PaVl7O3l6dh3l5DAa11jE2VjZtrUiwXQ8AAQAASURBVOG0/VpWRgMvDYelbUsACxZhMEj29ETp1pqbZYOvraXbrZv4/PlkdTU/AvgbwOagmZ/PigoLNpVDVVKSGG1zcnI66feLcfP7aQURIxFK25Rc2zD1mfsPDOjPfX1y/+RkWa/KgN3ZqfdMSIgCv6qrZY7V1sq88PnESOfmkn19rKiIRrQLCig37ewkk5JkneXnyzMEAmR1tRizvj6Gtb/CUJCM0b7LzWV7Oy36NhgkGRcnY9/SIqmLnh4x7PX1zMlRsJjWqdbUkKyoECOblcVIhJwz5/jThTmdQVZV8ZjfTudfx9i9//77BMDe3l77u/Xr1xMAt27d+mdfZ8OGDQTAQCBgf3f55ZfzZz/72f+4jV9qY/fRR0GGQkZk008mJTFkcgvGeHV0KBR8udRWacF3c3MUpcXqalmdfj+ZnW0XfVwcSYeDRUU8SvxTNsdp0yiL12DZtSCZY2NkXZ0sOK9XEGIqRJmfL20tLCRZXi6bsIpwaTkS6fOxuVmMXW+vlgxUVMiGmJrKrKyoBhwrK5mTIye2nh5aEU5WVJApKeKVpqfLgnc6rYr64KBu9jk5svk0NxtgoT08uN20uS2GQrIZqZROZaUa3fR0trSIgbFF1i0tYoD6+6MqEZmZ9HrFi2JpqbRJN4alSxk99dfX29q7QIBkVxeXLpXzgcMhY1VWJs9qc61FRfbUmpdnZQJNXbPVvguFpC1jY1I/NTxMq97g88mjuly0m7/Ho/k0l0s2MM1fsayMrKuTjdfplL7u6GBdneyvxcUKiIhE5BlMxXskQgaF15CVlQLoUM5Fp5MWQev10vKzjo1J95sartmzTQlDo8y9SIRjY+LhfaQ5szcBAneRXV3MyDBCC+P8HUA6HDztNLEJaWnybLXqobO/X9fJWgJ30uOJKpEL+/8+sqJC+s3pJBBUb+cgWVdndQCNrA5HR2WsVS4gLU3nrMvFmBjNm2t5UEqKgldGRxkXp15TdTULCow2pWg3AqPi5efnq8TPEOfM0bkRDJJFRUZLmPR62dwsNrqmRtdqfb0Vwx0clH5wOKQtFRWypnNzZR7V1Oi4qIqH0XMcHpa/m1Rqe7vuKT4f8/K07c3NZHY2Gxr+9xq7oaEhBoNB+z506ND/qH3Nzc089dRT/9PvTz31VD7xxBN/9nVeffVVxsTEfKHPLr/8ck6dOpVnnHEGzz//fP785z/ngQMH/uI2fqmNXfDcc7U2bAd7e8mnFd3FvDx6IajLgIYo2tooCzo9nX4NfQKj7AHoARiJiGFxAdZjMYbUFJMfzaDA0dEo3D41lSwqkk2jtlZ2CYVPtrdTNnefj8AoIxGxB93dSnKblqabxw6Gw7rJ6+4GvM7GRgnvBAKUlTg2xrw82fj2QGsKMzLItDRuMZ5eaSlZVUVggq9D4P9vm+fq6mJW1lFEyF1dUlqlYVimpFCho/wIguKcN08ecWCAslOMjkpDMzIs4KO/X9teWyu/6+8ni4oEbGHYYFJTycJCi16zxtblIsvKBJLucMj/09Pl0FJWZtlpOH++9FlZGY0Ib1gBDU1NckkhBthlmUu6u0kWFTEmRkidDfaAyckCz09MVO/xcJQlpLCQwBDb2+VxZ8zQ76Sk8FMd85ISBVOoKregGH+l9XKbbN1nSoqOf0qKFiXv4zaA06apHl1pqZWxiYvTQ4uSetfXU8Ocm6UDpKAwCvBRgoOPAC6BoCl9EORgczNJl0ueJxSSvu7qknFxuSSkXlrKMaiGoULtpY1DUiqRkkJmZzMUioqds7nZkOawuVnXQ0sLGxspaNvWVgse6Tah9a4umezJydwDRW6mp5N1dSK2axhkmppsSNin4yrrYBNjYsToVlZSQuFh9Qb7+9nTIzVxL6nB1+JPiUqoxdyjEYk9QJSguqjIIlbZ1BT1Ut1usqBAWIU0auP16rOmpZEVFfZwxK4uuUdurhj5jg7pt+Jinnvu8Td2994btBH8Y3nfe69c5//7XrJkyf+ofUuXLmVKSsp/+n1KSgofeuihP+sa4+Pj/Pa3v82bbrrpC79fsWIFX331VW7ZsoXPPvssk5OTOXfu3L+4jV9uY3fRRaTbLZMwM5ORiOpvZWeToZAN74TDlAWQlma9L1Os3NQkp7iEBNmLBwcpP3R2kqWlVoGaVVXizagygg1lqqYYQyEuXcooTZGWG3BwkAkJUTHNlhaS5eWy4INBnnaabnBjY6ys1FxaRQWZnS3f8XjkO+GweIRa28eUFKsLR5dLjptud5T1PhJhJKILcmyMgYCcwisqSPp8HBwUj8wU4Le3U77f2ipvQ2WlIqeGusyoVtPnEy/EhDFVxcCkhxgIkP39Njzb2xtl1A+FaPNsdLmkvU1N0qcdHWQkwuHhaLkhCwrIhAQZm6wscmzMnswNmzudTgNeJePjOW+efDcnh9GcVl4ei4q0ZKSyUgxiVhaZnS1929pKFhdbj5CFhZw3T8cuO1sOTOEwPR69p8vFcFjshEVlOp2yeXZ2kgkJMkatrWQwKP3V2Um3Wz321lb516hSQOi+iotpadSMGrcp+xoeJun1SnuLishg0OaglmhYki4X6fdzZETyaxwcZHc3rYp2UxPJuDgrPcjBQbt5j4xQ1khRkYyrCYd6vSwri6b/2Noqfa3hZxO5Zk6OrLOeHjqdOreV78ugRxkOi0HQKAbT02WclZFkZETz26pKz7ExMhSS+3Z1WUfZ1JSaA4phPTK5UI6OkhkZdh7b/jOnCqPPZxDFzc1RtZG0NBYUyLzt79d+qa6OIqVzcsTzMzn+3Fxr6GfPVmHmtLTjbuzuvjtIp5PH/L777r/Ms1uyZMl/aRyPfr/99ttcunQpzzvvvP/0/ZkzZ/KXv/zl//H5Dh8+zO9///ucPXv2/7G/Nm7cSAD0+Xx/Xufp68tt7L72NaUe8nFsTJgLTP6oH1Ioat6VlSQ7OrhNT4BCJ7SVoxCQhdMpuRPLolJZGQVDKAcie3psqqG7W4p790DAFwPqBYXNaV8ZWJqaJLcmYZh1EgrTer26OtnMJIe0gxwelhCYx0OOjckptbaWR4xnNzbGkRHZX9rbSSYmynNlZJDx8XRpOyLqYQLr6VbPzgtIDs3l0vDTkJx+MzKivIjqHZow6B71jC1xZkGBeCNNTWRVlZzKU1JkFRUWipeWkyP3Sky0iu8f6Lj0AGRyMl/SvmJmJpmfL5tYcTHfhoAP6HZHYedaBOxyRWviDIFNRQXJlBQrRgtUE1jDGTOswyxjV14uHqHDwaVL1Xvz+eh0infc3i6ecihEsq+PnZ1q3Pv62NurYcm6Otk0U1IYhhT474ECREIhpYlaSWA1gRWykTY0yEErL082S4+HaWnihQCbBJBRWUlgG7dAZKFycynj5PHQ6RTjVFcnYx4Omzo6l7SvoIDs6eGbAH1q6JYABJaT4TDdblopK6+O9chINAXNsjK+C1GN3wNoOmCIhkjBnAhNGQETEsQ4pKQwKcmEGPdxt87vbbp2BgdJ5uZywEQUqqpYURE9SOblUeZUXBzHtd0JCSQLC8WIh8NWTktq7bZp/y5mKCRsLMLOs4sMhcRD1zrPggINqasx6+3V/8fHC+ApJ8eGIQMBzZeq4HJZmQxnWZmMQUFB9DkkNT9hS41saL+iQkBvKSlyiKisJLu6+CnA5547/p7dnXcGbdj1WN533vmXtWnPnj384IMP/n++x8fH/0dhzMOHD/Oaa67hrFmzuHfv3v9jmz7//HPGxsayvb39z3oG85r0l2E3/3e9dvf/EY4ZU8BNG4BvnIxbphGJrcA7j1+BTe+JCOvevcJuPm9RDJCfj2eqiN27AcbdC9x1Fx58nJg5E3jomj8BDgeuHCBeS+8GTjsNuPlm/GjPWnzg7AXWrcNlW1dg7bZpwOzZ+N7u3XjFTSAZ+HinQLzHx4Fz8z/H/Q+cgHsmCZx64Q0HcPdW4o47gEf2NgG9VwAHD2K74yrcfcU7qK0hyq4B2Pw68PgneMm1CNg4Cdi0CfctmApMvx11vBe/KPkeSr+5Gr+Juxd3AsC821F6zW785o3LBMe/YAGevP10pKfLM49sBJg+G/MTiaVLgZdfBB71CLz7g6a1wC9+gQfnE1u3AtdtB2bdeiswbx4+PHgVLtjdCDz/PP44aRYmJoD4ZGDKmlVYW/IMtl7xDFLX/ACYORP3zSbmtb4vNPKLFuHDSedjZAS4fWdU8PW994CLXwfGM9/CdzGBJueJWLxYoN/3JT4BTJqEU26+FkhOxitLiYtu3QX87nfA7bfjmb1X4caXb8EvLugGmptxZxnx2P4Hga3zcPfMEeCieCzc/yFW/MtsIC8PTHocWDAMTHbLjVNvwOZDt2DW7bfjgknAI0vHcd/kFVLv8MlB3Hzzhej5B+L6aWtx/bIJ6ffp03HtyCogORVwJGJ0E/BS0e+xevLdmAfg3ms+RGoqMH5WNxa6iEsvBS7YClzy8v1gwXbp4E8+wcdpq3HOnH144w3gqscfx1kTf8To31+Gze3v475Wgt9oxL0BonoxwOkrcOMbxDN/txS4IQOrJ36K7+1fJeoFE5fi7v2twMUX48DXFqACT6MW30dmJvH+9GcQHw9k4S6cdtqvsO/gKnwXy7EEJbjl9h/jqf1XA1OnYsdNv8M/4kZkOdrQnhiD81wunNf6JGovXolFOBupqYvg9QINDwBuJGE/AMQHBfs/MYHz06fg/CNH8KBzHPcvfxDXXvAhdr4QgxPOSMdhbMI9ZcQDv4rBo5XEDXnA+Ttfw+cvrsKTi2WdnnId8PBdVwHb78FjpR9g+c9igO82YPO6AxgfB65cejX+eIUDHf/8ezx0QwxQ4sV/VO7GT964EQvDI0DcRmDdYoyiGqfM8+CeHOKVT27EYjwL3JCLDVvfwI5NB/Dv/w4803wSMO9xvDb9Flw5+gQu9j8sZTptn2L/fmDmDcDKkoXAoWpM2fI2frV8ATC9Gjj5ZDz28nmionEoHoi/HM8k34cPb12F3uuAV+45E4ewB479wzjl9tvxeddqXN17H3DPPXgy8WHMnAks3PowsHgx1vaehGW5ROvXX/r/xzb4V31NnToVU6dO/T9+bs6cOQgGg9iwYQO+853vAAD6+voQDAZxySWX/LffO3LkCH7wgx9g27ZteP3113HGGWf8H+/l9/tx5MgRTJs27c9/EHzJJX5++9sgTjhhCm578Wo8c8MqOBzAtdM34KrF38E114jydTgsNTbt7SLz8cknorpz/ehjwN69eGrmg9i5U2Q9Tti5A6u3nos1a4Bf/Wo7gGlgRRXudzyMJ58EPo6fhZgt6wHsBQA4nd/Eu++KHFdystQRpaYCt+19WAp2zjoLANBx8J9x/fAjwN69uH/SQ3A4gPvuOABs2oRHNl6Guxd8CDzwAO6d/gweTnwEHd+4W+R7pv8e78z8AdrbpY7tPscjWJ16N7ZuBe6evAJvXbAQkyfLc735piiFf/e7wMUtP8Fr1/0HUlNFnmXePCkNfPjUpUAohBXJD2HhBW+JQfjNb7Cj811cd52U+bW1yXeMLBIgtvS996R2qOOFk9DUJGVX7e2ixpKRIZIutyxQ/bRLDwCTJ+OSS0Vj7pQ1q7AKVyM+Xuodv/516a9vfUuea/9+4NNPj8DlisW6dcA110it01WZB3DhFVPwTtcu/Cle5IE2bZLxvOEGqW/bl3g+WluljSdsekeKBl9+Ge9n3obJk0WBfcqt1+LAPQ/KhWfOBBYvxiPTH8HdN+zCF+S4p08X/b5N5+PG6Wvl/08+KYWEvb1YOf1OXJv6PnbFn4+zJ/1ROikxEUhMxMcjJ0mdn7nWdddh16RzcPbzj+HG3jvx/e8D16e9D3zyCd6afBUugaihX11ytpH+w5Q/tKFv5k24OPB7TLn9Bziw/3OguhqHF92PN96QObph+Tu48PYLcd11wH2XrpXOePVVPDH6z7gt831g5kzccvtJOPfpGBwoJx5JfwpXP38LVk29DauvewK33gr8y78AvynagM8v+g5OeHElnjp4LXbuBO5bEoNnWijK9Z+8hVV7L8H4OHDDDX9Ebu6ZuOsuqVG97NAruKz6KsTHy+OuuOt9PPj8+di/H3jk9dl4puJd3HjBZtz//CyRT1p0Gf7jhrWIj5ezwN690kULFois3dSpojx18skylxMTZfwnTZI1nJ8vPxv5uYdrPsc5ySdg7lyZny++KMMUHy+fe/55Gbo77pB3ZqYM84IF0XrSqVNlThvZy95e+e7NN8v+UFkJDA0BXq/M7fZ2+fzcufK5M86QOdzZKd8ZH5fa0ORkKfPcuxe4wPEOTv32t49rnd1PfhLE17527NcKhw/gP/7jr1NnN3/+fOzatQtNTU0AgIULF+Kb3/wm/vCHP9jPpKam4pe//CXy8vIwMTGBf/mXf8E777yDrq4unKX7JQCcfvrpOOmkkzA4OIi2tjZ873vfw9SpU/H+++/j5z//OU4++WS8/fbbOPHEE//8Bv5FfuD/kpcNY65cyZISRXKVlUUlik1JQFKSxCU6OgTuXFQkIbueHrpcShWUlmaT0KysJIuLJSxRXEympLCkRMImzMoisFNCc+npEq5MTLQwao+HZGEhBwakKS4XbbiPo6MC3AiHTR5c8kVVVRIyTU+3ucOREUposKGBwDYJs5SXSwgoFBI4dn8/AZ/83NEh8aSiIqvgbcrk2NwsObXsbFuTV1KiiLGGBtbVSQQ0KUn5CiGku69Da+bi48mcHGZkmJDV5mj5gIJC6HRamsCYmCghtWFXSU0VOqf6eisyTfr9FvDBxERa2GBLC61eTnU1gcNkZaXkfXp6bPWHF0b9e59FVNbVad6stpbAPvb304bm6PNJf1RXs7FRc45Op/RtKGTzXkKwvYPDEJUBYIhpadJfs2eTTE6WPu7qknF3OoV9xOViXJw8RjAoYS5giC5XVAZHkLwHJYTa2ipxQSUvNvoxwN4oI9DYmBFwZ2ysjk8gIN+vrjYkN2Rzs4TxXC6OjGj4NTeX5eVahzc6Sra0MC9PQ3ZxcWwEpCMrKpidHU1DGVALm5pYUkK+BOE9ZU4OmZ9vnyUvTyjPWFxsOUmHh0k6HGxp0b/l53McMNUwdENoyXYDpN9vc5EsKiLnz5fv1NUxHBZE6Uf6fhvgyIiul4YG9vTIXLQlDPn5ZGYmQ0C0L+PjLb/qgHmGtDT6fJJSiGh4/jnAshSxo0MWQkKC7Af5+QL20tIJP8BRvd6bEFJuw5na2KilFsqc8ykMEfT24x7G/PGPgywr4zG/f/zjv16d3djYGG+66SbGxcUxLi6ON910Ez/99NMvfAYAf/e735EkP/roo/82D/j666+TJD/++GNedtllPP3003nSSSfx7/7u73jnnXdybGzsL27fl9qzC959N6YcOYIVFzyG238cg4kwkZwM7Er/HvDTn4ra54sv4p0F9+PCH82Wk3hVFXDDDbjxrjORmhoVXF28WAVO79ohMbapU4H163HJaR/grbn3A9u3Y8UVz2Dhmh9II5KTgX/4B6C/X47lkyYJlcpR1C0xR8bBYAgHMAXj48BZkV1C2/Dzn2Nt/bu49NIoY8mVyTuA+Hg82HA67i/5o6hHxsUBJ56ItXH/jMuevA3nrHkCHz/5Gia++11Mam7G4Ztvw0l/PwPIzZVjp1GqXLYMl1x6Arq65IR5XtcjwO234+SzpqCiQjy2s19vw445N8HhkNNveztwUs2D4maZ5zvxRCAUEplut1vcqY0b5d0roV3cfLMcgQFgzhzsqn4CZ+98y6qrY9IkoUR5/HE8lLlKWFCee06Ov6+/DvT14ZWbn8JVzy+U67/8snhgDoeER884A08l/Stu+GEMTiookL42qtIOR1S9e8kSvNP5EV5+Gbjvjauwr/0VLFsmhCa9vcBl1VcB3/8+1qb9FJcdegW44gq88sZJuOrxH8CqxW7fDixahNp/2YBfTCyVsX3ySWnPpEn4weTV+PWvgbMG1uLuFy/DI/EPArffjpW9Z+Pa98RzfOvgLFxywQERXHU4gPR0vD/zatxxB/Dagkfw4YK7cd7WVVjYdTVWTL4bHRc/Aq8XeOzvG4HqanQ8uhvX54iHvH07cOf0lcDBgyhdfwt+M/YD9P3897i47U48NvMx3PizGExNSMB58X/EzTcD31sSgw/biBvX3CZ9Pm8eHjjrLDyQk4MrJ17B7bcDN76xEG/dugKb/zEGJRUVOPf5h/H448CV7z2GO7fficcW7QIaGvD5L3+JEzIyrLLr51u2YOcg0doK3L/mMulYQMIBY2NAYiIWblyIFc+dBjQ1AXv2oPbgT/GL6W1AURGwaJEozA91Ay0tMigNDXhk+9W4e+ON6Pj+M7i+eIpc95prUPvcufjF8J0yvr/8JXDaadjXuhonnBGD+K4uvHXaP+OST7uBxkYJ73/rMbxz6Z24sPpaIDMTu26+F2e/3iYKx3PniqJsZqasv0mTZH5fcAFQU4O9L7yAzwGc6fPhrUMX4pKJtcA//ZO4dRs3Siji5JNlMV16qbifl16KtROX4LIX75bQSXy8de3+Y+8PMG8eMHXlMpxaUXFcPbsf/ziIk0469msdPnwATU1fibd+aV5HA1REYmRciG5VsmWPeikGOs28PHbqqYxJSWRSEjMyxFNhbS1ZVMQ5c9QbqqsTxGNGBncDBH5F1tVxFCqLAoXHz58vqK7YWO7WUygTEizZLPv67KmWTicdDvHcPgNsIt3rJVldzbw8rcmFsFiwrk6O2mNj0haXix8AksRvaZHTt5EaSkujx3hiGRny+bIy5ubqvfPy5NSclKR1NnJKHh6mPIPHIzWDOTkc1pP3EX2HoDVYVVW2Lz8D+DSUPzEvz8qwfAQF55SWkkVFHNbvMyFBCp2htVx1dQLAUEaUYf3O2zpefRAy6w8g4I/fQQAkLCgQL72zU7xcl0u8llDIqh5UVmrxttdLer1salLUXnKyZeowWnmmMJ8ZGQwEaMVdmZQkHlNLC5mWFpXkcbvlMwqXjI2luFGdneIRxcezsVE8wMJCSj/k5IgXmZgo362uFo83I0O8VvViExIoHo5hzA8EBCVqUBQFBayvF9HZQEAiDb29lO/X1hIYFw9VUZWDEIYTtrSQOTkKWnmdvb3kb/UajI0lBwelBKWrS73lfRLVgBROs6HBemFMTibLyuTvpjBxdFQ6uKhIwEfKNuz30zIYfQbIpOvrs8jTL+gipqWRRUWWdeQl9WA5Oko2NMj4DQ+TWVl0u7Xco6DACgtbZGVZGRkOMwRERWO1vtXUR4YAMjfXcnIOD0v5xxEz32pryf5+Qd8mJwtgqbJS0Lt1daTXa4v5zXMzM1P2GKdT2q2co+zrY/D3vz/unt2PfhRkaSmP+f2jH/3tcmN+uY3d0BAjEWrJwYRM7oICWTh+vyzIwUFFvLXL5lZXRzqd8pnRUdmABwcZCERVytvbJaQ1YwbJ1FSrTs7MTMbEyL6fkCDfN8gsI9kcDJIsL5eQmhFRVbHUpqaoiKJB+rGvj4GA7B+GncnUtx+thpydTYsqLCnRtnu9Fubs9VI2P9VTY0qKGGdVTKDLJSGf/HwODmpRfF2dFVwzBd70ellSYsuObMmEy0WB8PX1MSNDw5Tz57O9XdZ+T4/2uQnxBQLyXYH4RcNbtbWy6pSxxESf8/JINjfT65Vmud0kOzrk94GAlBA0N7OkJFpQ3t8v/ZeUJH2qFSKsr5drGvVsU9rBzk4bxhwepsyNrq4oa0ggwMFBuZYtRPf7pSi5qUmMpMdjFS3Y0UEGAhwbk/4yJDbz5sn3jBL8yAijyhKDg6TbbRWzrYJ8cTHr66Nh3pYWuebwsAyp6NptUy2/660cgttNKRjPyWF3twnx3kgWFRlBDwKvizwQBAXa3a1h2UhEvpuSIm3Ny1M0abOV2pP7BiWE73SK8S8vJ7BPyzF36P+3WfSmYX9ha6vMB7+fM2bQigMDfpnDumZycrTPAgECPkF+9vVx9mxZa8q+R2CvzNv587Wo/CAzMiRMHonI/ADGLWLXEB7k5WkJS0sLOztlbpi+BvZaoeKkpGhReWOjRG+NXI8U1o+yrk7LWcbG6HQySinmcrGkROdMKERmZXH37uOPxvzhD4OWt/pY3j/84d+usTvh/55PeRxeLhdOmHsl3n4b6O8/EaipwdqSZ3B14gZg+nTscpwrWe39+5GTcz3WvvG5hMlGRvDee8Aoz8TqT2bh40nn4vbbJRpxoPCnmDMHWLhgFzZuBOD3w+EAnmn9HCguxvr1wIcbD2DNGgCTJ+PsxM8lI754MTBpEqZU3yshRQDvT/4O9u4FcNppmDpVwCs/mbQCP9n7IDB9OmJjASQmIjlZ/vZQ+u9RUiJRlvMnfYgTbr0FmDkTHW+fi+XLgf+Y+QhmzgTq6wHccw+e2n4J5s4F7rkHuCRxR5QJ2uEArrsOF18MYOpUnIDPgcREjP769xJek9tKVn36dGDuXGzdKhFJLF+OpCT5++mOP2HyZAB33YWr37gb+NGPgOefx4ZH38Kq1gOAw4Hrc/bhqZtfwZWbHhEk286d+HjnTuDiizHl5d8D11+PAwBuObQC8UlJ0sZrrgG2bsUvct/HPfdIdKm1FcCkSbhk8mbcfcdhAR/84hdYuWgD8OabuO46AC+/jN8s3YfqakE/zupdgcd6v4PeXuAn3+zGt74lw3vnFZuxeLGQgGPyZFx50QHgjTfw4QXXYu5ciYCe3f6I9BMkonbRRQC+/32cW30bqquBU677Hk655ip8nno+0tIAdHXh5puB1yYuw/uHZL6snvwDfIxzcMcdwMI1P8DPfiaR0GnTAFxxBU5pXQEMDeGsvlXS7ddfL+OTno4nnwR2XfoDYMsWrFsHYO9e3Jm5AZmZAJKTccsNh3HqqfLx2zb+BCUlAMPn4AoAOTntEotevhzr1gG3OhzAz36GzEzgkowMZGW1YfV1T+Css6QPenuvwH0AHgLg9f4Dtm8XDueHak7ANQBw5AhOuecnWHvXShQWzkdc3G04afqZ2L9fIs5e7xSUlHwT+N3vpE8/+QTAiTKHAGD7dgwMzJSbDQ3B7QZ27J2CffNvkhh9by8++ugI/vVfj+CdiVmoqTkfSUkAFi3Cx/unYNEi4OWXDwE7d8LtvhCLFgFPvPcdvPtuBNu2fYTHHwfuHl+K0047A7t6PwbefRcTE8C0aV/Hk0/K2G3aBGy+6DY4nQ4bmn/5Zbn9Cy+E8PLLANaswcaNMv5PPilRyZqaM/DUo/vw/PMSHZ80SabopZdKBLO9HUBPD44ciQCI4IEHJBKKjRtxxx0y5aU/BMB9ynsbcEvJKUBmJk4p+9H/bH/76nV8X/+3re2xvKxn98MfWmHUMSBaUB0ba8OFTEwk8/L4OlSYtLKSTE9nVpZqaKWmclyT4B4P5dgnHEsaIl1LlpVxHBAgDCBHzYwMhjRU95H+OwhI7dToKAcGomTDTE7mvHlaq6SAjLIyBVTEx9PjUZBNQoKceJW3qreX4qqUlzMIYc4wqq+GoYMJCVEduLw8uZACMgIBufen2g9H1wqHQiQrKrTYfJQhDR8yIYF+fZaA/svqagl5dnRwDKJP97aGhMb1+SNAlHqtpUWK/AH5XjAobRgYkNO/8iy+a66fkmLDogMakg1oKO1pQMKCzc1y7NaaKIbDVsjWp21ZulQ8cKM6beipmJMTpT9rahLPWqnIWF5u9fEEieAnOzutXJMJXfb3q/eggrlOJy1HZzBIsriYxcUSVauspK0AD4VI1tWJB+B2S8gxPl7otXJzyaYmYVkpLLSMc6yvt+Kplt2jv5+/hejRDULYUlhVRc6fL3ybWsA/MiLh8IQESmOKi1V5fRO9XgWt5OdbzsykJJJ9fZZVaFy9RA4MyDrIyJCxi48X1zUxUdyZzk5LPsDWVgFxqRxTJEJbmE2HQ2pUnU7xZKuqrFAvS0vlHh0d1vN611wnPz/qqqub1t2tKYqGBnJU2IiYmWm1B9nQwHEIGxLHxuQZW1qkLRqOCUHFYTs7yepqqz+5B5C50t8vf8/NFbcwMTHKLqQh+CBEfJnNzVK81tNDqxdl5MG8Xi5bdvw9u5tuChpe92N633TT365n96U2dqtWBW0Ia2SEEk8rKrJ8dszPl7CZFnJzYIBFRbTUYCMjJNPTOW5yR7GxMnlzcqzGFoNBMXAG9ZafL5t6eno0ED42JoassJAtLVGbw/JyuZ7LJT8HAly61BJSREmX4+PZ06PhycFBaXtPD4FxCReaomi3mwZ2CKyQHERfn8RAPR7DrmSildIXVVWW7aW/X3kC9TplZbIfzJtHqzLe2EhLrcT8fLK6mhUVsvaBTRwYoGXCaG8n6ffbaCiwlZ2dEiJzOOQzKSkSMq2qkj27u1uesaiItOKCqlhhmFf8fpKhkGzig4OsqZEhtCxsEAWCjAzSJOZmz6bE/AoKCHTJpmvyS8GghKHD4ShrSDhMRiKCFHRHUzDAct341xJYboCSEiZX1hEODgqqsLlZQt21tYyJkTCR0SkE1jMhQe5VUkIyOZmxsVrQ3t8fNdyJiWRFhXJsPyPzraPDsn4sXSr9160Grr5e+jwS0Z+VAJsuF5uadGz0MNQI0OuVQ49hr2F+Ppfo7w392uCgTBFDoG1Shj4olZgSK5rQsNPJKB1XXBwLCzUMnJ4uB5OEBOlUgHV1siwHEBUWHhkhmZsrIeqWFml0XBxZX8/ubtKjh0ZDczcyogKtnZ2sr1c0phGv9HhkDRYUiKEeHCRzcjgEIS0IQugAmZ3N+nqlxUtO5jY9tA0OWj5qWY9KrsDBQblGQoIlkAhDRJqHIGhMo1c5Z44yvmRns7xcWGt6e0ng+eNu7K6/PsjCQh7z+/rrvzJ2X6qX9exWr46e2hMT6fFobq2qKnrqbGiQU3BKSlTRYHSUlZXqAYTDlpGjrY1ycm9uFoOmsHuOjlovyIo7dnbK7tvUJKsvO1sukp0tv0tPl/zC8LAVk+XYmLQtOztKm2RkSTR/5PHophMK2SS/zyccfbNnKwuFPkcwSPaZzaiiQgxfXZ1l8g+FdPOtriYHB5mfL00LBhklrx4dlWc0ScWyMjkgtLbK/2trhcUdsKCLI8aTdLtlBSUkCBDB8K01NcnPZWVWePNTs8EabRWvV3bI6mrxqCsrpa9ULZxOpyRR8vIkR5KfT0teOToq9zU8nenp3KLXLyuj9G9zs+RolUWDSUny4Jo/dbl0gzOlDQ0N8swpKXJwycuTQ4/bLZ5NWRmzsvSQ0tQkberoIP1+2egTE6MgFiUlpsdDFhaqEvdeMj1dDFNtrbStvp6Vlbp519aSiYkyJ10uuU8oJPMkI4N5eUepDRhGloQEfgQwLU0327g4uX5eniWK/o0e4mbP1oNGQkLUwyso4OzZysaTnS0HpNpamd/JyTIWqhrPlBSyrk5ynUlJ0ndGjUGltIqLSRYWSn8Y1YeCAst/2twsfTOoBwV2dkr5itLMMT9fDpx+vxwKMjJkjuXlkamp7O9XlhYtm/H7ZSwKCuS6TU0iDNvbqwwxR1He0emUdVBdLb/r62M4LJ83oCxDhu71Mno6q62V76p6B4eHbYlEMEjrxYXDlGcaHZXnD4X+KhI/Xxm7Y399uY3d7t1kOCwhoXBY3AmjQZaSQjocEt40R7eODstnCUwwN1e8mBAgC7u2Vk7s1dUyucvLZaG0tpJut2wwWofEzk6bPTeGYBCQzyrapb2dZEeHBWY0N2sozHBA+XxyeqysZGdnNIoWiURP4kYyxJy4KyqoifgdUifU0SH3NFT/FRWMRBjdmJOSxDhmZdk6rN5eWnCOYbVnbKx8qakpisBxOOTd0UH6fPI8Jk6XnR1FSHo8ZF2dHAaMCsTgoIyDglqYlyeGenRUkJoheQ7Onx/dXFpbpfYsSOkMl4vs6iLwc/ldRoZ0UEEBW1rkFnt0vHp65HJOp3iqbW1aT6gqD0YuaGREHjEpScdybMwqACQl6Sapm3BBAa1Kw+Cgtsls3ma+jY6SlZV2vICDDAalbVVVJCsrWVQkfxsbE7AHk5LEKM6fT46OioHLyZGx7etjBEKh1dsrTTQG0hxQurujsjy/MeG30lLx6srKWFOj88xwRA0ORiWPamvlvgUFYvAM+3hlpbVrOTny6zETZjYSPwZ8kpAg46dk5xZIpVJC9HiskWZysgCJqqvJ4mIZr74+O0/pcnFgIHo/Dg9Lv8bHS2NqaxmJyOWrqmg9QaPLyHDY9jNTU+XeXq9cq69PBjsrS9CigYCkGQYGJFxaUGDRtczN5ciIHoCGh207XjeHutpaMhAQRHdTE7Oz9SDZ2UmvV4FFpaVsaxPEtXjqO4+7sbvuuqDB4R3T+7rrvjJ2X6qXGfg9e4JHoTH9skrj4mRRG5GssTEtCG+WPEZ9vYUfMxyWDba5OWoQnU5WVMjXgSCZnMyiItn/pTB4BxMSNKw1MGA3cHo8sruqZospuO7tJdnQYKXajCilQYYZ1QEjp0Kfj263rNFAgLIYPR4xenp6Bg5bOHxRkYQmm5spxsrlEg/I4RDvQ4mTWVsrG0BiogIkt4o3kpREVlezrU03k54eFherkQ2H5dmUZ5FVVaTLxYoKfYaMDFZWMqok4PHIZzSvMzJCMU4ZGcKar+EklpWR2dlsbJSziUnHsbbWGnzjhTU1Sf8C42RdHXNyZAi7u2mJldvaonSaJiW4dGkU2WhIpQ3y1eOh/GJgwOq/eTwkIxETEWYgoBuf3y9tMLFOJc6sqqI0vLWVHBtjWxutUcvIoNWds4z+kQg5PGy13aqqSHZ0MBTSA0xVFZ1ODQd6PBa4OTAgnld3t4TLROKnmQwEGAjIvKmFFFDX1xvezV+SnZ3MzhZEcUyMIDY/BaxBnz1bxncJtCSnv58sLtYNusrmD6XQfh+BTVEB4/p6AkMqe7OVrK4WT7W0lHS5xKPr75e5UFlJdnZy2jQloA4EOGOGHiQ0pjxjhizdwUFZZ+3tJF0u5uVJRBHYwbIy8Y5nzCCZl6co052aXp+Q9et0Rr3ccJhtbXLGKSnRlEV5uRU8aGuLnusKCmQ+x8XJcpkzR9ZUdraGhaurdc3vY2enzFWtyZe0gMKHp03Tz/f1kcnJ7Ok5/jm7a64J2jTFsbyvueYrY/elepmB36TJdGAfGQhI4jsSIVNT+S4U5JCaavMdrK+nD2AHoHDqITItjRHAMol8anIR1dVkUJLBdDrJri5GIrRMJsPDElKJaFzfaMUxJYVMS7N6aSZEZfLt7OoivV7m5mo9lmqjpaaS7OyUTT87mxwdlb+XlYk10eQ5Gxrk92NjZHm5GJm4ODI5mc9qXsSQUQNb+bZuhO+qd8mODt1AGuVzGRnyULW1ZEaGnHwLCsjMTIbV6+3pUQh2WZk0VAVyg1BQTGGh7BxFRWRionjHGRniLba2yvMEAvTphntE8yVMSJC+9fnIggL+QXM6zM0Vb9vjkUExHkVqKtvbpRsyMjQv2NcnY+V2E9hkUj8E9nFsLKr7N2+ejNecOfL9IEDgsMyRnh4Cm8WDdbujRNDV1Zw9W9k79OTPsjKF6O+UtrW0WGNkSKiB5ea0JKHB2FjS5TJVMHpo2iqh3+xsAjsZ0jBsZSXF2mtZCf0C029uJtnTw34gqnrvcjEQkDn7guar+gA7ROGwjltXl8zL5GSyr4+Dg2pQ1FNZoqHO7m4ZythYLetobrbR9spKiqdeXU12dZnzihh2ZSfZYtaAipx+puPNvLyo0oOZsxUVPAKtT/X5JK/p8cg6jUTI4mL29sp9gQ1aerBe/p6QwKYm7YP+flujegSIpiJcLquWbu77AaTmz+ejFZ41xO6srubwcFRDmPPnywHL5eI4RNKpvJzSGapx5PGQbG3lkD7rvHkyTxgO84gexo+3sVuwIMi8PB7ze8GCr4zdl+plBn4HwDaAwHNWQbutjRwCrNZcAJJQZno6RwG+DqN68JxsSqmpZGwsHQ7x5I5AkWLK2g9skMXjcFjhSublkR6PVTpoBPhLSCL8l2YTHxxkRYXsjQMAgTUEgtyj7aqvl4W8B1LMa1j0gSHZ5EdHSbdbNgOlZZo2TRem0kkZ5KNXjdxLALdAaJM8Hnmefggjfh8kGd/fL5tZSormP9LSZMMqLuYgwGb93Zhe6001nrv1/78C+FtIIfmzakQ79N2txr8TYIv2xx/0/n8whw/9d/1RY8TOTvZDCntf0I1jQNvcAojX0NMjzP3hsHgORlaooUGMdny8juliq60HjMrulZws/VVaSgYCktcbGBDMEKQAu7GRtvA4K0t+NoCUwUGS2dniKSsdFfCMhAO19mxcxwdYRmCtzKPCQvl8YiJnzBB17Li4qPf1GSQMDTRaUoR582QsWFREv1+NTk4O4+IYPQwMD0vtnpmrqh1owromNdzfT7K+nl5o2Li0lH5IzSOzs21okrGxWnh+UA4lPv27HvCYk0O2tkr/p6QwBDkc1tTIOatfx5UZGWRRURQclZrKesjhsaREBXrdbjlMut2CwI2LI0Mh8RArKsi4ODEinZ30+aJelhzeXBwA6AIUTHSQLC4Wz9jk0evqWFKi+feODlZV6fdTU9mmhwuHQ4y9CR9/qvPN4MhmzyaZlyd/LyhgM0C3W9rS1sao1+52k2lpskazsqTfcnMl4hAby+Arr3xl7P4Xvf5Hxu6hhx4igC9Ipn/++edcsmQJp02bRofDwcsvv5zvvffeF7536NAh3nHHHTzjjDN4yimnMDc3l0NDQ3/2fc3Ap6QECWzlOEBgr0yytDQCe1leTovcamyUNWUKy/PzVdMsOTlacpCbS6aksKeHGp7ZQWAZg4CGDtu1KLeRwGMEVqvsx2ECuwjsYk6O2DmzFgyQZOnSqEp3QQEJ+GShdHXJiVZzjXl5YoBKSkiGw+ocHKTfLxvFMIRNRDVc2d1NBT8cJjDOggLZ5Px+2lNteXlUQZupqbIJu93k8LAY72CQdDpZWCjtiomRRQ0cZna2fDcnRwzk0qWmH9cTWMmqKilYBtoJbGJamvR1QQH18LCTSUnmdB5kTw9trkVEVtcQ2KyhKOE5jYmx2AUVEh21CtSG7jQcju5tRuTU6aRsoomJ8vw9PWRVFQcH5Tr9/erNKAI2GCQ5OCgeU3Ex2d/P8nINpxYVmeoIW+ZQWUnxWkpLpYMrKuTf8nIyI0PKB1TpngUFzMkRZzcc1r6vrrZacC6X3HN4OMr5mJqq7dM8anY2pSPLyyXkV1dHYIg+n2xa9fXyXbvRa+G/4WY9AlicFbCPzMvTA9AEe3ujIV8WF6tXepBLABu9yMqSy8rflhEYFWMVCrGmRmx4VZWEknNzZX4aDgdGIlZzMCcnSrjClha6XDIfcnMFZTo8rAXllZWG4lU+rAadgQArKjSvXFdHQKIl9fVU2Z+hKLgsFGJnp3jzvb0yHn4/yYEBVlRIONMI4rpc8gwiFbSNwOvidUeimBhTeqJKSuztjebUTSh9zpwora7fH5Vocrn4Vyk9mDcvyNxcHvN73ryvjN1f/NqwYQOTk5M5a9asLxi7mpoaxsXFsbOzk1u2bOH111/PadOmfUFGvaSkhN/4xjf46quv8p133mF2djb/4R/+gRMTE3/Wvc3AezxB2U0aGsjCQiYkyOQNBml1rMrLZVL7IeGSxkatd8vOJoNBu7Gauqj8/CjGgj6fJcql12s1zgzbihGsNIwe3d3ynbY2TV77fAyF5GTZ30/ZKPv6yEBAruV2yyZqVo+hdTDCsypc2dgooS+PR77DsTHS5WJurhpRDU01Nsqz1NdrjqqsjGVl8rNRla6ro3zI47G6nAb1NzKiYS+lTLJaYGaH9vvlGSsqSLebS5fqJqYJx0iEZFDQYholYiRCWx/Y1kYLI7d5ObO79PVJWwIBG171euUZWF/PwUHZdCyzSWcn2dXFujr1cBSEYyWZ4+JIt9vWyxlGKebmWsBNW5tuii0tUaoSv1/+7vWSPT1yWtdQpbmOScGVlUXTciwtlfvqv8PD8vn+fnkmQzhthXIHBlhTo3PP5xODWFdHRiLSx/394jm63XJNLaUAxvkmhODakHoDazl7ttH0G6LbeG8uFzk8zDGAwGoWFuohLxIha2u1XGSnhMUDAUYigtJ8AVECZ4+HtEnPSIR0OMQgGXaU5mbm5ko0padHDHZzs/RJW5t0p8mdMhhkWpoQPbtctOHE4WGSHR2cNi0qNtvSQvGMDTAnEJAxbm6WvlKRvZERmY8m7+tTI19cLHMkEJC+NtFys3wMkfY29YSDQR0nl8uQ7ZAeD10uRtG8ublW+zEYpD0Ieb36LIr0dbul64MrVx53Yzd3bpDz5/OY33Pn/u0au2NiUDl48CBuuukm/Pa3v8Vpp512dIE6Hn30Ufzrv/4rrr32WlxwwQVoaWnBn/70JzzzzDMAgGAwiObmZtTV1WHu3LmYPXs2WltbsWXLFqxZs+Yvakf6N/bID7GxOPj009iz5wj+/d/HMGXTWvh8wlO8f78QHOwCgNZWK8WDqVOBvXvx4ovCktDxwkl4bevZ6O0FTnl5pfAhd3Vh/XrgpCdXAC++iGXLADQ04Jyda3H2ut9j/37hf/3gA2FVaG8HDsy8EA4HcPr6buxLvhCTJgHNzaIsg+2qd/bkk8KoER+PF18EDhw8QWgdzjhDaEyefx6nr1slVA4TE3jjDeCEvDw0NECoIWpqgHXrsG0bMDknB9i6Fec6dlkO6vFxYP16AHv3or1dnnfTJvnqzp0QAtzWVjzwgPweAEb3nICz4v4k/9m/H1Mmf46dO6XvNm8/BZg5Ex9PPl+YKC66CDhyBF1dwLmTPpYPxcdjzx7g/U+m4L335FeTJ1syGSAzE48+CnR3A59+ekja8ckn0nGqAWdeJxUVAT/7mXwmPV2eb9EP8MknwCkb1+KUSYeBr30NmDEDzz8PTCktFdqSSSrP2N4O/OIXwHvvYeNGYN8kIf1etEjGzzzY0JCynWzfjgOTz7ZsH1iwQOg1PvgAvb3yvHl5wPt7z8Qbbwgzxwm9b+HIEeEE3rgRQiy8fbv8Z+dOnD35ALBuHbZvh7Tr0CEcdkwBGhrg8wF44w3ExgprD954AxMTAJ5+Gti+Xb4zc6YQe4+MCL1OYiJOmD8fwCgmQRhACgpMtz2Pd9/9BGd1PwHgfeyH8EBjZARoaMDpAIDdePFFwJGTg48/kfl28CAAtKC9HXhn7znYuRNIB7AJwsmdni7yN2hvB5YvxyOPngA4ncIK1NYGDA4CXV1ITgamJyTg5ZdFtum2uR9j5kzpp8cfF5IePP88MDGBxETgIgBXJ29Gejqwet0UnL34NmDNGlx3HXABgANTRWZL6EkALFsGrFmDA5s2Afv3y/17e4GaGpy1pg14+WVkZsrjXhgbi9vS35F2792Lc7a+Ahw8iE8/BbZtkyV1+otPYOpUGbJkAKdP/BFTRj4UVprWVpze9RSunb4BSEzEpk3CB46LLgK2bsXIiIznFByQ51+3DpMny5LCpk046Y1X8PzzIjsElwtfvf4XvY7FQt5yyy286667SJKXX3659ewGBwcJgO+8884XPn/11VfzlltuIUn29PQQAPft2/eFz8yaNYv333//f3m/Q4cOfUFCfmhoSE4nS5dySE9yzMqy1QCsqLAnS/b0yGnM65X8XFoa2d/POXPEITHhqpgYEhiXU1wwKH/MymJVlZ7yNFTEqiqJW7S0ROvVcnIkbjcwIN5Fbi5ZWkrAL0c+PbX6fLTq0OEw5fTe0yOfCwaVw3OvtNftZlDzbzU1Jge1jmNjejrX521upjRQQTTs6LASML29UVXlSCSKdOvsZJRkuL6e7e3q9XR2WsJdS/I7KuwqH5j8SmoqmZQkwByVUvpMc4aDEFRfGApMKC3lBxBplN3QEhDjQalXwOpq8XSqquTIrQjFnh7JbbGpSTydrCyBo9fWct48kWo5AlgOT1ZWakhqSD4bDhNYLTlNr+SyDMIyGKQtDmdpqYCDWlrIlBTNr661TC50OqWmESL7Y0C3pgqCkYig9gAbiotEVJKnuZmMi1O0sE9+p4jd3FzaAvqCAorXkpgonkhHBz0enb/BIEf13qbu0rjkneoFeTwadisqkjENBi3HaQQg6+tlviUkkAMDkpNUuSJDRMDsbGZlRYEtS9TjcTop87m4mJw/n8XF5G4IKbrhA2V8POnxyNrLyWFZWTS8yepqMjFRFcdH6fMdFeY3TDLNzYyL0/YNDxPYa1GWwBAZH8+XADY2aj87HMzP1yhFVhYrKqSv5s2LhjBnzIiWYsbEyDixspK9vdLf5pECAVqQGQMBG/plfT2bmxWoVFysqY0JOhwyvejxyHoxdYk9PdJx1dUEJhgMCnAIx9mzy84WLtFjfWdn/+16dn+xsXv22Wd5wQUXcHx8nOQXjZ3X6yUADg8Pf+E7xcXFvOqqq0iSbW1tPOmkk/7TdXNycrhw4cL/8p5Lliwh8J81j4JZWWoENpC5ubI5BgL8DFEtrPW6CbGwMKr/Nn++5tkOWvCGSXi8C9HdOlqdoE/ze8CErasb02u/DoHzs6lJwAPKVMLOTksiy+JisrqaZWVRwmSnk7KSkpPJ7GympEgYsrmZshorKgisY0mJGLdAQEOTpaWau/AJMKCnJ8oAo/mjkRGxvb29tHRe1KR+cbFuUF1d9HolFAbsogeK2CwvZxtALwScsgWCKCwsVBaLyspoXd/AgGwUWuBeWRmNOJnatro6WjouE976VA3fZ3p9NjRIWURCglwvECCrqwX9VlAggAfDtuJycT2geZadskn191sqNAnr7RVof16eHDA6OiS3lZTEvLxo0XBenrSRwaBFF2ZlkYyLI+Dj7NmyWfr9WpZhEllJSaTHw22AJf4WouBtnDcvWg/PoIAJGAySublMSpKNN6JhvGEI4MPlkvYorskyVZeVGQKfXQIA6ekRyz46KqALvVFPD23Rt6lZcblEj44ZGWRDQ/RglJIiRreigmPmoKiHD5Pn9njkNksA/hoC/mFcXJTyLhSSBzTgn+Fhut1CfMCeHnsw2mbWVU8P34SworRon/0BWlOXliYHqIICBjQU+qquyWF9m1I4j0fWTn8/o2wnaiB7oEwpAwMc1TU8qnO4G6pp5/HwaV3XPRAgVSgk4xcGJM5XWcmIfpfJyXwVkINZUpJVGOnHUWFYRV/S55Pv+3wMAjoPPzruxi4rK2g5LI7lnZX1t2vs/qIw5tDQEH72s5+htbUVDiXR/a9eMTEx/1/v8T/97r/wMP/bzzidTgSDQfseMvppv/sdli0DkpIygMWLMR0AFi3C5IoKJDscSARwDiAEtRdfDFRWYvXkHwCLFiE/fxry8r6OwwAmAULS+/3v43QAs5KSMDkxEY6cHDzwADBLr5GdfSJwxRU4ITsbpyckYBb0b7m5+Pz2hTgJwOg3v4PHHweQmSmkvn6/xFcefxwXXCCRro4t50tIbedOYP9+7Hr9daSmSkTvtvR3JN546aUAjmD58gg0uIhztnSL1t5FFwFYi4MAsH49HKWlODsnR/62eDGefFI+f3Hc+3CkpSE5MRHIzcV110lI6dZbAfT0YOdOkewCvo7PzbMsW4ZztN/OAzATR6uJ75Z+nDMHmDsXo6eehxPKyvBhxk148cVohHDZMuDf/x3ArbfijTeE5HnnTglpbt8OxCcn45Hlp2ByYSEuAID9+3F6djZQU4MTnE4cTjwHSE+X8OA11whR8h13AJdfLuFUSJtjY7+J/Xv2APv3Y9MmefwL978G4H3cv+gwsHEjLkz/HEhORnw8gOpq3HWXtAF33YVf/AJATQ0+nzwF99wDvP76GN58cwAbP/sMwADeffdt3HADcP7UP2LJkkM48OabEmrWfjodyiX9+OM4cuSPcDhmYs4caerQUC/uq5mCiy4CVq6ZAhw8iKGhCMgDOCElBVdfcQBnJyUB11yDBQvk+fbs6Rdy5b17gcmT8cADouQNAG8BQHo6Xtt0OrB3r4QpFy3C4aEheTYjza2y3OPjwAQgenTZ2ZbUGfHx0n8zZ2I/JEz5+a234fP5/4y5c6Ohy2XLgKkA9gJAdjbwjW8gEpG5sGv/KTKn33gDh3buxDNvnI3Jk4FT4uLwluNKWYc33CDrKjMTbzmuxCEAOwFMBjBl/8e4CMAj7WdLuxcvBtavxzmxsUhMBD4EsA/AdgDvQzIOb74JXJZ+AAemny/ze3BQOr+kBNi6Fd8BcAoAbNqEMxMTcVD/fwqAPwJwANgcfxkm6c/7ARwGcMrBPwKZmRI6nzsXOHgQJyQm4sziYryzcycOADic88/YMTSEiS1b8LF+d/t2CYni1lvxYM1JWLnzQuDTT7Hqkwvxjg4h0IOvXv+LXn+JZXzhhRcIgCeeeKJ9A2BMTAxPPPFEbt++/a8Sxvz/viyDihb6ALvklNzczDlzJMxCp9MSJXNggLuhysSq0xUToxI+LS1kQ4NVxjFQdi8Ehg8cJpOT+TZEHbsF4G8AkUbJyLDhNKamClqvsFDCagMDjIujBXSUlChHYm0thwBbCM3cXFZVKYijulrQh1VVZFmZJN+rqiRU0tIiIR3V12pvl2txdJTjgOVqZHU1vV5F6ZlMu3JkSnHwYQm/NTRw6VIJ2Rho9puADUsOGK8gI0O8hcJCq4G323i0gQDfNB6hYVoxrl1trYxJXZ1Fpvb2Uk7Ayif6rl4naE7e1dXiRWj4lK2t/BSiUzem7Rk3n/P5LL+loZ9RoXkODIjzMTJC+UxOjmW/sRI8Xq+czFtbo6FQDaMOD+v3/H62t9MyuvT26mne7xfvcGDAhjXZ1GRRfO3tFHCR12u184zH5vGQrK8XWHtHB5mXJ+FKp5MMh8VrUY7PpUt1Tnq9ZCTCEASkdES9FKanky0tjI2lZaTx+6me6ajErdLS+BmkrtTrZVSfUEPxwD4JcebkEFhm6bCYm2tZTJZAyk0YCtl6v08h5MkR9RLZ1CRuaSAg883rlTbW14trnJMj/8/NJd1uCXmXl5PDw9Im1aKziC+fzzLqRHR9hcPCi8rWVquV+Af9l8XF0ufGWzQ6UTk5Ml+SkiwdHAsLo0w4XV18HVLOwIQEaaP2mWFfMaryzMuTaxko8MCAXLejQ9qs6NlgUOZI0KRbjqNnN2dOkFlZPOb3nDlfeXZ/1uu73/0utmzZgk2bNtn3RRddhJtuugmbNm3Cueeei8TERLz66qv2O4cPH4bH48Ell1wCAPj2t7+N2NjYL3xm9+7deO+99+xn/uzXbbcBP/whMjKm4ezYWGDmTHz/+0BiWhrsMTUxEau2noczAWQC+PyOO3Gg8KdYsEDEiHHoEJCUhBtukIMx4uJw0vz5mA7xdAoLY4GsLKQCiIn5JqYDOBOQpP+CBTgzJQWTcnIEWDJjBnD99ZKcXrcO3/iGOgKHDqGxEZg/H0BiIqan/7/s/X94nGd9JorfCVYQwQpyiIgMFpVzrDDQKMg008oU0YiNONYSUdSiBS1oQQWx9p7MXmiLuugUNdGpXKQDWtBBXqKGKVEjN9ZJJmGInETEwlHiwVKSSTyxh0jY43iijC1hj+2JPbHG9uQ+f9yf95mwbfdbTPLd5iJzXRM50sz743mf5/n8uj/3XYN//6mX5cWXluLrX7e/rV6N5uZ3Odn0XA546at/BZw/D7zlLVi7VmHZZbCi+alTwJkzKG5oQHlVFV646c+A6mrMzQEPPACFip/6lMbh5psBXAG/vwjvfCfwyi23YGZGDnoqpfuuAYBbbsHK8nJcayrb8Pmk1LxmjaKMP/xDlJeX4wMAnj31Xvw+gJrSUqClRaiIFSvwk7n3Ahs34t3FxcCNN2JiAsD73y9pohUrgNJS/N2PrkSNz4drAFxRX48PA0BHB7B5Mx7bfSl+cepdwPvfj1K/X9EgABQX4xVAXv3ysi5+507g7Fm8VH4tvvpV3ebyMnD5zh/j6uwhzZObbsLVS88CN92ENWuAfB54pfbD+FDpIbzc/DlUVgJXPrQN449cCVx3Hd595hdYOnkZ4PPhMxtewBWP/hjPLl+LP/C/oijq4EF82HcCWLECH/kI8KGjO4DrrsNHPiJcyWfW/wLnan4f5274MK5Z+Uvgi18UYKK8XD+Li+HzQQiJL31J4IZNm3AOl+F63zmFTzU1LhOA8nLgRz/C5VVVuPtui9hOnRIa5OBBnD9/UtGvzycA0fnzaGp6F1Bailf27cPKykoAJ3HXXUBpaanGxAuz8QL6+gB84QsA2hTWHT+uc+bzwHPPYQ2AFwE8+OjlAmgcP45FAIv2e2+OPHvmGl37mTP6/g03aA6Vlio0e/RRPbPz53EpAHz5yzhR/G5FZD/6EV4CBDx66ildx/w88PDDeMqW+2Vjf4eVAFBfj3MAXjl2TOvw1Cmda8UKXfvyslBaZ84Ap08Dk5PAsWNAU5NSDHNzuo7lZSCfxwVvPb/lLcC+fcDp01hZXAzceqs+e+ON+rl/v+be8eO6JwCoqcFLG/8dXr7pkzrmxo0Cu6xYgYO/fO2VwC9c+M3fv7Wv39RavrpmR6r14B3veAfvu+8+7tu3j62trf9k68GaNWu4c+dOPv300/zYxz52Ua0Hmf37mYBACkynubhohe/5+QKb+tSUY5VnKCRvuL6eHR10fTVMpdjdbV700pKjK+L0NLdvtwgwmSTr653Uy5YtdCqrJ6HGadbWcg/UhD0zI6d2+3ZaH+Ckjm8AD0Yiqn/4fAT2Ksrz+9nSotrdjh2q6TyDAku8x7qSz5McHlYNb2yMjuLEqL881cn2dro2AVdQs5piVZW1LVRUMJUyeLg1GIdClJc+O0uOjXHcIq9Ji3ifN4/eq4fmLUKL2Bjs8qK9ujreYbWRh6zWQb9f11hWVijiebylk5N0D6KrywmL1tVpHD2y3ooKRXopFGpmIgC4QGCnnkswSGCroiBTGQiFSNbVsanJBDiHhkzpe07ee2UlCfVsHgOcijZDIevfPKLodGqKwBFFg8mkOAYs8gGW2NKiZxePC5Iv0MV2B+kXeCnjqOGAw/rcxITAMhUVDsjT20vLKsTJ8nIuwepsPT0qKHZ3O5LyQIBkWRl7ezUdPF5uBgIFeZ7ubtVABwc1Lps3k8PDjEA1XebzmpeNjdy40cYpm+WOHUYePTRk0ldPGFPNJD3UhkcuAvytxjqf1zOfn6d6Kncp4xAIiP2mpobptNeT+U2F0M3NXL1aU0O9n4dUkywuJrCbtHnm96v3NRQq9Lpt2kTjUp1gSYnXQ7eTwBNcXFRUGw6L4UY11hOKcmtryVCIwIJlP+7hli0a4vl5SSrpXo+wqEgBXCzGQjtJW5tLMHjcqywuZua7333NIzu/P8MNG3jRb7//tzeye82NnddUXl5ezre+9a386Ec/yn379v3Kd86ePctbbrmFV155Jd/2trfx5ptv5gsvvPAvPqczdtZfNzNDcmysQEibSGildHbKyJWWkp2djiXdI+Lr6aGKz0bEHA6TjEaZTGpznZpyWRdyaorptCb/zIwZB+uJ8xqYGQqRlZWu/86x2BubysyMNunpaWVLduwo1LZ37NCiYjRK5vOuidUzuictfSNeyxNO0oc9PUrH5PPawMbGSAPubN1KbdbNzfpprBhNTUbQDpBNTfqcl4Yy6g1PEYCBgAxKKiVD5TU0WWf34qLG3sEKa2s1Ll7aampKzyUS0cbqpWcbG8mREdfDyFhMu1NLC5dgrDfptBCgs7OuFc64rsn5eSEq02mltDo6mMm8ahMKh8lkUhtPUZE2Qk9Pz/ivenrolBYGB+3vporBZJLs7OTgoGu50z0uKc1sUnZkIEBPJbu3V4+vvd3uqaNDKWJ7rtmspTg7O/V7Ixz2ZHa4tEROTGjuQMAdjzg1lbJ+wmyWbGtjIiH7FY8b4tbrP7Prm54uAGvSAHt77XPl5W4snaJ4X5+8n2xWlqe3lx0dGmtPJX3LFpJDQ7wV4JYtBQWtjRu1hg4AToWip4dyXry5mUgwEinQjmUBpfdbWrgAQybn8wROcB6mR2c0OJOTBR5Pp/g+POx8ovl5FhjUUymyttbxrXrahZkMC8on6TQ3bdK4bNqkMfXGw1NX7+rStW7fbr/3+8n5ecdFymhUjmBtreaJAcqam0l2dyvFPTDwujCofOhDGVdduJj3hz70prF7Q72csTOG+I4OaqEaKa+DtU9NOfHQeJxagLW1Vr86Jw83FCJjMW7darWrri557J2d5MgIMxnbXGMx0Ull6Wo1HB8nh4Z4FAa799CExcVkOMz162VwEoATB2Bvrzz3YJBDQ4quNmywxvWBAa5dq0XoscuzpkYLPBTi+vXGrNHV5fgDFxepjbWzU/fm95Pd3Z6TrI1sfJwcHGQs5kpRYpIIBMhAoKCEMDVFlpc7tgtPvMyry7lorqKCOVg7wubNZH0998AQbC0tTMJaD6qqOAmh5B7xNkOjm3J1ncFBbY5ek/LwsMYineY4QAYCQl3mctwBOCkXLwrj2JjGY2jIBHnv0aaVzRKYYNY251kznrmc9ia/38YxEFBk19qq+y0pUdRVVka2tTn6ODV0L2j3Gx4uIFPN6TgPkPE4gQc5M6NNdH6e3GM1R+B27oH03djUpHN2dtrfdmv+hMNsb9d3N22SXd6yhWRpqc7X10fafM9kFPHlofp0Lmd1u6oqPffJSf2sq9Pm7FHpRCJC41ZU0AnuTWic+vv1WJqa6FpFUimbF+PjTNpY3gpRiwWD1upTVUVOTyuaCwbp8xVaPA7Y9RUV6XQMh8lsVgahs5Ojo56O4GMifjAu0FhMj6SkhOTIiI3/Eo9BtUKfTyTUcv4Oe5wHTCR0PE9G0iFsPTHZ8XGuWkVXo89kzOnz+7l2LS3iO+PRX2p8SkpMz/EIu7vlZMzPsyDbNTbmOOA9Am/W1jKzd+9rbuyuvz7D9et50e/rr3/T2L2hXs7YnTzJDRtschmDqwf3T6Wo2ReNanNsaiIDAa5fb9B7T4vLiyo8vSsDNLC2lqyvZzxeoPoCDjFtaconbWEyGOTWrVpQsZij2iSXlmSk0mkZ0dpaMpNhd3eBVd9j5GBVFaenbWObndVKbGlhSYnB/QcG9Pl0mp7L3dJCbWLRqE48OcmWFlqa5pzuua3NCTpMT+u2OjpIDg8baOEJAs8WqM0CAf29slI7gSlbrlpF21x20eeTf6DescNOokXUaYeNBmySwBlTK4gTuIfr1wt2v2WL9s6yMsoIb96sjdcIetPpgooDsFdjODFBbt4sp6OqiqchMuT160kmk66Fgps3k16aL5XiM1A/GAcGtCmnUgV2meFhx/rFhgbOzyvNU1VVIImuq3NMYiwrU8vA4qIZlZISZjKFPqySEjqtOaVQl5hK2VyYnzcWE0UfU1M6Zyyma2NlJdeuNQfE2P7Z3c14XM9t9WqlRSURdFhGPp1mU5POCWS0MY+NsaJC11lXZ2CUqSkykbD0XMYRVHvGEVhgICDjPzqqY7CxUddQUUEWFfGkOTaF1KWoxR6AeGE3bbKN33To9gBaW/PzrKqS8XkA6sVkUxNzORnBpiaSiQTPwgBR09POUWBfnxTBAbK+nlu2FNhfgAv8IawtoqhIYKn2dq3fZJJP2hpld3ehpWZwUD197e28B2odcsTxoRDZ26vxqq6Wk+WpmwcC9PsVHf/QDC0BMhTS87ZIMJWyNWSST6Oj5F/8xWtPF/amsbv410UxqPxreXX/5aVYswa45qqX8Mot/xkvFF+LG28EjtR/DvfeC/x07t2AzyeWiU9/GrjuOjzzTF51+cVF4MknVVz3+QR0iEQw+8xlwHe/i5dnZoA1a/CB449h5dgY8PWvY3R0La6sqcFlZWXwAZg9/QHgU5/CjTcCn/gEcP11r6CxURD8n+5/Fw4fBp598Ur81+ZfAL29wJkz+OAHgfe9D3jv9v8b/7DzXfhY6dPA17+OmhrhFVBcjAfL/wzw+bB/P/C1rwH4yEfw3qtexglciRe+8bfAhQsiCyktBV58EbNnr8crN30cx48LAwC8pO6ENWuwezdw++2C/193nTE9DA9DjSPvA3ANLn3qCdG8fPazglP39AC/93v4+fI1+Nney3Fi7wuIx4H1629EV5dAIJc+tAPr1/8O4PPh2spz6O8HNmz4HQEY8FHU1b0dKC1FT88HsHbtp3HvvWLlWLNGRfLTpyFQwQ034OWFBeB3fxfDw2Ke2LZNP/v7P4grVr6CX1R9AvjEJwSkALCysRF33gk8PXEE0JAJil9cDDQ26h7+9E9R09mJ+275KfDFL+LrXwf+z+F34z/f8DN8+cvAP6z6P/CB28TKcuTOn+Dar/8J1qwRnuKKujp0dhahuBj42y8/geuXn8DGjcClPT2Ix+3ab7oJp05ZwX/FCtx7L/CB53cIqLRzJ3y+d+Hmm4FzZ87h72euxZWTkxgZ+QBeLn23vvORj+D4ceCx2r8AurvxqU8JT/E3+z+J++58CfjiF/GBgz/Gf/yPYgJ6t9+PK8+8gJKS3wEqKoC+PtTWAh9Y8xJ8vivwox8Br7R+DuvWAZfW1KC0FCjt6LABW4mKilXw+68QcKOuDpftfQKXF7+CVavWYP9+4E//1Nh1SkuBjRvF7PK1rwE334wLEChmaMiP3buBYPDtuAHAU1Brit+vjocHD38AFy4AtW1t+Mned+HpM9fi058WVuXmmhqs27wZ+N//d1x25gTWtbfjgQeyGH/yGhQnk7h2fByYm8P73w9c0dQENDfjCp9PrSm7d+Pmm4Hi7m5g0ya0tLwFywA+DgCbNuGjAA594++Azk68sua9uKG5GZcFAsAtt+CjtbWoaWgA1q3De94D4LOfxacBXNnYCF91NV5evlQTE0BpOo2f3f4s/l1xsfpY3vIW4Kqr8Hu/JwDLRwBc1dgoIFVlJf70T4FDG7TXfP7zAPJ5/Puvvgs4dQqf/SyQyVzkxvY/eb0JUPkNXv+rre3FvDwv5447MmJHyGTk4mazSuuZcKpHJFtdTbnow8MEzgpwYsKgLsKrqSFraxXlmOYd29oU3VRXk5GIjlNVRfr9jl2ekQh7exWBqZH0jKKWdFp1gqkpecxFRS762rGDOq/H7lJU5DglOTysHElvr0nxLJFjY6onplK65pYWpeGMy3F+XvdZVaWADNgtOLvPx/Z2/gr5bksLyaYmi14mCdyn+w8EyNFRpxfGnh4uLupS1q+npQgnWVFhtcBslkCUnJ/njh20NM9jds1/S+BZIx6OE7jdeBh3e4T3BA4UlNubmsixMXZ3K7rwmtiBuAM6eKrerK1lFmp0DwT0HGMxqx2VlDANOIDRktVjmM87gn8vlav81ZIjaebsLIGzXLVKKbxLLlE2OpEgGY+zpISu4T2VsrRlOi3vvrpazzwWc6rewCGneuQphAMLzGZf1dwdpS6mspJFRQZsGBvT35eWXPq9ulrqDErZPagIZ2lJKdF0msAZp3AAnGDOUp15r+6Xz1PE5oeUySgpcVkNYI5+v34Vidicam5W9qOykmctVZq0+bJxo5bAVgiwpJTmBUYimis9PdLcm5/XEJeUKOqe9aK3lhbm86rbAWd13Y2NSuOOjDAet4h0eFi1PYAsLWV3t6VWUykCO/mQRVpsalIacnTUKYnHAaco8QwMGNXZqftvb+cDdi3PW6TOcFgFyvJysr1dzfijoxrnhgYCC8xDIKsDgGuk376dZDTq+utzMP5aW5+vpXact+dde22G738/L/p97bW/vZHdG9rYHYTqQcAJpQmtN4mlpZqQloo4bYvEQ0vGAQLPEjiuNM/YGIE5Ak/IKHZ26r15swyc9e54GwpbWwvsJz6fSHAt3TJr+X+GQuzttbRhSwuBObFqVFeTpaXs7TUgQ2cngQNCvdXWEnhWi3Z6mgwGxX5i/25uZoF23ep227cbc4XPx7Qt8ig81NlxsrhYG3NRkdJ38TiBQzJYxcVMAQWm+ZqagjKz15tUVOTkq3Ow2mRREen3a+GXlPB5SPfuEduYwrYRLth7FyDkHeC0/573jtPQ4MZ3ydJLHB4mOzoEXoDYY1hTo80ukdD1Dg6S8/PMZAy0MDJC4E4Cyttu2iRjlc2yoKzd1MRgkE5Bvr+fjnIsECDp9xvF03GypYU5G8e2NpJFRUqF5vPWn3ZE6a9IRM/O6LbEzCOqNw/YcN6Mj1Nk8PmU0qyvt+d/RvWqUEjp2HSarK8XgCLDQv9lUxNjgCMPz8PAHIODDn18FNC9eCw93kTzJB3GxnQ/Q0P6bl+f5ralFS3brzWUSslp6uqSESwudtp4nsYecIG3wkAmo6NcsjGjz0eOjTFhz7qry1DNS0tK/Q4Naa309pLd3bq/wUGnlJBIaHguucTqySUlWp8+H79jTszGjXouwSBVhjBA0tSUpWQjEfb3G6J0fFzpyelp5yi1tppDbAZ9cVFDuWWLUqlr1+px3w2hP6uqCioO7O7WvG1sdGnTzk6tqeZm1QEzN9/8mhu7a67JsKqKF/2+5po3jd0b6uVqdseOkTU12gwbG9nZaV6zsegzldImZ0AWDg3J+zaG/lCITurFQ+9HoywobPf10eezY/b1ucZdh1z0oMde8X94WK5sLufqdSMjdMzwjMcL9YVoVDUaDzCQSHAXRI00OmrFceP3ikblGTc3W1S1tCR9twhlMLq75ZZ7iummlOAMoym2e+oHmQz1+/b2Qk0xndYxRkYKVfZwmB7haNoMG5uatDFXVelCw2EZxZIS/ezt1fiXl2vnKC0lEwnVOqzFYHqa+t7wsJMb4uCg7rm3V0aisZFsaGDGNvdcjvQ4r3p7qXPV1HB+XhyaaTPSoZAdo6pKBsZr+B0ddRGV1/HAZJK5nKFw+/p0/MZGRWKevtHEhKJ+Y873+FYdfdX0NCMRo/7yorJUShYylXKacT4fSb9ffx8bY0+P/uxJHnFpSbRVOTrnhm1tmgsQL2QYQlUegNoUPNCUJ63k6bH9CvpyZIRTEL3a/Dwd1RXLy8lk0uFXaE7PgjkkHvAmEtExPJTvATMYO3YUpozHpTk9rblVVaW15GnxMZnk9LSuMRAgt3nRt0FdEwmNw+go+dcWFf4Kr20oJOM5P69oa3qaQ0M6XiqluTwyYoATgA0NiibTadlp7xrZ00MuLbG1tZDteMBbj729TqWjrc0MrLemuro0PzxgTSajPae1lV5Im0iQXji7fbvmQOaHP3zT2P0rer2hjd0CYOmnMDk+zrsBcmBAisUQ68M+GIJwbEy7SmUld1kKBXiQYYB3QRx58bgm/1lAMz4YZEODpaw6O+Xxen0Dk5Pc5h3borrnLO3BVEqLZXBQG0ltrfUfLbjzrF1rKbLycvPcdzq7xKoqU96+k1NTJnviQcTb2tjcLI83Y1HPPMRCEoOhII3vsaREG8sjMPaY4WEyl2NJiYE7mpqc1tcuKLXjIS6fgdI2j7zKqw2FKCMwNlZgo6isJMfHubhom9vgIB0G3+938kmRCLVhecwqUJ/cWdtszls0+IyN4QIgI1BczGTSNt2hIQFKqqsJTBC4U9GGpXmBQ9Zb9Zh04hob5WyUlBB4jCmLeiIRurQii4osUtvDLVss2q6uJrCb/f1q8wDOKmNQVKQIGWLAmfccqL4+SlPwz1hWRgJhoWZ7ehQBFhczCxiZ8BKjEIAkavff3ExTPz/iwD/s6HCGE4gW5H6Ki7lli6bZ/Lz+zo4O3gMBcw6Yc+BFGU46aGREB25qImtq9PuBAXLzZvGT+v1MJFxbqjoRPAcnkSikf1ta9ExN7ml+nuToKKenrQ8vnyf9fqYADphTlE6TbGsTxyugeVJaSra18ftQutGLkmdmBAi7B1BaZGDAnvVZlpUZR+noKJlI6NzmuXhiwskkHRNPEgKc5GHAktJSrdGpKZf1SSTMaRkY0DWMjWmdWA/gaVjacmJCN1tdzRwk5spMRqCohgY3fuzu1pzs7uZb3/rapzF/53cyXLuWF/3+nd9509i9oV4usnvvex1Sy6s59fRQE9fY6hkOKw1nndNnoZRae7ulp0xo0iEfQ6FC/1w+r00hkdBEt16bfN6Qdz09Wmy9va6fiO3tSqkODTGZVHCQybyqEXVoiBwcZFubLtlL23gIQW9zSqcpr9JD7Y2MyICOj+uzTU0FwuWmJm1mzc1kSwvTFiH6/XSUVBwZ0T1NTLC42Ah9jX5r+3ZL7U1PO5V113PX06PvJRK6mYEBHXN2Vv8Oh3UDAwPawMJhHaOkhE5V1cv9jI3pxIODciCGhwveezisTcX67xw61gvX6+vJ5mZ3WZ7e3tQUtQsPDTlmd46OsrOzIMTNbFYbY3OzjJ+pZVdXU+nUWEyRd0cHWVurf4+Pu0hsZIQkTFTXot7iYrreyk2bdMytWzV1NmywY1VVaZ50djrdvHxex66qou4pmeTq1dSc6e52jd3JpG3s1tDnlBlMwby/n2RZWaHva2zMUWPF4yRrapTKKy0tNJBPTJCplOZ9W5s27HBY5zal8+3bXxWRedkDU1LI5WxOWnTtSQcuAS5b4Bm8jPe7jg5ugQiejRFNc7avTxPU5lFzs+4jk1Eacds2XbaLssbG9JnhYbKykt3d5nxt3qzWgrY2MpnkzEwhKeFRuAWDWsM5qM7q9dQODpoB7+sTEXVS4xoOq27omvKrq9ncrDU8OEinvzc9TY1pURFZWSlHrKVF4xsMMvOZz7zmxu4978mwooIX/X7Pe940dm+olzN2N93EjRsNdDE0RBYXKwVVXV1gmGhp0Y5ojTWeqOrWrZYSbGnRLE6ltBG1tKguZfLeoZDSR+rHOuSUqM+b18jKSsZiOh2zWTY3WwvB5KSOF49rY6qocPgFjyLQMbiXlnLLFtUgYjHKUFRXE9guA9zergUUi8nbHh3V9zdv1kbsYcfTaRf9RCK6Ho6Pu025paUgbstg0AtUtDmWlpJ+PzMZFthDmputphQkcB+B+9jaqqGZnjZpGmtgXrtWEPjubkUFa9fS6oM7CWQIHCmkYYNBbbRew5snB93eTo6MeF0kBCa1sdizDIVI9vXxGECpo99Ojo6yt1fwfGaz5ObNbG+XvY0D6tMaHSVw1nq1DmuulJbKGbC+gtWrZaSqq2mR4C5rpzjDDRs0hB6cndPTutbGRj2v3l4Cd8mAhcOcmZFclKeszdFRPg4Q+Ft9fn6eTkumuprs7mYoZNHY2JjGdXpaNd7BQQL/D89CfXBDQ5q/nvp6NGr1qaYmsrraielu22ZAj/FxxuMyYu3tFjWWlckYTE/L6Zma0hrK552AbiAgoMlpL83X0kLgb9nTowB9j2UQnrO0aFUV9Sw9g1dTQzY0ONWhx6F2naMAN25UHWzHDpJtbXzey9IEAvT57LrLyki//1XAnAvk8DA7OwWWOu9lVUwx4XGoz7O3lxyA6vIsLeV3UGD2GR3VvX8PApo8DhTqdj09yjjU1xdaDCIRsrlZ63lkhEft+vNAQWzYI1YYGtI42c+hIfJzn3vtI7s3jd3Fv97Qxu55gAyHCWTI9nYes3Qkq6sd2oqlpVqwgYA8uKIipgCuX2/SQCbZ09+vzSbvpSX7+sipKS1ia74dGWEhyksklBIBFI20tGgV1tTI/ZueJmdnZegmJ5lI2EaVSFiP2h5t/KOjZDyuzSaV0ucNGldSQhmwzk55wJOTZFkZR0YM4dfby1SKDiF2HiCLi5k3T/qSS+i05k4CroEeOKQUod9f8ESrq8nycuZhxNYlJUzZJuShI2dmSOdSRyKuKZ0DA9pEp6b0N2+sOzpcU7JHusyhIdLnE4LOq/MFg6TPx6i36bW1MQNDtnkE001NZFeXi0qA4wQO6HwmfVNUpICqvb0Q4Q0OkhwcZFGR6mpNTRpnacQtaOz6+gRKmZ/XfUxOKpJKp81QZwrsKp2dzos/avOPS0vWGP2EoUiXVHPy+2WwamvJlhb29pqDUFzMtWtljNnSIkPd0uLIabyacXs7yZERHcNTUG9ttd663eTQkByVpSXNW6P8cQwkXh1582Yyk5Eh9MBV8/OyfLGYvmv1W+/XkYjNw44O/U8iIWdjfNxFeN5h6PNJwR1wqvG3enOuq6tAFh0IkA0NhV66piaNoTGvMBTSM+/qKqQOIxFu2FBAE3vOz+IiHb3Y5KSM6XmIpo89PWQ4LLRmfb2+2Nio/aCkRM/RdCZTKWqtek2q1ue6wzIe7O5mFkJeZ7Ma1+ctcxKP25yvrydraxWJd3VpzEdH+e1vv/bG7uqrM1y9mhf9vvrqN43dG+r1K2nM+XkCd5FTUwwCTkh1G9R0OuUZvVDIrZhnbKMDJrgV4KC3USSTWiAlJZrAvb2q05WXkz098vAmJnSs8XFug5CGHgPDDvMgmc9rswiFmM0aY38ySSBO5nKOWctrrtXmHXY0YZ4YJHAXt25VHTGbpRaRQfSBXXzGFp3HWJKEUJHs7WUkorrcKFR3u98iwsVFuhYFj2hz/XryfhhEu7SUuyCU6z323rSpkCllSYkMWU+PosGyMnJiorBBjo7K2MfjZG2tNp9sVhtkaysZDIpHtKGBR72xa2/nWaheNw/VR7Ow5vCiIvb0mKFtaRGfKSRmCjym8QsGrb7mGZ2tMuaBgDZ4n08Gq6iIo6MWXW7erOizspJcWnKPvK6OxrP5IJua9DufT3vhWajG9qRtqhFYpFdfb+K//wcF8Y/LSZqfV220uZmsqLC2jElOQqw50wBZXq5zNjYSmFTEFYk4odFUyto0Kiu1SZeXc3DQaouWUuTmzdwB1Tjn7WdPD100yKEhcmxMWQ1dhEtjs7dXzqDP54AibW163ge8tTM97dL67OlxKhDRqGUJxsYYiymiymRINjTwJNSWwNJSnbexkSlbL65m19vLuyxK4vg42dnJWEzn/Q7wqszCIZaUaLMOhego3SYn6dBcj0M1+kSCmn9FRbp2c6z2QPXDHd75RK7JeNxSmZ2duk+PyaehgRwbE2K0vNz49ZbI4mIHGGI2q+/19uptdG/PAxaR/+w1N3bvfGeGZWW86Pc73/mmsXtDvbwHfwxe68GDZFubNvp8Xv0uUCpjn+dtDgyQVVWM2OYP3EXgb3kWStWsXy8j8Jy3gdXUkK2tXLXKFkNzc4EceWREQBMIin+HGdZJCBjDsjIyEnHtensA2wzPaOFUVDCZFGLseTt3RQXJkhKlLdPpAldiebl24JISryzJdNq8/6oqcmKCSSi9cj+UmskABoh5lrOQEOY0oJ0zn2dJiSkfQRFhRwddNHW3GaKsjd00FC2yqIgLAIfsHM9AwB6PrHrKjEAa6o3aYRvM42ZEHzdDlrLPzpphzgGu72qffY4lJVx41f97ys87AC9TW6Chqa9XHbax0YAMvdyxQ5FvURG1CbW0yJNvaGAup808m1V95hjg2WA925KSQlq8utoh7Dy0L5ubrUdxuzbsujpFrfX1Rmj8V8oYlJUpkhkcJBsbZfwqKgicNXRkt9Jm8/ME/m+NczqtyLWhwdWbpqfp2D+eR0E4NB4nHQdXIOBEXJ80YxeJFBhRTgOOio3FxTJ0ra0yoD09PGnPtaFBx+3spBwai1o9RdeYjfMBgFVVWiYlJcbp2tCg+djRUSAgLy2VwWtuZnu7pfcHBxVpTk0xAaUEYzFjhmlullFMkRwYcMpAgQCNwegunrX1q77NOTIUcil9dneT4+OOTo3T0w5BexomI1VezpISrZ+eHnps0UwBrvKxfr3mjcdvez/U6lBdre95VGgeX+wCFEFGoyQ7OpjPK+rPnDz5prH7V/R6Qxu7jBVZurvpJrqXtnLEzGNjsjiZjAACgCs4d3TQVczXrrW6TyikNE8ySabTWvj5PD2o2vw8yWxWm01fn3bJjg6thKmpQipzbIwzMwYySCRYX2+RT1sb2d3NLVvsb5kMq6utEN7ZqY12YkLXZdpasRjJ8XGHgsvlSLa3M5WyTa+1VWGX1R+zUBqzoYEF+vixMd3H9DTXrrXoxufjeYjvMBikzldaWiBC9mB909MaF7/fwbQZDuu+DcjBzZtV05qc5HkYytI2elZVFRiFh4b0/ZISOSCTk7/KW9rcrHN5TMMexr+xkayuZiplm3EiIVb9GH8FoLJ+vcZvdFSPIp+n48RkT482JGP77+igIwcYHKQ2TL9fSMqhIbK2lrGYRRNFRXo2RjpcVKTjMRTS9QwOcts27Z0bN1JzrrlZY9nXp/Hu7NRzHh6Wc2MXWFJCh1Rta9O9LS4a/N4ax1avtjluzz0cLvBvMhLRnGluJnt7NZ51dXIKvNYUo7bj7KzO4dUbQyF9z4z26KiBfsrLCwAVj2TZ0vcekKa7u+CwMZlkOk1ugRCReRtXTw/PU5J3OoPBoJ53PE6OjalWOj1N5nLs6lKNsafnVajT3l5FwIEAWVTE9nYD6WzerLExII+nLzg6WpgH/f26hwxALi1xaEhj61pajBB0ZkaHHxpSVLxhg11raSlNOpO9vbbmJiYKAJ+yMrK+XuPd2SnAUjDIzJe+9Jobu9LSDFet4kW/S0vfNHZvqJczdj/5CevqbKPevLmAvjDZE9bXk4GAQy+yp4dDQ1qvqZTxGtbVFTppjZXfIdgMAHIAIDs6CBzS32pqVMBuaSEbG12Uxqkpby1qtVnz9/btKrpHo1osIyN0+f3FRUVYnZ0F3koGAgZ6eFApLJ9PaUwPOTc5KTRgR4c+29ND9vWpjpfNMhDQ3smeHkUrHR3k2JhrmE0mSVZXewGjPHpzAkIhi/jq62VgNm+mGvBPELiPXV0F3dSyMpLBoGeTCSwY9aLqCqp5PcsCs8oFx/a/aRM1EK2trrGYkYg231SKnJ4msEuqBlmS3d0as2DQIvMDSgt3dpL5vFOsoN/vykyeFAzHxoSQ7OuTUUskyNZWB56gz+e15hE4yxhAYDfXrrVxzOcJnHGtLuzpkUPT26vNsL6ewLMF2aBMhkDU7l/k0UnLQIyMUPfY10dnkTs62NFh6OC+Ps2DcFiG0Y4Vg5qe164l2drKcNg28WBQhiIUIkdGHNfn1q3kJODmgABE58jubj3fcJjs6+Pq1VoHmzYV2GLY28uNG1UHe8SL2oqLCexkJKL5/QBUm5uFGsanp0m2tXFqSt9jVxfZ2Mj2dq3PW6GU+DEbw1lYTayri0uWFeHoKJNJpdRpvxuF0qgNDXSKDSUl+ncchVq1E5Lt7uYBwBEShCGxZVZUsLdXfYSPWNbhfgjA45ESHEABuOJIDFAgEr8HBSmrSMTW48CA9p9MRvtILEZWVLCr67Wtj3l73sqVaim62PfKlb+9xu4NzY350vv/AI8/nsWxY8CJvv8OfPe7wB/9kcgbX3xRpIJ792LlSgBf/jJeue3/wsyMKBRLS4GTJ4G5xx/HiQcewPL3vodz3/8+8L3vAYGASBy/9jV85aZDWFdWBnz722huXisOycFBXNXeLtHIFSuwYgWQTgP40Y9MmzIr0dR77wVWrsRn3v8sDgKYmZEG5De+IapOFBfj6h1/h6cgXcjjxyESy89/XiSN+AmA+zE3N4c774TUZb/xDcy+4+NYXh7HuTvu0MFuuAF4//uxZg3wSrEENltbod9PTAArVwKJBP7Lpw7hxhvFVYjaWtTUiI+xthY4AwDXXYf9+03I8uhRiVu++CKAowB+BiCLd74TePhhcXDedBOAm27Cd78L7Nt3EsCM+BVxEkePvojZA1cCmAdwHAcOAFVVb0EuB+Dee7G0hIKw54ULula7hiN4t4ljHsKR5Stx+DBw5Ja/QWUl8MJNf4ZzAIAogINY/M53gAsX8OUvQ2Kkp07hjjt+jhtu0D1ddx2At70NTz0FoKpKw2okmNddp/tHURHKy4EDB8YBTOBnAIC78fzzj6OxEbjvR5cCuBcPA3o2t98uxdvhYVy97b/hiV27ADyMxx+HnvupUwDC+OneKwG8DVi5EpKRfRr9/RAPa2mpfn7mM8C6dZibA+66ax/wtrfpGktLcQ0O4ZWVVwDYhacBzM7aMH32szh8WNqmuO463HEHgD//c/zixq9g0yYAX/saSkuBcgDPfvr/wtLv/L7GBxrzSwH83fFPAskkbrsN+OAHgVwOuGb332tsbrkFDz/8S1wJaKy/8Q2guxvAW3DDDbp0HwBs2IBSPU7s3w8s33UXdu6EeFeXl3HkoYewbp2W4XUA9kNir78o/X34AIyPA/jud/Guzk4sQ+thzx7gCIAHAawBcAWAn634KB555Glgwwb84AfA6dMvAmVl+AAADAxgRXU1LgcwA62RKwGcAPAydC0vATi1sICDB4FfAngvgMsAXA7gFzX/Dt//PoBPfxrrKivxLgDXAEB7O5YB/BzAwoKEnD8MzakV9jvceCNw882YmQF+/uIVwLp1+EXx9ZhZWMDyMrC09CDefP0rev2vtrYX83KR3V/8BSMRQ1XG4/LUTMpjwby3KQjwwFSKrqO4oYGidbrAe6DmaXZ2ksPD8lhLS4VIbGxUCgWq+QUCVJTU0EBWV/MZmPpBSQk5PKyaRjKpNEc2K085FnON08A5BoOKJqan6Tx+lpcTiHPLFgNizM8bynSS69cLyLB1KxVVmKYacCd3wdBn1dU6R3Mz6fdzcVG3OjJSQMidtNrI9u2WHrOmXK+B+HEI4MK+Ps5ClGPPWI2oq0tRx+rV1PjG44rEgkEH8Eil6OitPJUFtrdzcNCBJZ3+3JMwmquKCoF3enqUNquqImtq5DUb1RP7+hSVxWKKprJZ7gMoerclNaHncty4UenD0VESuE/1IQ9rPzUl77umhm1tpnRg8HxP2FffW9I9AgR2sqxMtT/XZmE1sgWo1haxyMCT/wEeI3CB3d366Py81anyebK52aKrA3ze6kOeRFJ3N615em8htZjPs7dXzwrYyyzgIpDR0QKrDxsbyXBYEVM+T/p8HBpS0HEUVqsz1GU0SiF4ATKT0XdMt4+TAsdUVxfaIkch4V02NZF+P7u6rM4VDut3w8MOSRkICCiVy9l5GxrEFjQ4yGxW6eJnINBKb6+YXHI5qh5s/ZQRCAz1OCBqr6oqsrjYKXZs2eLaYpUCn5rSekynuQ/giEWL56EaHCsqmLBIbBtAxuMCoPl8TEJ15d5eO1Z1tbI5oZBOVlNDlperud3rtB8cVFQMkQqEQiz0xGazZE8Ps1ndm6L6idc8sisuzvBtb+NFv4uLX7/I7sSJE/z85z/PK664gldccQU///nP8+TJk//T73zhC18ggF95/8Ef/MGvfGZ5eZm33HIL3/nOd/Lyyy9nU1MTFxYWfu3re0Mbu2PHMoXUZV2d4+tjNKqZOD3tNt9jgGMQYS5Hzs8X2CoMcu1pvTGTUU4nGOTq1bZJDw7qb6OjMpiZjFZdJiOr4u0wltZkJMJcrtDUvG0btWt6GjnpNNPpQieD0weamODMjLUWBIPk5CTn58kQxOEYieh6OTnJyUkKzeahH+26MxlLk0YirqeOiQQTCTpGEy/dm8vZ5u8VO6amdD/z89ooJya0GXqQxMFB1T7q6wt8Uc3NLmXsGqc9hW8TGmVZmYN5b9tGp5rOeNw1WqfTJPv6mAIKTedlZezvL9BCcXpa/w4EnPbg4+bYcHJS99vWRvr9GqtUSueZmNC9+/1Mp7XHx+M2Fka/xokJGXHbuBgIkPk8z0P1px07bPxCIXZ3G83W7KwcjrIy5QNzObqiWizmiMbb20kODCh1NzHBoaECXdjoqNWGWlr0M5vVsbz/NwmoKMSx+bwZ22iUZGUlL7nEnncu53gZg0HqBltanNJ5f78M7OKigUosveml83t6NJZnAa+PXAM1OamxCQQEAvPQtek083n9eZs5U4mEnI6ZGZv7mzfrHmZnPX5z3uqlAWdnyViM8bim2+AgOQSlWEMhyskMBnUgq++yutorv3NmpvAMIxEd+w6ojy8Y1JrasYOOVNsjft+2TXMpGhWClMPDZDCodbi0xK1brW7pKfdOTKiNor1dF+o17nd16R6Mis/L73sE35np6dfc2K1YkXH9sRfzXrHi9TN2Gzdu5HXXXcef/exn/NnPfsbrrruON9988//0O1/4whe4ceNGHj161L3T6fSvfGbTpk18z3vew0ceeYRPP/006+vr+cEPfpAXLlz4ta7vDW3sorZggV1MQzDpTZtUq0lDCMXnoHobS0tVe2ttJWtqCBxWDa6oiCwuZn+/9jZPQ+soPKb3c7zHPEVg0uX1Zy2qmzIv1oExolEtGlOpjsfp1AqM5IEcHKTPZxvcxAQ5MsK1a/W3ujrr9fP7CezVwqysdA2/5+1+AgE6SqO4XQ+bmgQSyeVcod0jqmZxMSsqCmIOnJpyqt+trarT7YJqFTtsbJ+zMfVg+T4fZRTDYbKlhdmsbbxNTWQ2q2gum9U9ZrNkURG7ulRbmpqi4wykRUSuPtLby5iN+VEv2jCWGa+VI2dRp8HwCCwReExGKZ1mOKy9aHJSm15ZGcnqatWz6uu5fr1qr8AhMpfjeUiA1KuZARe4ZYs5Hj09LCnxLvUMOzpYMLCdnY7JhcXFrvhbUaGa5eCgxqq/n6Z+cFj3UFbmiYCTfj+3bLEm9aIibfweI0cmo7piVxeBsza/FxwZcy5HcmREIJiBAXJ6Ws5KTY0ioUjEKXmftuiGbW3ctMmizJYWOqn6ri5FrF1d5OQkm5qMeSQWYz6vupwnTPw8wOJiGfxIxOrY7e0yfkNDeralpWRfH++GIaBLSx2hwywKlHaRiFGL9faS5eWq1xnR+I4dNv/Ly4UIKS4ml5YcFyfHx+X0GF/rHig69pDBySR5D9TSctoi0+dgLS3Dw4xapLdg69jj1Y3afbK1lbu8yDIa1f2FQjKIRUXMwvoHJya4uGgae54z2NWl8TYGpttvf+1rdv9ajd3Pf/5zAuDMzIz73Z49ewiAc3Nz/+z3vvCFL/CP//iP/9m/nzp1ikVFRdy+fbv7XSqV4qWXXsqHH37417rGN7SxG4dkPoBDMmpdXVy7ltwHK4SbKsFpW0zHILFJwdn3ENitlTs2RuA7BL4tS+DzyZusriZwHxkM8gCMw9AIijkywtNQEfx5WCG/uVkQcos6ursN5RcKETgiY1FSwgTUihCNkpyYILDA+nqvf+wxJyHCZLIAijCBUKfY2dBA5nKMxehUwmehdos9AFMpZVe9pvKYbSRio5hgVZUM53nAoVmPwdI9gYB2bNswGAo5lKfXaH7WzukZrBTUppCE0sIPmME8aePjFBSskfwhz7CVlDCV0nV6bSHH7Ni0Dcjr02JVFZnPywiGQozFLF3a02POwT0EbndN5K2tZvDLy8lcjqftGWaztN67I1yA0oPAEs/bOHkGKgrB8Xt79WzWrqUihGBQqXO7gOJikn6/CdxeIHCPew7hsKKprVuplo4sLW0dJZuaeN6ciQUobc6lJTlIDQ1qV5icNEWHBbKkhEeh1PX27ZTTkM3SwUmjUbKkhLGYpvXMDMlw2Kmos6mJ3LxZ8zgUUkRtqgx7AK5erUPk83SqB4OD1GYej8ugtrSQnZ0m6XSGwFk5Wh63l9+vaKqpieztlQGpreX27fJTcjlqPvf2yuDZPAsE7F4HB7lxoyJEneO4U/aoqtJxdwGsri6klrNZjT+TSTKZZDRKl/bfupWOEHwScrIMqyaQ1OAgOTwsA9vcTI6OCslZXMyyMg1vBIoWN2zQOaNRXatXHrjL5n5nJ/mIOQWsr2fmrW99zY0dIFmzi32LJAFcWFhgJpNx7+Xl5d/o+oLBIN/xjnf8o9+/4x3v4N/93d/9s9/7whe+wHe84x0sKytjVVUVv/zlL3Npacn9fWpqigB44sSJX/ne9ddfz7/6q7/6ta7xDW3sFgDT8HqMHBxUlGW0YffYJEyYEWBvr7wzn4+PA46wdxKK5LzU4SOA8vfWC7R+PV2zT08PtYtMTYn53TZ7Fhe7OiGrqrw1R27erM22oYGLiya5MzLiZGMmJ6kNbnhYm19fn75npJnAfZycFKu/R9rLyUlPfMDYerP6e1ERE4CTllFUkuH9UG3ifs+IpVIETmihFxeTo6NsaxPabMmMd8IMzqQZrro6paayWSoS8lhUjBKKQ0PaxBIJXWNfn8a7vt4TYSggYjs7ndrzSbtudnaSJSV8BEYEXV7OZwAODakh3yPPZm+vopOBAarmulPRkaX7yspoDfcXFEG1tLClRYYEeIKnAZeZUnR4XI5FczOBA+zosPRVXR2BE8xktEGUlRWIlfNmEAMBq02ZlNSGDSTQbRHeLn3eMggewbb+lmHEDNw85IQ1NJAcG3P7dSikc01O0unVsbvb9aFlMtrAZ2bo2i4eglKXZ20u9/bS1UxZXV1g6je1ipERKowbGnLMIqkUyUyGO3YYbVp1teZnKsV0Ws9xAaYRmEgUeDR7e8lIRKjH2VmyrY1Hbf3lPUPb1eWyKIzF5IDU18vgDQ25OiWnpsiSEq3Zzk5zRKP0+zXVPHkgZjKuvMBolBFYliWRUPRXX6+6XUuLJJ7MQUtAEZsjRpiedpkYjo7q2OPjZGUlEwmLvouLdV8eP6ynB2j3yvJysrhY42Icruzs5M03v/aRHXCSQP43eJ/k/1gjA8Bbb731N7q+LVu2sKqq6h/9vqqqin/zN3/zz35v+/btnJiY4L59+/jjH/+YH/zgB/m7v/u7zvhu27aNl1122T/6XkNDA7/yla/8Wtf4hjZ2eyFww4YNqmdoYWS0eLu7ZSC6urSQSkoULRhpsXEmOxFP65smp6YE1BgfZw4CHsw7j/9vGbMFE/W80ooKTfpo1JE39/eTbGpif39BSccjoGU0ag3QF8hYzFu32pymp1ldbdyATU1KVdkGkM/Lq0wAWmBTU8zlZKBPewtyctLRQXV12XcnJpRGCwS4alWhJZDBILdsUWQ0OEjS55OhtJSvG6D2dpaVFUh/YzG6aGPrVjpNOq+G4ykgMBola2o4OCgv2+PLZiZTqI+VlOi6p6d1nOpqjWcoRE5M6B66u8neXs4DDubPsTH296tvKBxWEGwBl+tJvOQSGhDpAFldza4uWuryCDk2ZgZwSQ6Q30/ghGvQSqUKmziwoKgjkSCTSWYyGtZsVu/5+QLoZ9MmOl5JxuOWBj+gVFdtrSLS8XEyHte9RCKO8o75vB5EXZ2IBfx+enyQ7e3UyUIhGePNm51UkCkw6UJqavT3piY9m8ZGxzlqvM46//w8GYtxft5aGaJRMpvlxo2WrvX6BUyT7qQ5QcXFsq3t7Za+SyZ1ju5upXXHx8mBAd1TSws5O6txHBvT2uvsdPWuSXN4ODTkmFYYDOr80WgB0WTH5OCgvh+JOOmkY+aoehkHBoPMZJTZ8dqPHHBreFhzrqNDqcnOzoIM09QUWVTErea8HoAi3WSSbqy4tKS5NzrqWn1YVqa16mk1RqOMWoQXj5OZ//SfXgdjd5xS2LjY9/FfK7K79dZb/0nj+Or3k08+yS1btvDaa6/9R99ft24dv/nNb/6L7/PIkSMsKipiKBQi+c8bu5tuuon/8T/+x3/xcck3uLG77z4RDDuvMJcjx8a8vl9yaYnz85bGmJjgjh1a3A0NdNRVjuDP79fizmbJaJSDg9Z3NDvrSPnKyuhEMhkIOCYTRYl7OTSkug1wnxbRwADZ3q6GcijP39Gha4hE6Go300ABKFJdrQWeTBJ4gsBdZF+fDEVDgyOe3bCB5OSkJH7mtV6rqgpNzUNDJCsrnVycJ20XjVIbSUUFV6+WvYnHqZtYWpKR6OsjMxmH0xHbzCRFCH2I1dVe9mmP63vS3//B+uzuIrDTVNP/b3qsIsCz7OhwbE4Mhy2tFY+71NzICN09Ab0yIEYbAxwXtgZgUZFFytaUXlFBV5d14A/boJlIKHWXycj7HhoiAwEGg3QSTqGQ9xwPm2NzgEVFCobFRfmYos5EgszlOA84SUNWVhJ4TGNbVmY1wCeYzWo+5PM0pp8gmUwyHFZaLhQi2dlpRjHKjg5FixUVdA3WjEYJPMspCJwCHCA7Oz2aVK98KmRv0mqVLS2cmZHTtH27PrNxo3oIk0mSJSXs6NDhPe03YE6b+Ph4IWXusayYDiHwTes5fExR6fg4E+Y0bNtGMhRic7OlZJeW7DuHWV1Nl0FhZ6ciqYYGOQWhkGNasYSJIv+GBtLn03kmJrhhA/kQPCYiNdA/Zw6uV8LwACRnAfccPIoy1T4zopCzSPakZQ08gY5ZKI1/wAz5WTOgQIasquLzgKuDxmKUE5lOF8ikR0fpSZ1UVb0+SuWvlbH7l17TsWPH+Nxzz/1P32fPnr3oNOY/9Vq3bh37+/tJvpnGLLQefOMblsY8Qo6MqDZhxWs2NZF1dVoItml4HJfirdvtNkjW1zOTkQN3FoX63lkYasy8wG3bqNSdSXqwvJzHYPVBT+DUkF0cGmJREQvcmCatkkySrKtjPq8F4sHA29r+B507Y6/wFLZ37NCGlU6TLCvj+vVC3W3bRrKtraBjZ/phW7cal6UnU9DczPr6VzUPz897mqaq2TU3K2XT2Ej6fLqn8nKNj3nWMzMGHggEFAW2t2vxt7VpXLxUj6ecXVqq8e7uJqurde+hkKDZS0tkXZ08fq/AaGgZT5GGHR2mYn2W7OpSNN3XRzY1ORYvT1jVU5IoKtI9ekpN7OlRRFNfT3Z1sblZn4tG6ZyW5ma6+g6TSSaTShEmk9SztEg0GqXO39Ag/wpwzCSeyjXwrJwHYxRhby+3bbOodnJS0XpZmaKx0lJyft5xdHqGiQ0Njq2sp8eudWmJHiuBBxKJe5v60pIe9vg42dZWSC8ODmpcvbz69HQhVfcqKShOT5NdXayvV3tJIKBrTAIOlHHU5ilwQuedntY5R0bIwUGnDM5oVAfwZBw8mY/RUXJ8nBEoleyx7TCfJ4NBTk0JtLJ1KzXfPPYZj0jWi3BLSnROD8Xb2CinwYBnQ0P2rL3WhNZWsqdHLUKTkzLEwaCO7/Oxp0cgKy+9GYnYeFjpIgWQIyPOAfNIpuNxa+ExnaBkUn/L5aj5PjvL//JfXg9jt0RpcV7se+k1u6ZXvzyAyuzsrPvdzMwM/38BVP7H1/Hjx/nWt76Vo6OjJAsAlfHxcfeZI0eO/PYBVDILC2RtrTYVE6QcGqIWkUVsHofdMVjdKxZzfIdOETyddv1UHjsIk0lyYICrVlkbgJeqMTJmlzvzcpDt7VrQFRU6p7UmDA3RKVtzdlaeqtXOtm+noy9iPO56j5xCdFcX2d3NaFS8kO3tthlmMmQ4zOlp86Jfnd6ZnnbwabchjI251oPR0VfB+K1HyaNTcgrZU1Ou14+hEFlXJyegooJsb5cD4clRezp0ZWXanTs7NcZVVdoIfD7BsO3eODqq8fSs0eSk7sf6sdjVpY2wvNzxdfb30ynOMxTSvdXUSDU9zgLZ98SES/PR79e4zs7qGsfGNN61ta6OmE5rHBIJFqjljJWfjY16x+O6l6UlbtliwJCpKba327yYmuLUlEUjHqJyaUnXYOAnzs6Kgqy5Wd8Ph9ndTdcK0ttL3WBLi2uL8WjoIhE5YKOjQkd2dlqabnbW5RRLSgpCG21tmhNbttg8HhzkQxY5evXfHTsoryCVYlWVGdOSEra3i1vzrDkgU1MW9QeDuo/mZs1fi8QzGf09kZDCuPc7n0/XEovZOJox2L5djsiQdw3WhOlN261bZfC8vkcODOi5e6n46WmlPhMJbt2qsVtcpFtLgYDKGfX1dDR/vb2OWU7nSya5aVMhfR8EnHZiLkfH7hOJsEAbODjo0rIey0wySRlEu9F0Wt9lIqFrX1pi5vbbXwdjd4QCBl3s+8jrYuxItR5cf/313LNnD/fs2cPq6up/1Hrwvve9j/fddx9J8vTp0/zzP/9z/uxnP+Pzzz/PXbt2ccOGDXzPe97Dl156yX1n06ZNXLNmDXfu3Mmnn36aH/vYx377Wg/m5kRLtWmTtc95m/DkJFleLq/MUGVer1kgQDKV8ojlGYHqcccgwETai1Ta2hybP8vLyWRSacbRUW2egYA2+MrKQoNyWRm3b1eKMZejFmlvLzkwwGMoyAitX29RyfAw2d7uQCDNzXSCnkq7bCXwoIxLPq8Fn0oZce7t8rY9sVNPiTKRYHu7IdVmZ3XQ2lonbrljB3XygQGGw3Q6btMAWVfHHTusKda8epaXG8HxWQJ7XWqT2azb+Pv7adpvcW7dqmNWVNDSeGcILLCzU89pdJRkIKBo0tOxs4ZdTkxoU7UNBjhExmLctIlOAWBxUdBy6eQdcNRX/f2UkWlrI/AEmUhwwYvMp6ZEGxYOe/3VZDzOUMiMaG+vadDtJDDBIGCp18dkWJeWCEyKfKC+XjWfpiZFt6GQtTRMEjjHZJJGwv1t9vcrOx6Lqa6qzxyRU2BoX4bDZCLBkRGlwpnN6poSCXJiwlKoOxk2Z8GTjAqFLCKvqZGx8vm08edyZCTCYNBou6zW6KWO2dSkZx2Pk8XFeob5vIy0ifYKnXqcj0DoZYbDZE8PV6/WNNy0qSDRcxJw/JWnzcietLTiAQgV3NUlCjAPCc1wmHkI4ciSEjIadc5oNiuDdz9EFRY0Qw/sJScm2N9PJ4nkCA6GhpSF8Ry/mho+Y2v6SUjVJA4BeCYhEJdTArFSACMR7RGtrdozxsf5DATQCofpiMx/aL8zTA45P8/2dnOCmpo4MiL9S5EBDPxWGbt0Os3Pfe5zLCkpYUlJCT/3uc/9o6ZyAPzhD39Iknz55Zf58Y9/nGVlZSwqKuJ73/tefuELX+ALL7zwK985e/Ysb7nlFl555ZV829vexptvvvkffeZf8npDG7vM3Xdbnewwk0m6YjU7OxmHUIj7bINiIkGnSVJTQ79fSLutKHDnsaFBC8ADZ3hgC7+fjEa1UUejLi0Tg7GO1NSQk5Pq+Zma4uioIepGR9XYbgb0kksUDXR3W1QQi3HeDCzwrBZMPC4jNT1N4NssLtZGsW0bdU3JpN1zN3dBEiWsrXXadGxvZzardbttmzz5NAy5OjrqdPUWF+kAMn7/q8YuFOIzUG/SM+YINDRog1m7ljLyXkqst5cMBBzU27Q7mUgY9HtsjG1tsmM7dtDVu7yUGGtqBFBpbRXK0+fTvVhkVF9Pp2EXDpMcGmJ/P02iaZJAVJtnLMaqKgXXQqH+Z2cA8nkdY9Uqkps3MxYrGIzBQcpRyGTY26t6GBDlHoBAL4FnuXWrV9Na4qxFPXGgIP8yMMCj8FpZgiwr0+0Auzk6avW0aNTAMScITHDeNtDnAbK1VWCTqSkCfXIkvMxENsupKRm7Z2Dp+OFhbt+unrnFRSqt2tfnGs5ZXs6tW/WMnzcHy0MOBoOaQ3HbrJ2yfEeH4yQdHXXZcM7axs5otPD9WEzOQl+f5urwsJMGusebp+YEfsfGx2uT2AG1C4VCus5EQudgOi1vqbmZo6Oa77fCUrRFRdbSscD+ft2300Y0w87ZWSbNmM7MkGxrYwoCrWQhlOa0rc17ALKnh6dtjm/bZunqcFhz2saTAwNkebkkgTwjODrKeaim19VF96xsWpOjo4zHRQAhB6nvdTB2LxJ46Td4v/i6Gbt/7a83tLHbvz/DpqZXpRw8xFUkohVrRY9MhirUTE4WGoQNYs3KSn3OQwIGAvqupSXDYWoTjkQUFfb1Oe0tRxy9ZAV6qw+1tVErMpkkh4bkqVdVOUPj0WpxfJzMZrkAsaN0dFAGwAyzemLOucZn9vW5RqiyMpKdnVrElm5MJknm89y40SK7sTGlGjs7yXCY8/MWWRmBracw3dIiwAS7uws0U57BDwTc8VavNri7hXddXSRnZxmJ0Hncg4P62dKij0k2LMNt2zRUHmnu4CC1uQwPO701Tw/MI+EuKaGLUhYXzXuORvkMwFWrDKRTV+fUBxiJkPX1uq7xcdKMCmdnBXTxHB5jOXFpsLY2JpOOnYqzEArX57PoqaeHwFmN0fR0oSbU0qLJVFfHqipDYxo7DrCXU1MaRi+dB5yRAfee48CANvrZWfb26jHNzxciBk9Kyuezuu/UlKKhlhZGo5YJKC3Vs56cJMfGXJ1261YzpoEAOTxsYsUXSJ9Pz9fvJ5ub2dysZxqNFsZCUfUF1zvJsTGyp0fzOplka6tFdj4fs1Da0KPucjp5psIQj+vxTHpOgti2Sb9f7TPeTft8ev4DAyJ/LivjrRAF2MyMngtHRlxd29H2GQKY9fVkTY2cT6/NwfoSH7HzBoN0LQjzniNcUqKJ6tUwrD2Js7M8ZlHg9u3k9y0SnIYAL+GwtUHE4+zuNmesqcn1BG7f7oHVXmtjl6TaBy72nfytNXZvaCLoRx8FHnjgIGprIVbi0lIglcIrtR8GvvpVkez+wR9gYgJi0K2pwR13ZHH77QAeeAD/9oZfAlVVwHXX4fi+fTi+sAD8wR+IKbm4GHjnO/HJG44Ai4uAzyeS40wGOHZM7Laf+ATwkY/g7x9+F77+dQCf/jS++lVxL79S8yERE1+4gH37gCMHDuCa4iN46CER+l6x8hXg/HmcW3E5DgPw+SAi4WxW597v0eY+pvv67neBRELEzMeP49ixJHDhAj5aWYlXbv4kcOON6OsD/mH7pXj44ZMie96xA0d8HwNuuQVHbvgkjh8XtzMefRT4wQ+waRNw4MDPcfPNIsXF7/4u+vqAqwBg3Trgj/8Y+OxnMTkJ3H33eRw9ei9uuw34f+68Aj9bvAbf+lYeL1/3+/jBD4AtW4CjR+/H7t3A0aM/xj337MOjjwJPPhkBcD/6+4E77oAjzb3tNogIevVq4KmngPe/Hz/d/y4cev8n8OxN/wWvDP93nD79E/y89MO46SagrEyXjRdfxCKAkyd/ibk5iLj4q1/F35/5E+D227G4a5c+t7yMp2CczOvWIRYDXqm8Bq/UfAgvX7gMWF7GH/4hMDIC4MwZvPeql3HgQBrLyz/BCwCAGczNxTSON90EYB8OAnoWN9+MC//1vwIf/CBeuPBuvPL44zhwIIb16yGW7O9/H8AuPPwwcPgwsHcv8NJDDwF4TIdqbwduuw3YuFEX+O1v4847gR/9CLi2/CUsLgK46irgPe/B3BwwN3cUMwCeLv0YHn74JeDMGRQXa9jQ3a3Pl5cDVVW4/34Ai4s4fRo4Dl37K5v/DxFe4wWgtRUvAkBfH1Bbi4MHgR07xDF+de4FMWdfuACRfxsRdCoF7N6Nu+56Hj+Zey8mJoBHARyam8OjNp2evepjwLp12LsXeOHJJ4FVq4DKSnz1q3rmiwB+AYhBORgE9u3DAw+kgd/7PWDvXvxibg44fhwv3/IXuAA9uHdDpNB/UPJzLC8fBb7zHezeDTz//JNYvOMO/OKRR8Ss/s1varyWl/Hetja88q1vYfH8eaC4GHO2ilBZif5+4PKiIjwB4JRGA/jBD3Cu+ArNxR/9CJidxcG5OeDMGfwSIqIeHARKIRLpMwAutWlw+DDwcuUHcPvtNjcPHEAspnGPx2FX/+brX83rf7W1vZiX5+Vs3JhxMjpKA11wJTXlp89Zym+3vD9DwwGHFGK0tDiZG8ZiZDTK6moDucRi7rgjI3RclPT7FQ1WVbn+s3BYUUd/f6EdiOGw9LdSKccNqO7tWYULbW1Otywep6KE6WlPfUbFpKoqZjJ2vFzOtfnkoFrM5KQc254emid5nE1NQm329JAsK3MRSlGRIqH+fpKdnY7+KRAgmU5zdFSObUuLUkWGS5H3bQjNeNy82akpcnCQfr+lb0z0zaMdbWujUyjn7Kwist5eAhnHjwicVarToiyvTrRxo66huJjk6KjDzLCtTRFAZSVzOdWHvCZx5nKuBYDT04rK/X5dw8QEBwf1+YoKktEo+/stCistpc+nMVkCdL2ebqBXiCovJ8vKPJFubthgfZM9PVy7lk5WiQ0NQvRNTbmUsUcZ1txs7S7t7WRbmyKy4WGuXm1zbWBAEWRnpyZQNusQmM3Nuq9slhbtH1f60aOom5+3DMBeiygPiKUnYZGa1XmLiiyqz2T0++Zm5vNaC8AT7O+31heP67S0lImEgp48RMwwNWV6gSMjiqSKisjSUo1zKERAvK7z87Qm+0MMBAzFOD3NSMQYb6xvTXPWItyJCU1806Dz+WwOxeO81VKHGYvKPAQy6+o0WWprWVFh63hpiYzFuH17Ia29uKhrqKuzFOjUFJnPa0zjcX3RyKi9bIjHSerku2Ixx5+5Y4eehdfX5wGe2dfHmZkCTW5m4PWo2T1PtQ9c7Pv539rI7g1t7DI/+QlnYc3G1dVcv94W4/i4Q2e59JfHEN/WxlxO6zWR0KL0+wvkDk6bK5NxvUCtrST9fkfj5AltbttmG4rXiJ3PKxVq6ZBVq8w4TE4qhZTLMeulc6ypV0wpu8npaZ40A+RJukWt7tDRQdOV26Pj1dSQpaWOA5tTU4X0nOWNRkfpGtlTKb07OrRQt2+nbtIg5zMz1lhutGQ9PTpMJKL7i1kKx0t/eUwrHqvLktX2ZgGXDk7aZ/cAjoaLyaQeSi6na45EyMlJpflGRvTTdsTFRao/ykuN1dW5dG5RETkONfa3tFDWsK6Ok5MyojnAaNjijpA5Cbia08iIbfyjo2QuVxAFtRQVcB9Dlupie7vS1WVlBNTvtXWrQ64zk1Fa7W6odtvVpbkTNoOXt5oXMKH6j2kYbtrk9EZl9Lu6lKqcnnYwTctk8gEITcnSUo1hXx/Z2qq2j2iUnZ2qPzObVQp0YIDJpKV5GxvJujqNoWnorVpFMf8nC2LqrK4WgCWZJINBPmTzzufTZ+nz0esqz0NAlFjM0rwlJUa/dtaIHS6wp8eMz+bNZG+vAZiiMvoDA9yxQ+k+v5/k4KCudXiYrK0lsJfAggGjjvCAV8PL5/m41eH6+23crB5fV6faPWdn2d6ueSCDe4GAuDUZCHBkREtU2dQLZCAg9KmXejUFDSaTjMWMT7SpiZs20VGkVVdrvrq2HCN5iMdpAKm95MgI9wKvg7E7SLUPXOz74JvG7o30erVqL3CWC4A1Px9iLufViQ5RCMITzpioyXkPgTsZM0NSXS0mDjY3G71Tht3dMprbtpHs6+PiorzM/n6S0ahj6VdO/hyBMNVwfYDALgI7XXuACH0XnFe6fbvV9CYmyKYmbRAVFWRlpYxsSYlDHiaTJHCuwLA/Pq6NcHaWzOcds4dXawJuJzDHoiIZzGcgEVJd42HG43QLUsTWx1X/mJpiMukhKrezv59W49H4eYIG2jj+gXV13t8l/qlm7BMEjnDrVq+RfC9XrfJAH1u5erWazbVh7Caw09GepdO0zWovgSXXKA0sqDbZ22tRy255D17/RDbr8UBzZETAhikDIDAQ4GmgoISRShWkgix6koxS1An7jo5a3dRqTVu26Hvs7hYCsLOTHR0yIkJgnpHjEAxydJSOY/JJgG1tegaeIjbb2rTRV1cTWGAUAiXNz3sN51vJSIQpSCE7k6EDz8zPk6yosD6+v3A9ahUVtMzFkuvpBL4hZyRHcnjYE8ggcLzQRmO8ooqwj9uaCGtcamqYgfrdPKcvl6M1V+822rslGYjubgPnPEHOz7OsjC5qbWqie+Z1dVSE3NysMZ2cZDotg9PQoHF9CGqt4fS0Q11yZKTA7JPPO3kg4B/IQEA1yUyGC/ac29upARkcJJeWZPhHRlw0DdynLI2Hgh0bI0MhNjVpCuQ8B8fvF4CnrMzG/D6ysVE1WyOVyOdJ1tZy2zY5Gl6D/MyMHMRLLiEzB187w/KmsfvNX29oY5fZsoX7zGCdhWDOGzawMJnjcTVL5zSR456nPjbGVassCsxmnTRKXR0dRdFJi0ZWrTK0VmkpIxEdJwUV5zk6SjY28oBX7K6u1t86Oy2tY9Rh5eUEjmuhlZUJtZlIuIgFWFJ/WEkJgTOFVI9x+uXzNJaOSW1WttlxaYkOTlleLs+9u5ucn2dvr21WyaQD7qxdKyPiJIWMlqm/38bBOP4YDOqYfX1kRwefhLFfFBXxgEV5dwFkQwOPvur/E4A2F7+fz0OtHI9D4IBtgE48NCRvf2yMLC1VdDI4qKgxEtF5JyfJ6WnOQmhXn0/PNGEb0datAmyc9camttY1CAOHtdn19BA4QGd1amsVOYbDbGqyqCASIbu7ZVCt/eEojHAYKJAQdHYa9dgFF32WlJAeE8HWrSLjlvE8y0TCyAm8NOjsLIEnOG/Ojgd4YTjMyUmLynw+srlZKetAgJycdEpDByAu1ykI5ceyMqEgIfj/hg1mUCcmHH+pZeB50ubm6tWaC8cghpkDtnGvXatpMA8hXBkMFnTb4nFmMoX2HEKk2U47z0N7+Xw8a4aIw8NOPjIUsnEIBJwoez7PAktQU5MyFZGIxkBUPA51GY9rOp21eeTJA7GsjJyfd9JR2aycUU8X0AMKG/ubrisQUJQ7NsbBQX1+dJRkQwPvgHhg02l9zNM55NKS5lJVlQihI6+SYzK0LFtbC0CjkREyHHYtSpn//J9fB2M3T7UPXOx7/k1j90Z6OT07wHquzsqIdXZqAvt8TtqEfr88Q6urTAHmVe8lcMK1ESgC2asFPDamCdzd7XUdyAVdWtLnPeLjmhqytpbPwNQCKioEOy4pIWMxdnebt1leTuBBbarGSLFtm/2tro7ATtXGSksVacRibiFFLFXFri76/dYXls9rA85kVNcoLiZrahi3MXkGMC//hKKAkhJtOsYXBlyg369N63lLSXnjswNwDfX0+913T0Npykdg6cyiIrVpFBfzORvTbVCbw/cA3g1Bu3cAvMO+87gZwLP2eZaVke3tzmBl7PvcvJlsbOQOqE4TDJIcGuJzZtyqq+15eI3A0aiJ424l0O0awIEnFEF7BrSry9lbZjJC0EH9XiMjGv/nvUilpMSRUAeDQh8Cr45y9jhC8KoqpeTUcvAYgQdlHIy9g5WVLCoSOnJqypsPOx1nI7BXiMGxMUWWo6OOxDmRoGUcdpPV1dwBRY1MpxVpzM7Kgxkbk+2FWkWYzwsl6dXCGhtleIeH9fvhYRnj5mayrIxhCFXZ0WHRWXExYzGrFxuJQgQgh4d5DCBwwaLvnWox8FhSKivlNPb0kGNjuq+iIrNjC04Ckvm80tTG7QZMuNqCp74gsdsnuG2bxhf4B4fSVO39MBkIaDxMuzIS0XAYX4K1LZwjJyfloCWTBE5wwwbr1/Och8pKjoxoqFatItnWxtWrtSzuAOxaFrh6tUX8RhbA1lal78vKVNvz+bhxo5QuMjfd9DoYu+eo9oGLfT/3prF7I72cnl00I3LkBLWCPG9vfp47dliLQSqlCGdsjBwc5Pr1ttlFInIdUylN+K4ucnhYXptpV7G9vaA1EgppEZeVkaWlXPCiikjEMUPE4wKHtLUVgAvbtlkkNTHBTIau1sH5eY6M0KWbTParwC7c0sJNmww0EAzKqC0tKWKdmtImtLTEWIxOqqWzU8cALui+Rke5dSsdLZjXu+0VY5TqPaEIzqifOjupjWpgQFp5ls7z6kItLXSNyB6H4+Kiju3ptQHHZdiXliyVqefkKW97AZxHH3IMIPv6ODUlj3v9+oIyeiaj+2coVKhXNjZyyxbbdHI5btli6bChIbKmxgGE8l4k1dvLVasKHKLd3dRuGospIjL9sdZWywxUVdHn0zG3bdOYbdyocycSdLyI8/NWk+3uZlOTefy9veTkpAOEtLbSRekeQGb7dj2D6WmNn6fO4DF3DA7qmJkMC+m50lIH/PD06IwBzRGveFgttrbqXI2NjES06RtjnKNpGxzUvdXX69G3t9Mx+TAYVC10eJjs7HQabn6/xs7nI38I9ac+BDgGMiYS7O5WOndxkQ5g4zl8rK5Wa8Goxri62tZtT48uLi5SAs94s6NDjlVbm7IPhnbZuFER3gMAWVcnx8l0FoNBA3D5/eTsrCgEq6vJ2Vk5lJFIQU6ptFRrrrdXg9DTQyYSInHwiBrGxzUWjY2Kdhsb5Yx1d+v3ySR7egxM09paYFnK5/ntb78edGFvGruLfb2hWw/WveMYXnwRuObCL4Af/ADPLl8rSPuBA5ibEzT72ePvxr33AgiHgTNnsHIl8NBD0B/n5vCT/e/GfbvfBXz2s0B9PcJhAJEIcOutwIoV+PnyNTj3wAPA3r14/PGkoOIVFQDUWQCfD4ODQlP/+Z8DDz+8jIkJ4N+W/gwvHL8c//6mX8LnAxAM4oof/b2+A+CnL16Lr9z4C7VNzM7iY9cZlP7FF4HbbweWlzE/L9j2K1/8MywtAa9c9S7gv/5XYGICt9wCPPjUu+DzAZfiFWDFCszMqCsCOI9fnHk3cO+9eOAB4MwZdTI8/LB1NKxZIzg55gD8Enj/+9Xu8J734LnnIOh5bS327hVs/i//8ih+8AOAfBr33DOPqSngp49eioWFnwBr1iCR0LGXl3+JvXsBIIJjx07i2cV34eTJxwE8hLvvXsatt/4S27cDd94JHD+uscOaNbiqpQWoqsLysjovbr5ZSPqjRyNqG/nWt4Dbb8ctt9iDP3oUc3M65/j9lwEQYh5jYzixdy/+29d/iZdu/CQOAmhrA1BTg6uvBq696gR+9CPgb264D+jvxz/svx5XXQXgllvw452Xo7YW+OAHAbz97SgrA/7NvwGGh3Utq1YBKC7G4cM2fxIJ7N+vx4U//EPMzQFXZw/h5VtvBXbvRmkp8B98T+Duu38JnDqFI8eOYWHhIHDnndi2DcADD2guLCzgzD334J57lrF1K/Dhg3+PP//zPFBZiUcfBb7f+Qu1GJSU4PBhYM+eGF554AEsfeLPsGaNumLuuedFPPwwcOnGj+Nb3zqKl+6+Wy0Ozz2HD5/cgdJS4J57sppLV70LqKzExo2aC7t2JfHUU8APf5jFDTdAg/r1r2teJhJAcTEuLyvDFQCefHIcy8vA3Nw8zgD4GNRScPfdwIoVwC8uXIMbbgCeAnD1217CT/a+C/ffP4/3vQ/4+eIisG8fcMMNeN/7gBMHDuC664BfLF6B43/915i7/3684vuAWj1WrABaWoDDh/ESABw+jJIS4PD3vodDK67Fww8ncQN0Hhw4gEsBYf9vuAGf/jTwBPSsMDeHZwFc2LcP52p+Hw8/DKC8HD8DgOPHce7UKXzkIwC+8Q3gqqvwwl//NfCJT+i4jz4KrFwJfOpTuOeeZeDCBRyCrY2DB4HlZfT1AZiZQXk58AerXwAuXMA1+38MbN6Mf/fZS/GlL/0am9m/+JV/Dd6/pa//1db2Yl6el5M0rw044mQ9Nmygft/UJLe6rIwMBpmH0Qn5/WRrKy+5xNBiY2POS167lmRPj9JDpaXGfr+klA4EKHjcvNlJS10c8zxHz81ubxcIxNTIubREzs9zaMiij0iELClRlDg5SYbD3LrVUnOTk3SAlbY2ecsWkuXz5tVXVjpNM05Nib4Pxn7S2+t4/urrLbrs7JRXXVvrYParV5McHtZ1mrQLy8uVjqmo4HlLNXpk17EYyVRK6VxTlz4L1Y8S3nPo7NS1Wt3CjWMiocjTqK+81A9DIT4Pq3VWVck7r6rSd0ZGFCp4lPT5vGqh3d3yqsfHXQtDLqd7SKf1CNrbFWENDdEhFVlcrLpNayubmy3Srq7WeG7eTC4tOaYTDg0VYPuW8gsESCaTSiGn02QkohTo/Lwj8eDSEtvaFBy0tOjZ0O9XZAeQ4+NMJgvRX28vyb4+5mGsH55UQyymaMNaFjyBXo//NZ+n5nYmQ9bWFlCXHuIkmyWbmhRNtbQoEikpod/PAtuOR+Kcy6k+GYuZUsOCrm9sTAU26615wNZOKKSxm58nnSSEsW+nUlQEvnmzqz86KqHNmzWXTFEhHrcaZ1EROTioevDYGNnYqPN7UGAba7a06OFmMrqmQEDXV16uGp73DgY1PmVlrm7Lhgb99CZHTU2hztbdrflTVMQ9sLqktVQ8AhT6elpbtY77+gpUgXav5yEULsvLyViMpwFF+/PzzNx33+sQ2cUsI3Ox79hvbWT3hjZ2J09mNLFyOZcGi8VIzs46BLdHfuzVR7q7WUB6GaGr48abndXxpqe1oru6lGrq7TUGjAUBKoqKuAABYphOO0qpcNgTDz2gDWF+ntmsbbxWU0mnWRAjjUZ1/JGRAp3W0pIWfjjMQICOQ9JLU3kMwqEQHTs/YzHm80r99fe/iim/pYXbt+tzqZTSVoa2J8vLC2i4+Xltgp6U0MiII+j1JJL6+wt7WC6nMS8qsnHL59nZqX2C0SgvucT686JRq3UcccQ08/NKP7a0sFDnqaoiR0Y4NUVX05mfN7madFrjMTqq75iWWDxOJ8RqgEnHlu9xX6asDsXaWtbX0yl4h8P6bDRaQANaFkyp0ZYW9vdrvLq79bOsjGR9veOups/HujozdOEwR0asnmoE0Js26dodxVpRkRycvj4BIBobdT81NSQEitmxQ9daXU2dMJcTWXGQMhaWFmZZGdnXx6oq7cPFxbKtvb2WHi4p0edqa3UdU1NctepVztbmzS6tDFxgIPCqFHdXl9P/c1pvRtu1YQOtr+8wd0HCrEteTTWfJ+fndY+trU541kNlunRiOq0JtHmz6x3MWn03FLJzDg3JKRofd3Vxj+s0m9U8isKEfmFtCV5ToJez7evTsdrbnapJR4fWCuvqNMc3b9Y8Sem+noFAbF5LB9vayHRaDlNjo+rJfX2FRjqrgTrAl8fqbeTiJ0++HmnMpyl8wcW+n37T2L2RXt6DvxewaOgfyOJihm3BPA4wZO8nAZejz9tEFkAlSuAeJ8waCGiNROx7rK42YMCSA2IAJ7RjNDWRfj+DMDLZiooCgWxvrya+kdrGYtR/4vGCfM/sLIFD8tZHRw2kcJzz868SaO3oICDpkxxg3b15LTiv7aC0VC1r5nm7SCkQ4OSkItUohKR83OpX0ps7K4MfiTCblQGL2mfSEH/hrH3vEYh89pJLrLnWk04ZHHRgBXZ0MJMxp2F6WpvU9DRZWsotWwok/p5UzpKNZ9w2OYZCTEKgll0QYjYH66ErLy8ooHtKt+XlBO4k8A0NWDRqrSfiuFQLxbNkdbUMR20tgQUDMx0iZ2f5HEDgLs2NhgYCQcc45rWLCGa/0xEgs7lZRqeoiIODAiFwcpKMxajWi17r8drDnh4PVPEg84ADuNTVCRjkaRwuQUoGbGlxY7V9Ox1ll5CbExr3yUmXOQDO6GEa3+szgCO1TCToNPM87T6nZeixhHu1smzWIYi3bdNz8uRrpryNv6ODHBlRpBmPy1lob9dcNo2okREpc7CtjY/bXHocBjYyodWszc9IhAKL+P2MwNDNJu+0fbvQl0kvymppYUWF7JNHCO56RGWtyUSCt0IZl3SaDgm8zwxiCoYUrqqS1I8Z6oznsCYS6oc0SfqzUOYmGjUj3dysse/sJIuKmIbq9fk8HVl62jO4xcWvs8TPm8buYl9vaGOXuflm6yHay3xeqCkvpegZrWfwKoj6xAQZDDILWF9ahj+EmNU5MECOjwtV6enhTU46+RNOT6t4Ho3qOMPD3OUZF7+fHBvTgorH1Ts1TR3TmFCky3aC4bDW6OCgFou3yIAnFIHmco5AGuhldbVEK7dvp1JSJhfkkQNPTlKL1Jg+WFVFTk9zaqpgvF1rhJHnOmLlUIjRqMAX07b42dnJKApqzXsAA5mcUdTgaXbNz7vmZk8/r6ODTvZoZoZOEX779kJakbGYjITJIbG8XJFPfb2MYGmpotv2dkUJ3d0MBg1s1N3NrVs9BYEggTu1yVsE4ffTiJPvlKE08Vp2dbGoSJtoWxsdA8fGjdRzHh011J7Ea0XMvZVr1xbYMerr5YR4BMLM5ZTq6u42RfsJAn/Fqiqvv+w4OT+vVPnAgBm7OQJz3AdoPzQnrLub1oy9S1GCRVRbt3q9ln/LDOAIDHp6XjXWoZBTzojHdY+ehE3GNmzmcmQwKMdreJhnIS5Wj/zzvDkczGbdOHpz4kkY4jMalbOTSikr0denuW0qFZ2d1lifTHIJIhK4w8aHmYwrI4xALQQp++wUlH70UoyBgObsVlh60OczJOdhtre7wxUk6oNBMpPhQ1CE54FfvNT+MXPcpqH0eBgqcXiG91cItUdHC6iimhqyr08GOxh0IKkFM5SGExMYxUsLm2r0PsAcoIdeB2P3lJtHF/d+6k1j90Z6eQ/+6NGMDE88TjY1savLUkzJpBah9R3t2GH9PqEQ0+lCdBWJ0MHYslmS8/OKThIJ/f/0tDZ42ywmJ6lFtrQkS7W05CixGI8rghseVjrKYwQZG9PG7xV3EgkynVZUZ0KbXuTH+Xl52/m8ExLN5ZSZeQ4o6HIlk05o8vveRmWRXzarSwoEdK3ZrK6F0ahTcM9m6ZgyTBJNi9ZonDgw4GSGnCDnwEAhkqitdTB+t+F4OUVrWObEhI4XDis91dHh0ovbtlHXazeXTJKMRjUmwSD32CbFVIrcvJmjo45YxaW+ODGhX+TzfM6Ms8tdb97s6iyplN1rJKLn19lJTk0xn3cgTB3LIwOemNAkMscoHqeyBuFCCYkTE4UoMJnUfPIkzaemCunoSESOQT4v5yIWc2ln72MeIDgSoa7bdAcdg3I0WnAwzJDRxmb7dpIVFSwrs/Tr7KxqhEVFOt7oKNncbBHmWXZ32zpIJNSQPT3N6uqCCGkopAifRUW6Tus59WqJnq5cIqH7zuf1/EdGZFi9tHpvr34mEixo/HV3u2u+wz7LZNJJCnl17ag5XDMzVntva3OqDRwaIgcGnBqPTXm3nkZHhdIMBCyjYkhhRyOUyRQkfWZnyUxGzq09K+bz5NgYYzHbRzZvpsfJNw/IObAm9elpauFEIoXGe1s/6bSd7vnXjpqrYOyeIPDz3+D9xJvG7o30cpFdXR17e63+EwiQtbXyeIuLZZSGhlzenQMDZF2dAxl4tRgOD5MjI4UNp69PG6ff75jSdwDWDxdVlFdRofRXc7NLGxnZBdvaLIoZHtYmn0goZdjQwGTSmn89bTwP9GG1te5uq5tUVZFFRQQWFH0MD3uMRPLC/X4dZ2BANbbublfjYV8fGxosZeVRpoRCZDxO4IzqLokE2ddHIE7gsGtE9gAQ5wFn0KQE/wTVkBp1NFfZrBlJi+w6OpQ27e7WoRoaaE3WR7hqlVNQcvXL0VEqqqqocGoF7Osjx8a4aRNN321Jm5X1/MViNjYlJRQbxLNkNMqeHv2aqZSjcVu7VvdRVkZydFTXU1VFx4taU6PrN1q4jRt1Px5036O8Wr1adnPHDtKRk2az+qDViXWf4oH0eBU3bqSN8QI5Pm5MI3sLtVerQ7K2lgwEODVl5+jr03yemFBNdGRE86621kn7MBzWtRuHZm8vnSr59LTut7OTjs7KK4ONjNi5PYHaSETrZWnJpQiDQZLRKGdmjC/UaxmoqiIw4alIKeJrbmYc6h1saNC1JxLkAKBJMjjIjg7NxQNQivw81CN3jxd1jo9zn2VfWF+vGmtNjRZSV5cyH7GY7ndw0OvUYA6WJi0rI1taZLyrqhgIyOAtQenw78PSpE1Nmnt1ddxqf49DvZFev+E8QLa08C6LCr26fW+vxuQ0DAhj8yAUomp5aT0n1tQ4BY7+fvKuu16PNOabxu5iX29sY3f33Y74OJ02aRoPkWh9NCwpIRMJeV7T0/LUp6edUcp5E7u9nezt1aIrL9fENWXjY5Z28/upTa6jQ7Wbigrl7GdntekFAp64OJ1KaDis1e7zMRJhAXTihSpDQ2RJidMRYyrlSIiBSaXBfD4ZQU92eWmJwCFp1aUpj7u72+nMeS1CmQy1mTY3k4EAYzGlFONxkmNj3LJF9qa31xTPa2uZyShNyKoq3WNTE4uKaMblCa8Ny2vjc8rjqpOdZTBIxyMoiq9zv2LowmE6miUODWnj8FKiPT1OmNQTfo3HC3SaySTJYNC04XYT2EtWVzMSUeOwJ8Tq9QPmYOCJgQEnC9PSYhGHEWl7NVWVfw4TOGMpx10E1Jw+MyPf56xFHa5Ru6VFRqOpicAuVlUVpP6AM0wmNUWYyVhq9DE5KZ6hGxjQ8+nuZjptzczDw7rPsTH293tpzEkuQEQEnnIUs9lCT5oGQHPOlNMHB8We4qmAe44Y02kuQLXttKVjGQ5z2zbdZ0eHlsLatWpQjwA6WF8fS0r07Lu6rI5slGyjowVi7XCYYioKh8miImYyutUFwFH0BYMypI7b0nPWBgbY2UlXZ2NREY/Ck8s5Sy4tsbfXUrh+v7wqu7aTUJ0vFtOxbzWDO49C3d47bwoiPnjOfpdOU/PP8qR7PGPd0sIkLOXb0kIWFSmTUlfn8CgMBBzYjE1NZCrFJcDmwL7XwdjtseNe7HvPm8bujfR6dWS3uGibRHu7vECjCEt5qa3SUk3C8nJtrsEgWVtrm9sCj5rH6XEtOkbonh4yGJQgKYTCamuj0jqzs+TEhAxEaalWfzisNEcgoNTZq0mOw2HHpm+ZFAJHtOkODZF1dWxtVe0gl6MsQzhMIC5PvrZWxzCtrVDI4OamubfkRWJe+m5oiJs2GftFebmcgOJicnaW6bQ2snyeOt7SEtevZ0HVvbOTB8wBWLJ3dbX2lvZ2uqZ2zs4WIIDz85ya0n3l84UMpWdQTW5Pm4qXNw0ENF4lJRo/Fc0UVba18TSMKaSiogC3jMXY1aWNUzDquI41PMxcTvfr6dJNTZGsqdH49fYSOEdWVMj4JZNkZaUoqkz11UNDbtlCY7KJG+/kOa5fbw5KVRUZCOgas1mNayhE9vQYsfABjozI+Vq1iuToqJyVnh6yooI+n0WgpaUcHDTnrKtLBjAaZXPzq5C0U1P6GQ7r2mtrZTWc1uFep5QbDFIbv6cHaOnpNKxO29paaHAvK9OxDH3snI7x8UIWYGRE2UMYQGVykgyFFPWOjMhhsbQkx8fJSITptKUdjSD5h4BLlXJigjkINMKKCgfR5+xsAZzS0eHUCI55xq6khCwrY3u75ruXUU+nqfk3OqoBS6W4z3NaPdWLnh7eCtWhnwfkuNXVac22tuqcdXU6Zyql44yMOJ3KA97YefV703ZkeztHAC97KUfNnFqvPEKfz9o6Xo/ITk7exb93v2ns3kgvZ+y+9KWCfEpvr+OvZGWlFk9NjVIwHn6+tVVpnkSCQ0OWUqyqKjCeGxb9gLc4/H7HOs+WFgJzWqx+vxaucUnm88a1ODHBnh7zcoeG5PFZLxxLShiJ6DIiEftMNMpcTh64hwbNZilvt6KCwD0ELpD19dqUUiltAL296pVrbdXKb2/XtaTT5NAQN2x4FSBkZEQLOxjk+vV0rA9KsV0gMMdgkO5+vPogASfwCeyk0Ks7uWWL7jWXs3vo6ODMjBfZZbhpk/ZTn49kJELgWQJLXL1aRmDLFpIjI9qgrQeMQ0MuwuHAgMYrnyewh47J2FJ93LyZEcCuaYLs6XHSRB6wZeNG3fIBGM/l4KCMjt+vcTMKMTcWlZVOxaCsjJZyvMcM2Am32WYAOQiDg46KLpGgMd1PunsWWnLOQEZRcnKS+wAC2/VcJib0bm/XRjo0VDBG0agil/FxRxgO3MMFwGONI4eH2dBQ4D7t6bG54MkaDQywo0N8lx5vY2enMaiMjjIDA2yZUfMipnjcosbJSba0CNUcBfRwa2sJ7OTWrZqe0+ZgPQMU5IGqqzk5SdGH1deTPh+7u2WTwhDCMQFwxw6peXuR6VnPuLW2srdXKdIsRDG3y6JT4AI5MuLkf86/+tra2/kMVOddXFQde94M3a0wxHRZmZvnWyHg2j0w+rZMpqB+UF/PEARC8XpUR0ZI1tQwCqU+Y+ZUj4xo35mcpAxeQ4MWd00N+/vJ669/09j9a3q9oRlUcNtt2LlTRBz41KeA5WV8+M6vAN3dwNwclkXnIcaQ0lLgq18VI0dlJW68EXj724GDBw7gyJNPAs3Nosx45BGs8/v1/1/+Mm66CfgwAHz+81i79n2i99i4EaXV1WJpqKzEpWdMcDMYxIoVQCgE4ItfxAcO/hh46il8/Kqncfj0aSwvi42jvx9oagLw6KO4bPi/YQYiZikvBy6/7S+ATZskromDAH6ME7t2oaYGwNe/DvT14dzX/wpHj96Nl+6+W3QelZXA5s04dOpK4Oab4fNJQBaHD4vtYe9e4OBBPPSQLv/EyvcCsRg6O9+CoqL3YWwM2AsA5eV45BFgGdC9HTgAUaqsAfB2AL/EdddJ53J52Z7BZz+LRx81Zhbsw403AseOncT8PCAajvMA9mHdOhFyVFYCOHMGTz4Jid/ecINoSBoa9PnKSnz8xnMS0sRLwOIifrz8ceC221BcDODb35YYJ14C8HZc+Ou/xofOPKbr2b8fOHwYDz/8PG67TeweX/wigOuuQ2mprnV4GDix4RPAH/8xfu/3gBfwXmDDBnz608DcXAzHjv0EP4Xu5cCBpxEIrEJfH7BnT0TMHNEo8L3vidrmwAFcs/xzHLnrLgAnRUpzww34wFW/BDCFn174KC655EM4ccPHsQIAkMV3vwtgfBzI5fTQfT7gne/E/v3A3XcngcOH8fnP65rvvBNYuuETAPJ4TNMW+/ZpsnzkI8CePQDuugtvfzuAxUW8MvMEcjkAy8uorTWx1JtuAhYXcfgwcP/9WeDhh7EXxrozNoa3vx1Y4rvw1rcCH1jxC7x3+RfAVVfh3ns1ws8CwB/9EVBUBOAKfP7zIhG5AgBKSnApgKkpLb9X9u3Diy8Cvw8AK1fil3NzuO464OhRyZjuhZ7Jv73hl/gANC3x6KMobm7Wta5bh89/HngMwAyA/QAOA3jLWwAgDezejcOHgbm581hRXY3rYXPs8GG8C8AhAFdH7sMnbXacAFBj533x2DGcOiXWlVpIiPUCgI9d90u8cOoK4MYbUVxejgu7duF6AJe2teHn3/kOnl5cBAD8wvaSZyEx2P/+6AfwlS+/Atx4I+6/H5g9ez2wciV+XvphzOzdi6Ii4NlnH8Rr/3qTQeWiX7+OZbz11lvNuyi8r776avf3V155hbfeeitXr17N4uJi/tEf/RH379//K8dYXl7mLbfcwne+8528/PLL2dTUxIWFhV/LQrvI7qabTF0gSPb2qj+ut5enzSMMmRfHgQFFfh77Qnk5ge0EJngHjNF/dpZMJPT5sjKlO0pKVJz2+10flAsBamv5ENSTtsc+u81LkeRy5NiY0zaLAUY2vaTUk6EImcup0G/sFZmMgWbicevFW2AgQEHcl5YKQq/j4wT2cBwqojuNPCOZZjLJtjZdiqczF7XUy9AQHbiBs7MMhawpGQbPrqjgLhuTB2wMPdTgyAhdyvS0edUOMdfbq7ROLKbUVjisqM1DwXV1uZrSXQA5McHzMJDBxARTEEghDSgi7ejQNVZWKmU3Pa20XyxGFhXR5xOH5gNQfSUcVnpWGmYSBnVQR4v+PJBHZyfJfN4BFgxEWvhefT2LihSF5nIsKENYe8QeqH72iI0Fi4uNBFrRb0uLpT2XlhRpmXafyKnv4STU+hKxeeHxWHpJCA4NkdPTDIeVWq2qosYjECB7e7m4aGjBujpFRLOzBSWC0lLu2MGClM3mzWQgwGTSfldV5epkUxYJsbOT9PlcvXnTJo3PA1CfJSsqyOJiLi5airW1VdFtOKzvjo8zlzM1hERCY9LYyD2wNGg8TlZU8CSMMD2TUdQ5Pq75OjxMzs7ySYs4495cNNYDTzC1uZlOEYKzs3o21jCe8L6TSpFNTVq/lZVuLd9q8+RbUEki7kVvuRzp86ldIBQqiPSZQPM3YfX8wUEXobO42JE6sKJC4+DVcaen3Rx+LRUGCpHdTymQycW+f/pbG9n92sbud3/3d3n06FH3/uUvf+n+3t/fz5KSEoZCIe7bt4+f+cxnuHr1ar700kvuM5s2beJ73vMePvLII3z66adZX1/PD37wg7xw4cK/+Dq8Bx+B9MuAPVoY5eWOIX3W0iD0FmxvL1ldzXGAP4TXVP4PrlFY4IS9qlsZQk7NxQe0WVVXK2U1NaXFmctx3tItEVvEJ6E+IhYXk7EY43G+CgUYZ3W1NfpWVLCiwkAcdXW85BLZU/VrLejcs7Pk0pIW7diYSwlxdFQbXSjkYNF77DrCthFPwVM9iDpj96RnKExuBjjDJ6Gifns7yYEB5mE9hy0tpM/H572UzebNZHMzl+zYB8ywPgCJuO6D0lC7ICDA3XYtUShttceewx6ofnLazpP0NtLZWeagNNcOM3oxM3xecy9HR/k81FcYDJJcWpLhz2SUDq2uplQPtjIel231+/U51tSonggBMzxGHZ9PzsCOHUbXVlnp2Ew4MsI84MpJLCnRs4xGjWxgUg/XY3ZpbqZAPLsIfMfVm/J5PdfubpJ+Pzdt8rTw/lbGob2dwF3aqBMJXfP4ONnV5fwDT5LqtI2hM9hlZQVIfk0NczmlLrdtM/FfGzenw9bWRpaVycj39Wm37uzkczZ/N23SdzwZIk5Pu/YZZjJKdVdVuWZ9KQ8cktPV0yOSAwiw8rx99gEondjbawCZeNz1qU7as1aq1orZg4OOgCAY1Ok8cV1PV+4uwGMpI9vb9XyMhYeZjCvNs67OdcV4NTx2djpJpM5OOkkqT+Vh61YrJ3jzIBLhN+35rV9vLT2Tk4XWnPZ2Pm734anKj47qGWduv/1NY/ev6PVrG7sPfvCD/+TfXnnlFZaXl7O/v9/9bnl5me94xzt4++23kyRPnTrFoqIibt++3X0mlUrx0ksv5cMPP/wvvg4X2W3caM2b28lAgA9BCLEcjI0dprvmFcSqq7XIy8stf/0gt3qfGRvTArON+axtxB7jPOvrNZnr67WwbCGHvc2/tpb3AIUeHNMqYzIpg9XTQ+CcdqF02tGDPWebAnCAzOUKkcDUFIGdbGhQU7mrzBuHF3CfWiImJ3kUhSJ8Hor2/H5FJlEzQrOA11rnlJg5PW1ItwX+0D7H2lqGoKjuHtsEg0FFnK7Hq75eYxIIqI5l4nnT05QRTiQc31ciYawX4+Ou52nKrvusXZenI3fWc1BMtHNqitaCcUbRsCllJyCJGeCcjERLCycntSlKZHavrqWnR2CGQED1oZoaRwHGcFj309zsojzgrDYzgMABtrcroshmbcxMb20X4ERX2dLCPGBitg8SmGNzswGIlkzP0JgEPAHRhyCNvlmbm17zPHBB0bEBQqandf5LLqGTQ+LEBJlM6rhdXcxB0dAxGBtIQwPzedMvBXSzTU0MhfTPLOAAV3Eo2md3N1lfz6Ehd2rOzIjl5G7PwBUVCZiSTssYt7c7RhdOT5NLS5rL6bSutaRE87O83DltUcjR5Oys6m3j444tiIGA1kkyyUmbe1lzqrzS88gIXRO761mtqSFjsYLmok2EJXO8TkLO7rfM0N1qDsa852wZV+sxwEXB7Oggi4t5FlD90WMV6O52lGJbt1Jz3OOMm552DkICXmT32tXHCsZuisDMb/CeetPY/Utet956Ky+//HKuXr2alZWV/MxnPsNEIkGSTCQSBMCnn376V77zyU9+kv/hP/wHkuTUlAb6xIkTv/KZ66+/nn/1V3/1z553eXmZmUzGvRcWFvTAfvxjrlpFBwTh0JDSgAMDSk/MzpLT01rQxoKwaZOlCr3ua0uJuEgpFtOm2tJC9vRwcVFQaFF6ndDktqI6QyFycJCdndoPtm/XxtTQQHJiQhvt1BTr6613LRp12mnhMMnZWXnvUAuBI/Rtb7e+vgUCZ8mJCS2u2VkZ7J4egRI8THkiQQ4PO8mgSy6h49yMxUjmcozHdemdnTY+TU0W3T6rLxmK04F2BgdddAlM0qNXu+QSHWd01ODgsZjX4kVgzoAqcQLHDTYftmjnCIuKZDAXFy2qnZpyzDUcHyfTaZfxlOL5hJ6VueGBAMmGBmsNWCBwyImnNjeTJkXPqSkZ+ucg9hfOzmpsu7vVgjA4SLa2Mhi052D0X36/RXgQRdrGjfr/HTssKrGIPZulNtmJCTktPT0E9uhYdXVGYXfGADqHyHTaorntZDotI97c7ABFrKryvkYODCi683rgxscJPMGzEBBk1Srdpydx5FFBegTjzc0kOzrY3W0o4p4ezszoM3V1lpatrHSyUF5PZnExRUeX1lppbbVWC3Pg6PcTuJ2bNuka7rG/PQDRurW26nmGQuT3POdxdtbhjx4BXGP2tm1K4Xr8qVkYnZetz4xd91lYanJqSqne6mpTDj/BBaiEwNZWT+aebGpiMkluRQHwstWMLPv6HIL5VruWWYgJxUMOnzbDNgIUWo+Mg5T19dzhHbe4mAyFVNawnjrHRG4M5Zs2kd3drwdA5ScEIr/B+ydvGrt/yevBBx/kvffey2effZaPPPII/+iP/ohXX301jx8/zkgkQgBMpVK/8p2Ojg5+/OMfJ0lu27aNl1122T86bkNDA7/yla/8s+f9p2qFAJjZv58bN9I1xrpGIC9nUlVFVlQooohECo3e2Sy7uszoeQu6oUE7QnGx0lnV1TpwPq/FNzKiTai5WTt1SYkTN+X0tDa9tjZ2d5tBSaW0iDyjUVLCxUVtUNu3U78bGyOHhnjWPOz2dvu9yUwLyXhOml1RFtg5hocJxJWatIiUnZ2OxcHTRuPkpLx24zb0JLuYyZB9fWxv1+Vv2mQweL9fZS5A3nlNDdnSwvXrlW0E4gU9t/l5pYcGBxmNenbmrGudq68nmUxy9eqCzl1zc4Gqq7ubsvoeQ3N3t1Mo95hSiou1h1RXk0yntUF3dXHJGbtzqp8aXRjjcbKzk+vXGzq2pMQpLXgtCF6roicbODVFMpGwVrUDBM6aOOkcgSNyGqamtFEWFelGjJmEjY0ai4YGAofY3m6w+EyGwAVOTtKRASjNOiejGQw6TlR2dDilhQ0bqAe0tEQmk05lADjEBYsme3t1P9msjFQOqqmyoYGcmlJkuLSkFlEzIJmMDM769SRDIWUiZmclOrxN17t9uwz/yIh8uKYm1XFDnkGxOmZvry4/DTiNt0DAnIbWVobDpoIejZJ+PxcX9cz3mNFJQrXFBUBzsa9Pk6ekhGxu5vS0DOPpVxkk5vMyOOEwZ2ZsnBobtf4GBlzK2ROzXYL66NjVJUo9i8Z6epTmnYdqeLOA1ozXzGnF1ufMOObtmrds0bNPAarhlZQwHDbnpKeHW7ca5VhpqeQxASNFeD367N40dhf7+rXQmI2NjfjTP/1TVFdX46abbsKOHTsAAKOjo+4zl1xyyf8IgPlHv/snQDL/0890d3cjk8m498LCgv5w4QIOHxY6DIuLgldefbWggitXOrTk1dlDElDLZnH4sL5XU6OPCOIHYGFB3/P78crhw/rdiy/ihRcvFfrvxRelK/bMM8DCAk6dPg2cPy+U57p10iYrLcXJkwIXvlz6bly2/JIubs0a4J3vRCQiwGBREXDfi78P5IWMOgPgtttMH2/NGuB3fkd6e0jjkkuKgAMHhFwrLhZKs6oKwC9xQ2kpUF2tL546JURiaSlefNEOffiwvrNmDbBiBQ4fNr27p54C8nns3g2cPn0UuRzwMgCcOoXFReAUAJw+rTEoLsb+/Rpe4HkcPGgabuXl0qSz02jIDmBxUZfz1FMAVqzA0aMnsbx8Evv3S6ZscRHAjTfi5EkI0Xjhgu7pxRf1gdOnceaMfr28/CKuXPES7rwTwPHj0vvz+bAbgPB0S8CGDXjhzJVYsQKCK545g2eeOYrrrgOOnD6t71x1lcbvne/EqVN6zJd/Zwv27xeyFHv3YnERqKhYB+BJCH/3NIDj6OsDfl7+MezfD5w5f15w1lOn9CAvXMDMDGwiHcdTTwFXFr+Mc8VXAHgUx48Du3frtk7t2wfgJSEnV67U+KZSGqziYhw7BuzZcxT42tfwwvK7gPJynD/voV6P4yAKQ4TlZczN6TIuCwZ1b2vWAGfP4tQpAE8+if37Tdftuutw5oym6ec/D+C55/AsgHM1v4+a1lacOaP1kEgUwKE33CBk8CkA52xeAMD58ydx9Khu/Ze2Ji7To9HzfuopHDwoxCUOHgSefBJbtwJzc/rdcQhh+fTeS7EMm4u5HHD8uNbTc8/hqae0Hl60cx8H8PLypThwIA+cPo35eZtre/bg3JNP6tr27sUZCI0Jnw/HAdwEza+DECrTB+k6FkP39W8BPGjLGZWVwEc+oj1gbg6XAUA2i3MArtVw48j58zgDITkXT5/GypX2bD79aezdC8RiAPx+HDyo69Zzy+G1f72Jxrzo129qLW+66SZu2rTpdU1j/o8vV7OLRl3NhZWVDASsGG2NtZycdHI0aUBeYCKhulcqxdFRawzN5z1GLaHhkkl51yMjLC42r62tTUXvnp5CA67HgehVwaenycZGRW6hEJnLcfv2gryOuelkOOx4Fh2LRzqtUCYS4eKisTMYR+PiopShR0d1LV5D+LZtVCqnq6vAa2kUG52dpCPT7O11kj1OBimVkkedSikK9LRrQiFFHMmk/j0+LnffU3sIBsWe4fX4TUzII25pURjT16ffNzdrXAIBjbGh5jg1VRif6WkyFnNpJC+HuQABXxgMOtCRuxe7D3Z0kMPDTKUEhpiFkHipFJ2atCPk7usrgC06OpwGXijEgvp7LudqUdksNabNzYqoy8qYybhMOTkxwS1b6OSgwmEqwrT5kEyyELnl82QopIjM49o0SSBPXmp62oiurTF8xw47f1eXG7twWIjDLVsszTc/r3urrXWRs0f7dfbVNaXmZlN4OM7+fkXwiYQBSBIJjzecbGhwvYnnofpuNstCo7rVHTOAWzPZrObj4qJQsYlEISOeSll5oatL4/0qDcIBO75bM6kUs1njcYDqbtu2UdGet9YCAc2ZhgZyaYnBoG7Pi8xSKWVNtkEUYB7IZWrK7iGX0zyenXWPe2ZG1GIMh+moVEIht86cBEQwqDH3bqy31ym+O+SxRzo7Pq7aYirFzHe/+zpEdhNWFrjY98RvbWT3Gxm75eVlvuc972Fvb68DqAwMDLi/53K5fxKgMj4+7j5z5MiRiweobNlClpaq3uDzkeGw0mPV1VpIHrP+7CzZ0FAQAO3tJXBWTcBjY+TYmOu95vAwuXkzZyHgSVMT9X2/XxufV18oKnKilAmYjFBxsWpz9fXk1JRL+2QhFpKtW0k2NOizJvZJCNwwOkprXM9okxgZ0eKqrtZC6uggcFjXUFoqozw87ERCWVysTb252Rm7kREWqMTGx+nzaUNJJuk2+Hze7jsWE+ikrEyGpKJCRqO2ls979ZaeHofQnLIayUlL9Txp6R2Oj8soAo6aiX5/AQ3a3a30qPU8nISAA8cgwIInSMp0mimoUXj1apI1NTpGVZWMfXu7ri8Wo4eZb2sTTVc2q+fqNZK7bmzTOysrK1CdcWBAABAPAVtXp7S4cV+yr08D2dJCv78g6rphA7UZ5vMyoiYyCywIkNPcLANWVcVcTg33HrpTz/kC2dlp/k9G8ykSUbqutpZcWuL0tNV/q6vll1iajh0d5OSkawPp6jIQ0OysxqOvT0bZ2EjOA44qLAchdY9CwJDWVu3RJyFQTjpNcmmp0FQ9Ps5dgGuzGB014EsopGsOh+XAtbc7x2JxkeT0tCOvZns7MxnTkRwY0LxtbCxowU1NsaTEDHB3d0Fj0iNYLinhWVuLd3gpdtONc8KxiYTOa2LJ6TRd20syafuDCTe71GU2S4bDvBVCAcfjWrr5vH0+EtF6Kitz5O+O8DmTkWPd10dGIkol9/YymzUD3NbGzLFjr4OxC1OEChf7Dr9p7P4lrz//8z/no48+ykOHDnFmZoY333wzS0pKePjwYZJqPXjHO97B++67j/v27WNra+s/2XqwZs0a7ty5k08//TQ/9rGPXXTrwZNmeICtKkKXlLC6Wl7mkuXwp2yTPgohy05CaDTgOwTulDGprTWAxRmnpfUIxLwA7CErKvgkRCocg9B4B6wO8IDVBB6HkITHIHShoOgZLfCqKm7caKwimzfzeQg+PjpKsrra2TTB0Pdqox0Y0AbW3k6PfRc4LuNVVqYF3tQkAVi7VqcDNjLC9naD3peVCQYN8JJLVO+or6c2/nicuZxBu8vLeT8Ebfd6luKAA+ewtdWh56KwWk5dHcft33FAxnJ4mPT7mbYxYXU12dmp4v/8PDkwoM82NHAahs4bGeHd9swe98bP6kRRCABxFiat4zWjGQky+/pcTfKSS1RX9FSS+vuNB7O6WgawtpadnRb9j46qJRJqPRgcpHY5j1IskXBRejpNsqenQK3V0CADWVtLBoM6x8CAQfHjes5Gh5ZIkPT5FM2OjTngBxBV9Do0pGOZsR8ZoWOCaWigUxjYssUYUUZGyI4OJSfM4fBovNjervEYHBRgZHycSzZuTU10vXC5nAGmmpoEaOnr4zzEB+oosMrKdH3t7U4PkaGQ5p3fL2NjWlV5wEK2AT03T669s9NdI0dGCgXYYJBRW4fs6CCLijg0ZDqOZjwYDhcAWH19pN8v1S1ANXUrLu6xeZV/9XebmwtcqxYRev1xx2B17kBAzlUwyB2wPrxAQAYzEGDUxukszLH1uG49TIA5OgfsuPT5dE6vTjwywszs7JvG7l/R69cydl7fXFFREd/97nfzT/7kTxiPx93fvaby8vJyvvWtb+VHP/pR7tu371eOcfbsWd5yyy288sor+ba3vY0333wzX3jhhV/rol1k96EPORj2WZv0zc0U3NmTaQmHtYCrqjQhJyfJTIbhsAFFzNvv7zcqq0SiQL3l87G6Wv1N8nwl9pkFClRMtvFEIgWFl4oKFmivQiF51YOD8mItPbp+PclAQBvr+LgMXzyuTde4OT1FEYbDjEQUGZ6EINKpFJ28CuvrybY2B8TxEI0cGdH9DAyQwSDr67XGAwGSXV1sbnZMYk6EkomENrOuLhmu0VECZ1znxuAgXRNXczO1qYVC3LbNItfpafb0GIP/wADr6jT0Xt+bl42cn6fSnh4/YUODzmdk0IzHFeVMT+sCvf6w7m6yu9txBMzMFCQAnVRLIqGIqKiIwFKBEKCtTVHi6ChzANeutTR2Q4MT0c5mSU5OakzSaRYXy755hi6TsahjZISTkwoas1k6WiyPIzGRoLWULOgei4tlBD3ZpfFxKcibMRgZITk/zwVzqtjYqHaH8XGNs/F5tbToeU9NkcxmuX27lBmYTpPBoJ5tVVWBV9TkmSoq7PkYx2o0qijV6/sPhwuKHGxsLPwcHHR6icACmclw7Vqbh+k0WV7OxUVzCEKhwj2Zserp0TNyFHy2DhKAjNLoKLfC0tBGn8dgUM/d5I088u0chFoeGSHZ0yPiZ88h88L1fF5rs72dHBkpELt70lObNzvUJWtryXRaxikQ4K3mED/nOW7WZD49bfPQ59O19PSQsVihT3RsTM94YoKnAdeFkHnwwdfB2N1PgUwu9n3/b62x+7UAKtu3b8eRI0dw7tw5pFIphEIhfOADH3B/v+SSS3Dbbbfh6NGjWF5exvT0NK677rpfOUZxcTG+973vIZ1O4+WXX8YDDzyAioqKiyk3At/6Fn4y9150dgLFgQBeKr8W9429DGzbpqLz294GfOQjYp7auBGYmsIvKj+OB3dfgU+WP4HGRsBDuPzX1hfwf978rCr5W7fi//z2lcC2bfj614GVmzejtKUFwL/BmqYmXN7Xh2sbGwVW+NrXMDEBbN8uUMX+/cDCwpPAVVfh4+sOAY8+KlDCt76Fa9e9ghMr3oUH13wFN90E4OGHhY/52tewZg0Anw//5X07gI4OnPjq/4V0Gvj2t3WNK1cC/+m6x1Da1AQMD2PnTgDLyzrOl74E3H47xseBp4s/jCtWvuIAA1ixAli3zlFAffGLwtVgbg6f+hTwe78nnMiZ8+eBri6MP3kN8Md/rA/6/cB11wEQIEJUTcCh5Xfjp6c+JEDND36AH6/4E9x+O3RNp09j927g0UeBlzb9BfbuBQ4cWMa+ffr+4qJooh5+GMDwsJA5N96of7e1AV/+sgbx4EEcOLCMpfd9VIiJr30Nd94JnPja3wAzM1ixQiCKP6h+GZed+qWAFo8+CkxM4ETpNfjSlwQqAK4AfD6UlwPYtAlf+xqA4mJc1tSEG28ExsYAnDqFm28WmOQHP9B1zcwAP959Jdav1xB86UsA7r4bx48D7y0/B4yN4fhxTbPL79+Ggwd1Pdi3D9eseAG3367zAVcDN9+Mc8vLSKcBXHWVAFW7d2PvXuDdxcXAzAzuvBP4+YVrYXgRoLwcAwMA1q3TvX3/+zhS+gGBg264AVddBQx873JUVWl4Xim9Eo+t+zNhSWpqBEZZXsbPlj8EbNyImhp7PpWVQCKB/fuBVasE0Ln3Xg3dbbdBD2flSvzdzvcWqNzuvRf4xjcAvB144AG8+CJQWl2Nn81dCTQ2Yts2LRucPYu77wbeXV+vwVhYwNycliMAvHT4MFBZiWtLf4lrWlvFMXbqFD4OEeP9bPlDuOz4EV3o44+LD+3wYU3ShgYchq7x0UcBfPGLeK/Ph+vr6wUo+fzndZK778a1LS06/9wciuvrcWFxEVi3Drt3A1ixAitbWrQmVq8GHn0Ut9wCLP3l/wMfgDkAvvJyYGREvH4GBsK99wIlJQ6c9Ivi6zEHrV20tACf/zxeafwEVjY24qPlvxBQ6+o//JfsYr/m602AysW+3tjcmDt24DvfkaHB1Vfjim//Ff7b7ZfbjgXg7Fng3nu1X5eWAv39mJvTOni2+PeFJjx+XDt4cbF2tbk5vPynf4q/2ftvgb4+lJcDM9//vqE2jwKPPAKMjODQQw9px+7vx4oVOsziIvDd7wItLX5g5Uq8sOIa4KabkEgAqKgAFhfxxS/qUL/3ewD6+oQsq6xEZSXwyU9dinMNnwC+9z1c+Y3/hGPHXhQv4Jo1uPde/cTevUBfnza1vXu1MRYVAf39WLcO+FDNK/iTT1+KL38ZMljl5XrfeCM++1lt7t8fEEr0C184idZW4K//Gljp8wEzM1i1CjI8t9+ujWbFCgD7sG/fz3H69N3YuVP3+Pa3A/v2nQR+9COsW6d7v//+LL4S/gR27VrGvfcCV6x8BadPPwrg53j44ZewvAzcdRfwoXUvadO+804dbGxM55uZAZaX8fdX/Rf8pPiTACKIx6HNb/du1NQAV276d8D+/fjLv3wR+/bFgOVl/M0P3qXxAYCJCRw4AITD4kcE3gK89a340pfywJ134i//Err45WVcdZXZ8vPn8eKLuoyZGQBzc7jjjix27hRa79FHgdZWAKkUrsEh/PzgZUBpKf79R17QebNZ3HPPQT3L+Xlg5UohSFesAPAEUFqKnwM4duzHAIwT8swZfPKml+VQnD8Pn08ATV9vrwyHzyf7sryMRx6JAdksHn8cDj155gyQzeqWV6wALt35E3z09n+v75aW4v77gZePHcOHLzyGlyqvx4oV+u453/XAzp1Ytw647PgRXLggP/DRRzXMJz7ySeDmm7F3L/DKX/81cPfdwC23mNc1hb+IfQ7nz2fx/+7bhw//m7fh4R/+EMvLxkF66hTe/37gzl275LCUluLgQdmVRQhlidtvx3+/91149O678ff4D+YhiE/zwxcew+a/frf4XqF5ePCuu4DVq9H4x5fhWr8ftbVadnP/2/+Gsbk5YPduvBfA8ne+Azz8MJ6t/hzG7rkHM9/8JrC8jPt27cJhANi+XUZyeRl/e889mPvmN3Ho/vvx92f+BDt3Aldv+c+oAXBbeTluW1yU0/X1rwOPPiqHaHkZP3vySRz54Q+Bgwdx7Ys/xZo4gZkZHHrxMuD8eVz6qU8Cf/iH2iMA7Nr1P9++3nz9//n1vzq0vJiXF9JPWAoIeMyhyOrq6Kimzlr60QNePG//nwYoerDd9GQTVq1SzY6VlQJCFBUZfVfc1byAc45dJWd1que8VEZVVSEtZzWBoSFLbRnys62NStG1thI4oDRqJOIwJmLJv6Brbm1VLW18XDkRU2o4bSmifJ7k6CijUfUlHbB0TR4gfT6PGYqsrOS8jY3XygYccshGjo4KbGH8gCmr+x2znwsAOzuV8p2ZYUGOpaGBDAZdbZTBoNKlJnjJlhaNu6fQblygjMeVVior4z6IaoyBAONWC3wG0KA1NXFx0dLT09P6nNe0ZulR4ByZSDi1aq+hPxaz1N70tNJ+fj/XrxfnYlERyUTCzYEFq5sBS7q2wUGmUnQ9hJ5iAwcHdf0GYNq0iRrg+XlHsQVk2NFh8yiTYQZgSYlpv/X0cGTE5kNNDf1+A3r4fKqvmRbayIil17u6BLwaHi5o8FlqjpOTSvFWVxeAH17hd3iYHBtTmvtVfaNbtxoKt6lJB+vtJVMpfbexkWxuZnOzoYCNgmzJamqnrS7lcYXmcnY+k9nJAJobNTU8aXNnh9VlnUZkTY2jNZuaMhSxXdseQGnThgYRQIyPay6ZjNTiIslkUojTri7NAwNwPWLpz0k7x+SkUfL19PCAVxdsayMrK/X74mJdS18f2d2tY/t8qvmXlurcJSW8FaaF2Nnp+uccB2ZJCRkKFcgFjCYtkVAj/+IiyXicmYMHX4c05v9LISov9v3//tamMd/Qxg44IkaM+XnViPJ55iCmicVFOt251atJxuPWOHxEG4XHmFJfT3Z1cRcMzGK6c4zFXJOyMXRpwo+Py5j19DgRzVzO6mCbNxvZ71knj+cJwR0DyNz/1973x0VZ5mtfuQ5NJT9SsbFlXPSIkSuGFbtQUk0bBa3skVbayNhtdqO0IyVtlOy7HJfP4snphEULb0s2JZukbNFGZ9ikjS3KScgmxUSdlBQNZUpcRp0UA6/zx/d+nrG39+yW1tmw+/p8RmGYeZ77ee77ub+/r++A2cCVeXkiaB0OboVkgtXVkbTb6XDIqUtKhPqK6elybsUwIULxWRGwRUWsrZUYmd0uh504UfEGRkbS72eYQDoQkM2kooJ9SojZ7apIV23c48dTNgKPRy66s5NDQ3IMYDCc5dbZyYICuU1GyQdwTAnTIxw/niZF1RlnyH0CDkjcKBgksFE2db+fbGhgb6+ERIz+d0Y9vM9HAvvDfcxCIW4HwuUTqit9RQXNvmN2O+V9VbDd1ERy5UpRKLKyWFysshwdDk6cKOOUpKU9BHZxK6Da620UQRAbS6BZjhkIkEVFsoF7vWRPD7sBM97V1yfnls7u20i3W4RWVxcrKlRyUHMzWVxslp8YAs1iodlbzucjmZhIh0PmdoNaP2bmaEWFfDcykiUlcpy8PMVkUlLCtrYwa08oJNdrsK/sgUp0sVrpcMh8LVki64OtraTfLxt9fLwIgZoa0mZjaSnDCTsqBn5ExT6NnnZGmyMjIcftlvVlUtrZbLJYfD7Gxorc7e5WSo0ied6gPveRUiiZkCDzrbIiTeXDSHrJzw8nK82fL2sqN1ee06Ii8xgJCeo8KqnmiKGkeb0iwBsa5HltaKDbHe54XlREUbZiYyWLNSZGFNGVK9nSIsxBwF4yPZ3jx4tSJc9u81cg7FapJJOTfa3Swm444cRO5ZLu/Rbp9UrGWHIymZ7OrZCMygZANpfKStkJ/H6V2biXwC4+BtXvKi+PnD9feDKdTqmrcTgkOF1Y+OmmlaqurBOSvditAt7PqgeprY2k328y729QDzJwzMiHkd2pu1usSLudwAHR3vv6zFRqYBsTEqQXGLu7yY4O2YQ6OwmskPPV15PJybKxKSu1s5NmrZGR/h+ApJzX1irror2d9PtZWiqboEnwXFrK9ZDsu3b1v98vwy0upuzIubmy8ZSUiABQLC51dTTLGTg0ROblsbdX1XEZ/f0CAbaqsTAlRTbAyko5bkaGbKJdXWRJiXw+K4vAWjmmxUIGAvwbYBDiy3wpgV9URMVxuVE0jYYGuc6KChlDRQU5NMT8fBGiPh9Jl4s+nySqGB0LDinBl5Ii80iv1+yh9pG6J729qmtBUhJ3AsrSFAozt1s2/ZYWlYgTDJKNjXQ6SeBxegFmZqrsys5OKW9xuwkcEQXKsGoCAVZWivJi3m+fL1zLV1Eha091vjC6pvv9yjKNjaVBm9PSopiGlFVNl8vk+GRjo9ngVZXTsbmZ4ecnPZ2MjQ0rfJWVZgcGg4uTgQAPKeuGOTlkSYkknagEFirB9axSEkJqDQyo8dPtlsSW7m6+pCzDIEBCavKWLAlb20aCDwcGxOvR1xfuoKEUiW4l4Giz0QfFfOL1CtdleTl9OKEjQ06OCD5FlE6XiywqCnc8d7tFS3G52Kq+V1kZTrIKBpVim5EhnSEApdA9r4Xd1wjDWti9D6Prweuikdnt7OiQTalDbfCHEObGY2IiX0W4pAB4VjKyYmLM0gOTFzM/X9VDHZDNNz5eNhjDrdjTYzL4vwRJofdDEccmJ5NdXWYHFHGBbjOZ6xkby+xs+dsQxNVlt8u4gb1yjuZm0u8XV1JZGZmeLnRiHR2yoQQCIrUCAW6AuBJb1XW/Cygrdj834ISMte5usqeHwC4mJAh35CFALDtlrdQbQtNmYxdU/VxqKpmYyIDarNarjWiV+v5WJShblWCtV5tVuzrvG0pIrIeUZxjdE7oBcQk1N/OQGuer6r1uSAnEX9TGwvp6vqs29JYWmlm1Zqp5djal68FDrKuTTTs2liJp7XaZO4fDbEptWMn7gDDFW3q6aVnT7SaTkoxG5GRGhrhEOztVl4xOsfpqa0UJSE0lcJjAMwRWyIQ6nTK+2FizS3hGhmj+wNOyFgoLCTzLVkixtsNBUzEz6MJYXs6kJCkbaMcJnRssFvmhspLMyWFHhwjQ2lrZt/1+kitXyka+ciXpdHIIUmph+rTLy3kE0oUiL09c1TU1FMno8YQp73w+yaBUFHkpKUIzB+wRsujiYpNmb8kS5UpU5SyMieGSJYrCrqVFvAYNDaIsKL5RICgnrqgQpdLt5urVNM8j8/s8mZDA5ZByFOAImZcnc2eQGPT1saxMXYPKcq2pIel0isDLzWVCgghPYx0wNpa0WNjaKp9NTycZEyPHdbu5GFKkn5SkSMTr6+X5a2kh8/MllJGYaK4TI/s02PLlkS6HhV0dJaPyZF91WtgNJxgT73IFRStWLA+9vSRbWkTLMlrx9PTI5uhwkD6fUeYj/4RCosWVl8tDB8ixqqrMV0sLZdNqaAjHVgyiR5+PbG83SRXY2Gi2izHdqFVV8nNurjkWZWDIBhQKcQgwM+yZlWXGt1Tz6XCxuEG3MjAgrrrGRtkwVNyqtFRcoenpyk2Xm2uSURvp/kuXUgaQlcXKyjAFKCMjwz34DI5Rt5v0+bh6tZzablclBR0dZFeXpMSHQvR6ZZMw/g4MMjNTZKsUegfp88nPdXWyP5tdwo0iadWBgaGQ3HvVcZ1eL6ur5aMlJXItfkjLGJOJpaRExlpVRSYmiksuL4+MiTGLpN1uJSQrK+n1yvwMDDDclaCjg2VlIj+6IW7MhAQVw8rKIjBoxptYWys3uKdHNubycukwoSxFrlxJYD/nzZNhVVaSLCtjZibDzCZlZeHiZpeLRUViLPX2Kuupu5ssLDQt8T6AbGgQV2RCAtmp6vlSUnjuuTSvKSODZGwsS0pEqBpk5RaLzAttNrEoc3JIl4uxsSJMmpvV/bHbyZwcOY/dLgLO5SKdTrkOv5/Z2Wo8kJiYuUY9HlkTNTUmoXRtrTx67VBuw+JiiUlXVUlphbJgmZAgCklurlhoeXl8TClU7OgQgZeVxVBIWbpZWSabCrOyaPR+8kNctyarT3KyvFdRIevHIG5VXJdB45k3+kyqrgc9Pcp16XCwulpcmg1KmfMr4cdAwFRQCgpkzZWWyv1vaiLHjPkqiKD/QOC5U3j9QQu74QRj4jdvDpoxO0OotLYyXK/j95ssQUbiyMSJSouvrDQ3bXZ3i6/f6ZQHLitLNFXl/gkp6wo4IFpgVpY8uKrerLhYHsDmZqpWL4PhxqFer2xAdjvp8bCsTDbYnh6SXi8LC8WiC4WUm9CgPqmsNHpmyoFra2VHmz8/zBQTCsnurFr/5OUZTUiPiMsnK0sE6MAAW1rkOS4qUuew25Ul8r5Yiikp4Zqu+HgRAN3d5ikkhrWJsbEiZDo6VKJLXx8bGoymqXu4dKnR6kbilhLPeIYzZsitW7KEZm8wdnfLDquIr1talJIwNKTc0z7zPrGlRQrvMzIYgLgN09PVPVB0U8zONumwDPdxRgbJ+nr5PxgUV19npxlvKSig6REoKJB5DEBq3bKzVWuf5mbZ/GNiTJJq2u3s6lIWVlUVJ05Uc2q1kjU1BKTZrsVCs4gb6AzTgaWmSh1mfT0ZE2MKLDY2ylhrasx48IwZYtUNDUnR+pD58zFFGL5fYlrl5QQGTbaRAFS8zeul9NrbS1ZUiOtQtcoBDrCoSObPcINKfeAgmZQUdo8nJBDYqzpZ7OVTypp/Carvm2LWzssTa9mgGktKkqX1rBIUrKgQ5dFiEWWmq4t0OISlx0+yvV2EU20t/wTVH9LtZna2PIfisdhDvzo3y8tF8BYVyeJPTBSL2WIxi8N9EPfmjBkkS0rM7gV+JVTNgnHFsuIFwq4Bl4tJSWQDxKW5XXkp6Peba9OIXTM1Veo2S0pYXU3ec883S9gdOHCAt9xyC6OiohgVFcVbbrmFf/vb3/7ud+SaPvt68MEHzc9ceeWVn/n7T37yky88vmEt7D76KGgWLA8MUBZ4fr5sIFlZZraXGSPzekWTHxqi2y2bdgAqY9NqJWNj5eE2eCArK4VtHyBbW0UQGO2cU1JM1yl9PtMqKypSG+TAQDjrzeMxM9aKimgmmbCigiwt5VbAZAcz6al6epTQ2ERaLCKES0rMTQXwiIuxrIxGC/JgkGRPD3NyVBKMxyPCMS+PdLno9yvLoq+PLC8343VOp7ICHA42NVESGIwM0+xs2u1UlsFb9PvVphgMigXV2Mi6OqpebdvpdstXJ06UewAcI7CXxcUyjNWrGc5mbGwU7duIqXq9ZHu7zFdXF4H9DAZls+/ooOlGFjfgRgL7Zb7a22VulEsTGGRbm1gfRtcDp5PCltEksm5gQI7Z1CRz0dZGSv+xTVwHg4PQJ9ZOSwuBw+J2NTqGZ2SQqalioUdGEljHjAwlCPv6CPhYU6O6B7RQFbi/LlaQ0TnB5RJzvKqKTU0qQaWiQuZH0V+JUuETZpsupRApKq7KSnGD9/RQTPSBATl/T4/ElACTJcdow8SqKnFp9/TQr1yiHBhgXZ3cl44OmQ6rVfr1Pa0ECp1OWixyLSUlqit5Vha3K4XC66XZgsfsKK+6m5eVka9C2Ib8CMcY8/Io819bKwKqtJRdXTRDAq0Qd7hQqh0ma2tZW6sybQ3LrrFRxmexhBNvAD4Gib13KuvwXUh3hg1K0D0A5TI3upO43fJwOp0ilD0e7lNjKCmRQvntSuCFIK71tjaStbVmKJUJCfR6JWbndpNfTczuKQL1p/B66isTdpmZmZw2bRrffPNNvvnmm5w2bRpnzZr1d79zYiPwffv28cknn+QZZ5xhto4jRdgVFBR86nP9/f1feHzDus4u4k/1WLRIaqMiFt0DfPe7Usj7yivAK69gv1CPY/Rrz0v9ywsvICcHwKpVsNmA0tITDlZYCNx9N0YmJADr18t7Gzfi5gWjhfnd45E6qt5es5vC4Pr1UqG9bh1+futxYOdOLLvqRaSlwawzwsyZwFlnIWr+fASDUkebkQFctugKKaYeOxbxkILmWbMApKXJOR56CMB5SEtLAmw2TNj4olQA33STFC4hHZfm5EhN0k03AWvWIGrzm8DatVi4ENi+HXKi/n75zNq1iI4Wwv0X144GkpKwcKHUR739NjAIAOvW4frJ72EvgP49ezC4fTvwX/+FsWOB1FRg/PgUTLHuxveDLwNr1kgdb1sbbp5zDLNnA7m5k/Hd78pw7r0XwGuvISfHgvT08UhNBa65RmqakZyM6mrINapaRVRVScHk3Xdj9CP/DmRmIiFhDKJuuh4vvABMf/tJqY9MvFHqphAHwIKR2dnAa6/hueeA9m9dBvziF4iM/Ba+H7kFoy0WKST+y1+kHm7fPlxyidy+iIV34te/Bq7fWQ089xxeew0oKrocEycmYRQAwIIZMy7GbbcBT+66GlbrORgNyI1Yvhz413/F8bY2jNi2BZg5E+PHp+KVV6QGu/4vowFYcMstsgyuHvUWMGYMLJZ0qS/0eLD3mp/K9Z95Jt7L+DdMnixllM/Y7sE7u0YDmzfjvND7mB5/EBbLxZgMYNIrj0uXBlU7eumlwIjKSixYACmW27ZN6i9vuw0jR6rOBB4PIm77KdaskeV4cMECjAWA1asxpaZG6gEB3DxzNxITgekr7sG1r9yHlBQgBsAEAOjrAwYHMWcOcHXMOwAgx4iLw+T4eCxdClw27SCOvfsubroJGAdg10UX4cDRozj3XGDOHCAC8v4UAHj2WRyDWiNr1gA7dmCU3Q5ceikmHd0CG6QA+DiAUZAGCklJ5wCpqbjuOin7k4UEedYjI3Hgk09wPtSD5HBgXno6Hn/qKQwCiAIwzWrFo7NeRgSkkH9RZCQSAeCJJxCxbZNM3KhRQH8/zk9KAvLyYIuJwcUA/iP5jzgMuR/3AXgQ0h0iIUF+mDVLfseiRUhOlg4LyckAkIIvH1/PovKtW7dizZo1eOKJJ5CWloa0tDQsX74cHo8Hfr//f/yezWb71KuxsREOhwOTJk361OfOPvvsT30uOjr6iw/yC4vHrwHMbEzVhbmriyZNVl4eyZUr6fMpl6ZhYRnJDMEgGQgYDcNZXS1ab1qaGGqdnRR/VFUV2dAgrpW+PjIjQ9xLBQWiARo1OkNDptvMKMVKS6PpSj0xGD4wQFHHFcO+0UKvsJAyrpISrl4dtmAGBkjW1pouKsPj2t1NMj6eeXmq/kqVCHBoiPT55O/NzWxpkbeVoRAO1vf1kS0tbG1VbkODh1PVwbW1yed9vnDPt54ekvPns6nphM4J6nzmScrLJf4RCombTFFnGf3S2NxMdneHszUNjjUjdtfeTgaDZoduM5Zi1I91d5MOh8RH8/PJUIh1dTJ/J7o/WVIi5+jpIbCNQcBkv8/Lo4xPZc0alll1NeWinU4zbZ4OB0tKVFyvq8usv3O7aXoHjDgtOzrMOKzBvcmEBBYVqRKAxkZZSzabuMZDqgecilFWVFAWgtdL4HWzvtGoIayoOGEtq+Qkn0+Mm2CQ4Z52oRCHhsSCLixkuMaxr49sbmZjo7w/MHAC6XFfn9mtPRhUa1F1c6iooLgHW1pkztvb5ToaGmTue3pM8mbTLdvezq4uebaCQZIeD71eGZNhQdLjkS8EAmR5uVnp090tlmBxcZge02hVPjSk1tDKlTSzilQH3qGhEz6vnhmvV57L6moVe+3ulnluaGBjI8MdEYJBOU5Hh0lMzYYGpqereGsgYMZajW7ui401VVws7k+rlbW1BqH2LtLl4g7lcvtyLbsnKElQJ/t6ggC4Z8+eTzXEPnr06CmNz+12Mzo6+jPvR0dH88knn/xcx+jt7eXIkSNZV1f3qfevvPJKjh07lmPGjOHUqVP5y1/+8lN8y58Xw9qyw9SpwKhRQsLwy19ixQqlLcbE4GK8gysm78WBwxF4b3CSqIOHDwO/+x1gtcJmE4KQq64SpXjWLPnIqFHSi+57tf8GxMVh0SJg9+HRAFTbsrFjhf7k8stxXuTHwNGjmDRyN3D0KBYuBCJWPomxYwHs34/Dh4H3FtfhBz8QmqPeXoiqv3w5XDtvxMsjr8fSpULUsOWDKODttzFjBjDh7efxzOCNiBh5HLjmGky3fQhceCHWrwcmvPYHTIg5CNTV4Te/UQruCy8AcXE4jhHA5MmY8Juf41evXYur99Vh6uAmjH7hSUxatQS33/IxbrkFmJI6GoiLwxV76nBe8x9w3/778P3qnwqFyP79+H7CAcTFARfHvI8p/W/hu98Fzt/2V+C223D95Pdw9RM3Y/quF3Hw8Aihjmlrk5sZHy+UJDt2SJ+y/n5M2v8WDiIKPzn3Zbw56lpg40ahGdu8WdgzrFa8+cEEsZZtNuC553DFNRG4fuXNMscrVmDL6k1AQgL+vHkC3nnor2IBJycDg4OIiwPu+eAenNf+IgIfjcCLnhHh/nX796Os7AJElZfj6iNNwKhRwoaxaxcwdiwaG1UPwbffFuYRjwdITBQWma4u4NJLkZkJ3J+9Be/0T8LRo6LB33QTcBwj4PFAFhAArFmDETiOj3PmYvZsCE3KNddg9mxgZFERjs/6Eab0vwXU1+Pqybthtaq+gJdfDsTHY84cABdcgA8uvxwVFemIKyzEsqXHMOKD3cArr8jfly5F+0eTxAKeORMXxx/AmjXSDnDzZuBXl76MF185GyN+/SvExwOP3voOXh+8DLjtNvzqodHYO+1a/Gj/k5g3T/qtPfecrL3XN482WVWifrcEWLgQ2L8fcXFiPWLaNCAuDtMnfwzcfTd27AC2JN6AC+dejPo3zgcWLMCERTfj2tSDeN12I57c/D0cPQrceevHiDq8Fy9bfojL9r+In2QdhNUKTF1xHwKX/hAHr7tO5qKyEtPvSMPGjcCE267FNdeIg8ZqFXIjbNwI3H8/RlyeJp6ShATcuOM/8N68ZeKWuOMO8/m8YsXP8fyon2LHDhn242un4s55x+U6entx5zXv4T+23QCrVbHRzJmDZU9EAbfeit0XXYRdF5yBLbar8XHmDXj9jjpkZspavXPOh9g7agq+/325J1e0EK//QPXgzM4G5s/H2LFAjM2G0tLv4L3Z9yH2vvtOfY/7DI7j1Ky64wAAu92O6Oho8/XAAw+c0qh6e3sxbty4z7w/btw49EozzH+I2tpaREZG4oYbbvjU+3PnzsWqVavw2muvobS0FA0NDZ/5zOfCFxaPXwMYWo4XMAP/XZB6oMhIVZdmsZB2u8TjVD3YBvV5Sc5YSyBgqpGSrBEkExPFZ+90ciekZGAIkkIP7DLZJIxjv2ucKzJSrI2sLNFACwqYkUEzUWbJEpUpV1vLT5RPn4EA2dHB0lJlkbrdErdxOMjsbMnsqqkRDba5WQqK588XTbKz00yBDqh7wdhYiYkEg+zqUlpuerok2ERGEjhCq1WG2dkp1lB1tbIw4uO5FcIuE1RxiUPq/+ZmZQF0doop6nCYGZut6jPMzhar1yDuTU2Vuj2PJ9xfsLFRtHKr1axj2qmSDnaq83VDpbEXFYml53CEW7SUlJBZWaYlU1xMOaZKBDr3XNU9oquLaWlyfWlpYlnV1MgxMjJUnWN5udxPhyNcTB8Mkk6nWCihEJmfz/x8mkw3Q0M0WWcKC2W+2N4u97mvzyTRsVhIulz8BKDTqfrPtbezt1dZYOnpkkWck0NaLGLp5OfLvWltlWPb7fKZri62tqpYa06O3F+/XyzZE7NYPR75vbiYDATk3ng85lx4vTT79IVCND0XS5dSzpuUJB6JgQGTpYbZ2WIS2e3ys8GC3ddHrlwp1+LzSfzMSJ4yztnSIv+npMgcuVwmQw3b28PsRvn5YVJpo7+d32+SgYdCyjp0uaSO06ic7+4m6+vlea6qkpteVSXjyMoS89VooKfKT+h0SlaTUU/S0SHPUHm5rFW7PVyPa2Te5uebtXT0esVib283+w0uhpTMtKq95SXAzPANlpV9BZbd7wnUnsLr91/Islu8ePH/mERivNavX88lS5ZwypQpn/n+5MmT+cADD3yua7zgggu4YMGCf/i5t99+mwDo8/k+13ENDGth97QKegMBWewOB5OSGM6YstnCwqu0lIyM5CoVmAY2EfCZmxfwEIGHRSIlJpqbB7CNrKhgEKonWFmZuOva23kIkno9oIQhy8okSF5RQbpcZv6FuNP2SzaYynZzOESOSa+zA/K51FQC+8X36fezq0vV5bW2huuJFKML7Xb29cmG3qUE1KuQzLM9gJn+HlK/b1eBfsmQfJ/AMbPTQW8vZTAWi9RFGYXzsbFm5h9bWyUDNSZG6u6ysoSF3jhfZCQ71X33QerB3oXUZR1S96YbMI/xkvFzSopsmpGRfAlSizegrsdIETcLFlNSODCglIbublZUMOx2ysmhFM2+rui/BllZKckth5Sw2wfpjRcKkYyJCStJK1cSWEcmJbEbilKsuJgbIOwgmZkkY2MlczMQUJ/3ybhqaiTpxOUiMKiKyx/iIbU2CwqkLU0wSLOUQzIbfSII4uNlXUCyHhVpD2mzyThaWlTCS4DMy+NWSNq7sfG3tVGEVV6emZlYUSH7eHU1wyxBFRWmEDJKOgw2nT1K6cjJkf28o0PWGQcGxGVcXy/jz8+X86gSlYkTRT6shyoMz8ggLRZZTw5H+HmIjaXbLbK4r4/yT1GRJL/YbGRysih7KmvI6TR5BXjuuUoRzM8X5cTlYjuEsaa6mlJaoNzDRkugvj7lKu3oYHMzzWSoNwAzSa26WmXiNjbKRRvkCAMDsh5jYsQFHpR6VKO8wGCrYWIiWVzMDkjSysPqvrshtIJDMGgJv2xhV03gyVN4VX+hMX300UfcunXr330dOXLklN2Yr7/+OgFw48aN//Czx48fp8Vi4erVqz/XNRgY1m7M4wAuBnDGGcp8HhxEf7+8HwVIRH78eIxTf0NMDCZBBd2RAOA74iuJiYGE3MeLL2TXLiFujomRI73wAkZAvFzCHg1g82ZEABhhsSAiLw/JNhswezbisrKEgf3wYcTHi7et/o3zkZ09RjobzJkDzJqF/n7goouECzkj41xxkebmIiFhDI5t3w5s345HHgFG5eVJksk112DmTABr1wr58znnoL8fCAQkiG8FMAmSBBAXGwtYLLDbx+Bsmw2jAIyGuM327AGAc5CSYpHslLw8nBd7XK7ZapWg/QcfmG7FEfHxuPVW4JkProC1uBhwuYCiImDuXESUlCAGQJzdDpSXY2pCAsYmJ+Nimw3fs1olGWHFCowqKcHe2/4dE5KTYc3JAWbMwBRIBwy5cAA2G6xqFiLi4xEVEyNu1TlzxN+2axewaBEiDh/AzJnAy9sm4JFHZJjHZl6tsntSkJCQrlbHTtw1Zy82bHgHhyGev8MA9u37EGe3/RUf9vcD2CGJFi4XgC3ArFmYEBsrpMa33ooJAHbu3ImODpm3hQshvuiJExEbe7GcfORIXHKJdHgAQuJGx/kYlZODfgDLl+/DQQBRS3+FNxN/DmzdCqSmYuLEi4G4OAzu2iXdBoqLgVGjMBVb8MgjwGBvLz755Ciwdi0eXTka6enjgNmzkRgZibg4tQznzBFy4wsvFJ9ceztGJyRg8mThQL/qKvUMpKZKVs5VVwGpqZg2DTh26WXiwp02DTEA4tPTMW2aXFJiIuR+bt4sRNlWK0aOBI6v+AMQF4d3LpyLhQvFa33vvcB0AO+PnCLr9Nvfxnn1j8oAAMQ5HMC0afj5nINYuBAYbf1YwgIvvSTPYX8/DmzciIcfBnb3RuBA3HRcd50k66SmyhIdHJT5WLAAwG234XuxsfjhD4E7Z+0Gensx5egmHOjtBbZtwzFrFEY/9zimHn0H2LUL19o2yXx+61u4VO0D9xccwI9/LEsLkyfjfdtlcjE1NcCKFZj0UjWO9fcDiMLIkUBiYiImT5Ywx5w5KvlEdUvphySu9EPePwDAarVghNOJkWeeieGOsWPHIjEx8e++rFYr0tLSEAwG8dZbb5nfbW9vRzAYxGWXXfYPz+N2u3HJJZfgoosu+oef7ezsxCeffILx48d/sYv5QqLxa4IT6+yMgDHd7nAAev580URVj6+lS+U9ZmWxooLhgLVRSGoUoKsgNQsKxIKLj5eU4oyMsMunoCDcMNTokt3ZKZ9raTEagJN9faI5FhSImqrojRobadaVsbY27OYbGmJ1tSjIQ0M005jdbpJeLxsaVG2az0e/0sKNix8aIpmbK4kSXi+BV0WzjY9nU5NYc1J/t53AAdG6S0spZNhuM2GG5eXikktNNRk02NnJ3l6xIDMzlVXU1UWWlsr9yM0Vl1IoxHnzRIvOz1fsFCoJpqREvuN0hn+eMYMmYbbfT7K0VNxxQ0NmQo/hoTSSJAYG5JpYWMiWFnWfa2rY1aWSDVpbwwkjfr/4v1RixcCAcut2dIQL1P1+trTQdOUVFqr3i4tZXa2s8oYGsqZG5qGqKpwI5HKRXq/MZ329nL+vT+5PWRmXLlWWg6JkYzDIlhZZe0ND4fXKzk45rrE21JiNzuN+v7K0XC6yq0tcnMqVaaw/1RaOXLlS3LUuV3huXC6yu5vz5qlrM6iv3G5y/nyOHy/zauQZ0eOR9T0wYHaqNxrpNjSIJ7Wnh8ISlJTEAUgijeGJKC4m6XSKRRgI0OdTSR4GZVBpqdk5vqhIjdvnkx8UMxGzs00ycKMpamdneC7mzaOMKTdX7kFDg6xJ454kJ4cT1zIyZNB5efLMlJbK9cfEmAk9prfG45G5Mb6r2BlKS9X5UlPF66KK5ZuaxEVeUSHrbzFUqUtJCUtLv6o6u0cJLD+F16Nf2pj+X2RmZnL69Olct24d161bx6SkpM+UHlxwwQV8/vnnP3NtZ599Nh977LHPHHPHjh0sKyvj+vXruXPnTjY1NTExMZEzZsz4Qg2/yWHuxqyHUFVFRqrasLIyAkF2QOh7TLJl9dAOKHcelasKGJTNpaeHwOMEVsjCt1rlyU9OJrCJTE2lT7k+TTdeTo74cGJjZVdLSJAHNSfH9PUbmYJGDV1hIWXHSU+nwyEfr6w0ZQ+ZlydF5BYL2dAgm4RB5OhySa1YcrI80AkJbGuTP+0zXIJWa9j9FwyaNEtD6m9FRXJ5wGHZFOvryfp62bwKCjgEofOi0ykvVUtWVETzITYZ6VW3ZjOGWVpq0kUxI4OMjJS/dXSE/bVG52inU75jsUhXBj/JyEhuN86vusfT75f7XFQkx1bF9UuXkgwGmZurBJjiwYyNVQrB/PkEjqii6VfYBWFcOWS4vBU9GbBW1klyMoFmsqiInwBml+996vMZGSTLytjaGlZksrOV0PJ45PN+P2fMkPEAm8iUFNYBBI6Ia7iyUjbQ0lLS5ZKN1+1mCDDZRpiSQpaUENirzn2EdLno9SpXanm5rIehIRHobjerq1WNV329CAeV9rt69QnE5Tk5IoTb28nOThFOgQDr6pQbODubzM42u5kbNGL0+UQAq5hxb6+sgY4Ompmtra2UuVTZxMzNlUVdXByOIxYVmZmOoRDlJHa7dCxQ3ejZ3S3n7upiTY2st9Wr5ZBtbfIctLVRNCCjA3xjo+kiN5/ZQCAsNNvbSa9X1m5rq6whFRPs6VFjr6+XMRnrNSuLLC/nkHJ59/bSFHhGQncopJrX2mx8CUK19p9K0C2G8KrS5eL7X4kb82EVdzvZ18NfmbDr6+vj3LlzGRkZycjISM6dO/czReUA+NRTT33qvZqaGp511ln/39q53bt384orruDo0aMZERHBf/mXf+Fdd93Fvr6+Lzy+YS3s5s4NEthLt1vFcSDEzE1NlIfMZpMHua/PYBOSTWZoyOwuvh4SYH4JwuH4CcLBcr+fsjF7PCI4VMqymXY/f748WC0tbGgQLa+pSTafwkKKpDMyFiBJKU6nKopVVGIBFe+bN08xgjgcZuo/sJ/ANvZBCmIZGcnVq6kKVgskThgIyGY5NMRgUMZWWamsoe7usJZsjKWjwyS8HRiQzSQvjyZ/YkUFRaBmZZldBAwlG9hO+nxmpcHAQJhg3igqNwgyxo+XzcpM6bYzAAAKiklEQVRgIWlqoqkN0+kUCyAYDCc0KKtIcSaTgQDT0uT3c89VcZeeHhYUCI0T0GnyTNLvl8SUQEDF6x6UgyjOzKYm2Q8NoWLGe9zucPKH203gdQK/V3yrj8txPB5F6rtNFKXkZEnOycmRxJzubnYABN4PKy2trQSeJrCHAwNqXlWXdGBtuA9RRoZZTdDXRwIPiqKUlCSKTnGx2UXjL5BUd8MC8/nUfUpPlwWRkCCC3uMxczz+puJ7TU0kQyGJOVdVcT3AxkYVD25vN7txsKqKzc1UbYoGzThwMEjS7zfIWMJCu7CQzM1lTo5K4rFa5RxOJ1lVxZ0q3jtvHkm7nevUs+bzkaytFcUuJ0eEb24uWVIiZNQQaq4QJGHJIPfu7RUZmpkpY+XQkHh1VLnJu4bi0NBgtk9icjLXqfhZba3qkF5WxgAk1mzoYZ2dSvidwMZktJ1qa6NJxO1T4wJ2sbSUijHomFxLSQmBPVwMqO4f132jhN3XHcNa2AXvuIOMj2dBgdIY588PEyRnZcnvSkvz+2laayFIllxODsWVVlZmtmljcbGs+qoqU0j29jJcH6f6spjnq6wUK8Rgb4mJIWtqzJ5WZ5xBMiODDodKKsjOJleuZF+fGIOcPz+c8ZeezsxMpV0HArIRpafLA5iSws5O2WjcbsoPBlFvWZmMF5LcYfQny81lmLgvK8usH6qtVVmLSpjR4wm7WmNjRSv2eMKS0KBkiY2V6yspIauqZLOsqjKzJJmQIFaMss5MC9tiIZ3OMP1TTo5818i+M1xRyclyroqKsOWcnGyy3h8CzNo6ejxkT49Z/8faWkZGimCsq5NLaGqiSIXSUpmPsjJWVCgKNoNLtaHB9GQbLYGcTsq9KCw0uT9ZUGD29WNNjQiwnh6zVyErK5mbK3MK7Je10NxsMnxUV1PudTCoEpGCsvYqKoSKLDaWHR0iJ9jcTFZVsbCQpgCrrJS1uk+tXQ4MhGsW1RwvWSICLjvbJNURwWSso+Ji0uuVzTsUkjUcHy8KnsXCxkYZrtMpw/T5VIigs1PWoNUqVn1qKmtrZQhmXz5Vb0e3W8aqFKx9AOl2s7hYKYCGlhQKybiLitjZqZ4FxZNZVyfrf/XqsDubNTXyLNXWCvHy0JCsb+U+ZXs72dHBnh4RQEaN7dKlSvHz+URZ8fk4b57JyCfjVv3xSktlCRQUyDWXlJAMBrldKbHV1eEcI4ORiI2N4jlxOkXRcbnMOrzg818Fg8pDlCSTk3099I0VdmeQ5BeL8v3zEQwGERMTgz033ojBP/4Ro6uqgIYGRL/6AoA/I/jHb6FozXVoagJmzAAeewwYvaEF2LsXWLMGx5+uw4jAPmD3bkRfexCS3rEdksaRjZ07v4VnngEWZO7AncsmY/Zs4No19+DFq5bhRyP/DEyYgONTp+GXv5Syu5kzgSv7nke0MxvBP/4VOO884JlnUDXhQWzaBDQ0SJA9WPU08MYbwKuv4u1V27FhA3DvvbsBvI/gL14EtmzBrJFr4PnN28CYMTiYnIxDAKbCj+Ady/DtugfR87vngVAIv1+wAPejEdu3X4VxIw/geMxojDh8ENi9W1gkBgex78cLsHChsLYEg8A77wB33SX38OhR4NLpx4AHHpD78NyjWL78HNz4YRXS6xdg3DjpgG21ArWZq4AXXsC+NWsQaA0i2boNGDdOkkt275ZW54OD2OfxYPySJcCWLcKM8dBDQH291NzNnw8cOACMHo07G6/D/x1TioPFv0Vbm3R0Li6W5AUMDgJr1+LDS6/HuLwfAH/6kxRMzZmDfcXLMP6BuxBdexM2Iwt2hwPRry7Cxo2pmHhzGj5sXIfnnwds90cjYlUQdXVyuPqfN0vL8dtvx9NNo5G/ewkQG4unz7od+ZO8QGcnnj7rdlyyIBofAMjF43gOtyME4Oxng0hNBQ7ZozEVrZg+PRnvvy+5Hh7PQWzeHIVp097Ae5iF89LTgbQ0eK/6Pxi8PhrTAIz56CPgRz/C7RPW4PFXE7Dtww+xyBFEeTnw618DL/zxGNDTA0RH44WJEzH7xReRtuhKrPvZ71HaMw+/jfpPHCsvRyweQ/DFbwPR0TIpR48Ce/ci89HrMXcusGwZsOGcmXj539fi2nO8wHnnIfqSaAT/80/Ad76Dj9Ovw9mFv8DyVDfuvfcvCK76BNF5aWhpORfTpwMRG9qxfNP3UTCpBWhsxPHaWpyLnQBaENxzHXZ8GIXJbzwlta3jxmHJMxMRDEqCVO3gXODHP8a4eTfgw9m3486Rj2PGDODeezsR/NuFwL33YopnGQKBPwOIRLA1Equ2JiPv7nGYm/Eh6iaU4Gd7H8CkScDiKasQPS8I4BMAPwOwF0HXa9h5//2YuGMH8OijwJYtWJ7ZgF/8AhjxaguOO36A3/4WWLbsTQR3JuLFtaORn78bCQkTcNZZwKZNfwZwMYK/fxXR86ahpCQJDzywG8AAgo+sBebOBd5/H+jrw47zLserrwIFsz9C9OQuACEEW6Ix6cZL8bOfAcuWtQBIwQ7YpY7unHMwuHgxRp55Jsr+7UMsWBaNSbgOwefvwG9uuAEPA+jv7z85xo8TcPDgQXWMBwGcdQpHOgLgPgSDQURFRZ3SmIYbhqWw++CDD2C32//Zw9DQ0ND4h9izZw/i4uJO6Rha2J06Rv6zB3AyOP/887FlyxZMnToVe/bsOa0m7eDBg7Db7fq6hgn0dQ0//G9dG0kcOnQI559//pd4VINB5VS+/83EsBR2I0aMwLe//W0AQFRU1Gn3MAL6uoYb9HUNP/xvXNupui8/i1Mlc/5qiKCHA4Z1UbmGhoaGhsbnwbC07DQ0NDS+mdCW3cli2Aq7M888E4sXL8aZpwElz4nQ1zW8oK9r+GF4X5sWdieLYZmNqaGhofFNQjgb89eQUqmTxVEA5d/IbEwds9PQ0NDQOO0xbN2YGhoaGt88HMeplQ/o0gMNDQ0Nja89dJ3dyUK7MTU0NDQ0Tntoy05DQ0Nj2EBnY54stLDT0NDQGDbQwu5kod2YGhoaGhqnPbRlp6GhoTFsoLMxTxZa2GloaGgMG2g35slCuzE1NDQ0NE57aMtOQ0NDY9hAW3YnCy3sNDQ0NIYNtLA7WWg3poaGhobGaQ9t2WloaGgMG2i6sJOFFnYaGhoawwa69OBkoYWdhoaGxrCBjtmdLHTMTkNDQ0PjtIe27DQ0NDSGDbRld7LQwk5DQ0Nj2EALu5OFdmNqaGhoaJz20JadhoaGxrCBtuxOFlrYaWhoaAwb6Dq7k4V2Y2poaGhonPbQlp2GhobGsIEuKj9ZaGGnoaGhMWwwhFNzyH1zY3bajamhoaGhcdpDW3YaGhoawwbasjtZaGGnoaGhMWyghd3JQrsxNTQ0NDROe2jLTkNDQ2PY4BhOLaNy8MsayLCDFnYaGhoaX3NERETAZrOht/eVUz6WzWZDRETElzCq4YUzSPKfPQgNDQ0Njb+Po0eP4tixY6d8nIiICFit1i9hRMMLWthpaGhoaJz20AkqGhoaGhqnPbSw09DQ0NA47aGFnYaGhobGaQ8t7DQ0NDQ0TntoYaehoaGhcdpDCzsNDQ0NjdMeWthpaGhoaJz2+G/tdhzbPwbBCwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(22, 549) \n", + " (6, 549)\n" + ] + } + ], + "source": [ + "# there is also an option to do all of the above as one process\n", + "# using a cutoff for autocorrelation of X variables\n", + "# while also outputting the autocorrelation matrix \n", + "dfx = pd.DataFrame(pd.read_csv('28BenzeneDescriptors.csv')).iloc[:,:-1]\n", + "xtrain, xtest, ytrain, ytest = dt.clean_data(dfx, dfy, split='sorted', cutoff=0.9, plot=True)\n", + "print( xtrain.shape, '\\n', xtest.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "43ae1c23-786b-4aa3-9794-95e737dcda8d", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# creates a feature cluster with 'average' euclidean distance and cutoff of 2\n", + "# this is the tunable part of the system \n", + "clust = cl.featureCluster(xtrain, method='info',link='average', cut_d=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "bdcca1e4-0411-42e3-93d6-54a7ff99a8ef", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " \u001b[1;46mCluster\u001b[0m 1 ['HATS3e', 'R3e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 2 ['HATS3u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 3 ['MATS2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 4 ['R2p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 5 ['HATS0e', 'R2v+', 'R4e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 6 ['HATS2e', 'R2e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 7 ['H2u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 8 ['RTe+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 9 ['BELv4', 'BELe1', 'J3D']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 10 ['BELm6', 'HATS2v', 'HATS4e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 11 ['SPAM', 'Mor11u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 12 ['Mor11e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 13 ['BELv1']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 14 ['HATS1p', 'HATS2p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 15 ['HATS1v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 16 ['MATS3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 17 ['BEHv2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 18 ['BEHv4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 19 ['BELe2', 'BELe4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 20 ['nC']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 21 ['MATS7v', 'MATS7p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 22 ['Mor22v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 23 ['E3s']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 24 ['HATS2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 25 ['RTm+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 26 ['R2m+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 27 ['CIC0']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 28 ['BELm4', 'Mor17v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 29 ['BELm2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 30 ['Mor17u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 31 ['Mor17m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 32 ['R4u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 33 ['R1m+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 34 ['C-001']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 35 ['HATS0p', 'RTp+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 36 ['R1p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 37 ['R1v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 38 ['R1p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 39 ['X2Av', 'X4Av', 'X5Av']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 40 ['R1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 41 ['TE2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 42 ['H1u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 43 ['GATS2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 44 ['Mor19m', 'Mor19v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 45 ['BELm5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 46 ['Mor20m', 'Mor20v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 47 ['MATS3p', 'GATS3v', 'GATS3p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 48 ['Mor09m', 'Mor10v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 49 ['Mor11p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 50 ['Mor11m', 'Mor11v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 51 ['Mor07m', 'Mor12m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 52 ['Mor13v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 53 ['RDF020m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 54 ['Mor04m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 55 ['Mor24m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 56 ['Mor31m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 57 ['X0Av', 'X3Av']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 58 ['Mor09v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 59 ['R2p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 60 ['Mor18m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 61 ['Mv', 'HATS3m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 62 ['BELm3', 'Mor10m', 'Mor07v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 63 ['E2p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 64 ['Mor02v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 65 ['Mor02p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 66 ['GATS1v', 'GATS1p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 67 ['Mor19u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 68 ['R1u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 69 ['E1v', 'E1p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 70 ['R4v+', 'R4p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 71 ['R4m+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 72 ['R5m+', 'R5p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 73 ['R5v+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 74 ['DISPp', 'R3v+', 'R3p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 75 ['R3m+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 76 ['HATS3v', 'HATS4v', 'R2v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 77 ['H1p', 'R3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 78 ['HATSv', 'H0p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 79 ['Dp']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 80 ['Dv']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 81 ['RDF035v', 'RDF035p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 82 ['GATS3m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 83 ['MATS3e', 'GATS3e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 84 ['MATS2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 85 ['GATS2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 86 ['Du']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 87 ['MATS6v', 'MATS6p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 88 ['R6m+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 89 ['R6v+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 90 ['R6p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 91 ['Mor07u', 'Mor07e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 92 ['GATS2p', 'MLOGP', 'ALOGP', 'BLTD48']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 93 ['GATS2v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 94 ['Jhetv']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 95 ['E2u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 96 ['MATS5v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 97 ['MATS5p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 98 ['MATS1v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 99 ['Mor22m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 100 ['X3v', 'HTv']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 101 ['X1v', 'X5v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 102 ['H2v', 'H3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 103 ['JhetZ']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 104 ['E2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 105 ['Mor03v', 'H2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 106 ['H3e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 107 ['SEigZ', 'Mor03p', 'H1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 108 ['ATS3m', 'BEHm3', 'BEHm4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 109 ['Mor21m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 110 ['Mor27m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 111 ['Mor23m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 112 ['Mor21v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 113 ['ESpm01d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 114 ['BEHm2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 115 ['ARR']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 116 ['H1v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 117 ['HATS5v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 118 ['BEHm1', 'Mor06u', 'H2p', 'R5m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 119 ['Mor26m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 120 ['Mor13m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 121 ['E2v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 122 ['R4v', 'RTv']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 123 ['GATS4v', 'GATS4p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 124 ['GATS5v', 'H3p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 125 ['H4m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 126 ['RDF055v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 127 ['GATS5p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 128 ['SHP2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 129 ['R4p', 'RTp']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 130 ['GATS6v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 131 ['Mor14v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 132 ['R2u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 133 ['Mor14u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 134 ['Mor16m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 135 ['Mor16v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 136 ['Mor16u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 137 ['Mor26v', 'R1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 138 ['Me']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 139 ['HATS1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 140 ['H0e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 141 ['SIC0']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 142 ['Dm']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 143 ['RDF010v', 'R2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 144 ['RDF010m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 145 ['RDF020u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 146 ['TI2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 147 ['JGI5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 148 ['Vindex']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 149 ['Yindex']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 150 ['Lop']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 151 ['Mor12v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 152 ['LDI']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 153 ['Qmean']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 154 ['Mor15v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 155 ['EEig12x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 156 ['EEig12d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 157 ['qpmax', 'qnmax']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 158 ['R4e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 159 ['Mor28u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 160 ['Mor28v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 161 ['AAC']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 162 ['Ds']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 163 ['E1u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 164 ['R6e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 165 ['Mor18v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 166 ['Mor09e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 167 ['Mor20u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 168 ['Mor20e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 169 ['Mor09u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 170 ['GATS4m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 171 ['GATS4e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 172 ['Mor24u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 173 ['Mor14m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 174 ['MATS4m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 175 ['MATS4e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 176 ['GATS1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 177 ['Mor28m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 178 ['RARS', 'REIG']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 179 ['HATS6m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 180 ['Mor18u', 'Mor18e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 181 ['MAXDN', 'MAXDP']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 182 ['AROM']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 183 ['EEig04x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 184 ['Ms']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 185 ['Mor26u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 186 ['Mor31u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 187 ['Mor31v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 188 ['MATS1p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 189 ['Mor12u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 190 ['Mor08u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 191 ['EEig11d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 192 ['EEig11r']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 193 ['E1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 194 ['MATS2v', 'MATS2p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 195 ['HOMA']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 196 ['PW4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 197 ['SPH', 'L3u', 'L3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 198 ['L3m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 199 ['MATS4v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 200 ['MATS4p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 201 ['JGI3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 202 ['HATS5e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 203 ['L3s']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 204 ['IDDE']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 205 ['L1v', 'L1p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 206 ['RDF065v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 207 ['DP18']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 208 ['H3u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 209 ['HATS7u', 'HATS7e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 210 ['HATS7v', 'R7v', 'R7v+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 211 ['R7u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 212 ['L1u', 'L1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 213 ['ATS7p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 214 ['GATS7v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 215 ['Ku', 'Kv', 'Ke']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 216 ['GATS7p', 'R7m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 217 ['GGI6']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 218 ['DECC']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 219 ['Mor29m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 220 ['Mor29v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 221 ['G3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 222 ['Gm']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 223 ['G2p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 224 ['ICR']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 225 ['E1s']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 226 ['IC1']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 227 ['PJI2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 228 ['PJI3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 229 ['IVDE']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 230 ['EEig10d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 231 ['IC2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 232 ['Mor22u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 233 ['Mor22e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 234 ['E3m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 235 ['EEig08d', 'EEig09d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 236 ['GATS5e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 237 ['DISPe']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 238 ['MATS5m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 239 ['MATS5e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 240 ['GATS5m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 241 ['Mor15u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 242 ['Mor15e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 243 ['Mor15m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 244 ['nOHPh']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 245 ['H-050']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 246 ['Hy']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 247 ['MATS6m', 'GATS6m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 248 ['R5u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 249 ['R6u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 250 ['C-040']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 251 ['MATS7m', 'MATS7e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 252 ['R5e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 253 ['EEig11x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 254 ['Mor08m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 255 ['E3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 256 ['E3p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 257 ['HATS5u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 258 ['GATS1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 259 ['Mor32m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 260 ['E3e', 'De']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 261 ['G1v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 262 ['MATS3m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 263 ['JGI4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 264 ['EEig09r']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 265 ['RPCG']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 266 ['RNCG']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 267 ['E2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 268 ['H5u', 'R5u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 269 ['MATS1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 270 ['RTu+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 271 ['H6u', 'H6m', 'H6v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 272 ['E3u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 273 ['MATS1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 274 ['Mor21u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 275 ['Mor21e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 276 ['SIC1']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 277 ['CIC1']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 278 ['HATS1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 279 ['Mor13u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 280 ['Mor13e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 281 ['Mor29u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 282 ['R2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 283 ['ISH']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 284 ['H0u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 285 ['SIC2', 'CIC2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 286 ['IC4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 287 ['SIC4', 'CIC4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 288 ['EEig10r']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 289 ['Mor10u', 'R1e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 290 ['R3e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 291 ['R1u+', 'R3u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 292 ['Mor10e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 293 ['HATS1u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 294 ['E1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 295 ['R1v+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 296 ['BELv2', 'BELv5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 297 ['RBF', 'BEHe5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 298 ['Mor04u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 299 ['ATS5e', 'BELe5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 300 ['HIC']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 301 ['H4u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 302 ['BELv6', 'HATS4u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 303 ['BEHe3', 'R6u', 'R6e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 304 ['BELv3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 305 ['BELe3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 306 ['HATS0u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 307 ['BELe6']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 308 ['H2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 309 ['RDF070v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 310 ['Mor25m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 311 ['HATS2u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 312 ['R2u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 313 ['HATS6u', 'HATS6e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 314 ['EEig09x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 315 ['H1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 316 ['Qpos']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 317 ['Mor24v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 318 ['PCR']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 319 ['ESpm01r']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 320 ['GGI5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 321 ['EEig05x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 322 ['BEHe8']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 323 ['BEHe2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 324 ['BEHv3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 325 ['BEHv6']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 326 ['RDF060v', 'L2u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 327 ['R3u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 328 ['Mor32v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 329 ['EEig08r']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 330 ['R4u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 331 ['ATS6p', 'Tu']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 332 ['BEHv5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 333 ['BEHe4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 334 ['ATS3e', 'R6v', 'R6p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 335 ['BEHe6', 'Mor05u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 336 ['Mor04v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 337 ['ATS5v', 'BEHv1', 'H4v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 338 ['Mor25v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 339 ['Mor30v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 340 ['Mor30p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 341 ['RCI']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 342 ['BELv7', 'BELp7']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 343 ['GVWAI-80']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 344 ['BEHv7']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 345 ['BEHe7']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 346 ['BELm7']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 347 ['Mor27u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 348 ['Mor32u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 349 ['Mor30u', 'Mor30e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 350 ['EEig10x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 351 ['EEig15d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 352 ['L2m', 'L2v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 353 ['Infective-80']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 354 ['EEig14d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 355 ['E2s']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 356 ['EEig13x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 357 ['ASP', 'Ks']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 358 ['P1m', 'P2m', 'P1s', 'P2s']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 359 ['P1u', 'P2u', 'P1v', 'P2v', 'P1e', 'P2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 360 ['ATS4v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 361 ['Mor05v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 362 ['R5v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 363 ['R5p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 364 ['ATS3v', 'Tp']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 365 ['Mor23u', 'Mor23v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 366 ['BEHp8']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 367 ['ATS3p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 368 ['ESpm03d', 'ESpm08d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 369 ['EEig02d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 370 ['JGI2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 371 ['MSD', 'J', 'Jhete', 'X4', 'Mor05m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 372 ['GGI4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 373 ['EEig03x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 374 ['BEHm5', 'BEHm7']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 375 ['ATS1m', 'ATS4m', 'EEig04d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 376 ['GNar', 'PW2', 'EEig01x', 'EEig07d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 377 ['S2K', 'X5A', 'EEig03d', 'EEig05d', 'EEig06d', 'ESpm02d', 'BEHm8', 'GGI2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 378 ['Mor25u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 379 ['PW3', 'X2A', 'X4sol']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 380 ['PHI', 'X5sol', 'BEHm6']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 381 ['GGI3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 382 ['Mor27v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 383 ['IDE', 'HVcpx']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 384 ['DP14', 'SP15']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 385 ['EEig08x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 386 ['RGyr']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 387 ['SPAN']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 388 ['JGI1', 'JGT']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 389 ['EEig02x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 390 ['S3K']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 391 ['EEig07x', 'EEig07r', 'BEHv8']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 392 ['VED2', 'DP03']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 393 ['X4A', 'ESpm03u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 394 ['SEige']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 395 ['X3A']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 396 ['HATS6v', 'HATS6p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 397 ['Mor30m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 398 ['R6m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 399 ['X5', 'EEig06x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 400 ['Mor03u', 'Mor08v', 'Mor03e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 401 ['PW5']\n" + ] + } + ], + "source": [ + "# export the results of the clustering, returning the dictionary we will use later\n", + "# optionally, print out everything\n", + "# optionally, also graph a dendogram (mostly for tuning rather than visualization)\n", + "clusterinfo = clust.set_cluster(verbose=True, graph=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "acbe1e18-9c07-4e48-81cf-e60b9adb742f", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAx3UlEQVR4nO3dfXzO9f////thtmMb2yJ2ImtbmIx4h3KakwpRIiU6HZVvIpHUW6dWyZQ3eX9yUklDvUNJpYjJedS7iCiSnJd5i2ROMps9f3902fHrsM22w3HsOJ66XS+X43Lxeh7P1+v1eD4d2+u+1/E6jpfDGGMEAABgqQr+LgAAAOBcEGYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxW0d8F+Fp+fr727duniIgIORwOf5cDAABKwRijo0ePqkaNGqpQ4eznXs77MLNv3z7Fx8f7uwwAAOCBvXv3qmbNmmftc96HmYiICEl/TkZkZKSfqwEAAKWRnZ2t+Ph413H8bM77MFPw1lJkZCRhBgAAy5TmEhEuAAYAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYraK/CwCAv5vE4fP9XUKZ7Rp9vb9LAIrFmRkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDW/hpn09HRdccUVioiIUHR0tLp3766tW7e69enTp48cDofbo3nz5n6qGAAABBq/hpkVK1Zo4MCB+vLLL7V48WLl5eWpY8eOOn78uFu/6667TllZWa7HggUL/FQxAAAINH69N9PChQvdljMyMhQdHa1169apTZs2rnan06nY2NhSbTMnJ0c5OTmu5ezsbO8UCwAAAlJAXTNz5MgRSVLVqlXd2pcvX67o6GglJyerX79+OnDgQLHbSE9PV1RUlOsRHx/v05oBAIB/OYwxxt9FSJIxRt26ddPhw4e1atUqV/vs2bNVuXJlJSQkaOfOnXr66aeVl5endevWyel0FtpOUWdm4uPjdeTIEUVGRpbLWADgbLhrNlCy7OxsRUVFler47de3mf7qwQcf1MaNG/X555+7tffq1cv17wYNGqhp06ZKSEjQ/Pnz1aNHj0LbcTqdRYYcAABwfgqIMDNo0CDNmzdPK1euVM2aNc/aNy4uTgkJCdq2bVs5VQcAAAKZX8OMMUaDBg3SBx98oOXLlyspKanEdQ4dOqS9e/cqLi6uHCoEAACBzq8XAA8cOFBvv/223nnnHUVERGj//v3av3+//vjjD0nSsWPHNGzYMH3xxRfatWuXli9frq5du6patWq66aab/Fk6AAAIEH49MzN58mRJUrt27dzaMzIy1KdPHwUFBWnTpk2aMWOGfv/9d8XFxal9+/aaPXu2IiIi/FAxAAAINH5/m+lswsLCtGjRonKqBgAA2CigvmcGAACgrAgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACr+TXMpKen64orrlBERISio6PVvXt3bd261a2PMUZpaWmqUaOGwsLC1K5dO33//fd+qhgAAAQav4aZFStWaODAgfryyy+1ePFi5eXlqWPHjjp+/Lirz0svvaRx48ZpwoQJ+vrrrxUbG6sOHTro6NGjfqwcAAAEior+3PnChQvdljMyMhQdHa1169apTZs2MsZo/PjxevLJJ9WjRw9J0vTp0xUTE6N33nlH999/vz/KBgAAASSgrpk5cuSIJKlq1aqSpJ07d2r//v3q2LGjq4/T6VTbtm21Zs2aIreRk5Oj7OxstwcAADh/BUyYMcZo6NChat26tRo0aCBJ2r9/vyQpJibGrW9MTIzruTOlp6crKirK9YiPj/dt4QAAwK8CJsw8+OCD2rhxo2bOnFnoOYfD4bZsjCnUVuDxxx/XkSNHXI+9e/f6pF4AABAY/HrNTIFBgwZp3rx5WrlypWrWrOlqj42NlfTnGZq4uDhX+4EDBwqdrSngdDrldDp9WzAAAAgYfj0zY4zRgw8+qLlz52rp0qVKSkpyez4pKUmxsbFavHixq+3UqVNasWKFWrZsWd7lAgCAAOTXMzMDBw7UO++8o48++kgRERGu62CioqIUFhYmh8OhIUOGaNSoUapTp47q1KmjUaNGKTw8XLfffrs/SwcAAAHCr2Fm8uTJkqR27dq5tWdkZKhPnz6SpMcee0x//PGHBgwYoMOHD6tZs2bKzMxUREREOVcLAAACkV/DjDGmxD4Oh0NpaWlKS0vzfUEAAMA6AfNpJgAAAE8QZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGC1iv4uAADOReLw+f4uAQHKxtfGrtHX+7sEK3FmBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArFbRk5V27typpKQkb9cCAAhQicPn+7sEoFgenZmpXbu22rdvr7ffflsnT570dk0AAACl5lGY+fbbb3X55ZfrkUceUWxsrO6//3599dVX3q4NAACgRB6FmQYNGmjcuHH65ZdflJGRof3796t169aqX7++xo0bp19//dXbdQIAABTpnC4Arlixom666Sa9++67evHFF7V9+3YNGzZMNWvW1N13362srCxv1QkAAFCkcwoza9eu1YABAxQXF6dx48Zp2LBh2r59u5YuXapffvlF3bp181adAAAARfLo00zjxo1TRkaGtm7dqi5dumjGjBnq0qWLKlT4MxslJSXptdde06WXXurVYgEAAM7kUZiZPHmy7rnnHvXt21exsbFF9rn44os1derUcyoOAACgJB6FmW3btpXYJyQkRKmpqZ5sHgAAoNQ8umYmIyND7733XqH29957T9OnTz/nogAAAErLozAzevRoVatWrVB7dHS0Ro0aVertrFy5Ul27dlWNGjXkcDj04Ycfuj3fp08fORwOt0fz5s09KRkAAJynPAozu3fvLvJ2BgkJCdqzZ0+pt3P8+HE1atRIEyZMKLbPddddp6ysLNdjwYIFnpQMAADOUx5dMxMdHa2NGzcqMTHRrf3bb7/VhRdeWOrtdO7cWZ07dz5rH6fTWexFxgAAAB6dmendu7ceeughLVu2TKdPn9bp06e1dOlSDR48WL179/ZqgcuXL1d0dLSSk5PVr18/HThw4Kz9c3JylJ2d7fYAAADnL4/OzIwcOVK7d+/WNddco4oV/9xEfn6+7r777jJdM1OSzp07q2fPnkpISNDOnTv19NNP6+qrr9a6devkdDqLXCc9PV3PPvus12oAAACBzWGMMZ6u/OOPP+rbb79VWFiYLrvsMiUkJHheiMOhDz74QN27dy+2T1ZWlhISEjRr1iz16NGjyD45OTnKyclxLWdnZys+Pl5HjhxRZGSkx/UBCEyJw+f7uwTAa3aNvt7fJQSM7OxsRUVFler47dGZmQLJyclKTk4+l02USVxcnBISEs76PTdOp7PYszYAAOD841GYOX36tKZNm6YlS5bowIEDys/Pd3t+6dKlXinuTIcOHdLevXsVFxfnk+0DAAD7eBRmBg8erGnTpun6669XgwYN5HA4PNr5sWPH9NNPP7mWd+7cqQ0bNqhq1aqqWrWq0tLSdPPNNysuLk67du3SE088oWrVqummm27yaH8AAOD841GYmTVrlt5991116dLlnHa+du1atW/f3rU8dOhQSVJqaqomT56sTZs2acaMGfr9998VFxen9u3ba/bs2YqIiDin/QIAgPOHR2EmJCREtWvXPuedt2vXTme7/njRokXnvA8AAHB+8+h7Zh555BH9+9//PmsQAQAAKA8enZn5/PPPtWzZMn366aeqX7++goOD3Z6fO3euV4oDAAAoiUdh5oILLuAiXAAAEBA8CjMZGRnergMAAMAjHl0zI0l5eXn67LPP9Nprr+no0aOSpH379unYsWNeKw4AAKAkHp2Z2b17t6677jrt2bNHOTk56tChgyIiIvTSSy/p5MmTevXVV71dJwAAQJE8OjMzePBgNW3aVIcPH1ZYWJir/aabbtKSJUu8VhwAAEBJPP400+rVqxUSEuLWnpCQoF9++cUrhQEAAJSGR2dm8vPzdfr06ULtP//8M9/OCwAAypVHYaZDhw4aP368a9nhcOjYsWMaMWLEOd/iAAAAoCw8epvp5ZdfVvv27ZWSkqKTJ0/q9ttv17Zt21StWjXNnDnT2zUCAAAUy6MwU6NGDW3YsEEzZ87UN998o/z8fN17772644473C4IBgAA8DWPwowkhYWF6Z577tE999zjzXoAAADKxKMwM2PGjLM+f/fdd3tUDAAAQFl5FGYGDx7stpybm6sTJ04oJCRE4eHhhBkAAFBuPPo00+HDh90ex44d09atW9W6dWsuAAYAAOXK43sznalOnToaPXp0obM2AAAAvuS1MCNJQUFB2rdvnzc3CQAAcFYeXTMzb948t2VjjLKysjRhwgS1atXKK4UBAACUhkdhpnv37m7LDodD1atX19VXX62xY8d6oy4AAIBS8SjM5Ofne7sOAAEgcfh8f5cAAGXm1WtmAAAAyptHZ2aGDh1a6r7jxo3zZBcAAACl4lGYWb9+vb755hvl5eWpbt26kqQff/xRQUFBaty4saufw+HwTpUAAADF8CjMdO3aVREREZo+fbqqVKki6c8v0uvbt6+uuuoqPfLII14tEgAAoDgeXTMzduxYpaenu4KMJFWpUkUjR47k00wAAKBceRRmsrOz9b///a9Q+4EDB3T06NFzLgoAAKC0PAozN910k/r27as5c+bo559/1s8//6w5c+bo3nvvVY8ePbxdIwAAQLE8umbm1Vdf1bBhw3TnnXcqNzf3zw1VrKh7771XY8aM8WqBAAAAZ+NRmAkPD9ekSZM0ZswYbd++XcYY1a5dW5UqVfJ2fQAAAGd1Tl+al5WVpaysLCUnJ6tSpUoyxnirLgAAgFLxKMwcOnRI11xzjZKTk9WlSxdlZWVJku677z4+lg0AAMqVR2Hm4YcfVnBwsPbs2aPw8HBXe69evbRw4UKvFQcAAFASj66ZyczM1KJFi1SzZk239jp16mj37t1eKQwAAKA0PDozc/z4cbczMgUOHjwop9N5zkUBAACUlkdhpk2bNpoxY4Zr2eFwKD8/X2PGjFH79u29VhwAAEBJPHqbacyYMWrXrp3Wrl2rU6dO6bHHHtP333+v3377TatXr/Z2jQAAAMXy6MxMSkqKNm7cqCuvvFIdOnTQ8ePH1aNHD61fv161atXydo0AAADFKvOZmdzcXHXs2FGvvfaann32WV/UBAAAUGplPjMTHBys7777Tg6Hwxf1AAAAlIlHbzPdfffdmjp1qrdrAQAAKDOPLgA+deqU3njjDS1evFhNmzYtdE+mcePGeaU4AACAkpQpzOzYsUOJiYn67rvv1LhxY0nSjz/+6NaHt58AAEB5KlOYqVOnjrKysrRs2TJJf96+4P/+7/8UExPjk+IAAABKUqZrZs68K/ann36q48ePe7UgAACAsvDoAuACZ4YbAACA8lamMONwOApdE8M1MgAAwJ/KdM2MMUZ9+vRx3Uzy5MmT6t+/f6FPM82dO9d7FQIAAJxFmcJMamqq2/Kdd97p1WIAAADKqkxhJiMjw1d1AAAAeOScLgAGAADwN8IMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDV/BpmVq5cqa5du6pGjRpyOBz68MMP3Z43xigtLU01atRQWFiY2rVrp++//94/xQIAgIDk1zBz/PhxNWrUSBMmTCjy+Zdeeknjxo3ThAkT9PXXXys2NlYdOnTQ0aNHy7lSAAAQqMr0DcDe1rlzZ3Xu3LnI54wxGj9+vJ588kn16NFDkjR9+nTFxMTonXfe0f3331/kejk5OcrJyXEtZ2dne79wAAAQMAL2mpmdO3dq//796tixo6vN6XSqbdu2WrNmTbHrpaenKyoqyvWIj48vj3IBAICfBGyY2b9/vyQpJibGrT0mJsb1XFEef/xxHTlyxPXYu3evT+sEAAD+5de3mUrD4XC4LRtjCrX9ldPplNPp9HVZAAAgQATsmZnY2FhJKnQW5sCBA4XO1gAAgL+vgA0zSUlJio2N1eLFi11tp06d0ooVK9SyZUs/VgYAAAKJX99mOnbsmH766SfX8s6dO7VhwwZVrVpVF198sYYMGaJRo0apTp06qlOnjkaNGqXw8HDdfvvtfqwaAAAEEr+GmbVr16p9+/au5aFDh0qSUlNTNW3aND322GP6448/NGDAAB0+fFjNmjVTZmamIiIi/FUyAAAIMA5jjPF3Eb6UnZ2tqKgoHTlyRJGRkf4uBwhoicPn+7sE4G9t1+jr/V1CwCjL8Ttgr5kBAAAoDcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqAR1m0tLS5HA43B6xsbH+LgsAAASQiv4uoCT169fXZ5995loOCgryYzUAACDQBHyYqVixImdjAABAsQL6bSZJ2rZtm2rUqKGkpCT17t1bO3bsOGv/nJwcZWdnuz0AAMD5K6DDTLNmzTRjxgwtWrRIU6ZM0f79+9WyZUsdOnSo2HXS09MVFRXlesTHx5djxQAAoLw5jDHG30WU1vHjx1WrVi099thjGjp0aJF9cnJylJOT41rOzs5WfHy8jhw5osjIyPIqFbBS4vD5/i4B+FvbNfp6f5cQMLKzsxUVFVWq43fAXzPzV5UqVdJll12mbdu2FdvH6XTK6XSWY1UAAMCfAvptpjPl5ORoy5YtiouL83cpAAAgQAR0mBk2bJhWrFihnTt36r///a9uueUWZWdnKzU11d+lAQCAABHQbzP9/PPPuu2223Tw4EFVr15dzZs315dffqmEhAR/lwYAAAJEQIeZWbNm+bsEAAAQ4AL6bSYAAICSEGYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKwW0N8zA9iMmzYCKCsbf28Ews0xOTMDAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNW40eQ54qZgAAD4F2dmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNu2b/DXGnbwDA+YQzMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjRtNwgo23hwTAFA+ODMDAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxmRZiZNGmSkpKSFBoaqiZNmmjVqlX+LgkAAASIgA8zs2fP1pAhQ/Tkk09q/fr1uuqqq9S5c2ft2bPH36UBAIAAEPBhZty4cbr33nt13333qV69eho/frzi4+M1efJkf5cGAAACQEDfaPLUqVNat26dhg8f7tbesWNHrVmzpsh1cnJylJOT41o+cuSIJCk7O9snNebnnPDJdgEAsIGvjq8F2zXGlNg3oMPMwYMHdfr0acXExLi1x8TEaP/+/UWuk56ermeffbZQe3x8vE9qBADg7yxqvG+3f/ToUUVFRZ21T0CHmQIOh8Nt2RhTqK3A448/rqFDh7qW8/Pz9dtvv+nCCy8sdh1fyM7OVnx8vPbu3avIyMhy2+/fDfNcPpjn8sE8lw/muXyc6zwbY3T06FHVqFGjxL4BHWaqVaumoKCgQmdhDhw4UOhsTQGn0ymn0+nWdsEFF/iqxBJFRkbyw1IOmOfywTyXD+a5fDDP5eNc5rmkMzIFAvoC4JCQEDVp0kSLFy92a1+8eLFatmzpp6oAAEAgCegzM5I0dOhQ3XXXXWratKlatGih119/XXv27FH//v39XRoAAAgAAR9mevXqpUOHDum5555TVlaWGjRooAULFighIcHfpZ2V0+nUiBEjCr3lBe9inssH81w+mOfywTyXj/KcZ4cpzWeeAAAAAlRAXzMDAABQEsIMAACwGmEGAABYjTADAACsRpgpg0mTJikpKUmhoaFq0qSJVq1addb+EydOVL169RQWFqa6detqxowZhfq8//77SklJkdPpVEpKij744ANflW8Nb8/zlClTdNVVV6lKlSqqUqWKrr32Wn311Ve+HIIVfPF6LjBr1iw5HA51797dy1XbxRdz/Pvvv2vgwIGKi4tTaGio6tWrpwULFvhqCFbwxTyPHz9edevWVVhYmOLj4/Xwww/r5MmTvhpCwFu5cqW6du2qGjVqyOFw6MMPPyxxnRUrVqhJkyYKDQ3VJZdcoldffbVQH68dAw1KZdasWSY4ONhMmTLFbN682QwePNhUqlTJ7N69u8j+kyZNMhEREWbWrFlm+/btZubMmaZy5cpm3rx5rj5r1qwxQUFBZtSoUWbLli1m1KhRpmLFiubLL78sr2EFHF/M8+23324mTpxo1q9fb7Zs2WL69u1roqKizM8//1xewwo4vpjnArt27TIXXXSRueqqq0y3bt18PJLA5Ys5zsnJMU2bNjVdunQxn3/+udm1a5dZtWqV2bBhQ3kNK+D4Yp7ffvtt43Q6zX/+8x+zc+dOs2jRIhMXF2eGDBlSXsMKOAsWLDBPPvmkef/9940k88EHH5y1/44dO0x4eLgZPHiw2bx5s5kyZYoJDg42c+bMcfXx5jGQMFNKV155penfv79b26WXXmqGDx9eZP8WLVqYYcOGubUNHjzYtGrVyrV86623muuuu86tT6dOnUzv3r29VLV9fDHPZ8rLyzMRERFm+vTp516wpXw1z3l5eaZVq1bmjTfeMKmpqX/rMOOLOZ48ebK55JJLzKlTp7xfsKV8Mc8DBw40V199tVufoUOHmtatW3uparuVJsw89thj5tJLL3Vru//++03z5s1dy948BvI2UymcOnVK69atU8eOHd3aO3bsqDVr1hS5Tk5OjkJDQ93awsLC9NVXXyk3N1eS9MUXXxTaZqdOnYrd5vnOV/N8phMnTig3N1dVq1b1TuGW8eU8P/fcc6pevbruvfde7xduEV/N8bx589SiRQsNHDhQMTExatCggUaNGqXTp0/7ZiABzlfz3Lp1a61bt871dvSOHTu0YMECXX/99T4YxfmpuOPb2rVrfXIMJMyUwsGDB3X69OlCN7eMiYkpdBPMAp06ddIbb7yhdevWyRijtWvX6s0331Rubq4OHjwoSdq/f3+Ztnm+89U8n2n48OG66KKLdO2113p9DDbw1TyvXr1aU6dO1ZQpU3w+hkDnqznesWOH5syZo9OnT2vBggV66qmnNHbsWL3wwgs+H1Mg8tU89+7dW88//7xat26t4OBg1apVS+3bt9fw4cN9PqbzRXHHt7y8PJ8cAwkzZeBwONyWjTGF2go8/fTT6ty5s5o3b67g4GB169ZNffr0kSQFBQV5tM2/C1/Mc4GXXnpJM2fO1Ny5cwv9dfZ34815Pnr0qO68805NmTJF1apV83Xp1vD2azk/P1/R0dF6/fXX1aRJE/Xu3VtPPvmkJk+e7NNxBDpvz/Py5cv1wgsvaNKkSfrmm280d+5cffLJJ3r++ed9Oo7zTVH/L2e2e+sYSJgphWrVqikoKKhQWjxw4EChVFkgLCxMb775pk6cOKFdu3Zpz549SkxMVEREhOuXfWxsbJm2eb7z1TwX+Ne//qVRo0YpMzNTDRs29Nk4Ap0v5nn79u3atWuXunbtqooVK6pixYqaMWOG5s2bp4oVK2r79u3lMbSA4avXclxcnJKTk92Cer169bR//36dOnXKdwMKUL6a56efflp33XWX7rvvPl122WW66aabNGrUKKWnpys/P9/n4zofFHd8q1ixoi688MKz9vHkGEiYKYWQkBA1adJEixcvdmtfvHixWrZsedZ1g4ODVbNmTQUFBWnWrFm64YYbVKHCn9PeokWLQtvMzMwscZvnK1/NsySNGTNGzz//vBYuXKimTZv6pH5b+GKeL730Um3atEkbNmxwPW688Ua1b99eGzZsUHx8vC+HFHB89Vpu1aqVfvrpJ7cD6o8//qi4uDiFhIR4fyABzlfzfOLECbffH9KfZ23Mnx+a8e4gzlPFHd+aNm2q4ODgs/bx6BhY5kuG/6YKPv43depUs3nzZjNkyBBTqVIls2vXLmOMMcOHDzd33XWXq//WrVvNW2+9ZX788Ufz3//+1/Tq1ctUrVrV7Ny509Vn9erVJigoyIwePdps2bLFjB49mo9m+2CeX3zxRRMSEmLmzJljsrKyXI+jR4+W9/AChi/m+Ux/908z+WKO9+zZYypXrmwefPBBs3XrVvPJJ5+Y6OhoM3LkyPIeXsDwxTyPGDHCREREmJkzZ5odO3aYzMxMU6tWLXPrrbeW9/ACxtGjR8369evN+vXrjSQzbtw4s379etdH4M+c54KPZj/88MNm8+bNZurUqYU+mu3NYyBhpgwmTpxoEhISTEhIiGncuLFZsWKF67nU1FTTtm1b1/LmzZvNP/7xDxMWFmYiIyNNt27dzA8//FBom++9956pW7euCQ4ONpdeeql5//33y2MoAc3b85yQkGAkFXqMGDGinEYUmHzxev6rv3uYMcY3c7xmzRrTrFkz43Q6zSWXXGJeeOEFk5eXVx7DCVjenufc3FyTlpZmatWqZUJDQ018fLwZMGCAOXz4cDmNKPAsW7asyN+jqampxpjC82yMMcuXLzeXX365CQkJMYmJiWby5MmFtuutY6DDGM6ZAQAAe3HNDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAoLD4dCHH37o7zLwF9OmTdMFF1xQ7PO7du2Sw+HQhg0byrTd119/XfHx8apQoYLGjx9/TjWWp8TExICo98SJE7r55psVGRkph8Oh33//3S91tGvXTkOGDPHqNvk9AE8RZuBzBw4c0P3336+LL75YTqdTsbGx6tSpk7744gt/l2a95cuX++2AFh8fr6ysLDVo0KDU62RnZ+vBBx/UP//5T/3yyy/6f//v//mwQs8UF+K+/vrrgKh3+vTpWrVqldasWaOsrCxFRUX5u6SA5M+fDZS/iv4uAOe/m2++Wbm5uZo+fbouueQS/e9//9OSJUv022+/+bs0nIOgoCDFxsaWaZ09e/YoNzdX119/veLi4jzed25uruvOu+WlevXq5bq/4mzfvl316tUrU4iE54wxOn36tCpW5HAZ0Dy6oxNQSocPHzaSzPLly8/aT5KZMmWK6d69uwkLCzO1a9c2H330kev5vLw8c88995jExEQTGhpqkpOTzfjx4922UXBjwzFjxpjY2FhTtWpVM2DAAHPq1ClXn4SEBPPCCy+Yvn37msqVK5v4+Hjz2muvuW1n48aNpn379iY0NNRUrVrV9OvXz+0O26XZz5lGjBhhGjVqZKZOnWri4+NNpUqVTP/+/U1eXp558cUXTUxMjKlevbrb3Y937txpJJn169cXms9ly5a5nlcRN31LSEgwL7/8slsNjRo1cru55tixY02DBg1MeHi4qVmzpnnggQfcxpmRkWGioqKKHdOZ9RXciO6zzz4zTZo0MWFhYaZFixaum/hlZGQUqrfgTsWTJk0yl1xyiQkODjbJyclmxowZbvuSZCZPnmxuvPFGEx4ebp555hmP5rSkcRd1M72COTtzTnfv3m1uvPFGU6lSJRMREWF69uxp9u/fX+j/fMaMGSYhIcFERkaaXr16mezs7GLn1Bhj5syZY1JSUkxISIhJSEgw//rXv1zPtW3b1q22M2/s91fz5s0zjRs3Nk6n0yQlJZm0tDSTm5tbqnko8Pnnn5s2bdqYsLAwc8EFF5iOHTua3377zVXLoEGDzKOPPmqqVKliYmJiSnXz1qlTp7rGFxsbawYOHOh6TpL54IMPjDH////FX2/uWHDH5oLXza5du8wNN9xgLrjgAhMeHm5SUlLM/Pnzz/qzkZ+fb1588UWTlJRkQkNDTcOGDc17773n2kfBfhcuXGiaNGligoODzdKlS0scF/yLMAOfys3NNZUrVzZDhgwxJ0+eLLafJFOzZk3zzjvvmG3btpmHHnrIVK5c2Rw6dMgYY8ypU6fMM888Y7766iuzY8cO8/bbb5vw8HAze/Zs1zZSU1NNZGSk6d+/v9myZYv5+OOPTXh4uHn99dddfRISEkzVqlXNxIkTzbZt20x6erqpUKGC2bJlizHGmOPHj5saNWqYHj16mE2bNpklS5aYpKQk1y/C0u7nTCNGjDCVK1c2t9xyi/n+++/NvHnzTEhIiOnUqZMZNGiQ+eGHH8ybb75pJJkvvvjCGFNymMnLyzPvv/++kWS2bt1qsrKyzO+//+4aZ0lh5uWXXzZLly41O3bsMEuWLDF169Y1DzzwgOt5T8NMs2bNzPLly833339vrrrqKtOyZUtjjDEnTpwwn332mZFkvvrqK5OVlWXy8vLM3LlzTXBwsJk4caLZunWrGTt2rAkKCnI7gEgy0dHRZurUqWb79u1m165dHs1pSePOyckx48ePN5GRkSYrK8tkZWW5DvB/ndP8/Hxz+eWXm9atW5u1a9eaL7/80jRu3NgtXBTUV/BaWrlypYmNjTVPPPFEsXO6du1aU6FCBfPcc8+ZrVu3moyMDBMWFmYyMjKMMcYcOnTI9OvXz7Ro0cJkZWW5fj7OtHDhQhMZGWmmTZtmtm/fbjIzM01iYqJJS0sr9f//+vXrjdPpNA888IDZsGGD+e6778wrr7xifv31V2PMn2EmMjLSpKWlmR9//NFMnz7dOBwOk5mZWez4Jk2aZEJDQ8348ePN1q1bzVdffeX2Oi1rmLn++utNhw4dzMaNG8327dvNxx9/bFasWHHWn40nnnjCXHrppWbhwoVm+/btJiMjwzidTtcfXAX7bdiwocnMzDQ//fSTOXjwYLFjQmAgzMDn5syZY6pUqWJCQ0NNy5YtzeOPP26+/fZbtz6SzFNPPeVaPnbsmHE4HObTTz8tdrsDBgwwN998s2s5NTXVJCQkmLy8PFdbz549Ta9evVzLCQkJ5s4773Qt5+fnm+joaNet6V9//XVTpUoVc+zYMVef+fPnmwoVKrj+6i7Nfs40YsQIEx4e7vZXeadOnUxiYqI5ffq0q61u3bomPT3dGFNymDGm6F/4BeMsKcyc6d133zUXXniha/lczswUmD9/vpFk/vjjD2NM4YORMca0bNnS9OvXz23bPXv2NF26dHEtSzJDhgxx6+PJnJ7LuP86p5mZmSYoKMjs2bPH9fz333/vCmrF1ffoo4+aZs2aFVvL7bffbjp06ODW9uijj5qUlBTX8uDBg896RsYYY6666iozatQot7a33nrLxMXFFbvOmfNw2223mVatWhXbv23btqZ169ZubVdccYX55z//Wew6NWrUME8++WSxz5c1zFx22WVuAe2vilr/2LFjJjQ01KxZs8at77333mtuu+02t/U+/PDDYutE4OECYPjczTffrH379mnevHnq1KmTli9frsaNG2vatGlu/Ro2bOj6d6VKlRQREaEDBw642l599VU1bdpU1atXV+XKlTVlyhTt2bPHbRv169dXUFCQazkuLs5tG2fux+FwKDY21tVny5YtatSokSpVquTq06pVK+Xn52vr1q1l2s+ZEhMTFRER4VqOiYlRSkqKKlSo4NZW0na8ZdmyZerQoYMuuugiRURE6O6779ahQ4d0/Pjxc9ruX+e34LqYs41py5YtatWqlVtbq1attGXLFre2pk2bFlrXkzn1xri3bNmi+Ph4xcfHu9pSUlJ0wQUXuNV9Zn0lvU6Km4tt27bp9OnTpa5v3bp1eu6551S5cmXXo1+/fsrKytKJEycklTwPGzZs0DXXXHPW/fz1/7qk8R04cED79u0rcZtl8dBDD2nkyJFq1aqVRowYoY0bN561/+bNm3Xy5El16NDBbW5mzJih7du3u/Ut6vWGwEWYQbkIDQ1Vhw4d9Mwzz2jNmjXq06ePRowY4dbnzAs6HQ6H8vPzJUnvvvuuHn74Yd1zzz3KzMzUhg0b1LdvX506darU2yhNH2OMHA5HkWP4a3tp9nOmotY523YKDsjGGNfzubm5Z91HgQoVKritd+a6u3fvVpcuXdSgQQO9//77WrdunSZOnFimfRTnr2MqmLOS5ubMOS/q/+GvAbOofRVs52xz6q1xF/c6ObO9rK+TorZ75v9jaeTn5+vZZ5/Vhg0bXI9NmzZp27ZtCg0NLdU8hIWFlbifsoyvNNv7q9K8/u+77z7t2LFDd911lzZt2qSmTZvqlVdeKXabBbXNnz/fbW42b96sOXPmuPUt6vWGwEWYgV+kpKSU6S/hVatWqWXLlhowYIAuv/xy1a5du9BfUt6qa8OGDW61rV69WhUqVFBycrLX93c2BZ+eycrKcrWd+Z0uISEhklTor/bq1au7rZedna2dO3e6lteuXau8vDyNHTtWzZs3V3Jysvbt2+ftIZRKvXr19Pnnn7u1rVmzRvXq1fP6vkoz7pCQkBLPgqSkpGjPnj3au3evq23z5s06cuTIOdWdkpJS5FwkJye7nQksSePGjbV161bVrl270KNChQqlmoeGDRtqyZIlHo/lTBEREUpMTCz1Nkvz+pf+/IqA/v37a+7cuXrkkUc0ZcoUSUX/bKSkpMjpdGrPnj2F5uWvZ9lgHz5rBp86dOiQevbsqXvuuUcNGzZURESE1q5dq5deekndunUr9XZq166tGTNmaNGiRUpKStJbb72lr7/+WklJSV6t94477tCIESOUmpqqtLQ0/frrrxo0aJDuuusuxcTEeHVfJQkLC1Pz5s01evRoJSYm6uDBg3rqqafc+iQkJMjhcOiTTz5Rly5dFBYWpsqVK+vqq6/WtGnT1LVrV1WpUkVPP/2028GwVq1aysvL0yuvvKKuXbtq9erVevXVV8t1fAUeffRR3XrrrWrcuLGuueYaffzxx5o7d64+++wzr++rNONOTEzUsWPHtGTJEjVq1Ejh4eEKDw9363PttdeqYcOGuuOOOzR+/Hjl5eVpwIABatu27Tm9PfHII4/oiiuu0PPPP69evXrpiy++0IQJEzRp0qQybeeZZ57RDTfcoPj4ePXs2VMVKlTQxo0btWnTJo0cObJU8/D444/rsssu04ABA9S/f3+FhIRo2bJl6tmzp6pVq+bR+NLS0tS/f39FR0erc+fOOnr0qFavXq1BgwYV6lsQMNLS0jRy5Eht27ZNY8eOdeszZMgQde7cWcnJyTp8+LCWLl3qCpNF/WxERERo2LBhevjhh5Wfn6/WrVsrOztba9asUeXKlZWamurRuOB/nJmBT1WuXFnNmjXTyy+/rDZt2qhBgwZ6+umn1a9fP02YMKHU2+nfv7969OihXr16qVmzZjp06JAGDBjg9XrDw8O1aNEi/fbbb7riiit0yy236JprrilTrd705ptvKjc3V02bNtXgwYM1cuRIt+cvuugiPfvssxo+fLhiYmL04IMPSvrzQNSmTRvdcMMN6tKli7p3765atWq51vvHP/6hcePG6cUXX1SDBg30n//8R+np6eU6tgLdu3fXv//9b40ZM0b169fXa6+9poyMDLVr187r+yrNuFu2bKn+/furV69eql69ul566aVC2yn4ptoqVaqoTZs2uvbaa3XJJZdo9uzZ51Rf48aN9e6772rWrFlq0KCBnnnmGT333HPq06dPmbbTqVMnffLJJ1q8eLGuuOIKNW/eXOPGjVNCQoKk0s1DcnKyMjMz9e233+rKK69UixYt9NFHH53T962kpqZq/PjxmjRpkurXr68bbrhB27ZtK7JvcHCwZs6cqR9++EGNGjXSiy++WOj1f/r0aQ0cOFD16tXTddddp7p167qCX3E/G88//7yeeeYZpaenq169eurUqZM+/vhjr/9hhPLlMJ68IQsAABAgODMDAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKv9f/7pQ2hBRorHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# this is the important diagnostic for the method:\n", + "# \"good\" cutoff gives a histogram with smooth curvature \n", + "clust.cluster_dist()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "37a5bb2d-b9dc-4f95-bdc6-baa29d073cc1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Start time: 04:21:03\n", + "\u001b[1;42m Regression \u001b[0m\n", + "10 => 04:21:03 [0.7204291458072626, ['H1u', 'X5Av']]\n", + "20 => 04:21:04 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "30 => 04:21:04 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "40 => 04:21:04 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "50 => 04:21:05 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "60 => 04:21:05 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "70 => 04:21:05 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "80 => 04:21:06 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "90 => 04:21:06 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "100 => 04:21:07 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "110 => 04:21:07 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "120 => 04:21:07 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "130 => 04:21:08 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "140 => 04:21:08 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "150 => 04:21:08 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "160 => 04:21:09 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "170 => 04:21:09 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "180 => 04:21:09 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "190 => 04:21:10 [0.7932755997633876, ['RDF070v', 'X5Av']]\n", + "Best score: 0.7932755997633876\n", + "Model's cluster info [309, 39]\n", + "Finish Time : 04:21:10\n" + ] + } + ], + "source": [ + "# let's try single-threaded feature selection \n", + "# giving training set, clusterinfo, and number of components to select for \n", + "# model is either regression or classification\n", + "# learning is number of total epochs to train\n", + "# bank is number a memory of best models filtered \n", + "# interval is how often you want updates on progress\n", + "# the system returns a list of features it found were best\n", + "\n", + "# this is a small data set, so smaller bank and intervals are used to show convergence\n", + "features = fss.mlr_selection(xtrain, ytrain, clusterinfo, 2, model=\"regression\", learning=200, bank=50, interval=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ec1718ed-3022-4554-8627-dbba0b4af243", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model features: ['RDF070v', 'X5Av']\n", + "Coefficients: [-1.10169978 -2.12082577]\n", + "Intercept: -1.6192627152834516\n", + "RMSE: 0.250852\n", + "R^2: 0.793276\n" + ] + } + ], + "source": [ + "# we can export this model for now \n", + "model1 = em.ModelExport(xtrain, ytrain, xtest, ytest, features)\n", + "# show summary data \n", + "model1.mlr()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "8a1ee23e-c76b-4057-bdf7-9fa88ca57c06", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvfUlEQVR4nO3dd1hT1/8H8HfYASGIERmiotZRJ6hV1FZw4qhaByAuFGcdtcVq1bao37bWUfcoDsSBiq1araNfrdtaFRl1VaoWJyKgQBghrPv7wy/5GZEQEEgC79fz5HnIzbn3fg7hkk/OOfcckSAIAoiIiIjojQy0HQARERGRLmOyRERERKQGkyUiIiIiNZgsEREREanBZImIiIhIDSZLRERERGowWSIiIiJSw0jbAVQG+fn5iIuLg6WlJUQikbbDISIiIg0IgoC0tDQ4ODjAwKDo9iMmS2UgLi4OTk5O2g6DiIiISuHRo0eoXbt2ka8zWSoDlpaWAF7+sq2srLQcDREREWlCJpPByclJ+TleFCZLZaCg683KyorJEhERkZ4pbggNB3gTERERqcFkiYiIiEgNJktEREREanDMUgXKy8tDTk6OtsOgCmJsbAxDQ0Nth0FERG+JyVIFEAQB8fHxSElJ0XYoVMGsra1hZ2fH+beIiPQYk6UKUJAo2drawtzcnB+cVYAgCMjMzERCQgIAwN7eXssRERFRaTFZKmd5eXnKRKlGjRraDocqkFgsBgAkJCTA1taWXXJERHqKA7zLWcEYJXNzcy1HQtpQ8L5zrBoRkf5islRB2PVWNfF9JyLSf0yWiIiIiNRgskRERESkBpMl0ksikQi//PKLtsMgIqIqgMmSnhAEAYmZCjySyZGYqYAgCBVy3osXL8LQ0BCenp4l3rdevXpYuXJl2QelhiAI6N69O3r16lXotfXr10MikeDhw4cVGhMREZVeXl4ejhw5otUYmCzpgSdpcvz2bwLOP3qB8KcpOP/oBX77NwFP0uTlfu7g4GBMmzYNFy5c0IskQyQSYevWrbh8+TKCgoKU22NjYzF79mysWrUKderU0WKERESkqfj4ePTq1Qv9+vXDnj17tBYHkyUd9yRNjstxKZDn5qtsl+fm43JcSrkmTBkZGdi7dy8mT56Mfv36ISQkpFCZQ4cOoW3btjAzM4NUKsWgQYMAAO7u7njw4AE+/fRTiEQi5V1h8+fPR+vWrVWOsXLlStSrV0/5PDw8HD169IBUKoVEIkGXLl0QGRmpcdxOTk5YtWoVZs6cidjYWAiCAH9/f3Tr1g1+fn4l/TUQEZEWnDx5Eq1bt8bJkydhbm6O/Pz84ncqJ0yWdJggCLiWIFNb5lqCrNy65MLCwtC4cWM0btwYI0aMwNatW1XOdeTIEQwaNAh9+/ZFVFQUTp48ibZt2wIA9u/fj9q1a2PhwoV4+vQpnj59qvF509LSMHr0aJw/fx6XLl3CO++8gz59+iAtLU3jY4wePRrdunXDmDFjsHbtWty4cQMbN27UvPJERKQVeXl5CAwMRI8ePfDs2TM0b94c4eHh8PX11VpMnMFbhyXJswu1KL1OnpuPJHk2apqblvn5t2zZghEjRgAAPD09kZ6ejpMnT6J79+4AgG+//RY+Pj5YsGCBcp9WrVoBAGxsbGBoaAhLS0vY2dmV6Lxdu3ZVeR4UFITq1avj7Nmz6Nevn8bH2bhxI5o3b47z58/j559/hq2tbYniICKiihUXFwdfX1+cPXsWADBu3DisWrVK6xM7s2VJh2UVkyiVtFxJxMTE4MqVK/Dx8QEAGBkZwdvbG8HBwcoy0dHR6NatW5mfOyEhAZMmTUKjRo0gkUggkUiQnp5e4jFTtra2mDBhApo2bYqPPvqozOMkIqKy89///hetWrXC2bNnUa1aNYSGhmLTpk1aT5QAtizpNDMjzXJZTcuVxJYtW5CbmwtHR0flNkEQYGxsjOTkZFSvXl259llJGBgYFOo2fH0pED8/PyQmJmLlypWoW7cuTE1N4ebmhuzs7BKfz8jICEZG/DMnItJVubm5+Oqrr/D9998DeNlDsXfvXjRq1EjLkf0/vWlZ+vbbb9GxY0eYm5vD2tpao30KBha//li6dKmyjLu7e6HXC1pTtE0qNoG4mERIbGQAqdikTM+bm5uL7du344cffkB0dLTy8ddff6Fu3boIDQ0FALRs2RInT54s8jgmJibIy8tT2VazZk3Ex8erJEzR0dEqZc6fP4/p06ejT58+aNasGUxNTZGUlFR2FSQiIp3w6NEjuLu7KxOlyZMn49KlSzqVKAF6lCxlZ2dj6NChmDx5ssb7FAwsLngEBwdDJBJh8ODBKuXGjx+vUu7VW861SSQSoaWtldoyLW2tynz9scOHDyM5ORn+/v5o3ry5ymPIkCHYsmULACAwMBC7d+9GYGAg/v77b1y/fh1LlixRHqdevXo4d+4cnjx5okx23N3dkZiYiCVLluDevXtYt24djh07pnL+hg0bYseOHfj7779x+fJlDB8+vFStWEREpLuOHDmC1q1b448//oClpSXCwsKwfv16mJmZaTu0QvQmWVqwYAE+/fRTtGjRQuN97OzsVB4HDx6Eh4cH6tevr1LO3NxcpZxEIlF7XIVCAZlMpvIoL46WYrR3sC7UwiQ2MkB7B2s4WpZ9ErFlyxZ07979jb+HwYMHIzo6GpGRkXB3d8dPP/2EQ4cOoXXr1ujatSsuX76sLLtw4ULcv38fDRo0QM2aNQEATZs2xfr167Fu3Tq0atUKV65cwcyZM1XOERwcjOTkZLi4uGDkyJGYPn06B2cTEVUSOTk5mDlzJvr164cXL16gTZs2iIqKgpeXl7ZDK5JIqKipoMtISEgIZsyYgZSUlBLt9+zZM9SuXRvbtm1Tuf3Q3d0dN2/ehCAIqFWrFnr37o3AwEBYWloWeaz58+er3AFWIDU1FVZWqi1BWVlZiI2NhbOz81tly4IgIEmejazcfJj9r+uNK9rrvrJ6/4mIKoP79+/Dx8dH+cV6+vTpWLJkCUxNy/6Obk3IZDJIJJI3fn6/qsqMfN22bRssLS2VkyYWGD58OJydnWFnZ4cbN25gzpw5+Ouvv3DixIkijzVnzhx89tlnyucymQxOTk7lFjvwskuuPKYHICIiqgi//PILxowZg5SUFFhbWyM4OFhv7lTWarJUVAvNq8LDw5UTHb6N4OBgDB8+vNC3+/Hjxyt/bt68Od555x20bdsWkZGRcHV1feOxTE1NtZYFExER6ROFQoFZs2Zh9erVAID33nsPYWFhKis36DqtJktTp04t9s6zsvhlnj9/HjExMQgLCyu2rKurK4yNjXHnzp0ikyUiIiIq3r179+Dt7Y2IiAgAQEBAAL777juYmJTtXdzlTavJklQqhVQqLffzbNmyBW3atFHOLq3OzZs3kZOTA3t7+3KPi4iIqLL66aefMG7cOMhkMtjY2CAkJAQffvihtsMqFb25G+7hw4eIjo7Gw4cPkZeXp5z7Jz09XVmmSZMmOHDggMp+MplM+Ya97t69e1i4cCGuXr2K+/fv4+jRoxg6dChcXFzQqVOncq8TERFRZZOVlYWPP/4YXl5ekMlk6NixI6Kjo/U2UQL0aID3119/jW3btimfu7i4AABOnz4Nd3d3AC+X6EhNTVXZb8+ePRAEAcOGDSt0TBMTE5w8eRKrVq1Ceno6nJyc0LdvXwQGBsLQ0LD8KkNERFQJ3blzB15eXsrJhr/44gssXLgQxsbG2g3sLend1AG6SN2th7x1vGrj+09EVcXu3bsxYcIEpKenQyqVYseOHfD09NR2WGppOnWA3nTDERERke6Ry+UYP348fH19kZ6ejg8++ADR0dE6nyiVBJMl0rr58+ejdevWyud+fn4YOHBghcdx//59iESiQmvVERHRm/3999947733sHnzZohEInz11Vc4efKkyiLslQGTJXojPz8/5cLCxsbGqF+/PmbOnImMjIxyP/eqVasQEhKiUdmKSnAUCgWaNWuGCRMmFHpt1qxZqFu3brkue0NEpGu2bduGtm3b4saNG6hVqxaOHz+OhQsXwshIb4ZDa6zy1YjKjKenJ7Zu3YqcnBycP38e48aNQ0ZGBjZs2FCobE5OTpkN4CtubT5tMDU1xfbt2+Hm5oZBgwYpm5cvXbqEFStW4Pjx42r7u4mIKouMjAxMmTJFedNV165dERoaCjs7Oy1HVn7YskRFMjU1hZ2dHZycnODr64vhw4fjl19+AfD/XWfBwcGoX78+TE1NIQgCUlNTMWHCBNja2sLKygpdu3bFX3/9pXLc77//HrVq1YKlpSX8/f2RlZWl8vrr3XD5+flYvHgxGjZsCFNTU9SpUwfffvstAMDZ2RnAy7sjRSKR8s5IANi6dSuaNm0KMzMzNGnSBOvXr1c5z5UrV+Di4gIzMzO0bdsWUVFRan8fbdq0wbx58zBu3DikpKQgKysLY8aMwZQpU+Dh4VGSXy0RkV66ceMG2rVrh23btsHAwAALFy7E8ePHK3WiBLBlqcIJgoDMzEytnNvc3PytFt8Vi8XIyclRPr979y727t2Lffv2Kada6Nu3L2xsbHD06FFIJBIEBQWhW7du+Oeff2BjY4O9e/ciMDAQ69atw/vvv48dO3Zg9erVqF+/fpHnnTNnDjZt2oQVK1agc+fOePr0KW7fvg3gZcLz3nvv4ffff0ezZs2Us8Ju2rQJgYGBWLt2LVxcXBAVFYXx48fDwsICo0ePRkZGBvr164euXbti586diI2NxSeffFLs72DevHk4fPgwpk+fDltbWwDAokWLSv07JSLSB4IgIDg4GFOnTkVWVhbs7e2xa9culS+olZpAby01NVUAIKSmphZ6TS6XC7du3RLkcrkgCIKQnp4uANDKIz09XeM6jR49WhgwYIDy+eXLl4UaNWoIXl5egiAIQmBgoGBsbCwkJCQoy5w8eVKwsrISsrKyVI7VoEEDISgoSBAEQXBzcxMmTZqk8nr79u2FVq1avfHcMplMMDU1FTZt2vTGOGNjYwUAQlRUlMp2JycnYdeuXSrb/vOf/whubm6CIAhCUFCQYGNjI2RkZChf37BhwxuP9bpbt24JZmZmgomJiXDlyhW1ZV9//4mI9I1MJhOGDx+u/Czp1auX8OzZM22HVSbUfX6/ii1LVKTDhw+jWrVqyM3NRU5ODgYMGIA1a9YoX69bty5q1qypfB4REYH09HTUqFFD5ThyuRz37t0D8PLOiUmTJqm87ubmhtOnT78xhr///hsKhQLdunXTOO7ExEQ8evQI/v7+Kgsl5+bmKsdD/f3332jVqhXMzc1V4tBE06ZNMXjwYKSkpKBdu3Yax0VEpG/++usveHl54Z9//oGhoSG++eYbzJo1CwYGVWsUD5OlCmZubq6yREtFn7skPDw8sGHDBhgbG8PBwaHQAG4LCwuV5/n5+bC3t8eZM2cKHcva2rqk4QJ42fVXUvn5+QBedsW1b99e5bWC7kLhLediNTIyqpR3fBARAS//RwYFBWHGjBlQKBSoXbs2du/ejc6dO2s7NK3gf/sKJhKJCiUZusrCwgINGzbUuLyrqyvi4+NhZGSEevXqvbFM06ZNcenSJYwaNUq57dKlS0Ue85133oFYLMbJkyffuL5fwRilvLw85bZatWrB0dER//77L4YPH/7G47777rvYsWMH5HK5MiFTFwcRUVVRcKPO3r17Abwci7pt27ZCvQZVSdVqR6Ny1b17d7i5uWHgwIH473//i/v37+PixYv48ssvcfXqVQDAJ598guDgYAQHB+Off/5BYGAgbt68WeQxzczMMHv2bMyaNQvbt2/HvXv3cOnSJWzZsgUAYGtrC7FYjN9++w3Pnj1Trg04f/58LFq0CKtWrcI///yD69evY+vWrVi+fDkAwNfXFwYGBvD398etW7dw9OhRLFu2rJx/Q0REui0iIgKurq7Yu3cvjIyMsGzZMhw6dKhKJ0oAkyUqQyKRCEePHsUHH3yAsWPHolGjRvDx8cH9+/dRq1YtAIC3tze+/vprzJ49G23atMGDBw8wefJktcf96quvEBAQgK+//hpNmzaFt7c3EhISALzsDlu9ejWCgoLg4OCAAQMGAADGjRuHzZs3IyQkBC1atECXLl0QEhKinGqgWrVq+PXXX3Hr1i24uLhg3rx5WLx4cTn+doiIdJcgCFizZg06duyIf//9F3Xr1sX58+cREBBQ5cYnvQkX0i0DXEiXisL3n4h0XXJyMvz9/XHgwAEAwMCBAxEcHIzq1atrObLyx4V0iYiISK3Lly/D1dUVBw4cgLGxMVatWoX9+/dXiUSpJJgsERERVTGCIGD58uXo3Lkz7t+/j/r16+PixYuYPn36W01eXFnxbjgiIqIq5Pnz5/Dz88Phw4cBAEOGDMHmzZt1cl1OXcGWJSIioirijz/+gIuLCw4fPgxTU1OsX78ee/fuZaJUDCZLFYTj6Ksmvu9EpAvy8/Px/fffo0uXLnj06BHeeecdXLp0CZMnT2a3mwbYDVfOCma9zszMLNVs1KTfChZNfn32cyKiipKYmIhRo0bht99+AwAMGzYMQUFBsLS01HJk+oPJUjkzNDSEtbW1cl4gc3NzZvFVgCAIyMzMREJCAqytrZXLrBARVaRz585h2LBhiIuLg5mZGdasWQN/f39+DpUQk6UKYGdnBwDKhImqDmtra+X7T0RUUfLy8rBo0SIEBgYiPz8fTZo0wd69e9GiRQtth6aXmCxVAJFIBHt7e9ja2iInJ0fb4VAFMTY2ZosSEVW4Z8+eYfjw4Th58iQAYNSoUVi3bh2qVaum5cj0F5OlCmRoaMgPTyIiKjcnT57E8OHD8ezZM5ibm2P9+vUYPXq0tsPSe7wbjoiISM/l5eUhMDAQPXr0wLNnz9CsWTOEh4czUSojbFkiIiLSY3FxcRg+fDjOnDkD4OVC4qtWrYK5ubl2A6tEmCwRERHpqf/+978YOXIkEhMTUa1aNQQFBcHX11fbYVU67IYjIiLSM7m5uZgzZw48PT2RmJiIVq1aISIigolSOWHLEhERkR559OgRhg0bhj/++AMAMGnSJKxYsQJmZmZajqzyYrJERESkJ44cOYJRo0bhxYsXsLS0xObNm+Hl5aXtsCo9dsMREZHeEQQBiZkKPJLJkZipqPTrMObk5ODzzz9Hv3798OLFC7Rp0wZRUVFMlCqIXiRL9+/fh7+/P5ydnSEWi9GgQQMEBgYiOztb7X6CIGD+/PlwcHCAWCyGu7s7bt68qVJGoVBg2rRpkEqlsLCwQP/+/fH48ePyrA4REb2FJ2ly/PZvAs4/eoHwpyk4/+gFfvs3AU/S5NoOrVw8ePAA77//PpYtWwYAmDZtGv744w80aNBAy5FVHXqRLN2+fRv5+fkICgrCzZs3sWLFCvz444+YO3eu2v2WLFmC5cuXY+3atQgPD4ednR169OiBtLQ0ZZkZM2bgwIED2LNnDy5cuID09HT069cPeXl55V0tIiIqoSdpclyOS4E8N19luzw3H5fjUipdwvTLL7+gdevWuHz5MqytrbF//36sXr0apqam2g6tShEJetp2uXTpUmzYsAH//vvvG18XBAEODg6YMWMGZs+eDeBlK1KtWrWwePFiTJw4EampqahZsyZ27NgBb29vAC/nq3BycsLRo0fRq1evNx5boVBAoVAon8tkMjg5OSE1NRVWVlZlXFMiIgJe/l//7d+EQonSq8RGBvCsb6v3C8UqFArMnj0bq1atAgC89957CAsLQ7169bQbWCUjk8kgkUiK/fzWi5alN0lNTYWNjU2Rr8fGxiI+Ph49e/ZUbjM1NUWXLl1w8eJFAEBERARycnJUyjg4OKB58+bKMm+yaNEiSCQS5cPJyakMakREROokybPVJkrAyxamJLn6IRq67t9//0WnTp2UiVJAQADOnz/PREmL9DJZunfvHtasWYNJkyYVWSY+Ph4AUKtWLZXttWrVUr4WHx8PExMTVK9evcgybzJnzhykpqYqH48ePSptVYiISENZxSRKJS2ni37++We4uLggIiICNjY2OHToEJYtWwYTExNth1alaTVZmj9/PkQikdrH1atXVfaJi4uDp6cnhg4dinHjxhV7jtebYgVBKLZ5trgypqamsLKyUnkQEVH5MjPS7CNL03K6JCsrC1OmTMHQoUMhk8nQsWNHREVF4cMPP9R2aAQtz7M0depU+Pj4qC3zarNjXFwcPDw84Obmho0bN6rdz87ODsDL1iN7e3vl9oSEBGVrk52dHbKzs5GcnKzSupSQkICOHTuWtDpERFSOpGITiI0Mih2zJBXrVyvMnTt34OXlhejoaADAF198gYULF8LY2Fi7gZGSVpMlqVQKqVSqUdknT57Aw8MDbdq0wdatW2FgoP6bg7OzM+zs7HDixAm4uLgAALKzs3H27FksXrwYANCmTRsYGxvjxIkTyrkqnj59ihs3bmDJkiVvUTMiIiprIpEILW2tcDkupcgyLW2t9Gpw9+7duzFhwgSkp6dDKpVix44d8PT01HZY9Bq9aKuMi4uDu7s7nJycsGzZMiQmJiI+Pr7QuKImTZrgwIEDAF5eVDNmzMB3332HAwcO4MaNG/Dz84O5ubly7RyJRAJ/f38EBATg5MmTiIqKwogRI9CiRQt07969wutJRETqOVqK0d7BGuLXutrERgZo72ANR0uxliIrGblcjgkTJsDX1xfp6en44IMPEB0dzURJR+nFcifHjx/H3bt3cffuXdSuXVvltVdnPoiJiUFqaqry+axZsyCXy/Hxxx8jOTkZ7du3x/Hjx2Fpaakss2LFChgZGcHLywtyuRzdunVDSEgIDA0Ny79iRERUYo6WYjhUM0OSPBtZufkw+1/Xm760KN2+fRtDhw7FjRs3IBKJMG/ePAQGBsLISC8+kqskvZ1nSZdoOk8DERFVbdu3b8fkyZORmZmJWrVqYefOnezJ0KJKP88SERGRvsjIyMCYMWMwevRoZGZmomvXroiOjmaipCeYLBEREZWjGzduoF27dggJCYGBgQEWLFiA48ePK+/aJt3HDlIiIqJyIAgCgoODMW3aNMjlctjb22PXrl1wd3fXdmhUQkyWiIiIylhaWhomT56M0NBQAEDPnj2xY8cO2Nraajky/SIIgk4M5GeyRERUiejKh0tV9tdff8HLywv//PMPDA0N8c0332DWrFnFzg9Iqp6kyXEtQaYyCanYyAAtba0qfIoIJktERJWELn24VEWCICAoKAgzZsyAQqFA7dq1sXv3bnTu3FnboemdJ2nyN04+Ks/Nx+W4FLR3QIX+TTPNJSKqBAo+XF5fCqTgw+VJmlxLkVUNMpkMPj4+mDx5MhQKBfr27YuoqCgmSqUgCAKuJcjUlrmWIENFznzEZImISM/p4odLVRIREQFXV1fs3bsXRkZGWLp0KQ4dOqTxcl6kKkmerXb9P+Dll4AkeXYFRcRkiYhI7+nih0tVIAgC1qxZg44dO+LevXuoW7cuzp8/j5kzZ3J80lvIKuZvuaTlygLHLBER6Tld/HCp7JKTk+Hv769cj3TAgAHYunUrqlevruXI9J+ZkWaJpqblygJTXyIiPaeLHy6V2ZUrV+Dq6ooDBw7A2NgYK1euxIEDB5golRGp2KTQQsmvE//vTs+KwiuHiEjP6eKHS2UkCAKWL1+OTp064f79+6hfvz4uXryITz75hNMzlCGRSISWturXWW1pa1Whv3MmS0REek4XP1wqmxcvXmDAgAEICAhAbm4uhgwZgsjISLRt21bboVVKjpZitHewLvQlQGxkgPYO1pxniYiISu7lhws4z1I5uHjxInx8fPDo0SOYmppixYoVmDRpEpPPcuZoKYZDNTOdmGSVyRIRUSWhSx8ulUF+fj6WLl2KefPmIS8vD++88w727t2L1q1bazu0KkMkEqGmuam2w2CyRERUmejKh4u+S0xMxOjRo3Hs2DEAwLBhwxAUFARLS0stR0bawGSJiIjoFefOncOwYcMQFxcHMzMzrF69GuPGjWMLXRXGAd5EREQA8vLy8M0338DDwwNxcXFo0qQJrly5gvHjxzNRquLYskRERFXes2fPMGLECPz+++8AgFGjRmHdunWoVq2aliMjXcBkiYiIqrRTp07B19cXz549g7m5OdatWwc/Pz9th0U6hN1wRERUJeXl5SEwMBDdu3fHs2fP0KxZM4SHhzNRokLYskRERFonCEKFTnkQFxeH4cOH48yZMwAAf39/rF69Gubm5uV2TtJfTJaIiEirnqTJK3QyzePHj2PEiBFITEyEhYUFgoKCMHz48DI/D1Ue7IYjIiKteZImx+W4FJVECQDkufm4HJeCJ2nyMjtXbm4u5s6di169eiExMRGtWrVCZGQkEyUqFpMlIiLSCkEQcC1BprbMtQQZBEF463M9fvwYHh4eWLRoEQBg0qRJ+PPPP9GoUaO3PjZVfkyWiIhIK5Lk2YValF4nz81Hkjz7rc5z5MgRtG7dGhcuXIClpSXCwsKwYcMGiMVcL480w2SJiIi0IquYRKmk5V6Xk5ODzz//HP369cPz58/h6uqKqKgoeHl5lep4VDKCICAxU4FHMjkSMxVl0kKoLRzgTUREWmFmpNn3dU3LverBgwfw8fHBpUuXAADTpk3D0qVLYWrKdfMqQkUP2i9vbFkiIiKtkIpNIC4mERL/bxqBkjh48CBat26NS5cuQSKRYN++fVi9ejUTpQpSkYP2KwqTJSIi0gqRSISWtlZqy7S0tdJ4vqXs7GzMmDEDAwcOREpKCt577z1ERUVh0KBBZREuaaAiB+1XJL1Ilu7fvw9/f384OztDLBajQYMGCAwMRHZ20YP+cnJyMHv2bLRo0QIWFhZwcHDAqFGjEBcXp1LO3d0dIpFI5eHj41PeVSIiIgCOlmK0d7Au1MIkNjJAewdrjbts/v33X3Tq1AmrVq0CAHz22Wc4f/48nJ2dyzxmKlpFDdqvaHoxZun27dvIz89HUFAQGjZsiBs3bmD8+PHIyMjAsmXL3rhPZmYmIiMj8dVXX6FVq1ZITk7GjBkz0L9/f1y9elWl7Pjx47Fw4ULlc94hQURUcRwtxXCoZlbqGbx//vln+Pv7QyaToXr16ti2bRs+/PDDco6a3qS8B+1ri14kS56envD09FQ+r1+/PmJiYrBhw4YikyWJRIITJ06obFuzZg3ee+89PHz4EHXq1FFuNzc3h52dXfkET0RExRKJRKhpXrIxRVlZWQgICMD69esBAB07dsTu3btV/r9TxSrPQfvapF/RviI1NRU2NjYl3kckEsHa2lple2hoKKRSKZo1a4aZM2ciLS1N7XEUCgVkMpnKg4iIKs6dO3fg5uamTJRmz56NM2fOMFHSsvIatK9tetGy9Lp79+5hzZo1+OGHHzTeJysrC1988QV8fX1hZfX/AwqHDx8OZ2dn2NnZ4caNG5gzZw7++uuvQq1Sr1q0aBEWLFjwVnUgIqLS2b17NyZMmID09HRIpVLs2LFDpfeBtKdg0P7luJQiy5Rk0L6uEAlaHJI+f/78YpOO8PBwtG3bVvk8Li4OXbp0QZcuXbB582aNzpOTk4OhQ4fi4cOHOHPmjEqy9LqIiAi0bdsWERERcHV1fWMZhUIBhUKhfC6TyeDk5ITU1FS1xyYiotKTy+X45JNPsGnTJgDABx98gF27dsHR0VHLkdHr9GWeJZlMBolEUuznt1aTpaSkJCQlJaktU69ePZiZmQF4mSh5eHigffv2CAkJgYFB8b2IOTk58PLywr///otTp06hRo0aassLggBTU1Ps2LED3t7eGtVD0182EVF5EQSh1AOk9cHt27fh5eWF69evQyQSYd68eQgMDISRkV52kFQJ+vA3qennt1b/yqRSKaRSqUZlnzx5Ag8PD7Rp0wZbt24tUaJ0584dnD59uthECQBu3ryJnJwc2NvbaxQXEZG26cu3+NLavn07Jk+ejMzMTNja2iI0NBTdu3fXdlh6QZsJS2kG7esqrbYsaaqg661OnTrYvn07DA0Nla+9ehdbkyZNsGjRInz00UfIzc3F4MGDERkZicOHD6NWrVrKcjY2NjAxMcG9e/cQGhqKPn36QCqV4tatWwgICIBYLEZ4eLjKedRhyxIRaUvBbMlFKclcRbomIyMDU6dORUhICACga9eu2LlzJ7/MaqiyJ9FlQS9aljR1/Phx3L17F3fv3kXt2rVVXns114uJiUFqaioA4PHjxzh06BAAoHXr1ir7nD59Gu7u7jAxMcHJkyexatUqpKenw8nJCX379kVgYKDGiRIRkbZoOluyQzUznev+KM7Nmzfh5eWFW7duwcDAAIGBgZg3bx7/N2uoqCS6YMmR9g5gwlQCetGypOvYskRE2pCYqcD5Ry+KLfe+k43edIcIgoDg4GBMmzYNcrkc9vb22LVrF9zd3bUdmt4QBAG//ZugdiZtsZEBPOvb6l0SXdY0/fzW23mWiIiquso2W3JaWhpGjhyJcePGQS6Xo2fPnoiOjmaiVEKVdckRbWKyRESkpyrTbMl//fUX2rZti9DQUBgaGuK7777DsWPHYGtrq+3Q9E5lS6J1gV6MWSIiosIKZksurrtFl2dLFgQBGzduxCeffAKFQgFHR0fs2bMHnTt31nZoeqsyJdG6gr8pIiI9VTBbsjq6PFuyTCaDj48PJk2aBIVCgb59+yI6OpqJ0luqrEuOaBOTJSIiPeZoKUZ7B+tCH45iIwOdnjYgMjISrq6u2Lt3L4yMjLB06VIcOnRI47n3qGj6nkTrInbDERHpOUdLMRyqmen8bMnAy263tWvXYubMmcjOzkadOnUQFhaGDh06aDu0SuVlEg3Os1RGmCwREVUC+jBbckpKCvz9/bF//34AwIABAxAcHAwbGxstR1Y56VMSreuYLBERUbm7cuUKvL29cf/+fRgbG2Pp0qWYPn06P7jLmT4k0fqAY5aIiKjcCIKA5cuXo1OnTrh//z6cnZ3xxx9/4JNPPmGiRHqDLUtERFQuXrx4AT8/P/z6668AgCFDhmDz5s2QSCRajoyoZNiyREREZe7ixYto3bo1fv31V5iYmGDdunXYu3cvEyXSS0yWiIiozOTn52PJkiX44IMP8OjRIzRs2BCXLl3Cxx9/zG430lvshiMiojKRmJiI0aNH49ixYwCAYcOGISgoCJaWllqOjOjtMFkiIqK3du7cOQwbNgxxcXEwMzPD6tWrMW7cOLYmUaXAbjgiIiq1vLw8fPPNN/Dw8EBcXByaNGmCK1euYPz48UyUqNJgyxIREZXKs2fPMGLECPz+++8AgFGjRmHdunWoVq2aliMjKltMloiIqMROnTqF4cOHIz4+Hubm5li3bh38/Py0HRZRuWA3HBERaSwvLw+BgYHo3r074uPj0axZM4SHhzNRokqNLUtERKSRuLg4DB8+HGfOnAEA+Pv7Y/Xq1TA3N9duYETljMkSEREV6/jx4xgxYgQSExNhYWGBoKAgDB8+XNthEVUIdsMREVGRcnNzMW/ePHh6eiIxMREtW7ZEREQEEyWqUtiyREREb/T48WMMGzYMFy5cAABMmjQJy5cvh1gs1nJkRBWLyRIRERVy9OhRjBo1Cs+fP4elpSU2bdoEb29vbYdFpBXshiMiIqWcnBzMmjULffv2xfPnz+Hq6orIyEgmSlSlsWWJiIgAAA8ePICPjw8uXboEAJg2bRqWLl0KU1NTLUdGpF1MlohILwmCgCR5NrJy82FmZACp2ITLa7yFgwcPYsyYMUhOToZEIkFwcDAGDRqk7bCIdAKTJSLSO0/S5LiWIIM8N1+5TWxkgJa2VnC05ODjksjOzsasWbOwatUqAEC7du0QFhYGZ2dnLUdGpDs4ZomI9MqTNDkux6WoJEoAIM/Nx+W4FDxJk2spMv3z77//olOnTspE6bPPPsOFCxeYKBG9hi1LRKQ3BEHAtQSZ2jLXEmRwqGbGLrli7Nu3D2PHjoVMJkP16tWxbds2fPjhh9oOi0gnsWWJiPRGkjy7UIvS6+S5+UiSZ1dQRPonKysLU6dOxZAhQyCTyeDm5obo6GgmSkRq6EWydP/+ffj7+8PZ2RlisRgNGjRAYGAgsrPV/0P08/ODSCRSeXTo0EGljEKhwLRp0yCVSmFhYYH+/fvj8ePH5VkdIiqlrGISpZKWq2ru3LmDjh07Yt26dQCA2bNn4+zZs6hTp45KOUEQkJipwCOZHImZCgiCoI1wiXSGXnTD3b59G/n5+QgKCkLDhg1x48YNjB8/HhkZGVi2bJnafT09PbF161blcxMTE5XXZ8yYgV9//RV79uxBjRo1EBAQgH79+iEiIgKGhoblUh8iKh0zI82+32larirZs2cPxo8fj/T0dEilUmzfvh29e/cuVI6D54kK0zhZSk9PR7Vq1cozliJ5enrC09NT+bx+/fqIiYnBhg0bik2WTE1NYWdn98bXUlNTsWXLFuzYsQPdu3cHAOzcuRNOTk74/fff0atXr7KrBBG9NanYBGIjA7VdceL/TSNAL8nlcsyYMQMbN24EALz//vvYvXs3HB0dC5UtGDxf6Bj/Gzzf3gFMmKhK0vjrV4sWLXDu3LnyjKVEUlNTYWNjU2y5M2fOwNbWFo0aNcL48eORkJCgfC0iIgI5OTno2bOncpuDgwOaN2+OixcvFnlMhUIBmUym8iCi8icSidDS1kptmZa2Vhzc/T+3b99G+/btsXHjRohEInz55Zc4derUGxMlTQfPs0uOqiKNk6WhQ4eie/fuCAgIgEKhKM+YinXv3j2sWbMGkyZNUluud+/eCA0NxalTp/DDDz8gPDwcXbt2VcYfHx8PExMTVK9eXWW/WrVqIT4+vsjjLlq0CBKJRPlwcnJ6+0oRkUYcLcVo72AN8WtdbWIjA7R3sGbLx//s2LEDbdu2xfXr12Fra4v//ve/+M9//gMjozd3KHDwPFHRNE6WlixZgnPnzuHYsWPKtYLe1vz58wsNwH79cfXqVZV94uLi4OnpiaFDh2LcuHFqj+/t7Y2+ffuiefPm+PDDD3Hs2DH8888/OHLkiNr9BEFQ+810zpw5SE1NVT4ePXqkeaWJ6K05WorhWd8W7zvZoJ29Nd53soFnfVsmSgAyMjIwduxYjBo1ChkZGfDw8EB0dDR69Oihdj8OnicqWokGeHfo0AFRUVH48ssv0alTJ/To0aPQt5T9+/drfLypU6fCx8dHbZl69eopf46Li4OHhwfc3NyU/e8lYW9vj7p16+LOnTsAADs7O2RnZyM5OVmldSkhIQEdO3Ys8jimpqZcK4lIy0QiEWqa8zp81c2bN+Hl5YVbt27BwMAAgYGBmDdvnkY3q3DwPFHRSnw3nEKhQEJCAkQiESQSSZFNupqQSqWQSqUalX3y5Ak8PDzQpk0bbN26FQYGJb9gnz9/jkePHsHe3h4A0KZNGxgbG+PEiRPw8vICADx9+hQ3btzAkiVLSnx8IiJtEAQBW7duxdSpUyGXy2Fvb49du3bB3d1d42Nw8DxR0UqU6Rw/fhz+/v5wcHBAZGQkmjRpUl5xqYiLi4O7uzvq1KmDZcuWITExUfnaq3e6NWnSBIsWLcJHH32E9PR0zJ8/H4MHD4a9vT3u37+PuXPnQiqV4qOPPgIASCQS+Pv7IyAgADVq1ICNjQ1mzpyJFi1aKO+OIyLSZenp6Zg0aRJCQ0MBAD179sSOHTtga2tbouMUDJ5/091wBTh4nqoqjZOliRMnYtu2bZg7d67Gzbpl5fjx47h79y7u3r2L2rVrq7z26p0ZMTExSE1NBQAYGhri+vXr2L59O1JSUmBvbw8PDw+EhYXB0tJSuc+KFStgZGQELy8vyOVydOvWDSEhIZxjiYh03l9//QUvLy/8888/MDQ0xH/+8x/Mnj27VC3vQMHgeXCeJaLXiAQN7wNt3rw5tm/fDldX1/KOSe/IZDJIJBKkpqbCykr9bc1ERG9LEARs3LgRn3zyCRQKBRwdHbFnzx507ty5zI6fJM9GVm4+zP7X9cYWJaqMNP381rhlKTIystDs10REVLFkMhkmTJiAsLAwAECfPn2wbds2jcd/aoKD54lUaZwsMVEiIn1WGVpLIiMj4eXlhXv37sHIyAiLFi3CZ599VupuNyLSjF6sDUdE9Db0fb0zQRCwbt06BAQEIDs7G3Xq1MGePXvg5uam7dCIqgR+HSGiSq1gvbPXb4kvWO/sSZpcS5FpJiUlBUOGDMG0adOQnZ2N/v37IyoqiokSUQViskRElZa+r3d25coVuLi4YP/+/TA2NsbKlSvxyy+/aLQuJhGVHY264a5du6bxAVu2bFnqYIiIylJJ1jvTpQHNgiBg5cqVmD17NnJycuDs7IywsDC0a9dO26ERVUkaJUutW7eGSCQqds00AMjLyyuTwIiI3pY+rnf24sUL+Pn54ddffwUADB48GJs3b4a1tbV2AyOqwjTqhouNjcW///6L2NhY7Nu3D87Ozli/fj2ioqIQFRWF9evXo0GDBti3b195x0tEpDF9W+/s4sWLaN26NX799VeYmJhg3bp1+Omnn5goEWmZRi1LdevWVf48dOhQrF69Gn369FFua9myJZycnPDVV19h4MCBZR4kEVFp6Mt6Z/n5+Vi2bBnmzp2LvLw8NGzYEHv37oWLi4tW4yKil0r8der69etwdnYutN3Z2Rm3bt0qk6CIiMpCwXpn6mh7vbPExET069cPs2fPRl5eHnx8fBAREcFEiUiHlDhZatq0Kb755htkZWUptykUCnzzzTdo2rRpmQZHRPS2Xq53Zg3xa11tYiMDtHew1uo8S+fPn0fr1q1x7NgxmJmZYePGjdi1axeXTSLSMSWelPLHH3/Ehx9+CCcnJ7Rq1QrAy8UcRSIRDh8+XOYBEhG9LUdLMRyqmenMDN75+flYtGgRvv76a+Tn56Nx48bYu3cv7yYm0lEaL6T7qszMTOzcuRO3b9+GIAh499134evrCwsLi/KIUedxIV0i0tSzZ88wcuRInDhxAgAwcuRIrF+/HtWqVdNyZERVT5kvpPsqc3NzTJgwodTBERFVRadOncLw4cMRHx8PsViM9evXw8/PT9thEVExSnW/7I4dO9C5c2c4ODjgwYMHAIAVK1bg4MGDZRocEVFlkJeXh/nz56N79+6Ij49Hs2bNcPXqVSZKRHqixMnShg0b8Nlnn6F3795ITk5WTkJZvXp1rFy5sqzjIyLSa0+fPkX37t2xYMECCIKAsWPH4sqVK3j33Xe1HRoRaajEydKaNWuwadMmzJs3D0ZG/9+L17ZtW1y/fr1MgyMi0mfHjx9Hq1atcObMGVhYWGDHjh3YsmULzM3NtR0aEZVAiZOl2NjYN87/YWpqioyMjDIJiohIn+Xm5mLevHnw9PREYmIiWrZsiYiICIwYMULboRFRKZQ4WXJ2dkZ0dHSh7ceOHWOzMhFVeY8fP0bXrl3x3XffQRAETJw4EZcuXULjxo21HRoRlVKJ74b7/PPPMWXKFGRlZUEQBFy5cgW7d+/GokWLsHnz5vKIkYhILxw9ehSjRo3C8+fPYWlpiU2bNsHb21vbYRHRWypxsjRmzBjk5uZi1qxZyMzMhK+vLxwdHbFq1Sr4+PiUR4xERDotJycH8+bNw9KlSwEArq6uCAsLQ8OGDbUcGRGVhVJNSlkgKSkJ+fn5sLW1LcuY9A4npSSquh48eAAfHx9cunQJADBt2jQsXboUpqamWo6MiIqj6ed3iccsde3aFSkpKQAAqVSqTJRkMhm6du1aumiJiPTQwYMH4eLigkuXLkEikWDfvn1YvXo1EyWiSqbEydKZM2eQnZ1daHtWVhbOnz9fJkEREemy7OxsfPrppxg4cCCSk5PRrl07REVFYdCgQdoOjYjKgcZjlq5du6b8+datW4iPj1c+z8vLw2+//QZHR8eyjY6ISMfExsbC29sb4eHhAIBPP/0U33//PUxMTLQcGRGVF42TpdatW0MkEkEkEr2xu00sFmPNmjVlGhwRkS7Zt28f/P39kZqaiurVqyMkJAT9+/fXdlhEVM40TpZiY2MhCALq16+PK1euoGbNmsrXTExMYGtrC0NDw3IJkohIm7KysjBz5kysW7cOAODm5oY9e/agTp06Wo6MiCqCxslS3bp1AQD5+fnlFgwRka65e/cuvLy8EBUVBQCYNWsWvvnmGxgbG2s5MiKqKCUe4L1o0SIEBwcX2h4cHIzFixeXSVBERLpgz549cHV1RVRUFKRSKY4ePYrFixczUSKqYkqcLAUFBaFJkyaFtjdr1gw//vhjmQRFRKRNcrkcEydOxLBhw5CWlob3338f0dHR6N27t7ZDIyItKHGyFB8fD3t7+0Lba9asiadPn5ZJUK+7f/8+/P394ezsDLFYjAYNGiAwMPCNUxi8qmBA+uuPgll2AcDd3b3Q65yJnKjqun37Ntq3b4+NGzdCJBLhyy+/xKlTp3i3L1EVVuLlTpycnPDHH3/A2dlZZfsff/wBBweHMgvsVbdv30Z+fj6CgoLQsGFD3LhxA+PHj0dGRgaWLVtW5H6vJ2/Hjh2Dv78/Bg8erLJ9/PjxWLhwofK5WCwu2woQkV7YsWMHJk+ejIyMDNja2mLnzp3o0aOHtsMiIi0rcbI0btw4zJgxAzk5OcopBE6ePIlZs2YhICCgzAMEAE9PT3h6eiqf169fHzExMdiwYYPaZMnOzk7l+cGDB+Hh4YH69eurbDc3Ny9UloiqjoyMDEybNg1bt24FAHh4eCA0NPSNrehEVPWUOFmaNWsWXrx4gY8//ljZDWZmZobZs2djzpw5ZR5gUVJTU2FjY6Nx+WfPnuHIkSPYtm1boddCQ0Oxc+dO1KpVC71790ZgYCAsLS2LPJZCoYBCoVA+l8lkJQueiHTGzZs34eXlhVu3bkEkEiEwMBBffvmlVqZCEQQBSfJsZOXmw8zIAFKxCUQiUYXHoavxEGlLqRfSTU9Px99//w2xWIx33nmnQtdCunfvHlxdXfHDDz9g3LhxGu2zZMkSfP/994iLi4OZmZly+6ZNm+Ds7Aw7OzvcuHEDc+bMQcOGDXHixIkijzV//nwsWLCg0HYupEukPwRBQEhICKZMmQK5XA47Ozvs2rULHh4eWonnSZoc1xJkkOf+//QsYiMDtLS1gqNlxQ8N0LV4iMqDpgvpljpZKgtFJR2vCg8PR9u2bZXP4+Li0KVLF3Tp0gWbN2/W+FxNmjRBjx49ip1lPCIiAm3btkVERARcXV3fWOZNLUtOTk5Mloj0RHp6OiZPnoydO3cCAHr27IkdO3YoFwavaE/S5Lgcl1Lk6+0drCs0QdG1eIjKi6bJkkbdcIMGDUJISAisrKyKXShy//79Ggc5derUYu88q1evnvLnuLg4eHh4wM3NDRs3btT4POfPn0dMTAzCwsKKLevq6gpjY2PcuXOnyGTJ1NSUq4oT6alr167By8sLMTExMDAwwH/+8x988cUXMDAo8c3BZUIQBFxLUN+Vfy1BBodqZhXSBaZr8RDpAo2SJYlEorwoJBJJmZ1cKpVCKpVqVPbJkyfw8PBAmzZtsHXr1hL9Y9uyZQvatGmDVq1aFVv25s2byMnJ4cBOokpGEARs3LgRn3zyCRQKBRwdHbF79268//77Wo0rSZ6t0tX1JvLcfCTJs1HTvPy/pOlaPES6QKNkqeAOkdd/rihxcXFwd3dHnTp1sGzZMiQmJipfe/UutiZNmmDRokX46KOPlNtkMhl++ukn/PDDD4WOe+/ePYSGhqJPnz6QSqW4desWAgIC4OLigk6dOpVvpYiowshkMkyYMEHZutynTx9s27ZN4y9r5SmrmMSkpOXelq7FQ6QLSnw3nDYcP34cd+/exd27d1G7dm2V114dchUTE4PU1FSV1/fs2QNBEDBs2LBCxzUxMcHJkyexatUqpKenw8nJCX379kVgYCAXBSaqJCIjI+Ht7Y27d+/CyMgI3333HQICArTW7fY6MyPN4tC03NvStXiIdIFGA7xdXFw07puOjIx866D0jaYDxIjo7ZTkVnZBELBu3ToEBAQgOzsbderUwZ49e+Dm5lbBUasnCAJ++zdBbdeX2MgAnvVtK2zMki7FQ1SeynSA98CBA5U/Z2VlYf369Xj33XeV/3QuXbqEmzdv4uOPP367qImIilCSW9lTUlIwbtw47Nu3DwDQv39/bN26tURzs1UUkUiElrZWau8+a2lrVWGJia7FQ6QLSjx1wLhx42Bvb4///Oc/KtsDAwPx6NEjBAcHl2mA+oAtS0TlqyS3soeHh8Pb2xuxsbEwNjbG0qVLMX36dJ3/cNe1eY10LR6i8lBu8yxJJBJcvXoV77zzjsr2O3fuoG3btoXGDFUFTJaIyo+m3UK9nGti9erVmDVrFnJycuDs7IywsDC0a9euAqN9O7o2Y7auxUNU1sq0G+5VYrEYFy5cKJQsXbhwQWVmbCKisqDJrewJSc/R95Nx+O3IYQDA4MGDsXnzZlhbW1dAhGVHJBLp1O34uhYPkbaUOFmaMWMGJk+ejIiICHTo0AHAyzFLwcHB+Prrr8s8QCKq2oq7RT0m6iqWfzYJSU/jYGJiguXLl+Pjjz9mCwgRlZkSJ0tffPEF6tevj1WrVmHXrl0AgKZNmyIkJAReXl5lHiARVW1F3aKen5+PQ8EbELrie+Tn5cG5QQPs++knuLi4VHCERFTZaXVtuMqCY5aIys+bxizJkp9j9exPEHXuFACgS7+BOLgzpExXGCCiyk/Tz+9SzSqWkpKCzZs3Y+7cuXjx4gWAl/MrPXnypHTREhEVoeBW9gK3rl5GwMCeiDp3CiamZpi4YAl2hoYyUSKiclPibrhr166he/fukEgkuH//PsaNGwcbGxscOHAADx48wPbt28sjTiKqwhwtxWhnl48vF36DnSuXID8/Hw7ODTBvzSYM+KCD8lZ23r1FROWhxMnSZ599Bj8/PyxZsgSWlpbK7b1794avr2+ZBkdEBADPnj2D/8iROHHiBABgkI8vlq1ajXo1bZTJEOcFIqLyUuJuuPDwcEycOLHQdkdHR8THx5dJUEREBU6dOoXWrVvjxIkTEIvFCA4Oxs+7dsLZtoZKonQ5LqXQFAPy3HxcjkvBkzS5NkInokqixMmSmZkZZDJZoe0xMTGoWbNmmQRFRJSXl4f58+eje/fuiI+Px7vvvourV69izJgxKl1rgiDgWkLh/0mvupYgA+9lIaLSKnGyNGDAACxcuBA5OTkAXg6+fPjwIb744gsMHjy4zAMkoqrn6dOn6NGjBxYsWABBEDB27FiEh4fj3XffLVRWk0kr5bn5SJJnl1e4RFTJlThZWrZsGRITE2Frawu5XI4uXbqgYcOGsLS0xLffflseMRJRFXLixAm0bt0ap0+fhoWFBXbs2IEtW7bA3Nz8jeWLm7SypOWIiF5X4gHeVlZWuHDhAk6dOoXIyEjk5+fD1dUV3bt3L4/4iKiKyM3Nxfz58/Hdd99BEAS0bNkSYWFhaNKkidr9ipq0srTliIheV6JkKTc3F2ZmZoiOjkbXrl3RtWvX8oqLSGfwdvTy9/jxY/j6+uL8+fMAgIkTJ2LFihUQi4u/i00qNoHYyKDYhXalYpMyi5eIqpYSJUtGRkaoW7cu8vLyyiseIp3C29HL39GjRzFq1Cg8f/4clpaW2LRpE7y9vTXev2DSystxKUWWaWlrxQSXiEqtxO3SX375JebMmaOcuZuosuLt6OUrJycHs2bNQt++ffH8+XO4uroiMjKyRIlSAUdLMdo7WEP8Wleb2MgA7R2smdgS0Vsp8Zil1atX4+7du3BwcEDdunVhYWGh8npkZGSZBUekLZreju5QzYwtFqXw8OFD+Pj44M8//wQATJ06FcuWLYOpqWmpj+loKYZDNTN2mRJRmStxsjRgwAD+86FKryS3o9c0L/0HfFV06NAh+Pn5ITk5GRKJBFu2bCmzaUdEIhHfDyIqcyVOlubPn18OYRDpFt6OXvays7Mxe/ZsrFy5EgDQrl07hIWFwdnZWbuBEREVQ+MxS5mZmZgyZQocHR1ha2sLX19fJCUllWdsRFrD29HLVmxsLDp37qxMlD799FNcuHCBiRIR6QWN/9MHBgYiJCQEffv2hY+PD06cOIHJkyeXZ2xEWlNwO7o6vB1dM/v374eLiwvCw8NRvXp1HDx4EMuXL4eJCX93RKQfNO6G279/P7Zs2QIfHx8AwIgRI9CpUyfk5eXB0NCw3AIk0gbejv72srKy8Pnnn2Pt2rUAADc3N+zevRt169bVcmRERCWjccvSo0eP8P777yufv/feezAyMkJcXFy5BEakbbwdvfTu3r2Ljh07KhOlWbNm4ezZs0yUiEgvadyylJeXV6jZ3MjICLm5uWUeFJGu4O3oJRcWFobx48cjLS0NNWrUwPbt29GnTx9th0VEVGoaJ0uCIMDPz09lHpSsrCxMmjRJZa6l/fv3l22ERFrG29E1I5fLMWPGDGzcuBEA8P7772PXrl2oXbu2liMjIno7GidLo0ePLrRtxIgRZRoMEemnmJgYeHl54dq1axCJRJg7dy7mz58PI6MSz05CRKRzNP5PtnXr1vKMg4j01M6dOzFp0iRkZGTA1tYWO3fuRI8ePbQdFhFRmeEkMURUKpmZmRg7dixGjhyJjIwMeHh4IDo6mokSEVU6epMs9e/fH3Xq1IGZmRns7e0xcuTIYu/EEwQB8+fPh4ODA8RiMdzd3XHz5k2VMgqFAtOmTYNUKoWFhQX69++Px48fl2dViPTezZs30a5dO2zduhUikQjz58/HiRMnYG9vr+3QiIjKnN4kSx4eHti7dy9iYmKwb98+3Lt3D0OGDFG7z5IlS7B8+XKsXbsW4eHhsLOzQ48ePZCWlqYsM2PGDBw4cAB79uzBhQsXkJ6ejn79+iEvL6+8q0SkdwRBwNatW9GuXTvcunULdnZ2OHnyJAIDAznfGhFVXoKeOnjwoCASiYTs7Ow3vp6fny/Y2dkJ33//vXJbVlaWIJFIhB9//FEQBEFISUkRjI2NhT179ijLPHnyRDAwMBB+++03jWNJTU0VAAipqamlrA2R7ktLSxNGjhwpABAACD169BCePXum7bCIiEpN089vvWlZetWLFy8QGhqKjh07wtjY+I1lYmNjER8fj549eyq3mZqaokuXLrh48SIAICIiAjk5OSplHBwc0Lx5c2WZN1EoFJDJZCoPosrs2rVraNu2LXbs2AEDAwN8++23+O2332Bra6vt0IiIyp1eJUuzZ8+GhYUFatSogYcPH+LgwYNFlo2PjwcA1KpVS2V7rVq1lK/Fx8fDxMQE1atXL7LMmyxatAgSiUT5cHJyKm2ViHSaIAjYuHEj2rdvj5iYGDg6OuLMmTOYO3cuDAz06t8HEVGpafW/3fz58yESidQ+rl69qiz/+eefIyoqCsePH4ehoSFGjRoFQRDUnuP1mZYFQSh29uXiysyZMwepqanKx6NHjzSoLZF+kclk8PX1xcSJE5GVlYXevXsjOjpaZdkjIqKqQKszxk2dOlW5MG9R6tWrp/xZKpVCKpWiUaNGaNq0KZycnHDp0iW4ubkV2s/Ozg7Ay9ajV+/QSUhIULY22dnZITs7G8nJySqtSwkJCejYsWORMZmamqrMZE5U2URFRcHLywt3796FoaEhFi1ahICAALYmEVGVpNVkqSD5KY2CFiWFQvHG152dnWFnZ4cTJ07AxcUFAJCdnY2zZ89i8eLFAIA2bdrA2NgYJ06cgJeXFwDg6dOnuHHjBpYsWVKquIj0mSAIWL9+PT777DNkZ2ejTp062LNnzxu/kBARVRV6sRbBlStXcOXKFXTu3BnVq1fHv//+i6+//hoNGjRQ+SfepEkTLFq0CB999BFEIhFmzJiB7777Du+88w7eeecdfPfddzA3N4evry8AQCKRwN/fHwEBAahRowZsbGwwc+ZMtGjRAt27d9dWdYm0IiUlBePGjcO+ffsAvJzbbOvWrbCxsdFyZERE2qUXyZJYLMb+/fsRGBiIjIwM2Nvbw9PTE3v27FHpDouJiUFqaqry+axZsyCXy/Hxxx8jOTkZ7du3x/Hjx2Fpaakss2LFChgZGcHLywtyuRzdunVDSEgI54yhKiU8PBze3t6IjY2FsbExlixZgk8++aTY8X1ERFWBSChuhDQVSyaTQSKRIDU1FVZWVtoOh0hjgiBg1apVmDVrFnJycuDs7IywsDC0a9dO26EREZU7TT+/9aJliYjK3osXLzBmzBgcOnQIADB48GBs3rwZ1tbW2g2MiEjH8NYWoirozz//hIuLCw4dOgQTExOsXbsWP/30ExMlIqI3YLJEVIXk5+dj6dKl+OCDD/Dw4UM0aNAAf/75J6ZMmcLxSURERWA3HFEVkZSUhNGjR+Po0aMAAG9vb2zcuJHj7IiIisGWJaIq4Pz582jdujWOHj0KU1NTBAUFYffu3UyUiIg0wGSJqBLLz8/Hd999Bw8PDzx58gSNGzfGlStXMGHCBHa7ERFpiN1wRJVUQkICRowYgRMnTgAARo4cifXr16NatWpajoyISL8wWSKqhE6fPg1fX1/Ex8dDLBZj3bp18PPzY2sSEVEpsBuOqBLJy8vDggUL0L17d8THx+Pdd99FeHg4xowZw0SJiKiU2LJEVEk8ffoUI0aMwKlTpwAAY8eOxZo1a2Bubq7lyIiI9BuTJaJK4MSJExgxYgQSEhJgYWGBDRs2YOTIkdoOi4ioUmA3HJEey83NxZdffolevXohISEBLVq0wNWrV5koERGVIbYsEempx48fw9fXF+fPnwcATJw4EStWrIBYLNZyZERElQuTJSI9dOzYMYwcORLPnz+HpaUlNm7cCB8fH22HRURUKbEbjkiP5OTkYPbs2ejTpw+eP38OFxcXREZGMlEiIipHbFki0hMPHz6Ej48P/vzzTwDA1KlTsXTpUpiZmb3VcQVBQJI8G1m5+TAzMoBUbMJpBoiIXsFkiUgPHDp0CH5+fkhOToZEIsGWLVswePDgtz7ukzQ5riXIIM/NV24TGxmgpa0VHC059omICGA3HJFOy87OxmeffYYBAwYgOTkZ7dq1Q2RkZJklSpfjUlQSJQCQ5+bjclwKnqTJ3/ocRESVAZMlIh0VGxuLzp07Y8WKFQCAGTNm4MKFC6hfv/5bH1sQBFxLkKktcy1BBkEQ3vpcRET6jt1wRDpo//79GDt2LFJTU1G9enWEhISgf//+ZXb8JHl2oRal18lz85Ekz0ZNc9MyOy8RkT5iyxKRDlEoFJg2bRoGDx6M1NRUuLm5ISoqqkwTJQDIKiZRKmk5IqLKjMkSkY64e/cuOnbsiLVr1wIAZs2ahbNnz6Ju3bplfi4zI80ufU3LERFVZuyGI9IBYWFhGD9+PNLS0lCjRg1s374dffr0KbfzScUmEBsZqO2KE/9vGgEioqqOXxuJtEgul2PSpEnw8fFBWloaOnfujOjo6HJNlABAJBKhpa2V2jItba043xIREZgsEWlNTEwMOnTogKCgIIhEIsybNw+nT59G7dq1K+T8jpZitHewhvi1rjaxkQHaO1hzniUiov9hNxyRFuzcuROTJk1CRkYGatasidDQUPTo0aPC43C0FMOhmhln8CYiUoPJElEFyszMxLRp0xAcHAwA8PDwQGhoKOzt7bUWk0gk4vQARERqMFkiekuarq1269YtDB06FLdu3YJIJEJgYCC+/PJLGBoaaiFqIiLSFJMloregydpqgiAgJCQEU6ZMgVwuh52dHXbt2gUPDw9thU1ERCXAAd5EpaTJ2mrp6ekYPXo0xo4dC7lcjh49eiA6OpqJEhGRHmGyRFQKmqytdvDcJbRr1w47duyAgYEBvv32W/z222+oVatWBUVJRERlQW+Spf79+6NOnTowMzODvb09Ro4cibi4uCLL5+TkYPbs2WjRogUsLCzg4OCAUaNGFdrH3d0dIpFI5eHj41Pe1SE9p25tNUEQcDxsJz4d3Ae3b9+Go6Mjzpw5g7lz58LAQLcvOUEQkJipwCOZHImZCi6kS0QEPRqz5OHhgblz58Le3h5PnjzBzJkzMWTIEFy8ePGN5TMzMxEZGYmvvvoKrVq1QnJyMmbMmIH+/fvj6tWrKmXHjx+PhQsXKp+LxZxfhtQras20zPQ0/Pj1LPxx9CAAwKNHT+zdFQqpVFqR4ZWKJuOviIiqIpGgp18dDx06hIEDB0KhUMDY2FijfcLDw/Hee+/hwYMHqFOnDoCXLUutW7fGypUrNT63QqGAQqFQPpfJZHByckJqaiqsrNTPikyVQ2KmAucfvVDZ9u+t6/jh00mIfxALA0NDDP9sDpZ+PRe1qul+olEw/qoonKSSiCojmUwGiURS7Oe3bvcJFOHFixcIDQ1Fx44dNU6UACA1NRUikQjW1tYq20NDX37zb9asGWbOnIm0tDS1x1m0aBEkEony4eTkVJpqkB4rWFsNeNl1dSx0K+Z4f4j4B7GQ2jvgm50HMGziVNhamGk50uJpMv7qWoKMXXJEVGXpVcvS7NmzsXbtWmRmZqJDhw44fPgwatSoodG+WVlZ6Ny5M5o0aYKdO3cqt2/atAnOzs6ws7PDjRs3MGfOHDRs2BAnTpwo8lhsWSLgZWvMqdsPsOGrz/Hnfw8DANp17Ykp362ApXV1vWmNeVMr2Zu872TDySuJqFLRtGVJq8nS/PnzsWDBArVlwsPD0bZtWwBAUlISXrx4gQcPHmDBggWQSCQ4fPhwsUsz5OTkYOjQoXj48CHOnDmj9hcSERGBtm3bIiIiAq6urhrVQ9NfNlUu4eHhGOLlhYf378PI2BgjZ36JvqPGwdzYUK/G+TySyRH+NKXYcu3sreFkpR91IiLShKaf31od4D116tRi7zyrV6+e8mepVAqpVIpGjRqhadOmcHJywqVLl+Dm5lbk/jk5OfDy8kJsbCxOnTpVbDLj6uoKY2Nj3LlzR+NkiXSHprNpv80+giBg1apVmDVrFnJyclCvXj0Ebd+Jpq1c9XJtNTMjzXrjNS1HRFTZaDVZKkh+SqOgQezV7rDXFSRKd+7cwenTpzXqsrt58yZycnK0ulYXlU5p7uYq6T4vXrzA2LFjcfDgy7vdBg0ahC1bthQaB6dPCsZfFTUVAvDydyIVm1RgVEREukMvvipeuXIFa9euRXR0NB48eIDTp0/D19cXDRo0UGlVatKkCQ4cOAAAyM3NxZAhQ3D16lWEhoYiLy8P8fHxiI+PR3Z2NgDg3r17WLhwIa5evYr79+/j6NGjGDp0KFxcXNCpUyet1JVKR5PZtN92n0uXLsHFxQUHDx6EiYkJ1q5di59//lmvEyXg5UK6LW3Vt7i2tLXSq9YyIqKypBfJklgsxv79+9GtWzc0btwYY8eORfPmzXH27FmYmv7/gNOYmBikpqYCAB4/foxDhw7h8ePHaN26Nezt7ZWPgrmZTExMcPLkSfTq1QuNGzfG9OnT0bNnT/z+++9c3FSPlOZurpLsk5+fj6VLl+L999/Hw4cP0aBBA/z555+YMmVKpUkgHC3FaO9grbzDr4DYyEBvBqoTEZUXvbobTldxgLd2leZuLk33eVecj5kfT8SRI0cAAN7e3ti4cWOlfZ9LM+aLiEhf6cUAb6KyUNRs2urKabLPrauXMWXWFMTHxcHU1BSrV6/G+PHjK3XyIBKJOD0AEdFrmCyR3ivN3Vzq9snPz8eBjWuxZ81S5OfloXHjxti7dy9atmz51rESEZH+YbJEeq80d3MVtU/q8ySsmjUNf/1xFgAwYsQIbNiwAdWqVSuf4ImISOfpxQBvInVKczfXm/a5cfkiAgb2wF9/nIWJmRl+WP8jtm/fzkSJiKiKY8sSVQov7+ZCieZMKtgn6mkydq5Zjp/Wr0B+fj7qNGyEraG70PW9NhVZBSIi0lFMlqjScLQUw6GaWYnu5jLMSMWKySNx6tQpAMCwkaOwcf06tiYREZESkyWqVEpyN9fvv/+O4cOHIyEhARYWFtiwYQNGjhxZzhESEZG+4ZglqnJyc3Px5ZdfomfPnkhISECLFi1w9epVJkpERPRGbFmiKuXJkycYNmwYzp8/DwCYOHEiVqxYAbGYM1QTEdGbMVmiKuPYsWMYNWoUkpKSYGlpiY0bN8LHx0fbYRERkY5jNxxVejk5OZg9ezb69OmDpKQkuLi4ICIigokSERFphC1LVKk9fPgQw4YNUy6ePGXKFCxbtgxmZmZajoyIiPQFkyWqtH799VeMHj0aycnJkEgk2LJlCwYPHqztsIiISM+wG44qnezsbAQEBKB///5ITk5Gu3btEBkZyUSJiIhKhS1LVKnExsbCx8cHV65cAQDMmDEDixcvhomJSTF7EhERvRmTJao09u/fj7FjxyI1NRXVq1dHSEgI+vfvr+2wiIhIz7EbjvSeQqHAtGnTMHjwYKSmpqJDhw6IiopiokRERGWCyRLptbt376Jjx45Yu3YtAGDWrFk4d+4c6tatq+XIiIiosmA3HOmtvXv3Yty4cUhLS0ONGjWwfft29OnTR9thERFRJcOWJdI7crkckyZNgre3N9LS0tC5c2dER0czUSIionLBZIkKEQQBiZkKPJLJkZipgCAI2g5JKSYmBh06dEBQUBBEIhHmzp2L06dPo3bt2toOjYiIKil2w5GKJ2lyXEuQQZ6br9wmNjJAS1srOFpqd7HZ0NBQTJw4ERkZGahZsyZ27tyJnj17ajUmIiKq/NiyREpP0uS4HJeikigBgDw3H5fjUvAkTa6VuDIzMzFu3DiMGDECGRkZcHd3x19//cVEiYiIKgSTJQLwsuvtWoJMbZlrCbIK75K7desW3nvvPWzZsgUikQiBgYH4/fffYW9vX6FxEBFR1cVuOAIAJMmzC7UovU6em48keTZqmptWSEwhISH4+OOPIZfLYWdnh9DQUHTt2rVCzk1ERFSALUsEAMgqJlEqabm3kZ6ejtGjR2PMmDGQy+Xo0aMHoqOjmSgREZFWMFkiAICZkWZ/CpqWK63r16+jXbt22L59OwwMDPDNN9/gt99+Q61atcr1vEREREVhNxwBAKRiE4iNDNR2xYmNDCAVl8+CtIIgYPPmzZg+fTqysrLg4OCA3bt344MPPiiX8xEREWmKLUsEABCJRGhpa6W2TEtbK4hEojI/t0wmg6+vLyZMmICsrCz07t0b0dHRTJSIiEgnMFkiJUdLMdo7WEP8Wleb2MgA7R2sy2WepaioKLRp0wZ79uyBoaEhFi9ejMOHD6NmzZplfi4iIqLS0JtkqX///qhTpw7MzMxgb2+PkSNHIi4uTu0+fn5+EIlEKo8OHTqolClYsV4qlcLCwgL9+/fH48ePy7MqOs3RUgzP+rZ438kG7eyt8b6TDTzr25Z5oiQIAtavX48OHTrg7t27cHJywrlz5zBr1iwYGOjNnyUREVUBevOp5OHhgb179yImJgb79u3DvXv3MGTIkGL38/T0xNOnT5WPo0ePqrw+Y8YMHDhwAHv27MGFCxeQnp6Ofv36IS8vr7yqovNEIhFqmpvCyUqMmuamZd71lpqaCi8vL0yZMgXZ2dno378/oqOj0bFjxzI9DxERUVkQCbq08FcJHDp0CAMHDoRCoYCxsfEby/j5+SElJQW//PLLG19PTU1FzZo1sWPHDnh7ewMA4uLi4OTkhKNHj6JXr15v3E+hUEChUCify2QyODk5ITU1FVZW6sf9VHXh4eHw9vZGbGwsjI2NsXjxYsyYMaNcxkIRERGpI5PJIJFIiv381puWpVe9ePECoaGh6NixY5GJUoEzZ87A1tYWjRo1wvjx45GQkKB8LSIiAjk5OSrLZjg4OKB58+a4ePFikcdctGgRJBKJ8uHk5PT2larkBEHAqlWr0KlTJ8TGxqJevXq4cOECPv30UyZKRESk0/QqWZo9ezYsLCxQo0YNPHz4EAcPHlRbvnfv3ggNDcWpU6fwww8/IDw8HF27dlW2CsXHx8PExATVq1dX2a9WrVqIj48v8rhz5sxBamqq8vHo0aO3r1wl9uLFC3z00UeYMWMGcnJyMGjQIERFReG9997TdmhERETF0mqyNH/+/EIDsF9/XL16VVn+888/R1RUFI4fPw5DQ0OMGjVK7Vpl3t7e6Nu3L5o3b44PP/wQx44dwz///IMjR46ojUsQBLWtHaamprCyslJ50JtdunQJLi4uOHjwIExMTLBmzRr8/PPPsLa21nZoREREGtHqpJRTp06Fj4+P2jL16tVT/iyVSiGVStGoUSM0bdoUTk5OuHTpEtzc3DQ6n729PerWrYs7d+4AAOzs7JCdnY3k5GSV1qWEhAQONn5L+fn5WL58OebMmYPc3Fw0aNAAe/fuhaurq7ZDIyIiKhGtJksFyU9pFLQovTrQujjPnz/Ho0ePlCvWt2nTBsbGxjhx4gS8vLwAAE+fPsWNGzewZMmSUsVFQFJSEvz8/JQteN7e3ti4cSNb4IiISC/pxZilK1euYO3atYiOjsaDBw9w+vRp+Pr6okGDBiqtSk2aNMGBAwcAvFyMdebMmfjzzz9x//59nDlzBh9++CGkUik++ugjAIBEIoG/vz8CAgJw8uRJREVFYcSIEWjRogW6d++ulbrquwsXLsDFxQVHjhyBqakpgoKCsHv3biZKRESkt/RibTixWIz9+/cjMDAQGRkZsLe3h6enJ/bs2QNTU1NluZiYGKSmpgIADA0Ncf36dWzfvh0pKSmwt7eHh4cHwsLCYGlpqdxnxYoVMDIygpeXF+RyObp164aQkBAYGhpWeD31WX5+PhYvXoyvvvoKeXl5aNSoEX766Se0bNlS26ERERG9Fb2dZ0mXaDpPQ2WVkJCAkSNH4vjx4wCAESNGYMOGDahWrZqWIyMiIiqapp/fetGyRLrrzJkz8PX1xdOnTyEWi7F27VqMGTOGcycREVGloRdjlkj35OXlYeHChejWrRuePn2Kd999F+Hh4Rg7diwTJSIiqlTYskQlFh8fj+HDh+PUqVMAgDFjxmDNmjWwsLDQcmRERERlj8kSlcjvv/+O4cOHIyEhARYWFtiwYQNGjhyp7bCIiIjKDbvhSCO5ubn46quv0LNnTyQkJKBFixa4evUqEyUiIqr02LJExXry5Al8fX1x7tw5AMCECROwcuVKiMViLUdGRERU/pgskVq//fYbRo4ciaSkJFSrVg2bNm0qdokaIiKiyoTdcPRGOTk5+OKLL9C7d28kJSXBxcUFkZGRTJSIiKjKYcsSFfLw4UMMGzYMFy9eBABMmTIFy5Ytg5mZmZYjIyIiqnhMlkjFr7/+Cj8/P7x48QJWVlbYsmULhgwZou2wiIiItIbdcAQAyM7ORkBAAPr3748XL16gbdu2iIqKYqJERERVHluWCLGxsfDx8cGVK1cAADNmzMDixYthYmKi5ciIiIi0j8lSFXfgwAGMGTMGqampsLa2RkhICAYMGKDtsIiIiHQGu+GqKIVCgenTp2PQoEFITU1Fhw4dEB0dzUSJiIjoNUyWqqC7d++iY8eOWLNmDQDg888/x7lz51C3bl0tR0ZERKR72A1Xxezduxfjxo1DWloaatSogW3btqFv377aDouIiEhnsWWpipDL5Zg8eTK8vb2RlpaGzp07Izo6mokSERFRMZgsVQExMTHo0KEDfvzxR4hEIsydOxenT59G7dq1tR0aERGRzmM3XCUXGhqKiRMnIiMjAzVr1sTOnTvRs2dPbYdFRESkN9iyVEllZmZi3LhxGDFiBDIyMuDu7o7o6GgmSkRERCXEZKkSunXrFt577z1s2bIFIpEIgYGB+P333+Hg4KDt0IiIiPQOu+EqmZCQEEyZMgWZmZmws7NDaGgounbtqu2wiIiI9BZbliqJ9PR0jB49GmPGjEFmZia6d++O6OhoJkpERERviclSJXD9+nW0a9cO27dvh4GBAb755hv897//Ra1atbQdGhERkd5jN5weEwQBmzdvxvTp05GVlQUHBwfs3r0bH3zwgbZDIyIiqjSYLOmptLQ0TJw4Ebt37wYAeHp6Yvv27ahZs6aWIyMiIqpc2A2nh6KiouDq6ordu3fD0NAQixcvxpEjR5goERERlQO2LOkoQRCQJM9GVm4+zIwMIBWbAAA2bNiAzz77DAqFAk5OTtizZw86duyo5WiJiIgqLyZLOuhJmhzXEmSQ5+Yrt+XL0xGyYDaO/HIAAPDhhx8iJCQENjY22gqTiIioSmCypGOepMlxOS5FZdvd639h+WeT8OzRAxgbG2Px4sWYMWMGRCKRdoIkIiKqQvRmzFL//v1Rp04dmJmZwd7eHiNHjkRcXJzafUQi0RsfS5cuVZZxd3cv9LqPj095V+eNBEHAtQSZyvPD2zdjnm9/PHv0ALaOTliy5yATJSIiogqkN8mSh4cH9u7di5iYGOzbtw/37t3DkCFD1O7z9OlTlUdwcDBEIhEGDx6sUm78+PEq5YKCgsqzKkVKkmcru94EQcCKgI+x9buvkZuTg/Y9+mDZgeOo06w1kuTZWomPiIioKtKbbrhPP/1U+XPdunXxxRdfYODAgcjJyYGxsfEb97Gzs1N5fvDgQXh4eKB+/foq283NzQuV1YasV8YoiUQivNu2PS6fOIbRs79G7+FjlK1Jr5YjIiKi8qU3LUuvevHiBUJDQ9GxY8ciE6XXPXv2DEeOHIG/v3+h10JDQyGVStGsWTPMnDkTaWlpao+lUCggk8lUHmXBzEj17eg1bDRWHj6NPiPGqnS7vV6OiIiIyo9eferOnj0bFhYWqFGjBh4+fIiDBw9qvO+2bdtgaWmJQYMGqWwfPnw4du/ejTNnzuCrr77Cvn37CpV53aJFiyCRSJQPJyenUtXndVKxCcSvJEIikQj2dZ1VyohfmUaAiIiIyp9IEARBWyefP38+FixYoLZMeHg42rZtCwBISkrCixcv8ODBAyxYsAASiQSHDx/WaLBzkyZN0KNHD6xZs0ZtuYiICLRt2xYRERFwdXV9YxmFQgGFQqF8LpPJ4OTkhNTUVFhZWRUbizpvuhvuVe0drOFoKX6rcxAREdHLz2+JRFLs57dWk6WkpCQkJSWpLVOvXj2YmZkV2v748WM4OTnh4sWLcHNzU3uM8+fP44MPPkB0dDRatWqltqwgCDA1NcWOHTvg7e1dfCWg+S9bU2+aZ0lsZICWtlZMlIiIiMqIpp/fWh3gLZVKIZVKS7VvQY73agtPUbZs2YI2bdoUmygBwM2bN5GTkwN7e/tSxVUWHC3FcKhmVmgGb04XQEREVPH0YszSlStXsHbtWkRHR+PBgwc4ffo0fH190aBBA5VWpSZNmuDAgQMq+8pkMvz0008YN25coePeu3cPCxcuxNWrV3H//n0cPXoUQ4cOhYuLCzp16lTu9VJHJBKhprkpnKzEqGluykSJiIhIS/QiWRKLxdi/fz+6deuGxo0bY+zYsWjevDnOnj0LU1NTZbmYmBikpqaq7Ltnzx4IgoBhw4YVOq6JiQlOnjyJXr16oXHjxpg+fTp69uyJ33//HYaGhuVeLyIiItJ9Wh2zVFmU9ZglIiIiKn+afn7rRcsSERERkbYwWSIiIiJSg8kSERERkRpMloiIiIjUYLJEREREpAaTJSIiIiI1mCwRERERqaHV5U4qi4KpqmQymZYjISIiIk0VfG4XN+Ukk6UykJaWBgBwcnLSciRERERUUmlpaZBIJEW+zhm8y0B+fj7i4uJgaWlZJmu4yWQyODk54dGjR5VuRvDKXDegctePddNPlbluQOWuH+tW/gRBQFpaGhwcHGBgUPTIJLYslQEDAwPUrl27zI9rZWVV6S6QApW5bkDlrh/rpp8qc92Ayl0/1q18qWtRKsAB3kRERERqMFkiIiIiUoPJkg4yNTVFYGAgTE1NtR1KmavMdQMqd/1YN/1UmesGVO76sW66gwO8iYiIiNRgyxIRERGRGkyWiIiIiNRgskRERESkBpMlIiIiIjWYLGlB//79UadOHZiZmcHe3h4jR45EXFyc2n1EItEbH0uXLlWWcXd3L/S6j49PeVenkNLUz8/Pr1DsHTp0UCmjUCgwbdo0SKVSWFhYoH///nj8+HF5VqWQktYtJycHs2fPRosWLWBhYQEHBweMGjWq0D668N6V5n0TBAHz58+Hg4MDxGIx3N3dcfPmTZUy2n7f7t+/D39/fzg7O0MsFqNBgwYIDAxEdna22v305Zorbf304ZorTd305Zor7fumD9ccAHz77bfo2LEjzM3NYW1trdE+On3NCVThli9fLvz555/C/fv3hT/++ENwc3MT3Nzc1O7z9OlTlUdwcLAgEomEe/fuKct06dJFGD9+vEq5lJSU8q5OIaWp3+jRowVPT0+V2J8/f65SZtKkSYKjo6Nw4sQJITIyUvDw8BBatWol5Obmlmd1VJS0bikpKUL37t2FsLAw4fbt28Kff/4ptG/fXmjTpo1KOV1470rzvn3//feCpaWlsG/fPuH69euCt7e3YG9vL8hkMmUZbb9vx44dE/z8/IT//ve/wr1794SDBw8Ktra2QkBAgNr99OWaK2399OGaK03d9OWaK+37pg/XnCAIwtdffy0sX75c+OyzzwSJRKLRPrp8zTFZ0gEHDx4URCKRkJ2drfE+AwYMELp27aqyrUuXLsInn3xSxtG9PU3qN3r0aGHAgAFFvp6SkiIYGxsLe/bsUW578uSJYGBgIPz2229lGW6JlOa9u3LligBAePDggXKbLr53xdUtPz9fsLOzE77//nvltqysLEEikQg//vijIAi6+74tWbJEcHZ2LtE++nTNaVI/fb3mSvPe6cs1V1zd9PGa27p1q8bJ0ut06ZpjN5yWvXjxAqGhoejYsSOMjY012ufZs2c4cuQI/P39C70WGhoKqVSKZs2aYebMmUhLSyvrkEukJPU7c+YMbG1t0ahRI4wfPx4JCQnK1yIiIpCTk4OePXsqtzk4OKB58+a4ePFiucWvTmneOwBITU2FSCQq1DStS++dJnWLjY1FfHy8yntiamqKLl26KN8TXXzfgJfvgY2Njcbl9emaAzSvn75dc0DJ37uCfXT9mgOKr5s+X3MlpWvXHBfS1ZLZs2dj7dq1yMzMRIcOHXD48GGN9922bRssLS0xaNAgle3Dhw+Hs7Mz7OzscOPGDcyZMwd//fUXTpw4UdbhF6uk9evduzeGDh2KunXrIjY2Fl999RW6du2KiIgImJqaIj4+HiYmJqhevbrKfrVq1UJ8fHx5VqWQt3nvsrKy8MUXX8DX11dl8Uhdee9KUreC33utWrVUtteqVQsPHjxQltGV963AvXv3sGbNGvzwww8a76MP11wBTeunT9dcgdK8d7p+zRXQpG76es2Vhs5dcxXellVJBQYGCgDUPsLDw5XlExMThZiYGOH48eNCp06dhD59+gj5+fkanatx48bC1KlTiy139epVAYAQERFR6noVqMj6CYIgxMXFCcbGxsK+ffsEQRCE0NBQwcTEpFC57t27CxMnTtSLumVnZwsDBgwQXFxchNTUVLVly+q9K8+6/fHHHwIAIS4uTmX7uHHjhF69egmCoFvvmyC87I5o2LCh4O/vX6Jz6cM1Jwilr58g6PY1Jwilq5s+XHOCoHnd9PGaK203nDauOXXYslRGpk6dWuyI/Hr16il/lkqlkEqlaNSoEZo2bQonJydcunQJbm5uao9x/vx5xMTEICwsrNiYXF1dYWxsjDt37sDV1VWjehSloupXwN7eHnXr1sWdO3cAAHZ2dsjOzkZycrLKN6aEhAR07Nix5BV6RUXULScnB15eXoiNjcWpU6dUvuG+SVm9d+VZNzs7OwAvv8na29srtyckJCi/+erS+xYXFwcPDw+4ublh48aNGp9HX6650tavgC5fc6Wpm75ccyWpm75dc6WlrWtOrXJNxUgjDx8+FAAIp0+fLrbs6NGjC93VUZTr168LAISzZ8++ZYRvpyT1K5CUlCSYmpoK27ZtEwTh/wcthoWFKcvExcVpfbCpJnXLzs4WBg4cKDRr1kxISEjQ6Li68N4VV7eCwaaLFy9WblMoFG8cbKrt9+3x48fCO++8I/j4+JT4jiB9uObepn4FdPWaK03d9OWaK2nd9OmaK1CaliVdvOaYLFWwy5cvC2vWrBGioqKE+/fvC6dOnRI6d+4sNGjQQMjKylKWa9y4sbB//36VfVNTUwVzc3Nhw4YNhY579+5dYcGCBUJ4eLgQGxsrHDlyRGjSpIng4uJSobeLlqZ+aWlpQkBAgHDx4kUhNjZWOH36tODm5iY4OjoWuh22du3awu+//y5ERkYKXbt2rdDbYUtTt5ycHKF///5C7dq1hejoaJXbXRUKhSAIuvHelfbv8vvvvxckEomwf/9+4fr168KwYcPeeBuzNt+3gi6Orl27Co8fP1Z5D16lr9dcaeqnL9dcaeqmL9dcaf8u9eGaEwRBePDggRAVFSUsWLBAqFatmhAVFSVERUUJaWlpRdZNEHT3mmOyVMGuXbsmeHh4CDY2NoKpqalQr149YdKkScLjx49VygEQtm7dqrItKChIEIvFb5xT4uHDh8IHH3wg2NjYCCYmJkKDBg2E6dOnF5o3pbyVpn6ZmZlCz549hZo1awrGxsZCnTp1hNGjRwsPHz5U2UculwtTp04VbGxsBLFYLPTr169QmfJUmrrFxsYW2bdf0GKjC+9daf8u8/PzhcDAQMHOzk4wNTUVPvjgA+H69esq+2j7fdu6dWuR78Gr9PWaK0399OWaK03d9OWaK+3fpT5cc4LwsnVI3XsgCPp1zYn+FzARERERvQHnWSIiIiJSg8kSERERkRpMloiIiIjUYLJEREREpAaTJSIiIiI1mCwRERERqcFkiYiIiEgNJktEREREajBZIiIqByKRCL/88ou2wyCiMsBkiYj02sWLF2FoaAhPT88S71uvXj2sXLmy7INSQxAEdO/eHb169Sr02vr16yGRSPDw4cMKjYmI1GOyRER6LTg4GNOmTcOFCxf0IskQiUTYunUrLl++jKCgIOX22NhYzJ49G6tWrUKdOnW0GCERvY7JEhHprYyMDOzduxeTJ09Gv379EBISUqjMoUOH0LZtW5iZmUEqlWLQoEEAAHd3dzx48ACffvopRCIRRCIRAGD+/Plo3bq1yjFWrlyJevXqKZ+Hh4ejR48ekEqlkEgk6NKlCyIjIzWO28nJCatWrcLMmTMRGxsLQRDg7++Pbt26wc/Pr6S/BiIqZ0yWiEhvhYWFoXHjxmjcuDFGjBiBrVu34tW1wY8cOYJBgwahb9++iIqKwsmTJ9G2bVsAwP79+1G7dm0sXLgQT58+xdOnTzU+b1paGkaPHo3z58/j0qVLeOedd9CnTx+kpaVpfIzRo0ejW7duGDNmDNauXYsbN25g48aNmleeiCqMkbYDICIqrS1btmDEiBEAAE9PT6Snp+PkyZPo3r07AODbb7+Fj48PFixYoNynVatWAAAbGxsYGhrC0tISdnZ2JTpv165dVZ4HBQWhevXqOHv2LPr166fxcTZu3IjmzZvj/Pnz+Pnnn2Fra1uiOIioYrBliYj0UkxMDK5cuQIfHx8AgJGREby9vREcHKwsEx0djW7dupX5uRMSEjBp0iQ0atQIEokEEokE6enpJR4zZWtriwkTJqBp06b46KOPyjxOIiobbFkiIr20ZcsW5ObmwtHRUblNEAQYGxsjOTkZ1atXh1gsLvFxDQwMVLryACAnJ0fluZ+fHxITE7Fy5UrUrVsXpqamcHNzQ3Z2donPZ2RkBCMj/ism0mVsWSIivZObm4vt27fjhx9+QHR0tPLx119/oW7duggNDQUAtGzZEidPnizyOCYmJsjLy1PZVrNmTcTHx6skTNHR0Splzp8/j+nTp6NPnz5o1qwZTE1NkZSUVHYVJCKdwmSJiPTO4cOHkZycDH9/fzRv3lzlMWTIEGzZsgUAEBgYiN27dyMwMBB///03rl+/jiVLliiPU69ePZw7dw5PnjxRJjvu7u5ITEzEkiVLcO/ePaxbtw7Hjh1TOX/Dhg2xY8cO/P3337h8+TKGDx9eqlYsItIPTJaISO9s2bIF3bt3h0QiKfTa4MGDER0djcjISLi7u+Onn37CoUOH0Lp1a3Tt2hWXL19Wll24cCHu37+PBg0aoGbNmgCApk2bYv369Vi3bh1atWqFK1euYObMmSrnCA4ORnJyMlxcXDBy5EhMnz6dg7OJKjGR8HrnPBEREREpsWWJiIiISA0mS0RERERqMFkiIiIiUoPJEhEREZEaTJaIiIiI1GCyRERERKQGkyUiIiIiNZgsEREREanBZImIiIhIDSZLRERERGowWSIiIiJS4/8Ad4P95wZQrUEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# show plot of training\n", + "model1.train_plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "29df8327-de11-4d7c-8117-02c190947f35", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "22\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABURElEQVR4nO3de1xT9f8H8NcYtyEw5I4yBURRE294A++JopaXzEwrf1JeMi+pZV4y75rdvJVpZopm5SXFMvvmNS94v5Ka9wtCCt4FFRiwnd8fi+WE4TbGLofX8/HYQ87ZZ+e8zxg7bz9XiSAIAoiIiIjsnIO1AyAiIiIyByY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRMHR2gFYklqtxo0bN+Dh4QGJRGLtcIiIiMgAgiDg4cOHqFSpEhwc9NfHlKuk5saNG1AoFNYOg4iIiEyQlpaG4OBgvc+Xq6TGw8MDgOZN8fT0tHI0RETWl51XgCYzdwAADk9oBzfncnVbIDuRlZUFhUKhvY/rU64+vYVNTp6enkxqiIgAOOYVwMHFDYDmu5FJDdmyZ3UdYUdhIiIiEgUmNURERCQKTGqIiIhIFNh4SkRkQ1QqFfLz8y12PmVeASp7SDU/5+bCQc3bAlmek5MTpFJpqY/DTy8RkQ0QBAEZGRl48OCBRc+rFgRMaesPALjxTyocOIcXWYmXlxcCAwNLNY8ckxoiIhtQmND4+/vDzc3NYhOEqtQCCm49BACE+HtA6sCkhixLEARkZ2fj1q1bAICgoCCTj8WkhojIylQqlTah8fHxsey51QIkjkoAgKurK5MasgqZTAYAuHXrFvz9/U1uimJHYSIiKyvsQ+Pm5mblSIisp/DzX5o+ZUxqiIhsBNeko/LMHJ9/JjVEREQkCkxqiIiISBSY1BARkc2bMmUK6tevr92Oj49H9+7dy+z4xXn6nG3atMHIkSO12yEhIZg3b57ZYrInhrx/lsCkhoiISmX//v2QSqXo2LGjxc45f/58LF++3GLnM+ScR44cwaBBg7TbEokEv/zyS6nP26ZNG0gkEkgkEri4uKBy5cro0qULEhMTS31scxk9ejR27Nhh7TCY1BARUeksW7YMw4cPx969e5GammqRc8rlcnh5eVnkXIae08/Pr8xGsA0cOBDp6em4dOkS1q9fj9q1a6N37946SZQ1ubu7W3w6guIwqSEiskGCICA7r8Aij9x8FXLzVcjOK4AgCEbF+fjxY6xduxbvvPMOXnzxxSI1Gbt27YJEIsHvv/+OevXqwdXVFU2bNsWpU6e0ZZYvXw4vLy/88ssvqFGjBlxdXdG+fXukpaXpPe/TTUFqtRqffvopwsPD4eLigipVqmDmzJna58eOHYsaNWrAzc0NYWFhmDhxYrFDhxcvXgyFQgE3Nze88sorOjM8P6vJ68nmp5CQEADASy+9BIlEgpCQEKSkpMDBwQFHjx7Ved1XX32FqlWrlvjeu7m5ITAwEAqFAs2aNcOnn36KxYsXY8mSJdi+fbu23KlTp/D8889DJpPBx8cHgwYNwqNHj4pcw8cff4yAgAB4eXlh6tSpKCgowAcffABvb28EBwdj2bJlOud/1vunr3nwiy++QFBQEHx8fDB06NAyXwKEk+8REdmgnHwVak/aYvHznpkWBzdnw28Na9asQUREBCIiIvDGG29g+PDhmDhxYpHhuR988AHmz5+PwMBAfPjhh+jatSsuXLgAJycnAEB2djZmzpyJFStWwNnZGUOGDEHv3r2xb98+g+IYP348lixZgrlz56JFixZIT0/HuXPntM97eHhg+fLlqFSpEk6dOoWBAwfCw8MDY8aM0Za5dOkS1q5di99++w1ZWVno378/hg4dih9//NHg96PQkSNH4O/vj4SEBHTs2BFSqRR+fn6IjY1FQkICGjVqpC2bkJCA+Ph4o4c09+vXD++//z4SExMRGxuL7OxsdOzYEc2aNcORI0dw69YtDBgwAMOGDdNJNv/8808EBwdjz5492LdvH/r3748DBw6gVatWOHToENasWYPBgwejffv2UCgUBr9/T9u5cyeCgoKwc+dOXLp0Ca+++irq16+PgQMHGvdmGoE1NUREZLKlS5fijTfeAAB07NgRjx49KrZvxeTJk9G+fXtERkZixYoVuHnzJjZs2KB9Pj8/HwsWLEB0dDSioqKwYsUK7N+/H4cPH35mDA8fPsT8+fPx2WefoV+/fqhWrRpatGiBAQMGaMt89NFHiImJQUhICLp06YL3338fa9eu1TlObm4uVqxYgfr166NVq1b46quvsHr1amRkZBj9vvj5+QH4bz2jwu0BAwZg1apVUCo1szj/9ddfSE5Oxptvvmn0ORwcHFCjRg2kpKQAAH788Ufk5OTg+++/R506dfD8889jwYIFWLlyJW7evKl9nbe3N7788ktERETgrbfeQkREBLKzs/Hhhx+ievXqGD9+PJydnXUSSkPev6dVrFgRCxYsQM2aNfHiiy/ihRdeKPN+N6ypISKyQTInKc5Miyvz86jUAs6mZwEAagV5QuZk+PT058+fx+HDh7UdVh0dHfHqq69i2bJliI2N1SkbHR2t/dnb2xsRERE4e/asdp+jo6NO7UXNmjXh5eWFs2fPokmTJiXGcfbsWSiVSrRr105vmXXr1mHevHm4dOkSHj16hIKCAnh6euqUqVKlCoKDg3ViVqvVOH/+PAIDA0uMwVDdu3fHsGHDsGHDBvTu3RvLli1D27Zttc1VxhIEQVvDc/bsWdSrVw8VKlTQPt+8eXPtNQQEBAAAnnvuOTg4/FenERAQgDp16mi3pVIpfHx8tGsxAYa9f0977rnndJY7CAoK0ml2LAtMaoiIbJBEIjGqGchUKrUA138TGTdnR6OaQJYuXYqCggJUrlxZu08QBDg5OeH+/fuoWLFiia9/+lzFnduQeArXDdLn4MGD6N27N6ZOnYq4uDjI5XKsXr0as2fPNig+c8707OzsjL59+yIhIQE9evTATz/9ZPIwcJVKhYsXL6Jx48YAdBOcpz25v7DJ78nnitunVqsBmP7+lXTMssLmJyIiMlpBQQG+//57zJ49G8nJydrHX3/9hapVqxbph3Lw4EHtz/fv38eFCxdQs2ZNneM92YH2/PnzePDggU4ZfapXrw6ZTKa3aWPfvn2oWrUqJkyYgEaNGqF69eq4du1akXKpqam4ceOGdvvAgQPaJh5TODk5QaVSFdk/YMAAbN++HQsXLkR+fj569Ohh0vFXrFiB+/fv4+WXXwYA1K5dG8nJyXj8+LG2zL59+0p1DYXHMOT9swV2k9QsWrQIdevWhaenJzw9PREdHY0//vjD2mEREZVLmzZtwv3799G/f3/UqVNH59GzZ08sXbpUp/y0adOwY8cOnD59GvHx8fD19dUZSeTk5IThw4fj0KFDOH78ON588000a9bsmU1PgGZ18bFjx2LMmDH4/vvvcfnyZRw8eFAbQ3h4OFJTU7F69WpcvnwZX375pU5/nieP069fP/z1119ISkrCu+++i169epnc9BQSEoIdO3YgIyMD9+/f1+6vVasWmjVrhrFjx6JPnz7PrGkCNB2pMzIy8M8//+DQoUMYO3YsBg8ejHfeeQdt27YFALz++uvaazh9+jR27tyJ4cOHo2/fvtqmJ1MY+v7ZArtJaoKDg/HJJ5/g6NGjOHr0KJ5//nl069YNf//9t7VDIyIqd5YuXYrY2FjI5fIiz7388stITk7G8ePHtfs++eQTjBgxAlFRUUhPT8fGjRvh7Oysfd7NzQ1jx47Fa6+9hujoaMhkMqxevdrgeCZOnIj3338fkyZNQq1atfDqq69q+4R069YNo0aNwrBhw1C/fn3s378fEydOLHKM8PBw9OjRA507d0aHDh1Qp04dLFy40Ji3Rcfs2bOxbds2KBQKNGjQQOe5/v37Iy8vD2+99ZZBx1qyZAmCgoJQrVo1vPTSSzhz5gzWrFmjE5+bmxu2bNmCe/fuoXHjxujZsyfatWuHBQsWmHwNgOHvny2QCMZOSmBDvL298fnnn6N///4Glc/KyoJcLkf67bvFdnBykEi0bcsAkJ1XoPdYpSmbk6eCgOLfdgkkkDmbVjY3XwV1SfMcPNE+b62yMieptm1XWaCCSm2esq6OUjg4aMrmFahRUEK7rTFlXRylkJpQNl+lRr5Kf1lnqQMcpQ5Gly1QqZFXQlknqQOcTCirUgtQFhStJi/k6OAAZ0fjy6rVAnLNVFbqIIGLo+bzLggCcvLNU9ZSf/cllc1XKnHjn1SEhobC1dUVarW+v3pAAmg/vwBKXVYt/NdR+LlKcu1nuKTjAtCWe1bZXbt2Ibbd87h//z68vLyKLbti+XK8994o3L13Hw6S//p/qAUBJd2h7LnsjBkzsGbNGiT/ddKsxxUEASV8VUIi0Xw2bbFsbm4uUlKuolJwFbi4ugL47zui8P6dmZlZYgdlu+worFKp8PPPP+Px48c6PeqfplQqtcPmAE1SAwBNZu6Ag0vRWR/bRvgh4c3/qjqjpm/X+2XYNNQba97+79wtPt2Je4/zii1bN1iOjcNaaLdj5+zG9Qc5xZat7u+Obe+11m53XbAXF289KrZsZS8Z9o17Xrvda/EBnPwns9iy3hWccXxie+12v2WHcejqvWLLypykODv9v+nO3/nhGHaev11sWQBI+eQF7c/vrU3G/07pH/745BwYHyaexvrj/+gte+yjWPi4uwAAZmw6i5UH9bfhJo1pC4W35nf6xdbz+HbPFb1lt45qhRoBHgCAr3dewvwdF/WW/XVoc9RTeAEAEvZdxaw/zuktu2pgM0RX08youepwKib9qr8WcVl8IzxfU1Md/MuJ6/hgXfFfbADw9WsN8ULdIADAlr9vYuhPx/WW/bxnXbzSSDOvxJ6Lt/HW8qN6y07r9hz+LzoEAHD46j30WXJQb9nxnWri7dbVAACnr2ei29f65w4Z0a46RrXXtN9fuv0IHebu0Vt2UKswfNi5FgDg+oMctPxsp96yfZtVxfTumhEa9x7nIWrGdr1lX24YjNm96gF49nwvnSMDsfD1KO12SWXL6juibbgXxjT31m5fuPlQb0Lq6ihFjUAP7falW4/0JoPOUgfUDPrvBnD5ziPk5OlP8J509e5jPFYWn4g5SCSoU/m/Gppr97LxMLf4SdVS7j7W2U67n43MHN2y1x/kQC0I+PtGpiax+jdfun4/B/ezi3/PAKB2kCcc/y2c/iAXdx8r9ZatGegB538T3ZtZubj9UH/ZGgEe2oT09kMlbmbl6i0b7u+u/U67+0iJ9Ez9ZcN83YGCXJw9exZffrUA77w/Hn/fKP47O8SnAjxlmo62D7Lz8c/9bL3HreLtBi83Ta1XZk4+Uu/pLxtc0Q3eFTRlH+YWFPn9PKmSlwy+/34HP1aqcOVO8fciAAiSu8LPQ5OI5OSrcEnPfQsAAjxdEeCpKassUOPCzYcAAKEgD7ce5GLQhr24/lDzOX3yO8IQdtP8BGhmSnR3d4eLiwsGDx6MDRs2oHbt2nrLz5o1C3K5XPsonESIiIjIGoYNG4YWLVogpkVLdH/1DWuHIzp21fyUl5eH1NRUPHjwAOvXr8d3332H3bt3601siqupUSgUbH6yYlk2P2mw+cn4smx+0rC35idjy9paM5G9lbW1JiVjypqj+cmukpqnxcbGolq1ali8eLFB5Q19U4iILCk3NxdXr17VJjWWpFIL2iaQJ5MaIksr6e/A0Pu3XTU/PU0QBJ2aGCIiIiq/7Kaj8IcffohOnTpBoVDg4cOHWL16NXbt2oXNmzdbOzQiIiKyAXaT1Ny8eRN9+/ZFeno65HI56tati82bN6N9+/bPfjERERGJnt0kNU/PTklERET0JLvuU0NEROLSpk0bjBw50uDyKSkpkEgkSE5OLrOYyH4wqSEiIqNJJJISH/Hx8SYdNzExEdOnTze4vEKhQHp6OurUqWPS+QxVmDwVPjw8PPDcc89h6NChuHhR/wSe+oSEhJi8OjfpZzfNT0REZDvS09O1P69ZswaTJk3C+fPntfueXqQxPz8fTk5Ozzyut7f3M8s8SSqVmrzgpCm2b9+O5557DtnZ2Th16hTmz5+PevXq4bfffkO7du0sFgcVjzU1RERktMDAQO1DLpdDIpFot3Nzc+Hl5YW1a9eiTZs2cHV1xQ8//IC7d++iT58+CA4OhpubGyIjI7Fq1Sqd4z7d/BQSEoKPP/4Yb731Fjw8PFClShV8++232uefbn7atWsXJBIJduzYgUaNGsHNzQ0xMTE6CRegWXvJ398fHh4eGDBgAMaNG4f69es/87p9fHwQGBiIsLAwdOvWDdu3b0fTpk3Rv39/qFSaSR4vX76Mbt26ISAgAO7u7mjcuDG2b/9vWY82bdrg2rVrGDVqlLbmB4BB7w+VjEkNEZENy84r0PvIfWqmZFPL5uarijxvDmPHjsW7776Ls2fPIi4uDrm5uYiKisKmTZtw+vRpDBo0CH379sWhQ4dKPM7s2bPRqFEjnDhxAkOGDME777yDc+f0r8MGABMmTMDs2bNx9OhRODo66qyG/eOPP2LmzJn49NNPcezYMVSpUgWLFi0y6RodHBwwYsQIXLt2DceOHQMAPHr0CJ07d8b27dtx4sQJxMXFoUuXLkhNTQWgaWILDg7GtGnTkJ6erq31MvX9of+w+YmIyIZZcoHNyx93LmW0ukaOHIkePXro7Bs9erT25+HDh2Pz5s34+eef0bRpU73H6dy5M4YMGQJAkyjNnTsXu3btQs2aNfW+ZubMmWjdWrM48Lhx4/DCCy8gNzcXrq6u+Oqrr9C/f3+8+eabAIBJkyZh69atePRI/yKMJSmMIyUlBU2aNEG9evVQr1497fMzZszAhg0bsHHjRgwbNgze3t6QSqXw8PDQaTqrXLmySe8P/Yc1NUREVCYaNWqks61SqTBz5kzUrVsXPj4+cHd3x9atW7U1GPrUrVtX+3NhM9etW7cMfk1QkGaV+8LXnD9/Hk2aNNEp//S2MQpXGypsRnr8+DHGjBmD2rVrw8vLC+7u7jh37twzr9PU94f+w5oaIiIbdmZanN7nChcFLHRsYqzBZfeObQtAs/ZT4YKW5lahQgWd7dmzZ2Pu3LmYN28eIiMjUaFCBYwcORJ5eXl6jqDxdAdjiUQCdQmLyz79Gu3CkE+8RvLU+1GaZRDPnj0LAAgNDQUAfPDBB9iyZQu++OILhIeHQyaToWfPns+8TlPfH/oPkxoiIhvm5mz417QpZVVqQWc18bKUlJSEbt264Y033gCgSTIuXryIWrVqWeT8hSIiInD48GH07dtXu+/o0aMmHUutVuPLL79EaGgoGjRoAEBznfHx8XjppZcAaPrYpKSk6LzO2dlZ27G4kK28P/aMzU9ERGQR4eHh2LZtG/bv34+zZ8/i7bffRkZGhsXjGD58OJYuXYoVK1bg4sWLmDFjBk6ePFmk9qY4d+/eRUZGBq5cuYKNGzciNjYWhw8fxtKlSyGVapLD8PBwJCYmIjk5GX/99Rdee+21IjVLISEh2LNnD65fv447d+5oX2cL7489Y1JDREQWMXHiRDRs2BBxcXFo06YNAgMD0b17d4vH8frrr2P8+PEYPXo0GjZsiKtXryI+Ph6urq7PfG1sbCyCgoIQGRmJcePGoVatWjh58iTatm2rLTN37lxUrFgRMTEx6NKlC+Li4tCwYUOd40ybNg0pKSmoVq0a/Pz8ANjO+2PPJEJpGhLtTFZWFuRyOTIzM+Hp6WntcIiIAGiG8l69ehWhoaEG3VjNSaUW8PeNTADAc5XkkDo8u7ZCjNq3b4/AwECsXLnS2qGUWyX9HRh6/2afGiIiKleys7PxzTffIC4uDlKpFKtWrcL27duxbds2a4dGpcSkhoiIyhWJRIL//e9/mDFjBpRKJSIiIrB+/XrExuofPUb2gUkNERGVKzKZTGfZAhIPdhQmIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BARkdEkEkmJj/j4eJOPHRISgnnz5hlUrvB8MpkMISEh6NWrF/7880+jzxkfH891lkSASQ0RERktPT1d+5g3bx48PT119s2fP98icUybNg3p6ek4f/48vv/+e3h5eSE2NhYzZ860yPnJtjCpISIiowUGBmofcrkcEolEZ9+ePXsQFRUFV1dXhIWFYerUqSgoKNC+fsqUKahSpQpcXFxQqVIlvPvuuwCANm3a4Nq1axg1apS2FqYkHh4eCAwMRJUqVdCqVSt8++23mDhxIiZNmoTz588DAFQqFfr374/Q0FDIZDJEREToJF1TpkzBihUr8Ouvv2rPuWvXLgDA2LFjUaNGDbi5uSEsLAwTJ05Efn6+md9NMhcuk0BEZMOy8wr0PucgkcDVSVqqsiq1gNx8lRki/c+WLVvwxhtv4Msvv0TLli1x+fJlDBo0CAAwefJkrFu3DnPnzsXq1avx3HPPISMjA3/99RcAIDExEfXq1cOgQYMwcOBAk84/YsQITJ8+Hb/++ivGjBkDtVqN4OBgrF27Fr6+vti/fz8GDRqEoKAg9OrVC6NHj8bZs2eRlZWFhIQEAIC3tzcATdK0fPlyVKpUCadOncLAgQPh4eGBMWPGmOGdInNjUkNEZMNqT9qi97m2EX5IeLOJdjtq+nbk6ElQmoZ6Y83b0drtFp/uxL3HeTplLn/cuZTRasycORPjxo1Dv379AABhYWGYPn06xowZg8mTJyM1NRWBgYGIjY2Fk5MTqlSpgiZNNNfh7e0NqVSqrYExhbe3N/z9/ZGSkgIAcHJywtSpU7XPh4aGYv/+/Vi7di169eoFd3d3yGQyKJXKIuf86KOPtD+HhITg/fffx5o1a5jU2CgmNUREZFbHjh3DkSNHdPq1qFQq5ObmIjs7G6+88grmzZuHsLAwdOzYEZ07d0aXLl3g6Gi+W5IgCDpNV9988w2+++47XLt2DTk5OcjLy0P9+vWfeZx169Zh3rx5uHTpEh49eoSCggJ4enqaLU4yLyY1REQ27My0OL3POTzV3+TYxFiDy+4d2xaApvnpbHpWKSIsSq1WY+rUqejRo0eR51xdXaFQKHD+/Hls27YN27dvx5AhQ/D5559j9+7dcHJyKvX57969i9u3byM0NBQAsHbtWowaNQqzZ89GdHQ0PDw88Pnnn+PQoUMlHufgwYPo3bs3pk6diri4OMjlcqxevRqzZ88udYxUNpjUEBHZMDdnw7+mTSmrUgs6fW3MoWHDhjh//jzCw8P1lpHJZOjatSu6du2KoUOHombNmjh16hQaNmwIZ2dnqFSm9/OZP38+HBwctEO0k5KSEBMTgyFDhmjLXL58Wec1xZ1z3759qFq1KiZMmKDdd+3aNZPjorLHpIaIiMxq0qRJePHFF6FQKPDKK6/AwcEBJ0+exKlTpzBjxgwsX74cKpUKTZs2hZubG1auXAmZTIaqVasC0PRd2bNnD3r37g0XFxf4+vrqPdfDhw+RkZGB/Px8XL16FT/88AO+++47zJo1S5tUhYeH4/vvv8eWLVsQGhqKlStX4siRI9qanMJzbtmyBefPn4ePjw/kcjnCw8ORmpqK1atXo3Hjxvj999+xYcOGsn3zqFQ4pJuIiMwqLi4OmzZtwrZt29C4cWM0a9YMc+bM0SYtXl5eWLJkCZo3b466detix44d+O233+Dj4wNAM/dMSkoKqlWrBj8/vxLPNWnSJAQFBSE8PBx9+/ZFZmYmduzYgbFjx2rLDB48GD169MCrr76Kpk2b4u7duzq1NgAwcOBAREREoFGjRvDz88O+ffvQrVs3jBo1CsOGDUP9+vWxf/9+TJw40czvFpmTRBAEwdpBWEpWVhbkcjkyMzPZ0YuIbEZubi6uXr2K0NBQuLq6WvTcKrWAv29kAgCeqySH1KHkeWGIykpJfweG3r9ZU0NERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REQ2ohyN2yAqwhyffyY1RERWVjiLbnZ2tpUjIbKews9/aWaV5uR7RERWJpVK4eXlhVu3bgEA3NzcdNYtKksqtQChQLOwZW5uLod0k8UJgoDs7GzcunULXl5ekEpNn+GaSQ0RkQ0oXB26MLGxFLUg4NaDXACAY7ZrkTWiiCzFy8vL5JXZCzGpISKyARKJBEFBQfD390d+fr7FzpuTV4BBG/YCADYNbwGZEetHEZmLk5NTqWpoCtnNp3fWrFlITEzEuXPnIJPJEBMTg08//RQRERHWDo2IyGykUqlZvtwNpXYowPWHmoUcXVxd4cqkhuyY3XQU3r17N4YOHYqDBw9i27ZtKCgoQIcOHfD48WNrh0ZEREQ2wG5S8s2bN+tsJyQkwN/fH8eOHUOrVq2KfY1SqYRSqdRuZ2VllWmMREREZD12U1PztMxMzQJs3t7eesvMmjULcrlc+1AoFJYKj4iIiCzMLpMaQRDw3nvvoUWLFqhTp47ecuPHj0dmZqb2kZaWZsEoiYiIyJLspvnpScOGDcPJkyexd+/eEsu5uLjAxcXFQlERERGRNdldUjN8+HBs3LgRe/bsQXBwsLXDISIiIhthN0mNIAgYPnw4NmzYgF27diE0NNTaIREREZENsZukZujQofjpp5/w66+/wsPDAxkZGQAAuVwOmUxm5eiIiIjI2uymo/CiRYuQmZmJNm3aICgoSPtYs2aNtUMjIiIiG2A3NTXmWJKciIiIxMtuamqIiIiISsKkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiETBrpKaPXv2oEuXLqhUqRIkEgl++eUXa4dERERENsKukprHjx+jXr16WLBggbVDISIiIhvjaO0AjNGpUyd06tTJ4PJKpRJKpVK7nZWVVRZhERERkQ2wq5oaY82aNQtyuVz7UCgU1g6JiIiIyoiok5rx48cjMzNT+0hLS7N2SERERFRG7Kr5yVguLi5wcXGxdhhERERkAaKuqSEiIqLyQ9Q1NWTfBEHAnZw85Bao4eroAF+ZMyQSibXDIiIiG2VXSc2jR49w6dIl7fbVq1eRnJwMb29vVKlSxYqRkbldf5iDk7eykFOg1u6TOTqgrr8nKnvIrBgZERHZKrM0Pz148MAch3mmo0ePokGDBmjQoAEA4L333kODBg0wadIki5yfLOP6wxwcuvFAJ6EBgJwCNQ7deIDrD3OsFBkREdkyo5OaTz/9FGvWrNFu9+rVCz4+PqhcuTL++usvswb3tDZt2kAQhCKP5cuXl+l5yXIEQcDJWyXPJ3TyVhYEQbBQREREZC+MTmoWL16sne9l27Zt2LZtG/744w906tQJH3zwgdkDpPLlTk5ekRqap+UUqHEnJ89CERERkb0wuk9Nenq6NqnZtGkTevXqhQ4dOiAkJARNmzY1e4BUvuQ+I6ExthwREZUfRtfUVKxYUTuJ3ebNmxEbGwtA02ygUqnMGx2VG4Ig4Ha2ElnKfIPKuzpyNgIiItJldE1Njx498Nprr6F69eq4e/eudi2m5ORkhIeHmz1Asn/PGppd3Einksj+PQYREdGTjE5q5s6di5CQEKSlpeGzzz6Du7s7AE2z1JAhQ8weINm3Zw3NLhzpZIy6/p6cr4aIiIowOqlxcnLC6NGji+wfOXKkOeIhEdGXsBQOzW4SJODU7YcGH4/z1BARUUkMSmo2btxo8AG7du1qcjAkHoYMzU6+mYU89bOHZkd4V4B/BRfOKExERCUyKKnp3r27QQeTSCTsLEwADBuabUhCAwCeLk7wc9MsTMqlE4iISB+Dkhq1msNnyTjmHHJdONKJSycQEVFJOC6WyoShQ66dpSXXshSOdOLSCURE9CwmLWj5+PFj7N69G6mpqcjL053Z9d133zVLYGTffGXOkDk6lNgEJXN0QKSfJw6nP9Bbpq6/JwAYtHRCJXdXNkWR/VCrgNtJQE46IAsC/FoCDlJrR0Vk14xOak6cOIHOnTsjOzsbjx8/hre3N+7cuQM3Nzf4+/szqSEAmv5Vdf09SxyuXdhsJJGgxGal29lKg5dOKOx7Q2TT0hKBYyOA7H/+2+cWDETNBxQ9rBcXkZ0zuvlp1KhR6NKlC+7duweZTIaDBw/i2rVriIqKwhdffFEWMZKdquwhQ9NKXpA91RQlc3RA00pe2n4wlT1k6Bjmj5YKbzQO8kJLhTc6hvlrn+fSCSQqaYlAUk/dhAYAsq9r9qclWicuIhEwuqYmOTkZixcvhlQqhVQqhVKpRFhYGD777DP069cPPXrwfxn0n8oeMlRyd33miCWJRKK3lsXQ/jlcOoFsnlqlqaFBcSP/BAAS4NhIoHI3NkURmcDou4CTk5P2hhQQEIDU1FQAgFwu1/5M9KTChEXhKYOfm4vR/V4K++eUhEsnkF24nVS0hkaHAGSnacoRkdGMrqlp0KABjh49iho1aqBt27aYNGkS7ty5g5UrVyIyMrIsYqRyztD+OewkTDYvJ9285YhIh9E1NR9//DGCgoIAANOnT4ePjw/eeecd3Lp1C99++63ZAyQCDO+fQyZQq4Cbu4CUVZp/1ZxAs8zIgsxbjoh0GF1T06hRI+3Pfn5++N///mfWgIj0MbR/DhmBo3Asy6+l5v3Nvo7i+9VINM/7tbR0ZESiwJ6VZFdK2z/HnARBwO1sJdKycnA7WwlBMGzZB5vBUTiW5yDVJIwAgKc/u/9uR81jJ2EiExldUxMaGlrijeTKlSulCojIHtj9kg0chWM9ih5Ay3V6asjmsYaMqBSMTmpGjhyps52fn48TJ05g8+bN+OCDD8wVF5HNKlyy4WmFSzY0rQTbT2yMGYUT0MZSUZUfih6ahJEzChOZldFJzYgRI4rd//XXX+Po0aOlDojIlgmCII4lGzgKx/ocpEwYiczMbH1qOnXqhPXr15vrcETFsnY/ljs5eQYv2WDTOAqHiETIpAUti7Nu3Tp4e3ub63BERdhCPxbRLNnAUThEJEImTb73ZLW6IAjIyMjA7du3sXDhQrMGR1TIVvqxiGbJhsJROEk9oRl182Riw1E4RGSfjE5qunfvrrPt4OAAPz8/tGnTBjVr1jRXXERattSPpXDJhpKaoOxmyQaOwiEikTE6qZk8eXJZxEGklzH9WPQtimkuoluygaNwiMgc1Cqb+B4xKKnJyir5f8lP8vT0NDkYouLYWj8WzZINsHr/HrPhKBwiKg0bmpncoKTGy8vL4P95qlRcN4bMy1r9WARB0LskA5dsICLCfzOTPz3goHBm8pbrLJrYGJTU7Ny5U/tzSkoKxo0bh/j4eERHRwMADhw4gBUrVmDWrFllEyWVa9box2LISKvCJRuIiMolG5yZ3KCkpnXr1tqfp02bhjlz5qBPnz7afV27dkVkZCS+/fZb9OvXz/xRUrlm6X4stjLSiojIptngzORG19cfOHBAZ6XuQo0aNcLhw4fNEhTR0zT9WLwge6qJSebogKaVvMyWZBg60sruFq8kIjI3G5yZ3OjRTwqFAt988w1mz56ts3/x4sVQKBRmC4zoaZbox2JLI62IiGyaDc5MbnRSM3fuXLz88svYsmULmjVrBgA4ePAgLl++zGUSqMyVdT8WWxtpZW9K6lxNRCJjgzOTG53UdO7cGRcuXMCiRYtw7tw5CIKAbt26YfDgwaypIasx181UNDMGW4EtLGNBRBZkgzOTm7T2k0KhwMcff2zuWIhMYs6bqahmDLYgdq4mKqdsbGZyg5KakydPok6dOnBwcMDJkydLLFu3bl2zBEZkCHPfTEU3Y7AF2NIyFkRkBTY0M7lBSU39+vWRkZEBf39/1K9fHxKJpNjRHxKJhJPvkcWU1c1UdDMGlzF2riYiW5mZ3KCk5urVq/Dz89P+TGQLyvJmyhmDDcfO1URkKwxKaqpWrVrsz0TWVNY3U84YbBh2riYiW2H0t8yKFSvw+++/a7fHjBkDLy8vxMTE4Nq1a2YNjqgkvJmaRhAE3M5WIi0rB7ezlaWeSLCwc3VJ2LmaiCzB6G/7jz/+GDKZpk/BgQMHsGDBAnz22Wfw9fXFqFGjzB7g0xYuXIjQ0FC4uroiKioKSUlJZX5Osk28mRrv+sMcbL5yC0lp93Ak/QGS0u5h85VbuP4wx+RjFnauLgk7VxORJRid1KSlpSE8PBwA8Msvv6Bnz54YNGgQZs2aVeYJxpo1azBy5EhMmDABJ06cQMuWLdGpUyekpqaW6XnJNhlzMzV37YQ9Khwp9nQ/pMKRYqVJbCy1jAURUUmMnqfG3d0dd+/eRZUqVbB161Zt7Yyrqytyckz/UjTEnDlz0L9/fwwYMAAAMG/ePGzZsgWLFi0yaoXw7LwCOOYVlFWYZEEVXZxQ19cDp28XHalUx88TFV2ccOnuI73PV/JwLfH4giDgbk6+trOwj8zJLmscBEHAkev3oSyhf9GR6/fhFepo8vVVdHFCq2DvYt+vbP692exn6cnfDX9PZKsM/WwandS0b98eAwYMQIMGDXDhwgW88MILAIC///4bISEhxh7OYHl5eTh27BjGjRuns79Dhw7Yv39/sa9RKpVQKpXa7awszfDfJjN3wMHFrcxiJSKyR41m7LB2CETFUiuzDSpndPPT119/jejoaNy+fRvr16+Hj48PAODYsWPo06ePsYcz2J07d6BSqRAQEKCzPyAgABkZGcW+ZtasWZDL5doHl3EgIiISL4lgJ50Lbty4gcqVK2P//v2Ijo7W7p85cyZWrlyJc+fOFXlNcTU1CoUC6bfvwtOz5L4YZP/uZOdh3z/3nlmuebA3fN3+60wsCAK2Xb39zKUS2of62UTzgSFMfS+odOzhs5SdV6CtoTn6UTu4OZu0eg5RmcrKykKQnw8yMzNLvH+b9OlNSkrC4sWLceXKFfz888+oXLkyVq5cidDQULRo0cLkoEvi6+sLqVRapFbm1q1bRWpvCrm4uMDFpeg8I27OjvzDLQckuflwcXr2NN0SB4nO5+F2thJqiaTE16oBZKvUdjOPjcJJCq+7Ts+8uSrkMrtJ1OyBvX2W+N1ItqrAwM+l0c1P69evR1xcHGQyGY4fP66tCXn48GGZLnLp7OyMqKgobNu2TWf/tm3bEBMTU2bnJftl6jw2Ypwhl8OurUOMnyUiW2Z0UjNjxgx88803WLJkCZycnLT7Y2JicPz4cbMG97T33nsP3333HZYtW4azZ89i1KhRSE1NxeDBg8v0vGSfDJnHxslBM9z7yVZYsU7qx2HXlifWzxKRrTK6nvH8+fNo1apVkf2enp548OCBOWLS69VXX8Xdu3cxbdo0pKeno06dOvjf//7HpRtsgCAINrdOkiErbuerBez9577OYpWFydCzmmrscVI/rmllWWL+LImOWmUTq0xT6Rid1AQFBeHSpUtFhm/v3bsXYWFh5opLryFDhmDIkCFlfh4y3PWHOTa7orW+FbefVjgBXdNKmtc8Kxmy56YarmllOYYk1vb8WRKNtETg2Agg+5//9rkFA1HzAUUP68VFRjO6zvPtt9/GiBEjcOjQIUgkEty4cQM//vgjRo8ezWSjHCrLWWrNpbKHDB3D/NEiuCKcHEq+eZy8lQVBENhUQ2bDz5KNS0sEknrqJjQAkH1dsz8t0TpxkUmMrqkZM2YMMjMz0bZtW+Tm5qJVq1ZwcXHB6NGjMWzYsLKIkWyUIAg4eSurxDInb2Whkrur1f8nKpFIIJFIkK8ueQaDnAI17uTkwc/NhU01ZDb8LNkotUpTQ4PivhcEABLg2Eigcjc2RdkJk8buzZw5ExMmTMCZM2egVqtRu3ZtuLu7Izs7G25unKm3vLiTk1dikw6gmyRYmykjUcq6qcYW+yJR2WCznw26nVS0hkaHAGSnacoFtLFUVFQKJk9I4ObmhkaNGgEAcnNzMWfOHHz22Wd6Z/cl8bG34aq2NhLFlvsiEZULOenmLUdWZ/C3d15eHiZMmIDGjRsjJiYGv/zyCwAgISEBYWFhmD17NkaMGFFWcZINsrUk4VkMGeJtqZEo9tAXiUj0ZEHmLUdWZ/DdZsqUKViwYAGqVq2Kq1ev4pVXXsHbb7+NTz75BLNmzUJKSgrGjx9flrGSjbGlJMEQtjIBnaF9kexkBRMi++XXUjPKCfr+5iWAm0JTjuyCwUnN2rVrsXz5cqxbtw6bN2+GSqVCVlYW/v77b/Tr109nIj4qH2wlSTCGLYxEMaYvEhGVIQepZtg2gKKJzb/bUfPYSdiOGNynJi0tDY0bNwYA1KtXD87Ozhg7diwcHblOSHmmbx4YY/qGWLqzrLVHothbXyQiUVP0AFqu0zNPzTzOU2NnDM5I8vPz4ez8XzOCk5MT5HJ5mQRF9qU0SYK1OstacySKvfVFIhI9RQ/NsG3OKGz3jKpmmTRpknbIdl5eHmbMmFEksZkzZ475oiO7YUqSUNhZ9mlPz+4rNpw6n8gGOUg5bFsEDE5qWrVqhfPnz2u3Y2JicOXKFZ0yttR3gqzHkOYke5q4z9w4dT4RUdkwOKnZtWtXGYZBYmFoc5K9Tdxnbuboi0RERLrYy5eMpq8mxpjmJHaWtX6HZSIisWFSQ0bRVxMT6eeJU7cNb05iZ1kNTp1PRGQ+TGrIYCXVxBxOL7q/uHKFzUnsLAvNYnocbUFEZDZMasgghnTsNURhc1K57yyblqhnXoz5nBeDiMhE4q7bJ7MxpGOvIZ5sTrKF2X2tIi0RSOpZdHXg7Oua/WmJ1omLiMjOsaaGDGKODrvFNSeVu86yapWmhgbFreskAJAAx0ZqJgJjUxQRkVHMVlNTq1YtSKX8EhYrc3TY1decVNhZVuEpg5+bi3gTGkDTh+bpGhodApCdpilHRERGMVtNzaxZs5CZmWmuw5GNMbRjb6SfB07dfsi5V/TJSTdvOSIi0jJbUtO9e3dzHYpskKEdeyt7yFDZQ1Z+mpOMJQsybzkiItJinxoymKGz4HLulRL4tdSMcsq+juL71Ug0z/u1tHRkRER2z6CkpkGDBgb/T/v48eOlCohsW1l17DVkvShRcJBqhm0n9QQggW5i8+/1Rs1jJ2EiIhMYlNQ82bSUm5uLhQsXonbt2oiOjgYAHDx4EH///TeGDBlSJkGSbTF3TYyh60WJhqIH0HKdnnlq5nGeGiIiExmU1EyePFn784ABA/Duu+9i+vTpRcqkpaWZNzoSPWPWixIVRQ/NsO0ymlG43NR8ERE9weg+NT///DOOHj1aZP8bb7yBRo0aYdmyZWYJjMTPkFmKn1wvSnQcpEBAG7MfttzVfBER/cvoyUdkMhn27t1bZP/evXvh6upqlqCofDBkluLC9aLIMIU1X0+/r4U1X9cf5lgpMiKismd0Tc3IkSPxzjvv4NixY2jWrBkATZ+aZcuWYdKkSWYPkMTL0FmKzTGbcXlQ7mu+iKjcMzqpGTduHMLCwjB//nz89NNPADSzCS9fvhy9evUye4Bku0rbb8PQWYrNMZtxeWBMzReH3BORGJk0T02vXr2YwJRz5ui3YegsxU+vF0XFY80XEZV3Rv8XOCwsDHfv3i2y/8GDBwgLCzNLUGTbzNVvo3CW4pLoWy+KimLNFxGVd0Z/u6WkpEClUhXZr1Qqcf36dbMERbbL0H4bglDcbLlFaWYp9oLsqRutzNEBTSt5cbSOEQprvkrCmi8iEjODm582btyo/XnLli2Qy+XabZVKhR07diAkJMSswZHtKYt+G2U1S3F5Y+j6XHxfiUisDE5qCmcVlkgk6Nevn85zTk5OCAkJwezZs80aHNmesuq3wfWizMPQ9bmIiMTI4KRGrdZ8QYaGhuLIkSPw9fUts6DIdrHfhu1jzRcRlVdGj366evVqWcRBdoIjluwDa76IqDwy+L/Thw4dwh9//KGz7/vvv0doaCj8/f0xaNAgKJVKswdItoUjloiIyFYZnNRMmTIFJ0+e1G6fOnUK/fv3R2xsLMaNG4fffvsNs2bNKpMgybZwxBIREdkig5ufkpOTdVbmXr16NZo2bYolS5YAABQKBSZPnowpU6aYPUiyPey3QUREtsbgpOb+/fsICAjQbu/evRsdO3bUbjdu3BhpaWnmjY5sGvttEBGRLTG4+SkgIEDbSTgvLw/Hjx9HdHS09vmHDx/CycnJ/BESERERGcDgpKZjx44YN24ckpKSMH78eLi5uaFly5ba50+ePIlq1aqVSZBEREREz2JwUjNjxgxIpVK0bt0aS5YswZIlS+Ds/N+w3WXLlqFDhw5lEiQAzJw5EzExMXBzc4OXl1eZnYeIiIjsk8F9avz8/JCUlITMzEy4u7tDKpXqPP/zzz/D3d3d7AEWysvLwyuvvILo6GgsXbq0zM5DRERE9snoyfeeXPPpSd7e3qUOpiRTp04FACxfvrxMz0NERET2yeikxp4olUqdCQGzskpeXZqIiIjsl6gX6Jk1axbkcrn2oVAorB0SERERlRGrJjVTpkyBRCIp8XH06FGTjz9+/HhkZmZqH5xHh2yKWgXc3AWkrNL8q1ZZOyIiIrtm1eanYcOGoXfv3iWWCQkJMfn4Li4ucHHh5HBkg9ISgWMjgOx//tvnFgxEzQcUPawXFxGRHbNqUuPr6wtfX19rhkBkeWmJQFJPAILu/uzrmv0t1zGxISIygd10FE5NTcW9e/eQmpoKlUqF5ORkAEB4eHiZDiUnMiu1SlND83RCA/y7TwIcGwlU7gY4SIspQ0RE+thNUjNp0iSsWLFCu92gQQMAwM6dO9GmTRsrRUVkpNtJuk1ORQhAdpqmXEAbS0VFRCQKdjP6afny5RAEociDCQ3ZlZx085YjIiItu0lqiERBFmTeckREpMWkhsiS/FpqRjlBoqeABHBTaMoREZFRmNQQWZKDVDNsG0DRxObf7ah57CRMRGQCJjVElqbooRm27VZZd79bMIdzExGVgt2MfiISFUUPzbDt20maTsGyIE2TE2toiIhMxqSGyFocpBy2TURkRmx+IiIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYmCXSQ1KSkp6N+/P0JDQyGTyVCtWjVMnjwZeXl51g6NiIiIbISjtQMwxLlz56BWq7F48WKEh4fj9OnTGDhwIB4/fowvvvjC2uERERGRDbCLpKZjx47o2LGjdjssLAznz5/HokWLmNQQERERADtJaoqTmZkJb2/vEssolUoolUrtdlZWVlmHRURERFZiF31qnnb58mV89dVXGDx4cInlZs2aBblcrn0oFAoLRUhERESWZtWkZsqUKZBIJCU+jh49qvOaGzduoGPHjnjllVcwYMCAEo8/fvx4ZGZmah9paWlleTlERERkRVZtfho2bBh69+5dYpmQkBDtzzdu3EDbtm0RHR2Nb7/99pnHd3FxgYuLS2nDJCIiIjtg1aTG19cXvr6+BpW9fv062rZti6ioKCQkJMDBwS5bzoiIiKiM2EVH4Rs3bqBNmzaoUqUKvvjiC9y+fVv7XGBgoBUjIyIiIlthF0nN1q1bcenSJVy6dAnBwcE6zwmCYKWoiIiIyJbYRRtOfHw8BEEo9kFEREQE2ElSQ0RERPQsTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFOwmqenatSuqVKkCV1dXBAUFoW/fvrhx44a1wyIiIiIb4WjtAAzVtm1bfPjhhwgKCsL169cxevRo9OzZE/v37zf6WNl5BXDMKyiy30EigauTVKecPqUpm5OnggCh2LISSCBzNq1sbr4KaqH4sgDg5uxo9bIyJykkEgkAQFmggkptnrKujlI4OGjK5hWoUaBWm6Wsi6MUUhPK5qvUyFfpL+ssdYCj1MHosgUqNfJKKOskdYCTCWVVagHKApXeso4ODnB2NL6sWi0g10xlpQ4SuDhqPu+CICAn3zxlLfV3b6vfEfri4ncEvyNs7TvCEHaT1IwaNUr7c9WqVTFu3Dh0794d+fn5cHJyKvY1SqUSSqVSu52VlQUAaDJzBxxc3IqUbxvhh4Q3m2i3o6Zv1/tl2DTUG2vejtZut/h0J+49ziu2bN1gOTYOa6Hdjp2zG9cf5BRbtrq/O7a911q73XXBXly89ajYspW9ZNg37nntdq/FB3Dyn8xiy3pXcMbxie212/2WHcahq/eKLStzkuLs9I7a7Xd+OIad528XWxYAUj55Qfvze2uT8b9TGXrLnpkWp/2C+zDxNNYf/0dv2WMfxcLH3QUAMGPTWaw8eE1v2aQxbaHw1vxOv9h6Ht/uuaK37NZRrVAjwAMA8PXOS5i/46Lesr8ObY56Ci8AQMK+q5j1xzm9ZVcNbIboaj6anw+nYtKvf+stuyy+EZ6vGQAA+OXEdXyw7qTesl+/1hAv1A0CAGz5+yaG/nRcb9nPe9bFK40UAIA9F2/jreVH9Zad1u05/F90CADg8NV76LPkoN6y4zvVxNutqwEATl/PRLev9+ktO6JddYxqXwMAcOn2I3SYu0dv2UGtwvBh51oAgOsPctDys516y/ZtVhXTu9cBANx7nIeoGdv1ln25YTBm96oHAMjJV6H2pC16y3aODMTC16O02yWVFfN3xNP4HcHvCFv7jjCE3TQ/PenevXv48ccfERMTozehAYBZs2ZBLpdrHwqFwoJREhERkSVJBKGEekAbM3bsWCxYsADZ2dlo1qwZNm3aBB8fH73li6upUSgUSL99F56enkXKi7Fq+UlsfjK+LKuWNdj8ZNmylm5+ajRjBwDdWhJ+R/A7wpa+I7KysiCXy5GZmVns/buQVZOaKVOmYOrUqSWWOXLkCBo1agQAuHPnDu7du4dr165h6tSpkMvl2LRpk/ZD/SyGvilEROVFdl6BtsntyaSGyJYYev+26qd32LBh6N27d4llQkJCtD/7+vrC19cXNWrUQK1ataBQKHDw4EFER0frPwARERGVC1ZNagqTFFMUVjA92bxERERE5Zdd1DMePnwYhw8fRosWLVCxYkVcuXIFkyZNQrVq1VhLQ0RERADsZPSTTCZDYmIi2rVrh4iICLz11luoU6cOdu/eDRcXF2uHR0RERDbALmpqIiMj8eeff1o7DCIiIrJhdlFTQ0RERPQsTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFBytHYAlCYIAAMjKyrJyJEREtiE7rwBqZTYAzXdjgXO5ui2QnSi8bxfex/WRCM8qISL//PMPFAqFtcMgIiIiE6SlpSE4OFjv8+UqqVGr1bhx4wY8PDwgkUhMPk5WVhYUCgXS0tLg6elpxghtF6+Z1yxG5e16AV5zebhmMV6vIAh4+PAhKlWqBAcH/T1nylU9o4ODQ4kZnrE8PT1F84ExFK+5fChv11zerhfgNZcHYrteuVz+zDLsKExERESiwKSGiIiIRIFJjQlcXFwwefJkuLi4WDsUi+E1lw/l7ZrL2/UCvObyoLxd75PKVUdhIiIiEi/W1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUmNge7fv4++fftCLpdDLpejb9++ePDgQYmvSUxMRFxcHHx9fSGRSJCcnGyRWE21cOFChIaGwtXVFVFRUUhKSiqx/O7duxEVFQVXV1eEhYXhm2++sVCk5mPMNaenp+O1115DREQEHBwcMHLkSMsFaibGXG9iYiLat28PPz8/eHp6Ijo6Glu2bLFgtOZhzDXv3bsXzZs3h4+PD2QyGWrWrIm5c+daMFrzMPZvudC+ffvg6OiI+vXrl22AZmbM9e7atQsSiaTI49y5cxaMuPSM/R0rlUpMmDABVatWhYuLC6pVq4Zly5ZZKFoLEsggHTt2FOrUqSPs379f2L9/v1CnTh3hxRdfLPE133//vTB16lRhyZIlAgDhxIkTlgnWBKtXrxacnJyEJUuWCGfOnBFGjBghVKhQQbh27Vqx5a9cuSK4ubkJI0aMEM6cOSMsWbJEcHJyEtatW2fhyE1n7DVfvXpVePfdd4UVK1YI9evXF0aMGGHZgEvJ2OsdMWKE8OmnnwqHDx8WLly4IIwfP15wcnISjh8/buHITWfsNR8/flz46aefhNOnTwtXr14VVq5cKbi5uQmLFy+2cOSmM/aaCz148EAICwsTOnToINSrV88ywZqBsde7c+dOAYBw/vx5IT09XfsoKCiwcOSmM+V33LVrV6Fp06bCtm3bhKtXrwqHDh0S9u3bZ8GoLYNJjQHOnDkjABAOHjyo3XfgwAEBgHDu3Llnvv7q1as2n9Q0adJEGDx4sM6+mjVrCuPGjSu2/JgxY4SaNWvq7Hv77beFZs2alVmM5mbsNT+pdevWdpfUlOZ6C9WuXVuYOnWquUMrM+a45pdeekl44403zB1amTH1ml999VXho48+EiZPnmxXSY2x11uY1Ny/f98C0ZUNY6/5jz/+EORyuXD37l1LhGdVbH4ywIEDByCXy9G0aVPtvmbNmkEul2P//v1WjMw88vLycOzYMXTo0EFnf4cOHfRe34EDB4qUj4uLw9GjR5Gfn19msZqLKddsz8xxvWq1Gg8fPoS3t3dZhGh25rjmEydOYP/+/WjdunVZhGh2pl5zQkICLl++jMmTJ5d1iGZVmt9xgwYNEBQUhHbt2mHnzp1lGaZZmXLNGzduRKNGjfDZZ5+hcuXKqFGjBkaPHo2cnBxLhGxR5WpBS1NlZGTA39+/yH5/f39kZGRYISLzunPnDlQqFQICAnT2BwQE6L2+jIyMYssXFBTgzp07CAoKKrN4zcGUa7Zn5rje2bNn4/Hjx+jVq1dZhGh2pbnm4OBg3L59GwUFBZgyZQoGDBhQlqGajSnXfPHiRYwbNw5JSUlwdLSvW4Ip1xsUFIRvv/0WUVFRUCqVWLlyJdq1a4ddu3ahVatWlgi7VEy55itXrmDv3r1wdXXFhg0bcOfOHQwZMgT37t0TXb8a+/oEm9mUKVMwderUEsscOXIEACCRSIo8JwhCsfvt1dPX8qzrK658cfttmbHXbO9Mvd5Vq1ZhypQp+PXXX4tN8G2ZKdeclJSER48e4eDBgxg3bhzCw8PRp0+fsgzTrAy9ZpVKhddeew1Tp05FjRo1LBWe2RnzO46IiEBERIR2Ozo6Gmlpafjiiy/sIqkpZMw1q9VqSCQS/Pjjj9qVrufMmYOePXvi66+/hkwmK/N4LaVcJzXDhg1D7969SywTEhKCkydP4ubNm0Weu337dpFs2R75+vpCKpUWyfJv3bql9/oCAwOLLe/o6AgfH58yi9VcTLlme1aa612zZg369++Pn3/+GbGxsWUZplmV5ppDQ0MBAJGRkbh58yamTJliF0mNsdf88OFDHD16FCdOnMCwYcMAaG6AgiDA0dERW7duxfPPP2+R2E1hrr/jZs2a4YcffjB3eGXClGsOCgpC5cqVtQkNANSqVQuCIOCff/5B9erVyzRmSyrXfWp8fX1Rs2bNEh+urq6Ijo5GZmYmDh8+rH3toUOHkJmZiZiYGCtegXk4OzsjKioK27Zt09m/bds2vdcXHR1dpPzWrVvRqFEjODk5lVms5mLKNdszU6931apViI+Px08//YQXXnihrMM0K3P9jgVBgFKpNHd4ZcLYa/b09MSpU6eQnJysfQwePBgRERFITk7W6Udoi8z1Oz5x4oTNN5kXMuWamzdvjhs3buDRo0fafRcuXICDgwOCg4PLNF6Ls07/ZPvTsWNHoW7dusKBAweEAwcOCJGRkUWGdEdERAiJiYna7bt37wonTpwQfv/9dwGAsHr1auHEiRNCenq6pcN/psIhgkuXLhXOnDkjjBw5UqhQoYKQkpIiCIIgjBs3Tujbt6+2fOGQ7lGjRglnzpwRli5dardDug29ZkEQhBMnTggnTpwQoqKihNdee004ceKE8Pfff1sjfKMZe70//fST4OjoKHz99dc6Q18fPHhgrUswmrHXvGDBAmHjxo3ChQsXhAsXLgjLli0TPD09hQkTJljrEoxmyuf6SfY2+snY6507d66wYcMG4cKFC8Lp06eFcePGCQCE9evXW+sSjGbsNT98+FAIDg4WevbsKfz999/C7t27herVqwsDBgyw1iWUGSY1Brp7967w+uuvCx4eHoKHh4fw+uuvFxkSCEBISEjQbickJAgAijwmT55s0dgN9fXXXwtVq1YVnJ2dhYYNGwq7d+/WPtevXz+hdevWOuV37dolNGjQQHB2dhZCQkKERYsWWTji0jP2mov7fVatWtWyQZeCMdfbunXrYq+3X79+lg+8FIy55i+//FJ47rnnBDc3N8HT01No0KCBsHDhQkGlUlkhctMZ+7l+kr0lNYJg3PV++umnQrVq1QRXV1ehYsWKQosWLYTff//dClGXjrG/47NnzwqxsbGCTCYTgoODhffee0/Izs62cNRlTyII//buJCIiIrJj5bpPDREREYkHkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDRGVqZCQEMybN8/aYWDixIkYNGiQdrtNmzYYOXKk9QKykFOnTiE4OBiPHz+2dihEZY5JDZGdiI+PR/fu3Yvs37VrFyQSCR48eGDwsQy5oUdGRmLAgAHFPrdq1So4OTkVu3q9Lbp58ybmz5+PDz/80OjXpqSkID4+vtQxpKamokuXLqhQoQJ8fX3x7rvvIi8vz6DXCoKATp06QSKR4JdfftF5bubMmYiJiYGbmxu8vLyKvDYyMhJNmjTB3LlzS30NRLaOSQ0RFat///5Yu3YtsrOzizy3bNkyvPjiiwgICLBCZMZbunQpoqOjERISYvBrfvzxR1y+fFm7LQgCvv76a9y7d8/o86tUKrzwwgt4/Pgx9u7di9WrV2P9+vV4//33DXr9vHnzIJFIin0uLy8Pr7zyCt555x29r3/zzTexaNEiqFQqo2MnsidMaohE5u7du+jTpw+Cg4Ph5uaGyMhIrFq1Svt8fHw8du/ejfnz50MikUAikSAlJaXIcfr27QulUomff/5ZZ39qair+/PNP9O/fH5cvX0a3bt0QEBAAd3d3NG7cGNu3b9cbW0pKCiQSCZKTk7X7Hjx4AIlEgl27dmn3nTlzBp07d4a7uzsCAgLQt29f3LlzR/v8unXrEBkZCZlMBh8fH8TGxpbYvLJ69Wp07dq1yH61Wo0xY8bA29sbgYGBmDJliva50NBQ9OvXD9988w3++ecfdOzYERkZGZDJZHrPo8/WrVtx5swZ/PDDD2jQoAFiY2Mxe/ZsLFmyBFlZWSW+9q+//sKcOXOwbNmyYp+fOnUqRo0ahcjISL3HiIuLw927d7F7926jYyeyJ0xqiEQmNzcXUVFR2LRpE06fPo1Bgwahb9++OHToEABg/vz5iI6OxsCBA5Geno709HQoFIoix/Hx8UG3bt2QkJCgsz8hIQEBAQHo1KkTHj16hM6dO2P79u04ceIE4uLi0KVLF6Smppocf3p6Olq3bo369evj6NGj2Lx5M27evIlevXppn+/Tpw/eeustnD17Frt27UKPHj2gb23e+/fv4/Tp02jUqFGR51asWIEKFSrg0KFD+OyzzzBt2jRs27YNABATE4OdO3fiwIED2LVrF0aOHInp06drk5pOnTrB3d29xEehAwcOoE6dOqhUqZJ2X1xcHJRKJY4dO6b3vcjOzkafPn2wYMECBAYGGv9m/svZ2Rn16tVDUlKSyccgsgeO1g6AiAy3adMmnZslgCJNCpUrV8bo0aO128OHD8fmzZvx888/o2nTppDL5XB2doabm9szb5RvvfUWOnfujCtXriAsLAyCIGD58uWIj4+HVCpFvXr1UK9ePW35GTNmYMOGDdi4cSOGDRtm0jUuWrQIDRs2xMcff6zdt2zZMigUCly4cAGPHj1CQUEBevTogapVqwJAibUU165dgyAIOglFobp162Ly5MkAgOrVq2PBggXYsWMH2rdvj8OHD2P06NGIiYmBk5MT5s2bhwMHDuDDDz+Eq6srvvvuO+Tk5Bh0TRkZGUWa6ipWrAhnZ2dkZGTofd2oUaMQExODbt26GXSeklSuXLnYGjkiMWFSQ2RH2rZti0WLFunsO3ToEN544w3ttkqlwieffII1a9bg+vXrUCqVUCqVqFChgtHn69ChA4KDg5GQkIDp06fjzz//REpKCt58800AwOPHjzF16lRs2rQJN27cQEFBAXJyckpVU3Ps2DHs3LmzSPIGAJcvX0aHDh3Qrl07REZGIi4uDh06dEDPnj1RsWLFYo9XmHi4uroWea5u3bo620FBQbh16xYA4MKFC0hISIBUKsWUKVOQkJCAhQsXIjs7G66urqhcubJR11VcnxhBEPT2ldm4cSP+/PNPnDhxwqjz6COTyYrtH0UkJmx+IrIjFSpUQHh4uM7j6Zvr7NmzMXfuXIwZMwZ//vknkpOTERcXZ/BImyc5ODggPj4eK1asgFqtRkJCAlq1aoXq1asDAD744AOsX78eM2fORFJSEpKTkxEZGan3XA4Omq+cJ5uK8vPzdcqo1Wp06dIFycnJOo+LFy+iVatWkEql2LZtG/744w/Url0bX331FSIiInD16tViz+nr6wtA0wz1NCcnJ51tiUQCtVoNAHjjjTdQrVo1neeGDh0Kb29vAMY1PwUGBhapkbl//z7y8/P1drb+888/cfnyZXh5ecHR0RGOjpr/g7788sto06ZNsa8pyb179+Dn52f064jsCWtqiEQmKSkJ3bp109beqNVqXLx4EbVq1dKWcXZ2NngkzJtvvokZM2YgMTERiYmJ+Oabb3TOFR8fj5deegkA8OjRoxKbOApvqunp6WjQoAEA6HQaBoCGDRti/fr1CAkJ0d7InyaRSNC8eXM0b94ckyZNQtWqVbFhwwa89957RcpWq1YNnp6eOHPmDGrUqGHQNT8pJCQEy5cvL7LfmOan6OhozJw5E+np6QgKCgKg6Tzs4uKCqKioYl8zbty4IkPqIyMjMXfuXHTp0sW4iwBw+vRp9OzZ0+jXEdkTJjVEIhMeHo7169dj//79qFixIubMmYOMjAydpCYkJASHDh1CSkoK3N3d4e3tra1FeVpoaCief/55DBo0CE5OTjo3xvDwcCQmJqJLly6QSCSYOHGitqajODKZDM2aNcMnn3yCkJAQ3LlzBx999JFOmaFDh2LJkiXo06cPPvjgA/j6+uLSpUtYvXo1lixZgqNHj2LHjh3o0KED/P39cejQIdy+fVvn+p7k4OCA2NhY7N27t9h5fkxlTPNThw4dULt2bfTt2xeff/457t27h9GjR2PgwIHw9PQEAFy/fh3t2rXD999/jyZNmiAwMLDYPk9VqlRBaGiodjs1NRX37t1DamoqVCqVNkkMDw/X1halpKTg+vXriI2NLcUVE9k+Nj8RiczEiRPRsGFDxMXFoU2bNggMDCxyMx89ejSkUilq164NPz+/Z/aB6d+/P+7fv4/evXvDzc1Nu3/u3LmoWLEiYmJi0KVLF8TFxaFhw4YlHmvZsmXIz89Ho0aNMGLECMyYMUPn+UqVKmHfvn1QqVSIi4tDnTp1MGLECMjlcjg4OMDT0xN79uxB586dUaNGDXz00UeYPXs2OnXqpPecgwYNwurVq0tMuMqSVCrF77//DldXVzRv3hy9evVC9+7d8cUXX2jL5Ofn4/z580b3e5k0aRIaNGiAyZMn49GjR2jQoAEaNGiAo0ePasusWrUKHTp00HasJhIriaBvHCQRkUgIgoBmzZph5MiR6NOnj7XDsSilUonq1atj1apVaN68ubXDISpTrKkhItGTSCT49ttvUVBQYO1QLO7atWuYMGECExoqF1hTQ0RERKLAmhoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiIShf8HUI7VPcvUMJgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the Williams Plot of the model, a diagnostic of points which are outliers or have high leverage on the model\n", + "model1.williams_plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "0cedfc9d-83bd-43a3-908b-0d2cfb489d34", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R2 0.7932755997633876\n", + "Q2 0.7099699197171896\n", + "RMSE 0.2508516645820538\n", + "coef [-1.10169978 -2.12082577]\n", + "intercept -1.6192627152834516\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABy8klEQVR4nO3dd1hT59sH8G/YYauIDFFQq7YuwIGjVnCi1lGriBv3qFparKOtBW3V1lFn3QMHFVHxp3XVSdVaF6Nu6hZBiqgQkLDP+wclrxEJAYGTwPdzXbkkJ8855z4J8dw8UyIIggAiIiIieisdsQMgIiIi0mRMloiIiIhUYLJEREREpAKTJSIiIiIVmCwRERERqcBkiYiIiEgFJktEREREKuiJHUBFkJubi7i4OJiZmUEikYgdDhEREalBEASkpKTAzs4OOjqF1x8xWSoFcXFxcHBwEDsMIiIiKoGYmBjUrFmz0NeZLJUCMzMzAHlvtrm5ucjREBERkTpkMhkcHBwU9/HCMFkqBflNb+bm5kyWiIiItExRXWjYwZuIiIhIBSZLRERERCowWSIiIiJSgX2WylFOTg6ysrLEDoO0gL6+PnR1dcUOg4iIwGSpXAiCgPj4eCQlJYkdCmkRS0tL2NjYcO4uIiKRMVkqB/mJkrW1NYyNjXnzI5UEQUBaWhoSEhIAALa2tiJHRERUuTFZKmM5OTmKRKlatWpih0NaQiqVAgASEhJgbW3NJjkiIhGxg3cZy++jZGxsLHIkpG3yf2fYz42ISFxMlsoJm96ouPg7Q0SkGZgsEREREanAZImIiIhIBSZLVGLu7u7w9fXV+GMSERG9CyZLWkIQBDxLy0CMTI5naRkQBKHMz+nj44O+ffuW+XmIiIgKk5OTg0OHDokaA6cO0AKxKXJcTZBBnp2r2CbV00FTa3PYm0lFjIyIiKjs/PvvvxgyZAhOnjyJnTt3wtvbW5Q4WLOk4WJT5LgYl6SUKAGAPDsXF+OSEJsiL5c4Xr16heHDh8PU1BS2trZYsmRJgTKZmZmYPn067O3tYWJiAjc3N4SFhSlef/78OQYNGoSaNWvC2NgYTZo0wc6dO8slfiIi0i6nTp2Cs7MzTp48CWNjY+Tm5ha9UxlhsqTBBEHA1QSZyjJXE2Tl0iT31Vdf4fTp09i3bx+OHTuGsLAwhIeHK5UZOXIk/vzzTwQHB+Pq1asYMGAAPD09cefOHQBAeno6mjdvjoMHD+L69esYN24chg0bhosXL5Z5/EREpB1ycnIwZ84cdO7cGfHx8WjUqBEuX76MwYMHixYTm+E0WKI8s0CN0pvk2blIlGeiurFhmcWRmpqKTZs2Ydu2bejSpQsAYOvWrahZs6aizL1797Bz5048efIEdnZ2AIBp06bh6NGj2LJlC+bPnw97e3tMmzZNsc+UKVNw9OhR7N69G25ubmUWPxERaYf4+HgMGTIEp06dAgCMGjUKK1euFH1iZyZLGiy9iESpuOVK6t69e8jMzESbNm0U26pWrYoGDRoonkdEREAQBNSvX19p34yMDMUyLzk5Ofjxxx+xa9cuxMbGIiMjAxkZGTAxMSnT+ImISPOdOHECQ4YMQUJCAkxMTLB27VoMHTpU7LAAMFnSaEZ66rWSqluupNRp5svNzYWuri7Cw8MLrGNmamoKAFiyZAmWLl2KZcuWoUmTJjAxMYGvry8yMzPLJG4iItJ8OTk5mDt3Lr7//nsIgoDGjRtj9+7daNiwodihKWhNn6V58+ahbdu2MDY2hqWlpVr7SCSStz4WLVqkKOPu7l7gdbF627/JSmoAaRGJkFRPB1ZSgzKNo169etDX18eFCxcU216+fIl//vlH8dzFxQU5OTlISEhAvXr1lB42NjYAgLNnz6JPnz4YOnQomjVrhjp16ij6MxERUeXz9OlTdO7cGXPnzoUgCBgzZgwuXryoUYkSoEXJUmZmJgYMGICJEyeqvc/Tp0+VHps3b4ZEIsGnn36qVG7s2LFK5datW1fa4ZeIRCJBU2tzlWWaWpuX+RpipqamGD16NL766iucPHkS169fh4+PD3R0/v/Xp379+hgyZAiGDx+O0NBQPHjwAJcvX8ZPP/2Ew4cPA8hLuo4fP47z58/j1q1bGD9+POLj48s0diIi0kzHjx+Hs7MzwsLCYGpqiqCgIGzYsEH0/klvozXNcHPmzAEABAYGqr1Pfo1Gvv3798PDwwN16tRR2m5sbFygrCr5fW3yyWSqR6y9C3szKdzsIPo8S4sWLUJqaip69+4NMzMz+Pn5ITk5WanMli1b8MMPP8DPzw+xsbGoVq0a2rRpgx49egAAZs+ejQcPHqBbt24wNjbGuHHj0Ldv3wLHISKiiis7OxsBAQGYP38+BEFA06ZNERISotQPVtNIhPIYd16KAgMD4evri6SkpGLt9++//6JmzZrYunWr0vBDd3d33LhxA4IgoEaNGujevTv8/f1hZmZW6LECAgIUydvrkpOTYW6uXBOUnp6OBw8ewMnJCUZGRsWK+XWCICBRnon07FwY/df0xlXpK7bS+t0hItIUcXFxGDRoEM6cOQMAGD9+PJYuXQqpVJwJlmUyGSwsLN56/36d1tQsvautW7fCzMwM/fr1U9o+ZMgQODk5wcbGBtevX8esWbPw999/4/jx44Uea9asWfjyyy8Vz2UyGRwcHMosdiCvSa4spwcgIiIqS7///juGDRuGZ8+ewdTUFOvXr8egQYPEDkstoiZLhdXQvO7y5cto0aLFO59r8+bNGDJkSIG/0MeOHav4uXHjxnjvvffQokULREREwNXV9a3HMjQ0hKEhExciIqKiZGdnw9/fH/PnzwcANGvWDCEhIQWmmtFkoiZLkydPLnLkmaOj4zuf5+zZs4iOjsauXbuKLOvq6gp9fX3cuXOn0GSJiIiIivbkyRMMHjwYZ8+eBQBMmDABS5cu1bquBaImS1ZWVrCysirz82zatAnNmzdHs2bNiix748YNZGVlwdbWtszjIiIiqqiOHDmCYcOG4fnz5zAzM8PGjRvh5eUldlglojVTBzx+/BhRUVF4/PgxcnJyEBUVhaioKKSmpirKNGzYEPv27VPaTyaTYffu3RgzZkyBY967dw9z587FlStX8PDhQxw+fBgDBgyAi4sL2rVrV+bXREREVNFkZ2dj1qxZ6NGjB54/fw4XFxdERERobaIEaFEH7++++w5bt25VPHdxcQEAnD59Gu7u7gCA6OjoAsPQg4ODIQjCWzuRGRgY4OTJk1i+fDlSU1Ph4OCAnj17wt/fv8As1ERERKRaTEwMBg0ahD///BMAMGnSJCxZskTrmt3epHVTB2giVUMPOfybSoq/O0SkTQ4fPozhw4fj+fPnMDc3x8aNGzFgwACxw1JJ3akDtKYZjoiIiDRPVlYWpk+fjp49e+L58+dwdXVFRESExidKxcFkicqNu7s7fH191S7/8OFDSCQSREVFlVlMRERUco8fP0aHDh0Ua65OmTIF58+fR926dUWOrHQxWaICCluAOP/h4+NTouOGhobi+++/V7u8g4MDnj59isaNG5fofOrKT8ryH2ZmZmjUqBE+++yzEi306+joiGXLlpV+oEREGuTgwYNwcXHBX3/9BXNzc+zZswcrVqyokPMQak0H70ovNwd4dhaQPwWktkD19oBO2XRCf/r0qeLnXbt24bvvvkN0dLRi25vT0mdlZUFfX7/I41atWrVYcejq6hZrzb53deLECTRq1AhpaWm4du0ali9fjmbNmuG3335Dp06dyi0OIiJNlpWVha+//hqLFy8GALRo0QK7du0qsO5qRcKaJW0QEwoccAROegDnB+f9e8Axb3sZsLGxUTwsLCwgkUgUz9PT02FpaYmQkBC4u7vDyMgIO3bswPPnzzFo0CDUrFkTxsbGaNKkCXbu3Kl03Deb4RwdHTF//nyMGjUKZmZmqFWrFtavX694/c1muLCwMEgkEpw8eRItWrSAsbEx2rZtq5TIAcAPP/wAa2trmJmZYcyYMZg5cyacnZ2LvO5q1arBxsYGderUQZ8+fXDixAm4ublh9OjRyMnJAZA33USfPn1Qo0YNmJqaomXLljhx4oTSNT569AhffPGFoqYKgFrvDxGRpnv06BE++ugjRaI0depUnDt3rkInSgCTJc0XEwqc7Q+kPVHenhabt72MEqaizJgxA1OnTsWtW7fQrVs3pKeno3nz5jh48CCuX7+OcePGYdiwYbh48aLK4yxZsgQtWrRAZGQkJk2ahIkTJ+L27dsq9/nmm2+wZMkSXLlyBXp6ehg1apTitaCgIMybNw8//fQTwsPDUatWLaxZs6ZE16ijo4PPP/8cjx49Qnh4OAAgNTUVPXr0wIkTJxAZGYlu3bqhV69eePz4MYC8psaaNWti7ty5ePr0qaKWrqTvDxGRpjhw4ABcXFxw4cIFWFhYIDQ0FMuXL6+QzW4FCPTOkpOTBQBCcnJygdfkcrlw8+ZNQS6XF//AOdmCsK+mIAShkIdEEPY55JUrI1u2bBEsLCwUzx88eCAAEJYtW1bkvj169BD8/PwUzzt06CB8/vnniue1a9cWhg4dqniem5srWFtbC2vWrFE6V2RkpCAIgnD69GkBgHDixAnFPocOHRIAKN5fNzc34bPPPlOKo127dkKzZs0KjfPN87zu1q1bAgBh165dhe7/wQcfCCtXrlS6rqVLlxZaPt+b78+b3ul3h4iolGRkZAhffvmlAEAAILRs2VK4f/++2GGVClX379exZkmTPTtbsEZJiQCkxeSVK2dvLm6ck5ODefPmoWnTpqhWrRpMTU1x7NgxRY1LYZo2bar4Ob+5LyEhQe198pelyd8nOjoarVq1Uir/5vPiEP6bhiy/Oe3Vq1eYPn06PvjgA1haWsLU1BS3b98u8jpL+v4QEYnp4cOHaN++PX7++WcAgK+vL86dOwcnJyeRIytf7OCtyeRPiy5TnHKlyMTEROn5kiVLsHTpUixbtgxNmjSBiYkJfH19kZmZqfI4b3YMl0gkyM3NVXuf/CTm9X3yt+UT3mHe1Vu3bgGA4j+Gr776Cr///jsWL16MevXqQSqVon///kVeZ0nfHyIisezfvx8+Pj5ISkqCpaUlAgMD0adPH7HDEgWTJU0mVXMxX3XLlaGzZ8+iT58+GDp0KIC85OXOnTt4//33yzWOBg0a4NKlSxg2bJhi25UrV0p0rNzcXKxYsQJOTk6K5XXOnj0LHx8ffPLJJwDy+jA9fPhQaT8DAwNFh/B8mvL+EBEVJTMzE9OnT8fy5csBAG5ubggODoajo6O4gYmIzXCarHp7wLgmAEkhBSSAsUNeOZHVq1cPx48fx/nz53Hr1i2MHz8e8fHx5R7HlClTsGnTJmzduhV37tzBDz/8gKtXrxaobXqb58+fIz4+Hvfv38eBAwfQuXNnXLp0CZs2bVKsFVivXj2EhoYiKioKf//9NwYPHlygJszR0RFnzpxBbGwsEhMTFftpwvtDRKTKgwcP8OGHHyoSJT8/P5w5c6ZSJ0oAkyXNpqMLNF/+35M3b/b/PW++rMzmWyqO2bNnw9XVFd26dYO7uztsbGzQt2/fco9jyJAhmDVrFqZNmwZXV1c8ePAAPj4+aq2t1rlzZ9ja2qJJkyaYOXMm3n//fVy9ehUeHh6KMkuXLkWVKlXQtm1b9OrVC926dYOrq6vScebOnYuHDx+ibt26qF69OgDNeX+IiAqzb98+uLi44PLly6hSpQr279+PxYsXw8DAQOzQRMeFdEtBmS+kGxMKhH+u3Nnb2CEvUXLoV/LAK4kuXbrAxsYG27dvFzuUYuFCukRUHjIyMjB9+nSsWLECANC6dWsEBwejdu3aIkdW9tRdSJd9lrSBQz/Avk+5zeCtzdLS0rB27Vp069YNurq62LlzJ06cOIHjx4+LHRoRkca5f/8+vLy8FHPJTZs2DfPnz1drVYbKhMmSttDRBWq4ix2FxpNIJDh8+DB++OEHZGRkoEGDBti7dy86d+4sdmhERBplz549GD16NGQyGapWrYpt27ahZ8+eYoelkZgsUYUilUqVlh8hIiJlGRkZmDZtGlatWgUAaNu2LYKDg+Hg4CByZJqLHbyJiIgqiXv37qFt27aKRGn69OkICwtjolQE1iwRERFVArt378aYMWMgk8lQrVo1bNu2DT169BA7LK3AmiUiIqIKLD09HZ999hm8vLwgk8nQrl07REVFMVEqBiZLREREFdSdO3fQpk0brF69GgAwa9YshIWFoWbNmiJHpl3YDEdERFQB7dq1C2PHjkVKSgqsrKywfft2eHp6ih2WVmLNEhERUQWSnp6OiRMnwtvbGykpKWjfvj2ioqKYKL0DJktEREQVxD///IPWrVtj7dq1kEgk+Prrr3Hq1CnY29uLHZpWY7JEBUgkEpUPHx+fEh/b0dERy5YtU6tc/vmkUikcHR3h5eWFU6dOFfucPj4+XIeNiCq8nTt3onnz5vj7779RvXp1HD16FPPmzYOeHnvcvCsmS1TA06dPFY9ly5bB3NxcaVv+atRlbe7cuXj69Cmio6Oxbds2WFpaonPnzpg3b165nJ+ISBvI5XKMHz8egwcPRmpqKjp06ICoqCh07dpV7NAqDCZLVICNjY3iYWFhAYlEorTtzJkzaN68OYyMjFCnTh3MmTMH2dnZiv0DAgJQq1YtGBoaws7ODlOnTgUAuLu749GjR/jiiy8UtUaqmJmZwcbGBrVq1cJHH32E9evXY/bs2fjuu+8QHR0NAMjJycHo0aPh5OQEqVSKBg0aKCVzAQEB2Lp1K/bv3684Z1hYGABgxowZqF+/PoyNjVGnTh3Mnj0bWVlZpfxuEhGVnejoaLRu3Rrr16+HRCLBt99+ixMnTsDOzk7s0CoU1s2VM0EQkJaWJsq5jY2Ni0xQivL7779j6NChWLFiBdq3b4979+5h3LhxAAB/f3/s2bMHS5cuRXBwMBo1aoT4+Hj8/fffAIDQ0FA0a9YM48aNw9ixY0t0/s8//xzff/899u/fj+nTpyM3Nxc1a9ZESEgIrKyscP78eYwbNw62trbw8vLCtGnTcOvWLchkMmzZsgUAULVqVQB5yVhgYCDs7Oxw7do1jB07FmZmZpg+ffo7vUdEROUhKCgI48ePx6tXr2BtbY0dO3agS5cuYodVITFZKmdpaWkwNTUV5dypqakwMTF5p2PMmzcPM2fOxIgRIwAAderUwffff4/p06fD398fjx8/ho2NDTp37gx9fX3UqlULrVq1ApCXpOjq6ipqjEqiatWqsLa2xsOHDwEA+vr6mDNnjuJ1JycnnD9/HiEhIfDy8oKpqSmkUikyMjIKnPPbb79V/Ozo6Ag/Pz/s2rWLyRIRabS0tDR8/vnn2LhxI4C8Wvtff/0Vtra2IkdWcTFZomIJDw/H5cuXlfoN5eTkID09HWlpaRgwYACWLVuGOnXqwNPTEz169ECvXr1KtYOhIAhKNWRr167Fxo0b8ejRI8jlcmRmZsLZ2bnI4+zZswfLli3D3bt3kZqaiuzsbJibm5danEREpe327dsYMGAArl+/DolEgu+++w6zZ8+Grq6u2KFVaEyWypmxsTFSU1NFO/e7ys3NxZw5c9CvX78CrxkZGcHBwQHR0dE4fvw4Tpw4gUmTJmHRokX4448/oK+v/87nf/78OZ49ewYnJycAQEhICL744gssWbIEbdq0gZmZGRYtWoSLFy+qPM6FCxfg7e2NOXPmoFu3brCwsEBwcDCWLFnyzjESUdkTBAGJ8kykZ+fCSE8HVlKDd+5moOm2b9+OiRMn4tWrV6hRowaCgoLQqVMnscOqFLQiWXr48CG+//57nDp1CvHx8bCzs8PQoUPxzTffwMDAoND9BEHAnDlzsH79erx8+RJubm745Zdf0KhRI0WZjIwMTJs2DTt37oRcLkenTp2wevXqMpsKXiKRvHNTmJhcXV0RHR2NevXqFVpGKpWid+/e6N27Nz777DM0bNgQ165dg6urKwwMDJCTk1Pi8y9fvhw6OjqKqQDOnj2Ltm3bYtKkSYoy9+7dU9rnbef8888/Ubt2bXzzzTeKbY8ePSpxXERUfmJT5LiaIIM8O1exTaqng6bW5rA3k4oYWdlIS0vDlClTsHnzZgBAx44dERQUVOLuDFR8WpEs3b59G7m5uVi3bh3q1auH69evY+zYsXj16hUWL15c6H4LFy7Ezz//jMDAQNSvXx8//PADunTpgujoaJiZmQEAfH198dtvvyE4OBjVqlWDn58fPv74Y4SHh7Na8y2+++47fPzxx3BwcMCAAQOgo6ODq1ev4tq1a/jhhx8QGBiInJwcuLm5wdjYGNu3b4dUKkXt2rUB5PUNOnPmDLy9vWFoaAgrK6tCz5WSkoL4+HhkZWXhwYMH2LFjBzZu3IgFCxYokrV69eph27Zt+P333+Hk5ITt27fj8uXLipqn/HP+/vvviI6ORrVq1WBhYYF69erh8ePHCA4ORsuWLXHo0CHs27evbN88InpnsSlyXIxLKrBdnp2Li3FJcLNDhUqYbt68CS8vL9y4cQMSiQT+/v749ttveX8qb4KWWrhwoeDk5FTo67m5uYKNjY3w448/Kralp6cLFhYWwtq1awVBEISkpCRBX19fCA4OVpSJjY0VdHR0hKNHjxZ67PT0dCE5OVnxiImJEQAIycnJBcrK5XLh5s2bglwuL8llim7Lli2ChYWF0rajR48Kbdu2FaRSqWBubi60atVKWL9+vSAIgrBv3z7Bzc1NMDc3F0xMTITWrVsLJ06cUOz7119/CU2bNhUMDQ0FVb9+tWvXFgAIAAQDAwOhVq1agpeXl3Dq1Cmlcunp6YKPj49gYWEhWFpaChMnThRmzpwpNGvWTFEmISFB6NKli2BqaioAEE6fPi0IgiB89dVXQrVq1QRTU1Nh4MCBwtKlSwtcq5i0/XeHqLTl5uYKh+/GC3tvxxX6OHw3XsjNzRU71FIRGBgoGBsbCwAEGxubAv//0btLTk4u9P79OokgCIKIuVqJffvttzh69CiuXLny1tfv37+PunXrIiIiAi4uLortffr0gaWlJbZu3YpTp06hU6dOePHiBapUqaIo06xZM/Tt21dplNXrAgIC3vpacnJygQ7C6enpePDgAZycnGBkZFSSS6VKir87RMqepWXgbMyLIsu1d6iK6saG5RBR2Xj16hUmT56MwMBAAEDnzp2xY8cO1KhRQ9zAKiCZTAYLC4u33r9fp5WTUt67dw8rV67EhAkTCi0THx8PAAV+uWrUqKF4LT4+HgYGBkqJ0ptl3mbWrFlITk5WPGJiYkp6KUREpKb01/oolUY5TXTjxg20atUKgYGB0NHRwdy5c3H06FEmSiITNVkKCAgoch2yN2uO4uLi4OnpiQEDBmDMmDFFnuPN0RHCG8PO36aoMoaGhjA3N1d6EBFR2TLSU++WpW45TRMYGIiWLVvi5s2bsLW1xcmTJzktgIYQtYP35MmT4e3trbKMo6Oj4ue4uDh4eHigTZs2WL9+vcr98kcJxMfHK03UlZCQoMjQbWxskJmZiZcvXyrVLiUkJKBt27bFvRwiIipDVlIDSPV0lEbBvUn63zQC2iQ1NRWfffYZtm3bBgDo0qULduzYAWtra5Ejo3yiJktWVlYqR0O9LjY2Fh4eHmjevDm2bNkCHR3Vfzk4OTnBxsYGx48fV/RZyszMxB9//IGffvoJANC8eXPo6+vj+PHj8PLyApC3iOz169excOHCd7gyIiIqbRKJBE2tzd86Gi5fU2tzrZpv6fr16xgwYABu374NHR0dfP/995g5c2aR9zgqX1rxacTFxcHd3R0ODg5YvHgxnj17hvj4+AL9iho2bKgY/i2RSODr64v58+dj3759uH79Onx8fGBsbIzBgwcDACwsLDB69Gj4+fnh5MmTiIyMxNChQ9GkSRN07ty5VK9BS/vRk4j4O0NUkL2ZFG52lpC+0dQm1dOBm52l1kwbIAgCNm3ahFatWuH27duws7PD6dOn8fXXXzNR0kBaMc/SsWPHcPfuXdy9e7fAZJGv31Cio6ORnJyseD59+nTI5XJMmjRJMSnlsWPHFHMsAcDSpUuhp6cHLy8vxaSUgYGBpdZGnD9rdVpaGqRS7fgSk2bIX3C5NGY+J6pI7M2ksDM10toZvFNTUzFx4kTs2LEDANCtWzds374d1atXFzkyKozWTh2gSYoaevj06VMkJSXB2toaxsbGWvOFJnEIgoC0tDQkJCTA0tKSi2MSVSBXr16Fl5cXoqOjoauri++//x4zZsxgbZJI1J06QCtqlrRdfmfzhIQEkSMhbWJpacnlDIgqCEEQsHHjRkydOhXp6emwt7dHcHAwPvzwQ7FDIzUwWSoHEokEtra2sLa2RlZWltjhkBbQ19fncGGiCiIlJQUTJkzAr7/+CgDo3r07tm3bpvYAJxIfk6VypKuryxsgEVEl8vfff8PLywv//PMPdHV1MW/ePHz11VdsdtMyTJaIiIhKmSAI2LBhA6ZOnYqMjAzUrFkTwcHBaNeundihaRVBEDSiIz+TJSKiCkZTbjCVlUwmw/jx4xEcHAwA6NmzJ7Zu3Ypq1aqJHJl2iU2R42qCTGkSUqmeDppam5f7FBFMloiIKhBNusFURpGRkfDy8sLdu3ehq6uLH3/8EV9++SWb3YopNkX+1slH5dm5uBiXBDc7lOvvMz89IqIKIv8G8+ZyIPk3mNgUuUiRVXyCIGDNmjVo06YN7t69CwcHB5w5cwbTpk1jolRMgiDgaoJMZZmrCbJynbiXnyARUQWgiTeYykImk8Hb2xuTJk1CRkYGPv74Y0RGRnKN0RJKlGeqXP8PyPsDIFGeWU4RMVkiIqoQNPEGUxlERETA1dUVISEh0NPTw+LFi3HgwAH2T3oH6UX8Hhe3XGlgnyUiogpAE28wFZkgCFi9ejW+/PJLZGZmolatWti1axdat24tdmhaz0hPvXocdcuVBiZLREQVgCbeYCqq5ORkjBkzBnv27AEA9O7dG1u2bEHVqlVFjqxisJIaQKqno7KmVPrfKM/ywm8NEVEFkH+DUaW8bzAVUXh4OFxdXbFnzx7o6enh559/xv/+9z8mSqVIIpGgqXXh67QBQFNr83KdDoPJEhFRBaCJN5iKRBAErFq1Cm3btsX9+/dRu3ZtnDt3Dl988QXf0zJgbyaFm51lgT8ApHo6cLOz5DxLRERUMnk3GHCepVKWlJSE0aNHIzQ0FADQt29fbN68GVWqVBE5sorN3kwKO1MjjZhglckSEVEFokk3mIrg8uXLGDhwIB48eAB9fX0sXrwYU6ZMqRzvZ24O8OwsIH8KSG2B6u0BnfJd31QikaC6sWG5nvNtmCwREVUwmnKD0WaCIGDFihX46quvkJWVBUdHR4SEhKBly5Zih1Y+YkKB8M+BtCf/v824JtB8OeDQT7y4RMI+S0RERK95+fIl+vXrB19fX2RlZaFfv36IjIysXInS2f7KiRIApMXmbY8JFScuETFZIiIi+s+lS5fg6uqK//3vfzAwMMCKFSuwZ88eWFpaih1a+cjNyatRwttmev9vW7hvXrlKhMkSERFVeoIgYOnSpWjXrh0ePnyIOnXq4Pz585Wnf1K+Z2cL1igpEYC0mLxylQj7LBERUaX24sULjBw5EgcOHAAA9O/fHxs3boSFhYXIkYlA/rR0y1UQrFkiIqJK68KFC3BxccGBAwdgYGCAVatWISQkpHImSkDeqLfSLFdBMFkiIiKNIAgCnqVlIEYmx7O0DAjC2/rNlN65fv75Z7Rv3x6PHz9G3bp18ddff+Gzzz6rXM1ub6rePm/UGwp7DySAsUNeuUqEzXBERCS62BR5uU2m+eLFC/j4+OC3334DAHh5eWHDhg0wN1c9A3qloKObNz3A2f7IS5heT1j/S6CaLyv3+ZbExpolIiISVWyKHBfjkgosnCrPzsXFuCTEpshL7Vx//fUXnJ2d8dtvv8HQ0BBr1qxBcHAwE6XXOfQD2u8BjO2VtxvXzNteCedZYs0SERGJRhAEXE2QqSxzNUEGO1Ojd2oey83NxZIlS/D1118jOzsb9erVQ0hICFxcXEp8zArNoR9g30f0Gbw1BZMlIiISTaI8s0CN0pvk2blIlGeWeFby58+fY8SIETh06BAAYODAgVi/fj1rk4qiowvUcBc7Co3AZImIiESTXkSiVNxyb/rzzz/h7e2NJ0+ewNDQEMuXL8e4ceMqdyfuciIIQoVZo5DJEhERicZIT72us+qWy5ebm4tFixbhm2++QU5ODurXr4+QkBA0a9asJGFSMZVnh/3ywA7eREQkGiupAaRFJELS/2ol1JWYmIiPP/4YM2fORE5ODgYNGoQrV64wUSon5dlhv7wwWSIiItFIJBI0tVbdd6iptbnazTfnzp2Ds7Mzjhw5AiMjI6xfvx5BQUEwMzMrjXCpCOp22C/LObTKglYkSw8fPsTo0aPh5OQEqVSKunXrwt/fH5mZmYXuk5WVhRkzZqBJkyYwMTGBnZ0dhg8fjri4OKVy7u7ukEgkSg9vb++yviQiIvqPvZkUbnaWBWqYpHo6cLOzVKvZJjc3Fz/++CPc3d0RGxuLBg0a4OLFixg7dqzW9pPRRsXpsK9NtKLP0u3bt5Gbm4t169ahXr16uH79OsaOHYtXr15h8eLFb90nLS0NERERmD17Npo1a4aXL1/C19cXvXv3xpUrV5TKjh07FnPnzlU8l0q1rz2ViEib2ZtJYWdqVKIOwc+ePcPw4cNx9OhRAMDQoUOxZs0amJqalnXY9Iay7rAvFq1Iljw9PeHp6al4XqdOHURHR2PNmjWFJksWFhY4fvy40raVK1eiVatWePz4MWrVqqXYbmxsDBsbm7IJnoiI1CKRSIo9PcCZM2cwaNAgxMXFwcjICL/88gtGjhzJ2iSRlFWHfbFpV7SvSU5ORtWqVYu9j0QigaWlpdL2oKAgWFlZoVGjRpg2bRpSUlJUHicjIwMymUzpQURE5Sc3Nxfz5s2Dh4cH4uLi0LBhQ1y6dAmjRo1ioiSisuiwrwm0ombpTffu3cPKlSuxZMkStfdJT0/HzJkzMXjwYKWJyIYMGQInJyfY2Njg+vXrmDVrFv7+++8CtVKvW7BgAebMmfNO10BERCWTkJCAYcOG4dixYwCAYcOGYfXq1Wx20wD5HfYvxiUVWqY4HfY1hUQQsUt6QEBAkUnH5cuX0aJFC8XzuLg4dOjQAR06dMDGjRvVOk9WVhYGDBiAx48fIywsTOWsreHh4WjRogXCw8Ph6ur61jIZGRnIyMhQPJfJZHBwcEBycjJnhCUiKkNhYWEYPHgwnj59CqlUil9++QU+Pj5ad/Ot6LRlniWZTAYLC4si79+iJkuJiYlITExUWcbR0RFGRkYA8hIlDw8PuLm5ITAwEDo6RbciZmVlwcvLC/fv38epU6dQrVo1leUFQYChoSG2b9+OgQMHqnUd6r7ZRERlqSLNmPymnJwczJ8/HwEBAcjNzcX777+P3bt3o1GjRmKHRoXQht9Hde/fojbDWVlZwcrKSq2ysbGx8PDwQPPmzbFly5ZiJUp37tzB6dOni0yUAODGjRvIysqCra2tWnEREWkCbflLviT+/fdfDB06FCdOnAAA+Pj4YNWqVTAxMRE5Ms0nZsJSkg77mkrUmiV15Te91apVC9u2bYOu7v+vevz6KLaGDRtiwYIF+OSTT5CdnY1PP/0UEREROHjwIGrUqKEoV7VqVRgYGODevXsICgpCjx49YGVlhZs3b8LPzw9SqRSXL19WOo8qrFkiIjHlz5hcGHXnKtJEp0+fxuDBgxEfHw9jY2OsXr0aI0aMEDssrVCRE+jSohU1S+o6duwY7t69i7t376JmzZpKr72e60VHRyM5ORkA8OTJExw4cAAA4OzsrLTP6dOn4e7uDgMDA5w8eRLLly9HamoqHBwc0LNnT/j7+6udKBERiUndGZPtTI00rglElZycHMybNw9z5sxBbm4uGjVqhJCQEHzwwQdih6YVCkug85cccbMDE6Zi0IqaJU3HmiUiEsuztAycjXlRZLn2DlW1pkkkPj4eQ4YMwalTpwAAo0aNwsqVK2FsbCxyZNpBEAQcvZ+gciZtqZ4OPOtYa1UCXRbUvX9r7TxLRERU8WZMPnnyJJydnXHq1CkYGxtj27Zt2LRpExOlYqioS46IickSEZEWqygzJufk5MDf3x9dunTBv//+i8aNG+PKlSsYNmyY2KFpnYqWQGsCreizREREb5c/Y3JRTS6aPGPy06dPMWTIEJw+fRoAMGbMGCxfvpy1SSVUURJoTcJ3iohIi+XPmKyKJs+YfPz4cTg7O+P06dMwMTHBjh07sGHDBiZK76CiLjkiJiZLRERazt5MCjc7ywI3SKmejsZOG5CdnY3Zs2ejW7duSEhIQJMmTRAeHo4hQ4aIHZrW0/YEWhOxGY6IqAKwN5PCztRI42dMBvLmzhs8eDD++OMPAMC4ceOwbNkySKWal9Rpq7wEGpxnqZQwWSIiqiC0YcbkY8eOYejQoXj27BlMTU2xfv16DBo0SOywKiRtSqA1HZMlIiIqc9nZ2QgICMD8+fMhCAKaNWuGkJAQ1K9fX+zQKjRtSKC1AZMlIiIqU7GxsRg0aBDOnj0LAJgwYQKWLl2qWCSdSNMxWSIiojJz9OhRDBs2DImJiTAzM8OGDRswcOBAscMiKhaOhiMiolKXnZ2NWbNmoXv37khMTISzszPCw8OZKJFWYs0SERGVqidPnmDQoEE4d+4cAGDSpElYsmQJm91IazFZIiKiUnPkyBEMGzYMz58/h5mZGTZu3AgvLy+xwyJ6J2yGIyKid5aVlYUZM2agR48eeP78OVxdXREREcFEiSoE1iwREdE7iYmJgbe3N86fPw8AmDx5MhYvXgxDQw5Zp4qByRIREZXYwYMHMWLECLx48QLm5ubYtGkT+vfvL3ZYRKWKzXBERFRsWVlZmD59Onr16oUXL16gefPmiIiIYKJEFRJrloiIqFgeP34Mb29v/PXXXwCAqVOnYuHChWx2owqLyRIREantt99+w4gRI/Dy5UtYWFhg8+bN6Nevn9hhEZUpNsMREVGRMjMz4efnh969e+Ply5do2bIlIiMjmShRpcCaJSIiUunRo0cYOHAgLl68CADw9fXFTz/9BAMDA5EjIyofTJaIiKhQ+/fvh4+PD5KSkmBpaYktW7agb9++YodFVK7YDEdERAVkZmbiiy++QN++fZGUlIRWrVohMjKSiRJVSkyWiIhIyYMHD/Dhhx9i2bJlAIAvv/wSZ8+ehaOjo6hxEYmFzXBERKSwb98+jBw5EsnJyahSpQoCAwPRu3dvscMiEhVrlohIawmCgGdpGYiRyfEsLQOCIIgdktbKzMyEr68v+vXrh+TkZLRu3RqRkZFMlIjAmiUi0lKxKXJcTZBBnp2r2CbV00FTa3PYm0lFjEz73L9/HwMHDsSVK1cAANOmTcP8+fOhr68vcmREmoE1S0SkdWJT5LgYl6SUKAGAPDsXF+OSEJsiFyky7bN37164uLjgypUrqFq1Kn777TcsWrSIiRLRa5gsEZFWEQQBVxNkKstcTZCxSa4IGRkZmDJlCvr37w+ZTIY2bdogMjISH3/8sdihEWkcJktEpFUS5ZkFapTeJM/ORaI8s5wi0j737t1Du3btsGrVKgDA9OnT8ccff6BWrVoiR0akmbQiWXr48CFGjx4NJycnSKVS1K1bF/7+/sjMVP2foY+PDyQSidKjdevWSmXy/7qysrKCiYkJevfujSdPnpTl5RDRO0gvIlEqbrnKZs+ePXB1dUV4eDiqVauGgwcP4qeffirQ7MbO80T/Tys6eN++fRu5ublYt24d6tWrh+vXr2Ps2LF49eoVFi9erHJfT09PbNmyRfH8zen5fX198dtvvyE4OBjVqlWDn58fPv74Y4SHh0NXV7dMroeISs5IT72/8dQtV1mkp6fDz88Pq1evBgC0a9cOO3fuhIODQ4Gy7DxPpEztZCk1NRWmpqZlGUuhPD094enpqXhep04dREdHY82aNUUmS4aGhrCxsXnra8nJydi0aRO2b9+Ozp07AwB27NgBBwcHnDhxAt26dSu9iyCiUmElNYBUT0dlU5xUTwdWUq5blu/u3bvw8vJCZGQkAGDmzJmYO3fuWztx53eef1N+53k3OzBhokpH7T+9mjRpgjNnzpRlLMWSnJyMqlWrFlkuLCwM1tbWqF+/PsaOHYuEhATFa+Hh4cjKykLXrl0V2+zs7NC4cWOcP3++0GNmZGRAJpMpPYiofEgkEjS1NldZpqm1OSQSSTlFpNl27doFV1dXREZGolq1ajh8+DAWLFjw1kSJneeJ3k7tZGnAgAHo3Lkz/Pz8kJGRUZYxFenevXtYuXIlJkyYoLJc9+7dERQUhFOnTmHJkiW4fPkyOnbsqIg/Pj4eBgYGqFKlitJ+NWrUQHx8fKHHXbBgASwsLBSPt1VjE1HZsTeTws3OEtI3mtqkejpws7NkzQfymt0mTZoEb29vpKSk4MMPP0RUVBS6d+9e6D7sPE/0dmonSwsXLsSZM2dw5MgRuLq6IiIi4p1PHhAQUKAD9puP/EnS8sXFxcHT0xMDBgzAmDFjVB5/4MCB6NmzJxo3boxevXrhyJEj+Oeff3Do0CGV+wmCoPKv0lmzZiE5OVnxiImJUf+iiahU2JtJ4VnHGu0dqqKlrSXaO1SFZx1rJkoA7ty5gzZt2mDNmjUAgK+//hqnT59GzZo1Ve7HzvNEb1esDt75099/++23aNeuHbp06QI9PeVDhIaGqn28yZMnw9vbW2WZ1xdujIuLg4eHB9q0aYP169cXJ3QAgK2tLWrXro07d+4AAGxsbJCZmYmXL18q1S4lJCSgbdu2hR7H0NAQhoaGxT4/EZUuiUSC6sb8Lr5u586dGDduHFJTU2FlZYUdO3ao3f+SneeJ3q7Yo+EyMjKQkJAAiUQCCwuLAslScVhZWcHKykqtsrGxsfDw8EDz5s2xZcsW6OgU/8v6/PlzxMTEwNbWFgDQvHlz6Ovr4/jx4/Dy8gIAPH36FNevX8fChQuLfXwiIrHI5XL4+voq/pD86KOP8Ouvv8Le3l7tY7DzPNHbFSvTOXbsGEaPHg07OztERESgYcOGZRWXkri4OLi7u6NWrVpYvHgxnj17pnjt9ZFuDRs2xIIFC/DJJ58gNTUVAQEB+PTTT2Fra4uHDx/i66+/hpWVFT755BMAgIWFBUaPHg0/Pz9Uq1YNVatWxbRp09CkSRPF6DgiIk0XHR0NLy8vXL16FRKJBN988w38/f2L/cdsfuf5t42Gy8fO81QZqf1NGj9+PLZu3Yqvv/4a33zzTbnOQXTs2DHcvXsXd+/eLdDm/vqojOjoaCQnJwMAdHV1ce3aNWzbtg1JSUmwtbWFh4cHdu3aBTMzM8U+S5cuhZ6eHry8vCCXy9GpUycEBgZyjiUi0gq//vorxo8fj9TUVFSvXh1BQUHo0qVLiY+X13kenGeJ6DUSQc0xoI0bN8a2bdvg6upa1jFpHZlMBgsLCyQnJ8PcXPWQZiKi0iCXyzF16lRs3LgRAODu7o6goCDY2dmVyvEFQUCiPBPp2bkw+q/pjTVKVNGoe/9Wu2YpIiKiwOzXRERU/m7fvg0vLy9cu3YNEokEs2fPxnfffVeqNeKKzvO5OcCzs0DCU0BqC1RvD+iw5p0qF7WTJSZKRKTtKkJtyY4dOzBhwgS8evUK1tbWCAoKKrs+ljGhQPjnQNpr62Ua1wSaLwcc+pXNOYk0kFasDUdE9K60fb2ztLQ0TJ06FZs2bQIAeHh4ICgoSDG6t9TFhAJn+wN4o6dGWmze9vZ7mDBRpcHJMoiowstf7+zNIfH5653FpshFikw9t27dgpubGzZt2gSJRIKAgAAcP3687BKl3Jy8GqU3EyXg/7eF++aVI6oEmCwRUYWm7eudbdu2DS1atMD169dRo0YNnDhxAv7+/mU7YvfZWeWmtwIEIC0mrxxRJaBWM9zVq1fVPmDTpk1LHAwRUWkrznpnmjQb+KtXrzB58mQEBgYCADp16oQdO3YozS1XZuRPS7cckZZTK1lydnaGRCIpcs00AMjJYbUsEWkObVzv7ObNmxgwYABu3rwJHR0dBAQE4Ouvvy6/+d+kajbvqVuOSMup1Qz34MED3L9/Hw8ePMDevXvh5OSE1atXIzIyEpGRkVi9ejXq1q2LvXv3lnW8RETFom3rnQUGBqJly5a4efMmbGxscPLkScyePbt8J8qt3j5v1BsK++NYAhg75JUjqgTUqlmqXbu24ucBAwZgxYoV6NGjh2Jb06ZN4eDggNmzZ6Nv376lHiQRUUlpy3pnr169wqRJk7Bt2zYAQJcuXbB9+3bUqFGj/IPR0c2bHuBsf+QlTK/35/ovgWq+jPMtUaVR7D+lrl27BicnpwLbnZyccPPmzVIJioiotOSvd6aK2OudXb9+HS1btsS2bdugo6ODH374AUePHhUnUcrn0C9vegDjNxbiNa7JaQOo0lF7uZN8rq6ueP/997Fp0yYYGRkBADIyMjBq1CjcunULERERZRKoJuNyJ0SaTxPnWRIEAVu2bMHkyZMhl8tha2uLnTt3okOHDqLE81b5M3jLOYM3VTylvtxJvrVr16JXr15wcHBAs2bNAAB///03JBIJDh48WPKIiYjKkL2ZFHamRhozg3dqaiomTZqE7du3AwC6du2K7du3w9raWpR4CqWjC9RwFzsKIlEVu2YJyJtJdseOHbh9+zYEQcAHH3yAwYMHw8TEpCxi1HisWSKi4rh27Rq8vLxw+/ZtRbPbjBkzoKOjGZ3MiSqLMqtZAgBjY2OMGzeuxMEREVVGgiBg06ZNmDJlCtLT02Fvb4+dO3eifXuOKiPSZCX6M2b79u348MMPYWdnh0ePHgEAli5div3795dqcEREFUVKSgqGDh2KsWPHIj09HZ6enoiMjGSiRKQFip0srVmzBl9++SW6d++Oly9fKiahrFKlCpYtW1ba8RERab2rV6+iRYsW+PXXX6Grq4sff/wRhw4dQvXq1cUOjYjUUOxkaeXKldiwYQO++eYb6On9fyteixYtcO3atVINjohImwmCgPXr18PNzQ3//PMPatasibCwMPZPItIyxe6z9ODBA7i4uBTYbmhoiFevXpVKUEQahUOni4/vGWQyGcaPH4/g4GAAQI8ePbB161ZYWVmJHBkRFVexkyUnJydERUUpzeoNAEeOHMEHH3xQaoERaYSYUCD8c+UV2I1r5s1uzEn53o7vGaKiouDl5YU7d+5AV1cXCxYsgJ+fH2uTiLRUsZOlr776Cp999hnS09MhCAIuXbqEnTt3YsGCBdi4cWNZxEgkjpjQ/5Z7eGN2jbTYvO2cxbigSv6eCYKAdevWwdfXFxkZGXBwcEBwcDDatm0rdmhE9A5KNM/Shg0b8MMPPyAmJgYAYG9vj4CAAIwePbrUA9QGnGepAsrNAQ44KteOKJHk1Zb0flDpmpcKVcnfM5lMhnHjxmHXrl0AgI8//hiBgYGoVq2ayJERUWHUvX+XKFnKl5iYiNzcXM2bcbacMVmqgP4NA056FF2u02nObpyvEr9nkZGR8PLywt27d6Gnp4cff/wRX375pajrzRFR0dS9fxe7Ab1jx45ISkoCAFhZWSkSJZlMho4dO5YsWiJNI39auuUqg0r4ngmCgNWrV6N169a4e/cuatWqhbNnz8LPz4+JElEFUuw+S2FhYcjMzCywPT09HWfPni2VoIhEJ7Ut3XKVQSV7z5KTkzFmzBjs2bMHANCrVy8EBgaiatWqIkdGRKVN7WTp6tWrip9v3ryJ+Ph4xfOcnBwcPXoU9vb2pRsdkViqt8/rX5MWiwKdlQEo+t9U5+zLCpXoPQsPD4eXlxfu378PPT09LFy4EL6+vqxNIqqg1E6WnJ2dIZFIIJFI3trcJpVKsXLlylINjkg0Orp5Q93P9gcggfLN/78bYvNlFbKjcolVgvdMEAT88ssv8PPzQ2ZmJmrXro1du3bBzc1N7NCIqAypnSw9ePAAgiCgTp06uHTpktI0/QYGBrC2toaurvb+J0hUgEO/vKHub50zaFmFHgJfYhX4PUtKSsKYMWOwd+9eAECfPn2wZcsWVKlSReTIiKisvdNoOMrD0XAVHGejLr4K9p5duXIFXl5eePDgAfT19bFo0SJMnTqVzW5EWk7d+3exO3gvWLAANWrUwKhRo5S2b968Gc+ePcOMGTOKHy2RJtPRrXBD3ctcBXnPBEHAypUrMW3aNGRlZcHR0REhISFo2bKl2KERUTkq9tQB69atQ8OGDQtsb9SoEdauXVsqQRERiS0pKQmffvopPv/8c2RlZeGTTz5BZGQkEyWiSqjYyVJ8fDxsbQsO/a1evTqePi2b+VMePnyI0aNHw8nJCVKpFHXr1oW/v/9bpzB4XX6H9DcfixYtUpRxd3cv8Lq3t3eZXAcRaYdLly7BxcUF+/btg76+PlasWIG9e/fC0tJS7NCISATFboZzcHDAn3/+CScnJ6Xtf/75J+zs7EotsNfdvn0bubm5WLduHerVq4fr169j7NixePXqFRYvXlzofm8mb0eOHMHo0aPx6aefKm0fO3Ys5s6dq3gulUpL9wKISCsIgoDly5dj+vTpyMrKgpOTE0JCQtCiRQuxQyMiERU7WRozZgx8fX2RlZWlmELg5MmTmD59Ovz8/Eo9QADw9PSEp6en4nmdOnUQHR2NNWvWqEyWbGxslJ7v378fHh4eqFOnjtJ2Y2PjAmWJqHJ5+fIlRo4cif379wMAPv30U2zcuJG1SURU/GRp+vTpePHiBSZNmqRoBjMyMsKMGTMwa9asUg+wMMnJycWaKffff//FoUOHsHXr1gKvBQUFYceOHahRowa6d+8Of39/mJmZFXqsjIwMZGRkKJ7LZLLiBU9EGuXixYsYOHAgHj16BAMDA/z888+YNGmSKKPdBEFAojwT6dm5MNLTgZXUQNRRd5oWD5EYSjx1QGpqKm7dugWpVIr33nsPhoaGpR1boe7duwdXV1csWbIEY8aMUWufhQsX4scff0RcXByMjIwU2zds2AAnJyfY2Njg+vXrmDVrFurVq4fjx48XeqyAgADMmTOnwHZOHUCkXQRBwNKlSzFjxgxkZ2ejbt262LVrF5o3by5KPLEpclxNkEGenavYJtXTQVNrc9iblX/3AE2Lh6i0qTt1gKjzLBWWdLzu8uXLSv0F4uLi0KFDB3To0AEbN25U+1wNGzZEly5dipxlPDw8HC1atEB4eDhcXV3fWuZtNUsODg5Mloi0yIsXL+Dj44PffvsNADBgwABs2LABFhYWosQTmyLHxbikQl93s7Ms1wRF0+IhKgulOs9Sv379EBgYCHNzc/Trp3oG3tDQULWDnDx5cpEjzxwdHRU/x8XFwcPDA23atMH69evVPs/Zs2cRHR2NXbt2FVnW1dUV+vr6uHPnTqHJkqGhYbnWpBFR6frrr7/g7e2Nx48fw8DAAMuWLcOECRNEa14SBAFXE1Q3519NkMHO1KhcYtS0eIjEplayZGFhofhClOZfXVZWVrCyslKrbGxsLDw8PNC8eXNs2bIFOjrqz3qwadMmNG/eHM2aNSuy7I0bN5CVlfXW6RGISLvl5ubi559/xqxZs5CdnY169eohJCQELi4uosaVKM9Uaup6G3l2LhLlmahuXPZ/qGlaPERiUytZ2rJly1t/Li9xcXFwd3dHrVq1sHjxYjx79kzx2uuj2Bo2bIgFCxbgk08+UWyTyWTYvXs3lixZUuC49+7dQ1BQEHr06AErKyvcvHkTfn5+cHFxQbt27cr2ooioXD1//hw+Pj44ePAgAGDgwIFYv369RjSdpxeRmBS33LvStHiIxFbs0XBiOHbsGO7evYu7d++iZs2aSq+93uUqOjoaycnJSq8HBwdDEAQMGjSowHENDAxw8uRJLF++HKmpqXBwcEDPnj3h7+/PRYGJKpDz58/D29sbMTExMDQ0xPLlyzFu3DiNaUIy0lOvplzdcu9K0+IhEptaHbxdXFzU/k8lIiLinYPSNlxIl6j8FGcoe25uLhYvXoyvv/4aOTk5eO+99xASEgJnZ+fyDboIgiDg6P0ElU1fUj0deNaxLrc+S5oUD1FZKdUO3n379lX8nJ6ejtWrV+ODDz5AmzZtAAAXLlzAjRs3MGnSpHeLmohIheIMZU9MTMTw4cNx5MgRAMCgQYOwbt06lXOoiUUikaCptbnK0WdNrc3LLTHRtHiIxFbsqQPGjBkDW1tbfP/990rb/f39ERMTg82bN5dqgNqANUtEZa84Q9nPnTsHb29vxMbGwtDQECtXrsSYMWM0/uauafMaaVo8RKWtzOZZsrCwwJUrV/Dee+8pbb9z5w5atGhRoM9QZcBkiahsqdss1NXRCosWLcK3336LnJwc1K9fH7t370bTpk3LMdp3o2kzZmtaPESlqVSb4V4nlUpx7ty5AsnSuXPnlGbGJiIqLeoMZY9PeIauE4fj1PFjAIAhQ4ZgzZo1GtnspopEItGo4fiaFg+RGIqdLPn6+mLixIkIDw9H69atAeT1Wdq8eTO+++67Ug+QiKioIeo3r1zE0i8n4kVCPIyMjLBq1SqMGjWKNSBEVCqKnSzNnDkTderUwfLly/Hrr78CAN5//30EBgbCy8ur1AMkIipsiHpubi72rV+F4BULkZubi/caNMDe3bvRpEmTco6QiCoyUdeGqyjYZ4mobL2tz1Ly80Qsnz4Ff//5BwCgY9/++N+2zVrX7EZE4lH3/l2iGcWSkpKwceNGfP3113jx4gWAvPmVYmNjSxYtEZEK+UPZ89249Bf8+nbB33/+AQMjI3w272ds3bqViRIRlYliN8NdvXoVnTt3hoWFBR4+fIgxY8agatWq2LdvHx49eoRt27aVRZxEVMnZm0nRokYOvp37A4KWL0Jubi5q1n0P36zcgF4ftlIMZdeK0Vu5OcCzs4D8KSC1Baq3B3S4agCRpip2svTll1/Cx8cHCxcuVPorrnv37hg8eHCpBkdElO/ff//F6KFDceLECQBA/8FDsWjZctS2qqJIhrRiXqCYUCD8cyDtyf9vM64JNF8OOPQTLy4iKlSxm+EuX76M8ePHF9hub2+P+Pj4UgmKiOh1p0+fhrOzM06cOAGpVIotW7Zgd9B2OFavqpQoXYxLKjDFgDw7FxfjkhCbIhcjdGUxocDZ/sqJEgCkxeZtjwkVJy4iUqnYyZKRkRFkMlmB7dHR0ahevXqpBEVEBAA5OTmYO3cuOnfujPj4eHzwwQe4cuUKfHx8lMoJgoCrCQX/X3rd1QQZRB3PkpuTV6OEt8Xw37Zw37xyRKRRip0s9enTB3PnzkVWVhaAvI6Xjx8/xsyZM/Hpp5+WeoBEVDnFx8ejW7du8Pf3R25uLkaOHIlLly7hgw8+KFBWnUkr5dm5SJRnllW4RXt2tmCNkhIBSIvJK0dEGqXYydLixYvx7NkzWFtbQy6Xo0OHDqhXrx7MzMwwb968soiRiCqZU6dOwdnZGSdPnoSxsTG2bt2KzZs3w8TE5K3li5q0srjlyoT8aemWI6JyU+wO3ubm5jh37hxOnTqFiIgI5ObmwtXVFZ07dy6L+IioEsnJycH333+PuXPnQhAENGrUCLt378b777+vcr/CJq0sabkyIbUt3XJEVG6KlSxlZ2fDyMgIUVFR6NixIzp27FhWcRFpHK0Ykq7F4uPjMXjwYJw+fRoAMHr0aKxYsQLGxsZF7mslNYBUT6fIhXatpAalFm+xVW+fN+otLRZv77ckyXu9evvyjoyIilCsZElPTw+1a9dGTg47IFLlohVD0rXYiRMnMGTIECQkJMDExARr167F0KFD1d4/f9LKi3FJhZZpam0ubnKro5s3PcDZ/gAkUE6Y/our+TLOt0SkgYpdJ/3tt99i1qxZipm7iSo6rRiSrqVycnLw3XffoWvXrkhISECTJk1w5cqVYiVK+ezNpHCzs4T0jaY2qZ4O3OwsNSOpdegHtN8DGNsrbzeumbed8ywRaaRirw3n4uKCu3fvIisrC7Vr1y7Q4TIiIqJUA9QGXBuu4nrbmmRvkurpwLOONZvkiikuLg6DBw/GH3/kre02duxYLF++HFLpuyU1WtFcyhm8iTSCuvfvYnfw7tOnj+b9x0NURoozJL26sWE5RaX9jh07hqFDh+LZs2cwNTXFunXrSm0FAIlEovmfhY4uUMNd7CiISE3FTpYCAgLKIAwizaQVQ9K1SHZ2NgICAjB//nwIgoBmzZohJCQE9evXFzs0IqJCqd1nKS0tDZ999hns7e1hbW2NwYMHIzExsSxjIxKdVgxJ1xKxsbHo1KkT5s2bB0EQMH78ePz1119MlIhI46n9P7y/vz8CAwPRs2dPeHt74/jx45g4cWJZxkYkuvwh6aqIPiRdC/z+++9wdnbGmTNnYGpqip07d2Lt2rXv3D+JiKg8qN0MFxoaik2bNsHb2xsAMHToULRr1w45OTnQ1WXHRKqYtGJIugbLzs7Gd999hwULFgAAmjVrht27d+O9994TOTIiIvWpXbMUExOD9u3/f7K0Vq1aQU9PD3FxcWUSGJGm0Ioh6RroyZMn8PDwUCRKEydOxIULF5goEZHWUbtmKScnBwYGyk0Nenp6yM7OLvWgiDSNvZkUdqZGmj8kXUMcOXIEw4YNw/Pnz2FmZoaNGzfCy8tL7LCIiEpE7WRJEAT4+PjA0PD/h+Smp6djwoQJSnMthYaGlm6ERBpCK4akiywrKwuzZ8/GTz/9BCBvXraQkBDUq1dP5MiIiEpO7WRpxIgRBbaVZJZdIqqYYmJi4O3tjfPnzwMAPvvsMyxevBhGRkYiR0ZE9G7UTpa2bNlSlnEQkRY7dOgQhg8fjhcvXsDc3BybNm1C//79xQ6LiKhUcHIYIiqxrKwsTJ8+HR9//DFevHiB5s2bIyIigokSEVUoWpMs9e7dG7Vq1YKRkRFsbW0xbNiwIkfiCYKAgIAA2NnZQSqVwt3dHTdu3FAqk5GRgSlTpsDKygomJibo3bs3njx5UpaXQlQhPH78GB06dMCiRYsAAFOmTMGff/6JunXrihwZEVHp0ppkycPDAyEhIYiOjsbevXtx7969Iv96XbhwIX7++WesWrUKly9fho2NDbp06YKUlBRFGV9fX+zbtw/BwcE4d+4cUlNT8fHHHyMnJ6esL4lIa/32229wdnbGX3/9BQsLC+zduxcrVqxQGgBCRFRhCFpq//79gkQiETIzM9/6em5urmBjYyP8+OOPim3p6emChYWFsHbtWkEQBCEpKUnQ19cXgoODFWViY2MFHR0d4ejRo2rHkpycLAAQkpOTS3g1RNohMzNT8PPzEwAIAIQWLVoI9+7dEzssIqISUff+rTU1S6978eIFgoKC0LZtW+jr67+1zIMHDxAfH4+uXbsqthkaGqJDhw6K0Trh4eHIyspSKmNnZ4fGjRsryrxNRkYGZDKZ0oOoonv06BE++ugjLFmyBADw+eef49y5c6hTp47IkRERlS2tSpZmzJgBExMTVKtWDY8fP8b+/fsLLRsfHw8AqFGjhtL2GjVqKF6Lj4+HgYEBqlSpUmiZt1mwYAEsLCwUDwcHh5JeEpFW2L9/P1xcXHDhwgVYWlpi3759WLZsGZvdiKhSEDVZCggIgEQiUfm4cuWKovxXX32FyMhIHDt2DLq6uhg+fDgEQVB5jjdnWBYEochZl4sqM2vWLCQnJyseMTExalwtkfbJzMzEl19+ib59++Lly5do1aoVIiMj0bdvX7FDIyIqN2rPs1QWJk+erFiYtzCOjo6Kn62srGBlZYX69evj/fffh4ODAy5cuIA2bdoU2M/GxgZAXu2Rra2tYntCQoKitsnGxgaZmZl4+fKlUu1SQkIC2rZtW2hMhoaG/IuaKryHDx9i4MCBuHTpEgDgiy++wI8//lhg2SMioopO1GQpP/kpifwapYyMjLe+7uTkBBsbGxw/fhwuLi4A8v5K/uOPPxRLMTRv3hz6+vo4fvy4Yt2qp0+f4vr161i4cGGJ4iKqCP73v/9h5MiRSEpKgqWlJQIDA9GnTx+xwyIiEoVW9Fm6dOkSVq1ahaioKDx69AinT5/G4MGDUbduXaVapYYNG2Lfvn0A8prffH19MX/+fOzbtw/Xr1+Hj48PjI2NMXjwYACAhYUFRo8eDT8/P5w8eRKRkZEYOnQomjRpgs6dO4tyrURiyszMhK+vLz755BMkJSXBzc0NUVFRTJSIqFITtWZJXVKpFKGhofD398erV69ga2sLT09PBAcHKzWHRUdHIzk5WfF8+vTpkMvlmDRpEl6+fAk3NzccO3YMZmZmijJLly6Fnp4evLy8IJfL0alTJwQGBkJXV7dcr5FIbA8ePMDAgQNx+fJlAICfnx/mz5/PZjciqvQkQlE9pKlIMpkMFhYWSE5Ohrm5udjhEBVbaGgoRo0aheTkZFSpUgVbt25Fr169xA6LiKhMqXv/1opmOCIqGxkZGZg6dSo+/fRTJCcno3Xr1oiKimKiRET0GiZLRJXU/fv30a5dO6xcuRJA3tQcZ86cQa1atUSOjIhIs2hFnyUiKl179uzB6NGjIZPJULVqVWzbtg09e/YUOywiIo3EmiWiSiQ9PR2TJ0/GgAEDIJPJ0LZtW0RFRTFRIiJSgckSUSVx9+5dtG3bFr/88guAvOWDwsLCuFwPEVER2AxHVAmEhIRgzJgxSElJQbVq1bBt2zb06NFD7LCIiLQCa5aIKrD09HRMmjQJAwcOREpKCj788ENERUUxUSIiKgYmS0QV1J07d9CmTRusWbMGQN4C0KdPn0bNmjVFjoyISLuwGY6oAgoODsbYsWORmpoKKysrbN++HZ6enmKHRUSklVizRFSByOVyTJgwAYMGDUJqairat2+PqKgoJkpERO+AyRJRBfHPP/+gTZs2WLduHSQSCb755hucOnUK9vb2YodGRKTV2AxHVAH8+uuvGD9+PFJTU1G9enXs2LEDXbt2FTssIqIKgTVLRFpMLpdj3LhxGDJkCFJTU9GhQwdERUUxUSIiKkVMloi01O3bt+Hm5oYNGzZAIpFg9uzZOHHiBOzs7MQOjYioQmEzHJEWCgoKwvjx4/Hq1StYW1sjKCgInTt3FjssIqIKickSkRZJS0vD1KlTsWnTJgCAh4cHgoKCYGtr+07HFQQBifJMpGfnwkhPB1ZSA0gkktIImYhI6zFZItISt27dgpeXF65fvw6JRILvvvsOs2fPhq6u7jsdNzZFjqsJMsizcxXbpHo6aGptDnsz6buGTUSk9ZgsEWmBbdu2YeLEiUhLS0ONGjUQFBSETp06vfNxY1PkuBiXVGC7PDsXF+OS4GYHJkxEVOmxgzeRBktLS8OoUaMwYsQIpKWloWPHjoiKiiqVREkQBFxNkKksczVBBkEQ3vlcRETajMkSkYa6efMmWrVqhS1btkBHRwdz5szBsWPHYGNjUyrHT5RnKjW9vY08OxeJ8sxSOR8RkbZiMxyRBgoMDMRnn32GtLQ02NjY4Ndff4WHh0epniO9iESpuOWIiCoq1iwRaZBXr17Bx8cHI0eORFpaGjp37oyoqKhST5QAwEhPva+/uuWIiCoq/i9IpCFu3LiBli1bYuvWrdDR0cH333+Po0ePokaNGmVyPiupAaRFJELS/6YRICKqzJgsEYlMEARs2bIFLVu2xK1bt2Bra4tTp07h22+/fedpAVSRSCRoam2uskxTa3POt0RElR6TJSIRpaamYsSIERg1ahTkcjm6du2KqKgodOjQoVzOb28mhZudZYEaJqmeDtzsLDltABER2MGbSDTXrl2Dl5cXbt++rWh2mzlzJnR0yvdvGHszKexMjTiDNxFRIZgsEZUzQRCwefNmTJ48Genp6bCzs8POnTvx0UcfiRaTRCJBdWND0c5PRKTJmCwRlQJ111ZLTU3FhAkTEBQUBADo1q0btm/fjurVq5d3yEREpCYmS0TvSN211a5evQovLy9ER0dDV1cXP/zwA6ZPn17uzW5ERFQ8/F+a6B3kr6325kzY+WurxabIIQgC1q9fDzc3N0RHR8Pe3h5hYWGi9E8iIqLi4//URCWkztpqF+7HYciQIRg/fjzS09PRo0cPREVF4cMPPyynKImI6F1pTbLUu3dv1KpVC0ZGRrC1tcWwYcMQFxdXaPmsrCzMmDEDTZo0gYmJCezs7DB8+PAC+7i7u0MikSg9vL29y/pyqAIoam21h7dvYEqfrti5cyd0dXXx008/4bfffoOVlVU5Rll8giDgWVoGYmRyPEvL4EK6RFTpaU2fJQ8PD3z99dewtbVFbGwspk2bhv79++P8+fNvLZ+WloaIiAjMnj0bzZo1w8uXL+Hr64vevXvjypUrSmXHjh2LuXPnKp5LpZxbhopW2JppgiDg+K4d2Dz/O2RlZsDW3h67d+1Cu3btyjnC4lO3/xURUWUiEbT0z8YDBw6gb9++yMjIgL6+vlr7XL58Ga1atcKjR49Qq1YtAHk1S87Ozli2bJna587IyEBGRobiuUwmg4ODA5KTk2FurnpGZKo4nqVl4GzMC6VtaakpWPvdV/jz8AEAQPMOnRG0fSsaONiJEWKx5Pe/KgwnqSSiikYmk8HCwqLI+7fWNMO97sWLFwgKCkLbtm3VTpQAIDk5GRKJBJaWlkrbg4KCYGVlhUaNGmHatGlISUlReZwFCxbAwsJC8XBwcCjJZZCWe3Nttfs3r+GrTz3x5+ED0NXTw/CvZmPOhm2oX9NWxCjVo07/q6sJMjbJEVGlpFXJ0owZM2BiYoJq1arh8ePH2L9/v9r7pqenY+bMmRg8eLBS9jhkyBDs3LkTYWFhmD17Nvbu3Yt+/fqpPNasWbOQnJyseMTExJT4mkh75a+tJggCju7cilkDeyH+0QNY2drh++2h6DN6IpxtLLViJuyi+l8BeSP8EuWZ5RQREZHmELUZLiAgAHPmzFFZ5vLly2jRogUAIDExES9evMCjR48wZ84cWFhY4ODBg0XejLKysjBgwAA8fvwYYWFhKqvawsPD0aJFC4SHh8PV1VWt61C3Go8qnuTkZAwdOQoH94UCAFp4dMHkBctgbVVNq/r5xMjkuPw0qchyLW0t4WCuHddERFQUde/fonbwnjx5cpEjzxwdHRU/W1lZwcrKCvXr18f7778PBwcHXLhwAW3atCl0/6ysLHh5eeHBgwc4depUkcmMq6sr9PX1cefOHbWTJdI86s6oXdLyABAREQEvLy/cu3cPenp6mP39PPhMnAypvq7Wra1mpKdeJbO65YiIKhJRk6X85Kck8ivEXu9o/ab8ROnOnTs4ffo0qlWrVuRxb9y4gaysLNjaan4/E3q74o7oKm55QRDwyy+/wM/PD5mZmahduzZ27doFNze3srmgcpDf/0pVU5z0vySSiKiy0Yo/Ey9duoRVq1YhKioKjx49wunTpzF48GDUrVtXqVapYcOG2LdvHwAgOzsb/fv3x5UrVxAUFIScnBzEx8cjPj4emZl5/S7u3buHuXPn4sqVK3j48CEOHz6MAQMGwMXFRSuGeVNB6syo/S7lk5OTMWDAAEyZMgWZmZno06cPIiMjtTpRAv6//5UqTa3Ntaq2jIiotGhFsiSVShEaGopOnTqhQYMGGDVqFBo3bow//vgDhob/v1J6dHQ0kpOTAQBPnjzBgQMH8OTJEzg7O8PW1lbxyJ+bycDAACdPnkS3bt3QoEEDTJ06FV27dsWJEyegq6sryrVSyRV3RFdxy1+5cgWurq7Yu3cv9PX1sXTpUuzbtw9VqlQpnQsQmb2ZFG52lkoj/IC8GiVOG0BElZnWzrOkSdjBWzO8bd6jt2nvUBXVjQ3VLv9hzSrYtXkD/Pz8kJWVBUdHR+zatQutWrUqjbA1Tkn6bxERaSOt6OBNVJoKm1G7sHLqlH8lS4bPoIk48lveNBV9+/bF5s2bK0xt0ttIJBJUNzYsuiARUSXBZIkqjOKO6Cqq/N1rUVjyxQQkPHkMfX19LF68GFOmTGEtCxFRJcNkiSqM4o7oKqy8IAg4tH0Tti/6HtlZWXBycsKuXbvQsmXLMo2fiIg0k1Z08CZSR3FHdL2tfGpyEhZOGY0t879DdlYWuvfug4iICCZKRESVGJMlqlCKO6Lr9fJ3rkZi2iddcenEUejpG+D7RUtw6H/7CqwlSERElQub4ajCsTeTws7USO0RXXamRghevxrfzpyJ7Oxs1HZywp6QEMUyO0REVLkxWaIKSd0RXS9evMDIkSNx4MABAMCAAQOwYcMGWFhYlHWIRESkJdgMR5XWhQsX4OLiggMHDsDAwAC//PILdu3axUSJiIiUMFmiSkcQBCxZsgTt27fH48ePUbduXfz111+YNGkSpwUgIqIC2AxHlcrz58/h4+ODgwcPAgC8vLywYcMGzrxORESFYs0SVRrnz5+Hi4sLDh48CENDQ6xZswbBwcFMlIiISCUmS1Th5ebmYtGiRfjoo48QExOD9957DxcuXMCECRPY7EZEREViMxxVaImJiRgxYgQOHz4MAPD29sa6detYm0RERGpjskQV1p9//glvb288efIEhoaGWLFiBcaOHcvaJCIiKhY2w1GFk5ubix9//BEdOnTAkydPUL9+fVy8eBHjxo1jokRERMXGmiWqUJ49e4bhw4fj6NGjAIDBgwdj7dq1MDMzEzkyIiLSVkyWqMI4e/YsBg0ahNjYWBgZGWHlypUYPXo0a5OIiOidsBmOtF5ubi4WLFgADw8PxMbGokGDBrh48SLGjBnDRImIiN4Za5ZIqz179gzDhg3D77//DgAYOnQo1qxZA1NTU5EjIyKiioLJEmmtM2fOYNCgQYiLi4NUKsWqVaswcuRI1iYREVGpYjMcFUoQBDxLy0CMTI5naRkQBEHskADkNbvNmzcPHh4eiIuLQ8OGDXHp0iWMGjWKiRIREZU61izRW8WmyHE1QQZ5dq5im1RPB02tzWFvJhUtroSEBAwdOhTHjx8HAAwfPhy//PILm92IiKjMsGaJCohNkeNiXJJSogQA8uxcXIxLQmyKXJS4wsLC4OzsjOPHj0MqlWLLli3YunUrEyUiIipTTJZIiSAIuJogU1nmaoKsXJvkcnJyMHfuXHTq1AlPnz7FBx98gMuXL8PHx6fcYiAiosqLzXCkJFGeWaBG6U3y7FwkyjNR3diwzOP5999/MWTIEJw8eRIAMHLkSKxcuRImJiZlfm4iIiKAyRK9Ib2IRKm45d7FqVOnMGTIEMTHx8PY2BirV6/GiBEjyvy8REREr2MzHCkx0lPvV0LdciWRk5ODOXPmoHPnzoiPj0ejRo1w+fJlJkpERCQK1iyREiupAaR6Oiqb4qR6OrCSGpTJ+ePj4zFkyBCcOnUKADBq1CisXLkSxsbGZXI+IiKiorBmiZRIJBI0tTZXWaaptXmZzGd08uRJODs749SpUzAxMcH27duxadMmJkpERCQqJktUgL2ZFG52lpC+0dQm1dOBm51lqc+zlJOTA39/f3Tp0gX//vsvGjdujCtXrmDo0KGleh4iIqKS0JpkqXfv3qhVqxaMjIxga2uLYcOGIS4uTuU+Pj4+kEgkSo/WrVsrlcnIyMCUKVNgZWUFExMT9O7dG0+ePCnLS9EK9mZSeNaxRnuHqmhpa4n2DlXhWce61BOlp0+fonPnzpg7dy4EQcCYMWNw8eJFNGzYsFTPQ0REVFJakyx5eHggJCQE0dHR2Lt3L+7du4f+/fsXuZ+npyeePn2qeBw+fFjpdV9fX+zbtw/BwcE4d+4cUlNT8fHHHyMnJ6esLkVrSCQSVDc2hIO5FNWNDUu96e348eNwdnZGWFgYTE1NERQUhA0bNrDZjYiINIpE0JQFv4rpwIED6Nu3LzIyMqCvr//WMj4+PkhKSsL//ve/t76enJyM6tWrY/v27Rg4cCAAIC4uDg4ODjh8+DC6dev21v0yMjKQkZGheC6TyeDg4IDk5GSYm6vu70NAdnY2AgICMH/+fAiCgKZNmyIkJAQNGjQQOzQiIqpEZDIZLCwsirx/a03N0utevHiBoKAgtG3bttBEKV9YWBisra1Rv359jB07FgkJCYrXwsPDkZWVha5duyq22dnZoXHjxjh//nyhx1ywYAEsLCwUDwcHh3e/qEoiLi4OnTp1wrx58yAIAsaPH48LFy4wUSIiIo2lVcnSjBkzYGJigmrVquHx48fYv3+/yvLdu3dHUFAQTp06hSVLluDy5cvo2LGjolYoPj4eBgYGqFKlitJ+NWrUQHx8fKHHnTVrFpKTkxWPmJiYd7+4SuD333+Hs7Mzzpw5A1NTU/z6669Yu3YtpFLxFuYlIiIqiqjJUkBAQIEO2G8+rly5oij/1VdfITIyEseOHYOuri6GDx+uco2ygQMHomfPnmjcuDF69eqFI0eO4J9//sGhQ4dUxiUIgsr+OYaGhjA3N1d6UOGys7PxzTffwNPTE8+ePUOzZs0QHh6OQYMGiR0aERFRkUSdlHLy5Mnw9vZWWcbR0VHxs5WVFaysrFC/fn28//77cHBwwIULF9CmTRu1zmdra4vatWvjzp07AAAbGxtkZmbi5cuXSrVLCQkJaNu2bfEviAqIjY3FoEGDcPbsWQDAhAkTsHTpUhgZGYkcGRERkXpETZbyk5+SyK9Rer2jdVGeP3+OmJgY2NraAgCaN28OfX19HD9+HF5eXgDyhrJfv34dCxcuLFFc9P+OHj2KYcOGITExEWZmZti4caPifSYiItIWWtFn6dKlS1i1ahWioqLw6NEjnD59GoMHD0bdunWVapUaNmyIffv2AQBSU1Mxbdo0/PXXX3j48CHCwsLQq1cvWFlZ4ZNPPgEAWFhYYPTo0fDz88PJkycRGRmJoUOHokmTJujcubMo11oRZGdnY9asWejevTsSExPh4uKCiIgIJkpERKSVtGJtOKlUitDQUPj7++PVq1ewtbWFp6cngoODYWhoqCgXHR2N5ORkAICuri6uXbuGbdu2ISkpCba2tvDw8MCuXbtgZmam2Gfp0qXQ09ODl5cX5HI5OnXqhMDAQOjq6pb7dVYEMTExGDRoEP78808AwKRJk7BkyRI2uxERkdbS2nmWNIm68zRUdIcPH8bw4cPx/PlzmJubY+PGjRgwYIDYYREREb1VhZ5niTRLVlYWpk+fjp49e+L58+dwdXVFREQEEyUiIqoQtKIZjjTX48eP4e3tjb/++gsAMGXKFCxatEipeZSIiEibMVmiEjt48CBGjBiBFy9ewNzcHJs3b8ann34qdlhERESlis1wVGxZWVn46quv0KtXL7x48QItWrRAZGQkEyUiIqqQWLNExfLo0SN4e3vjwoULAICpU6di4cKFbHYjIqIKi8kSqe3AgQPw8fHBy5cvYWFhgS1btijmrCIiIqqo2AxHRcrMzISfnx/69OmDly9fomXLloiMjGSiRERElQJrlkilhw8fYuDAgbh06RIAwNfXFz/99BMMDAxEjoyIiKh8MFmiQu3fvx8+Pj5ISkqCpaUlAgMD0adPH7HDIiIiKldshqMCMjMz4evri759+yIpKQlubm6IjIxkokRERJUSkyVS8uDBA3z44YdYvnw5AMDPzw9nzpyBo6OjuIERERGJhM1wmio3B3h2FpA/BaS2QPX2gE7ZLu67b98+jBw5EsnJyahSpQoCAwPRu3fvMj0nERGRpmOypIliQoHwz4G0J/+/zbgm0Hw54NCv1E+XkZGB6dOnY8WKFQCA1q1bIzg4GLVr1y71cxEREWkbNsNpmphQ4Gx/5UQJANJi87bHhJbq6e7fv4927dopEqVp06bhzJkzTJSIiIj+w2RJk+Tm5NUoQXjLi/9tC/fNK1cK9u7dCxcXF4SHh6Nq1ao4ePAgFi1aBH19/VI5PhERUUXAZEmTPDtbsEZJiQCkxeSVewcZGRmYMmUK+vfvD5lMhrZt2yIqKgo9e/Z8p+MSERFVREyWNIn8aemWe4t79+6hbdu2WLVqFQBg+vTpCAsLg4ODQ4mPSUREVJGxg7cmkdqWbrk37N69G2PGjIFMJkO1atWwbds29OjRo0THIiIiqixYs6RJqrfPG/UGSSEFJICxQ165YkhPT8dnn30GLy8vyGQytGvXDlFRUUyUiIiI1MBkSZPo6OZNDwCgYML03/Pmy4o139KdO3fQpk0brF69GgAwa9YshIWFoWbNmu8cLhERUWXAZEnTOPQD2u8BjO2VtxvXzNtejHmWdu3ahebNmyMqKgpWVlY4cuQI5s+fDz09tr4SERGpi3dNTeTQD7DvU+IZvNPT0/HFF19g7dq1AID27dtj586dsLe3L2JPIiIiehOTJU2lowvUcC/2bv/88w+8vLzw999/QyKRYNasWZgzZw5rk4iIiEqId9AKZOfOnRg3bhxSU1NRvXp17NixA127dhU7LCIiIq3GPksVgFwux/jx4zF48GCkpqaiQ4cOiIqKYqJERERUCpgsabno6Gi0bt0a69evh0QiwbfffosTJ07Azs5O7NCIiIgqBDbDabGgoCCMHz8er169grW1NXbs2IEuXbqIHRYREVGFwmRJwwmCgER5JtKzc2GkpwMrqQHkcjk+//xzbNy4EQDg7u6OX3/9Fba2JZvZm4iIiArHZEmDxabIcTVBBnl2rmJb4qN7+PmLCYi+eQMSiQTfffcdZs+eDV1d9SeqJCIiIvUxWdJQsSlyXIxLUtoWtn8PNsyZifS0NFS3tsbOX39Fp06dxAmQiIioktCaDt69e/dGrVq1YGRkBFtbWwwbNgxxcXEq95FIJG99LFq0SFHG3d29wOve3t5lfTkqCYKAqwkyxfMMeRp++eZLrJwxFelpaWjS+kMs3X8CHTt2FDFKIiKiykFrkiUPDw+EhIQgOjoae/fuxb1799C/f3+V+zx9+lTpsXnzZkgkEnz66adK5caOHatUbt26dWV5KUVKlGcqmt5Sk5Mww6snTu0NhkQiwcDJfpi9aSekVayQKM8UNU4iIqLKQGua4b744gvFz7Vr18bMmTPRt29fZGVlQV9f/6372NjYKD3fv38/PDw8UKdOHaXtxsbGBcqKKf21Pkom5hao9V5DpCS9hO+iX9Ckdbu3liMiIqKyoTXJ0utevHiBoKAgtG3bttBE6U3//vsvDh06hK1btxZ4LSgoCDt27ECNGjXQvXt3+Pv7w8zMrNBjZWRkICMjQ/FcJpMVWrYkjPT+v8JPIpFgwtyFyExPh6VV9ULLERERUdnQqrvtjBkzYGJigmrVquHx48fYv3+/2vtu3boVZmZm6Nevn9L2IUOGYOfOnQgLC8Ps2bOxd+/eAmXetGDBAlhYWCgeDg4OJbqewlhJDSB9LREyNjUrkChJ/5tGgIiIiMqWRBAEQayTBwQEYM6cOSrLXL58GS1atAAAJCYm4sWLF3j06BHmzJkDCwsLHDx4EBKJpMhzNWzYEF26dMHKlStVlgsPD0eLFi0QHh4OV1fXt5Z5W82Sg4MDkpOTYW5uXmQs6njbaLjXudlZwt5MWirnIiIiqoxkMhksLCyKvH+LmiwlJiYiMTFRZRlHR0cYGRkV2P7kyRM4ODjg/PnzaNOmjcpjnD17Fh999BGioqLQrFkzlWUFQYChoSG2b9+OgQMHFn0RUP/NLq63zbMk1dNBU2tzJkpERETvSN37t6h9lqysrGBlZVWiffNzvNdreAqzadMmNG/evMhECQBu3LiBrKwsjZgN295MCjtTowIzeKtTk0ZERESlQyv6LF26dAmrVq1CVFQUHj16hNOnT2Pw4MGoW7euUq1Sw4YNsW/fPqV9ZTIZdu/ejTFjxhQ47r179zB37lxcuXIFDx8+xOHDhzFgwAC4uLigXbt2BcqLQSKRoLqxIRzMpahubMhEiYiIqJxpRbIklUoRGhqKTp06oUGDBhg1ahQaN26MP/74A4aGhopy0dHRSE5OVto3ODgYgiBg0KBBBY5rYGCAkydPolu3bmjQoAGmTp2Krl274sSJE1w+hIiIiACI3GepoiirPktERERUdtS9f2tFzRIRERGRWJgsEREREanAZImIiIhIBSZLRERERCowWSIiIiJSgckSERERkQpMloiIiIhUEHW5k4oif6oqmUwmciRERESkrvz7dlFTTjJZKgUpKSkAAAcHB5EjISIiouJKSUmBhYVFoa9zBu9SkJubi7i4OJiZmXHtNjXJZDI4ODggJiaGs55rEX5u2omfm3bi51b2BEFASkoK7OzsoKNTeM8k1iyVAh0dHdSsWVPsMLSSubk5/xPQQvzctBM/N+3Ez61sqapRyscO3kREREQqMFkiIiIiUoHJEonC0NAQ/v7+MDQ0FDsUKgZ+btqJn5t24uemOdjBm4iIiEgF1iwRERERqcBkiYiIiEgFJktEREREKjBZIiIiIlKByRKVm969e6NWrVowMjKCra0thg0bhri4OJX7+Pj4QCKRKD1at25dThETULLPTRAEBAQEwM7ODlKpFO7u7rhx40Y5RUwPHz7E6NGj4eTkBKlUirp168Lf3x+ZmZkq9+P3TVwl/dz4fSt7TJao3Hh4eCAkJATR0dHYu3cv7t27h/79+xe5n6enJ54+fap4HD58uByipXwl+dwWLlyIn3/+GatWrcLly5dhY2ODLl26KNZRpLJ1+/Zt5ObmYt26dbhx4waWLl2KtWvX4uuvvy5yX37fxFPSz43ft3IgEIlk//79gkQiETIzMwstM2LECKFPnz7lFxQVqajPLTc3V7CxsRF+/PFHxbb09HTBwsJCWLt2bXmFSW9YuHCh4OTkpLIMv2+ap6jPjd+38sGaJRLFixcvEBQUhLZt20JfX19l2bCwMFhbW6N+/foYO3YsEhISyilKepM6n9uDBw8QHx+Prl27KrYZGhqiQ4cOOH/+fHmFSm9ITk5G1apViyzH75tmKepz4/etfDBZonI1Y8YMmJiYoFq1anj8+DH279+vsnz37t0RFBSEU6dOYcmSJbh8+TI6duyIjIyMcoqYgOJ9bvHx8QCAGjVqKG2vUaOG4jUqX/fu3cPKlSsxYcIEleX4fdMs6nxu/L6VDyZL9E4CAgIKdAh983HlyhVF+a+++gqRkZE4duwYdHV1MXz4cAgqJpEfOHAgevbsicaNG6NXr144cuQI/vnnHxw6dKg8Lq/CKuvPDQAkEonSc0EQCmyj4inu5wYAcXFx8PT0xIABAzBmzBiVx+f3rWyU9ecG8PtW1vTEDoC02+TJk+Ht7a2yjKOjo+JnKysrWFlZoX79+nj//ffh4OCACxcuoE2bNmqdz9bWFrVr18adO3feJexKryw/NxsbGwB5f/Ha2toqtickJBT465eKp7ifW1xcHDw8PNCmTRusX7++2Ofj9610lOXnxu9b+WCyRO8k/yZaEvk1E8Wp4n/+/DliYmKU/lOg4ivLz83JyQk2NjY4fvw4XFxcAACZmZn4448/8NNPP5UsYAJQvM8tNjYWHh4eaN68ObZs2QIdneI3JPD7VjrK8nPj962ciNm7nCqPixcvCitXrhQiIyOFhw8fCqdOnRI+/PBDoW7dukJ6erqiXIMGDYTQ0FBBEAQhJSVF8PPzE86fPy88ePBAOH36tNCmTRvB3t5ekMlkYl1KpVKSz00QBOHHH38ULCwshNDQUOHatWvCoEGDBFtbW35u5SQ2NlaoV6+e0LFjR+HJkyfC06dPFY/X8fumWUryuQkCv2/lgTVLVC6kUilCQ0Ph7++PV69ewdbWFp6enggODoahoaGiXHR0NJKTkwEAurq6uHbtGrZt24akpCTY2trCw8MDu3btgpmZmViXUqmU5HMDgOnTp0Mul2PSpEl4+fIl3NzccOzYMX5u5eTYsWO4e/cu7t69i5o1ayq9JrzW14zfN81Sks8N4PetPEgEoYhemkRERESVGEfDEREREanAZImIiIhIBSZLRERERCowWSIiIiJSgckSERERkQpMloiIiIhUYLJEREREpAKTJSIiIiIVmCwREZUBiUSC//3vf2KHQUSlgMkSEWm18+fPQ1dXF56ensXe19HREcuWLSv9oFQQBAGdO3dGt27dCry2evVqWFhY4PHjx+UaExGpxmSJiLTa5s2bMWXKFJw7d04rkgyJRIItW7bg4sWLWLdunWL7gwcPMGPGDCxfvhy1atUSMUIiehOTJSLSWq9evUJISAgmTpyIjz/+GIGBgQXKHDhwAC1atICRkRGsrKzQr18/AIC7uzsePXqEL774AhKJBBKJBAAQEBAAZ2dnpWMsW7YMjo6OiueXL19Gly5dYGVlBQsLC3To0AERERFqx+3g4IDly5dj2rRpePDgAQRBwOjRo9GpUyf4+PgU920gojLGZImItNauXbvQoEEDNGjQAEOHDsWWLVuUVmc/dOgQ+vXrh549eyIyMhInT55EixYtAAChoaGoWbMm5s6di6dPn+Lp06dqnzclJQUjRozA2bNnceHCBbz33nvo0aMHUlJS1D7GiBEj0KlTJ4wcORKrVq3C9evXsX79evUvnojKjZ7YARARldSmTZswdOhQAICnpydSU1Nx8uRJdO7cGQAwb948eHt7Y86cOYp9mjVrBgCoWrUqdHV1YWZmBhsbm2Kdt2PHjkrP161bhypVquCPP/7Axx9/rPZx1q9fj8aNG+Ps2bPYs2cPrK2tixUHEZUP1iwRkVaKjo7GpUuX4O3tDQDQ09PDwIEDsXnzZkWZqKgodOrUqdTPnZCQgAkTJqB+/fqwsLCAhYUFUlNTi91nytraGuPGjcP777+PTz75pNTjJKLSwZolItJKmzZtQnZ2Nuzt7RXbBEGAvr4+Xr58iSpVqkAqlRb7uDo6OkpNeQCQlZWl9NzHxwfPnj3DsmXLULt2bRgaGqJNmzbIzMws9vn09PSgp8f/iok0GWuWiEjrZGdnY9u2bViyZAmioqIUj7///hu1a9dGUFAQAKBp06Y4efJkoccxMDBATk6O0rbq1asjPj5eKWGKiopSKnP27FlMnToVPXr0QKNGjWBoaIjExMTSu0Ai0ihMlohI6xw8eBAvX77E6NGj0bhxY6VH//79sWnTJgCAv78/du7cCX9/f9y6dQvXrl3DwoULFcdxdHTEmTNnEBsbq0h23N3d8ezZMyxcuBD37t3DL7/8giNHjiidv169eti+fTtu3bqFixcvYsiQISWqxSIi7cBkiYi0zqZNm9C5c2dYWFgUeO3TTz9FVFQUIiIi4O7ujt27d+PAgQNwdnZGx44dcfHiRUXZuXPn4uHDh6hbty6qV68OAHj//fexevVq/PLLL2jWrBkuXbqEadOmKZ1j8+bNePnyJVxcXDBs2DBMnTqVnbOJKjCJ8GbjPBEREREpsGaJiIiISAUmS0REREQqMFkiIiIiUoHJEhEREZEKTJaIiIiIVGCyRERERKQCkyUiIiIiFZgsEREREanAZImIiIhIBSZLRERERCowWSIiIiJS4f8AQsWx3ZxZvOUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the model with external test set \n", + "model1.external_set()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "3792e6dc-0949-448d-975e-d98c508640f4", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGZCAYAAAAUzjLvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJXUlEQVR4nO3deVzUdf4H8Nd3bmAY7vtWxAM88Ta1w9I0u+ywNC073Nq02nbbtu3XuVttbdvablmWlpapWZlZamamaZqKoaJ4Icgh9zUDDDPM8f39gbKiojAMfOd4PR8PHsWcL6iZefE93h9BFEURRERE5LVkUgcgIiIiabEMEBEReTmWASIiIi/HMkBEROTlWAaIiIi8HMsAERGRl2MZICIi8nIsA0RERF5O0Z4b2e12FBcXw9/fH4IgdHUmIupGNpsNOTk5SE5OhlwulzoOETmRKIqoq6tDdHQ0ZLK2//5vVxkoLi5GXFyc08IRERFR9yksLERsbGyb17erDPj7+7c8mE6nc04yInIJRUVFSE1N5eubyAMZDAbExcW1fI63pV1l4OyuAZ1OxzcLIg9z9jXt6Ot7fVYJ9uRVIzbIBzNHJkCj5K4GIldzuV387SoDREQXk1Wkx5f7igAAhdVG+KkVuGt4vMSpiKijeDYBETmsqsHc6vvqhiaJkhBRZ7AMEJHDBscHIdhPBQCQywSM6xUmcSIicgR3ExCRwwJ8lHj+xlTkVtQjQqdBhE4jdSQicoBTy0Bjkw1bj5Ujs7AWx8vqUGeyQgAQ5q9Grwh/jEgKxvCkYCjl3CBB5Cm0agUGxAZKHYOIOsEpZaCw2oh3t57E2v2nYWyyXfQ2Gw6VAgBC/FS4dUgMHhzbA+H8K4KIiEhynSoDJosN/9lyAu9vy4XVLgIA4oJ9cGVKOPpG6RDsp4RdBEr1JhwsqsWOnEpU1jfhg+15WLYrH7NHJ+Kxa3rBT829FURERFJx+FP4cLEe81dk4mRFAwBgTHII5l/dC8OTgts8n9Fqs2Pb8Qq8u/Uk9uXXYNHPufjuYAlevbU/xqXwwCMiIiIpOFwGtGoFTtc2IsxfjZdvSsWktKjLP5lchmv6RuDqPuH46Vg5nlt7GEU1jZi1ZA/mX52MxyakQC7j2gdERETdyeEykBDih0X3DMWA2AAE+qo6dF9BEHB1nwiM7BGCV9cfxSe/5uPtLTnILKzFuzOGwF+jdDQWERERdVCnDusflxLW4SJwLl+VAi/fnIZ/3zkIPko5tp+oxPRFv6Kiznz5OxMREZFTuMQ5fjcPjsHnc0chxE+Fw8UG3PbeThRWG6WORURE5BVcogwAQP/YAHzx8GjEBvkgv8qIuz/8FaV6k9SxiIiIPJ7LlAEASAr1wxe/G42EEF8UVjfi7g+5y4CIiKiruVQZAIDIAA2WPzACMYE+yK1owD2Ld8Ngskgdi4iIyGO5XBkAgNggXyx/YATC/dU4WlqHRz79DRabXepYREREHsklywAAJIb6Ycm9w+CrkmNHTiWeXXMIoihKHYuIiMjjuGwZAIC0mAD8567BkAnAqoxCvLctV+pIREREHselywAAXNM3As9PTQUAvP79UWw9Vi5xIiIiIs/i8mUAAGaPTsSMEfEQReCxlftRUMUZBERERM7iFmUAAJ6b2g+D4gKhb7Rg7qf70NjGUslERETUMW5TBtQKORbOHIJQrQpHSgx4Zk0WDygkIiJyArcpAwAQFeCD/949BHKZgDWZp7Fyb6HUkYiIiNyeW5UBABjZIwRPTewNAHhx3WEcL6uTOBEREZF7c7syAAAPju2BcSlhMFnsePSz32Cy8PgBIiIiR7llGZDJBPzrjoEI81fjeFk9Xvo2W+pIREREbsstywAAhGrVeOuOQRAE4LPdBfjuYInUkYiIiNyS25YBALiiVygeHt8TAPD0VwdRWM35A0RERB3l1mUAAJ64NgVD4gNRZ7LiiVX7YbPzdEMiIqKOcPsyoJTLsGD6YGjVCmTk1+C9bSeljkRERORW3L4MAEBcsC9euLF5/YK3fjiOQ6f1EiciIiJyHx5RBgBg2pAYXJ8WCatdxGMrMzmumIiIqJ08pgwIgoBXbumPcH81TlY04LUNR6SORERE5BY8pgwAQJCfCm/cPhAAsHRXPrYdr5A4EZF7+jW3Cn9afQDPfp2FkxX1Uschoi7mUWUAAManhOHe0YkAgD+tPoCahiZpAxG5GYPJgiU78lDd0ISSWhMWbcuVOhIRdTGPKwMA8PT1fZAcrkV5nRl/+YqrGxJ1hNlib3WKbkOTVcI0RNQdPLIMaJRy/PvOQVDIBGw8XIov9hVJHYnIbYT5qzEmORQAIAjAzYNiJE5ERF1NIXWArpIWE4Anrk3BG98fw4vrsjGyRwjign2ljkXkFuZckYSJaZFQK2QI1aqljkNEXcwjtwyc9bvxPTEsMQj15ubphFabXepIRG4jJtCHRYDIS3h0GZDLBPzrjkHwPzOd8N2tnE5IRER0Po8uA0DzdMKXbm6eTrjgxxPILKiROBEREZFr8fgyADQfADV1YDRsdhGPr9qPBjOPjiYiIjrLK8qAIAj4281piA7QIL/KiBfXHZY6EhERkcvwijIAAAE+SvzrzkEQBODzjCJsPFQidSQiIiKX4DVlAABG9gjB78b3BAA8/VUWSvUmiRMRERFJz6vKAAA8MSEFaTE61BoteHL1ftjtnE5I5C0q683YmVOJwmqj1FGIXIrXlQGVQoYF0wdDo5Thl5wqLPklT+pIRNQNSvUmvPDNYSzekYeXvs3GodN6qSMRuQyvKwMA0DNMi/+7oR8A4PWNx5BdbJA4ERF1tcyCGjQ22QAAdruIX3OrJE5E5Dq8sgwAwN3D4zGhbwSabHY8tjKz5U2CiDxTRICm1feR531P5M28tgwIgoB/TOuPUK0aJ8rrebohkYcbEh+Eu4bHo1+0Dtf3j8Kk1EipIxG5DK8tAwAQolVjwfTm0w1X7i3E2v2npY5ERF1oQr8IPHldb9yWHguF3Kvf/oha8fpXw5jkUMy7KhkA8MxXWcitqJc4ERERUffy+jIAAI9NSMHIHsFoaLLh959lwmTh8QNEROQ9WAbQvLrhgumDEeKnwpESA17+NlvqSERERN2GZeCMCJ0Gb50ZV7x8dwG+PVgsdSQiIqJuwTJwjnEpYXjkyjPjir/MQl5lg8SJiIiIuh7LwHmemJCC4YnBqDdbMfeTDC53TEREHo9l4DwKuQz/vXswwvzVOF5Wj6e+PAhR5PoFRETkuVgGLiJcp8HCGUOgkAn47mAJPtzO9QuIiMhzsQy0YWhiMJ6f2rx+wasbjmBnTqXEiYiIiLoGy8AlzByZgGlDYmEXgUdXZOJ0baPUkYiIiJyOZeASBEHA329JQ1qMDtUNTXj4030cSERERB6HZeAyNEo53puZjiBfJQ4W6fFnHlBIREQehmWgHWKDfPHOmQMK1+4vxn+35EgdiYiIyGlYBtppdM9QvHRTGgDgzR+OY31WicSJiIiInINloAPuHhGPOWOSAAB/+Hw/sor0EiciIiLqPJaBDnpmch9c2TsMJosdDyzbi1K9SepIREREncIy0EEKuQxv3zUYvcK1KDOY8eCyDBibOLKYiIjcF8uAA3QaJRbPHoZgPxWyTusxf0UmrDa71LGIiIgcwjLgoPgQX3wwKx1qhQybj5TjhXWHecohERG5JZaBTkhPCMaC6YMgCMCnvxZg4baTUkciIiLqMJaBTpqUFoXnb2hew+D1jcewJrNI4kREREQdwzLgBPeOScJD43oAAJ764iB+4aJGRETkRlgGnOTpSX1ww4AoWGwifvfJPhwpMUgdiYiIqF1YBpxEJhPw5h0DMSIpGHVmK+79aA8Kq41SxyIiIroslgEnUivkWHTPUKRENM8gmLVkDyrrzVLHIiIiuiSWAScL8FVi2ZwRiAn0QV5lA2Yv2YM6k0XqWERERG1iGegCkQEafPrACIT4qXC42IAHl2XAZLFJHYuIiOiiWAa6SFKoH5bOGQ6tWoFfc6s5pZCIiFwWy0AXSosJwAezhkKlkGFTdhn+uuYQpxQSEZHLYRnoYqN6huA/dw2GTABWZRTiHxuPSR2JiIioFZaBbjAxNRKv3ToAAPDetpNY9DPHFhMRketgGegmdwyLw9PX9wEAvLL+KFZnFEqciIiIqBnLQDf63fieLWOLn/4qCz9kl0mciIiIiGWg2/3l+j64PT0WNruIRz/7Dbtzq6SOREREXo5loJsJgoBXb+2PCX0jYLba8cDSDGQXcx0DIiKSDsuABBRyGf5792AMT2xex2DWkj0oqOI6BkREJA2WAYlolHJ8MHso+kbpUFlvxj1LdqO8ziR1LCIi8kIsAxIK8FFi6ZxhiA/2RX6VEbOX7IWB6xgQEVE3YxmQWLi/Bp/cPxyhWjWOlBjwwFKuY0BERN2LZcAFJIT4YemcYfBXK7AnrxrzuI4BERF1I5YBF5EaHYAPZjevY/BDdhmeWZPFdQyIiKhbsAy4kJE9/reOwecZRXj9e65jQETSWJNZhPkrMvHSumyUG3hws6djGXAx565jsHDrSXy4PVfiRETkbU6U1eHbAyVoMFuRX9WAFXs4Pt3TsQy4oDuGxeHPk5rXMfjbd0fw5b4iiRMRkTcxNtnO+94qURLqLiwDLup343vggSuSAABPfXkQW45yHQMi6h6p0Tr0ifIHAKgUMkwdGC1xIupqCqkD0MUJgoBnJvdFtbEJX/12Gr9fnomVD43EwLhAqaMRkYdTyGV48treKDWYoPNRQqvmR4Wn45YBFyaTCfjHtAEYnxKGRosN9y/dy7HFRNQtZDIB0YE+LAJegmXAxSnlMrwzYwhSo3WorG/CvR/tQU1Dk9SxiIjIg7AMuAGtWoGP7h2GmEAf5FY24IFlnFJIRETOwzLgJsJ1GiydMww6jQL78mvw+Mr9sNk5lIiIiDqPZcCNJIf744NZQ6GSy7DxcCn+9l221JGIiMgDsAy4mRE9QvDPOwYCAD765RSHEhERUaexDLihGwdG4y/XNw8l+vv6I1ifVSJxIiIicmcsA27qoXE9MGtUAkQReHzVfuw9VS11JCIiclMsA25KEAQ8PzUV1/aLQJPVjgeXZSC3ol7qWERE5IZYBtyYXCbg7emDMTAuELVGC+77eC+q6s1SxyIiIjfDMuDmfFRyLJ49FHHBPsivMnIGAbm0U5UN+CWnkqWVyMWwDHiAUK0aH983HAE+SmQW1OKJVfth5wwCcjH78mvwt++ysWRHHl5cl42KOhYCIlfBMuAheoZpseiedKjkMmw4VIpX1h+ROhJRK7vzqiCe6agNZiuyTtdKmoeI/odlwIOM6BGCN24fAAD4cEcelu48JW0gonNE6jStvo8473sikg6Xo/IwNw2KQVFNI974/hheXHcYMYE+mNAvQupYRLhxYDSsNhFFNUYMSQhCanSA1JGI6AyWAQ/0yJU9UVRjxIo9hZi3IhOr5o7EgNhAqWORl1PIZbhjWJzUMYjoIribwAMJgoCXbkrDuJQwNFpsmPNxBgqrjVLHIiIiF8Uy4KGUchnenTEEfaN0qKw3476P90JvtEgdizxQZkENPtyei/VZJTyLhchNsQx4MK1agY/uHYaoAA1yyusx99MMmK2cQUDOc7KiHu/8lINdJ6vw5b4ifOvC62TY7CI++DkXv//sN7zx/VHUm61SRyJyGSwDHi4yQIMl9w6DVq3Ar7nVePrLLIgi/3oj5yioNuLc/50KqhqkC3MZv+RU4tfcKpiabDhaUodvDxRLHYnIZbAMeIG+UTq8O2MI5DIBazJP418/HJc6EnmIvpE6qJX/exsZGBcoXZjLOH8yZyMndTrN9hMVWLIjD7tOVkkdhRzEswm8xLiUMLx6S3889eVB/GdLDuKCfHlkN3VaZIAGz07ph4NFesQE+qB/rOueLjg6ORQ/n6hASa0JOh8lJqZGSh3JI+zMqcTHv5wC0Lz1RaOUYXB8kLShqMNYBrzIHcPiUFhjxH+25OCZNVmICtRgbK8wqWORm4sO9EF0oI/UMS5Lq1bg+ampqKw3I8hXBY1SLnUkj5Bb2XrXUF5lA8uAG+JuAi/zh2tTcMvgGFjtIh7+9DccKTFIHYmo2yjlMkQF+LAIONGA2AAIQvO/C4LAYVJuimXAywiCgNem9cfIHsGoN1sx5+O9KNWbpI5FRG5qQGwg/jixN24dEounr++N3pH+UkciB7AMeCG1Qo73Zw5FcrgWJXoT7vt4L0+zIiKH9YnUYcqAKCSHswi4K5YBLxXgq8RH9w5DqFaNIyUG/H75b7DY7FLHIiIiCbAMeLG4YF8suXcofJRybDtegefWHuIMAiIiL8Qy4OUGxAbi7bsGQyYAK/YUYuG2k1JHIiKibsYyQLi2XwSen5oKAHh94zGs3X9a4kRERNSdWAYIADB7dCIeuCIJAPCn1QexO5eTxMh9lOgbUWtskjoGkdtiGaAWz0zui+vTItFks+OhT/Yhp7xe6khElySKIt7fdhLPrjmEP31xEDtPVkodicgtsQxQC5lMwFt3DsLg+EDoGy247+M9qKgzSx2LqE1FNY3Yk1cNALDbRXydyV1cRI5gGaBWNEo5Ppw1FAkhviisbsSsJXugN1qkjkV0URqlvGX6HQD4cLIgkUNYBugCIVo1Pr5veMsMglkf7UGdiYWAXE+YvxozRiTAX6NAVKAGc84c90JEHSOI7Tix3GAwICAgAHq9HjqdrjtykQs4VlqH6Yt2ocZowbDEICydMxy+Kq5t5WmKiooQFxfH1zeRB2rv5ze3DFCbekf645P7R8Bfo8DeUzV4cFnGBWvCExGR+2MZoEtKiwnA0jnD4aeS45ecKjz86T6YrSwERESehGWALmtIfBAW3zsMGqUMPx2rwEPL9nELARGRB2EZoHYZ2SMEi2c3F4Jtxytw30d70cCVDomIPALLALXbmORQLJszAn4qOXblVmH2kj0w8CwDIiK3xzJAHTI8KRifPjACOo0CGfk1mPnhblQ3cAwsETlXg9mKjYdKsDm7DE1WLq/e1VgGqMMGxwdhxUMjEeynwsEiPaYt3ImCKqPUsYjIQ9jtIt74/hhWZxRhxZ4CvLs1R+pIHo9lgBySGh2Az+eOREygD/IqG3Drwl9woLBW6lhE5AH0jRYUVv/vD4xDpw1ox0gc6gSWAXJYcrg/1jwyGqnROlTWN2H6ol+x5WiZ1LGIyM35axQI1apbvk8K9YVw7txpcjqWAeqUcJ0Gq+aOwriUMDRabHhgaQbe33aSLZ6IHKaQy/CnSb1xdd9wTEyNxPxrekkdyeOxDFCnadUKLJ49FNOHxcEuAq9uOIr5K/fD2MRTD4nIMaHa5nUn7hgWB3+NUuo4Ho9lgJxCKZfh1Vv74+WbUqGQCVh3oBi3vrsT+VUNUkcjIqLLYBkgpxEEAfeMSsRnD45EqFaFo6V1mPL2Dq4xT0Tk4lgGyOmGJwVj3bwrMCwxCPVmKx5ftR9/WLUf9ZxYSETkklgGqEtEBfhgxYMj8fiEXpAJwFeZpzHp3z/j5+MVUkcjIqLzsAxQl1HIZXh8QgpWzR2FmEAfFNU0YtaSPfjD5/tRw6mFREQug2WAutywxGB8/8Q43Ds6EYIAfPXbaVzzr21YvjsfVhvHjBIRSY1lgLqFVq3ACzem4suHR6N3hD+qG5rw1zWHcP2C7dh6rFzqeEREXo1lgLrVkPggfDv/Crx4YyoCfZU4UV6Pez/aizve24Wfj1dwWBERkQRYBqjbKeUyzB6diG1/vAoPjk2CSi7DnlPVmLVkD25+5xdsyCqBhbsPiIi6jSC2408xg8GAgIAA6PV66HS67shFXqRUb8Kin3Px2Z58mCzNJSBCp8adw+Jx1/A4RAX4SJzQsxUVFSEuLo6vbyIP1N7Pb5YBchmV9WZ8/MsprNxbgMr65rMNBAEYnhiMGwZG4/q0yFaLl5BzsAwQeS6WAXJbTVY7Nh4uxae/5mNPXnXL5XKZgCHxgRjXKwzjUsKQFhMAuYwrmXUWywCR52IZII9QVGPE+qwSrDtQgqzT+lbX6TQKDI4PwqC4QAyKD8Sg2EAE+akkSuq+WAaIPBfLAHmcwmojth2vwPYTFdiZU4W6i4w3DtWq0Stci+RwLXpFaBEf7IvYIB9EB/rAV6WQILXrYxkg8lzt/fzmuyO5jbhgX8wcmYCZIxNgsdlxpMSA/YW1yCyoxf7CWuRVNqCy3ozKejN25VZdcP9AXyViAn0QFaBBmL8aodpzv1TNl/mr4a9WQBC4+4GIvAfLALklpVyGAbGBGBAbiFmjmi+rN1txsrweOeX1OFFej5zyOhTVNOJ0bSPqTFbUGi2oNVpwuNhwycdWKWQI0zYXg0idGhE6zTlfakTqNAjXaaDTsDQQkWdgGSCPoVUrMDAuEAPjAi+4zmCyoLi2EadrGlFqMKGyrgkV9c3/PLs1obK+CfVmK5qsdpyubS4RBy7xfL4qOeKDfZEQ4ouEED8khPgi8cw/owN8IOPBjUTkJlgGyCvoNEroIpXoE3npfeKNTTZU1ptRUW9GucGMijoTSg0mlBnMKDOYUG4wo9Rggr7RAmOTDUdL63C0tO6Cx9GqFegd6Y8+kf7oG6VD3yh/9I7UQavmS46IXA/fmYjO4aOSIy7YF3HBvpe8ncliQ4nehPyqBuRXGXHqnH8WVhtRb7ZiX34N9uXXtNxHEIDeEf4YHB+EIfGBGJIQhB6hftzVQESSYxkgcoBGKUdSqB+SQv0uuM5isyOvsgFHSgw4UlKHo6UGHC2pQ6nB1LIlYcWeAgDNBzUOTwzGmORQjEkORc8wlgMi6n4sA0ROppTLkBLhj5QIf9w06H+Xl9eZ8Ft+LTILavBbQQ0OFulRa7RgU3YZNmWXAWgewzwmORRXJIfiyt7hCObcBCLqBpwzQCSRJqsdh4v12HmyCjtPVmLvqRo0Wf+3QJNMAIYmBGNCv3BM6BuBHmHaLsnBOQNEnotDh4jcjMliQ8apGvxyshJbj1XgSEnrUyB7hPnh2r4RmDIgCv1jApy2O4FlgMhzsQwQubnTtY348UgZfsguw6+5VbDY/vdSTQjxxQ0DojB1YDR6R/h3qhiwDBB5LpYBIg9SZ7Jg2/EKbDxUis1HylqWegaA5HAtpg6Ixs2Do5EQcuEBjZfDMkDkuVgGiDxUg9mKH4+W49sDxdh6rAJNtv8Vg+GJwbgtPRaTB0S1e6YBywCR52IZIPICBpMFPxwuw9oDxdhxogL2M69mH6Uc16dF4rahsRiZFHLJaYgsA0Sei2WAyMuU6k1Yk3kaq/cVIreioeXymEAf3JYei9uHxiI26MJhSiwDRJ6LZYDIS4miiP2FtVi9rwjrDhSjztS81LMgAON6heGZyX3RO9K/5fYsA0Seq72f37JuzERE3UAQBAyOD8Irt/TH3r9OwILpgzAmOQSiCPx8ogJ+arnUEYnIxXACIZEH0yjluGlQDG4aFIP8qgbszq2+6K4Cas1steGLfUUo1ZswqmcIRvcMlToSUZdiGSDyEs3LLHf81ENX91tBDb47WAKtWoEZI+MR7q9p87ZfZ57G/sJaJIb44u4RCVApLr5x9It9RdhypBwAcKTEgAidBj3bmABZWG3Eij0FsNpF3Dok5rIrYzqbwWTBJ7vyUVXfhPG9wzA+Jcwpj/vfLSewIasUwVoVXpvWHzGBFy+RVpsdqzIKcaKsHv2idbg9Pbbb19f4IbsMO09WIlKnwT2jEuCruvhHW5PVjs925+NUlRGD4gJx8+AYpzx/VpEe3xw4DY1SjhkjEhAZ0Pb/g12huLYRn+0ugNlqw02DYpAWE9Dhx+BuAiJyW7XGJry39SROVTbg0Gk9Fm/Pa/O2u3OrsO5AMQqrjdh+ohLrs0ravG2Z3tTy76IIlBlMbd72P1tO4FhpHU6W1+M/W3Jgttoc+2EctPzXAvyWX4P8qgZ8susU8qsaLn+ny9iZU4mPd55CmcGEI8UGPPPVoTZvu/lIObYcKUdhtRHfHyrFzycqO/38HXGstA4r9xSgoMqIPXnVWJ1R1OZtv8sqxvYTlSisNmLdgWLsyavu9PPXm61456cc5FY0ILvYgPe2nez0Y3bUu1tzcKTEgNyKBrzzUw6MTdYOPwbLABG5LUOjFTb7/46BrmpoavO2NcbW113qtiN7huDsH7cBvkqkRl38Ly1RFFFjtLR8b2qyobGpe8tAdYP5nDxA9SV+rvYqrDEC5xxafu5zXPj8Ted93/Ztu0LVec93qf+u1Q2W877vfNZ6kxWWc2Z9OOP331E15/xcTVY76k0sA0TkRWKCfJByzpkR1/QJb/O2QxODofNRAmheWXJsr7aPAxjdMxR/mdwX949NwvM3pCLAV3nR2wmC0Oo50xODEOjbvStNXtUnvKW4RAf6oG9U53dTTEyNRLD2zM8hADcOim7ztmOSQ6BRNh+U6qtWYGSPkE4/f0cMiA1EuE4NAJDJBFzZu+3dJGN7hUIpb/7Y0/koMTQxuNPPH6FTt9osf03ftv8f7CrnPueA2ECE+as7/Bg8tZDIy7n7qYVWmx1HS+vgp1YgKfTSx0QYTBbkVTQgOtDHoTfMtpwoq4PFJqJvVOfWiXBUUY0RNQ0W9IrQtnwwd5be2IQtRysQF+xz2Q/N6oYmFNUYER/s2+1lCACMTVbklNcj3F9z2f31FXVmFNc2IinMDzrNxUteR9nsIo6WGqBRyts8tqSr5ZTXw2y1oW+krtWQMc4ZIKJ2cfcyQERta+/nd7vOJrDZmveBFRUV8c2CyMMUFhYCAAoKChAYGChtGCJyKoOheSn0s5/jbWlXGcjJyQEApKamdjIWEbmq/v37Sx2BiLpITk4Ohg0b1ub17dpNUFNTg+DgYBQWFrbaMiCKoiT7x4jIeYqKipCamnrB65uI3J/BYEBcXByqq6sRFBTU5u3atWVALm8+IEWn07W8WWw6XIov9hVBrZTjobE90D+240MOiEh6Z1/T576+iciznP0cb4tDpxbWGpvweUYhbHYRRrMVH+1se9AHERERuTaHyoBdbB5ucda5Qz+IiIjIvThUBoL9VJjcPwoAIJcJuGt4vFNDERERUfdxeKGiaemxmJgWCYVMcNqQCyIiIup+nVq1UKvmoodE5BqMTVb8dLQCe/KqsL9Ij5LaRtQYmyATBPiq5IgL9kVyuBYjkoJxRa8wxAT6SB2ZyGXw05yI3FpeZQMWbs3BtwdLYLzoIkEizFY7aox6HCzS46vfTgMAhicG47b0WNw4KJpbN8nrsQwQkVuqaWjCqxuO4It9RTh7DHNcsA+u6ROB9IQgJIX6IchPBVEUUWeyIr+qeYnZHTmV2F9Yiz2nqrHnVDVe//4YHhqXhBkjEuDHrZ3kpbg2AZGXc8e1Cb47WIL/W3uoZbnYa/qE43dX9sTQhKB2DUIr1ZuwJvM0Pv01H6drGwEA4f5qPDO5L24aFM1hauQxuFAREbWLO5UBi82OV9YfwUe/nAIApERo8eqt/ZGe4NhStBabHWsyT+O/W3JQUG0EAAxLDMKrtw5Acrg0q88ROVN7P78dOrWQiKi71ZutuPejPS1F4OEre+LbeWMdLgIAoJTLcMfQOGx6Yhz+NLE3fJRy7D1Vgylvb8fiHXmwc4YKeQmWASJyebXGJsz8cDd+yamCn0qORfek48+T+kClcM5bmEYpx++vSsaPT47HuJQwmK12vPxtNmZ8uBtlBpNTnoPIlbEMEJFLM5gsuPuD3dhfWItAXyU+e3AkrkuN7JLnig70wdL7huFvN6fBRynHrtwqTHl7O3aerOyS5yNyFSwDROSyTBYbHlyagewSA0K1anw+dxQGxgV26XMKgoCZIxOw/rGx6BPpj8r65q0S7/yUw90G5LFYBojIJdntIh5fuR+786rhr1Zg2ZzhSInw77bnTwr1w5pHxuC29FjYReCN749h7qf70GC2dlsGou7CMkBELmnBjyew8XApVAoZPpg9FP2iu/9MBx+VHG/cNgCv3dofKoUMP2SXYdrCnSiqMXZ7FqKuxDJARC5nc3YZFvx4AgDw6i39MbJHiGRZBEHA9OHxWPnQSIRq1ThaWoeb3/kF+/KrJctE5GwsA0TkUgqrjXhi1X4AwOxRCZiWHittoDOGxAdh7aNj0C9Kh8r6Jty1aDe+3FckdSwip2AZICKXYbOLeGLVftSZrUhPCMKzN/STOlIrMYE++OLhUZiYGoEmmx1Prj6A1zYchY0HFpKbYxkgIpfx3raTyMivgVatwL/vHASl3PXeonxVCiyckY5Hr0oG0Jz5oWUZqDNZJE5G5DjXe6URkVc6dFqPt344DgB44cZUxAX7SpyobTKZgD9O7I0F0wdBrZDhx6PlmLZwJwqqeGAhuSeWASKSnNVmx1NfHITVLuL6tEhMGxIjdaR2uWlQDD6fOwrh/mocL6vHTe/swK6TVVLHIuowlgEiktzHO08hu8SAAB8lXr45za1WDRwYF4h1867AwNgA1BgtuGfxbnz6a77UsYg6pFNloB0LHhIRXVJRjRFvbmrePfDM5D4I1aolTtRxEToNVs0dhRsHRsNqF/Hs14fwf18fgsVmlzoaUbs4XAY2HS7F3E/2Yd6KTGQV6Z2ZiYi8yAvfZKPRYsPwxGDcnh4ndRyHaZRyLJg+CH+a2BsA8Mmv+ZjJhY7ITThUBmqNTfg8oxA2uwij2YqPduY5OxcReYHtJyqw+UgZFDIBr9yaBpnMfXYPXIwgCPj9VclYdE86/FRy7M6rxuQF27HteIXU0YguyaEyYBeBc/cQ8BxbIuooq82Ov317BAAwa1QiksO7b92BrnZdaiTWzbsCfaN0qGpowuwle/CPjUdh5W4DclEOlYFgPxUm948CAMhlAu4aHu/UUETk+T7PKMKxsjoE+Cgx/5pkqeM4XY8wLdY8Mhr3jEwAACzcehK3LtyJo6UGiZMRXUjh6B2npcdiYlokFDIBGqXcmZmIyMPVmSz41w/HAACPT+iFQF+VxIm6hkYpx8s3p2FkjxD85auDOFikx9T/7MCjV/XCI1f1dMmhSuSdOvV/olatYBEgog57f1suKuub0CPUDzPP/OXsyaYMiMIPfxiPCX0jYLGJeGvzcUz698/YcrSMZ2WRS2AtJaJuVVVvxpJfmg86fmpSb6/56zhCp8EHs9KxYPoghPipcLKiAXM+zsCsJXtwsKhW6njk5RzeTUBE5Ij3f86FscmGtBgdJqZGSh2nWwmCgJsGxeCqPuF4Z0sOlvySh+0nKrH9RCXG9grF78b3xOieIZIMXao1NqG8zoyKM18GkwVNVjusdhEKmQCdRgmdjxJxwT5IDPGDn5ofH56E/zWJqNuUG0xYuvMUAODJa3u71aRBZ9JplPjL5L64e0Q8Fmw+gbUHiltKQUKIL25Pj8XUgdFICPFz6vPa7SJO1zYip6IeJ8vrkVNej5MVzf+sMXZsoaWYQB8MTwrG8KRgXNM3HOH+Gqdmpe4liO3YYWUwGBAQEAC9Xg+dTtcduYiomxQVFSEuLq5bXt8vfHMYH+88hSHxgfjy4dFeWwbOV1htxKKfc7Em8zTqzdaWy3uE+mF87zAMigtE/5gAJIb4tWsWQ73ZipLaRuRVNuDEmQ/9s1+NFlub9wvyVSLMX40wfzUCfJRQymVQyGSw2OyoM1lQY7SgoNqI6oamVvcTBGBEUjCmDYnFjYOioVbwWDJX0d7Pb5YBIi/XXWWguLYRV76xFU02O5Y/MAJjkkO77LnclbHJig1ZpfjytyLsyauG9bwZLgqZgAidBlEBGvio5FAr5JDLgEaLHUazFXUmK4r1jagzWdt4BkApF5AU6oeeYVokhzd/9Qxr/vJRte9DvNbYhEOnDdiTV4VtJypxoLC25bpQrQr3jEzEnCsS4a9ROvR7IOdhGSCidumuMnB2q8CIpGCsfGgktwpchsFkwY4Tlfg1twpZp/XILjbAbG3/0CJ/tQJxwb5IiTj7oe+PXhFaJAT7QuHkgzYLq41Yd7AYn+7KR7G+efxysJ8Kj13TC3ePiPeag0RdEcsAEbVLd5SB6oYmjH7tR5gsdnxy/3CM7RXWJc/jyaw2O8rrzCjRN6LMYIbJYoP5zAF+vko5/NRy+KkViNRpEBmgkeSvcovNjg2HSvHvzceRW9EAAOgbpcMbtw1AWkxAt+eh9n9+8wBCIupyH/+SB5PFjv4xAbiCuwccopDLEB3og+hAH6mjtEkpl+HGgdG4Pi0Sq/YW4s1Nx3CkxICb3vkFv7+yJ+Zf08vpWyXIOfhfhYi6VL3ZiqW78gEAD1/Zk7sHvIBSLsPMkQn44Q/jMaV/FGx2EW9vycHMxbtRXsdVHF1Rp8oAJ2cR0eWs3FMAfaMFSaF+XjdXwNuFatV4Z8YQvH3XYPip5Pg1txo3vL2j1QGH5BocLgObDpdi7if7MG9FJrKK9M7MREQewmy14YPtuQCAueN6QO7mSxSTY24cGI21j16BlAgtyuvMmL7oV/x4pEzqWHQOh8pArbEJn2cUwmYXYTRb8dHOPGfnIiIPsHZ/McoMZkTo1LhlSIzUcUhCyeFafPXIGIxLCUOjxYYHl2Xgs90FUseiMxwqA3YROHcPgc3O3QVE1Jooiliyo/kPhfvGJHEQDUGrVmDx7KG4Y2gs7CLwzJqslomUJC2HykCwnwqT+0cBAOQyAXcNj3dqKCJyf7/mVuNoaR00ShmmD4uTOg65CKVchn9MG4Dfje8JAHj+m8P4+BduXZaaw6cWTkuPxcS0SChkApcxJqILfHTmDf7WIbEI9FVJnIZciSAI+POk3pAJwLtbT+KFddlQnDkDgaTRqbMJtGoFiwARXaCw2ogfzhwgdt/oRGnDkEsSBAF/mtgbj1zZvIXg/9YewsZDJRKn8l6cM0BETrd05ymIIjC2Vyh6RfhLHYdc1NlCcNfweIgiMH/lfuzJq5Y6llfinAEicqoGsxWrMgoBAHPGJEmchlydIAh4+aZUXNsvAk1WOx5Yuhc55XVSx/I6nDNARE715W9FqDNZm5ffTeEaBHR5CrkM/7lrMNITgmAwWfHgsn3QN1qkjuVVOGeAiJxGFEUsOzN6eNaoBMg4ZIjaSaOUY9E96YgJ9EFeZQPmr8jkaevdiHMGiMhp9uRVI6e8Hr4qOaalx0odh9xMiFaNRbPSoVHKsO14BV7//qjUkbwG5wwQkdMsPzNR7saB0ZIsoUvuLzU6AP+8fSAA4P1tuVifxTMMugPnDBCRU1TVm7HxUCkAYMYIni9OjrthQDSyTuvx/rZc/PmLg0iLDkB8iK/UsTwa5wwQkVN8sa8ITTY7BsQGoH9sgNRxyM398breSE8IQp3ZinkrfkOT1S51JI/GOQNE1Gl2u4gVe5p3EdzN3YbkBEq5DG/fNRgBPkocKNLjHxt5/EBXYhkA5yUQddbOk1U4VWWEv1qBqQOjpY5DHiIm0Advnjl+YPGOPPx0tFziRJ7Lq8vAkRIDHluZibmf7MN3B3mQCpGjlu9uPp3w5sEx8FM7fCgS0QUm9IvAfWMSAQBPfXkQNQ1N0gbyUF5dBpbtOoV6kxU2u4ivfitCRZ1Z6khEbqfcYMIP2c3rENw9grsIyPn+PKkPksO1qKgz49mvD3Frbhfw6jJw/nwEzksg6rjV+4pgtYsYEh+IvlE6qeOQB9Io5XjrjkFQyAR8l1WCbw4USx3J43h1GbhzWByU8uZfwbX9IhAZoJE4EZF7EUURq8+sQzCdBw5SF+ofG4B5V/cCAPzf14dQom+UOJFn8eqde+kJwUidHgCrXYSW+zmJOmzvqRqcqjLCVyXHlDODyIi6yiNX9cSWo2U4UKTHU18cxLI5wyEIHHntDF69ZQBo3vzEIkDkmLNbBab0j+KBg9TllHIZ3rxjEFQKGbafqMSazNNSR/IYXl8GiMgxDWYrvjszKvaOYXESpyFvkRyuxWPXNO8ueOnbbFTW88BvZ2AZICKHrM8qgbHJhqRQPwxNCJI6DnmRh8b1QJ9If9QaLXj522yp43gElgEicsjqjCIAwG3psdxvS91KKZfhH9MGQCYAa/cXcxiRE7AMEFGHnapswJ5T1ZAJwK1DYqSOQ15oYFwg5oxJAgD8dU0W6s1WiRO5N5YBIuqwL/Y1bxUY2ysMUQE+Eqchb/WH61IQG+SDYr0Jb246JnUct8YyQEQdYrOL+PK35jJw+9BYidOQN/NVKfD3W/oDAJbuPIXsYoPEidwXywARdciOnEqU6E0I9FXi2n4RUschLzc+JQyT+0fCLgLPrT0EOyfJOoRlgIg65OxsgZsGRkOtkEuchgj4vxv6wVclR0Z+TctWK+oYlgEiajd9owWbzixKdPtQzhYg1xAV4IP5Z2YPvLbhKPRGi8SJ3E+nygBXjnIMf2/krjZklaDJakfvCH+kRnNRInIdc8YkITlci6qGJvyTBxN2mMNlYNPhUsz9ZB/mrchEVpHemZk8lrHJilc3HMGDyzLwj41H0dhkkzoSUYecHf968+AYzhYgl6JSyPDSTakAgE935/NzqYMcKgO1xiZ8nlEIm12E0WzFRzvznJ3LI/2QXYacsnqIInC8tA4/Hi2TOhJRuxXVGLE7rxqCANw0KFrqOEQXGN0zFDcOjIYoAs/yYMIOcagM2EXg3C3dNv7C2+X835PVxt8buY+1+5vXkB+ZFILoQM4WINf07JS+0KoVOFBYy4MJO8ChMhDsp8LkM8uVymUC7uI65u1yTd8IRAVqAADRgT64um+4xImI2kcUxZZdBLcM5sRBcl3hOg3mXZ0MAHj9+2OcTNhODq85Oi09FhPTIqGQCdAoeXpRewT4KPHSjWmoM1nhr1FAJuM+V3IPh4sNyCmvh1ohw6T+kVLHIbqke8ck4rM9BcivMuLdn3Lw1KQ+UkdyeZ06m0CrVrAIdJBMJiDAV8kiQG7l7FaBCf0ioNMoJU5DdGlqhRx/ndwXAPDhjjwUVhslTuT6OGeAiC7JarPjmwPNxwvcMoi7CMg9XNsvAmOSQ9BkteOV9UekjuPyOlUG7Ha7s3KQBDjvgNpj58kqVNSZEeSrxLiUMKnjELWLIAj4vxv6QSYAGw6VYtfJKqkjuTSHy8DrG49i5KtbMPq1LVjz22lnZqIuVm+24u/fZePBZRl4c9MxmCycd0BtO7uL4IYB0VApuDGR3EefSB3uHtF8gPtL32bzzLdLcOiVnV/VgM8zCmG3i2iy2PDWZk57cicbskqQW9EAUQSyiw3YdrxC6kjkohrMVmw8VAoAuGUIdxGQ+/nDtb2h0yhwpMSAVXsLpY7jshwqA1a7CJxTsFi23Mv57ZhtmdryQ3YZGi02JIT4YnBcoNRxiDos2E+FxyekAADe3HQMBhPXLbgYh8pAzzBty9KlMpmAOWOSnBqKutZ1qZEI16kBAHHBvhjP/cDUhq/Ojh8exPHD5L7uGZWAnmF+qGpown+35EgdxyUJYjuOIjMYDAgICIBer4dO97/FScoMJmgUMgT4qro0JDmfzS6i3mSFzkfBN3kvV1RUhLi4uAte3+V1Jox85UfYReCnP16JpFA/CVMSdc5PR8tx38d7oZLL8OOT4xEX7Ct1pG7R1uf3+Tp1NFCETsMi4KbkZ+YdsAhQW9YdKIFdBAbHB7IIkNu7sncYrkgORZPNjn9sPCp1HJfDQ4OJ6KK+5vhh8iCCIOCZyX0hCMC3B0vwW0GN1JFcCssAEV0gp7wOWaf1UMgETDmzDgmRu+sXrcNtQ2IBAK98d4SzVs7BMkBEF1DJ5ZgxIh43DopGiFYtdRwip3nyut7QKGXIyK9pOW2WWAaI6CLiQ3zx91v64193DJI6CpFTRQZo8NDYHgCA1zYeRZOVk3QBlgEiIvIyc8f3RKhWjfwqIz79NV/qOC6BZYCIiLyKn1qBJ69rHkT09pYT0Bs5iIhlgIiIvM7t6bFIidCi1mjBf386IXUcybEMEBGR11HIZXhmcl8AwNKd+SioMkqcSFosA0RE5JXGp4RhbK8zg4i+9+5BRJ0qAzxHk4iI3JUgCPjL9c2DiL47WIJ9+d47iMjhMrDpcCnmfrIP81ZkIqtI78xMRERE3aJftA63p58ZRLTeewcROVQGao1N+DyjEDa7CKPZio925jk7FxERUbf4w7W94aOUY19+DTZ46SAih8qAXQTOLU82u3c2KSIicn+RARo8OO7MIKIN3jmIyKEyEOynwuQz88rlMgF3DY93aigiIqLuNHdcD4T5q1FQbcSyXaekjtPtFI7ecVp6LCamRUIhE6BRyp2ZiYiIqFv5qRV48toUPP1VFv6zJQe3pcci0Fcldaxu06mzCbRqBYsAERF5hNuHxqFPpD/0jRa8/WOO1HG6FecMEBERoXm399lBRJ/8egp5lQ0SJ+o+LANERERnjEsJw/iUMFhsIl7bcETqON2GZYCIiOgcf53SFzIB+P5wGXbnVkkdp1uwDBAREZ0jJcIf08+cJff39Udg94LT51kGiIiIzvPEhBT4qeQ4WKTHNweKpY7T5VgGiIiIzhPmr8YjVyUDAF7feBQmi03iRF2LZYCIiOgi7r8iCdEBGhTrTVi8w7PH7rMMEBERXYRGKcdTk/oAAN79KQcVdWaJE3UdlgEiIqI23DgwGgNiA9DQZMNbm49LHafLsAwQERG1QSYT8OyUfgCAlXsKcLysTuJEXYNlgIiI6BKGJwVjUmok7CLwynrPHETEMkBERHQZT1/fB0q5gK3HKvDz8Qqp4zgdywAREdFlJIb64Z6RiQCatw7YPGwQEcsAERFRO8y/JhkBPkocLa3D6oxCqeM4FcsAERFROwT6qjD/ml4AgDd/OI4Gs1XiRM7DMkBERNRO94xMQGKILyrqzHh/20mp4zgNywAREVE7qRQyPH198yCiRdtzUVzbKHEi5+hUGRBFzzqAgoiI6HImpkZieFIwTBY7Xt1wVOo4TuFwGdh0uBRzP9mHeSsykVWkd2YmIiIilyUIAp67oR8EAVh3oBh78qqljtRpDpWBWmMTPs8ohM0uwmi24qOdnr2AAxER0bnSYgIwfVg8AOCFbw67/amGDpUBuwicu4fA3X8JREREHfXH61Lgr1Egu8SAVXvd+1RDh8pAsJ8Kk/tHAQDkMgF3DY93aigiIiJXF6JV44kJKQCAf246Bn2jReJEjlM4esdp6bGYmBYJhUyARil3ZiYiIiK3cM+oBKzYU4AT5fVYsPkEnpvaT+pIDunU2QRatYJFgIiIvJZSLmspAMt2nUJOuXuuasg5A0RERJ0wtlcYru0XAatdxIvrst3ytHunlAF3/MGJiIic5dkpfaGSy7D9RCU2HymXOk6HdaoMHCutw+MrMzH3k31Yd6DYWZmIiIjcSkKIHx4YmwQA+Nt32TBbbRIn6phOlYGlu06hzmSFzS7i68zTKDOYnJWLiIjIrTxyVTLC/dXIrzJi8Q73mr/TqTJgP2++AOcNEBGRt9KqFS3rFvznxxy3WregU2XgzmFxUMqbH+LqvuGIDvRxSigiIiJ3dMvgGAxLDEKjxYaX1mVLHafdHJ4zAACD44Ow4K5BaLLa4a9ROisTERGRWxIEAS/fnIYpb+/AxsOl+OlYOa7qHS51rMvq9NkEaoWcRYCIiOiMPpE6zBmTCAB4fu1hmCyufzAh5wwQERE52WMTUhChU6Og2oiFW09KHeeyOlUGOF+g8/g77H78nRNRV9OqFXjuhlQAwMJtJ3GqskHiRJfm8DEDmw6X4ot9RVAr5XhobA/0jw1wZi6PZ7XZsXDrSRwoqkVMoA8en5CCID+V1LE83so9Bdh8pByBvko8elUyEkP9pI5ERB5qcv9IjO0Viu0nKvH8N4fx8X3DIAiC1LEuyqEtA7XGJnyeUQibXYTRbMVHO93rfEpXsCu3CvsLayGKQFFNI9Yd5NCmrnayoh4/ZJdBFEXUNDRhxZ4CqSMRkQcTBAEv3ZQGlVyGbccr8P3hUqkjtcmhMmAXgXO3tHK+QMdZz/udWWz8HXa18/8/Pf+/ARGRsyWF+uF343sAAF5cl40Gs1XiRBfnUBkI9lNhcv8oAIBcJuCu4fFODeUNRvUIQXK4FgAQ5KfCDQOiJE7k+XqFazGiRzAAQKOS47b0WIkTEZE3eOSqZMQF+6BEb8KCH09IHeeiBLEdR1MZDAYEBARAr9dDp9O1XF5vtkIhE7iMsYNEUYTBZIWfSg6FnCd2dBeDyQKNQg6Vgr9zACgqKkJcXNwFr28icp4tR8sw5+MMyGUC1v5+DNJiuuc4u7Y+v8/XqXdDrVrBItAJgiAgwEfJItDNdBoliwARdaur+0RgyoAo2Owi/vJVFqw2u9SRWuE7IhERUTd4fmo/6DQKZJ3W4+Odp6SO0wrnDHSCt//8RETUfuH+GjwzuS8A4M1Nx1FYbZQ40f84XAY2HS7F3E/2Yd6KTGQV6Z2ZyeXVm614Zf0RPLgsA298f9QtRk0SEZH07hwWhxFJwWi02PDXrw+5zB+VnDPggO8PleJkeT1EEThaUoefjpZLHYmIiNyAIAh49db+UClk+Pl4Bdbud40ZM5wz4ACer05ERI7qEabF/KuTAQAvfZuN6oYmiRNxzoBDru0XgYgADQAgNsgHV/Vx/eUpiYjIdTw0rid6R/ijuqEJf/suW+o4nDPgKLtdRJ3ZCp1G4bKzponag3MGiKSRWVCDWxfuhCgCy+YMx7iUMKc/B+cMdDGZrHlGAIsAERE5YnB8EGaPSgQAPP3lQRhMFsmycM4AERGRRJ6a1BsJIb4o1pvwyndHJMvBMkBERCQRX5UCr08bAABYubcQ245XSJKDZYCIiEhCI3qE4N7RiQCk213AMkBERCSxpyb1RmKIL0r0Jvzt2+4/u4BlgIiISGK+KgXeuH0gBAH4PKMIPx3r3mF2LANEREQuYFhiMO4bnQQA+MuXWdA3dt/uApYBIiIiF/Gnib2RFOqHUoMJL3fj7gKWASIiIhfho5LjjdsGQBCAL/YVYeOhkm55XpYBIiIiFzI0MRgPj+8JAHj6qyyUGUxd/pwsA27CVZa5JCKirvf4hBSkxehQa7Tgj6sPwN7FC+KxDLi4Jqsd/958HA8uy8CL6w536wElREQkDZVChn/fORgapQzbT1Ri6a5TXfp8LAMu7pecSmQV6SGKQEGVEd8d7J79R0REJK3kcC3+OrkvAODVDUdxvKyuy56LZcDFWc/bNGS12yVKQkRE3W3myARc2TsMTVY7Hlu5H2arrUueh2XAxV2RHIrEUD8AQIhWhevToiRORERE3UUQBLx+2wAE+6lwpMSANzcd75LnUXTJo5LT+KjkeHZKXxgardBqFJDLuGQyEZE3CffX4B/TBuDBZRn4YHsuxvUKwxW9Qp36HNwy4AYEQUCAr5JFgIjIS13bLwJ3j4iHKAKPr9qP8jrnnm7IMkBEROQGnruhH3pH+KOy3ownVu2HzYmnG7IMuADOEKDuwv/XiNyXRinHOzMGw0cpxy85VVi4Ncdpj80yICGTxYY3Nx3Dg8sy8PfvslFvtkodiTxUVpEe81ZkYu4n+7DpcKnUcYjIQcnh/njpplQAwL9+OI49edVOeVyWAQltPVaB7GIDRBHIrWjAxkN8k6au8dHOPBjNVtjsIj7PKITeyOFVRO7qtvRY3Do4BnYRmL8iE9UNTZ1+TJYBCdnP22RrtXGGAHWNc/ctiiJg4+4CIrclCAJevjkNPc6sbuiMccUsAxIanxKGuGBfAEC4ToPrUiMlTkSe6q7h8S1no0wZEIVgP5XEiYioM/zUCvz37iFQKWTYcrQcH2zP7dTjCWI7jigyGAwICAiAXq+HTqfr1BNSa6IocoYAdQuTxQarXYRW3Xq8SFFREeLi4vj6JnJDn/6aj2e/PgS5TMBnD4zAiB4hra5v7+c3twxIjDMEqLtolPILigARubcZI+Jx86Bo2OwiHl2R6fD8AZYBIiIiNyUIAl65tT9SIrSw2OworDY69Dj8M4HIAaIoQhC4NYeIpOerUuD9e4ZCKRcQG+Tr0GOwDBB1gNVmx8KtJ3GgqBaxQb54fEIvBPryYDwiklbSmQXtHMXdBEQdsPNkFfYX1kIUgcJqI9YdKJY6EhFRp7EMEHXA+bPArU6cDU5EJBWWAaIOGNUzBD3DtQCAYD8VpvSPkjgREVHn8ZgBog7QKOX4y/V9YDBZ4aeSQyFnnyYi99euMnB2LpHBYOjSMETuQgDgKeP9z76u+fom8jxnX9eXmy/YrjJQV1cHAIiLi+tkLCJyVXx9E3muuro6BAQEtHl9u8YR2+12FBcXw9/fn+dWE3kYm82GnJwcJCcnQy6XSx2HiJxIFEXU1dUhOjoaMlnbuzXbVQaIiIjIc/HoJyIiIi/HMkBEROTlWAaIiIi8HMsAERGRl2MZcHH33nsvBEGAIAhQKBSIj4/Hww8/jJqampbbJCYmttzGx8cHiYmJuOOOO7Bly5ZWj3Xq1KmW2537NXPmzJbbFBQUYOrUqfDz80NoaCjmz5+PpqamlutfeOGFiz6Gn1/rRTK2bduG9PR0aDQa9OjRA++9914X/YaIvIvNZsPo0aMxbdq0Vpfr9XrExcXh2WefBYCLvk7beh327t0bKpUKp0+f7vL85JpYBtzApEmTUFJSglOnTuHDDz/EunXr8Mgjj7S6zUsvvYSSkhIcO3YMy5YtQ2BgICZMmIC///3vFzze5s2bUVJS0vL1zjvvAGh+k5kyZQoaGhqwY8cOrFy5El9++SWefPLJlvv+8Y9/bHXfkpIS9OvXD7fffnvLbfLy8jB58mSMHTsWmZmZeOaZZzB//nx8+eWXXfQbIvIecrkcS5cuxcaNG7F8+fKWy+fNm4fg4GA899xzLZd99NFHrV6rs2fPvuDxduzYAZPJhNtvvx0ff/xxd/wI5IpEcmmzZ88Wb7rpplaX/eEPfxCDg4Nbvk9ISBDfeuutC+773HPPiTKZTDx69KgoiqKYl5cnAhAzMzMv+lzr168XZTKZePr06ZbLVqxYIarValGv11/0Pvv37xcBiD///HPLZU899ZTYp0+fVrebO3euOHLkSFEURXHjxo2iWq0Wa2pqWt1m3rx54rhx4y76PETU2oIFC8SgoCDx9OnT4tdffy0qlcpWr20A4po1ay77OPfee6/49NNPixs2bBB79Ogh2u12URRF8b333hOjo6NFm83W6vZTp04VZ82a5cwfhVwAtwy4mdzcXGzcuBFKpfKyt33ssccgiiLWrl3brsfetWsX0tLSEB0d3XLZxIkTYTabsW/fvove58MPP0RKSgrGjh3b6nGuu+66VrebOHEiMjIyYLFYMGHCBAQGBrbaUmCz2fD5559jxowZ7cpK5O3mzZuHgQMHYtasWXjooYfw3HPPYdCgQa1u8+ijjyI0NBTDhg3De++9B7vd3ur6uro6rF69GjNnzsS1116LhoYGbN26FQBw++23o7KyEj/99FPL7WtqavD999/zdeqBWAbcwLfffgutVgsfHx/07NkT2dnZ+POf/3zZ+wUHByM8PBynTp1qdfno0aOh1WpbvjIzMwEApaWliIiIaHXboKAgqFQqlJaWXvD4ZrMZy5cvx/3339/q8os9TkREBKxWKyorKyGXy3HnnXfis88+a7n+xx9/RE1NTavdDUTUNkEQsHDhQvz444+IiIjA008/3er6l19+GatXr8bmzZsxffp0PPnkk3jllVda3WblypXo1asXUlNTIZfLMX36dCxevBhA8/vHpEmTWr1OV69ejeDgYFxzzTVd/wNSt+KqhW7gqquuwsKFC2E0GvHhhx/i+PHjmDdvXrvuK4riBSOkV61ahb59+7Z8f+5M+ouNm77YYwDAV199hbq6OsyaNeuC686/vXhm0OXZy2fMmIFRo0ahuLgY0dHRWL58OSZPnoygoKB2/VxEBCxZsgS+vr7Iy8tDUVEREhMTW647eyAhgJYtBi+99FKryxcvXtzqAOKZM2di3LhxqK2tRWBgIGbMmIGHHnoI7777LtRqNZYvX47p06dzbLUH4pYBN+Dn54fk5GQMGDAAb7/9NsxmM1588cXL3q+qqgoVFRVISkpqdXlcXBySk5NbvtRqNQAgMjLygi0ANTU1sFgsF/ylDzTvIrjhhhsQGRnZ6vKLPU55eTkUCgVCQkIAAMOHD0fPnj2xcuVKNDY2Ys2aNa3elIjo0nbt2oW33noLa9euxahRo3D//fdfcmW6kSNHwmAwoKysDACQnZ2N3bt346mnnoJCoYBCocDIkSPR2NiIFStWAACmTp0Ku92O7777DoWFhdi+fTtfpx6KZcANPf/88/jnP/+J4uLiS95uwYIFkMlkuPnmm9v1uKNGjcKhQ4dQUlLSctmmTZugVquRnp7e6rZ5eXn46aefLthFcPZxfvjhh1aXbdq0CUOHDm11rMPdd9+N5cuXY926dZDJZJgyZUq7chJ5u8bGRsyePRtz587FhAkT8OGHH2Lv3r14//3327xPZmYmNBoNAgMDATRvFRg3bhwOHDiA/fv3t3w99dRTLbsKfHx8cOutt2L58uVYsWIFUlJSLngvIA8h6eGLdFkXO5tAFEUxPT1d/P3vfy+KYvPZBC+99JJYUlIiFhQUiNu2bRMffPBBURAE8bXXXmu5z+XOJrBarWJaWpp4zTXXiL/99pu4efNmMTY2Vnz00UcvuO2zzz4rRkdHi1ar9YLrcnNzRV9fX/GJJ54Qs7OzxcWLF4tKpVL84osvWt3u+PHjIgBxwIAB4v3339+B3wqRd5s/f77Ys2dPsb6+vuWyRYsWiVqtVszLyxO/+eYbcdGiRWJWVpaYk5MjfvDBB6JOpxPnz58viqIoNjU1iWFhYeLChQsveOyzr8v9+/eLoiiKmzZtEtVqtdi7d2/x5Zdf7p4fkLody4CLa6sMLF++XFSpVGJBQYGYkJAgAhABiCqVSoyPjxfvuOMOccuWLa3uc7kyIIqimJ+fL06ZMkX08fERg4ODxUcffVQ0mUytbmOz2cTY2FjxmWeeafNxtm7dKg4ePFhUqVRiYmLiRd90RFEUhw0bJgK4ICsRXdzWrVtFuVwubt++/YLrrrvuOvHqq68W169fLw4aNEjUarWir6+vmJaWJv773/8WLRaLKIqi+MUXX4gymUwsLS296HP0799fnDdvniiKzX8kREVFiQDEkydPdt0PRpLiEsZERERejscMEBEReTmWASIiIi/HMkBEROTlWAaIiIi8HMsAERGRl2MZICIi8nIsA0RERF6OZYCIiMjLsQwQERF5OZYBIiIiL8cyQERE5OVYBoiIiLzc/wPaBOSscroGhwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the correlation of each feature with the response value \n", + "model1.model_corr()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "db30bcd2-24ca-4a44-a7ea-6b463da38e62", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmgklEQVR4nO2deXgUVdbG305DArJpFiDQYRNFcP3A3UHBBXQcBw18Kq6ooKgMRDQOOiji6IejDgFH0BkHwRECBBK3cRvidBBFx30WYVwwyBZk04Agge6c74/qanqp5d5auqs75/c89+mkupZbt6rrvnXuOef6iIjAMAzDMAyTJeSkuwIMwzAMwzBOwuKGYRiGYZisgsUNwzAMwzBZBYsbhmEYhmGyChY3DMMwDMNkFSxuGIZhGIbJKljcMAzDMAyTVbC4YRiGYRgmq2BxwzAMwzBMVsHihmEykF/84hc4/PDDsXHjxqTvdu3aheLiYpx11llobm5O+n7jxo247bbbcPTRR6Nt27bIz8/H8ccfj3Hjxmnuz+usX78ePp8Pjz/+uOm6CxYsgM/nw/r166PLxowZg169erlXQQPGjBkDn88XLXl5eejXrx+mTZuG/fv3R9d74IEH4PP5LB2jsrISs2bNcqjGDJMZtEp3BRiGkefPf/4zjjvuOIwdOxZvvvlm3HcTJkzAnj178NxzzyEnJ/79ZdOmTRg4cCAOP/xw3HnnnejXrx8aGxuxZs0aVFVV4ZtvvkFJSUkqTyXt3HfffZg0aVLajt+2bVv8/e9/BwB8//33WLx4MR588EH897//xdKlS23vv7KyEv/5z39QVlZme18MkymwuGGYDKRr166YO3currjiCvzxj3/ELbfcAgB44YUXsHjxYsydOxd9+/ZN2u6ZZ57Bjh078MEHH6B3797R5ZdeeinuvfdeTUuPLPv27cNhhx1mez+p4sgjj0zr8XNycnD66adH/7/ooouwfv16VFVVYebMmejevXsaa8cwmQkPSzFMhnL55ZfjyiuvxF133YX169dj586dGD9+PC644ALceuutmtvs3LkTOTk56Ny5s+b3iZaef/zjH7jkkktQUFCANm3a4Mgjj4yzAKjDJZ988glGjRqFI444IioWPvroI1x55ZXo1asX2rZti169emH06NH49ttv446hDhX9/e9/x7hx41BQUICOHTviuuuuw969e7F161ZcfvnlOPzww1FcXIy77roLBw8eTKp7c3MzHn74YfTo0QNt2rTBySefjLfeesu0HbWGpXw+HyZMmIDnn38e/fv3x2GHHYYTTzwRf/3rX5O2f+mll3DCCScgLy8Pffr0wezZs20NIwGIip3EtoqlubkZjz76KI455hjk5eWhc+fOuO6667Bp06boOkOGDMGrr76Kb7/9Nm74i2GyHbbcMEwGM2fOHKxcuRI33ngjioqKcODAATz77LO6659xxhmYM2cOSktLMXnyZJxxxhno2LGj5rpvvvkmLrnkEvTv3x8zZ85Ejx49sH79evztb39LWre0tBRXXnklxo8fj7179wJQfGH69euHK6+8Evn5+WhoaMBTTz2FU045BWvWrEFhYWHcPsaOHYvS0lIsWbIEn376Ke69916EQiF88cUXKC0txc0334za2lr87ne/Q7du3TB58uS47Z988kn07NkTs2bNinb8F110EVauXIkzzjhDtmnx6quv4sMPP8SDDz6I9u3b49FHH8Vll12GL774An369AEAvPHGGygtLcXZZ5+NpUuXIhQK4fHHH8d3330nfbxYvv76awBAUVGR7jq33nor/vSnP2HChAn4xS9+gfXr1+O+++5DXV0dPvnkExQWFmLu3Lm4+eabsW7dOrzwwgu26sQwGQUxDJPRvPbaawSAANDzzz9vuG5zczPdcsstlJOTQwDI5/NR//796Y477qD6+vq4dY888kg68sgj6aefftLd37Rp0wgA3X///ab1DIVC9OOPP1K7du1o9uzZ0eXz588nAPSrX/0qbv1LL72UANDMmTPjlp900kk0cODA6P/19fUEgLp16xZX1927d1N+fj6df/75SceKPdfrr7+eevbsGXcMANSlSxfavXt3dNnWrVspJyeHZsyYEV12yimnUElJCTU1NUWX7dmzhwoKCkjk8Xr99ddTu3bt6ODBg3Tw4EHavn07zZ49m3w+H51yyinR9dR2Vlm7di0BoNtuuy1uf//4xz8IAN17773RZRdffHHS+TFMtsPDUgyT4Vx00UU4/fTTcdRRR+Gaa64BAIRCobhCRACU4Zann34a33zzDebOnYsbbrgBBw8eREVFBY499lisXLkSAPDll19i3bp1uOmmm9CmTRvTOowcOTJp2Y8//ohf//rX6Nu3L1q1aoVWrVqhffv22Lt3L9auXZu0/i9+8Yu4//v37w8AuPjii5OWaw3XlJaWxtW1Q4cOuOSSS/D2228jHA6bnkMiQ4cORYcOHaL/d+nSBZ07d44ee+/evfjoo49w6aWXIjc3N7pe+/btcckllwgfZ+/evWjdujVat26NoqIilJWV4aKLLjK0tASDQQDKkFosp556Kvr37y80HMcw2QwPSzFMFpCXlxfXwbZu3Tru+/nz58d1hD179ozzy6mqqsLo0aNRXl6ODz74ANu3bwcABAIBoeMXFxcnLbvqqqvw1ltv4b777sMpp5yCjh07wufz4ec//zl++umnpPXz8/Pj/lfPR2t5bJi0SteuXTWXHThwAD/++CM6deokdC4qBQUFScvy8vKidf/+++9BROjSpUvSelrL9Gjbti3efvvt6P579uypO1SosnPnTgDa7d6tWzdDXx2GaQmwuGGYLOTDDz+M+z82MkqLyy+/HDNmzMB//vMfAId8PWKdU41IdFJtbGzEX//6V0ybNg1TpkyJLm9qasKuXbuE9inL1q1bNZfl5uaiffv2jh/viCOOgM/n0/Sv0aqLHjk5OTj55JOljq0Kr4aGhiQBumXLliR/JoZpafCwFMNkISeffHJcie0Mtfjxxx+xceNGdOvWDQBw9NFH48gjj8Szzz6LpqYm6eP7fD4QEfLy8uKW//nPf7Y0RCRCTU1NnEVnz549eOWVVzB48GD4/X7Hj9euXTucfPLJePHFF3HgwIHo8h9//FEzqspJzj33XADAwoUL45Z/+OGHWLt2Lc4777zoslhrE8O0FNhywzAtiIcffhjvvvsurrjiCpx00klo27Yt6uvr8eSTT2Lnzp147LHHouvOmTMHl1xyCU4//XTccccd6NGjBzZs2IA333wTixYtMjxOx44dcfbZZ+Oxxx5DYWEhevXqhZUrV2LevHk4/PDDXTk3v9+PCy64AJMnT0ZzczN+97vfYffu3Zg+fborxwOABx98EBdffDGGDx+OSZMmIRwO47HHHkP79u1ds1ABQL9+/XDzzTfjD3/4A3JycqK5ce677z6UlJTgjjvuiK57/PHHo6amBk899RQGDRpkyVLEMJkGixuGaUFce+21AIAlS5bgscceQ2NjI/Lz8zFo0CC89tpruOiii6LrDh8+HG+//TYefPBBTJw4Efv370cgEMAvf/lLoWNVVlZi0qRJuPvuuxEKhXDWWWdhxYoVSQ7CTjFhwgTs378fEydOxLZt23Dsscfi1VdfxVlnneXK8QDgwgsvRHV1Ne6//35cccUV6Nq1K2677TZs2bIFzz//vGvHBYCnnnoKRx55JObNm4c5c+agU6dOuPDCCzFjxow4f6FJkybh888/x7333ovGxkYQUdTBnGGyFR/xXc4wDOMYBw8exEknnYTu3btr5gRiGMZ92HLDMAxjg5tuugkXXHABiouLsXXrVjz99NNYu3YtZs+ene6qMUyLhcUNwzCMDfbs2YO77roL27dvR+vWrTFw4EC89tprOP/889NdNYZpsfCwFMMwDMMwWUVaQ8HffvttXHLJJejWrRt8Ph9efPFF021WrlyJQYMGoU2bNujTpw+efvpp9yvKMAzDMEzGkFZxs3fvXpx44ol48sknhdavr6/Hz3/+cwwePDg6sd7EiRNRXV3tck0ZhmEYhskUPDMs5fP58MILL+DSSy/VXefXv/41Xn755bh5acaPH49//vOfeO+991JQS4ZhGIZhvE5GORS/9957GDZsWNyy4cOHY968eTh48GDSfDqAku49NsNqc3Mzdu3ahYKCgqSU8QzDMAzDeBMiwp49e9CtWzfk5BgPPGWUuNm6dWvShHRdunRBKBTCjh07NCeRmzFjhqsZShmGYRiGSR0bN240ndQ3o8QNkDxBnzqqpmeFueeeezB58uTo/42NjejRowc2btxoOvMuwzAMwzDeYPfu3SgpKUGHDh1M180ocdO1a9ek2Xa3bduGVq1axaUbjyUvLy9p8j5AmfuGxQ3DMAzDZBYiLiUZNSv4GWecgRUrVsQt+9vf/oaTTz5Z09+GYRiGYZiWR1rFzY8//ojPPvsMn332GQAl1Puzzz7Dhg0bAChDStddd110/fHjx+Pbb7/F5MmTsXbtWjz77LOYN28e7rrrrnRUn2EYhmEYD5LWYamPPvoIQ4cOjf6v+sZcf/31WLBgARoaGqJCBwB69+6N1157DXfccQfmzJmDbt264YknnsDIkSNTXneGYRiGYbyJZ/LcpIrdu3ejU6dOaGxsZJ8bhmGYFkRzczMOHDiQ7mowBuTm5uqGecv03xnlUMwwDMMwVjhw4ADq6+vR3Nyc7qowBuTk5KB3797Izc21tR8WNwzDMExWQ0RoaGiA3+9HSUmJaQI4Jj00Nzdjy5YtaGhoQI8ePWwl2mVxwzAMw2Q1oVAI+/btQ7du3XDYYYeluzqMAUVFRdiyZQtCoZCtKGiWrwzDMExWEw6HAcD2UAfjPuo1Uq+ZVVjcMAzDMC0Cnk/Q+zh1jVjcMAzDMAyTVbC4YRiGYRgmq2BxwzAMwzAeZNu2bbjlllvQo0cP5OXloWvXrhg+fDjee+89V4/r8/mipX379jjxxBOxYMGCuHXq6uowYsQIFBcXo127djjppJOwaNEiV+slA0dLMQzDMIwQYQCrADQAKAYwGIDftaONHDkSBw8exHPPPYc+ffrgu+++w1tvvYVdu3ZZ2l84HIbP5xMKhZ8/fz4uvPBC7N27F0uXLsUNN9yA4uJiDB8+HACwevVqnHDCCfj1r3+NLl264NVXX8V1112Hjh074pJLLrFUP0ehFkZjYyMBoMbGxnRXhWEYhkkBP/30E61Zs4Z++uknG3upJqIAESGmBCLLnef7778nAFRXV2e63rhx46hz586Ul5dHxx57LL3yyitERDR//nzq1KkTvfLKK9S/f3/y+/30zTffmB4bAL3wwgtxy/Lz82ny5MmG2/385z+nG264wXT/RhhdK5n+my03DMMwDGNIDYBRABJnK9ocWb4cQKmjR2zfvj3at2+PF198Eaeffjry8vKS1mlubsZFF12EPXv2YOHChTjyyCOxZs0a+P2HrEn79u3DjBkz8Oc//xkFBQXo3LmzVD3C4TCqq6uxa9cu07wzjY2N6N+/v9T+3YLFDcMwDMPoEgYwCcnCBpFlPgBlAEbAySGqVq1aYcGCBRg3bhyefvppDBw4EOeccw6uvPJKnHDCCQCA2tpafPDBB1i7di2OPvpoAECfPn3i9nPw4EHMnTsXJ554otTxR48eDb/fj/379yMcDiM/Px9jx47VXX/58uX48MMP8cc//lHyTN2BHYoZhmEYRpdVADYZfE8ANkbWc5aRI0diy5YtePnllzF8+HDU1dVh4MCBUefezz77DIFAICpstMjNzY2KIRkqKirw2WefYcWKFTjppJNQUVGBvn37aq5bV1eHMWPG4JlnnsGxxx4rfSw3YHHDMAzDMLo0OLyeHG3atMEFF1yA+++/H6tXr8aYMWMwbdo0AEDbtm1Nt2/btq2lxHhdu3ZF3759MXToUCxbtgy333471qxZk7TeypUrcckll2DmzJm47rrrpI/jFixuGIZhGEaXYofXs8eAAQOwd+9eAMAJJ5yATZs24csvv3T1mH379sXIkSNxzz33xC2vq6vDxRdfjEceeQQ333yzq3WQhcUNwzAMw+gyGEAAim+NFj4AJZH1nGPnzp0499xzsXDhQvzrX/9CfX09li1bhkcffRQjRowAAJxzzjk4++yzMXLkSKxYsQL19fV4/fXX8cYbb+ju95577rFkYbnzzjvxyiuv4KOPPgJwSNhMnDgRI0eOxNatW7F161bLYepOw+KGYRiGYXTxA5gd+TtR4Kj/z4LT+W7at2+P0047DRUVFTj77LNx3HHH4b777sO4cePw5JNPRterrq7GKaecgtGjR2PAgAG4++67DSedbGhowIYNG6Trc/zxx+P888/H/fffDwBYsGBBNBKruLg4WkpLnY0as4qPiLRcwLOW3bt3o1OnTmhsbETHjh3TXR2GYRjGZfbv34/6+nr07t0bbdq0sbiXGihRU7HOxSVQhI03OvRswOhayfTfHArOMAzDMKaUQgn3Tl2GYsY6LG4YhmEYRgg/gCHprgQjAPvcMAzDMAyTVbC4YRiGYRgmq2BxwzAMwzBMVsHihmEYhmGYrILFDcMwDMMwWQWLG4ZhGIZhsgoWNwzDMAzDZBUsbhiGYRiGySpY3DAMwzCMB9m2bRtuueUW9OjRA3l5eejatSuGDx+O9957z/Vj//Wvf8WQIUPQoUMHHHbYYTjllFOwYMGCuHX++c9/YvTo0SgpKUHbtm3Rv39/zJ49W3uHKYYzFDMMwzCMCOEwsGoV0NAAFBcDgwcDfvemXxg5ciQOHjyI5557Dn369MF3332Ht956y/LM2+FwGD6fDzk5xnaNP/zhDygrK8Ovf/1rzJ07F7m5uXjppZcwfvx4/Oc//8Hjjz8OAPj4449RVFSEhQsXoqSkBKtXr8bNN98Mv9+PCRMmWKqjY1ALo7GxkQBQY2NjuqvCMAzDpICffvqJ1qxZQz/99JP1nVRXEwUCRMChEggoy13g+++/JwBUV1dnut64ceOoc+fOlJeXR8ceeyy98sorREQ0f/586tSpE73yyivUv39/8vv99M033xjub8OGDdS6dWuaPHly0ndPPPEEAaD3339fd/vbbruNhg4dKnCG2hhdK5n+m4elGIZhGMaImhpg1Chg06b45Zs3K8trahw/ZPv27dG+fXu8+OKLaGpq0lynubkZF110EVavXo2FCxdizZo1eOSRR+CPsSbt27cPM2bMwJ///Gd8/vnn6Ny5s+Fxly9fjoMHD+Kuu+5K+u6WW25B+/btsXjxYt3tGxsbkZ+fL3iW7sHDUgzDMAyjRzgMTJqk2GoSIQJ8PqCsDBgxwtEhqlatWmHBggUYN24cnn76aQwcOBDnnHMOrrzySpxwwgkAgNraWnzwwQdYu3Ytjj76aABAnz594vZz8OBBzJ07FyeeeKLQcb/88kt06tQJxcXFSd/l5uaiT58++PLLLzW3fe+991BVVYVXX31V5lRdgS03DMMwDKPHqlXJFptYiICNG5X1HGbkyJHYsmULXn75ZQwfPhx1dXUYOHBg1LH3s88+QyAQiAobLXJzc6NiyAmICLm5uUnLP//8c4wYMQL3338/LrjgAseOZxUWNwzDMAyjR0ODs+tJ0qZNG1xwwQW4//77sXr1aowZMwbTpk0DALRt29Z0+7Zt28Ln8wkf76ijjkJjYyO2bNmS9N2BAwfwzTffJImpNWvW4Nxzz8W4ceMwdepU4WO5CYsbhmEYhtFDY3jG1no2GTBgAPbu3QsAOOGEE7Bp0ybdYSIrjBo1Cq1atcLvf//7pO+efvpp7Nu3D9ddd1102eeff46hQ4fi+uuvx8MPP+xYPezCPjcMwzAMo8fgwUAgoDgPa/nd+HzK94MHO3rYnTt34n//939x44034oQTTkCHDh3w0Ucf4dFHH8WIESMAAOeccw7OPvtsjBw5EjNnzkTfvn3x3//+Fz6fDxdeeKHmfu+55x5s3rwZf/nLXzS/79GjBx599FHcddddaNOmDa699lq0bt0aL730Eu6991489NBDOO644wAcEjbDhg3D5MmTsXXrVgCA3+9HUVGRo+0hC4sbhmEYhtHD7wdmz1aiony+eIGjDvfMmuV4vpv27dvjtNNOQ0VFBdatW4eDBw+ipKQE48aNw7333htdr7q6GnfddRdGjx6NvXv3om/fvnjkkUd099vQ0IANGzYYHvuOO+5Anz598Pvf/x6zZ8+OWooWL16MK6+8MrresmXLsH37dixatAiLFi2KLu/ZsyfWr19v8cydwUekJUWzl927d6NTp05obGxEx44d010dhmEYxmX279+P+vp69O7dG23atLG2k5oaJWoq1rm4pEQRNqWljtTTq+zatQvnnXceOnbsiNdffx2HHXaYa8cyulYy/Tf73DAMwzCMGaWlwPr1QDAIVFYqn/X1WS9sACA/Px+1tbU477zzUjL1gxPwsBTDMAzDiOD3A0OGpLsWaaGgoAD3339/uqshDFtuGIZhGIbJKljcMAzDMAyTVbC4YRiGYRgmq2BxwzAMwzBMVsHihmEYhmGYrILFDcMwDMMwWQWLG4ZhGIZhsgoWNwzDMAzTQqmrq4PP58MPP/yQ7qo4CosbhmEYhvEgY8aMgc/nw/jx45O+u+222+Dz+TBmzJiU1+uBBx6Az+eDz+dDTk4OunXrhquvvhobN26MrnPw4EH8+te/xvHHH4927dqhW7duuO6667Bly5aU1JHFDcMwDMMI0AxgPYB/Rz6bU3DMkpISLFmyBD/99FN02f79+7F48WL06NEjBTXQ5thjj0VDQwM2bdqEpUuX4t///jcuv/zy6Pf79u3DJ598gvvuuw+ffPIJampq8OWXX+KXv/xlSurH4oZhGIZhTFgL4BEA9wP4beTzkchyNxk4cCB69OiBmpqa6LKamhqUlJTgf/7nf+LWbWpqwsSJE9G5c2e0adMGP/vZz/Dhhx/GrfPaa6/h6KOPRtu2bTF06FDLs3e3atUKXbt2Rbdu3TB48GCMGzcO77//Pnbv3g0A6NSpE1asWIHLL78c/fr1w+mnn44//OEP+Pjjj01nJXcCFjcMwzAMY8BaAE8A+BRAIYB+kc9PI8vdFjg33HAD5s+fH/3/2WefxY033pi03t13343q6mo899xz+OSTT9C3b18MHz4cu3btAgBs3LgRpaWl+PnPf47PPvsMY8eOxZQpU2zXb+vWraipqYHf74ff79ddr7GxET6fD4cffrjtY5rB4oZhGIZhdGgG8AKAHQAGAOgIwB/5HBBZ/iLcHaK69tpr8c4772D9+vX49ttv8e677+Kaa66JW2fv3r146qmn8Nhjj+Giiy7CgAED8Mwzz6Bt27aYN28eAOCpp55Cnz59UFFRgX79+uHqq6+27LPz73//G+3bt8dhhx2G4uJi1NXV4fbbb0e7du0019+/fz+mTJmCq666Ch07drR0TBl4VnCGYRiG0WEDgP8CKAHgS/jOByAAxXKzAUAvl+pQWFiIiy++GM899xyICBdffDEKCwvj1lm3bh0OHjyIs846K7qsdevWOPXUU7F2rWJbWrt2LU4//XT4fIfO5IwzzrBUp379+uHll19GU1MTXnrpJSxbtgwPP/yw5roHDx7ElVdeiebmZsydO9fS8WRhccMwDMMwOuwBsB+Atj1CWb45sp6b3HjjjZgwYQIAYM6cOUnfExEAxAkXdbm6TF3HCXJzc9G3b18AinPxV199hVtvvRXPP/983HoHDx7E5Zdfjvr6evz9739PidUG4GEphmEYhtGlA4A2APbqfL838n0Hl+tx4YUX4sCBAzhw4ACGDx+e9H3fvn2Rm5uLd955J7rs4MGD+Oijj9C/f38AwIABA/D+++/HbZf4v1Xuu+8+LF68GJ988knc8S+//HJ89dVXqK2tRUFBgSPHEoHFDcMwDMPo0APAMQA2Aki0exCATQD6R9ZzE7/fj7Vr12Lt2rWaTrvt2rXDrbfeivLycrzxxhtYs2YNxo0bh3379uGmm24CAIwfPx7r1q3D5MmT8cUXX6CyshILFiyI28/mzZtxzDHH4IMPPpCqX58+fTBixAjcf//9AIBQKIRRo0bho48+wqJFixAOh7F161Zs3boVBw4csNYIEvCwFMMwDMPokAPgMijiZg0UH5t2UCw2m6BETV2K1FgKzIZ0HnnkETQ3N+Paa6/Fnj17cPLJJ+PNN9/EEUccAQDo0aMHqqurcccdd2Du3Lk49dRT8X//939xkVcHDx7EF198gX379knX784778RZZ52Ff/zjH+jSpQtefvllAMBJJ50Ut14wGMSQIUOk9y+Dj5wchMsAdu/ejU6dOqGxsTFlY38MwzBM+ti/fz/q6+vRu3dvtGnTxtI+1kKJmvovFB+cNlAsNpdGPhlnMLpWMv03W24YhmEYxoT+UPLbbIDiPNwBylAU+3Z4ExY3DMMwDCNADtwL92achUUnwzAMwzBZRdrFzdy5c6Nja4MGDcKqVasM11+0aBFOPPHEaFbEG264ATt37kxRbRmGYRiG8TppFTdLly5FWVkZfvOb3+DTTz/F4MGDcdFFF+lOqvXOO+/guuuuw0033YTPP/8cy5Ytw4cffoixY8emuOYMwzAMw3iVtIqbmTNn4qabbsLYsWPRv39/zJo1CyUlJXjqqac013///ffRq1cvTJw4Eb1798bPfvYz3HLLLfjoo49SXHOGST3NANYD+Hfk0825bBiGYTKZtImbAwcO4OOPP8awYcPilg8bNgyrV6/W3ObMM8/Epk2b8Nprr4GI8N1332H58uW4+OKLdY/T1NSE3bt3xxWGyTTWAngEwP0Afhv5fATuz0bMMAyTiaRN3OzYsQPhcBhdunSJW96lSxds3bpVc5szzzwTixYtwhVXXIHc3Fx07doVhx9+OP7whz/oHmfGjBno1KlTtJSUlDh6HgzjNmsBPAHgUygJw/pFPj+NLGeBwzAME0/aHYqNJvlKZM2aNZg4cSLuv/9+fPzxx3jjjTdQX1+P8ePH6+7/nnvuQWNjY7Rs3LjR0fozjJs0Q0kctgPAAAAdAfgjnwMiy18ED1ExDMPEkrY8N4WFhfD7/UlWmm3btiVZc1RmzJiBs846C+Xl5QCAE044Ae3atcPgwYPx0EMPobi4OGmbvLw85OXlOX8CDJMCNkDJiFoCIFHy+6Ckgl8bWa9XSmvGMEw2UFdXh6FDh+L777/H4Ycfnu7qOEbaLDe5ubkYNGgQVqxYEbd8xYoVOPPMMzW32bdvH3Jy4qusTiDWwmaRYFoIe6Ckem+n8327yPd7UlYjhmFSxZgxY+Dz+TRHJ2677Tb4fD6MGTMm9RUDsGvXLpSVlaFXr17Izc2NpmZJjHaeMWMGTjnlFHTo0AGdO3fGpZdeii+++ML1+qV1WGry5Mn485//jGeffRZr167FHXfcgQ0bNkQv5D333IPrrrsuuv4ll1yCmpoaPPXUU/jmm2/w7rvvYuLEiTj11FPRrVu3dJ0Gw7hGByhz2OzV+X5v5PsOKasRw7RcmpuB9euBf/9b+WxOwXhwSUkJlixZgp9++im6bP/+/Vi8eDF69HB7LnJtdu3ahdNPPx21tbWYO3cuvv76ayxduhTr1q3DKaecgm+++Sa67sqVK3H77bfj/fffx4oVKxAKhTBs2DDs3av3VHOGtE6/cMUVV2Dnzp148MEH0dDQgOOOOw6vvfYaevbsCQBoaGiIU4FjxozBnj178OSTT+LOO+/E4YcfjnPPPRe/+93v0nUKDOMqPQAcA8V5eADih6YIyqzEAyPrMQzjHmvXAi+8APz3v8D+/UCbNsAxxwCXXQb0d3HmzIEDB+Kbb75BTU0Nrr76agBATU0NSkpK0KdPn7h1m5qaUF5ejiVLlmD37t04+eSTUVFRgVNOOSW6zmuvvYaysjJs3LgRp59+Oq6//nrpOv3mN7/Bli1b8PXXX6Nr164AlBnH33zzTRx11FG4/fbb8frrrwMA3njjjbht58+fj86dO+Pjjz/G2WefLX1sUdLuUHzbbbdh/fr1aGpqSjrZBQsWoK6uLm79X/3qV/j888+xb98+bNmyBQsXLkT37t1TXGuGSQ05AC6DEh21BkAjgFDkc01k+aXwwA+ZYbKYtWuBJ54APv0UKCwE+vVTPj/9VFm+1uWQxRtuuAHz58+P/v/ss8/ixhtvTFrv7rvvRnV1NZ577jl88skn6Nu3L4YPH45du3YBADZu3IjS0lL8/Oc/x2effYaxY8diypQpUnVpbm7GkiVLcPXVV0eFjUrbtm1x22234c0334weM5HGxkYAQH5+vtRxZeFnIsN4nP4AJgL4HwA7AXwZ+RwYWe7iSyPDtHiamxWLzY4dwIABQMeOgN+vfA4YoCx/8UV3h6iuvfZavPPOO1i/fj2+/fZbvPvuu7jmmmvi1tm7dy+eeuopPPbYY7joooswYMAAPPPMM2jbti3mzZsHAHjqqafQp08fVFRUoF+/frj66qulfXa2b9+OH374Af11zFX9+/cHEeHrr79O+o6IMHnyZPzsZz/DcccdJ3VcWXhWcIbJAPpDyW+zAYrzcAcoQ1H8dsIw7rJhgzIUVVICJGYp8fmAQECx3GzYAPTq5U4dCgsLcfHFF+O5554DEeHiiy9GYWFh3Drr1q3DwYMHcdZZZ0WXtW7dGqeeeirWRkxLa9euxemnnx6XbuWMM85wtK5qcE9ubm7SdxMmTMC//vUvvPPOO44eUwsWNwyTIeSAw70ZJtXs2aP42LTTCVls1w7YvFlZz01uvPFGTJgwAQAwZ86cpO9VUWGUO86JqOKioiIcfvjhWLNmjeb3//3vf9GqVSv07t07bvmvfvUrvPzyy3j77bcRCARs18MMfvFjGEPCAOoALI58htNZGYZhUkyHDorzsF5wz969yvcdXA5ZvPDCC3HgwAEcOHAAw4cPT/q+b9++yM3NjbOKHDx4EB999FF0CGnAgAF4//3347ZL/N+MnJwcXH755aisrEzKU/fTTz9h7ty5uOyyy9CpUycAiqCaMGECampq8Pe//z1J9LgFixuG0aUGiq1kKICrIp+9IssZhmkJ9OihREVt3AgkGj6IgE2blGgpt6Oy/X4/1q5di7Vr10bzu8XSrl073HrrrSgvL8cbb7yBNWvWYNy4cdi3bx9uuukmAMD48eOxbt06TJ48GV988QUqKyuxYMGCuP1s3rwZxxxzDD744APdujz88MPo2rUrLrjgArz++uvYuHEj3n77bQwfPhw5OTmYPXt2dN3bb78dCxcuRGVlJTp06ICtW7di69atcaHtbsDihmE0qQEwCkqwdSybI8tZ4DBMSyAnRwn3LiwE1qwBGhuBUEj5XLNGWX7ppcp6btOxY0d07NhR9/tHHnkEI0eOxLXXXouBAwfi66+/xptvvokjjjgCgBKuXV1djVdeeQUnnnginn76afzf//1f3D4OHjyIL774Avv27dM9TmFhId5//30MHToUt9xyC3r37o1zzjkH4XAYn332WdxsAU899RQaGxsxZMgQFBcXR8vSpUtttoYxPmphqX13796NTp06obGx0fAmYVoyYSgWmkRho6JOfFAPZaYnhmG8zP79+1FfX4/evXujTZs2lvahleemf39F2LiZ5yZTmDdvHm677TYsXboUl156qeX9GF0rmf6bHYoZJolV0Bc2gJI+b2NkvSGpqBDDMGmmf38lv82GDYrzcIcOylBUKiw2mcBNN92E/Px8rF27FsOHD0fbtm3TWh8WNwyTRIPD6zEMkw3k5LgX7p0NXHbZZemuQhTWnAyTRPLs8vbWYxiGYVIJixuGSWIwFJ8an873PgAlkfUYhmEYr8HihmGS8ANQQxkTBY76/yywMzHDZBYtLH4mI3HqGrG4YRhNSgEsB5A4KWsgsrw05TViGMYaal6YAwcOpLkmjBnqNdLK5SMDOxQzjC6lAEZAiYpqgOJjMxhssWGYzKJVq1Y47LDDsH37drRu3Ro5HOLkSZqbm7F9+3YcdthhaNXKnjxhccMwhvjB4d4Mk9n4fD4UFxejvr4e3377bbqrwxiQk5ODHj16JM2RJQuLG4ZhGCbryc3NxVFHHcVDUx4nNzfXEcsaixuGYRimRZCTk2M5QzGTWbC4YRhNwmBfG4ZhmMyExQ3DJFEDYBLip2AIQAkP5ygphmEYr8Mu4wwTB88GzjAMk+mwuGGYKGEoFhutJFLqsrLIegzDMIxXYXHDMFFkZgNnGIZJH83NwPr1wL//rXw2N6e7Rt6CfW4YJgrPBs4wjPdZuxZ44QXgv/8F9u8H2rQBjjkGuOwyoH//dNfOG7C4YZgoPBs4wzDeZu1a4IkngB07gJISoF07YO9e4NNPgY0bgYkTWeAAPCzFMDHwbOAMw3iX5mbFYrNjBzBgANCxI+D3K58DBijLX3yRh6gAFjcMEwPPBs4wjHfZsEEZiiopARJnJ/D5gEBAsexs2JCe+nkJFjcMEwfPBs4wjDfZs0fxsWnXTvv7du2U7/fsSW29vAj73DBMEjwbOMMw3qNDB8V5eO9eZSgqkb17le87dEh93bwGixuG0YRnA2cYxlv06KFERX36qeJjEzs0RQRs2gQMHKis19JhccMwIoTDwKpVQEMDUFwMDB6sePIxDMOkiJwcJdx740ZgzRrFx0aNltq0CSgsBC69VFmvpcPihmHMqKkBJk1Snh4qgQAwezZQyj44DMOkjv79lXBvNc/N5s3KUNTAgYqw4TBwBR8RaeWaz1p2796NTp06obGxER21Bi0ZJpaaGmDUKMXmG4tqD16+nAUOwzApp7lZiYras0fxsenRI/stNjL9N4sbpoUShqnDcDgM9OoVb7GJRY29rK/nISqGYRiXkem/s1znMYwWNQB6ARgK4KrIZy8kzfi9apW+sAEUa87Gjcp6DMMwjGdgccO0MGoAjELyBJmbI8tjBE6D4BxSousxDMMwKYHFDdOCCAOYBGV270TUZWWR9aBERYkguh7DMAyTEljcMC2IVUi22MRCADZG1oMS7h0IJOc5V/H5lDzog3muKYZhGC/B4oZpQYgOH0XW8/uVcG9AeyIXAJg1K7OdicNhoK4OWLxY+QyH010jhmEY27C4YVoQosNHMeuVlirh3t0T5poKFALLJwGl+YgOY2UaNTVKNNjQocBVVymfvXopyxmGYTIYDgVnWhBhKFFRm6Htd+ODMkFmPTTDwletAhpeAooXAoN3xKwSgDKbeAblu+H8PQzDZBgcCs4wmvihiBBAETKxqP/PguYEmX4/MGQXMHo2MGRHwioakVZeJhxWMi5rvdeoy8rKeIiKYZiMhcUN08IoBbAcQMIwEwKR5XrWCslIKy/D+XsYhslyeG4ppgVSCmAETDMUxyETaTXERt0EMifbhfP3MAyT5bC4YVoofsiJEMlIK0vUQLEOxYooF/x5OH8PwzBZDosbxgIpsC6kgqiTcIPSkQ8ebBDWbSHSSgo1c3LisJfqz2M0ZCaJmr9n82Ztvxt1zizO38MwTIbCPjeMJILzMnkd6TDowVCsKDoJ/eADUBJZT5YU+/O0hPw9DMO0aFjcMBJIzMvkZdQw6ESn2s2bleWaAsdGpJUpkpmTnUA3f0+Aw8AZhsl4OM8NI4iaI0avEzbIEeMlwmHFQqMXLaQOydTX61gutPxiSqAIG6uCYDEUK5gZlQBGWzyGDlJDcwzDMOlDpv9mnxtGkFRFC+ngVCcsEwY9ZIjGClYircxw25/HAL9f5zwZhmEyFxY3jCCpiBbSoaZGSToXK0oCAcVvRHb4xJEwaNlIKzNUfx6zzMns4MswDCMC+9wwgqTJumDJP8YAT4ZBu+nPwzAM0/JgccMI4ma0kA5uTBOghkEnRgmp+HxASUkawqCtZk5mGIZhEuFhKUYQ1bowCoqQiRUcTlgXwgDqIgUAhkTcfET9YwZDyA9GDYMeNUoRMrHCKe1h0G748zAMw7Q82HLDSOCWdaEGQBcA5wN4KFLOBxouFdu84SVI5d7xdBh0xJ8nfLmi8xZXAXV1PIklwzCMBBwKzljAyQzFNQBGan9VB0WnmBGEhn+vak1SRZdGncPwZhi0kw7UDMMwWYJM/83ihtEhVgx0jizbBmeHSsIAekKJEtL5uhcMgoh8QCAHqA/rVEeNMvo9gMlwfc4mJ1AdqBN/luqQWdotSwzDMOmBxY0BLG5E0EpUF4tTwqAOpqYZvSmXAEW7WB4NS7TseADbCQYZhmGyF5n+m31umAT0pliIxanpFgRyzpQCuAuAPyG6ye8H7vqFDV3iwpxNdpFJMMgwDMPowuKGicFoAsdYnBIGArlkagA8DiCcUKfmZuDxv9rUVy7M2WQHRxIMMgzjCuGw4ty/eDE7+WcALG6YGMymWIjFCWEwGMmRVzEYTpZNAHxAmd8Bw4tHxIInEwwyDIOaGmXIeOhQ4KqrlM9eveSTiDIpg8UNE4OVTt6OMPADeEL/a9PprAjYGI7oK73MviJ4RCx4NsEgw7RgnM6SzqQEFjdMDFY6ebvCoBRANYCC5K8a2ovtoqEM2rl3liHlWZXtoCYYBJIFTtoTDDJMC8SNLOlMSmBxw8RgNsVCLE4Kg1IA3wGoBTA1UmqB4hfFNi8eAWA9lIQ3lZHPeihOzxk2Z5OnEwwyTAuDnfwzlrSLm7lz56J3795o06YNBg0ahFUmN0lTUxN+85vfoGfPnsjLy8ORRx6JZ599NkW1zXaMJnCMxQ1h4AdwHoDfRsp5wOAhEsM06kzdoyOfar00siqHAdQVAosnAXX53nvrKi0F1q8HgkGgslL5rK9nYcMwqYad/DOWtM4ttXTpUpSVlWHu3Lk466yz8Mc//hEXXXQR1qxZgx49emhuc/nll+O7777DvHnz0LdvX2zbtg2hUCjFNc9mVDFglOemEMDVAPKhKAWXLB+OzQMVM2dTzUvApEXApu1QxNksb2b/9fuBIUPSXQuGadmwk3/GktYkfqeddhoGDhyIp556Krqsf//+uPTSSzFjxoyk9d944w1ceeWV+Oabb5Cfn2/pmJzETxStDMV/BbAQwI6Y9VKQ6VdrOoKSEkXYyAgSO9l/w2FvTtWQCXDbMZmKmlhz82ZtvxtOrJlSMiKJ34EDB/Dxxx9j2LBhccuHDRuG1atXa27z8ssv4+STT8ajjz6K7t274+ijj8Zdd92Fn376Sfc4TU1N2L17d1xhRIgd5jkPQCMUEbMjYT2nEvoZ4MQwjR3HQA4DtQ63HZPJsJN/xpI2cbNjxw6Ew2F06dIlbnmXLl2wdetWzW2++eYbvPPOO/jPf/6DF154AbNmzcLy5ctx++236x5nxowZ6NSpU7SUlJQ4eh4tA8OEM5HPMria6Vcdphk9WvmUfZhYdQzkMFDrcNsx2QA7+WckaXco9iWoYSJKWqbS3NwMn8+HRYsW4dRTT8XPf/5zzJw5EwsWLNC13txzzz1obGyMlo0bNzp+DtmPacIZeCrTrxZWHAMzPQw0nRlVM73tGCYWdvLPONLmUFxYWAi/359kpdm2bVuSNUeluLgY3bt3R6dOnaLL+vfvDyLCpk2bcNRRRyVtk5eXh7y8PGcr3+IQjQTwcMSAFcdAGWuP15x/tfyUUuk4bbXtnPTPYV8fxknYyT+jSJvlJjc3F4MGDcKKFSvilq9YsQJnnnmm5jZnnXUWtmzZgh9//DG67Msvv0ROTg4CgYCr9W3ZiEYCeDhiwEr230wNA/XCcJCVtnPSP4d9fRimZUNpZMmSJdS6dWuaN28erVmzhsrKyqhdu3a0fv16IiKaMmUKXXvttdH19+zZQ4FAgEaNGkWff/45rVy5ko466igaO3as8DEbGxsJADU2Njp+PtlLiIgCROQjImgUHxGVRNZLI6EQUTBIVFmpfIYS6lNdTeTzKUWxHShFXVZdHb9+MBi/nl4JBlNzfiKEQkSBgH5dfT6ikpLktnEa2bZTr41WfbWujRFO7othGM8g03+nVdwQEc2ZM4d69uxJubm5NHDgQFq5cmX0u+uvv57OOeecuPXXrl1L559/PrVt25YCgQBNnjyZ9u3bJ3w8FjdWqSZ9YeOLfJ9GqquTO/VAILkj01qvpES7w1OFglZHmUqhIINXBJlM2zkpyLwi7hiGcRyZ/juteW7SAee5ic1fUwzgTACrY/5Xs/0mUgPgZgA7E5YXAPgTXM1zY4Zp/poqoLQQ0XMMnwmsWi3mi6HuG9BOIqgZLREGwnXAqrrIIYco2ZZT4e+xeLEyDGNGZaUSeeYmom1XV6cMG5kRDJr7PDi5L4ZhPIVM/53WDMVMqqlBcuZhP+JDuLWS8tVAyWWjpYN3OVxHScyicnwAyq4ERoQPaTZ/ABgyG0oOHxPUMFAt51zNJII1QM3NwKSdMc38EBAoAGb/yX1nXi9lVBVtOyd9mzLVT4phGEdhy02LwUigxKI63D4A4Cgo2YnHQD8U3AdFENUjLRNQCr+pQ8lJCODQOS6HsMVJKPKmBqgZqd3M0UNWuytwvJhR1azt2HLDMIwAMv03i5sWQRhALxjnqrFLnHpIHcLDMEgw1DgtysJAuCfQa7OJDgwA9evdFRaWhtLSiJOCzIvijmEYR8iI6ReYVGKWhM8J0mTmFx6GSVygkXjQVtK7VcAqA2ETPeSm5CzITpNpGVWdTHHP6fIZhgGLmxZCKoRHmnLcmOavAVACxU9ak0jb2M6L0iDezC+9JLiiDTIto6qTgizTxB3DMI7Dw1ItgjoAAn4Ilkizzw1gMAwT+TR0rQkCNbuszxYepQ6oGyrezNUu+95kKpyhmGEYHdjnxoCWKW7c8rmx4JjrFlrTDZT4gVlhnapFRFn4a6DXkfpTBUR9NL4G/EYh8wI+N0n7ZL8PhmEYUdjnhkngJQDaE4vaIwBPCBtAZxhmMVDqwyERpqL+P0vJdyM0B1J3KGaZqyKfvaBEoKn4Af8TShS9GXozkDOMHdI5USrDeAzOc5P1mIWA5wBoltxnPpR8Ob9B2oaitNCc2M6P5Nw+AQCzAJQCDYvF9t2wI2HBZijtGivuSoHSaqDsemDWjzCFc60wTpHuiVIZxmOw5SarCUPp2I1GHosB1EKJlZ4eWabjnBvleyh5cFLgGGubUgDroYSqV0Y+6xEVJLairQCgDPFJEEuBES8K7tPDE40ymYMXJkplGI/BPjdZR+z0Ct8BuENgm9gcNXrTLCTiAUdiJzDNiwKB00zI8WO2TwAoKlI6o9xcy1VnmOi9Zuozxv5dTObDPjctlhooviCqb4iIsAGSY5hFplTQyBOTiRjmRYl8zoKJfktoP6N9qmzfDhx5ZGrfqtknI/tYtUrQZyzDf6cMIwmLm6xB9a2xEhGlDo+IDGMlkgV+I7p5UYoE/aU1hpf09hlLKocNbOfxYTwJz6XFMJrYEjcHDhzAF198gVAo5FR9GEtYESVAcoY7K5mMs8RvRDPaahNQGoC+D5JOhkDVQtLUBMybBxQWam+uDlmVlblrRWGfjOzFSxOl6sEWQyYNWPK52bdvH371q1/hueeeAwB8+eWX6NOnDyZOnIhu3bphypQpjlfUKbLT56YO8kn6tHLULIYynCW6fRb43JiiWsSAePGok+NHK2pFBLcmcvS6TwYn2rOH1+fS4iguxkFc97m555578M9//hN1dXVo06ZNdPn555+PpUuXWtklY4vNFrbRylEj+3Y3C9ktbAClfZYDSBxe0mg/PQuJCG4NG3jZJ4OHyuzj5bm02GLIpBFL4ubFF1/Ek08+iZ/97GfwxfygBgwYgHXr1jlWOUaEGijhyCJ0iqybEA4dZTCUTtssFNxDyftSgkk4OaC8QU+apB8dZYZbwwZe9cngjs85vDiXltHvIVXDsUyLxlISv+3bt6Nz585Jy/fu3Rsndhi3MUvQl0gjlBS6iVMHqPgj34+CInC09jsdycn7YsPPtaYmyAb8iAv3TsTMQqKHOmwwWHdmT3t40SfDrOPz+ZSOb8QIHqISpbRUaS+vDPHJWAzdGI5lWjyWLDennHIKXn311ej/qqB55plncMYZZzhTM8YEq07EhOTEc7HoDcOUAKgGcD/ihUti+LnW1AQtACuWj1QMG5jOmu4DSkrcE1daeHmoLJNRM3SPHq18plMYetViyLQYLFluZsyYgQsvvBBr1qxBKBTC7Nmz8fnnn+O9997DypUrna4jo4mVyCYVNT/NEJ3vSwGMgLk1Rs9ypDU1QZZjxfIRCCjCxs1hA9UnY9QoRcjEzZqeJp8M7viyHy9aDJkWhSXLzZlnnonVq1dj3759OPLII/G3v/0NXbp0wXvvvYdBgwY5XUdGE7sPfjMnZHUYZnTkM7HzM7Ic6U1NoEcYSsTX4shnBo7Di1hIAgGgtjYm1Lw+Nf4QXvPJ4I4v+/GixZBpUUhbbg4ePIibb74Z9913XzQUnEkHX9ncfrvN7c0sR7EZjAdHPjdHjlsEZdhrMJT5qbQmtpyNjLL6iFhIZs8GzjsvPfVTfTLq6pQCKEMX6fB3UDs+s/Bl7vgyFy9aDJkWhbTlpnXr1njhhRfcqAsjTA2UiSvtUGRze1HL0Us45JNzDZQpIa6J/N8FwEgkiyR1WKsmsxKAec1CkshLLwFjxgAPPaSU889PQei1hlXOy+HLjHN4/ffAZDWWkvjdcMMNOP744zF58mQ36uQqmZ/ELwxFLFj1t1FJmOxRmjrIJw6UwQfU5AOT2mZeAjAvJqZTQ68Tf+6qmHCls6mBoVVOK8FbSYn7fkiAN69RtsJtzW3gEDL9tyVx8/DDD+Pxxx/Heeedh0GDBqFdu3Zx30+cOFF2lykj88VNHeyLihLYzyy8HMCVMPaP8Zt8b4Cer7KrnXGWkpYsxboXMPIZcTZPx0Ofs+YyQOruPb7fHMN1cdO7d2/9Hfp8+Oabb2R3mTIyX9zITJGgRxmUaCir+Whk8+tIYmacSndK+Uyjrk7J/muGY1NAmF5ApG3qDlELFr9pZzepEhxpsZhmLzL9t6VQ8Pr6eksVY5zATgSJakmZFSlajrsHAMwFsA7AkQBuA5Ab871Ifh0/gNsBPGGtmqa+ypwATIqUh17LOJsPceiYAogmDwyHgcmT+U07W9ETHGp2bKcER0tNVumRFwNbs4IDABHBgvGHsYzoFAlaJA4RbYbi0PsgFIvQlQDaQnH6fTLyeRiAu2O2EcmvEwagb90zRbSP5TwoYqQ89Fr4Ajp0PEFEkwdefjlPC5GtpHJaiJaYrNJD88VZFjd/+ctfcPzxx6Nt27Zo27YtTjjhBDz//PNO1o3RRJ0iAbAmcGJRf+DToAx1LQXQnLBOGMBjOCRwRDukIlgWYaJ9LOdBESPlOUeEL6BDxxPEjhjm+ZCyAxnBYTdSs6Ulq/TYfHGWxM3MmTNx66234uc//zmqqqqwdOlSXHjhhRg/fjwqKiqcriOThN4UCW7yewArID6tQnccEmFmFMT/OzgABAo4AZhT+P3AzJn6OWUAh0OvzayLPihO7QnXz+2wf7tiOBvftFsaokLipZfsWyBaUrJKL06UShbo1asXPffcc0nLFyxYQL169bKyy5TR2NhIAKixsTHdVXGAEBHVElE+RUYHPVIKiagpUsdqIgrorFcS+T5EREEiqox8hoiqq4l8PqUoPw+lqMuqqx1qwywgFCIKBokqK5XPUCj+++pqokAgvh3VUlLibFtG61JGFARRKPGa+yIl4ZhadQwEnK+bXjvIlMpK5+rEpJZg0Pp1l332qPdb4jMsdn8lJcm/10xEtF2DQVuHkem/LYmbvLw8+uqrr5KWf/nll5SXl2dllykju8SNSjUd6jQSO5J0CZwAHerAVPGykIgqIp/ByHKj09Lo8JzujDMdM1GgikS9h82yZS7XxU9UrSVoE7ZLVR3Ly+2LG5sPaCaNmAkOgMjvNxY4MoKkpbykVVam5MXAdXFz7LHH0sMPP5y0/Le//S0dd9xxVnaZMrJT3BBpW0hKiGhZZHmqhY7OG7osZlaJloyeKFAfnFVVxpYKJ98cDesCouoy0hS0ItYUv185F7fqqJa77sqeN23+3ehjJDjcELgt4SUtWyw3y5cvJ7/fT8OHD6cHH3yQfvvb39Lw4cOpVatWVFNTY2WXKSN7xQ2R5vAOER2y7KRS3KgCp4RMLTSMPGaiwOcjKipKyQNHqC56okBmmMBOZyBax6qqzH/TTsUQX6ajJzjKysTuRVkLRLaLzRQNwcn035YcikeOHIl//OMfKCwsxIsvvoiamhoUFhbigw8+wGWXXeaUOxAjjd5M3qUA7kLKE6bF5TNhADjnNCsS9bFdcHJUu9EadkJeZY5txyFRtI5FRZk9H5LHIlY8S2kpsH69kriyslL5rK9Xcs6IIOsE7PcrOblGj1Y+symvDeDJ+eIsJfEDgEGDBmHhwoVO1oVxjRoAjwNuZRQ2JUtCHe3iZFZUJ8NH7UZr2Al5lTm2ncSNMnUcPVrp5DyQiEwXrURpQMtMGmcVVXDEoqZNMBLCHKmpjTpRqtYzLhXzxSVgSdy89tpr8Pv9GD58eNzyN998E83NzbjoooscqRyTSBiKFaQBSo4QkekTRDIKu03nNB47BjczZ5rt2+msqJ0F27SoCNixQ7vDU6exsPugthPyKtKZxGJV1MnWUavj8wp6InncOHELmlfPLd34/Yq4fewx/XWuvJLFoR6lpd55MbAy7nX88cfTq6++mrT89ddfpxNOOMHKLlNG5vrcaDkMx0Yk6RFM2CYdpdbWmTuCW34IoRDR9OlE+fn6+7bjkyJ6Lnr7XLbMfR8Su+Pt1dXifjdW/YOyJSzXyHFbtA05lF0fEQf3TLhPshTXHYrbtGlD9fX1Scvr6+vpsMMOs7LLlJGZ4kbPIVgkIqlSYzsnip+IJgmum+aHqVlUUfV0SnbCFtxvQYF+Z6mKBycjCcwifrSESyqiNeyGvC5b5mwIrlEd9Y5RXm5936nAqTw9HMquT4qifhhruO5Q3KlTJ82Zv7/++mu0a9fOliWJScRoWEldVobkeaNU7Ga/1MsyuxjApYL7SGMGTtPMmQSUTQPCVwEYCmU2awGny5oaYORIYOdO7e/V45WVKUNPIpgNuRidSyxHHBE/zKXnPOnkGLg63m7VEXfUKMXJWgunHBJLS4G77tL//vHHve1wa+YUbUZLzOwt68Df0qZMyGasqKdx48bR8ccfT19//XV02VdffUUnnHAC3XTTTVZ2mTIyz3ITJDHrSFBn+xARFQnuI9EqVE7auXNik/MZ5dBJRSi4Xvh7BOE3sdg6m1jDZN+gKyqceRsUPZfCwvSZze2GvLppZXJ6eDDViCZKE7HmtQSsDEWz5cbTuD4s9cMPP9Dpp59OrVq1ol69elGvXr3I7/fT0KFD6fvvv7eyy5SReeJGdFjJaOinTHAfsUU10ZuIB8PsyA4k8TNEwA9JOHOmhCiTTeG+cKEz/h4ynZuTD99U5+hw63iZ3nHZmTog25LGmWE6FK3TFtnim5WlyPTflqKlOnXqhNWrV2PFihX45z//ibZt2+LEE0/E4JZk7kwZXwmuZzT0MwLALMnjLgEwA4dy5+ihTuI5CUCsyTwQOaZb4X81AEYBScN1myPLlyvHFo6Sif2HcCg/z5DkdWVN0t3/C8weB4x6QBkaoJg6ywy5yIRNO2U2dzJ8XRS3IpUyfchBjSzbvDn+HjJj+nTgN79pORE+ZkPRRiHxar6WUaPs/VazBTcjTN1GRjW9//779Nprr8UtW7BgAfXs2ZOKiopo3LhxtH//fjkplmIyy3JTTWJWlgIyHvpZRkQ5gvuKLRUa+9Wz5JhZeJxEHQ5LqG8IyvBSJYiCRUShJoE3MRCVQGOCR5CuNUzmDTp239UFRIEEB2SZN+pQKHVZh4msv/16lUy33BDpO27rlZZoaXDiOrs9PJoJ2Yo9mOnatWGpCy+8kB555JHo///617+odevWNHbsWPr9739PXbt2pWnTpklXOJVkjrjR6cB1i94NZ3fqhdhhHqvh6E4TTK5nNYgCCQ+vQJHyQ9SN5ImUar1zD2ofXmTyPWjt2xcRYNOtP9iWLRMQVA50Zpnun6JFtgw5iKQCyCTB5jROTeLohgjxoGDQxKMvNq6Jm65du9KHH34Y/f/ee++ls846K/p/VVUV9e/fX2aXKSdzxE2QxAWIno+IrEDS27fqXGw1HN1pEvyQqiNCQktcqD9EzTcxI2Fj4ght9gZdoLdvB5ysjWa2durBkw1WDi2yZZZmteOdMMGZjjyb8Oq961HBkISHX2xcEzd5eXm0YcOG6P9nnXUW/fa3v43+X19fT+3bt5fZZcrJHHFTRvJCJJiwj1oL+9DrkP0m3yd22G4OUwUPHTuEZIuN3g8x7k3sCp2hKLUI5DzREkz5HYimw2TfMddK6+1Q5I2xqkqJikq02DiRlDDbO00vz9Isay3wakeeTrxoofOwYEjCw/eUa+KmR48etHLlSiIiampqorZt21Jt7aHss//617/oiCOOkKxuaskMcSPqa5NYKumQqCgjog4W92O1BGPq7+bwVUwIelDgR5j0QxSxaAlaV5I6o4Um+425VlqdbEFBcmJAPbO102bzljTc4UW/BytDFl7syL2A1yx0HhYMSTg1rOcCrombm2++mc444wx6++23afLkyVRQUEBNTU3R7xcuXEgnn3yyfI1TiPfFjZ2hpOk2tnWiVJK9bMoyRI5TKdgJx/0Qg4LnE7RQL8F9V0+Xcwp1+4EskvmYO033sDNk4bWO3Ct4yULnYcGQhIeFmGviZtu2bfSzn/2MfD4fdejQgWpqauK+P/fcc+nee++Vq22K8b64CZK8qPCREjGVLlGjlloyFldOJ/WrJgomDM0I/RCdyB2UiGoxW0hEhYf2ERfBFfk/FJC3kLgpJmSTErb0TtNpnBiy8FJH7iW8YqHzsGBIwsPWwJQk8QtpnNjOnTvjLDlexPvipoysCYv2FrdzoqiiRdTHJ+hUYynh3oEibYdi3R9i0OF6ag3DQSeCC0TTr5ATNm4//GSTw2Vzp5mOztCpjs8rHbnX8EK7eFgwaOJRa2BKkvhpkZ+fb2V3TJQwgHkWt/3RyYpIoM49NQvANsFtEpOkhaEkzGuAkk1vMJTkgQL4c4HZT0eSbkH5CUarppd0azCUJIObAc05u3yR70WSUuokEzTKMThtqcB+dXAjwZzoPidMAC69VPl72zZlrp5MSOolmogsHQkLAeeSCzqR/DCTk7Zpkeprqtd+mZYcUJ0rTqvtZs1y9/fgFCkQW57C25ab6ZQ+64vVEjvXVFBwm2DMOTvkfCwdPeTEtBEGyQSNIrjslIqK9E1LMH16ZuToiEXUSTedYbqpGrIws2C4kYMlnVaTVF9TkfbLtOFDL1i9YnB9WCqT8a64CRFRPrkvRlT/HK2OXaZMpeQQ75goJt1jx/rcOOR8rPXAKCpSEt4Zb0hx4iQEJbNxZZngDzmofZ5Bl4RNYnFKWIiYzAsKMiNHRyyinVu6w3SdHrLQ6pDMOl43hEA6E9al+prKtJ/HBEMmweLGAO+KmyC5L2zUUk26fiLCRc/Z1iyMXf2Rm0WFCTof234oRxyBq8sU3x2pB7GOY7JoBJdaT6vixklhYTTGDiSHp6ey87eCTOfmBWdPp3wc9NILGN0/VVXOC4F0J6xL5TVNtziWrWsGCysWNwZ4V9yIRvDYLfmkPR9UbaRMFdxPUOc8RMVN0OZxyLmHiuUHsc45iFputIZ58vOJcnLEtnf6walnMp8+PXUdhVPIdG5eCdO1O2QhG86v3j9Oz1fmhc4+ldfUC+JYhEyZ+sEAmf47J33ePkw8EjM+22IXgIcjf6szfo8GcF6kPADFmdansS0iy0ug7WwbhjI7uB4+AGWR9UQdYw3WW7Uq3tktESJg40ZlPT3MZhAGlBmEw2GNjVXHZJ/Q4ig+H1BSoszUvH49EAwClZXKZ1UV0NysX1+tOpqdoyilpcn1qa8HjjpKbHsnnJ3DYcVRefFi5VOz3R2si+r4KYLMrOxW0Gt/EedNo/vYCCJg+3axdUXb1InfpV1SeU0zYbb5mhrFmTnxumzerCyvqUlPvVzEUrQU4wZmETxOMg3AcQC0Hpp+ALOhhPr4EuoSGxml5dW/CoDBQw0EYGNkPdGHisF6og+Ll17SjyKReRAn7cMPhGcCqy5PDvTSbUKNyIjY/S5eLHRKSTj14NSKuElVR+FkZItMnQcPVo6zebO2OPD5lO8Hi0TP2cRqxJPZfewEom3qhc4+ldfUK+JYD7MXOJ9PeYEbMcI70VoOwJYbz6D2iG4LG5XxAA7ofFcKYDmA7gnLA5Hleh2NjDXG1LwBfQtRBNGHxaJF+hYAOw/imhqg12RgKICroHz2ghIGXloCLC8HugfitwkElBBLrc46HAa++06sPom4+eBUOwqfzrVSLVFWOgrVUnPHHcDIkc69WcrUWQ3TVZcnrgd4K0xXC7tCoajIuevrhc4+ldfUzd+HE3jBkpYOUjBM5im863NDpPijpDLTcCEZRyTF+uQEyTyzcFDwuMGY8xUMx1Yd4Rb+hajidqKFtxHVPk5UaODoKjLebXW8XNdPJ1Kql8XX28yBz8q8TrF+GVb8F2ScC91I6iV6zlZ9NGTrLOPz4jXHTNlEjInnuGyZc9fXSwnrUhV67dGkd0TkHZ8yB2CHYgO8K270wqLdLhIh16bIhoKr550YNRWbO4eMO8H2gg6Uej9cKw9iJxwmYztHUYddvZKqMN3yciK/P34bv19ZbuX4ss6vVhwy9c5z+nRtYSIiWtx0zIw9fm2tUkQElNl9bFTUlAlOCgEvdfapEqJezWGTKQ7PArC4McCb4sYsLNrNoiU4ZC02sVhJjmdwPCudoOYPd7pBlSUfxHYfFnasNIllusF5mZ2vlijT63iMroPVN3vZc7X6ZpkoJLt3j9+vjDBxM8TZ7L4wq6fefSxznzopBLza2buJ1yx6RN6ypNmExY0B3hQ3QUqdmNErwUhdtCwpAZKz7ghYY0Sw2gkmFj+IlsH4+DIPYjtmXqfEmtrZyT6QrFidnA7ttTqEYvfN0q4wcTPEWeS+EJ0hXPY34+ZwhBc7+5aIlyxpNsgocTNnzhzq1asX5eXl0cCBA+ntt98W2u6dd94hv99PJ554otTxvCluUpXjxqhUkmMZg4nInvUngh0/gqSOAUTVBcb1EH0QW7XcOCXW1GJlOMhK3Z02a4uKQydEg4oTwsStCS6bmsTvC5khz6lTnb1uTGaTBZa0jBE3S5YsodatW9MzzzxDa9asoUmTJlG7du3o22+/Ndzuhx9+oD59+tCwYcOyRNwEyZogcbLUkiMZg51EuhM0+a4ERKFa+/WyauZ1UqypDybZDt+K1clph0SZdnDqzdIJYeJEO2h1MIlzojklSLJoOIJxiAy3pGVMEr+ZM2fipptuwtixY9G/f3/MmjULJSUleOqppwy3u+WWW3DVVVfhjDPOSFFN3eZMCM+C7Qp+yOWoSRGyoaJk8t1GAKvqLFcnitUwU6fzelgJ37QSput0aK9Z6GwsRqHzMjiRe8VuO+glUtuxQ2y/sYicTzaEuDPOouZRGj1a+czia582cXPgwAF8/PHHGDZsWNzyYcOGYfXq1brbzZ8/H+vWrcO0adOEjtPU1ITdu3fHFe+xGkrW3nQRBjBdcN0UZtkcvF1JheMkTlW/tFTpdLsn5AIy6ozdyOshK5hEhEViTg6n83iIdLplZXIZes1wQqDZaQerGYSt1DMWK/cpw2QBaRM3O3bsQDgcRpcuXeKWd+nSBVu3btXc5quvvsKUKVOwaNEitGolllx5xowZ6NSpU7SUlJTYrrvzpEowCLwpm5KqLJthwD9ZyWvoJMVDnNuXbLp8GYuFKLKCKVZY6HHllfFvdG5YAIw63epqoKLC2TdLJwSanXZwKoOwlYRwdqZ1YJhMJQXDZJps3ryZANDq1avjlj/00EPUr1+/pPVDoRCdfPLJ9NRTT0WXTZs2zdTnZv/+/dTY2BgtGzdu9KDPTS1Z95VJVZH1ubHrUBw8dOzpgn4IRdD3u/GBqKQg/WPMZlEL06YRtW8vdr5WoqVUysuN/Vz0wsGddkhMpQ+AmzNvm7WDrP+Ym/5HDJOhZIRDcVNTE/n9fqqpqYlbPnHiRDr77LOT1v/+++8JAPn9/mjx+XzRZW+99ZbQcb3pUOx1cSMbLaUVCp5PRNNJXOTERJCFQNTd6KEPxVl4GQ5lCE783gd3OgUrnbNR51hbK97ZFRRYOyc7kUMZ7pAoLUz0zle2HUQdmo1m6M6wyBaGcZqMEDdERKeeeirdeuutccv69+9PU6ZMSVo3HA7Tv//977hy6623Ur9+/ejf//43/fjjj0LH9Ka4KSP3xUmRze1Fw47NMi0XkJhICsZvV20mXGLWCyR2Cg5lj006VRuZavU6R9HwXTtv8k6Gdmei2LEzJYbVTMSikUtNTdYyFDNMCyBjxI0aCj5v3jxas2YNlZWVUbt27Wj9+vVERDRlyhS69tprdbcXGZZKxHviJkT2hIeIMPERURUZT40gUswe6qKZlkWsQOq+YuqrJVyKQFQGoiAUC49q6QmCqDKfKFjrTqfgREI4u+LGzMqih1Oh3W5OQ5Bu3MhEnCWJ1DKSTBThTBIZI26IlCR+PXv2pNzcXBo4cCCtXLky+t31119P55xzju622SFuguSesAHFZwbWmxpBZl9GDwWZcxHw3wlVRURKjHhRhUsZiIraJnSsEQFkKemgBHYTwhmJgmnT5MSNjJVFxQnLjZvTEKQbtzMRZ3gitYwjm0V4CyOjxE2q8Z64cSs78TVENJUUf57Yh7CWP4xMCTp4Lgb70nwgRcRLdYG243B0iEp06MsidsSBmSgoEJzlXNbKEktTU/IEmInF71fW08LNzt8LWLm+MpYBtiKkjmwW4V6hqYmoooJowgTlU++54QAsbgzwnrgJkjviJrYEKL6zj41kul1yX0adqOy56OxL94EU+TQSAD4oPjZudhhWh3Wcnn5B1MqSiF3LTRbNMqyJ7PVly4A3sSvCWYSaU16e/KLk91ubGkaAjMlQzADAaXA/3dBmAKMAPAhgMZQsw4MBjAYwE3LZkY3yqgyGXNY9jX0ZJTtTF+3cqb9LArBxk3zmXhmsJoRzKtdJIrJ5T+xm63Ui228qCYeBujpg8WLlM2ySMFPm+uplHd68WVleU2OlxowTmP3eiPSzfNfUAL16AUOHAlddpXz26sXXM5a77wYeeyz59xQOK8vvvjs99YrA4iat1ADoAaDZ5eNQpEwDcBWAoQB6RY6fC2Cy4H6KoEwVoYcf4ln3cgBsT17slABws2O1mhDOrTrNGgv4qwDUQSjTtd1svU5Px+Amy5YBXbvKdVKi1/fMMw2EeGRZWZm5mMo0ZMViurAqwlmwmnPgADBzpvE6M2cq66ULV2xHHsY7w1JmIdNul0Sn23IiyhHYLnGIS+/cCgTrkbAvJ5KdpWJIxErki9MTZ/pziKryE9pT4PrYnVAxUyZktJKoUEXk+mb78JwWmTQEZ9V3SnYoqyUOX1VUiLVtRYWjh2WfGwO8IW5EQ6bdLolZh5uIaAwRtTPZRiQSqYmIOgjUIUBxDs92BYBbHavWA0w28mXZMnvnlliW2bg+Ip230UPb62HNIm1tdp+YXV+nQuozpXPMNOdcKyJcVhBlkthzkgkTxNppwgRHD8vixgBviJsg2RcmTpZgQv2ayDj3jshUDDLnGHN8kQdSQUFqO1ajB5hox+SkM3FJIBIRZuf66JyX2nmLPLS9GtYcChln+tXqpIz2pXd9nQqpz4TOMVMj5GRFuIxgzTSx5yRsufEe3hA3boV/Wy2Jb5ZBwe2CDp1jwvFFHkip6lideoBZtUgVFBC9+WZCptpaimu/aNJCxCczNLw+EfQsUqLn7EWrg0xb61lVRM5LVLBWVWkfI5M6x0wegpN5VoieZ21tZoo9p7CbTsIiLG4M8Ia4CZI7IsVqCSbUT1SYOBUWnnh8EnsgOdGxGu3DybdVO75ESR1GzPWpAlFhwvrRZIYSuW/cOOd0IdPWermIRK0pVoe/RNs5djqGdIpHp4bg0oWMhdUs11RBgfgccF4Ue05h5NMGuBIOzuLGAG+ImxARFZI9QeJE0Ru+CApuHzQ5RxG/ogSfm7hdmAgP0YeVkd+IUSfm5NuqHV+ipA4jqLRducE2PhBVTzevl9V6evmhLTNJZeJ9I2tNsdpeVifSTNeQVTbcFyKIipuFCy3+drMMD+e5gSs18DDeEDdEylxPIgLCrWLkeNpExuJL0KeDqgXqYXGOHiNRogqasjKiwkLt9UQ6MSffVs18iaQ6jBDRsnzz7WSTGYZC4nNbefmhbXW4yIrVyuo9YtWSl64hq0yJkLOLqIgT9TnJdLEnAmco9gbeETdERJPJvPN3qiSGDJeQtrAwm55Bdt4mvbBwrSkSQnQoc3KQNMWTmSgpLzfvoACTLMeRB7WM6VnEkqTnSyTTmRJFHGY7Ovtw1RKMmfzQ1rtP1KL1ZmnFOuG25cZLQsLrEXJOICo6Fy5sGWLPY7C4McAb4iZERNMpWXC4WWrJVDgI5d7RE0Vm51tLylxXUyl5viv12ImiKhB/LDenL9AqqtOg2QNs2TJxHw1REeFUvhxDC0tETFaXac/VlekPba22LipSrpcWVqwwVi0adix5eoLJCcxEulcj5JxCRqxmotjzYgCABCxuDEi/uNGzZLhZCsh8CEnER6aIlCErp9ETVQlWIqeT4Il0YmYPsPJy+YiXxAdMVZVch2HXYTba5gElsioguC8vP7T1kHmYW7XCWO3kZC15RiJLBLPhA1FH6gzvIA2RFauZJPYyJe2AASxuDEivuBGxjLhRRMRNUHBfQeunr4mZqIrx73Eqe7GsMNB7gGmJEqMHYdKpx3QStbUJ4d4OdMKAjpUi5j4MSrSHVx/aTmHHr8RqJ6dnXbIlXDUwc/zMpLB0t5EVq5kg9rLk+rK4MSB94kY0esitMoaMh6ScCP+2QlDwuEGi4HR7YkWmJOZo0HqA2YkgsfMWJTM8l9QZJ9yHlYLtMXWqNx/aTmNnqMFqJ5e4XVOTs/4cZiG7d96Z+eH/TpNJFhkzsiG9QwQWNwakT9wEyR3RYqUk+LJI1S/oRGPEICqqFhKFuitDKKL+IXaL2Zux1UgZJ96iqqstnkcwvl1FLTdedyB2Ei90bE75c4gkW8vJ4XtAi0ywyIiQRWH8Mv03zwqeMlycpVqazQBGQZkVXGUwgAAAnZmQ4QNQElnPSURnjt4O+DcfmnRcr5pOYjarsJXZscNh8ZmkjWZfLi1V1hMh7jwSzsn0suvMcJ5JyM5iXVoKrF8PBINAZaXyWV+vLE8VpaXA8uVA9+7xywMBZbloXebONT/f5maxfb31lvdnAncSvx8YMgQYPVr59PvTXSNrWJ0dPdNJgdjyFOmz3FxB4paVNhLr2in5FB+5pPpiJPoFyYZ/a9FERBVENCHyqQ75qMMker5Iqs/NwkPLqkFUJGmFUUu+QH4YtUw3SYLn5sR806ebD1tZeiMLJrdxNRRrWKJFLMPG4zXJdCdKu9YD0QkOZUsmtWFLp4VabpCC+niK9IibJiLKodQIFisldpiqnIj8Cd/7I8utYrZPEVEVjP9uoeTD+KKLlB+vaO4agKh7d/POxK2J+fTEUuw+RcRVUZGSkyPaMeqIyWokR01lqo+BSpY4UdpCNNlcp05yUVstoQ2zZVgqixIwsrgxID3ipoLSL2CMiioiyk3Ws/IgM9tnrMBJdLiOzamT0CkHJYWB+lYiM2O06NuMGxPzGXUqiaGoouHE0bdtHTEZnYCzLLMf5kRZ5URpC9EJDpculQ9Lz+Y2zHSLXyKZmJNHAxY3BqRH3Eyg9AkXmWJmXRIJKY+liZItNonFT/FDVEHSj+qK6ZRF87NoPYDLysQf4KK5RGTmurKbvC1RdFlKDGgmJjOcdJjivfqmLzrBoWyWajfa0Atkq8XPC47yNmFxYwBbbuyWWhfO+/cS+4wZ4lJ9Rcw6dKuTHbr14DZ6i7IqutSOdeHC5Pm0dMWeiZj0amctgpuzWGu1i9ff9EUnOIw9t2yYZ0yWbLf4ufGbTuFzgsWNAenzuUlH8j43yqWknysnEVGLVXsSsxhoJEHU8hWJvpUUKVMLJNZXNE9MIODeD1XvLeqKK8Q6FD1nZ6csFl7vrM1wy3Kj1S5685R57U1fdoLDLHJEFaYlnrMdUvycYHFjQPqipYZSesRIRyLq7sJ+i4hIQzjEUSGxP7NoLIMkiKqvyMIjiCoeJ1o4kShYqCyPrpeQ20ckT4zbnZLWNAwiD1a149Sqn8zEf3pvW9lglnfDidJsMs5UvOmn0pqWRY6owti1+GWytVOWNDwnWNwYkD5xExPKnPJSGyluTdSplRSQSMznRi1qyLfewyAouJ/ppG0l0whnr67WfusuKEh9By47KajasTQ1xT9MRaPBEp2q1betbDLLO+lEaXfSVife9NNhTUu1I2q6xYFbWcfTfV5Ok6bnBIsbAzIjQ3EbSp5csyMRlUrsI7aobxlmIdftLe5f3YfWg84sWiqxBOM3jz4UJijWmZDZ9kYCTkNAhUKKIJg6VSm1tel58FiNotISKQUF1iwMPp8y3JWqzjoVOOVEaTfKza5fishbslsdaKocUb0wFGrVWmV0fYDkl6hMGuLVIk3DdyxuDEifuGkiZShHpqPvkPB/oeT2aqmgQ06jVaQfJVNtcf8gY8tLOYn7HMV0ApoPOyh+NpbrCXJ+CgkHcGpS0NgHrBWBI5rkMJOcSJ3o9O1eHzsPeZG35IICd4WB25YH0SGOVFhArEycKWvVy6QhXi3cdNg3gMWNAekRN1pht6kqieHdASJaRvpRMtVkz0cnqNMGf5PbXvdhFylJAsdH4sNuDvzgnH7I2rUMaHV23bvHL5fJ7+NmZ52JWL0+Tpjn7Rw7EzpQ0SGOZctSZ9lJRe6qTBriTYQtN94j9eJGI8InrUXD9yQJNUR4qoX96wkH1SFYry1iLD+mDzsQlSBmiEo9p+mCdQwanLsAbpjPncp/E1tqa+MF2MKFYtvl57csJ1ItZGfqdlNc2M1q7fXrZUfYi7axlZcR0W3SadVLF2lyNmdxY0BqxY1BhI/tcpiNbX2RetWSfsI8q/UPGrSHmc9P5AEl/Fagbq8Oq0kIKKu46fsgk21YpCSahGXmtcqCbKaW0ROv5eXG+YkS/Sqc8ktxwqrn5Q7Urjgw60jd9uVJtz9WukhD1mMWNwakVtwESU4YyJS/kOJk7NT+9CKeRK0hIDHhIJAZV3g8dwJpD6sJCCgrpML3QetBbJY+X7RDk3nbyoJsppYwE6/l5frt4pY/iBNWPS93oE4NyepFMLkdrmz3+nhZeJqR4ucEixsDUituKklOYMgUGdEhUvQ6f5lzEL2h1WEvHauR6MOutlZn/wICSrgjiqlrsMLaw0v2Qao1JBIMys3wrPcmK/O2ZdZGLTW8NTH8PhXnbdeqp9bTi9fLqSFZrazdqQpXtnJ9MmHIUATOUOwNssNy053cGe7SGrYRPYfpNtsqBtGHXffuBoLBQEAJm6kTRFKljQdvqh1LjYSUE29bXgjbdRqvZ6e1OveT30+0ZIm3r5cTU5IkXpdUX0+j7NUtdYjXYVjcGJBacSOTxE6mjHFhn7ElGHMOIn43AbLlx6KFyJuQlQeEsJlawxE8KNmpOP0glXnDdcPBUiUbMhhrkabwVinUvEyiIftGxWvXS090V1VZc161cz2t/j5E5x1rCUO8LsDixoDssNxMcGm/aon9sVeTeXK/hMn3nELkTVXGIiJspm4iTUGnzkRuNlmnmx2jyLQR6sPTDfNwNmUwTsTrlhvZeooKnNjrle6hK73jW3FetXo93YqG9OKQYIbB4saA7PC5edyl/aolGKm/aFI/mxFIRohOJyDS4Qg/7Cr0z1WdidyqwBGpp9GDMBQi6tjRuWPJkikCwAqZMpeSUwkfE6+XVqdeVKTkl/ECshYQK9fTilWyJQuXFJ+7TP/dCoyLFLuwzwIAM13YLwD4AAQADAYQBjBJcLuNAFYBGOJ8lbZtE1uvocGZdQCgYZ3+d6UAlkNpmk0xywMB4KefgF27lMdhIj6fss7gwYeWhcPAqlVKvYqLle9eegmYNAnYFLPz7t2Bm28GjjoK+O47YPduwfMQPN/YenTurCzbtu1Qnfx++X2Krucl/H5g9mxg1CjlesVeR59P+Zw1K749nEbrnkg8XrELz5WXXlLOPfHe3b4d+N//BcrLgUcfdf64MpSWAiNGmLePiuz1DIeV357W75dI2aasTKmDuk1NTfLvNRBQjltaaveMvY3Xz91VmeVBssPnxs2iDjEFJbdzyQ9BJjeLU/systzEDlEFK+LfWJYt039DTHzrM3I+dPJt3Ayzob9Ec7yM5SZT32jT5SMhOhziRsJHkezVVVXunr9biF5PWatktvqeiZCmc+dhKQMy2+dGLzmd08eoIvnsxEFHWiwJPcGg1QmbdZ7CZmrV58YgGWAoQBSsPdRxa6WG13uQ6j0YnCyHH65kJI4NJdfzYzDaj/p9WZlYpt50pMp3g1QLM9nOQsT3qqDg0HUwul6i03IUFWWOQE1E5HrKOCDL+p55VehbzdycJr87FjcGpFbcLCQ5geCVImttcsnnRnZCOlFLhZBjokEywGoQBSSsLLFvvFYm2bNbEpMABgKHIlBk92WWqVdNdNdS32itINJZBAKK/1ls7iMzS58q+M3u+bIyZ39jmYqM5UZmXa+mTbBarzT63bG4MSC14qaCyBGx4eWilfjPIWSjQkQjkYSHHTSSAVYXyDkTJ77FOBnpYrXYsRqZZeo1E01eccr1ElbuCVFrS+wQit49L3N8L2c6touMA7KolaeszJtC386wUhpTJrBDsWcoSncFXKYAwJ+geNm6gKxTaqKjpZ5zprBjYikQ/gWwaq7iZNy5FzCxAiCJOhEBGzcqxxoyxF1H25wcoLlZrE5WIVIcK5csAdatA1avjm/DVaviHQy1to9tjyTCUJzTG6A45A8G4KIDr5OIOANrYeWe2L5dbD1130b3fDgMFBWJ7dMNZ2avIOOALNoOixZp/97U31Gig3IqsOI4HYvouaf7XnFcWnmczPa5sVs6kDPzUeWTkpHY5bdvmTdKrZBOu6Zgqxlhjd5inLbcVFQo+66ocHa/IkXL7GzrrU5r2owASVkG0+XbYOd+c9OaJzo0IOLb1lIsbiKWXRErj6x1LVXYHVZKY8oEHpYyIPWzghcQ2RYTdsqlpDgHP+DQ/qaS66JGJRQSiyDSikSyawp22ulXfVA4GekS+wBxI/eJWdESKJYfnBoZoaPDnoJDn+nybbB7v7kR/WSlgykvF/+NZTsiItkpX6ZUD/U5MayUhhnBiVjcGJJacSOaBM/NEiSxKRRk9pciRMRNTk58kjEnPPmddPo1ShRmZx4dIH4m6qlT7dXRynZab3aW3urM7k8fmTqtpyss1+79pl4/Gade0Wtq5ZyrqogKC+P3ZWfWc69GCTmFE75MmWa5UUlDygQWNwakTtyESJngUu+BnYpSRIcmkBRZP8fgO4EOxmms/Aid+OE6NUyQ2LHGPuinT1cm/oxdXzTzcE4O0cSJyj6sijCjkG3RbfU6Kum3uiCJ3Z861yydU0LYud+0OofEyDbR+yFxH+U2pkQRnR/JzCrm1Sghp9ETcF7NeO1kvZqalCHxCROUz6YmV6vO4saA1ImbIIk9sN0sF0bqIRqSPol0w5/djIrSw4r51AlTsFNDPLEPcs2kfR2IOrZ15liy4kRPdNXWKkWvHX0+JVqsuowOWQU1kHqrE52mROeaOf2GLGNtsGriNxv2LCtTrkP37tYta2puIjuTPhrV1cgq5sUEd+mwIqVp+CYl9UqDeGVxY0DqxI2XctwUCq4XJG2nzhJKubAhku+0QqFkk7qVjs6K5aagIHkITf2hpyJpn1FJtAaImo41BYpfyfMTvTcMHH6FO5NgzP7M7k8NnAxNlX1gWxFWIsOeBQXGOWpkikiHo3feVkL7vTi5ajqtSF6dFdxOvThDsfdInbipILEHthdK4pCTOpRVSYZv524j4nOjdgJEcqJE9dMJhSKZhqcSBacShWqVDMVmZtvYpGrTpxv/0J2eVkG0TJ2qtMm+fcmmY1HhEV2vjCgIZdoJx616qs+NlkOx1v2ZgOh1V9vDbDhN5oFtxcQvO6WI3oSWoveBWYdjdN6ix3B6aNhJvGBF8qrvEWcozh4y13Ijan0xK14YchIUT0LipmNkugSSG04qKIi8lSZaW6Ak6qs2ycIbO6ST6ozDoqWyUmc4zMDKpHUNgrVElfk64ka9h+z6Y0WipUJQjlOJmOOZ3J+y0UZG8zVZeWDLmvhF79P8fP30/QsXyt0LevV36v6NtYqlMclbEl60ImU6nKHYm2Suz81CIvq9A/spSvg/1UNOWsNeOkMbwj+iQmV7JxyBfZFSDUXgmJltvZBxWK/oWZT0HvJaIfVJpnwkDEvFlqDNW6OcKJA4VYRfWW66rcTwjda52n1gy5j4Ze4ZveNZve8S9+fU/etVy41oXWpr3a+LiletOKJkSIZiOH50j5PaaKnETtxOCZIzeXP+QsqQ2YTIp7ve7fFE3s413/w13s6Ff0SRfYQszpeU1PmBqAREoYBiFTJ6EKUjv4xp/SPDZonRWCLbqW+xuqZ8HBJ/SdfRxsNMZujAyPFV9PonvrE78cCWGerLz7d3PKu5cRL3Z/f+NfK58UKUkIyVLF3+N5kWQcaWG2+SOnFTTc4k8Es0+Vfb3F+i5cbAIdRRRMReESkWqqCyvvCPKKadqgVnERfeb9D4tLxmuVHFwPTp1vdRW2tiykdE/CVeP5O20r01JIYOzDoH2bw/6gM41Q9s0etjdDwrzsZ2LDd6eZm0orK8EiUke35u1ssLvj9OwBmKvUlqxI2ehcJqSbzpqyk5h053ImpvYd9OOYQGydiHJihZr8AhS4zujwjJnWyolui668QfaEalEmRqjRD5oafSoVgdCrHzRi4sDGLvIRs+NzIOtqKdg6wlxq0HtlEOFKP7QvR4otYqM58bs/PWyoekNdu82bCmWTSO00M2MhYuNy1K2eb7wxmKvYf74sbp4ahfkLZ4SFy2zMYx7HROoj40orlMYuvki3HsTXwYIHl4pBpEAUFzv3DnHRRoAoEfutMZaNXSvbvS6Sd2BnYsSqLiRh0OtCuOZYYORDsHK5YYpx/YZlam6mr9c5E5XmKWY9n6i563WTZlmSFEK+1lFdlUDG74AnnJD8kpOEOxt3Bf3ASJHBM2IGWiy0QrTaJ4cEpQBSXPVcaHxkq7xAw1BRJCX0uQLGwSBZBRMcoGHOtzIyr4zH7obgxfTZ9u7Nch65OhCoTaWrH1a0EULIqEiQetv3U62TaxOY+sWGKcemCLDkE43UFY3Z/odm5ZINwcsqmulrOeuhHF5aUIMidJsXM0ixsD3Bc3shYKO6UqcsygQ/uT+WGZCapEa5C6vpXhumDEsbcwIUQ4UkJQonhEHh5aYdCJwiZqEZJ8oBr90J2cHDEQUIYJzB4qMm+ssZ2IqTAAUUF7okChtXpptZtZ24ieR2znYNUSY/eBLSsAnE5hb7X+ZvdvMEg0cqTYdZCxQLg5ZGMlgSZbbjwLixsDMs9yY1RyiGgJOSeoal04z2DMNqqlR1bgVBpvHxR8aN1wg/mDrgRKnhs3nKydyDYLKMMzonlqysuTfSNycojat08474S3dCNhIFNX0WEFp7I4J3YOTltGRISDTEeWCdEzMlFoapGxQLjV8cvm8EmFz40XIsgyGBY3BmSez41IucKh/XQn8U7d6nxAWj46ZiVovP3CI8QeXmbht0UdiZreJHvJ6EzQ7GxBVI5DViMrnXpslJTa8S5bZmzq1/LVMatrICBn4pcZVqiqsjZxpFnn4JTpXFSIiA5BlJV5P3rGquiUESJuDdlYGe40Guq1i1ciyDIYFjcGpC5aSquTdrM4FXYu6hwaFNxnUGNb1Rl6ISnh33qWHD1H55jtq28gKupgrUO0+1C2SqiWkrPwIuIQ7dB5AMZCQfRNMVEYiPrjWDmWVd+bVHQOMj4houdhNIWCF97krWYvjp0SRQS3LDdWIwbdtJx5dZ6pDIHFjQHZK246OrQf0cgpMx8a0f3oDVWZCa1qZfhIxNLh89lPmuYoOlavahB1t/AwtlNS1WGIHMtq1JTbnYOsT4jIEITo3FDp9MGwKjZlxY1bQzZeFcuZnqE4jcj03zlgHCYM4OY0HHc3gBsc2A8B2AjgAQB1UM5HCz+A2ZG/fQnfqf/PiqwXjuxrscY+SwEsB9A9YR+ByPJSjWPXAOGRwKSdSnVFmDRJbL2//Q1YvBioqwPCeucO5bu6OrF1kyhOXlQDYBSAzRK7cYKGBrn1izXq7tSxRPddVQUEg0BlpfJZXw+Uat0nDrFqFbBpk/73RMDGjcp6AOD3A7Mjvw1fwm9D/f/qq8WOLXN9bN2TNo8dy86dh9pCBJH2mjVLWU+GwYOBQCB5n2ZQ5KFSVma/DbXw+4EhQ4DRo5VP2fNixEiB2PIU7ltuaknzrTwlVphJDhw7sSSGnSei5UNTErONaB4cdajJbCbyiMUoKPgWVlSkvIE1NSk+NTJvcHrmadtOoAlWL5loL6eLVSdNJ/0w1DfZhQuV6+U1p0urPiFGQxBOD8W44ZhsJ0TfigXUjSEbu47qHL3kKTJqWGrOnDnUq1cvysvLo4EDB9Lbb7+tu251dTWdf/75VFhYSB06dKDTTz+d3njjDanjuS9uphI5LjBEi1Mzh8cWET8cPWEikwdHlKCyj0rBh9PChZGHpoUswVrmabOH5bJlgucRMxwnKtScLKpQaDKZO0uz6pJRX0aiRCbDbrqcLu0IEaMMxU4NxbiVI8YNIStyTLth+InbV1eLD0snFhGRxsNMKSNjxM2SJUuodevW9Mwzz9CaNWto0qRJ1K5dO/r222811580aRL97ne/ow8++IC+/PJLuueee6h169b0ySefCB8ze8VN4pxRThZR/5lYzKLGrOyTKOqvIioIZGbGNutkRBws/X4l6kezSRIfglVKG4kKNSeFjc+nhIlbfdt3QpTIvFWn0+nSLZ8QJ6Jn3MgRE3ufqnNgOSFk3cbIemXFER4wF2mZEMqfRWSMuDn11FNp/PjxccuOOeYYmjJlivA+BgwYQNOnTxdePzOGpWSLj4jKUnCcoEQ7BF3YZ8x+1aEcPYdiH6zNjG30kJMx06vJ8GI7Cc2H4DKi6WOcqaNeSYyaKilRhI1Rh1U2yfwtNFGsVWnMyq4nSkSEYlGRYnnzwtuwW2G8dodiUjG8ZZb40qm2sIOZ9arKZJ46re3MRFq2TISZQWSEuGlqaiK/3081NTVxyydOnEhnn3220D7C4TCVlJTQH/7wB9119u/fT42NjdGyceNGl8VNFel35G4U1b8lmIJjyYyjW82DY0aMv4o65YLmvFM+ezNjJ5aF9xJVLhRfv6DAXFg5kbROpLOpqooXIU1N4iG+Wm+hIplszUz0mZix1a0wXjvDGk7miDHrrBNzKHklpFnUeqXmfTL73YmIk2ybCDNDyAhxs3nzZgJA7777btzyhx9+mI4++mihfTz66KOUn59P3333ne4606ZNIwBJxR1xE6LkeaDcKNMp2b/FLDTbiRKUaIugC/tUifFX0coNU1JAtmfGTixFIJruYD6dVBS9zkbGAqUKRaO5kKyY4TN1rh2v+Vc4JRKtdNZeaQu7GaG1LJtm93MmivMsQEbctEp5eFYCvoQwPSJKWqbF4sWL8cADD+Cll15C586ddde75557MHny5Oj/u3fvRklJifUKG7IKzsTy+gDDGOfjoIRIhyPHbIASXlwB4HKB7a3UJwBgsMQ2gyPbGITQAgC2W6iPGj4+CSjdBIxApBnygeJJwJlTgNWrgbfesrBvHXYAeGAP0B7Aj87t1jU6dABmztQOkZYJ8SUol18Ni73iCuWxHcvmzcCoUcDy5eIh2aJh33ZCz91ADeP1Cmq48+bNydcFUMKgAwFlPSNkwt3V83e7LcJh5XgNDcp9MHiwdtj0ZsFnbkODEn49YkT8fs88U3lemB0ncV+ix2TSQtrETWFhIfx+P7Zu3Rq3fNu2bejSpYvhtkuXLsVNN92EZcuW4fzzzzdcNy8vD3l5ebbrK4ZTN7KRMPEBKIMibCYjXjwEANwFJZ+MmaiQZRaUnDWi+KGIrf81We9OKGJFa9+x4k0VsNugCLkRiKoafwMwpBjAYKDmJeDII40f1FZQO/l9zu7WNfbsAf73f4Hq6mTBISsY1I7tttu0O1AipRMtK1M6DpG8HU51yi0dNUfMqFFKm8W2pUyOGK911jU1Sm6q2N9xIABUVACFhYeEyI4dyn0nQufOSv4fddvLLz/ULrIiLVPFeUvCfUOSPqeeeirdeuutccv69+9v6FBcWVlJbdq0oRdeeMHSMd11KA4SpdTfJrGoIdZVRDTGoX2a5blxoj2CGttq5ccxqZfULNiRMr0jUWUZ0RVXiG2XjiKazVarBALJwwXR6B8X6ipjhue5dpzDa47JdnBqEtXY+6mgwNmoJp4IMy1khM8N0aFQ8Hnz5tGaNWuorKyM2rVrR+vXrycioilTptC1114bXb+yspJatWpFc+bMoYaGhmj54YcfhI/prrgJkTu5ZmSKj5SOv5sD+5pO9iaRtDO5ppnvUEKuHNl5cEoKiKoj52d1Dh23i1YumooK+f1odUjV1drO2HaLrI+M23PteMUvJBXYOVcrnbUbbev0b9FIJDkR6cbiPKW/sYwRN0RKEr+ePXtSbm4uDRw4kFauXBn97vrrr6dzzjkn+v8555xDQLJz8PXXXy98PPdDwcvIuFPOlCIeXq9PUPBYwZhtzPLjxJaYXDmib55Tpyb/AO1kYnVT2Gg9IK08/PUER/UyooDALNxuz4Xk1sPRqzlIvCq4ZDprt9rW6d9iYaFxGLtdC0tLnwgzxb+xjBI3qcZ9cRMksY7Z68WJKBWzCC6tRH5B5bsQtGfO1lwetBd9IxNV5XfwwRu3X4mIjepquX0bCY5QldKOZZF19cLq1dBfozdhv59oyRJ71gOnOn2v5iDxquBSEemsly3Tvv5OtK2TEY4A0b332v+NmOFVseo2afiNsbgxwH1xI2N58HIJOtQeMWHbScImZlgpSqV2eHcAROU6y6vLJHwGKihpqE3mbfFOHOrwnRY4FRXiD8iqKqKcHPN9avncaF6jgE5YfUzHZsUXwk7GY6udvldzkHhVcCVi1FlXVSULcSfb1mnLzdSpYut5LeWA10nTb4zFjQHui5tqIiqgZLHgRCkgomXkfj6bIrLna6PVJomCT00+mLjqdDk/ENVvxMyy4ANRCSKWngRnZJk5dAIF2tMWFMQcx+qDuKxMrln13qBji9RknkGi0EJFAFbqZAZetsy4c7PScTvd6XvJOVYlFZ2B2xYEGYuhnbmlrM5npdWeotMucD4aOdL0G2NxY4C74kbEETaxTCWiCsF1axOO45bA0ZkbyRaRztNo1m+rzoTqg6yqSsdnIFKq1fPTsBqJTgaprrNsWaQjKSMKFiqiSc/yIZopuahIu0NqalKsOhMmKJ9NTYe+Ky/XtuC0b++OJcDKm7VRx+1Gp+9EgkCnhYLbnYHbw12yv007lhDZiVn1fqPqFCgc1eQ8aUrCyeLGAPfEjdXhqEmC2yb6ppiFSuuV9ibflzvWItLYNUnrZSAtQYywUYuGv4/MZJBxD8QY4RaqJQrWxneKoZDi2ChyDokOz+XlyZYSv19ZbjRM5NYwhx2fCK2OW6bTT9XUDm4IBTc7g1QMd8n+Nu2+sYv+FrVKoo8QRzU5D1tuvId74iZIJC001DKZFFFhtI6W6AiR/CzkATo0tBW7vCiyPJWESLFGTVVKpaDzn1nHEApFhlYQ74ysWYIJVQoRjRnj/A+3rEzuXAIBohEjjNdp3978Ie/0G6nV2ZX1Om7RTr+sTFxw2HlbFxUKspYdtzqDVPk+yIhap+470YlZE+dO07uuLTmqyWnSZBFjcWOAe+JGNKeLXmlj8n2i5UYlaOFYtRQnKqhWZ99uouGbFLTYaUY7htjwdYs5dmT8CmTestMVbq7VWcp0zIkzm9uZZd2O5UbvAar35m3lbV1UKGh1smaWHbc6g1S9QctcJzcFg91cPi0xqskt0mARY3FjgDctN6IlqHHcEMlP1pk4NJXgYOs61dr1CiHZZ0Wok0OMs7B6HkGdczdoU1m/ApkOwylHSdmycGFC00sMudgZGkgselFbIu1iNTpH9G1d7fREI2v06iHqOO1kZ5Aq3wfR67Qs1dZfJq2k2CLG4sYAd31u3M5OHPuAUod0RhFRW5v71QvLdgMTMVYt26kgxlk41o9G9WOSyLEj83Zq5S27vNx652m1VFQcOr6Mb4bTKfCnT09qjqRjaXX6ovvXE5pmb+tOCjgR64vdziDxfFIZDWTm6FvlRiAC43k4Q7E3cDda6k7S7kidKsHIcdwIN9fo7F0haF6XMokORdNZOBg5lmSOHRm/Atk3E6fFgmhRLTcyvhluTEdhFuau1+mL+io56Yhrt5gJCaPOwOg7rTbq3l3JwJsq34dM9l3hYSlzPN5GLG4M8F60lEypIt0hHccFlHpOQTIM35ZGwBcmKNiJVEDHWTi2o5PIsSNquTGyQmiRzrmr1I5WxjfDDf8gvTD3xHZKfLCmyxHXTrE6BGQ0ZGhkddP6W/3fDd8HL3SAsnXwemZoL5ABbcTixoDM9rkJkLx/jWxRH8xaosAJ3xyBdlJ9b4wS4hWAqBbJ4iaESKRU7ENPUKSJdHhCGX8TTznoTicqEy0l45vhdAp8qwIk9pqkyxE3VedpJl7M5kfSmvU6nRYVNwWQbCecKZmh00mGtBGLGwO8Gy3llRIk/WSETvjmCDpAVxeIJfIK4NCwVDWSJ4KUffMw84spt5AHyGmxkJMjn+cm3ZYbwJ5FI12OuGpR581yQ2g5ZUWqrU2/RYXIXQuAbCfs1ak4vEQGtRGLGwMy23LjdikhoiYyH14LkL0hKpGhtWoxZ0/Vobgc2pYemQ5QpJMR+ZFbdfoUKYcfTrRvX0xTSkQEiXbMbkV22XFqddrXw4qAU5NEOi20nBKTqcy4rIebiSWtdMJenIrDa2RQG7G4McA9cVNFlHZxYqeoFpmg4PqSfidJ6DlFF1CcZShURVRbSJRv8sPLMfhO9M3DicgTK06fIsUsP4tIxyXTMdtNgW+l/c1wsoO2IuBU8eC00HLKspfKjMtaOPVyoIeVTjhN0wRkFBnURixuDHBH3ITIvcky1eIj93xuYgWFzPCa3YdjiIyTCUaGx4IOPPhFRImZD4vZj1wk+saqWCgqcs6sL9oxOxEm7bEx+zhko6Vi7x8nhZZdy40TGZedwG0LgJVOOIOsEmkjg9qIxY0B7oibWqKUWFemk7Ph5vmRfcY+FIMS27sZOh4TfVZp48EfWxYu1O6QZLIS6/3IRd5a27fXmE3cwFE0se6ONa1ExxwKKRat/HyxeiYm3PN6mHB1tXnWZbd9DkSGDAt0fNCcyLjs1HktXOjuvWylExZp20BAucfT7auULjJoclEWNwa4I26mkrgg8EKZSvpRQzGiQqgELbWYNrFRTRWHjuGU5aaoKP7/QEDJqCpjndD7kYs+eKdNs+aPIxt+7iSi56bOWO4Fp1YZQiH9mdtTZXkSGTKUHQ5L9Rt5RYX4fWKFUMhYiOp1wmZJIhNfMDwW/pwSMmRyURY3BrRsceMjY2uLKi7KJPbp1DisVuh5pIiEhlspVoaI9LKwiprMCwoOOe0Gg8pbbFGR2HBWuh4wdsbkvZATRZR0J6gTOX5iexqJyVT7Urhtuamu1rd0mnXCWm1rdV/ZipX7L8W/ZxY3BmT2sJQTRe8HayAuXLfc6IWexxTZaRncKnpvuTJ+E9Ony/uypNM0bNUCkAFJwZJItxiTOb5Z+6bacuPm8cz8owoKzO+r2LatrbVmBcp2ZDNkp/j3zOLGAPccituTvDBIddEb2hAQF0nFzAokiuAwWAhK4r50ixu9t9xQSNwvxQ1x5SZNTcaTVwLK901Nh7bxelKwdIsYu5gl/Rszhui224g6dtS/Zk534G5FS7mRXDODnGg9gUd+zzL9dw4Yh8hLdwUEOEpjWRjAJAAksR9f5HMWAL/NOq0CsElstZ2Cu+zYETjiCBt1MqC4WHu53w/86lfuHDOWl15y/xiJrF4NhMPG64TDynrq35MmKY+/RNRlZWXm+0zcf10dsHix8imzbSI1NUCvXsDQocBVVymfvXopy+3gZB3NjmPWvgsWAHPnArt3a+/DF/kNz5ql3LtO4PcDs2cr+1b3H3s8n8/a8VatAjaZPCM2bVLWE6Whwdn1shk3fs8pgMWNI8j0vOlEq2MWFBdxBAAsB1Bqu0aA6ENGYpdEwPffW6qNISUlwODB+t8bfecUixa5+xDR6qBlOwKzzogI2LhRvDNyUozU1ACjRiXXb/NmZbm6T1mh4pZg0kKkszcjEACWLwdKnfgNx1Baquy3e3fnjrd5s7PrAUDnzs6ul804/XtOEa3SXYHsIA1v09IEAGh1vqKqYSqAAVAE0mDYt9io6FhCLK4GANizR3xdn0958P7+98CNNwI//qi/ntlb57ZtEpW0yPbtykNkyBDn911To7yhxT7IAgFg3Dix7VWrlpNvxaoYSXxrVMWITIdp9gbq8ylvoM3NwB13JLfD7Nnax3Kyjlp1XrVKaaviYkVAW7Um5OQoFh1VpDtlsUmktBQYMSK53laPt327s+sxcmSqlSsFw2SewnmfmxARFZKpz0jai96YaFBw+6DF9jFD9bnR8PkJQQkDr4QySWZ3gTFy2RI7XhwKKaHaHTrEr1NUpISMm+HmZIyxxY1MoWZj6kYZlhN9N5zyZ3A6T4ud6+Pk3EUyGaW1HDj1wtZFilkYthd9kdyIwsqgrLxpx0P+SexQbIDz4iZIlHbhYlTU7MOxOWSCdMgR2EBcOOo4bITq0BxTh2oo4d+xPx6nHYoLC7VFS1WV8l1ip2LmNLdvn7P1S8VDRCRJnypu1L/1On3R8HZRUeL0Q9XuNAdOzF0kGnFiR2walQkT9NvHA9EwmrjRuXqow/Y8Hkryx+LGAOfFzUKitAuY2FJERKMofjoDrTDvAB2y5miIi6iw8ZG+1cdJYupYDZ1JMCOfOQ7Md6T38LYy67D6pnv77fbrYyYynHyIyE6voBXCrubBEN2XTHSF02/XTlnWrM5dJHpviViD9MSmWdGz3HgkGkYTN6KwPNRhZwQeSfLH4sYA58VNBVHaBU0nUhLvBUkRM7FWmumkbZVJFC5aAqiEnBM2epajhHVCtUQBQSuCXbGQ+OOUHWJwYu6lxDJ9emoeIrLzKqkdtNawhcy+ZJLiOf127dRs51bmLqqtFb+3RPdpJV+SXqLFVE7TYAU3OlePdNgZQ7qTXBKLG0Oy03ITK1RkkvElDjmJCBArmFmOYhB9sN9wg3inIjLsUlIiNyu4FXEg2vm4/RAReRPWO28r+yoqOjSvV7rfrs1S8cu2g2gdZe4tGWuQKoamThXbpqgoub0yZYjGjWEzD3TYGUUGZSjmUHDbdDdfxXUo8nkzgJEQD+0mABsB1EVKVWT55QCGwJmIqBoAozTqtDmyPCFUVtTj/rzzksNNY/H5lKiQIUOUKI1du/TXJVJCGevqxI69ebN+1I1diouVaJP164FgEKisBGprgfnzgaam5LBkK7lVrIQSFxVph7qvqjPf1/btyrVSr4Uoat4UQDtvCiCfN8UoVLmqSvlMPFbsMRPTAYjWUTSSTo0uEuG775TPIUOAAQPEtlGj7RKPKVq3dJP4m7P7G0z8rQWDQH298yHy2YLfr9xvo0fL/55TTQrElqdwJ1qqE1HarTd2Sn7C/zpWFUttY2RF0nBWlnmLFDUri74Ji779ik4QKFv0Jv1LfLPMz1eGJLQm/RR5k7XiWFtWprGjaqJKwazMdqJO3Hi71nsDtTpUYVZHmftaZvhMvd4y/kSJ1yITLDde9gliUgYPSxngzvQLE4nSLlCcLE45EgcFjxc8tInsUIRIxyfrF2F2bNHQVNmyZEl881kZ+hJ52FtxrE3q2CJO6EGr20uSSnO4VTFlVEcr97WWyNK73loRfqLXwuvOtW77BHkx/J3RhMWNAe6ImyCJdeKZVuyGgFcKHifhTVL27dns4STz8BY5tlv5bGIjWaz6xYg87JuaxDtCtWOP21eMRc5sxvZ0d4xE1jovNzo82ftaJgKtpEQRx9LX0mLdUonbE3J6Mfyd0YTFjQHuTZzZndwVGukqQRvtErR+DKeHIoysIIkPb6PkaZWVSqK/nByDzgZKTh6fQaevVWJzkDghoLQe9jIRXrodW8J1VUP3E8/Vp9G2qcZrnZfsfR0KiQ+DBoNE5eXG19PovL3qXOtWwj0e6so4WNwY4I64IVJCru2ICCdKjsS6HQXXK7PRJuobvlYoOkjT5yZu88S35yayFc1VXp48u7Xfryw3OrZsyK0v0uFrJSI0Ko8/fuiYov4/Mg972WEu3Y5NwyKnda4lBekXNl7svGStQrKd+7JlSlSUFZHitMXKif25YbnJhPD3TCDFQ3osbgxwT9yIDsE4UUSFiV7pRERTBNctIntDUxHfDNsJAiXCyTU3t9jRyQoCP4iWxdQxBKI3Yb6PnByibt3EjyP7sJcd5ioqUoavEgmFiIIVypQYwcj5xZ5rEDHf1YpdGzfIps7LSufuBT8Sp6xmIg7Wfr/YFCkqmeBE7XXSYBVlcWOAe+LmTbInOESKj5QO3WwITMaCI1KCOuccIjFLipYwKSE5YaNl/TERSLHTARj5mOh1dJbzwSTWsYSo/C75/VgtdqYJMHqwaz7MoFhtkq6LXX8tm2RT5+V1h18tnLaaibxkyOyX55ayR5qsoixuDHBH3JST84JCq/hIfPhrDBG1d+i4Wj9wWUuKqBDS2k4ynJzIWvbgxI7Oqt9LZWzdYsSX3rBY+/bWjqP3gNd6uFgJ/459sOs+zHBoGE5EcKaKbOu8vOzwm4hbVrOqquTfj9X9ZpP4TTVptIpyEr+UcjeAxwA0p+BY+QC+F1z3cAB7HTpuYlIxycR8AJSEgEMAjIZcgsBVGseJhaAkIoxJTFZTA4waJZ+oLjFJmdWkZdHmCgBYDiCSEOzRR4F9+4CKCmDCBOXztdeAH3+0dhwtAgElSV1iEjLRxHBa24TD+kkL1UVlAMJA0jmnC9HztdIu6cAo+aDW9U4nZkkiiZSkmYnJBM0oKjJOUimz38GD5RM2MgpuXV+HaZXWo2c8BwDMdHifYwBsBfCGxne7AMwS3M9CHOp57FACIPYHHgYwSWffBMAHpacbAX0BE4YiRhqgKIHBBusmCAzdTSPrGXXEZiR2dFY6vgIAg48AsAyaIi43FygrO/T/4sXi+/b54s+rpAT4/e+Vh76a2XbwYO2soYMHA4EiYPN2sdvC7wfOPFP52/Rhhoi+rACG/Aq2M1uHw8oxzc7JCLXz2rxZ+17w+ZTv9TovJ+rgNKWlwIgR3qtXIm5lPLa6X71rOXu28hKU+Luymv26pZApGa0dtxt5HGeHpSpIbFhHphQSUTeTdfxkHIFU5GB9EiOJgoLbBXXaTHY4K+Z4WhE5UZ+PyPGsDiUZ+dzIOBQXIOJkq3H+Wk6eVuo7apQSTVVbKzmv0jK50HTVJC86xDNhgn3nVSedFEWHchKvi9XMz4yCW0M+VvZrdj95Nfzdy6RxSI99bgxwVtxMIOuiwa3iIyV826n9JfqzWEzMR0TWHIMjPjdqLhXdDr9U6eytZg82i5aSmlhR4/y1HqKFhUriNTszVQcCimgR9WcqHyEucFR/FFkBZleMJO5PbX81z5CMgDLrvGQS5XnNt8WruOUAbTXLs9m19EJkWSaRRgd3FjcGeN9yY7e0J8WZ2Ml91tKhzlP0nIMJbWXRMZiIKHSneL6Yjh3lOmJAmWHc6Ico65xcmXD+ZpEeI0bI1zn6IEGCQy9I1xImG9auvnnJWrCsCAHZyDQZAWU2j5RwW3swKsmruOUALWONy5ZUAF4kTQ7uLG4McFbcNJH+8FA2lcSJNf0G6+qJlKDgsYIJ24WIghJTBVgtZp2lVKbYmNxAop22nYgpH4hKEJNzRsMSJiMetB78shYs2c5D1jpk9yFqZ3oLjqARw60hHyfnk+NraZ00DOmxuDHA+VDwY0ms024JxWh4yepwVlCxhLgtbkQ6y6Ym41BUQEni1xQzAaZb81BpPqgTr0WMyJSph147OBFer0UopPgRWblmVt++7VyXTAkfdwuZYRy3hnzM9iuTCoCHpazj4QzFHC1lizCSonkyDjW8nCxs60ck/jdCAEo0l1ZYqmjkUcJ64c3AdxaqJgtRJNBrkhKRohUlsXq1cSgqoDTH6i5KoBSQ2oiBuEMRDoXIDxGvR34+8MwzSmROYpTJiBGHonWqq4EnnxSok8lxly8HbroJ2L1brH6xEB0KOR0yRG5bO9dFJorOi1FXdqipUaIRY6PnAgEl8kgrHN3vl782IpjtV/QaffUV0KuX+Pkw8bh1fR2A89zYYhWU8OxMZTqAZyJ/6+R7MCQMoAJAJYAggHro5zcZDEX86B3Hh6Sw85oaoNcdwB0WqmYFArBxE7DqYe3vrYRApjKPiuahGuTqkRN5JNTUKA/9oUOBq65SPnv1Al56SXmYjRwpWCeD4959N/C//2tN2MRidl3CYaCuTgm7r6tT/rdyXWRzn+i1YY1WHqgMQC9/1ObNynIvnZdIHpuCAuCBB+yfj9b9xaQfV21IHsTZYalUzifldOlIh/xitMKzE/1s9IqMiV5inilZZ08nSyVIc2jN6hw/RlM/OFWiIeiJJXioHiJOwUbfxw7d2Y2YqKpy7tyNhr70QoGrqtx1kk7npJ1uDBVkooOukdMrQFRQYP98vDbrfJbDPjcGOCtugpTcmWRKaU+KQ3SQFIFSGykLSYmIuldwP0HJNhOYZ8qOs6cjnaVaJ8m8N3oPxKppqal3XMSUhmO3E4Ix9hytRkw4Jfh8PuV61NZqd+RmAqO8XNxJWsZRMp1CwK3ONlMddPWcXqdPt38+Xp11PothcWOAs+ImREQFRLaFRrpKp4T/CyTOxyB0W6jdgqSblyWVTrhxDyUkRB0Fk6su1KEnnt9ConKbdQsEjCOq4upu4NhdXe2MsFAf+lYiJpy4vnpv32pHLiowtBL2lZQolh2r1o90CQE3O9tMnqtLy5Jl93wy0ZKVBbBDcdZSCGCHg/trTPh/p+T2s2At1b46z5QOqXDC9QFxPtTq0PwsxJySRj1KS4G77gJmzowfW8/JASZPjrgc9UL8fFhFwKMATgVwK+Qu4S9+Adx5p3Ks88/XX48Q4z9s4NhdWgr89BNwzTUSldBAvUZWpgSQvb4FBUDbtvG+Efn5wM6dSolF9ZfQ8qWIhUhxRi4sBNavd9bpNx3p6Q3n/yLFx6SsTN9Z3ozOnZ1dL5VoOb3anXtMZn4ljzrcZjssbmyxCvKCwA43AzgXwDYokxhdDWfFjih+AEvg2uSIbjnhBgKKKFn7GjB7QbwvuKYe0KhHTQ3w+OPJnUg4DDz+GHB64j6A6DUaBeAIAAYaJYl//lPpbKuqxNZvmArgARiKzsTJF60Qe41kIyZkr++f/hQvoDp3Bq6/XntdtSOfPVts3w0Nzkd8fPWV2HpO3udud7aiTrKZ4kxrd+6xTJlfqQXD0VK2SPWN+39QJtbMA5CL9AgbQImSKnRv92aRDla58krFujJtwSFhkw8laKweMaJEI3ILEJuUswzx0fEA4kxE2yTrrHZIwm+a58HUmmanfY0ihkSjRtTjm1FQoIScl5YeEiCjRyt/b96svx0RsEswijGxXe1GvoTDSii9GUYdpxVEO9G33rImQERneE7zTNDCqBNnAsm/A5GJM7Nt1vlsJAXDZJ4i/Q7FdjMaq/4UZTb3Y7e4PLZuZU4nS74bSJi+wMBfRdiXwqDdghamh1ATjTk5n0t1tcX2kkjwZ+TIaubcfMUV+uci6i+Rny/XXlrnkJ+vOJ86nWl5+nSx/Yki48dkxcF46lSxfU+d6ux5uY3VLLtpnF8prg4tLPkgOxQb4LxDsWjItJPFR87O/G2lBO03nxl6D5477yTKyRF/mIsInKgzbkLkViyinWqZQbuF/kIUKCKp2blraw+1h1PzuVgRN0VF+sLGiiOr1vUtKlKceY0Q7cinTdO53hr1MhNbBQVi7ZuuzLgy839ZuV9qa+Xu1UzC6nUwewGTEcWytNAQdBY3Bjg//cJ00u3IXC85aTimnSgpC2g9eNyKpgpWGJ+XzHHjwrIjJRQ5RlmZXL2mTTtUBz1BUFYm/mC2EmpfVKRMPyG7L7M3WCsdi8hbc0GBfr0S38xl2sOs85Cx3DjdOclYO2UtC6GQcV4YQPm+BVgP4jCbksQNwdGCQ9BZ3BjgvLi5i7RFQDYWo7mjUojo27FsmTDhUAer1enKvB3HhZRDETsBk3mp9MoRR8R3GmrdysoU0SH7MLUiDsvL7e3LrbBnvQRtRiXRMiTTHmaCQFR46X1nt3OSnf9L5rqYWfuyuFM1JBTSz5vjtOBo4SHoLG4McH5WcKMZsrOtFFBKhY3eW73beXAKCvTzp8gM5wQj7VYNuWEokU7I6ttbKER0773yx9d7YDqZ/0TEihO7jp71QzbzrKxYNhMEZsOHTmTGNWqrUEjcR0Y2L43scEhL8AtJpeDI1GSKDsHixgBnxU0FUdoFh1kpIWedj1MkboweounIYBwrGkSHlSqhWG+sWmz0OiGrD1Mrs3qbPTCdetiKdJpa63TvrogctfMU9Q2JrY+sWBYRBG5nxjVrKzc7QVHB0lL8QlIpODI5maIDsLgxwFlxM4Eo7eJFrwwjoseJ6E0imurQPlPkbyNilXBybiLRoooG4Q50pOJj48SxrXTGsds4MfWC1gPTiagRkestaqkSdvouSz4HK9fCCDcy44q2Q7qjedz2C/GSRSiVgoMtN8TiRoeWZ7lxowTtN50eolYJUYHhRqmtjXQcBuv4QbSsgKhyof3jdexItG/foTaSfZg6ZenSe2DaieISud6BgLilSsrpWyJaKvE4VrHTOcla7JyMrpPB7WEar1mEUik4WrhjN4sbA7LD56aI7OfLsVNcNHmKPiguvVS8E3O6VFYSVU8396PxgWj6Dc4c0+8/5NQr+zC166Mkan2xki/ESf8p9Q1eRMjp5bkRcfa1YzWwY1ERbaupUw/Vy+p1sYObnb0XI4VSaSVjcUMsbnRwPlqqnChlwkUdFlpGhyKXnDy2aAk60XDauBUJ5WQJBomokqgKioXGaN1AvuIXYvYwMntgqaW8XP5haqdNZToNK52+k9dbtVRJOX0Hk89h+nQleV/seqogcMJqYNWiIttWsT5qqRzCcWuYxsuRQqmykvGwFIn232mffmHu3Lno3bs32rRpg0GDBmGVSfrulStXYtCgQWjTpg369OmDp59+OkU11eNRAOWwNoFkIiUA5kb+1kqNTwDGArgMwHIocwekEp1pCZzE6+nKo1MPFANF0JhqIYFNu4Cf/cx4nRtvBL77DrjvPvPjqxN2yqSOl2nTxHTzgQCwfLkyBYIbOHm91X2VliqTRIqQOG2B3w/cfz+wbRsQDAKVlcpnfb3y/ahRyXM4qZN11tSIHbO0VGnTxDm+zNpatq3Uer300qGpK4YMsTcpqAhuTU0gM39WqrF6TWXhOa3ESYHY0mXJkiXUunVreuaZZ2jNmjU0adIkateuHX377bea63/zzTd02GGH0aRJk2jNmjX0zDPPUOvWrWn58uXCx3TecqOyj4gOI7JkCUnMH1NNRAGD9QPkvMVILWpiwESrUIpy3MjkkklHib6BhYgWHiG2zREm65WUyDlIV1QoVRAdchBp0/x8xZeoqcl6tlYrFg0nrrfWG7vTb7huWA1kLSpW2iod1gy3hmkyIVLIbSsZW25ItP9GCuqjy6mnnkrjx4+PW3bMMcfQlClTNNe/++676Zhjjolbdsstt9Dpp58ufEz3xE2QyLKgaE9KpuNQpASJaCERjdFZ3+3hqOmULK5KKKVh4KmYV0q2JM4HVHG9c/suLBRfd8KEQ3WQCct1y2xuxw/CKAGaTEnM0Ox0B+uVTsXqb8PJeoncc27cb165Bukk3VFwaSYjxE1TUxP5/X6qqamJWz5x4kQ6++yzNbcZPHgwTZw4MW5ZTU0NtWrVig4cOCB0XPfEzS+IbIuKgkixux+7pZIOiazKyGeKfyx2c7I4XQKB5AfGQgvJ8JwoquXGiTa161xqx6LhxDX2J+QQirUWOdnBeslqYKXdnKqXjIXO6ftNxJm2Y0ftaUKyiXRFwXkAmf67VbqGw3bs2IFwOIwuXbrELe/SpQu2bt2quc3WrVs11w+FQtixYweKNcZwm5qa0NTUFP2/sbERALB79267pxDDfQD+6sB+djqwDyfoCGAvgIExy/amtgrnnw/861/A6tXAypXAY4+l9viJzJgB7E1og8MPpr4eOTnANdcAu3crvjerVwNbtwJduwJnnmnsTxHbponbWP09iPpBvPFGxFcpwssvA9dea+2YsYQTnJ42bQJGjgSefx745S+Bv/wF+PWvgS1bDq3TrRvwyCNKe4ied8eO4us5+mzRwMpvw4l66V2zxDbXqqcT91s4DDQ3G6+zezfQqxfw6KPxdbGC7O8rVZx/vnP3dYah9ttEZL6y+1pLm82bNxMAWr16ddzyhx56iPr166e5zVFHHUX/93//F7fsnXfeIQDU0NCguc20adMIABcuXLhw4cIlC8rGjRtNNUbaLDeFhYXw+/1JVppt27YlWWdUunbtqrl+q1atUFBQoLnNPffcg8mTJ0f/b25uxq5du1BQUABfYqRJitm9ezdKSkqwceNGdBR9M2SicPvZg9vPHtx+9uD2s09La0Miwp49e9CtWzfTddMmbnJzczFo0CCsWLECl112WXT5ihUrMGLECM1tzjjjDLzyyitxy/72t7/h5JNPRuvWrTW3ycvLQ15eXtyyww8/3F7lHaZjx44t4sZ0C24/e3D72YPbzx7cfvZpSW3YqVMnofXSmudm8uTJ+POf/4xnn30Wa9euxR133IENGzZg/PjxABSry3XXXRddf/z48fj2228xefJkrF27Fs8++yzmzZuHu+66K12nwDAMwzCMx0ib5QYArrjiCuzcuRMPPvggGhoacNxxx+G1115Dz549AQANDQ3YsGFDdP3evXvjtddewx133IE5c+agW7dueOKJJzBy5Mh0nQLDMAzDMB4jreIGAG677Tbcdtttmt8tWLAgadk555yDTz75xOVapYa8vDxMmzYtadiMEYPbzx7cfvbg9rMHt599uA318RGJxFQxDMMwDMNkBmmfW4phGIZhGMZJWNwwDMMwDJNVsLhhGIZhGCarYHHDMAzDMExWweLGZebOnYvevXujTZs2GDRoEFatWqW77jvvvIOzzjoLBQUFaNu2LY455hhUVFSksLbeQ6b9Ynn33XfRqlUrnHTSSe5W0OPItF9dXR18Pl9S+e9//5vCGnsL2fuvqakJv/nNb9CzZ0/k5eXhyCOPxLPPPpui2noPmfYbM2aM5v137LHHprDG3kL2/lu0aBFOPPFEHHbYYSguLsYNN9yAnTu9MmdhihGZB4qxxpIlS6h169b0zDPP0Jo1a2jSpEnUrl07+vbbbzXX/+STT6iyspL+85//UH19PT3//PN02GGH0R//+McU19wbyLafyg8//EB9+vShYcOG0YknnpiaynoQ2fYLBoMEgL744gtqaGiIlpDWjN4tACv33y9/+Us67bTTaMWKFVRfX0//+Mc/6N13301hrb2DbPv98MMPcffdxo0bKT8/n6ZNm5bainsE2fZbtWoV5eTk0OzZs+mbb76hVatW0bHHHkuXXnppimvuDVjcuMipp55K48ePj1t2zDHH0JQpU4T3cdlll9E111zjdNUyAqvtd8UVV9DUqVNp2rRpLVrcyLafKm6+//77FNTO+8i23+uvv06dOnWinTt3pqJ6nsfu8++FF14gn89H69evd6N6nke2/R577DHq06dP3LInnniCAoGAa3X0Mjws5RIHDhzAxx9/jGHDhsUtHzZsGFavXi20j08//RSrV6/GOeec40YVPY3V9ps/fz7WrVuHadOmuV1FT2Pn/vuf//kfFBcX47zzzkMwGHSzmp7FSvu9/PLLOPnkk/Hoo4+ie/fuOProo3HXXXfhp59+SkWVPYUTz7958+bh/PPPj2asb0lYab8zzzwTmzZtwmuvvQYiwnfffYfly5fj4osvTkWVPUfaMxRnKzt27EA4HE6a4bxLly5JM5snEggEsH37doRCITzwwAMYO3asm1X1JFba76uvvsKUKVOwatUqtGrVsm9tK+1XXFyMP/3pTxg0aBCamprw/PPP47zzzkNdXR3OPvvsVFTbM1hpv2+++QbvvPMO2rRpgxdeeAE7duzAbbfdhl27drU4vxs7zz9AmXrn9ddfR2VlpVtV9DRW2u/MM8/EokWLcMUVV2D//v0IhUL45S9/iT/84Q+pqLLnaNk9QArw+Xxx/xNR0rJEVq1ahR9//BHvv/8+pkyZgr59+2L06NFuVtOziLZfOBzGVVddhenTp+Poo49OVfU8j8z9169fP/Tr1y/6/xlnnIGNGzfi8ccfb3HiRkWm/Zqbm+Hz+bBo0aLozMUzZ87EqFGjMGfOHLRt29b1+noNK88/QJl65/DDD8ell17qUs0yA5n2W7NmDSZOnIj7778fw4cPR0NDA8rLyzF+/HjMmzcvFdX1FCxuXKKwsBB+vz9JZW/bti1JjSfSu3dvAMDxxx+P7777Dg888ECLEzey7bdnzx589NFH+PTTTzFhwgQASmdDRGjVqhX+9re/4dxzz01J3b2AnfsvltNPPx0LFy50unqex0r7FRcXo3v37lFhAwD9+/cHEWHTpk046qijXK2zl7Bz/xERnn32WVx77bXIzc11s5qexUr7zZgxA2eddRbKy8sBACeccALatWuHwYMH46GHHkJxcbHr9fYS7HPjErm5uRg0aBBWrFgRt3zFihU488wzhfdDRGhqanK6ep5Htv06duyIf//73/jss8+iZfz48ejXrx8+++wznHbaaamquidw6v779NNPW9xDEbDWfmeddRa2bNmCH3/8Mbrsyy+/RE5ODgKBgKv19Rp27r+VK1fi66+/xk033eRmFT2Nlfbbt28fcnLiu3S/3w9A6UdaHOnxY24ZqKF88+bNozVr1lBZWRm1a9cu6v0/ZcoUuvbaa6PrP/nkk/Tyyy/Tl19+SV9++SU9++yz1LFjR/rNb36TrlNIK7Ltl0hLj5aSbb+Kigp64YUX6Msvv6T//Oc/NGXKFAJA1dXV6TqFtCLbfnv27KFAIECjRo2izz//nFauXElHHXUUjR07Nl2nkFas/n6vueYaOu2001JdXc8h237z58+nVq1a0dy5c2ndunX0zjvv0Mknn0ynnnpquk4hrbC4cZk5c+ZQz549KTc3lwYOHEgrV66Mfnf99dfTOeecE/3/iSeeoGOPPZYOO+ww6tixI/3P//wPzZ07l8LhcBpq7g1k2i+Rli5uiOTa73e/+x0deeSR1KZNGzriiCPoZz/7Gb366qtpqLV3kL3/1q5dS+effz61bduWAoEATZ48mfbt25fiWnsH2fb74YcfqG3btvSnP/0pxTX1JrLt98QTT9CAAQOobdu2VFxcTFdffTVt2rQpxbX2Bj6ilmivYhiGYRgmW2GfG4ZhGIZhsgoWNwzDMAzDZBUsbhiGYRiGySpY3DAMwzAMk1WwuGEYhmEYJqtgccMwDMMwTFbB4oZhGIZhmKyCxQ3DMAzDMFkFixuGYTzPmDFjkmaIXr58Odq0aYNHH300PZViGMaz8KzgDMNkHH/+859x++23Y86cORg7dmy6q8MwjMdgyw3DMBnFo48+igkTJqCyshJjx47F/v37ceyxx+Lmm2+OrlNfX49OnTrhmWeewd69e9GxY0csX748bj+vvPIK2rVrhz179qT6FBiGcRmeW4phGM8zZswY/PDDDzjmmGMwZ84cvPDCCzj//POj33/22Wc47bTTsHTpUlxyySU455xzUFhYiBdffBEAcPPNN2Pz5s149dVXo9uUlpaiQ4cOeO6551J9OgzDuAwPSzEMkxG8/vrreOmll/DWW2/h3HPPjfvupJNOwkMPPYRx48Zh9OjRWLduXVTYAMDYsWNx5plnYsuWLejWrRt27NiBv/71r1ixYkWKz4JhmFTAw1IMw2QEJ5xwAnr16oX7779fcyjpzjvvRL9+/fCHP/wB8+fPR2FhYfS7U089Fcceeyz+8pe/AACef/559OjRA2effXbK6s8wTOpgccMwTEbQvXt3rFy5Eg0NDbjwwguTBM62bdvwxRdfwO/346uvvkrafuzYsZg/fz4AYP78+bjhhhvg8/lSUneGYVILixuGYTKGHj16YOXKldi2bRuGDRuG3bt3R7+78cYbcdxxx+Evf/kL7r77bqxZsyZu22uuuQYbNmzAE088gc8//xzXX399qqvPMEyKYHHDMExGEQgEUFdXh507d2LYsGFobGzEnDlz8N577+Evf/kLrrrqKowaNQpXX301Dhw4EN3uiCOOQGlpKcrLyzFs2DAEAoE0ngXDMG7C4oZhmIxDHaL64YcfcNRRR6G8vBxz585FSUkJAGDOnDn44YcfcN9998Vtd9NNN+HAgQO48cYb01FthmFSBIeCMwzTYli0aBEmTZqELVu2IDc3N93VYRjGJTgUnGGYrGffvn2or6/HjBkzcMstt7CwYZgsh4elGIbJeh599FGcdNJJ6NKlC+655550V4dhGJfhYSmGYRiGYbIKttwwDMMwDJNVsLhhGIZhGCarYHHDMAzDMExWweKGYRiGYZisgsUNwzAMwzBZBYsbhmEYhmGyChY3DMMwDMNkFSxuGIZhGIbJKljcMAzDMAyTVfw/GZkO6uXukbQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# for some n number of points: default to 1000\n", + "model1.y_scrambling(n=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "2f0a391d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE : 0.2508516645820538\n", + "RMSE External : 0.32911620696721\n", + "R2 : 0.7932755997633876\n", + "Q2 : 0.7099699197171896\n", + "Q2F1 : 0.7138880300214396\n", + "Q2F2 : 0.7099699197171896\n", + "Q2F3 : 0.9978028024221\n", + "CCC : 0.9007449089766995\n", + "{'RMSE': 0.2508516645820538, 'RMSE External': 0.32911620696721, 'R2': 0.7932755997633876, 'Q2': 0.7099699197171896, 'Q2F1': 0.7138880300214396, 'Q2F2': 0.7099699197171896, 'Q2F3': 0.9978028024221, 'CCC': 0.9007449089766995}\n" + ] + } + ], + "source": [ + "# show diagnostic scores for the model \n", + "print(model1.scores(verbose=True))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "b29d4de4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnBUlEQVR4nO3df1TVdYL/8dcF4iI4oPgDUa+AujVuZCaUikO7mYI/d9zZFEdNbekHa8ooOaXVav6YqM6mZgVm/sodMrR0ymJMrCxNd0+6ODWDYzOJQoo6/hggf6DA+/uH6/3uHdAAr1x893ycc8/xvnl/Pvd9OQd4+vl87r0OY4wRAACAJfx8vQAAAABvIm4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYJUAXy+gqdXU1OjIkSP60Y9+JIfD4evlAACAejDGqKKiQh07dpSf39WPzfzg4ubIkSNyuVy+XgYAAGiEkpISde7c+apzfnBx86Mf/UjSpW9OaGioj1cDAADqo7y8XC6Xy/13/Gp+cHFz+VRUaGgocQMAwA2mPpeUcEExAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrBPh6AbaJnvmBr5cANFsHnxvm6yUA+AHgyA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALCKz+MmKytLMTExCgoKUlxcnLZv337V+Tk5Obr99tsVHBysyMhIPfDAAzp58mQTrRYAADR3Po2b3NxcTZs2TU899ZQKCgqUmJioIUOGqLi4uM75O3bs0IQJE5Samqo//OEPWr9+vb744gs9+OCDTbxyAADQXPk0bhYuXKjU1FQ9+OCD6tGjhxYvXiyXy6Xs7Ow65//Xf/2XoqOjlZ6erpiYGP3kJz/RI488ot27dzfxygEAQHPls7i5cOGC9uzZo6SkJI/xpKQk7dy5s85tEhIS9O233yovL0/GGB07dkxvv/22hg0bdsXHqaysVHl5uccNAADYy2dxc+LECVVXVysiIsJjPCIiQkePHq1zm4SEBOXk5CglJUWBgYHq0KGDWrVqpZdffvmKj5OZmamwsDD3zeVyefV5AACA5sXnFxQ7HA6P+8aYWmOXFRYWKj09XbNnz9aePXu0efNmFRUVKS0t7Yr7nzVrlsrKyty3kpISr64fAAA0LwG+euC2bdvK39+/1lGa48eP1zqac1lmZqb69++vX/7yl5Kknj17KiQkRImJiVqwYIEiIyNrbeN0OuV0Or3/BAAAQLPksyM3gYGBiouLU35+vsd4fn6+EhIS6tzm7Nmz8vPzXLK/v7+kS0d8AAAAfHpaKiMjQ8uXL9fKlSu1b98+TZ8+XcXFxe7TTLNmzdKECRPc80eMGKENGzYoOztbBw4c0Oeff6709HTddddd6tixo6+eBgAAaEZ8dlpKklJSUnTy5EnNmzdPpaWlio2NVV5enqKioiRJpaWlHu95M2nSJFVUVOiVV17RY489platWmnAgAF6/vnnffUUAABAM+MwP7DzOeXl5QoLC1NZWZlCQ0O9vv/omR94fZ+ALQ4+d+W3bQCAq2nI32+fv1oKAADAm4gbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFjF53GTlZWlmJgYBQUFKS4uTtu3b7/q/MrKSj311FOKioqS0+lUt27dtHLlyiZaLQAAaO4CfPngubm5mjZtmrKystS/f3+99tprGjJkiAoLC9WlS5c6txk9erSOHTumFStWqHv37jp+/LiqqqqaeOUAAKC5chhjjK8evE+fPurdu7eys7PdYz169NDIkSOVmZlZa/7mzZs1ZswYHThwQOHh4fV6jMrKSlVWVrrvl5eXy+VyqaysTKGhodf+JP5G9MwPvL5PwBYHnxvm6yUAuEGVl5crLCysXn+/fXZa6sKFC9qzZ4+SkpI8xpOSkrRz5846t3nvvfcUHx+vF154QZ06ddLNN9+sGTNm6Ny5c1d8nMzMTIWFhblvLpfLq88DAAA0Lz47LXXixAlVV1crIiLCYzwiIkJHjx6tc5sDBw5ox44dCgoK0saNG3XixAlNnjxZp06duuJ1N7NmzVJGRob7/uUjNwAAwE4+veZGkhwOh8d9Y0ytsctqamrkcDiUk5OjsLAwSdLChQt133336dVXX1WLFi1qbeN0OuV0Or2/cAAA0Cz57LRU27Zt5e/vX+sozfHjx2sdzbksMjJSnTp1coeNdOkaHWOMvv322+u6XgAAcGPwWdwEBgYqLi5O+fn5HuP5+flKSEioc5v+/fvryJEj+u6779xjX3/9tfz8/NS5c+frul4AAHBj8On73GRkZGj58uVauXKl9u3bp+nTp6u4uFhpaWmSLl0vM2HCBPf8sWPHqk2bNnrggQdUWFiozz77TL/85S/1r//6r3WekgIAAD88Pr3mJiUlRSdPntS8efNUWlqq2NhY5eXlKSoqSpJUWlqq4uJi9/yWLVsqPz9fU6dOVXx8vNq0aaPRo0drwYIFvnoKAACgmfHp+9z4QkNeJ98YvM8NcGW8zw2Axroh3ucGAADgeiBuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBVrjluzp8/7411AAAAeEWj4qampkbz589Xp06d1LJlSx04cECS9O///u9asWKFVxcIAADQEI2KmwULFmj16tV64YUXFBgY6B6/7bbbtHz5cq8tDgAAoKEaFTdr1qzRsmXLNG7cOPn7+7vHe/bsqT/+8Y9eWxwAAEBDNSpuDh8+rO7du9car6mp0cWLF695UQAAAI3VqLi59dZbtX379lrj69ev1x133HHNiwIAAGisgMZsNGfOHN1///06fPiwampqtGHDBu3fv19r1qzR+++/7+01AgAA1FujjtyMGDFCubm5ysvLk8Ph0OzZs7Vv3z5t2rRJgwYN8vYaAQAA6q1RR24kKTk5WcnJyd5cCwAAwDXjHYoBAIBVGnXkxs/PTw6H44pfr66ubvSCAAAArkWj4mbjxo0e9y9evKiCggK98cYbmjt3rlcWBgAA0BiNipuf/vSntcbuu+8+3XrrrcrNzVVqauo1LwwAAKAxvHrNTZ8+fbR161Zv7hIAAKBBvBY3586d08svv6zOnTt7a5cAAAAN1qjTUq1bt/a4oNgYo4qKCgUHB+vXv/611xYHAADQUI2Km0WLFnnEjZ+fn9q1a6c+ffqodevWXlscAABAQzUqbiZNmuTlZQAAAHhHvePmyy+/rPdOe/bs2ajFAAAAXKt6x02vXr3kcDhkjLnqPIfDwZv4AQAAn6l33BQVFV3PdQAAAHhFveMmKirqeq4DAADAKxr9qeCSVFhYqOLiYl24cMFj/J/+6Z+uaVEAAACN1ai4OXDggP75n/9ZX331lcd1OJdfHs41NwAAwFca9Q7Fv/jFLxQTE6Njx44pODhYf/jDH/TZZ58pPj5e27Zt8/ISAQAA6q9RR2527dqljz/+WO3atZOfn5/8/Pz0k5/8RJmZmUpPT1dBQYG31wkAAFAvjTpyU11drZYtW0qS2rZtqyNHjki6dNHx/v37vbc6AACABmrUkZvY2Fh9+eWX6tq1q/r06aMXXnhBgYGBWrZsmbp27ertNQIAANRbo+Lm6aef1pkzZyRJCxYs0PDhw5WYmKg2bdooNzfXqwsEAABoiEbFTXJysvvfXbt2VWFhoU6dOlXr08IBAACaWqOuuXnjjTfcR24uCw8PJ2wAAIDPNSpuZsyYofbt22vMmDF6//33VVVV5e11AQAANEqj4qa0tFS5ubny9/fXmDFjFBkZqcmTJ2vnzp3eXh8AAECDNCpuAgICNHz4cOXk5Oj48eNavHixDh06pHvuuUfdunXz9hoBAADq7Zo+W0qSgoODlZycrNOnT+vQoUPat2+fN9YFAADQKI06ciNJZ8+eVU5OjoYOHaqOHTtq0aJFGjlypH7/+997c30AAAAN0qgjNz//+c+1adMmBQcHa9SoUdq2bZsSEhK8vTYAAIAGa1TcOBwO5ebmKjk5WQEB13xmCwAAwGsadVrqzTff1LBhwxQQEKDnnntOf/3rX728LAAAgMZp9DU3lz377LM6deqUN9YCAABwza45bowx3lgHAACAV1xz3AAAADQnDYqbs2fP6tFHH1WnTp3Uvn17jR07Vvv27VNUVNT1Wh8AAECDNChu5syZo9WrV2vYsGH6+c9/rvz8fE2fPl3+/v7Xa30AAAAN0qDXcW/YsEErVqzQmDFjJEnjxo1T//79VV1dTeAAAIBmoUFHbkpKSpSYmOi+f9dddykgIEBHjhzx+sIAAAAao0FxU11drcDAQI+xgIAAVVVVeXVRAAAAjdWg01LGGE2aNElOp9M9dv78eaWlpSkkJMQ9tmHDBu+tEAAAoAEadORm4sSJat++vcLCwty38ePHq2PHjh5jDZGVlaWYmBgFBQUpLi5O27dvr9d2n3/+uQICAtSrV68GPR4AALBbg47crFq1yqsPnpubq2nTpikrK0v9+/fXa6+9piFDhqiwsFBdunS54nZlZWWaMGGC7r33Xh07dsyrawIAADc2n76J38KFC5WamqoHH3xQPXr00OLFi+VyuZSdnX3V7R555BGNHTtW/fr1a6KVAgCAG4XP4ubChQvas2ePkpKSPMaTkpK0c+fOK263atUqffPNN5ozZ069HqeyslLl5eUeNwAAYC+fxc2JEydUXV2tiIgIj/GIiAgdPXq0zm3+9Kc/aebMmcrJyVFAQP3OqGVmZnpcD+Ryua557QAAoPny+WdLORwOj/vGmFpj0qWXoY8dO1Zz587VzTffXO/9z5o1S2VlZe5bSUnJNa8ZAAA0Xw26oNib2rZtK39//1pHaY4fP17raI4kVVRUaPfu3SooKNCUKVMkSTU1NTLGKCAgQFu2bNGAAQNqbed0Oj1eug4AAOzmsyM3gYGBiouLU35+vsd4fn6+EhISas0PDQ3VV199pb1797pvaWlpuuWWW7R371716dOnqZYOAACaMZ8duZGkjIwM3X///YqPj1e/fv20bNkyFRcXKy0tTdKlU0qHDx/WmjVr5Ofnp9jYWI/t27dvr6CgoFrjAADgh8uncZOSkqKTJ09q3rx5Ki0tVWxsrPLy8hQVFSVJKi0tVXFxsS+XCAAAbjAOY4zx9SKaUnl5ucLCwlRWVqbQ0FCv7z965gde3ydgi4PPDfP1EgDcoBry99vnr5YCAADwJuIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbAABgFeIGAABYhbgBAABWIW4AAIBViBsAAGAV4gYAAFiFuAEAAFbxedxkZWUpJiZGQUFBiouL0/bt2684d8OGDRo0aJDatWun0NBQ9evXTx9++GETrhYAADR3Po2b3NxcTZs2TU899ZQKCgqUmJioIUOGqLi4uM75n332mQYNGqS8vDzt2bNH99xzj0aMGKGCgoImXjkAAGiuHMYY46sH79Onj3r37q3s7Gz3WI8ePTRy5EhlZmbWax+33nqrUlJSNHv27Dq/XllZqcrKSvf98vJyuVwulZWVKTQ09NqeQB2iZ37g9X0Ctjj43DBfLwHADaq8vFxhYWH1+vvtsyM3Fy5c0J49e5SUlOQxnpSUpJ07d9ZrHzU1NaqoqFB4ePgV52RmZiosLMx9c7lc17RuAADQvPksbk6cOKHq6mpFRER4jEdEROjo0aP12seLL76oM2fOaPTo0VecM2vWLJWVlblvJSUl17RuAADQvAX4egEOh8PjvjGm1lhd1q5dq2eeeUbvvvuu2rdvf8V5TqdTTqfzmtcJAABuDD6Lm7Zt28rf37/WUZrjx4/XOprzt3Jzc5Wamqr169dr4MCB13OZAADgBuOz01KBgYGKi4tTfn6+x3h+fr4SEhKuuN3atWs1adIkvfnmmxo2jIsTAQCAJ5+elsrIyND999+v+Ph49evXT8uWLVNxcbHS0tIkXbpe5vDhw1qzZo2kS2EzYcIEvfTSS+rbt6/7qE+LFi0UFhbms+cBAACaD5/GTUpKik6ePKl58+aptLRUsbGxysvLU1RUlCSptLTU4z1vXnvtNVVVVenRRx/Vo48+6h6fOHGiVq9e3dTLBwAAzZBP3+fGFxryOvnG4H1ugCvjfW4ANNYN8T43AAAA1wNxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKsQNAACwCnEDAACs4vO4ycrKUkxMjIKCghQXF6ft27dfdf6nn36quLg4BQUFqWvXrlq6dGkTrRQAANwIfBo3ubm5mjZtmp566ikVFBQoMTFRQ4YMUXFxcZ3zi4qKNHToUCUmJqqgoEBPPvmk0tPT9c477zTxygEAQHPlMMYYXz14nz591Lt3b2VnZ7vHevTooZEjRyozM7PW/CeeeELvvfee9u3b5x5LS0vT7373O+3atatej1leXq6wsDCVlZUpNDT02p/E34ie+YHX9wnY4uBzw3y9BAA3qIb8/Q5oojXVcuHCBe3Zs0czZ870GE9KStLOnTvr3GbXrl1KSkryGEtOTtaKFSt08eJF3XTTTbW2qaysVGVlpft+WVmZpEvfpOuhpvLsddkvYIPr9XMHwH6Xf3/U55iMz+LmxIkTqq6uVkREhMd4RESEjh49Wuc2R48erXN+VVWVTpw4ocjIyFrbZGZmau7cubXGXS7XNaweQGOELfb1CgDc6CoqKhQWFnbVOT6Lm8scDofHfWNMrbHvm1/X+GWzZs1SRkaG+35NTY1OnTqlNm3aXPVxcOMrLy+Xy+VSSUnJdTkFCaB54Gf9h8EYo4qKCnXs2PF75/osbtq2bSt/f/9aR2mOHz9e6+jMZR06dKhzfkBAgNq0aVPnNk6nU06n02OsVatWjV84bjihoaH8wgN+APhZt9/3HbG5zGevlgoMDFRcXJzy8/M9xvPz85WQkFDnNv369as1f8uWLYqPj6/zehsAAPDD49OXgmdkZGj58uVauXKl9u3bp+nTp6u4uFhpaWmSLp1SmjBhgnt+WlqaDh06pIyMDO3bt08rV67UihUrNGPGDF89BQAA0Mz49JqblJQUnTx5UvPmzVNpaaliY2OVl5enqKgoSVJpaanHe97ExMQoLy9P06dP16uvvqqOHTtqyZIl+pd/+RdfPQU0Y06nU3PmzKl1WhKAXfhZx9/y6fvcAAAAeJvPP34BAADAm4gbAABgFeIGAABYhbgBAABWIW7QJCZNmiSHwyGHw6GAgAB16dJF//Zv/6bTp0+750RHR7vntGjRQtHR0Ro9erQ+/vhjj30dPHjQPe//3saPH++eU1xcrBEjRigkJERt27ZVenq6Lly44P76M888U+c+QkJCPB7r008/VVxcnIKCgtS1a1ctXbr0On2HgB+m6upqJSQk1HrVa1lZmVwul55++mlJqvPn9Uo/j7fccosCAwN1+PDh675+NE/EDZrM4MGDVVpaqoMHD2r58uXatGmTJk+e7DHn8tsC7N+/X2vWrFGrVq00cOBA/epXv6q1v61bt6q0tNR9e/XVVyVd+mU5bNgwnTlzRjt27NBbb72ld955R4899ph72xkzZnhsW1paqr//+7/XqFGj3HOKioo0dOhQJSYmqqCgQE8++aTS09P1zjvvXKfvEPDD4+/vrzfeeEObN29WTk6Oe3zq1KkKDw/X7Nmz3WOrVq3y+JmdOHFirf3t2LFD58+f16hRo7R69eqmeApojgzQBCZOnGh++tOfeoxlZGSY8PBw9/2oqCizaNGiWtvOnj3b+Pn5mT/+8Y/GGGOKioqMJFNQUFDnY+Xl5Rk/Pz9z+PBh99jatWuN0+k0ZWVldW6zd+9eI8l89tln7rHHH3/c/PjHP/aY98gjj5i+ffsaY4zZvHmzcTqd5vTp0x5zpk6dau6+++46HwdA3V566SXTunVrc/jwYfOb3/zG3HTTTR4/45LMxo0bv3c/kyZNMjNnzjS//e1vTdeuXU1NTY0xxpilS5eajh07murqao/5I0aMMBMmTPDmU0EzwJEb+MSBAwe0efPmen1sxi9+8QsZY/Tuu+/Wa9+7du1SbGysx4erJScnq7KyUnv27Klzm+XLl+vmm29WYmKix36SkpI85iUnJ2v37t26ePGiBg4cqFatWnkcyamurta6des0bty4eq0VwCVTp07V7bffrgkTJujhhx/W7Nmz1atXL485U6ZMUdu2bXXnnXdq6dKlqqmp8fh6RUWF1q9fr/Hjx2vQoEE6c+aMtm3bJkkaNWqUTpw4oU8++cQ9//Tp0/rwww/5ebUQcYMm8/7776tly5Zq0aKFunXrpsLCQj3xxBPfu114eLjat2+vgwcPeownJCSoZcuW7ltBQYEk6ejRo7U+fLV169YKDAys9cGrklRZWamcnBylpqZ6jNe1n4iICFVVVenEiRPy9/dXSkqK3nzzTffXP/roI50+fdrj9BaA7+dwOJSdna2PPvpIERERmjlzpsfX58+fr/Xr12vr1q0aM2aMHnvsMT377LMec9566y393d/9nW699Vb5+/trzJgxWrFihaRLv0cGDx7s8fO6fv16hYeH6957773+TxBNyqcfv4AflnvuuUfZ2dk6e/asli9frq+//lpTp06t17bGGDkcDo+x3Nxc9ejRw33f5XK5//23c6+0D0nasGGDKioqPD7H7Er7Mf/7ht6Xx8eNG6d+/frpyJEj6tixo3JycjR06FC1bt26Xs8LwP+3cuVKBQcHq6ioSN9++62io6PdX7t8YbEk9xGdefPmeYyvWLHC44UF48eP1913362//vWvatWqlcaNG6eHH35YWVlZcjqdysnJ0ZgxY+Tv73/dnxuaFkdu0GRCQkLUvXt39ezZU0uWLFFlZaXmzp37vdudPHlSf/nLXxQTE+Mx7nK51L17d/ft8ufKdOjQodYRmtOnT+vixYu1jsRIl05JDR8+XB06dPAYr2s/x48fV0BAgNq0aSNJuuuuu9StWze99dZbOnfunDZu3OjxyxVA/ezatUuLFi3Su+++q379+ik1NdX9n4m69O3bV+Xl5Tp27JgkqbCwUP/93/+txx9/XAEBAQoICFDfvn117tw5rV27VpI0YsQI1dTU6IMPPlBJSYm2b9/Oz6uliBv4zJw5c/Qf//EfOnLkyFXnvfTSS/Lz89PIkSPrtd9+/frp97//vUpLS91jW7ZskdPpVFxcnMfcoqIiffLJJ7VOSV3eT35+vsfYli1bFB8f73Gt0NixY5WTk6NNmzbJz89Pw4YNq9c6AVxy7tw5TZw4UY888ogGDhyo5cuX64svvtBrr712xW0KCgoUFBSkVq1aSbp01Obuu+/W7373O+3du9d9e/zxx92nplq0aKGf/exnysnJ0dq1a3XzzTfX+p0AS/j0cmb8YNT1ailjjImLizOPPvqoMebSq6XmzZtnSktLTXFxsfn000/NQw89ZBwOh3nuuefc23zfq6WqqqpMbGysuffee83//M//mK1bt5rOnTubKVOm1Jr79NNPm44dO5qqqqpaXztw4IAJDg4206dPN4WFhWbFihXmpptuMm+//bbHvK+//tpIMj179jSpqakN+K4AMMaY9PR0061bN/Pdd9+5x5YtW2ZatmxpioqKzHvvvWeWLVtmvvrqK/PnP//ZvP766yY0NNSkp6cbY4y5cOGCadeuncnOzq6178s/n3v37jXGGLNlyxbjdDrNLbfcYubPn980TxBNjrhBk7hS3OTk5JjAwEBTXFxsoqKijCQjyQQGBpouXbqY0aNHm48//thjm++LG2OMOXTokBk2bJhp0aKFCQ8PN1OmTDHnz5/3mFNdXW06d+5snnzyySvuZ9u2beaOO+4wgYGBJjo6us5fnsYYc+eddxpJtdYK4Oq2bdtm/P39zfbt22t9LSkpyQwYMMDk5eWZXr16mZYtW5rg4GATGxtrFi9ebC5evGiMMebtt982fn5+5ujRo3U+xm233WamTp1qjLn0n5/IyEgjyXzzzTfX74nBpxzGXOWkJgAAwA2Ga24AAIBViBsAAGAV4gYAAFiFuAEAAFYhbgAAgFWIGwAAYBXiBgAAWIW4AQAAViFuAACAVYgbANfVpEmT5HA4at3+/Oc/X/O+V69e7f7gRAC4LMDXCwBgv8GDB2vVqlUeY+3atfPRaup28eJFj097B3Dj4sgNgOvO6XSqQ4cOHjd/f39t2rRJcXFxCgoKUteuXTV37lxVVVW5t1u4cKFuu+02hYSEyOVyafLkyfruu+8kSdu2bdMDDzygsrIy99GgZ555RpLkcDj0m9/8xmMNrVq10urVqyVJBw8elMPh0Lp16/SP//iPCgoK0q9//WtJ0qpVq9SjRw8FBQXpxz/+sbKystz7uHDhgqZMmaLIyEgFBQUpOjpamZmZ1+8bB6BROHIDwCc+/PBDjR8/XkuWLFFiYqK++eYbPfzww5KkOXPmSJL8/Py0ZMkSRUdHq6ioSJMnT9bjjz+urKwsJSQkaPHixZo9e7b2798vSWrZsmWD1vDEE0/oxRdf1KpVq+R0OvX6669rzpw5euWVV3THHXeooKBADz30kEJCQjRx4kQtWbJE7733ntatW6cuXbqopKREJSUl3v3GALh2vv5YcgB2mzhxovH39zchISHu23333WcSExPNs88+6zH3P//zP01kZOQV97Vu3TrTpk0b9/1Vq1aZsLCwWvMkmY0bN3qMhYWFmVWrVhljjCkqKjKSzOLFiz3muFwu8+abb3qMzZ8/3/Tr188YY8zUqVPNgAEDTE1Nzfc9bQA+xJEbANfdPffco+zsbPf9kJAQde/eXV988YV+9atfucerq6t1/vx5nT17VsHBwfrkk0/07LPPqrCwUOXl5aqqqtL58+d15swZhYSEXPO64uPj3f/+y1/+opKSEqWmpuqhhx5yj1dVVSksLEzSpYujBw0apFtuuUWDBw/W8OHDlZSUdM3rAOBdxA2A6+5yzPxfNTU1mjt3rn72s5/Vmh8UFKRDhw5p6NChSktL0/z58xUeHq4dO3YoNTVVFy9evOrjORwOGWM8xura5v8GUk1NjSTp9ddfV58+fTzm+fv7S5J69+6toqIi/fa3v9XWrVs1evRoDRw4UG+//fZV1wOgaRE3AHyid+/e2r9/f63ouWz37t2qqqrSiy++KD+/S699WLduncecwMBAVVdX19q2Xbt2Ki0tdd//05/+pLNnz151PREREerUqZMOHDigcePGXXFeaGioUlJSlJKSovvuu0+DBw/WqVOnFB4eftX9A2g6xA0An5g9e7aGDx8ul8ulUaNGyc/PT19++aW++uorLViwQN26dVNVVZVefvlljRgxQp9//rmWLl3qsY/o6Gh99913+uijj3T77bcrODhYwcHBGjBggF555RX17dtXNTU1euKJJ+r1Mu9nnnlG6enpCg0N1ZAhQ1RZWandu3fr9OnTysjI0KJFixQZGalevXrJz89P69evV4cOHXivHaCZ4aXgAHwiOTlZ77//vvLz83XnnXeqb9++WrhwoaKioiRJvXr10sKFC/X8888rNjZWOTk5tV52nZCQoLS0NKWkpKhdu3Z64YUXJEkvvviiXC6X7r77bo0dO1YzZsxQcHDw967pwQcf1PLly7V69Wrddttt+od/+AetXr1aMTExki69Guv5559XfHy87rzzTh08eFB5eXnuI0sAmgeH+dsT0wAAADcw/rsBAACsQtwAAACrEDcAAMAqxA0AALAKcQMAAKxC3AAAAKsQNwAAwCrEDQAAsApxAwAArELcAAAAqxA3AADAKv8PEBpPb8ZrWtMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the p-values of the chosen features \n", + "model1.p_value_plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "5ecdce6c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGyCAYAAAACgQXWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2LElEQVR4nO3deXQUVd7/8U+RkIYEEghLFm1CEHDUIGLCgFHZBSKGGXEEBhyDMrggIAYGyTjDIgrKMyAqA47AEJDI4oYiqOzboD7sgigDEiBIYhRCQiA0Wer3hz/6sQlbk266U75f59xzUvfeqv4253TyoepWl2GapikAAACLquLrAgAAALyJsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACwt0NcF+IOysjIdPXpUNWvWlGEYvi4HAABcAdM0dfLkSUVHR6tKlUucvzF9aPz48WZCQoJZo0YNs169eubvfvc789tvv3WZU1ZWZo4ePdqMiooyq1WrZrZt29bcvXu3y5wzZ86YgwYNMuvUqWMGBwebycnJZlZW1hXXkZWVZUqi0Wg0Go1WCdvl/uYbpum7Z2N17dpVvXv3VsuWLVVSUqLnnntOu3bt0p49exQSEiJJevnll/Xiiy8qPT1dTZs21QsvvKD169dr7969qlmzpiTpySef1JIlS5Senq46depo2LBhOn78uLZu3aqAgIDL1pGfn69atWopKytLoaGhXn3PAADAMwoKCmS323XixAmFhYVddJ5Pw875fvzxR9WvX1/r1q1TmzZtZJqmoqOjNXToUD377LOSJIfDoYiICL388st6/PHHlZ+fr3r16umtt95Sr169JElHjx6V3W7XsmXL1KVLl8u+bkFBgcLCwpSfn0/YAQCgkrjSv99+tUA5Pz9fkhQeHi5JyszMVE5Ojjp37uycY7PZ1LZtW23atEmStHXrVhUXF7vMiY6OVlxcnHPO+RwOhwoKClwaAACwJr8JO6ZpKjU1VXfddZfi4uIkSTk5OZKkiIgIl7kRERHOsZycHAUFBal27doXnXO+CRMmKCwszNnsdrun3w4AAPATfhN2Bg0apK+++krz588vN3b+HVKmaV72rqlLzUlLS1N+fr6zZWVlXX3hAADAr/lF2Bk8eLA++ugjrVmzRtdff72zPzIyUpLKnaHJzc11nu2JjIzU2bNnlZeXd9E557PZbAoNDXVpAADAmnwadkzT1KBBg/T+++9r9erVio2NdRmPjY1VZGSkVqxY4ew7e/as1q1bp8TERElSfHy8qlat6jInOztbu3fvds4BAAC/Xj79UsGnnnpKb7/9tj788EPVrFnTeQYnLCxM1atXl2EYGjp0qMaPH68mTZqoSZMmGj9+vIKDg9WnTx/n3P79+2vYsGGqU6eOwsPDNXz4cDVr1kydOnXy5dsDAAB+wKdhZ/r06ZKkdu3aufTPnj1b/fr1kySNGDFCRUVFGjhwoPLy8tSqVSstX77c+R07kvTKK68oMDBQPXv2VFFRkTp27Kj09PQr+o4dAABgbX71PTu+wvfsAABQ+VTK79kBAADwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNJ9+qSAAWEXDkUt9XQLgtw6+1M2nr8+ZHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGk+DTvr169XcnKyoqOjZRiGFi9e7DJuGMYF2//8z/8457Rr167ceO/eva/xOwEAAP7Kp2Hn1KlTat68uaZOnXrB8ezsbJf273//W4Zh6IEHHnCZN2DAAJd5//rXv65F+QAAoBII9OWLJyUlKSkp6aLjkZGRLtsffvih2rdvr0aNGrn0BwcHl5sLAAAgVaI1Oz/88IOWLl2q/v37lxvLyMhQ3bp1dcstt2j48OE6efLkJY/lcDhUUFDg0gAAgDX59MyOO+bMmaOaNWuqR48eLv19+/ZVbGysIiMjtXv3bqWlpWnnzp1asWLFRY81YcIEjR071tslAwAAP1Bpws6///1v9e3bV9WqVXPpHzBggPPnuLg4NWnSRAkJCdq2bZtuv/32Cx4rLS1Nqampzu2CggLZ7XbvFA4AAHyqUoSdDRs2aO/evVq4cOFl595+++2qWrWq9u3bd9GwY7PZZLPZPF0mAADwQ5Vizc6sWbMUHx+v5s2bX3bu119/reLiYkVFRV2DygAAgL/z6ZmdwsJC7d+/37mdmZmpHTt2KDw8XA0aNJD08yWmd955R5MmTSq3/3fffaeMjAzde++9qlu3rvbs2aNhw4apRYsWuvPOO6/Z+wAAAP7Lp2Fny5Ytat++vXP73DqalJQUpaenS5IWLFgg0zT1xz/+sdz+QUFBWrVqlV599VUVFhbKbrerW7duGj16tAICAq7JewAAAP7NME3T9HURvlZQUKCwsDDl5+crNDTU1+UAqIQajlzq6xIAv3XwpW5eOe6V/v2uFGt2AAAArhZhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWJpPw8769euVnJys6OhoGYahxYsXu4z369dPhmG4tNatW7vMcTgcGjx4sOrWrauQkBB1795dR44cuYbvAgAA+DOfhp1Tp06pefPmmjp16kXndO3aVdnZ2c62bNkyl/GhQ4fqgw8+0IIFC7Rx40YVFhbqvvvuU2lpqbfLBwAAlUCgL188KSlJSUlJl5xjs9kUGRl5wbH8/HzNmjVLb731ljp16iRJmjdvnux2u1auXKkuXbp4vGYAAFC5+P2anbVr16p+/fpq2rSpBgwYoNzcXOfY1q1bVVxcrM6dOzv7oqOjFRcXp02bNl30mA6HQwUFBS4NAABYk1+HnaSkJGVkZGj16tWaNGmSNm/erA4dOsjhcEiScnJyFBQUpNq1a7vsFxERoZycnIsed8KECQoLC3M2u93u1fcBAAB8x6eXsS6nV69ezp/j4uKUkJCgmJgYLV26VD169LjofqZpyjCMi46npaUpNTXVuV1QUEDgAQDAovz6zM75oqKiFBMTo3379kmSIiMjdfbsWeXl5bnMy83NVURExEWPY7PZFBoa6tIAAIA1Vaqwc+zYMWVlZSkqKkqSFB8fr6pVq2rFihXOOdnZ2dq9e7cSExN9VSYAAPAjPr2MVVhYqP379zu3MzMztWPHDoWHhys8PFxjxozRAw88oKioKB08eFB//etfVbduXd1///2SpLCwMPXv31/Dhg1TnTp1FB4eruHDh6tZs2bOu7MAAMCvm0/DzpYtW9S+fXvn9rl1NCkpKZo+fbp27dqluXPn6sSJE4qKilL79u21cOFC1axZ07nPK6+8osDAQPXs2VNFRUXq2LGj0tPTFRAQcM3fDwAA8D+GaZqmr4vwtYKCAoWFhSk/P5/1OwCuSsORS31dAuC3Dr7UzSvHvdK/35VqzQ4AAIC7CDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSrirsbNiwQQ899JDuuOMOff/995Kkt956Sxs3bvRocQAAABXldth577331KVLF1WvXl3bt2+Xw+GQJJ08eVLjx4/3eIEAAAAV4XbYeeGFF/TGG29oxowZqlq1qrM/MTFR27Zt82hxAAAAFeV22Nm7d6/atGlTrj80NFQnTpzwRE0AAAAe43bYiYqK0v79+8v1b9y4UY0aNfJIUQAAAJ7idth5/PHH9fTTT+vLL7+UYRg6evSoMjIyNHz4cA0cONAbNQIAAFy1QHd3GDFihPLz89W+fXudOXNGbdq0kc1m0/DhwzVo0CBv1AgAAHDV3A47kvTiiy/queee0549e1RWVqabb75ZNWrU8HRtAAAAFeZ22MnPz1dpaanCw8OVkJDg7D9+/LgCAwMVGhrq0QIBAAAqwu01O71799aCBQvK9S9atEi9e/f2SFEAAACe4nbY+fLLL9W+ffty/e3atdOXX37pkaIAAAA8xe2w43A4VFJSUq6/uLhYRUVFHikKAADAU9wOOy1bttSbb75Zrv+NN95QfHy8R4oCAADwFLcXKL/44ovq1KmTdu7cqY4dO0qSVq1apc2bN2v58uUeLxAAAKAi3D6zc+edd+rzzz+X3W7XokWLtGTJEjVu3FhfffWV7r77bm/UCAAAcNWu6nt2brvtNmVkZHi6FgAAAI+7qrBTVlam/fv3Kzc3V2VlZS5jF3pIKAAAgK+4HXa++OIL9enTR4cOHZJpmi5jhmGotLTUY8UBAABUlNtrdp544gklJCRo9+7dOn78uPLy8pzt+PHjbh1r/fr1Sk5OVnR0tAzD0OLFi51jxcXFevbZZ9WsWTOFhIQoOjpaDz/8sI4ePepyjHbt2skwDJfGlxsCAIBz3D6zs2/fPr377rtq3LhxhV/81KlTat68uR555BE98MADLmOnT5/Wtm3b9Pe//13NmzdXXl6ehg4dqu7du2vLli0ucwcMGKDnn3/euV29evUK1wYAAKzB7bDTqlUr7d+/3yNhJykpSUlJSRccCwsL04oVK1z6Xn/9df32t7/V4cOH1aBBA2d/cHCwIiMjK1wPAACwHrfDzuDBgzVs2DDl5OSoWbNmqlq1qsv4rbfe6rHizpefny/DMFSrVi2X/oyMDM2bN08RERFKSkrS6NGjVbNmzYsex+FwyOFwOLcLCgq8VTIAAPAxt8POuctNjz76qLPPMAyZpunVBcpnzpzRyJEj1adPH5cnq/ft21exsbGKjIzU7t27lZaWpp07d5Y7K/RLEyZM0NixY71SJwAA8C9uh53MzExv1HFJxcXF6t27t8rKyjRt2jSXsQEDBjh/jouLU5MmTZSQkKBt27bp9ttvv+Dx0tLSlJqa6twuKCiQ3W73TvEAAMCn3A47MTEx3qjjooqLi9WzZ09lZmZq9erVLmd1LuT2229X1apVtW/fvouGHZvNJpvN5o1yAQCAn7mqLxWUpD179ujw4cM6e/asS3/37t0rXNQ554LOvn37tGbNGtWpU+ey+3z99dcqLi5WVFSUx+oAAACVl9th58CBA7r//vu1a9cu51od6ed1O5LcWrNTWFio/fv3O7czMzO1Y8cOhYeHKzo6Wn/4wx+0bds2ffzxxyotLVVOTo4kKTw8XEFBQfruu++UkZGhe++9V3Xr1tWePXs0bNgwtWjRQnfeeae7bw0AAFiQ218q+PTTTys2NlY//PCDgoOD9fXXX2v9+vVKSEjQ2rVr3TrWli1b1KJFC7Vo0UKSlJqaqhYtWmjUqFE6cuSIPvroIx05ckS33XaboqKinG3Tpk2SpKCgIK1atUpdunTRjTfeqCFDhqhz585auXKlAgIC3H1rAADAgtw+s/P5559r9erVqlevnqpUqaIqVarorrvu0oQJEzRkyBBt3779io/Vrl27co+c+KVLjUmS3W7XunXrrvj1AADAr4/bZ3ZKS0tVo0YNSVLdunWdj2+IiYnR3r17PVsdAABABbl9ZicuLk5fffWVGjVqpFatWmnixIkKCgrSm2++qUaNGnmjRgAAgKvmdtj529/+plOnTkmSXnjhBd133326++67VadOHS1YsMDjBQIAAFSE22GnS5cuzp8bNWqkPXv26Pjx46pdu7bzjiwAAAB/4faanUcffVQnT5506QsPD9fp06ddHiEBAADgD9wOO3PmzFFRUVG5/qKiIs2dO9cjRQEAAHjKFV/GKigokGmaMk1TJ0+eVLVq1ZxjpaWlWrZsmerXr++VIgEAAK7WFYedWrVqyTAMGYahpk2blhs3DIMniQMAAL9zxWFnzZo1Mk1THTp00Hvvvafw8HDnWFBQkGJiYhQdHe2VIgEAAK7WFYedtm3bqqSkRA8//LASEhJkt9u9WRcAAIBHuLVAOTAwUO+9955bD/sEAADwJbfvxurYsaPbD/wEAADwFbe/VDApKUlpaWnavXu34uPjFRIS4jLevXt3jxUHAABQUW6HnSeffFKSNHny5HJjhmFwiQsAAPgVt8NOWVmZN+oAAADwCrfX7AAAAFQmVxV21q1bp+TkZDVu3FhNmjRR9+7dtWHDBk/XBgAAUGFuh5158+apU6dOCg4O1pAhQzRo0CBVr15dHTt21Ntvv+2NGgEAAK6aYZqm6c4ON910kx577DE988wzLv2TJ0/WjBkz9M0333i0wGuhoKBAYWFhys/PV2hoqK/LAVAJNRy51NclAH7r4EvdvHLcK/377faZnQMHDig5Oblcf/fu3ZWZmenu4QAAALzK7bBjt9u1atWqcv2rVq3iERIAAMDvuH3r+bBhwzRkyBDt2LFDiYmJMgxDGzduVHp6ul599VVv1AgAAHDVrupLBSMjIzVp0iQtWrRI0s/reBYuXKjf/e53Hi8QAACgItwOO5J0//336/777/d0LQAAAB53VWFHkrZs2aJvvvlGhmHopptuUnx8vCfrAgAA8Ai3w86RI0f0xz/+Uf/5z39Uq1YtSdKJEyeUmJio+fPns0gZAAD4Fbfvxnr00UdVXFysb775RsePH9fx48f1zTffyDRN9e/f3xs1AgAAXDW3z+xs2LBBmzZt0o033ujsu/HGG/X666/rzjvv9GhxAAAAFeX2mZ0GDRqouLi4XH9JSYmuu+46jxQFAADgKW6HnYkTJ2rw4MHasmWLzj1pYsuWLXr66af1j3/8w+MFAgAAVITbz8aqXbu2Tp8+rZKSEgUG/nwV7NzPISEhLnOPHz/uuUq9iGdjAagono0FXJyvn43l9pqdKVOmVKQuAACAa8rtsJOSkuKNOgAAALziqr9UMDc3V7m5uSorK3Ppv/XWWytcFAAAgKe4HXa2bt2qlJQU53fr/JJhGCotLfVYcQAAABXl9t1YjzzyiJo2bapNmzbpwIEDyszMdLYDBw64daz169crOTlZ0dHRMgxDixcvdhk3TVNjxoxRdHS0qlevrnbt2unrr792meNwODR48GDVrVtXISEh6t69u44cOeLu2wIAABbldtjJzMzUxIkT1apVKzVs2FAxMTEuzR2nTp1S8+bNNXXq1AuOT5w4UZMnT9bUqVO1efNmRUZG6p577tHJkyedc4YOHaoPPvhACxYs0MaNG1VYWKj77ruPM0wAAEDSVVzG6tixo3bu3KnGjRtX+MWTkpKUlJR0wTHTNDVlyhQ999xz6tGjhyRpzpw5ioiI0Ntvv63HH39c+fn5mjVrlt566y116tRJkjRv3jzZ7XatXLlSXbp0qXCNAACgcnM77MycOVMpKSnavXu34uLiVLVqVZfx7t27e6SwzMxM5eTkqHPnzs4+m82mtm3batOmTXr88ce1detWFRcXu8yJjo5WXFycNm3adNGw43A45HA4nNsFBQUeqRkAAPgft8POpk2btHHjRn3yySflxjy5QDknJ0eSFBER4dIfERGhQ4cOOecEBQWpdu3a5eac2/9CJkyYoLFjx3qkzsvhi8aAS/PWl40BwDlur9kZMmSI/vSnPyk7O1tlZWUuzRvrZAzDcNk2TbNc3/kuNyctLU35+fnOlpWV5ZFaAQCA/3E77Bw7dkzPPPNMuTMunhYZGSlJ5c7Q5ObmOl87MjJSZ8+eVV5e3kXnXIjNZlNoaKhLAwAA1uR22OnRo4fWrFnjjVpcxMbGKjIyUitWrHD2nT17VuvWrVNiYqIkKT4+XlWrVnWZk52drd27dzvnAACAXze31+w0bdpUaWlp2rhxo5o1a1ZugfKQIUOu+FiFhYXav3+/czszM1M7duxQeHi4GjRooKFDh2r8+PFq0qSJmjRpovHjxys4OFh9+vSRJIWFhal///4aNmyY6tSpo/DwcA0fPlzNmjVz3p0FAAB+3a7qbqwaNWpo3bp1WrduncuYYRhuhZ0tW7aoffv2zu3U1FRJPz9/Kz09XSNGjFBRUZEGDhyovLw8tWrVSsuXL1fNmjWd+7zyyisKDAxUz549VVRUpI4dOyo9PV0BAQHuvjUAAGBBhnn+Mx9+ha70EfFXg7uxgEuzyt1YfNaBi/PW5/xK/367vWYHAACgMrmiy1ipqakaN26cQkJCnJeaLmby5MkeKQwAAMATrijsbN++XcXFxc6fL+Zy338DAABwrV1R2PnlrebX4rZzAAAAT2HNDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsLSrCjtvvfWW7rzzTkVHR+vQoUOSpClTpujDDz/0aHEAAAAV5XbYmT59ulJTU3XvvffqxIkTKi0tlSTVqlVLU6ZM8XR9AAAAFeJ22Hn99dc1Y8YMPffccy4P20xISNCuXbs8WhwAAEBFuR12MjMz1aJFi3L9NptNp06d8khRAAAAnuJ22ImNjdWOHTvK9X/yySe6+eabPVETAACAx1zR4yJ+6S9/+YueeuopnTlzRqZp6n//9381f/58TZgwQTNnzvRGjQAAAFfN7bDzyCOPqKSkRCNGjNDp06fVp08fXXfddXr11VfVu3dvb9QIAABw1dwKOyUlJcrIyFBycrIGDBign376SWVlZapfv7636gMAAKgQt9bsBAYG6sknn5TD4ZAk1a1bl6ADAAD8mtsLlFu1aqXt27d7oxYAAACPc3vNzsCBAzVs2DAdOXJE8fHxCgkJcRm/9dZbPVYcAABARbkddnr16iVJGjJkiLPPMAyZpinDMJzfqAwAAOAP3A47mZmZ3qgDAADAK9wOOzExMd6oAwAAwCvcDjtz58695PjDDz981cUAAAB4mtth5+mnn3bZLi4u1unTpxUUFKTg4GDCDgAA8Ctu33qel5fn0goLC7V3717dddddmj9/vjdqBAAAuGpuh50LadKkiV566aVyZ30AAAB8zSNhR5ICAgJ09OhRTx0OAADAI9xes/PRRx+5bJumqezsbE2dOlV33nmnxwoDAADwBLfDzu9//3uXbcMwVK9ePXXo0EGTJk3yVF0AAAAe4XbYKSsr80YdAAAAXuH2mp3nn39ep0+fLtdfVFSk559/3iNFAQAAeIrbYWfs2LEqLCws13/69GmNHTvWI0UBAAB4itth59wDP8+3c+dOhYeHe6QoAAAAT7niNTu1a9eWYRgyDENNmzZ1CTylpaUqLCzUE0884ZUiAQAArtYVh50pU6bINE09+uijGjt2rMLCwpxjQUFBatiwoe644w6PF9iwYUMdOnSoXP/AgQP1z3/+U/369dOcOXNcxlq1aqUvvvjC47UAAIDK54rDTkpKiiQpNjZWiYmJqlq1qteK+qXNmzertLTUub17927dc889evDBB519Xbt21ezZs53bQUFB16Q2AADg/9y+9bxt27bOn4uKilRcXOwyHhoaWvGqfqFevXou2y+99JJuuOEGlzpsNpsiIyM9+roAAMAa3F6gfPr0aQ0aNEj169dXjRo1VLt2bZfmTWfPntW8efP06KOPuqwZWrt2rerXr6+mTZtqwIABys3NveRxHA6HCgoKXBoAALAmt8POX/7yF61evVrTpk2TzWbTzJkzNXbsWEVHR2vu3LneqNFp8eLFOnHihPr16+fsS0pKUkZGhlavXq1JkyZp8+bN6tChgxwOx0WPM2HCBIWFhTmb3W73at0AAMB3DNM0TXd2aNCggebOnat27dopNDRU27ZtU+PGjfXWW29p/vz5WrZsmbdqVZcuXRQUFKQlS5ZcdE52drZiYmK0YMEC9ejR44JzHA6HSxgqKCiQ3W5Xfn6+xy/DNRy51KPHA6zm4EvdfF2CR/BZBy7OW5/zgoIChYWFXfbvt9trdo4fP67Y2FhJP6/POX78uCTprrvu0pNPPnmV5V7eoUOHtHLlSr3//vuXnBcVFaWYmBjt27fvonNsNptsNpunSwQAAH7I7ctYjRo10sGDByVJN998sxYtWiRJWrJkiWrVquXJ2lzMnj1b9evXV7dul06Hx44dU1ZWlqKiorxWCwAAqDzcDjuPPPKIdu7cKUlKS0tzrt155pln9Je//MXjBUo/P3x09uzZSklJUWDg/52MKiws1PDhw/X555/r4MGDWrt2rZKTk1W3bl3df//9XqkFAABULm5fxnrmmWecP7dv317ffvuttmzZohtuuEHNmzf3aHHnrFy5UocPH9ajjz7q0h8QEKBdu3Zp7ty5OnHihKKiotS+fXstXLhQNWvW9EotAACgcnE77PzSmTNn1KBBAzVo0MBT9VxQ586ddaF11NWrV9dnn33m1dcGAACVm9uXsUpLSzVu3Dhdd911qlGjhg4cOCBJ+vvf/65Zs2Z5vEAAAICKcDvsvPjii0pPT9fEiRNdHsvQrFkzzZw506PFAQAAVJTbYWfu3Ll688031bdvXwUEBDj7b731Vn377bceLQ4AAKCi3A4733//vRo3blyuv6ysrNxzsgAAAHzN7bBzyy23aMOGDeX633nnHbVo0cIjRQEAAHiK23djjR49Wn/605/0/fffq6ysTO+//7727t2ruXPn6uOPP/ZGjQAAAFfN7TM7ycnJWrhwoZYtWybDMDRq1Ch98803WrJkie655x5v1AgAAHDVrvjMzoEDBxQbGyvDMNSlSxd16dLFm3UBAAB4xBWf2WnSpIl+/PFH53avXr30ww8/eKUoAAAAT7nisHP+NxgvW7ZMp06d8nhBAAAAnuT2mh0AAIDK5IrDjmEYMgyjXB8AAIA/u+IFyqZpql+/frLZbJJ+fgjoE088oZCQEJd577//vmcrBAAAqIArDjspKSku2w899JDHiwEAAPC0Kw47s2fP9mYdAAAAXsECZQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGl+HXbGjBkjwzBcWmRkpHPcNE2NGTNG0dHRql69utq1a6evv/7ahxUDAAB/49dhR5JuueUWZWdnO9uuXbucYxMnTtTkyZM1depUbd68WZGRkbrnnnt08uRJH1YMAAD8id+HncDAQEVGRjpbvXr1JP18VmfKlCl67rnn1KNHD8XFxWnOnDk6ffq03n77bR9XDQAA/IXfh519+/YpOjpasbGx6t27tw4cOCBJyszMVE5Ojjp37uyca7PZ1LZtW23atOmSx3Q4HCooKHBpAADAmvw67LRq1Upz587VZ599phkzZignJ0eJiYk6duyYcnJyJEkREREu+0RERDjHLmbChAkKCwtzNrvd7rX3AAAAfMuvw05SUpIeeOABNWvWTJ06ddLSpUslSXPmzHHOMQzDZR/TNMv1nS8tLU35+fnOlpWV5fniAQCAX/DrsHO+kJAQNWvWTPv27XPelXX+WZzc3NxyZ3vOZ7PZFBoa6tIAAIA1Vaqw43A49M033ygqKkqxsbGKjIzUihUrnONnz57VunXrlJiY6MMqAQCAPwn0dQGXMnz4cCUnJ6tBgwbKzc3VCy+8oIKCAqWkpMgwDA0dOlTjx49XkyZN1KRJE40fP17BwcHq06ePr0sHAAB+wq/DzpEjR/THP/5RP/30k+rVq6fWrVvriy++UExMjCRpxIgRKioq0sCBA5WXl6dWrVpp+fLlqlmzpo8rBwAA/sKvw86CBQsuOW4YhsaMGaMxY8Zcm4IAAEClU6nW7AAAALiLsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACzNr8POhAkT1LJlS9WsWVP169fX73//e+3du9dlTr9+/WQYhktr3bq1jyoGAAD+xq/Dzrp16/TUU0/piy++0IoVK1RSUqLOnTvr1KlTLvO6du2q7OxsZ1u2bJmPKgYAAP4m0NcFXMqnn37qsj179mzVr19fW7duVZs2bZz9NptNkZGR17o8AABQCfj1mZ3z5efnS5LCw8Nd+teuXav69euradOmGjBggHJzcy95HIfDoYKCApcGAACsqdKEHdM0lZqaqrvuuktxcXHO/qSkJGVkZGj16tWaNGmSNm/erA4dOsjhcFz0WBMmTFBYWJiz2e32a/EWAACAD/j1ZaxfGjRokL766itt3LjRpb9Xr17On+Pi4pSQkKCYmBgtXbpUPXr0uOCx0tLSlJqa6twuKCgg8AAAYFGVIuwMHjxYH330kdavX6/rr7/+knOjoqIUExOjffv2XXSOzWaTzWbzdJkAAMAP+XXYMU1TgwcP1gcffKC1a9cqNjb2svscO3ZMWVlZioqKugYVAgAAf+fXa3aeeuopzZs3T2+//bZq1qypnJwc5eTkqKioSJJUWFio4cOH6/PPP9fBgwe1du1aJScnq27durr//vt9XD0AAPAHfn1mZ/r06ZKkdu3aufTPnj1b/fr1U0BAgHbt2qW5c+fqxIkTioqKUvv27bVw4ULVrFnTBxUDAAB/49dhxzTNS45Xr15dn3322TWqBgAAVEZ+fRkLAACgogg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0iwTdqZNm6bY2FhVq1ZN8fHx2rBhg69LAgAAfsASYWfhwoUaOnSonnvuOW3fvl133323kpKSdPjwYV+XBgAAfMwSYWfy5Mnq37+//vznP+umm27SlClTZLfbNX36dF+XBgAAfCzQ1wVU1NmzZ7V161aNHDnSpb9z587atGnTBfdxOBxyOBzO7fz8fElSQUGBx+src5z2+DEBK/HG584X+KwDF+etz/m545qmecl5lT7s/PTTTyotLVVERIRLf0REhHJyci64z4QJEzR27Nhy/Xa73Ss1Ari4sCm+rgCAt3n7c37y5EmFhYVddLzSh51zDMNw2TZNs1zfOWlpaUpNTXVul5WV6fjx46pTp85F94E1FBQUyG63KysrS6Ghob4uB4AX8Dn/9TBNUydPnlR0dPQl51X6sFO3bl0FBASUO4uTm5tb7mzPOTabTTabzaWvVq1a3ioRfig0NJRfgoDF8Tn/dbjUGZ1zKv0C5aCgIMXHx2vFihUu/StWrFBiYqKPqgIAAP6i0p/ZkaTU1FT96U9/UkJCgu644w69+eabOnz4sJ544glflwYAAHzMEmGnV69eOnbsmJ5//nllZ2crLi5Oy5YtU0xMjK9Lg5+x2WwaPXp0ucuYAKyDzznOZ5iXu18LAACgEqv0a3YAAAAuhbADAAAsjbADAAAsjbADAAAsjbADn+jXr58Mw5BhGAoMDFSDBg305JNPKi8vzzmnYcOGzjnVq1dXw4YN1bNnT61evdrlWAcPHnTO+2V76KGHnHMOHz6s5ORkhYSEqG7duhoyZIjOnj3rHB8zZswFjxESEuLyWuvWrVN8fLyqVaumRo0a6Y033vDSvxDw61VaWqrExEQ98MADLv35+fmy2+3629/+JkkX/Mxe7DN54403KigoSN9//73X64f/IezAZ7p27ars7GwdPHhQM2fO1JIlSzRw4ECXOee+TmDv3r2aO3euatWqpU6dOunFF18sd7yVK1cqOzvb2f75z39K+vkXZ7du3XTq1Clt3LhRCxYs0Hvvvadhw4Y59x0+fLjLvtnZ2br55pv14IMPOudkZmbq3nvv1d13363t27frr3/9q4YMGaL33nvPS/9CwK9TQECA5syZo08//VQZGRnO/sGDBys8PFyjRo1y9s2ePdvlc5uSklLueBs3btSZM2f04IMPKj09/Vq8BfgbE/CBlJQU83e/+51LX2pqqhkeHu7cjomJMV955ZVy+44aNcqsUqWK+e2335qmaZqZmZmmJHP79u0XfK1ly5aZVapUMb///ntn3/z5802bzWbm5+dfcJ8dO3aYksz169c7+0aMGGH+5je/cZn3+OOPm61btzZN0zQ//fRT02azmXl5eS5zBg8ebLZp0+aCrwPg4l599VWzdu3a5vfff28uXrzYrFq1qsvnXJL5wQcfXPY4/fr1M0eOHGl+8sknZqNGjcyysjLTNE3zjTfeMKOjo83S0lKX+cnJyebDDz/sybcCH+PMDvzCgQMH9Omnn6pq1aqXnfv000/LNE19+OGHV3Tszz//XHFxcS4PiuvSpYscDoe2bt16wX1mzpyppk2b6u6773Y5TufOnV3mdenSRVu2bFFxcbE6deqkWrVquZzpKS0t1aJFi9S3b98rqhXA/xk8eLCaN2+uhx9+WI899phGjRql2267zWXOoEGDVLduXbVs2VJvvPGGysrKXMZPnjypd955Rw899JDuuecenTp1SmvXrpUkPfjgg/rpp5+0Zs0a5/y8vDx99tlnfGYthrADn/n4449Vo0YNVa9eXTfccIP27NmjZ5999rL7hYeHq379+jp48KBLf2JiomrUqOFs27dvlyTl5OSUeyhs7dq1FRQUVO4BspLkcDiUkZGh/v37u/Rf6DgREREqKSnRTz/9pICAAPXq1Utvv/22c3zVqlXKy8tzuRwG4MoYhqHp06dr1apVioiI0MiRI13Gx40bp3feeUcrV65U7969NWzYMI0fP95lzoIFC9SkSRPdcsstCggIUO/evTVr1ixJP/8u6dq1q8tn9p133lF4eLg6duzo/TeIa8YSj4tA5dS+fXtNnz5dp0+f1syZM/Xf//5XgwcPvqJ9TdOUYRgufQsXLtRNN93k3Lbb7c6fz597sWNI0vvvv6+TJ0/q4YcfLjd2/nzz/38B+bn+vn376o477tDRo0cVHR2tjIwM3Xvvvapdu/YVvS8Arv79738rODhYmZmZOnLkiBo2bOgcO7dQWZLzjM/zzz/v0j9r1iyXmxUeeughtWnTRidOnFCtWrXUt29fPfbYY5o2bZpsNpsyMjLUu3dvBQQEeP294drhzA58JiQkRI0bN9att96q1157TQ6HQ2PHjr3sfseOHdOPP/6o2NhYl3673a7GjRs727nn4kRGRpY7g5OXl6fi4uJyZ2qkny9h3XfffYqMjHTpv9BxcnNzFRgYqDp16kiSfvvb3+qGG27QggULVFRUpA8++MDlFy2AK/f555/rlVde0Ycffqg77rhD/fv3d/4H40Jat26tgoIC/fDDD5KkPXv26Msvv9SIESMUGBiowMBAtW7dWkVFRZo/f74kKTk5WWVlZVq6dKmysrK0YcMGPrMWRNiB3xg9erT+8Y9/6OjRo5ec9+qrr6pKlSr6/e9/f0XHveOOO7R7925lZ2c7+5YvXy6bzab4+HiXuZmZmVqzZk25S1jnjrNixQqXvuXLlyshIcFlrVGfPn2UkZGhJUuWqEqVKurWrdsV1Qng/xQVFSklJUWPP/64OnXqpJkzZ2rz5s3617/+ddF9tm/frmrVqqlWrVqSfj6r06ZNG+3cuVM7duxwthEjRjgvZVWvXl09evRQRkaG5s+fr6ZNm5b7vQAL8OnyaPxqXehuLNM0zfj4ePOpp54yTfPnu7Gef/55Mzs72zx8+LC5bt06c8CAAaZhGOZLL73k3Odyd2OVlJSYcXFxZseOHc1t27aZK1euNK+//npz0KBB5eb+7W9/M6Ojo82SkpJyYwcOHDCDg4PNZ555xtyzZ485a9Yss2rVqua7777rMu+///2vKcm89dZbzf79+7vxrwLgnCFDhpg33HCDWVhY6Ox78803zRo1apiZmZnmRx99ZL755pvmrl27zP3795szZswwQ0NDzSFDhpimaZpnz54169WrZ06fPr3csc99Rnfs2GGapmkuX77ctNls5o033miOGzfu2rxBXFOEHfjExcJORkaGGRQUZB4+fNiMiYkxJZmSzKCgILNBgwZmz549zdWrV7vsc7mwY5qmeejQIbNbt25m9erVzfDwcHPQoEHmmTNnXOaUlpaa119/vfnXv/71osdZu3at2aJFCzMoKMhs2LDhBX+RmqZptmzZ0pRUrlYAl7d27VozICDA3LBhQ7mxzp07mx06dDCXLVtm3nbbbWaNGjXM4OBgMy4uzpwyZYpZXFxsmqZpvvvuu2aVKlXMnJycC75Gs2bNzMGDB5um+fN/iKKiokxJ5nfffee9NwafMUzzEhdAAQAAKjnW7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AC4pvr16yfDMMq1/fv3V/jY6enpzuciAcA5gb4uAMCvT9euXTV79myXvnr16vmomgsrLi52ecArgMqLMzsArjmbzabIyEiXFhAQoCVLlig+Pl7VqlVTo0aNNHbsWJWUlDj3mzx5spo1a6aQkBDZ7XYNHDhQhYWFkqS1a9fqkUceUX5+vvNs0ZgxYyRJhmFo8eLFLjXUqlVL6enpkqSDBw/KMAwtWrRI7dq1U7Vq1TRv3jxJ0uzZs3XTTTepWrVq+s1vfqNp06Y5j3H27FkNGjRIUVFRqlatmho2bKgJEyZ47x8OwFXhzA4Av/DZZ5/poYce0muvvaa7775b3333nR577DFJ0ujRoyVJVapU0WuvvaaGDRsqMzNTAwcO1IgRIzRt2jQlJiZqypQpGjVqlPbu3StJqlGjhls1PPvss5o0aZJmz54tm82mGTNmaPTo0Zo6dapatGih7du3a8CAAQoJCVFKSopee+01ffTRR1q0aJEaNGigrKwsZWVlefYfBkCFEXYAXHMff/yxSxBJSkrSDz/8oJEjRyolJUWS1KhRI40bN04jRoxwhp2hQ4c694mNjdW4ceP05JNPatq0aQoKClJYWJgMw1BkZORV1TV06FD16NHDuT1u3DhNmjTJ2RcbG6s9e/boX//6l1JSUnT48GE1adJEd911lwzDUExMzFW9LgDvIuwAuObat2+v6dOnO7dDQkLUuHFjbd68WS+++KKzv7S0VGfOnNHp06cVHBysNWvWaPz48dqzZ48KCgpUUlKiM2fO6NSpUwoJCalwXQkJCc6ff/zxR2VlZal///4aMGCAs7+kpERhYWGSfl5sfc899+jGG29U165ddd9996lz584VrgOAZxF2AFxz58LNL5WVlWns2LEuZ1bOqVatmg4dOqR7771XTzzxhMaNG6fw8HBt3LhR/fv3V3Fx8SVfzzAMmabp0nehfX4ZmMrKyiRJM2bMUKtWrVzmBQQESJJuv/12ZWZm6pNPPtHKlSvVs2dPderUSe++++4l6wFwbRF2APiF22+/XXv37i0Xgs7ZsmWLSkpKNGnSJFWp8vO9FYsWLXKZExQUpNLS0nL71qtXT9nZ2c7tffv26fTp05esJyIiQtddd50OHDigvn37XnReaGioevXqpV69eukPf/iDunbtquPHjys8PPySxwdw7RB2APiFUaNG6b777pPdbteDDz6oKlWq6KuvvtKuXbv0wgsv6IYbblBJSYlef/11JScn6z//+Y/eeOMNl2M0bNhQhYWFWrVqlZo3b67g4GAFBwerQ4cOmjp1qlq3bq2ysjI9++yzV3Rb+ZgxYzRkyBCFhoYqKSlJDodDW7ZsUV5enlJTU/XKK68oKipKt912m6pUqaJ33nlHkZGRfNcP4Ge49RyAX+jSpYs+/vhjrVixQi1btlTr1q01efJk56Lf2267TZMnT9bLL7+suLg4ZWRklLvNOzExUU888YR69eqlevXqaeLEiZKkSZMmyW63q02bNurTp4+GDx+u4ODgy9b05z//WTNnzlR6erqaNWumtm3bKj09XbGxsZJ+vtvr5ZdfVkJCglq2bKmDBw9q2bJlzjNPAPyDYZ5/IRsAAMBC+O8HAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwtP8HR6Z3+fhOy8cAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# show the relative feature importance \n", + "model1.feature_importance_plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "7f1dd508", + "metadata": {}, + "outputs": [], + "source": [ + "# perform cross validation of the model to check model stability\n", + "cross_validation = cv.cross_validation(dfx, dfy, ['RDF070v', 'X5Av'])" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "ad197714", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R^2CV mean: 0.783114\n", + "Q^2CV mean: 0.645587\n", + "RMSE CV : 0.269355\n", + "Features set = ['RDF070v', 'X5Av']\n", + "Model coeff = [-1.03554145 -1.99268703]\n", + "Model intercept = -1.7699253003146924\n", + "Q^2F1CV mean: 0.720871\n", + "Q^2F2CV mean: 0.645587\n", + "Q^2F3CV mean: 0.997226\n", + "CCC CV : 0.902914\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTk0lEQVR4nO3dd1yT1/4H8E+CCqiEqqiAEnFcEa+/iqNur+BqtNWqVUBEwT1qq9Zde+tor6u27oETN6QVq7Y1amvdVVTEWhtttWJQoE5IRJl5fn9w5RaREUzyZHzer1dehYeT5AtPYz455zznSARBEEBERERkp6RiF0BEREQkJoYhIiIismsMQ0RERGTXGIaIiIjIrjEMERERkV1jGCIiIiK7xjBEREREdq2c2AVYOr1ej6SkJLi4uEAikYhdDhEREZWCIAjQ6XTw9PSEVFp83w/DUAmSkpLg5eUldhlERERUBomJiahdu3axbRiGSuDi4gIg748pk8lEroaIiIhKQ6vVwsvLK/99vDgMQyV4PjQmk8kYhoiIiKxMaaa4cAI1ERER2TWGISIiIrJrDENERERk1xiGiIiIyK4xDBEREZFdYxgiIiIiu8YwRERERHaNYYiIiIjsGsMQERER2TWGISIiIrJrDENERERk1xiGiIiIyK4xDBEREZEoBEHAt99+C71eL2odDENERERkdlqtFiEhIejVqxc+//xzUWspJ+qzExERkd25ePEigoKCcPPmTTg4OKBcOXHjCMMQERERmYUgCFixYgWmTp2K7OxsyOVyREVFoW3btqLWxTBEREREJvfo0SMMHToU+/fvBwD07dsXmzZtQpUqVUSujHOGiIiIyMROnz4NPz8/7N+/HxUqVMDKlSuxZ88eiwhCAMMQERERmYher8eCBQvQqVMnJCYmokGDBjh79izGjx8PiUQidnn5OExGRERERvfXX39h8ODBOHLkCABg0KBBWLt2LVxcXESurDCGISIiIjKqH374AaGhofjrr7/g7OyM1atXIzw83KJ6g/6Ow2RERERkFDk5Ofj444/RvXt3/PXXX2jSpAkuXLiAoUOHWmwQAtgzREREREZw584dDBw4EKdOnQIAjBw5EsuWLUPFihVFrqxkDENERET0Sg4cOIDw8HA8evQILi4uWL9+PYKDg8Uuq9Q4TEZERERlkpWVhQ8//BC9e/fGo0eP0KJFC8TFxVlVEAIYhoiIiKgMbt68ifbt22Pp0qUAgIkTJ+L06dNo0KCByJUZjsNkREREZBClUomRI0dCq9WiSpUqiIyMRO/evcUuq8zYM0RERESl8uzZM4wZMwZBQUHQarVo37494uPjrToIAQxDREREVApqtRqtW7dGREQEJBIJPvroIxw7dgxyuVzs0l4Zh8mIiIioSIIgYOvWrXjvvffw9OlT1KhRAzt27EC3bt3ELs1oGIaIiIjopXQ6HcaNG4cdO3YAALp06YIdO3bA3d1d5MqMi8NkREREVEh8fDxatmyJHTt2QCqV4rPPPsOhQ4dsLggB7BkiIiKivxEEAWvWrMHkyZORmZmJ2rVrY/fu3ejQoYPYpZkMwxAREREBAFJTUzF8+HDExMQAAN5++21ERkaiWrVqIldmWhwmIyIiIpw9exZ+fn6IiYlB+fLlsXTpUuzfv9/mgxDAMERERGTX9Ho9Pv/8c3Ts2BG3b99GvXr1cObMGUycONGid5o3Jg6TERER2an79+8jLCwMBw8eBAAEBgZi/fr1cHV1Fbky82LPEBERkR06duwY/Pz8cPDgQTg5OSEiIgJRUVF2F4QAhiEiIiK7kpubi7lz56JLly5ISkpCo0aNEBsbi1GjRtnNsNiLOExGRERkJ5KSkjBo0CAcO3YMADB06FCsXLkSlSpVErcwkTEMERER2QGVSoXBgwfjwYMHqFSpEtatW4fQ0FCxy7IIHCYjIiKyYdnZ2Zg2bRp69OiBBw8ewM/PD3FxcQxCf8OeISIiIhuVkJCAgQMH4uzZswCA9957D0uWLIGTk5PIlVkWhiEiIiIbFBMTg+HDhyM1NRWurq7YvHkz+vXrJ3ZZFonDZERERDYkIyMD48ePx7vvvovU1FS0bt0a8fHxDELFYBgiIiKyEb///jvatm2L1atXAwCmTZuGkydPwtvbW9zCLByHyYiIiGzAjh07MGbMGKSnp8PNzQ3btm1Djx49xC7LKrBniIiIyIqlp6dj2LBhGDx4MNLT0+Hv74/Lly8zCBmAYYiIiMhKXblyBW+88Qa2bNkCqVSKOXPm4IcffoCnp6fYpVkVDpMRERFZGUEQsGHDBkyYMAEZGRnw8PDArl274O/vL3ZpVolhiIiIyIqkpaVh1KhRUCqVAIAePXpg69atqF69usiVWS8OkxEREVmJCxcuoHnz5lAqlShXrhwWL16Mb7/9lkHoFbFniIiIyMIJgoBly5Zh+vTpyM7ORp06dRAVFYU2bdqIXZpNYBgiIiKyYA8fPsTQoUNx4MABAEC/fv2wceNGVKlSReTKbAeHyYiIiCzUqVOn4OfnhwMHDqBChQpYvXo1vv76awYhI2MYIiIisjC5ubn4z3/+A39/f9y5cwcNGzbEuXPnMG7cOEgkErHLszkcJiMiIrIgKSkpGDx4MH744QcAQGhoKNasWQMXFxeRK7NdDENEREQW4siRIwgNDcW9e/dQsWJFrF69GmFhYewNMjEOkxEREYksJycHs2bNwptvvol79+6hSZMmuHDhAsLDwxmEzMAqwlBCQgKGDx+OunXrwtnZGfXr18fs2bORlZVV7P0EQcCcOXPg6ekJZ2dn+Pv74+rVq2aqmoiIqGSJiYnw9/fH/PnzIQgCRo8ejdjYWPj6+opdmt2wijB07do16PV6RERE4OrVq1i6dCnWrVuHjz76qNj7LV68GF9++SVWrVqF8+fPw93dHd26dYNOpzNT5UREREXbv38//Pz8cPr0achkMkRHR2PdunVwdnYWuzS7IhEEQRC7iLL4/PPPsXbtWvz5558v/bkgCPD09MTEiRMxffp0AEBmZiZq1qyJRYsWYfTo0aV6Hq1WC1dXV6SlpUEmkxmtfiIisl+ZmZmYPn06li9fDgBo2bIloqOjUa9ePZErsx2GvH9bRc/Qy6SlpaFq1apF/vzWrVtISUlB9+7d8485OjqiU6dOOHPmTJH3y8zMhFarLXAjIiIylps3b6J9+/b5QWjSpEk4ffo0g5CIrDIM3bx5EytXrsSYMWOKbJOSkgIAqFmzZoHjNWvWzP/ZyyxYsACurq75Ny8vL+MUTUREdi8qKgrNmjXDxYsXUbVqVezfvx9ffvklKlSoIHZpdk3UMDRnzhxIJJJibxcuXChwn6SkJCgUCgwYMAAjRowo8TlenIUvCEKxM/NnzpyJtLS0/FtiYmLZfjkiIqL/evr0KUaNGoWBAwdCp9OhQ4cOiI+PR69evcQujSDyOkPjx49HcHBwsW28vb3zv05KSkJAQADatm2L9evXF3s/d3d3AHk9RB4eHvnH7927V6i36O8cHR3h6OhYiuqJiIhK9ttvvyEwMBBXr16FRCLBrFmzMHv2bJQrx6X+LIWoZ8LNzQ1ubm6lanv37l0EBASgRYsW2LJlC6TS4ju16tatC3d3dxw5cgTNmjUDAGRlZeH48eNYtGjRK9dORERUHEEQsGXLFowfPx7Pnj1DzZo1sWPHDnTt2lXs0ugFVjFnKCkpCf7+/vDy8sKSJUtw//59pKSkFJr706hRI+zduxdA3vDYxIkTMX/+fOzduxe//vorwsPDUbFiRYSEhIjxaxARUSno9XokJCTgypUrSEhIgF6vF7skg+l0OgwePBjDhw/Hs2fP0K1bN1y+fJlByEJZRR/d4cOHcePGDdy4cQO1a9cu8LO/rwxw/fp1pKWl5X8/bdo0PHv2DOPGjcPjx4/RunVrHD58mPu7EBFZKLVaDZVKVeBKXplMBoVCYTWLEF66dAlBQUH4448/4ODggE8//RTTp08vcUSDxGO16wyZC9cZIiIyD7VaDaVSWeTPAwMDLToQCYKA1atXY/LkycjKyoKXlxd2796N9u3bi12aXbKLdYaIiMh26PV6qFSqYtuoVCqLHTJ7/Pgx3n33Xbz//vvIyspC7969ER8fzyBkJRiGiIhIdBqNpsRFbrVaLTQajZkqKr2ff/4ZzZo1w969e1G+fHksW7YM33zzTbELA5NlYRgiIiLRlXbPSEvaW1Kv12Px4sXo2LEjbt++jfr16+PMmTOYMGECd5q3MlYxgZqIiGxbaS9ssZQLYO7du4chQ4bg0KFDAIDg4GBERERwbqmVYs8QERGJTi6XlxgkZDIZ5HK5mSoq2k8//QQ/Pz8cOnQITk5O2LBhA3bt2sUgZMUYhoiISHRSqRQKhaLYNgqFQtTL03NzczF79mx06dIFycnJaNy4Mc6fP48RI0ZwWMzKMQwREZFF8PX1RWBgYKEeFplMJvpl9Xfv3kWXLl0wb948CIKAYcOGITY2Fk2aNBGtJjIezhkiIiKL4evrCx8fH2g0Guh0Ori4uEAul4vaI/T9998jLCwMDx48QOXKlREREcGdDGwMwxAREVkUqVRaYJNusWRlZWHWrFlYsmQJAKBZs2aIjo7GP/7xD5ErI2NjGCIiInrBrVu3EBwcjNjYWADA+++/j88//xyOjo4iV2Y79Hq9xfQAMgwRERH9zZ49ezB8+HCkpaXhtddew+bNm9G3b1+xy7IplrYHHSdQExERAcjIyMC4cePQv39/pKWloU2bNoiPj2cQMrLne9C9uOK4VquFUqmEWq02e00MQ0REVkSv1yMhIQFXrlxBQkKCxe7VZW2uX7+ONm3aYO3atQCA6dOn48SJE6hTp47IldkWS92DjsNkRERWwtKGFmzF9u3bMXbsWKSnp6N69erYtm1biWseUdkYsgedOSfRs2eIiMgKWOLQgrV78uQJwsPDMWTIEKSnpyMgIADx8fEMQiZkqXvQMQwREVk4Sx1asGa//PIL3njjDWzduhVSqRRz587FkSNH4OnpKXZpNs1S96BjGCIisnCGDC1Q8QRBwLp169CqVStcu3YNnp6eOHr0KD755BM4ODiIXZ7Ns9Q96BiGiIgsnKUOLVibtLQ0BAUFYezYscjMzETPnj0RHx+PTp06iV2a3bDUPegYhoiILJylDi1Yk/Pnz6NZs2b46quvUK5cOSxZsgQHDhxA9erVxS7N7ljiHnS8moyIyMI9H1oobqhMjKEFayAIApYuXYoZM2YgOzsb3t7eiIqKQuvWrcUuTVy5ucDJk0ByMuDhAXTsCJhxmNDS9qBjGCIisnDPhxaUSmWRbcQYWrB0Dx48QHh4OL777jsAQP/+/bFhwwa89tpr4hYmtpgYYMIE4M6d/x2rXRtYvhzo189sZVjKHnQAh8mIiKyCJQ4tWLKTJ0/Cz88P3333HRwdHbFmzRoolUoGoZgYoH//gkEIAO7ezTseEyNOXSKTCIIgiF2EJdNqtXB1dUVaWlqJM+CJiEzNkja3tES5ublYsGABZs+eDb1ej4YNG0KpVKJp06Zilya+3FzA27twEHpOIsnrIbp1y6xDZqZiyPs3h8mIiKyIJQ0tWJrk5GSEhobi6NGjAIAhQ4Zg9erVqFy5ssiVWYiTJ4sOQgAgCEBiYl47f3+zlWUJGIaIiMjqHT58GIMHD8a9e/dQsWJFrFmzBmFhYWKXZVmSk43bzoawb5WIiKxWdnY2Zs6ciTfffBP37t3D66+/josXLzIIvYyHh3Hb2RCGISIiskoajQb+/v5YuHAhAGDMmDE4e/YsGjVqJHJlFqpjx7w5QRLJy38ukQBeXnnt7AzDEBERWZ19+/bBz88PZ86cgUwmg1KpxNq1a+Hs7Cx2aZbLwSHv8nmgcCB6/v2yZTYxedpQDENERGQ1MjMzMWHCBPTp0wePHz/GG2+8gUuXLmHAgAFil2Yd+vUDvv4aqFWr4PHatfOOm3GdIUvCCdRERGRyxlgS4MaNGwgKCkJcXBwAYPLkyZg/fz4qVKhgipJtV79+wDvviLoCtaVhGCIiIpNSq9VQqVQFthORyWRQKBSlXixy9+7dGD16NHQ6HapVq4atW7firbfeMlXJts/Bwe4uny8Oh8mIiMhk1Go1lEploX3VtFotlEol1Gp1sfd/+vQpRo4ciZCQEOh0OnTs2BHx8fEMQiLT6/VISEjAlStXkJCQAL1eL3ZJr4Q9Q0REZBJ6vR4qlarYNiqVCj4+Pi8dMrt69SqCgoJw9epVSCQSfPzxx/jkk09QrhzfusRkjJ4+S8OeISIiMgmNRlOoR+hFWq0WGo2mwDFBELBp0ya88cYbuHr1Ktzd3XHkyBHMmzePQUhkr9rTZ6kYhoiIyCR0Op3B7bRaLQYNGoQRI0bg2bNn6N69O+Lj49GlSxdTlUmlVNqePmscMmMYIiIik3BxcTGoXVxcHFq0aIHdu3fDwcEBCxYswMGDB1GzZk1TlkmlVNaePmvAMERERCYhl8tL3C1cJpPBy8sLK1asQNu2bXHjxg3I5XKcOHECM2bMMPjyezKdsvT0WQv+X0ZERCYhlUqhUCiKbdOmTRv0798fEyZMQFZWFt555x1cunQJ7dq1M1OVVFqG9vRZE4YhIiIyGV9fXwQGBhbqIZLJZPjHP/6B4OBgfPPNN6hQoQJWrFiBvXv3omrVqiJVS8UpbU+fXC43U0XGw2n5RERkUr6+vvDx8clfgbpSpUqIjo7GkCFDkJubiwYNGiA6OhrNmzcXu1QqxvOePqVSWWQbhUJhlUOb1lcxERFZHalUCm9vb9SoUQNjx47FRx99hNzcXAwcOBAXL15kELISxfX0BQYGWu06Q+wZIiIiszh69CgGDRqElJQUODs7Y+XKlRg2bBgkL+6gThbtxZ6+su41Z0kYhoiIyKRycnIwb948fPbZZxAEAY0bN4ZSqcQ///lPsUuzasbY/Lasnvf02QqGISIiKyDmG9+ruHPnDkJCQnDy5EkAwIgRI7B8+XJUrFhR5Mqsmy1uiSEmhiEiIgtnrW983333HcLCwvDw4UNUrlwZ69evx8CBA8Uuy+o93xLjRc+3xLDmuTtisfyPFUREdswa94LKysrC5MmT8fbbb+Phw4do3rw5Ll26xCBkBLa8JYaYGIaIiCyUNb7x/fnnn+jQoQO+/PJLAMAHH3yAM2fOoEGDBiJXZhtseUsMMTEMERFZKGt74/vqq6/QrFkznD9/HlWqVMHevXuxfPlyODo6il2azbDlLTHExDBERGShrOWN79mzZxg7diwCAwOh1WrRrl07xMfHo0+fPqLWZYtseUsMMTEMERFZKGt447t27RratGmDdevWAQBmzpyJY8eOWeWWDNbAlrfEEBPDEBGRhbL0N76tW7eiRYsW+OWXX1CjRg0cOnQI8+fPR/ny5UWpxx6UZvNba90SQ0z8axERWShLfeN78uQJwsLCEB4ejqdPn6Jz586Ij49H9+7dzVqHvbLVLTHEJBEEQRC7CEum1Wrh6uqKtLS0Ej+hERGZgiWtM3T58mUEBQXh+vXrkEqlmDt3LmbOnAkHBwez1kHWuxCnuRjy/s1FF4mILJwl7AUlCALWrVuHSZMmITMzE7Vq1cKuXbvwr3/9y2w1UEG2tiWGmBiGiIisgJhvfKmpqRgxYgT27NkDAHjrrbcQGRkJNzc3UeohMjb2pxERUZFiY2PRrFkz7NmzB+XLl8cXX3yBAwcOMAiRTWHPEBERFaLX67F06VLMmDEDOTk5qFu3LqKiotCqVSuxSyMyOoYhIiIq4MGDBwgLC8P3338PABgwYAA2bNgAV1dXkSsjMg0OkxERUb7jx4+jadOm+P777+Ho6Ih169YhOjqaQYhsGsMQEREhNzcX8+bNQ+fOnZGUlIRGjRohNjYWo0ePhkQiEbs8IpPiMBkRkZ1LTk7GoEGD8NNPPwEAwsLCsGrVKlSuXFnkyojMg2GIiMiOHTp0CIMHD8b9+/dRqVIlrF27FoMHDxa7LCKz4jAZEZEdys7OxowZM6BQKHD//n28/vrruHjxIoMQ2SX2DBER2Znbt29j4MCB+PnnnwEA48aNwxdffAEnJyeRKyMSB8MQEZEd+eabbzB06FCkpqbC1dUVmzZtwrvvvit2WUSi4jAZEZEdyMjIwPvvv4++ffsiNTUVrVq1wqVLlxiEiMAwRERk8/744w+0a9cOq1atAgBMmTIFJ0+eRN26dUWujMgycJiMiMiG7dq1C6NHj8aTJ09QrVo1bNu2DT179hS7LCKLwp4hIiIblJ6ejuHDh2PQoEF48uQJ/vWvf+Hy5csMQkQvwTBERGRjfv31V7Rq1QqbN2+GRCLBJ598gh9//BG1atUSuzQii8RhMiKySHq9HhqNBjqdDi4uLpDL5ZBK+fmtOIIgYOPGjfjggw+QkZEBDw8P7Ny5EwEBAWKXRmTRrCIMJSQk4NNPP8XRo0eRkpICT09PhIaGYtasWahQoUKR9wsPD8fWrVsLHGvdujXOnj1r6pKJ6BWo1WqoVCpotdr8YzKZDAqFAr6+viJWZrm0Wi1Gjx6NqKgoAMCbb76Jbdu2oUaNGoUb5+YCJ08CycmAhwfQsSPg4GDmioksh1WEoWvXrkGv1yMiIgINGjTAr7/+ipEjRyI9PR1Lliwp9r4KhQJbtmzJ/7648ERE4lOr1VAqlYWOa7VaKJVKBAYGMhC94OLFiwgKCsLNmzfh4OCA+fPnY8qUKS/vSYuJASZMAO7c+d+x2rWB5cuBfv3MVzSRBbGKMKRQKKBQKPK/r1evHq5fv461a9eWGIYcHR3h7u5e6ufKzMxEZmZm/vd//2RKRKal1+uhUqmKbaNSqeDj48MhM+QNi61YsQJTp05FdnY25HI5oqKi0LZt25ffISYG6N8fEISCx+/ezTv+9dcMRGSXSv2vyZMnT0xZh8HS0tJQtWrVEtsdO3YMNWrUQMOGDTFy5Ejcu3ev2PYLFiyAq6tr/s3Ly8tYJRNRCTQaTYkfQLRaLTQajZkqslyPHj1Cnz59MHHiRGRnZ6Nv376Ij48vOgjl5ub1CL0YhID/HZs4Ma8dkZ0pdRj6v//7P5w4ccKUtZTazZs3sXLlSowZM6bYdj169MDOnTtx9OhRfPHFFzh//jw6d+5coOfnRTNnzkRaWlr+LTEx0djlE1ERdDqdUdvZqtOnT8PPzw/79+9HhQoVsHLlSuzZswdVqlQp+k4nTxYcGnuRIACJiXntiOxMqcPQgAED0LVrV0yePLnYMGGIOXPmQCKRFHu7cOFCgfskJSVBoVBgwIABGDFiRLGPHxQUhLfeegtNmjRBr169cPDgQfz+++/47rvviryPo6MjZDJZgRsRmYeLi4tR29kavV6PBQsWoFOnTkhMTESDBg1w9uxZjB8/HhKJpPg7JyeX7klK247IhpR6ztDixYvRr18/DBs2DCqVCtu3b0fz5s1f6cnHjx+P4ODgYtt4e3vnf52UlISAgAC0bdsW69evN/j5PDw8UKdOHfzxxx8G35eITE8ul0MmkxU7VCaTySCXy81YlWX466+/MHjwYBw5cgQAMGjQIKxdu7b0wdDDw7jtiGyIQROo27Rpg0uXLuHjjz9G+/bt0a1bN5QrV/AhYmJiSv14bm5ucHNzK1Xbu3fvIiAgAC1atMCWLVvKNHny4cOHSExMhAdf7EQWSSqVQqFQvPRqsucUCoXdTZ7+4YcfEBoair/++gvOzs5YvXo1wsPDS+4N+ruOHfOuGrt79+XzhiSSvJ937Gi8womshMH/omRmZuLevXuQSCQFJho/v5lCUlIS/P394eXlhSVLluD+/ftISUlBSkpKgXaNGjXC3r17AeRN+J4yZQp+/vlnJCQk4NixY+jVqxfc3NzQt29fk9RJRK/O19cXgYGBhYaoZTKZ3V1Wn5OTg48//hjdu3fHX3/9hSZNmuDChQsYOnSoYUEIyFtHaPnyvK9fvO/z75ct43pDZJcM6hk6fPgwhg8fDk9PT8TFxaFRo0amqqvQ8964cQM3btxA7dq1C/xM+NsnnOvXryMtLQ0A4ODggCtXrmDbtm1ITU2Fh4cHAgICEB0dbbfzDYisha+vL3x8fOx6Beo7d+5g4MCBOHXqFABg5MiRWLZsGSpWrFj2B+3XL+/y+ZetM7RsGS+rJ7slEYSX9ZcWNnr0aGzduhUfffQRZs2aBQc7+fSg1Wrh6uqKtLQ0TqYmIrM4cOAAwsPD8ejRI7i4uGD9+vUlzq80CFegJjtgyPt3qXuGTp8+jTNnzrzypGkiInq5rKwszJgxA0uXLgUAtGjRAlFRUWjQoIFxn8jBAfD3N+5jElmxUoehuLg4bmVBRGQiN2/eRHBwcP5yIhMnTsTChQvh6OgocmVEtq/UYYhBiIjINJRKJUaOHAmtVosqVaogMjISvXv3FrssIrthFXuTERHZomfPnmHSpEmIiIgAALRv3x67du0y3zpKnDtEBKAMl9YTEdGrU6vVaN26NSIiIiCRSPDRRx/h2LFj5gtCMTGAtzcQEACEhOT919s77ziRnWEYIiIyI0EQEBkZiZYtW+LKlSuoUaMGDh06hP/85z+FFrE1mee717+4V9nz3esZiMjOlOrS+l9++aXUD/j666+/UkGWhpfWE5Gx6HQ6jBs3Djt27AAAdOnSBTt27IC7u7v5isjNzesBKmrT1ucrUd+6xSEzsmpGv7Tez88PEokEgiCUuOppbm5u6SslIrIT8fHxCAoKwu+//w6pVIp58+ZhxowZ5l+zzZDd63n5PdmJUoWhW7du5X996dIlTJkyBVOnTkXbtm0BAD///DO++OILLF682DRVEhGVQK/XW+SK1YIgYM2aNZg8eTIyMzNRu3Zt7N69Gx06dBCnIO5eT1RIqcJQnTp18r8eMGAAVqxYgZ49e+Yfe/311+Hl5YV///vf6NOnj9GLJCIqjlqthkqlKrDbvUwmg0KhEHUvs9TUVAwfPjx/A+u3334bkZGRqFatmmg1cfd6osIM/th05coV1K1bt9DxunXr4rfffjNKUUREpaVWq6FUKgsEISBvvoBSqYRarRalrrNnz8LPzw8xMTEoX748li5div3794sbhID/7V5f1JQHiQTw8uLu9WRXDA5Dvr6++Oyzz5CRkZF/LDMzE5999pld7SZNROLT6/VQqVTFtlGpVNDr9WaqKK+mzz//HB07dsTt27dRr149nDlzBhMnTjR8p3lT4O71RIUYfB3nunXr0KtXL3h5eaFp06YAgMuXL0MikeDbb781eoFEREXRaDSFeoRepNVqodFo4O3tbfJ67t+/j7CwMBw8eBAAEBgYiPXr18PV1dXkz20Q7l5PVIDBYahVq1a4desWduzYgWvXrkEQBAQFBSEkJASVKlUyRY1ERC+l0+mM2u5VHDt2DIMGDUJSUhKcnJywfPlyjBw50jJ6g16mXz/gnXe4AjURyrgdR8WKFTFq1Chj10JEZBAXFxejtiuL3NxcfPbZZ5g3bx70ej0aNWoEpVKJ//u//zPZcxoNd68nAlDGFai3b9+ODh06wNPTE7dv3wYALF26FPv27TNqcURExZHL5SUupiaTyUy2xUVSUhK6du2KOXPmQK/XY+jQobhw4YJ1BCEiymdwGFq7di0+/PBD9OjRA48fP85fZLFKlSpYtmyZsesjIiqSVCqFQqEoto1CoTDJekMqlQpNmzbFsWPHUKlSJWzfvh2bN2/mdAEiK2TwvxArV67Ehg0bMGvWrAL76DzfZ4eIyJx8fX0RGBhYqIdIJpMhMDDQ6Fe5ZmdnY9q0aejRowcePHgAPz8/xMXFITQ01KjPQ0TmY/CcoVu3bqFZs2aFjjs6OiI9Pd0oRRERGcLX1xc+Pj4mX4E6ISEBAwcOxNmzZwEA7733HpYsWQInJyejPg8RmZfBYahu3bqIj48vsCo1ABw8eBCNGzc2WmFERIaQSqUmvXw+JiYGw4cPR2pqKlxdXbF582b04yXoRDbB4DA0depUvPfee8jIyIAgCIiNjcXu3buxYMECbNy40RQ1EhGJJiMjA1OnTsWqVasAAK1bt0ZUVJRZ1i0iIvMwOAwNHToUOTk5mDZtGp4+fYqQkBDUqlULy5cvR3BwsClqJCISxe+//46goCDEx8cDAKZNm4bPPvsM5cuXF7cwIjIqiSAIQlnv/ODBA+j1etSoUcOYNVkUrVYLV1dXpKWllXgJLxHZjp07d2LMmDF48uQJ3NzcsG3bNvTo0UPssoiolAx5/zZ4dmHnzp2RmpoKAHBzc8sPQlqtFp07dza8WiIR6fV6JCQk4MqVK0hISDDrHlbWytb/Zunp6Rg2bBhCQ0Px5MkT+Pv74/LlywxCRDbM4GGyY8eOISsrq9DxjIwMnDx50ihFEZmDWq2GSqUqsLeVTCaDQqHgpsNFsPW/2a+//orAwECo1WpIpVJ88skn+Pjjj+HALSqIbFqpw9Avv/yS//Vvv/2GlJSU/O9zc3OhUqlQq1Yt41ZHZCJqtRpKpbLQca1WC6VSaZL1aaydLf/NBEHAxo0b8cEHHyAjIwMeHh7YtWsX/LlVBZFdKHUY8vPzg0QigUQieelwmLOzM1auXGnU4ohMQa/XQ6VSFdtGpVLBx8fHJCsXWyNb/ptptVqMGjUK0dHRAIAePXpg69atqF69usiVEZG5lDoM3bp1C4IgoF69eoiNjS3wD0WFChVQo0YNdiWTVdBoNAWGeV5Gq9VCo9Hw8un/stW/2YULFxAUFIQ///wT5cqVw/z58zF58mSrC3RE9GpKHYaeL7Joa5Mlyf7odDqjtrMHtvY3EwQBy5cvx7Rp05CdnY06deogKioKbdq0Ebs0IhKBwR9/FixYgM2bNxc6vnnzZixatMgoRRGZkouLi1Hb2QNb+ps9fPgQffr0waRJk5CdnY1+/frh0qVLDEJEdszgMBQREYFGjRoVOv7Pf/4T69atM0pRRKYkl8tLXHNCJpNBLpebqSLLZyt/s1OnTsHPzw/79+9HhQoVsHr1anz99deoUqWK2KURkYgMDkMpKSnw8PAodLx69epITk42SlFEpiSVSqFQKIpto1AoOG/kb6z9b6bX6zF//nz4+/vjzp07aNiwIc6dO4dx48ZBIpGIXR4Riczgf7m8vLxw+vTpQsdPnz4NT09PoxRFZGq+vr4IDAws1Nshk8ms+hJxU7LWv1lKSgrefPNNzJo1C7m5uQgNDcWFCxfg5+cndmlEZCEMXnRxxIgRmDhxIrKzs/Mvsf/xxx8xbdo0TJ482egFEpmKr68vfHx8oNFooNPp4OLiArlcbrG9G5bA2v5mP/zwA0JDQ/HXX3+hYsWKWL16NcLCwtgbREQFGByGpk2bhkePHmHcuHH5K1E7OTlh+vTpmDlzptELJDIlqVRqVZeCWwJr+Jvl5ORgzpw5mD9/PgRBQJMmTaBUKi2294qIxFXmjVqfPHkCtVoNZ2dn/OMf/4Cjo6Oxa7MI3KiVyLokJiYiJCQEp06dAgCMHj0aS5cuhbOzs8iVEZE5GfL+bXDP0HOVK1fGG2+8Uda7ExEZ3YEDBxAeHo5Hjx5BJpNhw4YNCAwMFLssIrJwpQpD/fr1Q2RkJGQyGfr161ds25iYGKMURkT2R6/Xl2k+UlZWFqZPn45ly5YBAFq2bIno6GjUq1fPxBUTkS0oVRhydXXNn3Do6upq0oKIyD6p1WqoVKoC237IZDIoFIpi5/rcvHkTwcHBuHDhAgBg0qRJWLhwISpUqGDymg1V1rBnL/UQiaXMc4bsBecMEZmeWq2GUqks8udFXbofHR2NkSNHQqfToWrVqoiMjESvXr1MWWqZlTXs2Us9RMZmyPs3PwIQkaj0ej1UKlWxbVQqVYF9EZ89e4bRo0cjODgYOp0OHTp0QHx8vEUHIaVSWWizW61WC6VSCbVabdf1EImtVMNkzZo1K/W6HHFxca9UEBHZF41GU+hN+UVarRYajQbe3t747bffEBQUhF9//RUSiQSzZs3C7NmzUa5cma8HManShj0fHx+zDFFZWj1ElqBU/3r06dMn/+uMjAysWbMGjRs3Rtu2bQEAZ8+exdWrVzFu3DiTFElEtqu0O91rtVps2bIF48ePx9OnT1GzZk3s2LEDXbt2NXGFr8bQsGdv9RBZglKFodmzZ+d/PWLECHzwwQf49NNPC7VJTEw0bnVEZPNKs9N9ZmYmPvnkE+zbtw8A0K1bN2zfvh01a9Y0dXmvrLRhr7TtXpWl1UNkCQzuV/7qq6/yr9r4u9DQULRs2RKbN282SmFEZB/kcjlkMlmRvRXJycmIiYnB/fv34eDggE8//RTTp0+3miGc0oQ9Q9q9Kkurh8gSGPyvibOzc/7Krn936tQpODk5GaUoIrIfUqkUCoWi0HFBEBAbG4uNGzfi/v378PLywvHjxzFz5kyrCULA/8JecWQyGeRyuV3WQ2QJDO4ZmjhxIsaOHYuLFy+iTZs2APLmDG3evBmffPKJ0QskItvn6+uLwMDA/Eu9nz17hn379uHatWsAgN69e2PLli2oWrWqyJUa7nnYK27pAIVCYbaAZ2n1EFmCMq0zpFQqsXz58vzLL319fTFhwgSbXPae6wwRmY9er8e+ffswfvx4JCUloXz58vj888/xwQcfWP1O85a2ro+l1UNkbIa8f3PRxRIwDBGZh16vx5IlSzBr1izk5OSgfv36iIqKQsuWLcUuzWgsbcVnS6uHyJhMvlFramoqvv76a/z555+YMmUKqlatiri4ONSsWRO1atUqU9FEZL/u37+PIUOG5K9/ExwcjIiICJv7ACKVSi3qcnVLq4dILAaHoV9++QVdu3aFq6srEhISMGLECFStWhV79+7F7du3sW3bNlPUSUQ26tixYwgJCUFycjKcnJywcuVKDB8+3OqHxYjIehjcH/rhhx8iPDwcf/zxR4Grx3r06IETJ04YtTgisl25ubmYM2cOunTpguTkZDRu3Bjnz5/HiBEjGISIyKwM7hk6f/48IiIiCh2vVasWUlJSjFIUEdm2u3fvYtCgQTh+/DgAYNiwYVixYgUqVaokcmVEZI8MDkNOTk4vXRzt+vXrqF69ulGKIiLbdfDgQQwZMgQPHjxA5cqVERERgZCQELHLIiI7ZvAw2TvvvIN58+YhOzsbACCRSKDRaDBjxgy8++67Ri+QyBz0ej0SEhJw5coVJCQkFNghnYwjOzsb06ZNQ8+ePfHgwQM0a9YMcXFxBgUhazhP1lAjERVk8KX1Wq0WPXv2xNWrV6HT6eDp6YmUlBS0bdsW33//vc11c/PSetvH9VZMLyEhAcHBwTh37hwA4P3338fnn38OR0fHUj+GNZwna6iRyF6YZZ2ho0ePIi4uDnq9Hs2bN7f4naPLimHItqnV6mJX4g0MDOSb2Cvas2cPhg8fjrS0NLz22mvYvHkz+vbta9BjWMN5soYaieyJydYZysnJgZOTE+Lj49G5c2d07tz5lQolEpNer89f16YoKpUKPj4+XIiuDDIyMjB58mSsWbMGANCmTRtERUWhTp06Bj2ONZwna6iRiIpm0KuyXLlyqFOnDnJzc01VD5HZaDSaIndKf06r1UKj0ZipItvx+++/o02bNvlBaPr06Thx4oTBQQiwjvNkDTUSUdEM/ojy8ccfY+bMmXj06JEp6iEyG51OZ9R2lGf79u1o3rw5Ll++jOrVq+PgwYNYuHAhypcvX6bHs4bzZA01ElHRDL60fsWKFbhx4wY8PT1Rp06dQhOm4+LijFYckSm5uLgYtZ29S09Px/jx4xEZGQkACAgIwI4dO+Dp6flKj2sN58kaaiSiohkcht555x2uDks2QS6XQyaTFTu8IZPJIJfLzViVdfrll18QFBSEa9euQSqVYvbs2Zg1axYcHBxe+bGt4TxZQ41EVDSDw9CcOXNMUAaR+UmlUigUimKvAFIoFJzwWgxBELB+/XpMnDgRGRkZ8PT0xK5du9CpUyejPYc1nCdrqJGIilbqV+bTp0/x3nvvoVatWqhRowZCQkLw4MEDU9ZGZHK+vr4IDAwsdNmlTCbjpdAlSEtLQ3BwMMaMGYOMjAz07NkT8fHxRg1Cz1nDebKGGono5Uq9ztDUqVOxZs0aDBo0CE5OTti9ezf8/f3x1VdfmbpGUXGdIfug1+uh0Wig0+ng4uICuVzOT/HFOH/+PIKDg/Hnn3+iXLlyWLhwISZNmmTyv5k1nCdrqJHIHphk0cX69evjP//5D4KDgwEAsbGxaN++PTIyMowyL8BSMQwR/Y8gCFi2bBmmT5+O7OxseHt7IyoqCq1btxa7NCKiAgx5/y71x5XExER07Ngx//tWrVqhXLlySEpKKnulRGQ1Hj58iN69e+PDDz9EdnY2+vfvj0uXLjEIEZHVK3UYys3NRYUKFQocK1euHHJycoxeFBFZlpMnT8LPzw/ffvstHB0dsWbNGiiVSrz22mtil0ZE9MpKfTWZIAgIDw8vsLFiRkYGxowZU2CtoZiYGONWSESiyc3NxYIFCzB79mzo9Xo0bNgQSqUSTZs2Fbs0IiKjKXUYCgsLK3QsNDTUqMUQkeVISUlBaGgofvzxRwDAkCFDsHr1alSuXFnkyoiIjKvUYWjLli2mrKNEvXv3Rnx8PO7du4cqVaqga9euWLRoUbGr2wqCgLlz52L9+vV4/PgxWrdujdWrV+Of//ynGSsnsj5HjhxBaGgo7t27h4oVK2LNmjUv/UBERGQLrOZ6z4CAACiVSly/fh179uzBzZs30b9//2Lvs3jxYnz55ZdYtWoVzp8/D3d3d3Tr1o37AxEVIScnBx999BHefPNN3Lt3D6+//jouXrzIIERENq3Ul9Zbmv3796NPnz7IzMx86QaQgiDA09MTEydOxPTp0wEAmZmZqFmzJhYtWoTRo0eX6nl4aT3ZC41Gg4EDB+LMmTMAgDFjxuDLL7+Es7OzyJURERnOJJfWW5JHjx5h586daNeuXZE7Yd+6dQspKSno3r17/jFHR0d06tQp/x/7l8nMzIRWqy1wI7J1+/fvh5+fH86cOQOZTAalUom1a9cyCBGRXbCqMDR9+nRUqlQJ1apVg0ajwb59+4psm5KSAgCoWbNmgeM1a9bM/9nLLFiwAK6urvk3Ly8v4xRPZIEyMzMxceJEvPPOO3j8+DHeeOMNXLp0CQMGDBC7NCIisxE1DM2ZMwcSiaTY24ULF/LbT506FZcuXcLhw4fh4OCAIUOGoKRRPolEUuB7QRAKHfu7mTNnIi0tLf+WmJj4ar8kkYW6ceMG2rVrh+XLlwMAJk+ejFOnTqFevXoiV0ZEZF4G71pvTOPHj8/f3qMo3t7e+V+7ubnBzc0NDRs2hK+vL7y8vHD27Fm0bdu20P3c3d0B5PUQeXh45B+/d+9eod6iv3N0dCywlhKRLYqKisKoUaOg0+lQrVo1bN26FW+99ZbYZRERiULUMPQ83JTF8x6hzMzMl/68bt26cHd3x5EjR9CsWTMAQFZWFo4fP45FixaVrWAiK/f06VNMmDABGzduBAB07NgRu3btQu3atUWujIhIPFYxZyg2NharVq1CfHw8bt++jZ9++gkhISGoX79+gV6hRo0aYe/evQDyhscmTpyI+fPnY+/evfj1118RHh6OihUrIiQkRKxfhUg0v/32G1q1aoWNGzdCIpHg3//+N44ePcogRER2T9SeodJydnZGTEwMZs+ejfT0dHh4eEChUCAqKqrAkNb169eRlpaW//20adPw7NkzjBs3Ln/RxcOHD8PFxUWMX4NIFIIgYMuWLRg/fjyePXsGd3d37NixA126dBG7NCIii2C16wyZC9cZImum0+kwZswY7Nq1CwDQvXt3bNu2rdh5c0REtsDm1xkiopLFxcWhefPm2LVrFxwcHLBgwQIcPHiQQYiI6AVWMUxGRKUnCAJWrVqFKVOmICsrC3K5HLt370a7du3ELo2IyCIxDBHZkMePH2PYsGH45ptvAADvvPMONm/ejKpVq4pbGBGRBeMwGZGN+Pnnn+Hn54dvvvkGFSpUwIoVK7B3714GISKiEjAMEVk5vV6PRYsWoWPHjtBoNGjQoAF+/vlnvP/++8Wutk5ERHk4TEZkxe7du4chQ4bg0KFDAICBAwdi3bp1vPKRiMgA7BkislJHjx5F06ZNcejQITg7O2Pjxo3YuXMngxARkYEYhoisTE5ODj755BN07doVKSkpaNy4Mc6fP4/hw4dzWIyIqAw4TEZkRe7evYuQkBCcOHECADBixAgsX74cFStWFLkyIiLrxTBEZCW+++47hIWF4eHDh6hcuTLWr1+PgQMHil0WEZHV4zAZkYXLysrClClT8Pbbb+Phw4do3rw5Ll26xCBERGQk7BkismC3bt1CcHAwYmNjAQAffPABFi9eXGCDYiIiejUMQ0QW6uuvv8aIESOQlpaGKlWqYPPmzejTp4/YZRER2RwOkxFZmIyMDIwbNw4DBgxAWloa2rVrh/j4eAYhIiITYRgisiDXrl1D69atsXbtWgDAzJkzcezYMcjlcpErIyKyXRwmI7IQ27Ztw7hx45Ceno4aNWpg+/bt6N69u9hlERHZPIYhIpE9efIE7733HrZt2wYA6Ny5M3bs2AEPDw+RKyMisg8cJiMS0S+//IKWLVti27ZtkEql+PTTT3H48GEGISIiM2LPEJEIBEFAREQEJk6ciMzMTNSqVQu7du3Cv/71L7FLIyKyOwxDRGaWmpqKkSNH4uuvvwYAvPXWW4iMjISbm5tJnk+v10Oj0UCn08HFxQVyuRxSKTuFiYieYxgiMqPY2FgEBQUhISEB5cuXx8KFCzFp0iSTbbCqVquhUqmg1Wrzj8lkMigUCvj6+prkOYmIrA0/HhKZgV6vxxdffIH27dsjISEBdevWxalTp/Dhhx+aNAgplcoCQQgAtFotlEol1Gq1SZ6XiMjaMAwRmdiDBw/Qu3dvTJkyBTk5ORgwYAAuXbqEVq1amew59Xo9VCpVsW1UKhX0er3JaiAishYMQ0QmdOLECfj5+eG7776Do6Mj1q1bh+joaLi6upr0eTUaTaEeoRdptVpoNBqT1kFEZA0YhohMIDc3F59++ikCAgJw9+5dNGrUCLGxsRg9erTJhsX+TqfTGbUdEZEt4wRqIiNLTk5GaGgojh49CgAICwvDqlWrULlyZbPV4OLiYtR2RES2jD1DREZ06NAhNG3aFEePHkWlSpWwbds2REZGmjUIAYBcLodMJiu2jUwm455nRERgGCIyiuzsbMycORMKhQL379/H66+/josXL2Lw4MGi1COVSqFQKIpto1AouN4QEREYhohKJzcXOHYM2L0777+5ufk/un37Njp16oSFCxcCAMaNG4dz587Bx8dHnFr/y9fXF4GBgYV6iGQyGQIDA7nOEBHRf3HOEFFJYmKACROAO3f+d6x2bWD5cnwjlWLo0KFITU2Fq6srNm3ahHfffVe8Wl/g6+sLHx8frkBNRFQMhiGi4sTEAP37A4JQ4HDmnTuY+u67WPnf71u1aoWoqCjUrVvX/DWWQCqVwtvbW+wyiIgsFj8eEhUlNzevR+iFIPQHgHZAfhCa8uGHOHnypEUGISIiKhl7hoiKcvJkwaExALsAjAbwBEA1ANsA9OzVC6hQwfz1ERGRUbBniKgoycn5Xz4FMALAIOQFoX8BuAyg5wvtiIjI+jAMERXFwwMAcBXAGwA2AZAA+ATAjwBqvdCOiIisE4fJiIogdOiATVWq4IPHj/EMgAeAnQACnjeQSPKuKuvYUbQaDaXX63llGRHRCxiGiF5Cq9Vi9OjRiHr8GADwJvLmB9V43uD5/mLLlgEODuYvsAzUajVUKlWBDVxlMhkUCgXXHCIiu8aPhGTz9Ho9EhIScOXKFSQkJECv1xfb/uLFi2jevDmioqLg4OCARYMH4/tatf4XhIC8HqGvvwb69TNp7caiVquhVCoL7WSv1WqhVCqhVqtFqoyISHzsGSKbZkhviCAIWLlyJaZMmYLs7GzI5XJERUWhbdu2eZfZnzyZN1nawyNvaMxKeoT0ej1UKlWxbVQqFXx8fDhkRkR2iWGIrE8pg8nz3pAXPe8N+fuWFI8ePcKwYcOwb98+AEDfvn2xadMmVKlSJe9ODg6Av7/JfiVT0mg0hXqEXqTVaqHRaLg4IxHZJX4MJOsSEwN4ewMBAUBISN5/vb3zjv9NaXtD9Ho9zpw5Az8/P+zbtw8VKlTAypUrsWfPnv8FISun0+mM2o6IyNYwDJH1eL41xgsLIeLu3bzjfwtEpekNSU1NxYwZM/Cvf/0LiYmJaNCgAc6ePYvx48dD8nyCtA1wcXExajsiIlvDYTKyDkVsjQEg75hEAkycCLzzDuDgUGIvx5MnT7B3717cvHkTADBo0CCsXbvWJgOBXC6HTCYrNhzKZDLI5XIzVkVEZDnYM0TW4SVbYxQgCEBiYl47FN/L8eeff2LdunW4efMmnJycsHnzZmzfvt0mgxCQt1GrQqEoto1CoeDkaSKyW+wZIutQ2i0v/tvuZb0hubm5OH78OE6cOAEAcHd3x5EjR9CkSROjl2tpfH19ERgYyHWGiIhegmGIrENpt7z4b7vnvSHPryZLS0vDnj17oNFoAADNmzfHhg0b7CIIPefr6wsfHx+uQE1E9AKJILxsEgY9p9Vq4erqirS0NMhkMrHLsV+5uXlXjd29+/J5Q8+3xrh1q8Bl9mq1Gl988QV27dqFZ8+eoUKFCggKCsLMmTPZG0JEZMMMef/mR0KyDg4OwPLleV+/eKVXEVtjZGVlYePGjdi0aROePXuGxo0b49ChQ4iMjGQQIiKifAxDZD369cvbAqNWrYLHX7I1xp9//okOHTrgyy+/BABMnDgRcXFx8Pf357AQEREVwDlDZF369cu7fL6YFaiVSiVGjhwJrVaLKlWqIDIyEr179xaxaCIismQMQ2R9itga49mzZ5g0aRIiIiIAAO3bt8euXbu4fg4RERWL4wVkE65du4bWrVsjIiICEokEH330EY4dO8YgREREJWLPEFm9rVu3Yty4cXj69Clq1KiBHTt2oFu3bmKXRUREVoJhiKzWkydPMG7cOGzfvh0A0KVLF+zYsQPu7u4iV0ZERNaEw2RkleLj49GiRQts374dUqkUn332GQ4dOsQgREREBmPPEFkVQRCwdu1afPjhh8jMzETt2rWxe/dudOjQQezSiIjISjEMkdVITU3FiBEjsGfPHgDA22+/jcjISFSrVk3kyoiIyJpxmIyswrlz59CsWTPs2bMH5cuXx9KlS7F//34GISIiemXsGSKLptfr8eWXX2LmzJnIyclBvXr1EB0djZYtW4pdGhER2QiGIbJY9+/fR1hYGA4ePAgACAwMxPr16+Hq6ipyZUREZEs4TEYW6fjx4/Dz88PBgwfh5OSEiIgIREVFMQgREZHRMQyRRcnNzcXcuXPRuXNnJCUloVGjRoiNjcWoUaMgeXG3eiIiIiPgMBlZjKSkJISGhuKnn34CAAwdOhQrV65EpUqVRK6MiIhsGcMQWQSVSoUhQ4bg/v37qFSpEtatW4fQ0FCxyyIiIjvAYTISVXZ2NqZPn44ePXrg/v378PPzQ1xcHIMQERGZDXuGSDQJCQkYOHAgzp49CwB47733sGTJEjg5OYlcGRER2ROGITul1+uh0Wig0+ng4uICuVwOqdR8HYV79+7FsGHDkJqaCldXV2zevBn9+vUz2/MTERE9xzBkh9RqNVQqFbRabf4xmUwGhUIBX19fkz53RkYGpk6dilWrVgEAWrdujaioKHh7e5v0eYmIiIrCOUN2Rq1WQ6lUFghCAKDVaqFUKqFWq0323L///jvatm2bH4SmTZuGkydPMggREZGoGIbsiF6vh0qlKraNSqWCXq83+nPv3LkTLVq0QHx8PNzc3PD9999j0aJFKF++vNGfi4iIyBAMQ3ZEo9EU6hF6kVarhUajMdpzpqenY9iwYQgNDcWTJ0/g7++Py5cvo0ePHkZ7DiIioldhNWGod+/ekMvlcHJygoeHBwYPHoykpKRi7xMeHg6JRFLg1qZNGzNVbHl0Op1R25Xk119/xRtvvIEtW7ZAKpVizpw5+OGHH+Dp6WmUxyciIjIGqwlDAQEBUCqVuH79Ovbs2YObN2+if//+Jd5PoVAgOTk5//b999+boVrL5OLiYtR2RREEARs2bMAbb7wBtVoNDw8P/Pjjj5g9ezYcHBxe6bGJiIiMzWquJps0aVL+13Xq1MGMGTPQp08fZGdnFzvvxNHREe7u7qV+nszMTGRmZuZ/X9KwkjWRy+WQyWTF/k4ymQxyubzMz6HVajFq1ChER0cDAHr06IGtW7eievXqZX5MIiIiU7KanqG/e/ToEXbu3Il27dqVOAH32LFjqFGjBho2bIiRI0fi3r17xbZfsGABXF1d829eXl7GLF1UUqkUCoWi2DYKhaLM6w1duHABzZo1Q3R0NMqVK4fFixfj22+/ZRAiIiKLJhEEQRC7iNKaPn06Vq1ahadPn6JNmzb49ttvUa1atSLbR0dHo3LlyqhTpw5u3bqFf//738jJycHFixfh6Oj40vu8rGfIy8sLaWlpkMlkRv+dxGDsdYYEQcDy5csxbdo0ZGdno06dOoiKirLr+VlERCQurVYLV1fXUr1/ixqG5syZg7lz5xbb5vz582jZsiUA4MGDB3j06BFu376NuXPnwtXVFd9++y0kEkmpni85OTn/jbq0qx0b8se0JsZagfrhw4cYNmwY9u/fDwDo168fNm7ciCpVqhi7ZCIiolIz5P1b1DlD48ePR3BwcLFt/r4gn5ubG9zc3NCwYUP4+vrCy8sLZ8+eRdu2bUv1fB4eHqhTpw7++OOPVynbJkil0lde7PDUqVMYOHAg7ty5gwoVKmDp0qUYO3ZsqcMpERGRJRA1DD0PN2XxvEPr70NaJXn48CESExPh4eFRpuekPHq9HgsXLsQnn3yC3NxcNGzYENHR0fDz8xO7NCIiIoNZxQTq2NhYrFq1CvHx8bh9+zZ++uknhISEoH79+gV6hRo1aoS9e/cCAJ48eYIpU6bg559/RkJCAo4dO4ZevXrBzc0Nffv2FetXsXopKSl48803MWvWLOTm5iI0NBQXLlxgECIiIqtlFZfWOzs7IyYmBrNnz0Z6ejo8PDygUCgQFRVVYCL09evXkZaWBgBwcHDAlStXsG3bNqSmpsLDwwMBAQGIjo5+5XV07NUPP/yA0NBQ/PXXX6hYsSJWr16NsLAwDosREZFVs6qrycRgqxOoDZGTk4M5c+Zg/vz5EAQBTZo0gVKpNPkO90RERGVlNROoyfIlJiYiJCQEp06dAgCMHj0aS5cuhbOzs8iVERERGQfDEBXpwIEDCA8Px6NHjyCTybBhwwYEBgaKXRYREZFRWcUEajKvrKwsTJo0Cb1798ajR4/QsmVLXLp0iUGIiIhsEsMQFXDz5k20b98ey5YtA5C3J9zp06dRr149cQsjIiIyEQ6TUb7o6GiMHDkSOp0OVatWRWRkJHr16iV2WURERCbFniHCs2fPMHr0aAQHB0On06FDhw6Ij49nECIiIrvAMGTnfvvtN7Rq1Qrr16+HRCLBxx9/jJ9++gleXl5il0ZERGQWHCazU4IgIDIyEuPHj8fTp09Rs2ZN7NixA127dhW7NCIiIrNiGLJDOp0OY8eOxc6dOwEA3bp1w/bt21GzZk2RKyMiIjI/DpPZmfj4eLRo0QI7d+6Eg4MD5s+fD5VKxSBERER2iz1DdkIQBKxZswYffvghsrKy4OXlhd27d6N9+/Zil0ZERCQqhiE78PjxYwwfPhx79+4FAPTu3RtbtmxB1apVRa6MiIhIfBwms3Fnz55Fs2bNsHfvXpQvXx7Lli3DN998wyBERET0XwxDNkqv12Px4sXo2LEjbt++jfr16+PMmTOYMGECJBKJ2OURERFZDA6TiUSv10Oj0UCn08HFxQVyuRxSqXGy6f379zFkyBCoVCoAQHBwMCIiIiCTyYzy+ERERLaEYUgEarUaKpUKWq02/5hMJoNCoYCvr+8rPfaxY8cQEhKC5ORkODk5YeXKlRg+fDh7g4iIiIrAYTIzU6vVUCqVBYIQAGi1WiiVSqjV6jI9bm5uLubMmYMuXbogOTkZjRs3xvnz5zFixAgGISIiomIwDJmRXq/PH7oqikqlgl6vN+hx7969iy5dumDu3LnQ6/UYNmwYYmNj0aRJk1cpl4iIyC4wDJmRRqMp1CP0Iq1WC41GU+rHPHjwIPz8/HD8+HFUrlwZO3fuxKZNm1CpUqVXLZeIiMguMAyZkU6nM1q77OxsTJs2DT179sSDBw/QrFkzxMXFISQk5FXLJCIisiucQG1GLi4uRmmXkJCA4OBgnDt3DgDw/vvv4/PPP4ejo+Mr10hERGRv2DNkRnK5vMTL22UyGeRyeZE/37NnD/z8/HDu3Dm89tpriImJwYoVKxiEiIiIyohhyIykUikUCkWxbRQKxUvXG8rIyMB7772H/v37Iy0tDW3atEF8fDz69u1rqnKJiIjsAsOQmfn6+iIwMLBQD5FMJkNgYOBL1xn6/fff0aZNG6xZswYAMH36dJw4cQJ16tQxS81ERES2jHOGRODr6wsfH59SrUC9fft2jB07Funp6ahevTq2bdtWYu8SERERlR7DkEikUim8vb2L/Hl6ejrGjx+PyMhIAEBAQAB27NgBT09P8xRIRERkJzhMZoF++eUXtGzZEpGRkZBKpZg7dy6OHDnCIERERGQC7BmyIIIgYP369Zg4cSIyMjLg6emJXbt2oVOnTmKXRkREZLMYhixEWloaRo0aBaVSCQDo2bMnIiMjUb16dZErIyIism0cJrMA58+fR/PmzaFUKlGuXDksWbIEBw4cYBAiIiIyA4YhEeXm5uLf//432rVrhz///BPe3t44deoUJk+e/NIry4iIiMj4OEwmkp9//hkjRozAb7/9BgBo3LgxBg0aVOIK1URERGRc7H4QgVqtxujRo/Hbb7/BwcEBb731FgYMGIDs7GwolUqo1WqxSyQiIrIb7BkyM71eD5VKhW7duiEtLQ09e/aEu7t7gTYqlQo+Pj4cKiMiIjIDvtuamUajgVarhUwmw7BhwwoFIQDQarXQaDQiVEdERGR/GIbMTKfTGbUdERERvRqGITNzcXExajsiIiJ6NQxDZiaXy0u8Ykwmk0Eul5upIiIiIvvGMGRmUqm0xF3nFQoFJ08TERGZCd9xReDr64vAwMBCPUQymQyBgYHw9fUVqTIiIiL7w0vrReLr6wsfHx9oNBrodDq4uLhALpezR4iIiMjMGIZEJJVK4e3tLXYZREREdo3dEERERGTXGIaIiIjIrjEMERERkV1jGCIiIiK7xjBEREREdo1hiIiIiOwawxARERHZNYYhIiIismsMQ0RERGTXuAJ1CQRBAABotVqRKyEiIqLSev6+/fx9vDgMQyXQ6XQAAC8vL5ErISIiIkPpdDq4uroW20YilCYy2TG9Xo+kpCS4uLhAIpGIXY5V0Gq18PLyQmJiImQymdjlUCnxvFknnjfrxPNmeoIgQKfTwdPTs8RN0NkzVAKpVIratWuLXYZVkslkfJFbIZ4368TzZp143kyrpB6h5ziBmoiIiOwawxARERHZNYYhMjpHR0fMnj0bjo6OYpdCBuB5s048b9aJ582ycAI1ERER2TX2DBEREZFdYxgiIiIiu8YwRERERHaNYYiIiIjsGsMQGUXv3r0hl8vh5OQEDw8PDB48GElJScXeJzw8HBKJpMCtTZs2ZqqYgLKdN0EQMGfOHHh6esLZ2Rn+/v64evWqmSqmhIQEDB8+HHXr1oWzszPq16+P2bNnIysrq9j78fUmrrKeN77ezINhiIwiICAASqUS169fx549e3Dz5k3079+/xPspFAokJyfn377//nszVEvPleW8LV68GF9++SVWrVqF8+fPw93dHd26dcvfx49M69q1a9Dr9YiIiMDVq1exdOlSrFu3Dh999FGJ9+XrTTxlPW98vZmJQGQC+/btEyQSiZCVlVVkm7CwMOGdd94xX1FUopLOm16vF9zd3YWFCxfmH8vIyBBcXV2FdevWmatMesHixYuFunXrFtuGrzfLU9J54+vNfNgzREb36NEj7Ny5E+3atUP58uWLbXvs2DHUqFEDDRs2xMiRI3Hv3j0zVUkvKs15u3XrFlJSUtC9e/f8Y46OjujUqRPOnDljrlLpBWlpaahatWqJ7fh6sywlnTe+3syHYYiMZvr06ahUqRKqVasGjUaDffv2Fdu+R48e2LlzJ44ePYovvvgC58+fR+fOnZGZmWmmigkw7LylpKQAAGrWrFngeM2aNfN/RuZ18+ZNrFy5EmPGjCm2HV9vlqU0542vN/NhGKIizZkzp9CEyxdvFy5cyG8/depUXLp0CYcPH4aDgwOGDBkCoZgFzoOCgvDWW2+hSZMm6NWrFw4ePIjff/8d3333nTl+PZtl6vMGABKJpMD3giAUOkaGMfS8AUBSUhIUCgUGDBiAESNGFPv4fL2ZhqnPG8DXmzmUE7sAslzjx49HcHBwsW28vb3zv3Zzc4ObmxsaNmwIX19feHl54ezZs2jbtm2pns/DwwN16tTBH3/88Spl2z1Tnjd3d3cAeZ9YPTw88o/fu3ev0KdXMoyh5y0pKQkBAQFo27Yt1q9fb/Dz8fVmHKY8b3y9mQ/DEBXp+ZtkWTzvWTCkC/7hw4dITEws8KInw5nyvNWtWxfu7u44cuQImjVrBgDIysrC8ePHsWjRorIVTAAMO293795FQEAAWrRogS1btkAqNbyTn6834zDleePrzYzEnL1NtuHcuXPCypUrhUuXLgkJCQnC0aNHhQ4dOgj169cXMjIy8tv5+PgIMTExgiAIgk6nEyZPniycOXNGuHXrlvDTTz8Jbdu2FWrVqiVotVqxfhW7UpbzJgiCsHDhQsHV1VWIiYkRrly5IgwcOFDw8PDgeTOTu3fvCg0aNBA6d+4s3LlzR0hOTs6//R1fb5alLOdNEPh6Mxf2DNErc3Z2RkxMDGbPno309HR4eHhAoVAgKioKjo6O+e2uX7+OtLQ0AICDgwOuXLmCbdu2ITU1FR4eHggICEB0dDRcXFzE+lXsSlnOGwBMmzYNz549w7hx4/D48WO0bt0ahw8f5nkzk8OHD+PGjRu4ceMGateuXeBnwt/mevH1ZlnKct4Avt7MRSIIJcyUJCIiIrJhvJqMiIiI7BrDEBEREdk1hiEiIiKyawxDREREZNcYhoiIiMiuMQwRERGRXWMYIiIiIrvGMERERER2jWGIiMhAEokE33zzjdhlEJGRMAwRkcU6c+YMHBwcoFAoDL6vt7c3li1bZvyiiiEIArp27Yo333yz0M/WrFkDV1dXaDQas9ZERCVjGCIii7V582a8//77OHXqlFWECIlEgi1btuDcuXOIiIjIP37r1i1Mnz4dy5cvh1wuF7FCInoZhiEiskjp6elQKpUYO3Ys3n77bURGRhZqs3//frRs2RJOTk5wc3NDv379AAD+/v64ffs2Jk2aBIlEAolEAgCYM2cO/Pz8CjzGsmXL4O3tnf/9+fPn0a1bN7i5ucHV1RWdOnVCXFxcqev28vLC8uXLMWXKFNy6dQuCIGD48OHo0qULwsPDDf0zEJEZMAwRkUWKjo6Gj48PfHx8EBoaii1bthTY3fu7775Dv3798NZbb+HSpUv48ccf0bJlSwBATEwMateujXnz5iE5ORnJycmlfl6dToewsDCcPHkSZ8+exT/+8Q/07NkTOp2u1I8RFhaGLl26YOjQoVi1ahV+/fVXrF+/vvS/PBGZVTmxCyAieplNmzYhNDQUAKBQKPDkyRP8+OOP6Nq1KwDgP//5D4KDgzF37tz8+zRt2hQAULVqVTg4OMDFxQXu7u4GPW/nzp0LfB8REYEqVarg+PHjePvtt0v9OOvXr0eTJk1w8uRJfP3116hRo4ZBdRCR+bBniIgszvXr1xEbG4vg4GAAQLly5RAUFITNmzfnt4mPj0eXLl2M/tz37t3DmDFj0LBhQ7i6usLV1RVPnjwxeM5SjRo1MGrUKPj6+qJv375Gr5OIjIc9Q0RkcTZt2oScnBzUqlUr/5ggCChfvjweP36MKlWqwNnZ2eDHlUqlBYbaACA7O7vA9+Hh4bh//z6WLVuGOnXqwNHREW3btkVWVpbBz1euXDmUK8d/ZoksHXuGiMii5OTkYNu2bfjiiy8QHx+ff7t8+TLq1KmDnTt3AgBef/11/Pjjj0U+ToUKFZCbm1vgWPXq1ZGSklIgEMXHxxdoc/LkSXzwwQfo2bMn/vnPf8LR0REPHjww3i9IRBaHYYiILMq3336Lx48fY/jw4WjSpEmBW//+/bFp0yYAwOzZs7F7927Mnj0barUaV65cweLFi/Mfx9vbGydOnMDdu3fzw4y/vz/u37+PxYsX4+bNm1i9ejUOHjxY4PkbNGiA7du3Q61W49y5cxg0aFCZeqGIyHowDBGRRdm0aRO6du0KV1fXQj979913ER8fj7i4OPj7++Orr77C/v374efnh86dO+PcuXP5befNm4eEhATUr18f1atXBwD4+vpizZo1WL16NZo2bYrY2FhMmTKlwHNs3rwZjx8/RrNmzTB48GB88MEHnPxMZOMkwosD6ERERER2hD1DREREZNcYhoiIiMiuMQwRERGRXWMYIiIiIrvGMERERER2jWGIiIiI7BrDEBEREdk1hiEiIiKyawxDREREZNcYhoiIiMiuMQwRERGRXft/EOmjfwMT2oQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# perform 5-fold cross validation of the model\n", + "cross_validation.kfoldcv(k=5, verbose=True, show_plots=True)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.0" + }, + "vscode": { + "interpreter": { + "hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/feature_selection_single.py b/feature_selection_single.py deleted file mode 100644 index 8085e4a..0000000 --- a/feature_selection_single.py +++ /dev/null @@ -1,145 +0,0 @@ -#-*- coding: utf-8 -*- -# Author: Stephen Szwiec -# Date: 2023-02-19 -# Description: Single-Threaded Feature Selection Module -""" -Copyright (C) 2023 Stephen Szwiec - -This file is part of pyqsarplus. - -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program. If not, see . - -""" -import datetime -import random -import numpy as np -import sklearn.linear_model as lm -import itertools - -def mlr_selection(X_data, y_data, cluster_info, component, X_ext=None, y_ext=None, learning=50000, bank=200, interval=1000): - """ - Performs feature selection using a using a linear regression model and a genetic algorithm on a single thread. - This is the vanilla version of the algorithm, which is not parallelized. - - Parameters - ---------- - X_data: DataFrame, descriptor data (training set) - y_data: DataFrame, target data (training set) - cluster_info: dict, descriptor cluster information - component: int, number of features to select - X_ext: DataFrame, descriptor data (test set) - Y_ext: DataFrame, target data (test set) - model: str, learning algorithm to use, default = "regression" - learning: int, number of iterations to perform, default = 50000 - bank: int, number of models to keep in the bank, default = 200 - interval: int, number of iterations to perform before printing the current time, default = 1000 - - Returns - ------- - best_model: list, best model found - best_score: float, best score found - best_q2: float, score of best model found (not best q2) - """ - - now = datetime.datetime.now() - print("Start time: ", now.strftime('%H:%M:%S')) - - if (X_ext is None and y_ext is None): - is_ext = False - elif (X_ext is not None and y_ext is not None): - is_ext = True - else: - raise ValueError("X_ext and y_ext must both be None or both be DataFrames.") - return None - - print('\x1b[1;42m','Regression','\x1b[0m') - y_mlr = lm.LinearRegression() - - # a list of numbered clusters - nc = list(cluster_info.values()) - num_clusters = list(range(max(nc))) - - # extract information from dictionary by inversion - inv_cluster_info = dict() - for k, v in cluster_info.items(): - inv_cluster_info.setdefault(v, list()).append(k) - - # an ordered list of features in each cluster - cluster = list(dict(sorted(inv_cluster_info.items())).values()) - - # fill the interation bank with random models - # models contain 1-component number of features - # ensure the models are not duplicated and non redundant - index_sort_bank = set() - model_bank = [ ini_desc for _ in range(bank) for ini_desc in [sorted([random.choice(cluster[random.choice(num_clusters)]) for _ in range(random.randint(1,component))])] if ini_desc not in tuple(index_sort_bank) and not index_sort_bank.add(tuple(ini_desc))] - - # score each set of features, saving each score and the corresponding feature set - scoring_bank = list(map(lambda x: [y_mlr.fit(np.array(X_data.loc[:,x]), y_data.values.ravel()).score(np.array(X_data.loc[:,x]), y_data), list(X_data.loc[:,x].columns.values)], model_bank)) - - # create external scoring bank if external data is provided - if is_ext: - scoring_bank_ext = list(map(lambda x: [y_mlr.fit(np.array(X_data.loc[:,x]), y_data.values.ravel()).score(np.array(X_ext.loc[:,x]), y_ext), list(X_ext.loc[:,x].columns.values)], model_bank)) - - def evolve(i): - """ - Evolution of descriptors for learning algorithm, implemented as a function map - - Parameters - ---------- - i: list, descriptor set - """ - i = i[1] - group_n = [cluster_info[x]-1 for x in i] - sw_index = random.randrange(0, len(i)) - sw_group = random.randrange(0, max(nc)) - while sw_group in group_n: - sw_group = random.randrange(0, max(nc)) - b_set = [random.choice(cluster[sw_group]) if x == sw_index else i[x] for x in range(0, len(i))] - b_set.sort() - x = X_data[b_set].values - y = y_data.values.ravel() - score = y_mlr.fit(x, y).score(x, y) - if is_ext: - score_ext = y_mlr.fit(x, y).score(X_ext[b_set].values, y_ext) - return [score, b_set, score_ext] - else: - return [score, b_set] - - # perform main learning loop - for n in range(learning): - # initialize best score to the worst possible score - best_score = -float("inf") - if is_ext: - best_q2 = -float("inf") - # Evolve the bank of models and allow those surpassing the best score to replace the worst models up to the bank size - rank_filter = filter(lambda x, best_score=best_score: x[0] > best_score and (best_score := x[0]), map(evolve, scoring_bank)) - scoring_bank = sorted(itertools.chain(scoring_bank, rank_filter), reverse = True)[:bank] - if is_ext: - scoring_bank_ext = sorted(itertools.chain(scoring_bank_ext, rank_filter), reverse = True)[:bank] - # print the current time every interval iterations - if n % interval == 0 and n != 0: - tt = datetime.datetime.now() - if is_ext: - print(n, '=>', tt.strftime('%H:%M:%S'), scoring_bank[0], scoring_bank_ext[0]) - else: - print(n, '=>', tt.strftime('%H:%M:%S'), scoring_bank[0]) - # print output and return best model found during training - print("Best score: ", scoring_bank[0][0]) - clulog = [cluster_info[y] for y in scoring_bank[0][1]] - if is_ext: - print("Best q2: ", scoring_bank_ext[0][0]) - print("Model's cluster info", clulog) - fi = datetime.datetime.now() - fiTime = fi.strftime('%H:%M:%S') - print("Finish Time : ", fiTime) diff --git a/kernel_methods.py b/kernel_methods.py deleted file mode 100644 index 201c68c..0000000 --- a/kernel_methods.py +++ /dev/null @@ -1,169 +0,0 @@ -#-*- encoding utf-8 -*- -# Author: Stephen Szwiec -# Date: 2023-02-19 -# Description: Kernel Methods Module -""" -Copyright (C) 2023 Stephen Szwiec - -This file is part of pyqsarplus. - -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program. If not, see . - -""" -import numpy as np - -def epanechnikov(t): - """ - Returns the Epanechnikov kernel function evaluated at t - - Parameters - ---------- - t : numpy array, shape (n_samples,) - - Returns - ------- - numpy array, shape (n_samples,) - - """ - return np.where(np.abs(t) <= 1, 0.75*(1-t**2), 0) - -def gaussian(t): - """ - Returns the Gaussian kernel function evaluated at t - - Parameters - ---------- - t : numpy array, shape (n_samples,) - - Returns - ------- - numpy array, shape (n_samples,) - - """ - return (1/np.sqrt(2*np.pi))*np.exp(-0.5*t**2) - -def laplacian(t): - """ - Returns the Laplacian kernel function evaluated at t - - Parameters - ---------- - t : numpy array, shape (n_samples,) - - Returns - ------- - numpy array, shape (n_samples,) - - """ - return np.where(np.abs(t) <= 1, 0.5*np.exp(-np.abs(t)), 0) - -def cosine(t): - """ - Returns the Cosine kernel function evaluated at t - - Parameters - ---------- - t : numpy array, shape (n_samples,) - - Returns - ------- - numpy array, shape (n_samples,) - - """ - return np.where(np.abs(t) <= 1, np.pi/4*np.cos(np.pi*t/2), 0) - -def logistic(t): - """ - Returns the Logistic kernel function evaluated at t - - Parameters - ---------- - t : numpy array, shape (n_samples,) - - Returns - ------- - numpy array, shape (n_samples,) - - """ - return 1/(np.exp(t) + 2 + np.exp(-t)) - -def sigmoid(t): - """ - Returns the Sigmoid kernel function evaluated at t - - Parameters - ---------- - t : numpy array, shape (n_samples,) - - Returns - ------- - numpy array, shape (n_samples,) - - """ - return 2/(1 + np.exp(-t)) - -def kernel_weighted_polynomial_regressor(x, y, degree=2, kernel=gaussian, h=1): - """ - Returns the kernel weighted polynomial regressor - - Parameters - ---------- - x : numpy array, shape (n_samples,) - y : numpy array, shape (n_samples,) - degree : int, default=2, degree of polynomial - kernel : function, default=gaussian, kernel function to use - h : float, default=1, bandwidth parameter - - Returns - ------- - - """ - n = x.shape[0] - K = np.zeros((n,n)) - for i in range(n): - for j in range(n): - K[i,j] = kernel((x[i]-x[j])/h) - X = np.zeros((n, degree+1)) - for i in range(n): - for j in range(degree+1): - X[i,j] = x[i]**j - return np.linalg.inv(X.T.dot(K).dot(X)).dot(X.T).dot(K).dot(y) - -def kernel_weighted_polynomial_classifier(x, y, degree=2, kernel=gaussian, h=1): - """ - Returns the kernel weighted polynomial classifier - - Parameters - ---------- - x : numpy array, shape (n_samples,) - y : numpy array, shape (n_samples,) - degree : int, default=2, degree of polynomial - kernel : function, default=gaussian, kernel function to use - h : float, default=1, bandwidth parameter, a radius of smoothing - - Returns - ------- - numpy array, shape (n_samples,) - - """ - n = x.shape[0] - K = np.zeros((n,n)) - for i in range(n): - for j in range(n): - K[i,j] = kernel((x[i]-x[j])/h) - X = np.zeros((n, degree+1)) - for i in range(n): - for j in range(degree+1): - X[i,j] = x[i]**j - return np.sign(np.linalg.inv(X.T.dot(K).dot(X)).dot(X.T).dot(K).dot(y)) diff --git a/pca.py b/pca.py deleted file mode 100644 index d3df636..0000000 --- a/pca.py +++ /dev/null @@ -1,72 +0,0 @@ -#-*- encoding: utf-8 -*- -# Author: Stephen Szwiec -# Date: 2023-02-19 -# Description: Principal Component Analysis Module -""" -Copyright (C) 2023 Stephen Szwiec - -This file is part of pyqsarplus. - -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program. If not, see . - -""" -import numpy as np -import pandas as pd -from sklearn.decomposition import PCA -from sklearn.preprocessing import StandardScaler -import matplotlib.pyplot as plt -from data_tools import train_scale - -def pca(X_data, feature_set=None): - """ - Perform PCA on the data - Generate a scatter plot of the data - Optionally: plot the features_set as a projection within the scatter plot - - Parameters - ---------- - X_data : pandas DataFrame, shape = (n_samples, n_features) - feature_set : list, default = None - - Returns - ------- - None - """ - - # scale the data - X_data = train_scale(X_data) - # perform PCA - pca = PCA(n_components=2) - pca.fit(X_data) - # get the principal components - X_pca = pca.transform(X_data) - # create the loadings of selected features if feature_set is not None - if feature_set is not None: - loadings = np.zeros((2, len(feature_set))) - for i, feature in enumerate(feature_set): - loadings[:, i] = pca.components_[:, X_data.columns.get_loc(feature)] - loadings_norm = loadings / np.linalg.norm(loadings, axis=0) - # plot the data - plt.scatter(X_pca[:, 0], X_pca[:, 1], alpha=0.5) - # plot the loadings of selected features if feature_set is not None - if feature_set is not None: - for i, feature in enumerate(feature_set): - arrow_length = 0.5 - arrow_style = '->' - plt.arrow(0, 0, arrow_length * loadings_norm[0, i], arrow_length * loadings_norm[1, i], color='r') - plt.text(loadings_norm[0, i] * 1.2, loadings_norm[1, i] * 1.2, feature, color='r') - plt.xlabel('PC1') - plt.ylabel('PC2') - plt.show() - \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..789dac1 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,38 @@ +[build-system] +requires = ["hatchling"] +build-backend = "hatchling.build" +[project] +name = "qsarify" +version = "0.1" +authors = [ + { name = "Stephen Szwiec", email = "Stephen.Szwiec@ndsu.edu" }, +] +description = "QSARify: A tool for QSAR model development" +license = "GPL-3.0-or-later" +homepage = "https://stephenszwiec.github.io/qsarify/" +readme = "README.md" +keywords = ["QSAR", "machine learning", "cheminformatics"] +classifiers = [ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", + "Operating System :: OS Independent", + "Development Status :: 2 - Pre-Alpha", + "Intended Audience :: Science/Research", + "Topic :: Scientific/Engineering :: Chemistry", + "Topic :: Scientific/Engineering :: Artificial Intelligence", + "Topic :: Scientific/Engineering :: Bio-Informatics", + "Topic :: Scientific/Engineering :: Information Analysis", + ] +dependencies = [ + "numpy", + "pandas", + "scikit-learn", + "scipy", + "matplotlib", +] + +[project.urls] +repository = "https://github.com/stephenszwiec/qsarify" +issues = "https://github.com/stephenszwiec/qsarify/issues" +homepage = "https://stephenszwiec.github.io/qsarify/" +documentation = "https://stephenszwiec.github.io/qsarify/" diff --git a/src/.ipynb_checkpoints/Untitled-checkpoint.ipynb b/src/.ipynb_checkpoints/Untitled-checkpoint.ipynb new file mode 100644 index 0000000..fc70966 --- /dev/null +++ b/src/.ipynb_checkpoints/Untitled-checkpoint.ipynb @@ -0,0 +1,1599 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "2a56c28f-2cc5-4baa-b30b-4e85453affcb", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# basic toolkit for the workflow\n", + "import pandas as pd\n", + "import data_tools as dt\n", + "import clustering as cl\n", + "import feature_selection_single as fss\n", + "import feature_selection_multi as fsm\n", + "import cross_validation as cv\n", + "import export_model as em" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "70cd653c-efdc-405b-989a-a50d40f5b9a5", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# in this example, the last column is the response variable (log10 of LD50)\n", + "# we use pandas to manipulate the data\n", + "dfx = pd.DataFrame(pd.read_csv('28BenzeneDescriptors.csv')).iloc[:,:-1]\n", + "dfy = pd.DataFrame(pd.read_csv('28BenzeneDescriptors.csv')).iloc[:,-1]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "9992350f-1431-49d3-9f57-1cef849eb4cc", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
No.AMWSpMvMeMsnBMARRRBNRBF...PCWTeLDIHyAMRMLOGPMLOGP2ALOGPGVWAI-80Infective-80BLTD48
016.5108.2840.6490.9712.00061.00000.000...10.1000.062-0.92126.0582.2555.0852.04700-3.46
126.14310.0450.6260.9691.95260.85710.067...11.3710.057-0.93631.0992.6086.8022.51400-3.80
238.7949.4380.6581.0373.07480.88910.071...2.2090.144-0.63633.3831.7973.2292.00000-3.03
348.06811.1990.6361.0242.93380.80020.118...2.4410.130-0.67238.4242.1504.6232.46700-3.36
458.06811.1990.6361.0242.93380.80020.118...2.3130.123-0.67238.4242.1504.6232.46700-3.36
\n", + "

5 rows × 676 columns

\n", + "
" + ], + "text/plain": [ + " No. AMW Sp Mv Me Ms nBM ARR RBN RBF ... \\\n", + "0 1 6.510 8.284 0.649 0.971 2.000 6 1.000 0 0.000 ... \n", + "1 2 6.143 10.045 0.626 0.969 1.952 6 0.857 1 0.067 ... \n", + "2 3 8.794 9.438 0.658 1.037 3.074 8 0.889 1 0.071 ... \n", + "3 4 8.068 11.199 0.636 1.024 2.933 8 0.800 2 0.118 ... \n", + "4 5 8.068 11.199 0.636 1.024 2.933 8 0.800 2 0.118 ... \n", + "\n", + " PCWTe LDI Hy AMR MLOGP MLOGP2 ALOGP GVWAI-80 Infective-80 \\\n", + "0 10.100 0.062 -0.921 26.058 2.255 5.085 2.047 0 0 \n", + "1 11.371 0.057 -0.936 31.099 2.608 6.802 2.514 0 0 \n", + "2 2.209 0.144 -0.636 33.383 1.797 3.229 2.000 0 0 \n", + "3 2.441 0.130 -0.672 38.424 2.150 4.623 2.467 0 0 \n", + "4 2.313 0.123 -0.672 38.424 2.150 4.623 2.467 0 0 \n", + "\n", + " BLTD48 \n", + "0 -3.46 \n", + "1 -3.80 \n", + "2 -3.03 \n", + "3 -3.36 \n", + "4 -3.36 \n", + "\n", + "[5 rows x 676 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dfx.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "daf17e1a-182a-43c3-9b92-68f76eec6b74", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(28, 676)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dfx.shape " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "bd7cbef0-6a23-4430-a582-d7c6f9970097", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(22, 549) \n", + " (6, 549)\n" + ] + } + ], + "source": [ + "dfx = dt.rm_nan(dfx)\n", + "dfx = dt.rm_constant(dfx)\n", + "dfx = dt.rm_lowVar(dfx)\n", + "dfx = dt.rm_nanCorr(dfx)\n", + "xtrain, xtest, ytrain, ytest = dt.sorted_split(dfx,dfy,0.2)\n", + "xtrain, xtest = dt.scale_data(xtrain, xtest)\n", + "print( xtrain.shape, '\\n', xtest.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "09a250cf-a5c9-465c-ae07-d96f210c413f", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAGNCAYAAACISt+uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9f1ic5ZU+fidCnGqIJIJO0qDEBjvaYIkNlrTShja40JVd6cpaPi3fSiu7YSuttNKVrlTZJWuw0kqXtGLLKpXUUMWIEiMamhCDARMMJBllmpCAhAQMkzAJJEzC5P7+cT/vO9ptt12T1lLnXNdcIfPjfd/n53nOOfe5zzSSREhCEpKQhCQkf8Uy/f1+gJCEJCQhCUlI/tQSUnYhCUlIQhKSv3oJKbuQhCQkIQnJX72ElF1IQhKSkITkr15Cyi4kIQlJSELyVy8hZReSkIQkJCH5q5eQsgtJSEISkpD81UtI2YUkJCEJSUj+6iWk7EISkpCEJCR/9RJSdiEJSUhCEpK/egkpu5CEJCQhCcnvlC1btiAjIwPz5s3DtGnT8Oyzz/7B37S2tuITn/gEHA4HrrrqKjzyyCP/4zsNDQ249tprceGFF+Laa6/FunXr/gRP/24JKbuQhCQkIQnJ75Tx8XF8/OMfR1VV1R/1/QMHDuALX/gCkpOTsXPnTnzve9/DN7/5TTQ0NNjf2bZtG2677Tbk5OSgu7sbOTk5+Md//Ed0dHT8qZoBAJgWIoIOSUhCEpKQ/CGZNm0a1q1bh1tuueX3fudf//Vf8dxzz+HNN9+031uxYgW6u7uxbds2AMBtt92G48ePY8OGDfZ30tLSMHv2bDz55JN/sucP+5NdOSQhCUlIQnLeZGJiAqdPnz7n65DEtGnT3vXehRdeiAsvvPCcr71t2zbcdNNN73rvb/7mb1BTU4MzZ84gPDwc27ZtQ2Fh4f/4zsMPP3zO9//fJKTsQhKSkITkL1wmJiYQ/aEPYew8XGvmzJkYG3v3le677z7cf//953ztoaEhXH755e967/LLL8fk5CRGRkYwd+7c3/udoaGhc77//yYhZReSkIQkJH/hcvr0aYwB+A6Ac7G//AAqxsYwMDCAWbNm2e+fD6vOkt+2Gq1I2Tvf/13f+e33zreElF1IQhKSkEwRuRCA4zxcZ9asWe9SdudLnE7n/7DQ3n77bYSFheHSSy/9X7/z29be+ZYQGjMkIQlJSKaITD8Prz+lLF26FC+//PK73nvppZewZMkShIeH/6/f+dSnPvUnfbaQZReSkIQkJFNEzlVh/V9/OzY2hn379tn/P3DgALq6ujBnzhxcccUVKC4uxuDgIH7xi18AEPKyqqoK3/72t5GXl4dt27ahpqbmXSjLb33rW/jMZz6D8vJy/P3f/z0aGxuxceNGbN269Rxa9oclZNmFJCQhCUlIfqfs2LEDixcvxuLFiwEA3/72t7F48WJ8//vfBwAcPnwYb731lv39BQsW4IUXXsDmzZuRkJCA//iP/8CPf/xj/MM//IP9nU996lNYu3YtHnvsMVx33XV4/PHHUV9fj09+8pN/0raE8uxCEpKQhOQvXI4fP45LLrkE9+PcYnYTAO4H4PP5/iQxu79kCbkxQxKSkIRkisif24351yQf5LaHJCQhCUlIPiASsuxCEpKQhGSKSMiye+8SUnYhCUlIQjJFJKTs3rt8kNsekpCEJCQh+YBIyLILSUhCEpIpIiHL7r1LSNmFJCQhCckUkWk4N4X1p2Wf/MuWD7KiD0lIQhKSkHxAZEoqu5/85CdYsGABHA4HPvGJT+CVV155vx/pf5U/VNqeJO6//37MmzcPH/rQh7Bs2TK43e53fcfv96OgoABRUVG4+OKL8Xd/93c4ePDgn7EV/1MeeOABJCYmIiIiApdddhluueUWeDyed31nKrbtpz/9Ka677jqbLHfp0qXvKjQ5Fdv0u+SBBx7AtGnTcNddd9nvTcW23X///Zg2bdq7Xk6n0/58Krbp98m08/D6oMqUU3b19fW466678G//9m/YuXMnkpOTkZ6e/i7Kmr80+UOl7R988EH88Ic/RFVVFbZv3w6n04nU1FScOHHC/s5dd92FdevWYe3atdi6dSvGxsZw8803IxAI/Lma8T+ktbUV3/jGN9De3o6XX34Zk5OTuOmmmzA+Pm5/Zyq2bf78+Vi1ahV27NiBHTt24HOf+xz+/u//3t4gp2Kbflu2b9+ORx99FNddd9273p+qbfvYxz6Gw4cP26/du3fbn03VNv0uueA8vD6wwikmN9xwA1esWPGu91wuF++555736Yn+bwKA69ats/9/9uxZOp1Orlq1yn5vYmKCl1xyCR955BGS5OjoKMPDw7l27Vr7O4ODg5w+fTpffPHFP9uz/yF5++23CYCtra0k/7raNnv2bP785z//q2jTiRMnGBcXx5dffpmf/exn+a1vfYvk1B2v++67jx//+Md/52dTtU2/LT6fjwD4I4CPnMPrRwAB0Ofzvd9N+rPLlLLsTp8+jc7Ozv9R9v2mm27Cq6+++j491bnJgQMHMDQ09K42XXjhhfjsZz9rt6mzsxNnzpx513fmzZuHRYsW/UW12+fzAQDmzJkD4K+jbYFAAGvXrsX4+DiWLl36V9Gmb3zjG/jbv/1bLF++/F3vT+W27d27F/PmzcOCBQvwpS99Cfv37wcwtdsUkvMrUwqNOTIygkAg8L6UdP9TifXcv6tN/f399ndmzJiB2bNn/4/v/KW0myS+/e1v48Ybb8SiRYsATO227d69G0uXLsXExARmzpyJdevW4dprr7U3v6nYJgBYu3YtXn/9dWzfvv1/fDZVx+uTn/wkfvGLX+Dqq6/G8PAwysrK8KlPfQput3vKtun3SSj14L3LlFJ2lrwfJd3/1PJe2vSX1O4777wTu3bt+p01qaZi2z760Y+iq6sLo6OjaGhowFe/+lW0trban0/FNg0MDOBb3/oWXnrpJTgcv587f6q1LT093f47Pj4eS5cuxUc+8hHU1tYiKSkJwNRr0++TkLJ77zKl2h4VFYULLrjgfSnp/qcSCzX2v7XJ6XTi9OnTOHbs2O/9zvspBQUFeO6557Bp0ybMnz/ffn8qt23GjBlYuHAhlixZggceeAAf//jHUVlZOaXb1NnZibfffhuf+MQnEBYWhrCwMLS2tuLHP/4xwsLC7Gebim17p1x88cWIj4/H3r17p/R4heT8ypRSdjNmzMAnPvGJ/1HS/eWXX/6Tl3T/U8mCBQvgdDrf1abTp0+jtbXVbtMnPvEJhIeHv+s7hw8fxp49e97XdpPEnXfeiWeeeQa//vWvsWDBgnd9PpXb9ttCEn6/f0q36fOf/zx2796Nrq4u+7VkyRJ8+ctfRldXF6666qop27Z3it/vx5tvvom5c+dO6fH6XTL9PLw+sPJ+oGLORdauXcvw8HDW1NTwjTfe4F133cWLL76YfX197/ej/V45ceIEd+7cyZ07dxIAf/jDH3Lnzp3s7+8nSa5atYqXXHIJn3nmGe7evZvZ2dmcO3cujx8/bl9jxYoVnD9/Pjdu3MjXX3+dn/vc5/jxj3+ck5OT71ezmJ+fz0suuYSbN2/m4cOH7dfJkyft70zFthUXF3PLli08cOAAd+3axe9973ucPn06X3rppSnbpt8n70RjklOzbd/5zne4efNm7t+/n+3t7bz55psZERFh7wlTsU2/LRYa86cAHz+H108/wGjMKafsSHL16tW88sorOWPGDF5//fU21P0vVTZt2kSYSfbO11e/+lWSgkffd999dDqdvPDCC/mZz3yGu3fvftc1Tp06xTvvvJNz5szhhz70Id58881866233ofWBOV3tQkAH3vsMfs7U7FtX/va1+z5FR0dzc9//vO2oiOnZpt+n/y2spuKbbvttts4d+5choeHc968efziF79It9ttfz4V2/TbElJ25y7TSPJPYTGGJCQhCUlIzo8cP34cl1xyCaoBfOgcrnMKwD9DaUKzZs06Pw83RWRKojFDEpKQhOSDKOdK+fWXhS3988oHOl4ZkpCEJCQh+WBIyLILSUhCEpIpItNxbvyWH2TrJqTsQhKSkIRkikgoqfy9ywe57SEJSUhCEpIPiIQsu5CEJCQhmSISsuzeu0zZtvv9ftx///3w+/3v96OcVwm1a2pJqF1TT6Zy20IMKu9d3tc8u5/85Cf4wQ9+gMOHD+NjH/sYHn74YSQnJ/9Rv7XyTv7a8kVC7ZpaEmrX1JOp2DbrmesAXHQO1zkJ4Cv4YObZvW+KfipWHA9JSEISkpBMTXnflN0Pf/hDfP3rX8cdd9yBa665Bg8//DBiYmLw05/+9P16pJCEJCQh+YuWkBvzvcv7AlCxKo7fc88973r/91Uc9/v97/Kvnz171i68ePz48T/tw/6ZxWpPqF1TQ0Ltmnry52obSZw4cQLz5s3D9OnnR82EACrvXd4XZfd/rTj+wAMPoLS09HdeKyYm5k/yjO+3hNo1tSTUrqknf662DQwMvKvOY0jeH3lfFf0fWz24uLgYPp/PfllxvUIAnQCAKrwAQLbeG3gYwEsAdgF4w3zHd+GFaAFQBeBJAMBPAZTD9/Wvw7d8OYByAPfBZz73JSdjAADwALYD2AgA8MA3cyZ8V1wBX0oKngLwHIB9ALYD8KWloR+A77bb4EtJQUmJD1/9qg++Awdw3XU+xMX54Hv4YRwGAHSgqsoH3549SEnx4cMf9sFXXAzgGbQB8P3zP+u3114LX3k5fKWluPZaH/YB8D3xBHylpfA98wy6unx4BEAtgKfNv8cAHD7sA/AGdgF4xjz/8uU+lJT4ALyKpUt98H33u/CtXImHHvLBFx+PFwH8xPRZD4BWANsAlJf70NXlg+8HP4Dvqqvgu/56+D78YfiuuAJN5ju++Hj1zc03o9/0ySYAvpUr4UtJge/JJ/W7227DIIAmAM8CeAXAsWM+bATwoBkf3yWX4AAA369+hT1We6+4Ar60NPgefRR79/rwL//iA3AUhw/7dO3SUjNyO+Dr6ADQhCNHfLjqKh+OmbavMf3ue+EFdAEAHsILgPltGXxf/jJ8M2fiy1/2wXfsGLwAgA2IjPTBd8UV+NnPfGrPN78J4A34li+Hr60Nycn6PtCK66/3AXgAvptvRi0AYBgvAvA9+ih6enxobfXBN3MmgG67n667zqf23nsvXnrJh5UrffClpABohe/LX8bKlT6kpem9IwA6O3247jr9f2DAhwMHfBqXJUvgu/BC9PT49KzPPAPft78N34UXwjcwAF9VFXxf/Sqee84H3wsvwHf4MI4c8aELwH4AcXHm+fbtUzuTk/V3SorGYM8eXaOjA75jx/Av/6L77APgO3IEA4DGaflyteeKK3AEgG/pUvheegkDA5pzR4740AmgHsAAgC4Azzzjg+/ee+EbGEBPj8Z0zx4fqqpM2196SeOwcqXdB759+9Bv5s/TAHw336z5kJysOZGcrPU9MADf8uVaV2lp8D33nNrS1QVfZyd8K1dq/V5/PXwtLfB9+9toAgAcgu/JJ7HfrIE9e3w4csQH36OPwldcDN8TT6ANwBNm3e3Z40M9oPnzz/+MgX/8RwBAREQEzpdMOw+vD6y8H6UW/H4/L7jgAj7zzDPvev+b3/wmP/OZz/zB31vlLjoB3gcQOMQBgGxsZHQ09bfTSebmki4XGRdHJiayH+B6gAcAAq8R6CIHB8nubgI1BFaTZWVkYSGZn88zAIGt9PvJXoCrVpFMSND1qqr0b3Q0twH8GUAmJLAeIPPyyMpKJieTaWkks7MJPMHERPIwwA6AlZVkcTHJsjICv2Renu4BbCQbGkifj8zNZQtADg+T4eEE9pL9/WR9PRkXx8FBkoOD7AV4DKAH4GHzd38/GR1NMjaWZwCOA6yoINeuJadNI7OySIaHk04nKytJdnTQD+j56+rI1FQyPp50OEiHgwcANgN8BWCL6fudAN0AnzSvn5r7rAO4GuA209+vANwO8BRARkaSMTHcDXAYIAFyfJzD5rl3ArpnZKR9n4YGkpmZGteGBsbEmGcvKWFnp/pX/bONQCmZn8/aWhLoY38/db3qajI/n+vXq3vZ2MicHPIEwNpaDTnNswNbeQTgywCbm0m3W98DBnS9hgYCL2hcamvpcJC7zZgC+wnsYjNAL0C2tnIYYESE5qXXS9LlItCkm1ZUEDjEfoCMiWFLC+n36zsFBWQgoOcCmvgmQB9Aer2k16v+a23l+LjmAZubybg4+v1kTQ25YgXJggL2A7pOSgqZkKD+S00l/X69n5rKNQCBHt3c7+eAmUMFBSQTE8mqKvYCZE4OAwCXLtUcmjaNbDVznx0dZEqK5nxjI+nx6LP4eCYnk8AY29pIFhWRHR18DCArK8mSEgKH9HdSEufO1Z8ZGdScDwTYARA4xd0AnwKYnU0mJ5OMj2dzM8nmZv3b1MTSUv12aIjMzCQjIjRmLQDZ3c3Zs7UuXS7NK0ZGqm39/WxuNms2I4MLFpAMBNgCMCODXLBAS76mRp8zO5tnAD4PcNCM/5tmP2JsrNlnzk85HWvPexrgC+fwevoDXOLnfatnd8MNNzA/P/9d711zzTW85557/uBvrYEHqggcMgpvhMCDZFMTge8TKDb/5hHoYkwMCawl0EzgIVYC/BFA4BkCT5Dp6aTTSeBBAo0ENhFo4l772lvN52MEBuhwkMDtBG4j8F0Cj5jfbuLKldp3WFBA1tRowWZlsRvgypVm8aWkkPX1BDrJujp2ACwtJfcCXLxY+wHj4rhyJQm4db2MDBYXS2ExK4vAgFHUxQS+SWA1gUeZmUmyupqnAAJlBO6VEiguJnNyeAYgS0pYXKw9kjExpl++RuABAj821/sGgRX0+6Vj29utPtxrvt9p7r2JwCQzMvTc6qPTBJ5gXp42j6VLtb8WFNCMy1ECdxH4hnnvO+ZZ72JBgTbRVatI4Jdkbi6zskjgNba0kKWl1IHC5eKCBWRFBclAgM1GOTI2lkxKIjs7SY+HwFEyP1+beXo6WVYmRWAUJFtapDw9HjY0GAVTXMz2djNOKSlsayN7e6X/gQEyNpbAa1y9mlI2vb3c8A7l7vHop9rIx6SUvV76AAI1dAMEHqfDQXoBPUdpKVlezrY289ukJB16SkpIr5fTppGAT4NWWkpgkkVFpMcjJdvdTc2njg4yI4NZWdLxwCkGAtb4jXD1as3P+Hi1VWPxlA4jVVVkdTVratTfWjeHmJioa7W3q+t7e6ln8/kIHGV/Pwk0cuVKmrHyEXiCwAssLpaC0Hi+Zn6zyRwMtnDpUpoDxCF6vVLSQB/b2sxYFBVxaEiHBfX/Kd3f45Fi8fsJ/JJAF+l2MytLc2727HfOuRpzGFpLt1ttyM3VvNFaXs1Vq6TrdVDaYq7/mv4eHiY9HhYVScn29mrcATeBYU6bpj6NiFBb8/JIX1VVSNn9Bcn7puzOpeK4NfAvABwwyug+gOzoIPAE18FYdhkZWtHFxbb1MWhOmsAp2pZSRweBrZrUDQ3cBpC5udwEEPgah+0T/xZuA9hvTth+yzpxOKRAysrohyxMxsYyPl776OCgFl9FBcnCQraZ09/4uBZXRoY5QWdnE3DrGjk5HBqiTtX9/WRiIoFm3S8ykqyokKIqK2MjZEUxNVUbVnExly7VomV5uX6TkECgi3PnGmXr8ejmgYA2m9RU7gTYa/rIb150OLThVFaqXcbCOmCsrFbI4gtYSqaujiws5Bmrb/LzZYlmZNDnozaNqioyOdm2Dtnby1aAZwBZAlYb6+roBkifT/err5cCGB4mfT42NBgrLT+fjI9nfLxO3yws5IoV6vfCQpJJSbIooqP1/4YG059deu7OToaHqw/OALK4a2pIh4Ph4WRrK8mcHJaUUDtcS4uUUXc3vV5NMebns7RUY7x0KcmMDA4DzMsjGR6usWxt1SZdUiLrIT+fjInRvEhJIRMT6fOZNuXmMjtbbWFbG1esoPpgeJiMi5OXITmZbG0l4JZiTkqS5ehwcM0akgUFDABmHk+yu1uKdWiIWh9+PwE3jaYiMELm5PAEoGtnZJAdHVoz4eGyKOvq1AeVlZoXbrfGJD1d41NQoLmSm6vJn5OjQ1Z+vp7N7SaTk+kF+CZAVlTogBIISJsmJNiHKzY36/2WFjI+nr291PzOzZWirajgbrPu7HlqFpPXqz5kaSnZ3a1/4+L0fC0t6sfubs1Zl4udMJ6HggKyrIx7Aa5fT7KtTWuwqYmsqpLVbcaESUmyCMPD9aqp4QDA1FR1kS8l5bwruwaAL57DqyGk7N4fea8Vx62B7zeKBXiQ7OiQwist5RGj2H4G8DFLwY2Py90VEWGUzRMEfskagLVmA2htJX8A8MQ7Jn5lJbX5Fhdz9Wpqwy8vJysqWAO5/fYCZEQENwE61hoXjs+ndXUMcpEAXdpoAgFWV5Pr11PPVllJYCt7e41FZ1uETWxokJuovZ26WFsb29p0cm4FWF1NDkPuxO0Au82z6tQ5zDWQ2/F5gBwc5OCgNue8PKodPh8LCshu81uvUUCtkLvoKYCFhfL2NDSYvmhstEw4jsNYAx6PLJzGRvVBfT0ZEaFNq7ExuBGVlcl95XLRa/VdQwNPAdxg/d/jIdPT2d1NMilJyicQ4CnIYpLi1on7TaMACgtJoIsul07lMTEk6+ul5FJTGRcnZZGYSI1jfj7j4+We5OAgw8O1p1VWkszLI9DD1avVT4mJsmiYmMgBgLshK7wB0JzKzDSW7HfMc22VUq2slFJLTyfT05maaqx0gMBp/T41lbNnk4yOJjCm+3d2krW1zMjQng50yrrr76cXYHKysUrKyjSGMTF8AnJVvgxw7lwzVllZ2pzdbj1nf7/GKidHCtzhIFNT1YcJCWxrk+sbOM2GBnInwCOAFH9rK4eGjKVVV0d6PBpbs64KC8knAZ2wHA4eAVhjzY/6es2X8HCuA4KKu6hIrsW6OtLv5xlzOPADbLTmVV0dgUkuXizrdXCQUjYej+ZHcTFbWshGs96LijRnDlsHsMhI0uFQXzud3GDWGyMiSKdTh8zGRv3frFmWlOjwGgjwFci9PDQktyjDw8mEBPp8Zq4kJ+ugkpys/i0t1RrJzzfW7flVdusAvnQOr3UhZTe1JOjGfENxqaYmAk+QpaXGpdmnXaK+nhweNm6eQwQ6GRcnncHKSn0eGUkmJnKD2WyZk0PgKFtapFB2AmYD6GMA4LRpOrlnZGgPWbtWLo2KCpL5+ayulq5yuSitUl2te7hcbG7WYRWQ5ceWFtLp5AmALS3aUwag+E5iouXOOUrGxHDlSm1kciEOaAN0OtnernUWHW0bXgwEjGstECCrqqQg3G5tLE6nHnh4WBtQa6sUQlUVV67UtRobtbmPj5McHmYgIAWxciVJr5crV+rAzt5e0zcjXLqUXLxYxuLatbJkU1LkulqzhkH3oM9H1tba7qC8PI3f4sX6bkaGuszt1r5ZXEyz0R01BwYfWVTE1atluQ0CHB83/d3URFZXy1WWna3xzctjS4vunZtLMiODOTnqJ8bEMCdHhw4mJxPoIbCL4/aY98gaaG0lsF+WbnGxHtKyWAoL2QnFsBoa1FZt0HJ3s6pK92pp4apVGleWlcnV6HazuFj9LBdfsxpVXKwxcbmYlqa9fdwoAnq96vu6OlmatbVSKOnpcuNVVHDxYur6/f2cO9fcMzubra2mrZbVmJWlTT4Q0HPHx5szzAjj4qjNOzubS5fq+QIB857Xa/fp0JDmRU0NyfJylpToHuPjlA8xENDa8PkU18vOtuOJCxbQHPR8UniBgBRIXJzaZMaztjY4tyyPRW+vhmDpUhloDQ2043d5eZTScbvVj3l5ZGmpbe2uWUM9cFMTKyo0jPHxZk6Mj7OiQnPTbw4B3d0aP8vCZ1sbs7N1JomI0G9jYrRGAJ+8LMPDBJ78q1F2q1evZmxsLC+88EJef/313LJly+/97le/+lWzP7/7de2119rfeeyxx37nd06dOvWe++gPyZRWdg/DcmN+n+vMKRTo432QW+9NyIVDyO1WA8VTOmHFsh7STHU6CXQRaKYPsgaPmdMl8ABfgWX+b+FuY30cMe/VmOvthtxwXhi3SmIi4+KMK7GqitnZOkizooLdAMPDjdItKTEbzCkTh3lG13A6tanl5Ghzrawk4JbFGROjjaewkBwf52MAHzDP8RRAVlezsVF7zWHIstsNARDCw7XJVFeT9PvZ1qa94IRp9zrILWm9WgFtGMPDZEeHDXZ5EyATE/lfpk8ZHq4doqyMjItjwDo8lJZqNzEbDquqbDfpE+ae7O/nY1C8qwZQe51OsqGBuwGd5h0OG2jEpiauWqUNkK2t2rhqa6mYzAAHBxXzGxzUbc9AJ36POUgEAjRjvlWWZH8/gV3S8hkZlmFu3MpHpRiKiuh2U+3LzNQhKzGR7O1VDNHnI7DXxNW2kOXlHIQsyUGAbGujT3raxFKP8oiZLykpxvrv6GB7u3GbpqQQmCTr67lmjRkvQCeIjg5ZjjExZEODFE1mpj4zscrUVKrx6ek8ArCxkVKAJjZpjcXKlSRdLjsc4POZPi0qktVbVMTDkOufHo+0TFMTWVdnA6QYGUk2N8saKi/Xdw24yQ+5KllcLNdffDzZ2ck2Myct8JPHQ42vdSI0rsJAQMPC+nop7fh4nWw8HrKpSd6djg7NwZQUKWOHQ/fLzNShsrqaJ8y89VvPaM3LpiYyPl6eD6dTizI7m92A7So+Yw5U7Oy0D1CsqyObmtho9gMPZM11w7g/a2vp+9WvzruyawS48Rxeje9B2Vkhp5/97Gd84403+K1vfYsXX3wx+/v7f+f3R0dHefjwYfs1MDDAOXPm8L777rO/89hjj3HWrFnv+t7hw4fPtZv+V5nSyu4lM0GBYtLplBvFp5PVfQD/A+AaCP3I5GT6IVffYwAFKFnBdZDLs6BAxkCNmbyMjjaxPbc2mYgIWQZFRYq1VFbyAbM5P2+uu85SAuXlZGMje3t14jwDcM0aakOtrSUrKrhggawnP+RiBbaQdXVyeyUkkG1tBBRX8ABkXp7cRiUlbG/XoXwYchHVQ8jBNUZh0OHg+vVCsq0GWA7wB+Y+snLdsoTMRjR7tlyljaYt1r8/Mr9radHpmR0d3GmU+hnoANFt/mZGhjaopCT9PzJSfVFVJVO3qEibSVISnze/a7PGpqGBOyE050+heGiz2cS2QW4vuqXoW1pI5ucbUMEhuaoSEow19QSB/bZO5OCgFEd0NFNT5ZZbscKAh0wMczsUMwR61MbeXrK5Wcqis5MLFhjXstdru+i2QYeVNhg3Zne3AXTcRWAjgdWKGcXFMS2Nesa6OjY2ytVaCxB4QchXc9AahmKFq1bpviwqkoutt1eoQ6+XjI3lEbOZJierH5ieTtbW6lnGx9kNoUtXr6ZOO01NGme3m/T5pMAqK7VZx8XZfb8dcle3t+u3Ho9xNVqKo6VF7c/JIWtqODioy6xdSymUjg6ugbF8S0roMfOxFebAU1REZmfbiFovdGB8yvzG7abmUHMz6XQqVpuTQ3Z2Ehjj2rVyY7KxkYyJ4fr1xpuSkcHWVrmU20w/s7GRTE/XISMvj0xO5iYz1zYAMhFzctR/NTVkRYXWUnOzGu7x2LHNN81cZUuLXMLp6WR4uABHnZ1keDiPGCXq81GK2Bwyvva18+/GfB7gr8/h9fx7UHY33HADV6xY8a73XC7XHwUmJMl169Zx2rRp78JjPPbYY7zkkkv+6Gc4HzKlE+qdAJCeDiAcSEzEGAC8+CIioWz5SQCnAUQCgNOJGU4nrgYQBZh3Z2EIwFEAX/qSXscBzASAEyeAqChMm3atbhYbi7AwAA4HEBYGnDhhJynOBDAPwIT5FzfeCDidcDqBD39Y5KtpaQBwBli4EFi+HIsWAXPn6n54+mkAY8A112DZMgBxcebKb+CNsOtwEABcLlyBt4CFC+H1As8+C7wNABdfjEjzDJdZbVu6FKOjADAX0yHi2BkAYCfsz0Vioq6JG2/EqVPACJR0eYXps9Pv6OeeHmDHDuC46wb1bWwswpxORAGYBSAsKUltvuUWID4eYSkpQEYGLgOA1FTgb/4G+PjHgcRE4JprcBbAQvPM0wHg8GE4AMwxzz8rOhpzoPvNAeD1avwc4eGYmACwdSsmJt4GMII+QB2ZmgrgSjgcC7B379tYuBBAe7vdhoEBXT86GhgZMb/BXM2hsTEAc1FXB3QcuQqoq8PLL0/gNzOvR1SUhvulHXOAtWsxNjGB4wA+/3kzdiMjwNq1ePFFmBngADAfdXWaBz4fMN3pBDo7sXEjABzCWQDAlXqw6GgA83FZRASamsx/HQ5gclJtmD9fzairAxYsQFR4OBwOIDLSjN/EBDA5iZMAjk5cBIdp74kTZuBiYjSfHA4cGpslFomtW4EFC9QpYWGYY+ZtbCzg9wOjoxrvEQAHJybUAaOjQFISEBUFxMZiHg5h0SJovi5dCsyfj5MA8LGPAT09mAGtqygAWLRIF3z6ac3lqCicBhAVG4sJAIiMxLVRb+sesbE4NDSkce3qAjZsADADbW2at1i4EFi2DAkJ+hMzZ8LK1x4y10JfH7Btm55n+3ZMvPIKjpq5/bZ13fZ29cP8+UBUlNb8mTPAwYPA3r24CMDl/a/hIMw+8+abmNH3G2DTJoycOaMp43QCTieinE7McLkwa/IosHgx8PzzQGws1q/HX6wcP378Xa/fVwHCYru66aab3vX+72O7+l1SU1OD5cuX48orr3zX+2NjY7jyyisxf/583Hzzzdi5c+d7a8wfKVNa2YUBwLZtAA4DfX36/7JlGAJwFYBYAH0Aro6PB2bOxNDQEMLMZ0A7gAswy/x/3z6tgTAAZwHsmZjA25s2ITYWQGQkJnfv1ib51FPAI48AdXWIhDa8IWgRnYbp0GPHgEcewc03AxERwEGY/RTHtHE88ghWrNA+NQRoE8EFgMOBNWsALFmizQGfhtNp2pmWhkdfvAK48UZ8YeQXmDlT9zub/reYBd0jClLw+Pzn9XM4cBmkBOcB+HHTVVi7Fpg7dza+8Q0AhYU47roBgYC+M2Z+PwfatmdCivIrX9Fr5kxtgBgcxEGjOH8DaONYt04d+NnPAocPAz09GAWAl18G2tqAxkYpxKQk7AdwUUoKzkIJ7Fi8GG+bZ5wDAGVlWOJyYdaLv0IUtCfhySfxxpkz+ELYS0BkJDIyLoPLFa/N8ktfwm9GLwMQwMTEAYSHXwanEziU9EVERQG44AIUFABXGGW5bx+A22/H0qWXwQFgF65DWtosjIwAn1zwNvA3f4PkZAfmz9cByOmUIsDy5ZgOHZMCAXMompyEGR4AnwbgAfBRLF8OYP583HEH9OMvfQlf/jIAzIK45sfFXp+QACAcEydOYMkSzQlMTgKTkzh4EHhraIauvWyZ5o75+I47ADzwgDbnmTNxNYA5YyJbGBmR0sKyZToVGW0wL/IkHE6n5tfOnTg6MQHceCOucLkwCX312WfVP//P+WtMWvP5kUeA++8HDh7EybIfAg89BAwN4XNJJ3G5/y1gxw6cjJyHJEATHkBsZCSuNWsJp05J4SUl4SSA4wmf0dxwOPAp88C/Gb0MPa+8guPOqzEvMhJXADo8JSSgsjIc//ZvAHAKuPdeoKcH83BIY6ITBK6A1vHJlL/V2gkEsDAyEggE4IiPxxCktKYD6uSJCSAyEqeX3QTcey/aYQY1IQEYHNS8OnIEx80aQGYmTsdeLeUWG4vPJJ3GUcc8jA4MSMHOnavOm5jQoe7DH8bixTjvcr64MWNiYnDJJZfYrwceeOB33u//ynb123L48GFs2LABd9xxx7ved7lcePzxx/Hcc8/hySefhMPhwKc//Wns3bv3j+qH9yR/VjvyPMk7k8oZF6fAfHExB2F8/8Zl4YFiDfcBikPk5vJNgP8FoeGA/WR8PA9AcOG5c/Vb23VTUyNIukkgbWigXBeNjWRvLzsh5KbfuGQYEaH4Rnq6YiF5eXZiLzCpoH9yMlldzfBwXZZ5eczNNekAViJrSgpZWqrfxsfLPVhVZcOpU1Lk1WJlJXt7ldBM4zLywCDgWloIDLPDuFbdMAH/3l5GRMgl5IPQgGvW6LoMD1efGqTaXigVob/fINHy8hTzyc4my8sFu46L06u01EaleY0b047hJCaSbW1KM4iNJePi7Dii1beMjOQGy62Zmalns2IyVppEejrXrg2CC10u6rO6OhOz20SHQy7exET10dAQSZeLs2eTbgjkUV1NMjqa0dEmVub1EjikD7q72dJiAA81NZw7V6Ex5ucrRtXURKamapyio0mvlzU1Fnp/rXGv/khuv+Rk5ubKjc2WFg4NyaN7GAI6HQYMCvM0fVCMKDubim0VFjIrS7iOmhrjes3N5V7zvZwckvX1NjpxEKDfr7jkqlXm+/X1crdlZgrNWVCgv91uvT8+TiYncz0U+169Wp7KlSuN29ogQOnxKG5WVKT4nM/H6mp9bCNajcuZmZlkSwtPGDe3z4yxwbWQhYWKf+Xl8cQ73Nh5edQYDw7qlZJCn4/G/b/VuDFF8OAD2Npq0nVqalhbK2DXKePipdcrd3RGhubH+DhZXs6XAbKggG1tZl709uqeHR1kSYmFnVLfREZqP2huZqdxn1dXmzY0NJC9vdprzL5zxvQ709NJr5cBgAcOnH835gaAW87htcG4MQcGBujz+ezXxMTE77zv4OAgAfDVV1991/tlZWX86Ec/+gef+z//8z956aWX0u/3/6/fCwQC/PjHP86CgoI/vlP+jzKllZ3vwgvJxETGxBjY8/g4gUOKNSQna9fLzSVbW3kfDJAiP58sLzdIxzFtSnV1zMxUiINtbdqEsrO5HSBQygAExwfciueFh2uji4vT4k9Kop1RHRsr3351NVetMmCDQIAlJSaBu7KS4xAbBH0+sr+fjY0mCJ+XpxytmBiypkbAkIoKO+gOjGnjTE7WIvX5yMREdkLMKayoUJsDAW2Gfr/aFx1NFhQwPFx6fOVKkt3d9Pm0gHNzScbFqd8SEtgLkyMXF0e6XGpPba1AKiUlHDRKkP39wZy72Fjtyi0t2syKi3WzhgZtHunpao/Xq/ZUVrLXUsKFhRqbrCx7gzxllNBumFhIdLQ2JwNHN+lu7O42MbHUVDY3m1iVlZ/V0aF+zc2VQi8qUgqBx0MWFwsAkpVFejzabCsrbdCPtUEuXWo2uN5e9vYacEtTk67X3c3+fnPP8nKuX88gQ0tnJ5mZqbSJ7GyNld8vJVRZqY2xooLMz9f36+vt3EmPh2RJieKTDQ1kRwfHx8lOiKVjN8Qgwupqk3rziJ6nooIlJYol5uZSY5KQYMBVa5maSgG2DNOK8uxqND4JCYyI0IHgZQhQw5wcsqrKhvGPj5MsLAzG12prdQAaHLTjkhwc1DwoKNCzm/QWZmRokg8O6mAYGakFV1qqw1VTE9nZGUx1sJRVaan6pqyMbG21Y9ysqyOzsnTfzEwyPZ2BgMnDKy/XnHU69XxFRbpOaanGu6ZG7Wts1MEsNVXrx8rDKynRfHO7NSfKyoLpBcr7UZtycjTHS0rsXEImJdmhP98zz5x3Zfei2cfe6+tF/N9idufCdnX27FkuXLiQd9111x91rzvuuINpaWl/1Hffi0xpZdcC5doBa6XssrMJdLIGBnXldGoS5+byFQi0YlFUWSwpLC8ni4qonJj9ZGYmN5kNXBbggxyEFdjt4QYI4dltNvzmd/zN6GidZEtKTJ6NWCBYXc0FCwzUuqqKDYAsDTftBPDoaBrE5TNSpnFx+tzl0mIztGJnoFM4fT4t+JYWvgzlCo7DWJgeD9euNTD4jAw9U3g4gS0ExlhcLCVswftLSnSfJ4xS7zQbnoUWZFubNoHGRgZMey1atAoIVekxm4adZ+d0CpxgbWgGsWcj8pKT+SQEYmBuLlcbJfey+T+zssiiIhvddgSy0hkdbYMFLJ1mUYGJ6UYHiBUrBJ7o7iaZmKhDR0yMzTjCoiKGh8uys/KGWVZGJicL/u52kzk5XLrUHERycqTUurvJ6mohQUtL6fUaa6ysjBkZ2i9nz6b6Kz5eSMmYGD1HU5OunZIiq8HlIp1OpqWZTdpYKfT5yIICQeHdbtLj0WHJUgRZWVy/njbjictlnis+XoohK0vzKTeXjIykB8rNYyBgzw8mJJD19fa8GzbriJ2dUvgul01e8JQ15xoaNCet5PHqah0+kpJo899Z3GtlZZpYFiS5pERjVVBAVlXZiGZWVXHYjDGdTq3H3l49R3OzDljNzWR6OgsLpYyZmqqDQmmpQClVVVJ6TU1SsCbZnpWVGpyODhtwxvh49WFVle5lULNPAmrz4CBZUMADZl7YLoTOTq23tjYpz7Y2srlZ3oqICB1Q09PpBzTmbvefhEHlz63syPfOdrVp0yYC4O7du//gPc6ePcslS5YwNzf3j36u/6tMaWVXBaEPgWZtBBERjIujzcXowztg8vn5HDYKTzyAjxJ4XBM+L4/Ajwg8QEZHy7VlePqAJjI7m6cgbkkbttzdbTOOWEhMxsXxFShtgXl5LCoy/ITl5bRzl3JyDGeeXEHiRlSemnKlntEm5nYzEDA8n62tZGmp3GkWDVZ+PtnQwPZ22hyStUYptwImz2cbPRBK7RWIY9LrJYEXCAzQD1lQlZV6jsMwqM3kZDIiImi1NTerzQ4H3Qgm3XdDrshXoEPHdsgCeBJyl2w3fWFReA2bMRqGUJe95jptbVJmTxglesraXB0OMboMkiwo4CnIuiguto1DuaPKykzfPagxNKwiaWlG2eXlsbeX3A7RTdHnM+7vTiFDuw2NVUSEGZtDZFER+xFM4N4L2IcVHY6e0EbY2qqUkqIiKrduL4Efc9C0u7FRrCU1NRr7hgYhcIG1midOJ4HXBH23SAyMqxw4pbb19hIYIBMS+ArAkhKdBbyAGlhXJ+VVU8O9UMK732/aXlmpjbiiQkqipERWX12dlEBlJTuhA1xysqzU9etpK8716xlkS0lIkIJLSjK5j5METsl9adhITsHwfxo/fZuZE5beYVubHi47m6stBWO5hUtKyO5uuSd9PublyfuSlkaT/7rN5otdvNggUhMTWVxsXKk1NfR6Zfi53SRraqwsCrKgQAc0QxXX0GDQnL29ZHGxxqK5mR6PDjfHrHng8XCTmTcLFggt6/GYOVRWxjNmvneY/WEvoENKQgJ9N9983pXdywBfPYfXy+9B2f0htqt77rmHOTk5/+N3X/nKV/jJT37yd17z/vvv54svvsje3l7u3LmTubm5DAsLY0dHx3vroD9CpjRA5VIAwkruxrz4eLx64gQeeUQB5T0AtkAAlY0AEBuLywBcDQOqwAUA3sbYv/4r9vzsZwC+ASAbXUeOCIn45JPA7NkAFgAHDsARGSl8QGSkEAIjI9hjrj8KgUh69u7FJIDI2FigqgoPlp0WUODnPwcwC3v3vg2MjCA2JQXTps3Cnj0A/uu/kJFxKbZtO2gACIlwxMQAO3fiG98A5judwL/+KzAxgbIyAPHx+GXP9Tha9hPg5z9HTIxAMmehfydhEKETEwDG8RoEXukD8MVlRzFn5mkA8wEcwwgAh8slwMbDD+NtCHQx8sor2H/iBLogRnokJQmhsnQpTkL964iMxAiE8rwCwBXR0UgAMN3hwDwIbQkAkYmJuBoAUlLQB+D0iRMYMtfog0Axn+r5b4xC4JcxAI6ICBwFgOxsHIIBkd5+O05C2IM77xRG4uc/By5f/9+Az2dggacAXItvPv0ZOBzXIi/PoBafegrf+IYAPR/+MPCLZ2cZuOJliASg2PsMoKwMsUVFqKyci11feRBX5OTg4EHdc2F6Oh5/HIDHAzz8MICP4/iTTwJDQ6iogAAc+G+o9oYH80pKcB2E3TkN4Gu3HgfuvRcPPSRoFDBD4ByvF8A45gD49S0/FhhnZAR48UXExzuA/Hw803UVSkrmAxMTmDBDGxYGzElJEfKppQVvdHUBt9yCfRA+aN064LqRXwthA3PN+fOB55/XdExNFVpz40bsgwBJTqeu/eKLEPrz8cfxhZlbgAsuEMBq9mwhh9PTkZYGZGVdgAULHALcTE5ic18fHAkJmNP3Og6dOYOu55/HSQDT4+Nx880aM/UTgDffxHUAtvb0AMuXC1kZGQk4HPjxPYeAz34W998PlJRcjBdfPIDTP/8FAA/w+c8jUtMBF18MYOFCXHKJ1vTJr38do6PARRNHce3IFuBnP8Nn5u/Hg6vOAk89JXRmVRWSk4Evpp3Et+84LuSrw7QhKQn79qmbzgKIi5sLrFqFUQB33SW8zL8WncXV29eoowoKEBYTAycEDnM4NO+fefosTnZ14ewTa3C+5f0o3nrbbbfh4Ycfxr//+78jISEBW7ZswQsvvGCjKw8fPmxXorHE5/OhoaEBX//613/nNUdHR/FP//RPuOaaa3DTTTdhcHAQW7ZswQ033PAenvCPlD+ZGv0TSpBB5acEXmMlFAMDnjCuwDIqj24tlft02sToGo1FV8P7jCUkMtq9pMNhk/TK3beLwBZ6IZcjsIvMyDDMGmPmZFtKkSXfZe75BIGtTE42nIxOpzmhHyLT09kPixm/Tyf2pib9nZfHIxD113bAyiEny8tt1vbubpKRkVy7lvbJHBix+UBFRv1jAg/pxFtXZ9rzKEUQ/YhiG/n5cvnk57OkxCS2JyQYq+QBijT6NfO7Bwk8yPXr5fnRsz9CMbi8YPrp+xQpdA8dDot01+q/Jzh3rlglHA6xXeTmWvlohwg8TuAh+v18x3M+aPNLivTXTSYkGHLhZ7h6temLhgayuJgpKTqJ9/eT62BopowVyrw8MhCQy3F4WH2dlETW1NiMIcAWfd/l4vi4qQZRXk4ODytZvKKCrKpSDLSxkSkpclMq7jqg67S1sbdXp/p1xqLNyzNJ7x6P3IytrXKHRkcTaDYs/k2Mj5d7EnhcLrSqKq5ZY+KqkZGKPbW2kiUlpj86ZV02NBDYxsREmhy/SUP63CxTprKSjY2yphIT1UcWQ87QkIwoYNKQQ/toE0GnpJBZWVy6VHmMVmWDjAzDTNLbS+C0rEITbAZ2GULpU8zNlXWo9TFA4AlmZqpporA7ZAiW+whsY3S0YS7JziawlfT5gm5ly1VfUyPskL0Wu2QhVlZy2jQa1pxOWdgdHRbfOUtLNWdlua+liMu7yPFxFhUZN//goNk7fmQn3uv7fTY5NbDNXgA1NYbmb9Ai0d5q5vopNjTIoB0cNPSdPT3n3bJrAdh+Dq+W92DZ/bXIlLbsZMvMMHlLBwFcoOMpHJBN8jqADwE4iEceGYeywmYA8OIqqIaXKrf1A5GRBhI+AZ1/ogBcgd/AQpdfAIyNwekEXK6LsWQJ9DuEm3vMMM+zDwkJxlrIzRUcGRcLtw8dsBcsuBKoqlI+EGYDn/0sjgLYuVOWZ1+fUPpYtw6LFgEnTrytA3FuLjo7gXvuAeD3IyLiUrwx8wbIVnBAlewuwPbt6p0RALI7dwN4A1ixAvjYx5TDNDqKujplCygprwvAOGQd7YOSKYYB7MXy5TDthdqCw6bNVj8BQBRmz5axIFtvBoBwLFoEJCbOwty56seDBwHlmO02zzuOdesAwGtG5A185ztnsG3besH38RKQng6HAwCuwr+sOKtn3roV2LABIyNAWRmwebOs0jmmbUhMFD5/61bs3DlhzIrjwDXXAAsX4okngLd279YY3nMPRvXgsgRvvx14+WUZx48/DrS14ZZbgJPL/w779gHHju1WTifeRlMTgIQEzJ8PvAWlJYxCVsDOnQHgkUfQ09OP4Y9+BsuXA8ePHAHQL8sVh4LpHLhWz93bi6Qkk3mSkiLrv6cHuPFG7N59EMACIC8P+MEPMHduEj7xCd0L8CqDBVfKDBkZwZ49SsXbvn03/i7pbXz968Arr+wDICskI+MCfHLxaTNvvXDExmq+rlolLwJmYXJSmRMf/rCW1vcfvwpZWeF684IL9MI8TXNssjIxsHPndgDdAE4hKgrYs0fpZ8BleGbP1ZDtFMCRI8/JobF8OWJiPo1fPDsLL76o9r+wdZYs0BdfxPLlmmmxsWZ+RUYC8+drWd14I4D9mJg4jlcnb8CiRZqv9913ECMjJlUPM6G0kEOAhgwzZwK/2DgPLpcDwGycOqXcTi3Vg2bNntbfX/oSsGwZLr5Y3etwmLWDOABnAIzji7ecxZkzAfT1mSX1W9bO+ZBpODerLlTPboqJjcb8+tfNyewZsr9fVFORkWR8PNeZuNAaGGBDS4sdkD5hW3Qv8D6IKYTl5WRNjWJWljlVXi6kXF4e2dQki8IKVNfX83kT69hr7vEYoCC1n6TXq39NLS5WVelUHgiwpSWIpt9m4lnARqEOAwEF1rq7CTQyNVWsLlaMoLubBob9lNgghofph2KT4xD4hk1NrK7W6Xg9FLN7GULL+XxqXmsrycJC9vcrpGOTMCcmcjtgM6o8Cdhw9NpaWTQ2hD02Vj82KQ3t7dSF6+sVNElPt0/A9vv19bK+KirI6GjFWsvKyIgIemGg6nV1ZEyMAAIxMZw92xAxQ0w04yaeAvj4BEAWF7OmRqkjshyfUMymulrmRE6OLLbUVPb2Gqu7tVVIycRE0u83pZT6mJlp1a7bwowMPfaaNSaVAUKPPgHFP+uhuOKgbXH8iMBWxsToWQIBExeqrCTz8019tge5BmJgWQ+Q9fXviPl1iZHEzK9AwOJSPaq+rqggMzPZ2Giu29CgOFpBAVsQJAUvLTU0dfHx6vvycrK7W/E3l0u/8fsFEKmrsym4hoZkwGRkyPLrhKmmUVtLVlfbSFQ2NMiy8npl4bW00OcTGTMDAZnH4eFcDYOq9fvJ5GS+CTGmBAKUCdTWJqYcn08NjYyk1ys06WqzLpiayuTkoKXP8XENyuCgkK11dcqOgKGe8/tVnQCwEZZ7YepNZmbquupUeXN8DPaBzyczsKXFpl/7KSBvgAHODEMgt9WrTVywtNQmaGdrK+nziZWnro7A0+fdstsMcMc5vDaHLLspKv39hg5jHDAJ44iLA44cwQR0dpwDoG/3bgUyRkaAfftk2SAAYIZ9EkdkJOByiW1l506bTWHHDgC7dwNut2JbBw8Cw8PAkSM4CcXIJgHgyBH5w/ftw4yRQ6h/eQ5mPLUGpyenKyk1Lw/AQmDzZrhcOrkODZmk26wsAHMxq28XXm2fLjPFWH23326S4EdGgLg4XLfwJAYHAWCG7X8/ap7hJGSXYngYgA6mxxG0VRERgclJhXl27NCzRkUBR47o8wkA6OvDqLmelWQeFWUfpBXP7OuTmdbXp9hFby8wNib2j4EB9dHQEHDwIKKigOljx/X9rVv1HgB0deHQkSNqQGcnxk6cwHEYK2d4GBgYgMMBjA0M4PLLTZJ0dDQmJ4GLnE7T8gAWmb65+GIzFQAAxxXnczj0jCMjOoX39WF01MQABwYUh3I48Ma+GRgYAGJirsToKDAzIgLAxThzRgnWIyOyBOZERsIFjUdkpGHmKSzEvLg4Y3Fo1g0MTCA2Npi7jMlJICzMWKeXwgFZKA4AePpp5WG3twM4hvFxKC545AiGhsRPEB4+W23p6QFGR21WF1x4oShXLr8cYdB3p0PMIn19wMndu2VJ9/QAM2di0SJgoqcHE11dOD4xQ/PS78fZ3buB3l54PHbYTHntMMw7J04ATiemDx0COjp0g5kz9YqNBQ4fxqyR/WKUGR0FwsJw9swZTFhr4+BBIDISl8Gw5owelUV44IDm3MSErrN4MebgaJBZJyICiIpCV9c7vAJhYWpcWJjGzzB/WOsdYWFAeHjw2SMjcRFEmoCdO+W9iYzUNJmYwKyZ8gvh4ot1E6dT1xgbA5YsEXtKT4/2g7AwzDDXnZgwU21sTA82MgJrcc0AtCZsPpuQ/EXI+61t34sEY3blBGoMEm8rh4Zokia7WFCgw1ZtrUBomZlWbOJHijk4HEGoc3U17wO4EkrMXbBAlldmpuIEqtrhI3Ny7DSclhYZfHl5VrHKQ2R/P8PDgwh5ZmQoybSqSmivxkZjeXQKkl1eThYWinvP7WZKirj4YmJox22AbWR5OXNzhRCzqgMAT9llW9Su01QRzr0ETisW53SypsYOw+iE2tIiq9Ukvicnm/y/lhbm5Cgu5vHo8FtZqXu53VaM5yhXrFCzsrKClapFwDxGK5dLMYxGAj67KkJhoe6Vk2MVFN3I+HiTHG3SL2Rtq1CoBeNPTJS1FhenZygtJQkEmfSTk9nZqTjaGXOaB/YrHzEri0xJYU4OTVzwFBkTw8pKkw+OYNxNf+8i8H2+Api+LJYlVFxMoEmWkEmy7gbI3l72978DqdnURNbXm2v9ksD3jUXfRVZV2RUM2tqEyFy7NljHULHNJl2/sJAlJUotyMxUm5uh3LqYGGrAqquF4K2ttZG70dFCqnJ8XNZTZqZdGaC/X+tgaEgxwooKKrY3Ps7ERENSnpFB+v12NXs2NpIOB2tqaKNgGxpMXmFxsQYnIYFAD1ta9J2ICD3fqlWaU4sXm5Qbg6ZlYSE9HmsO/4jt7ebeppafnWYSE0PGx+vv7m6RO2RmmnW8V8/e2am6gm1t6sfyco6Pm/mcm6s/mppkRXZ0KA5XV6dGpKaSLhcbGjQfIyIML2l/Pzk8zNmzTU5idrba5HAIAe1wkEVFXLrUWp9jBB5SzLWqisCj3AAYcvcfnXfLbgvA18/htSVk2U1VMbbMzp0AzsLjsd4fxsiIDlt9fYoXiK7Lq+/jEI5PTOiIHxUFLFqEGZDVMjICHDhwBu3t8smfhqGXwkGgrw89PXp/zx6939NjjDCM4LTzCpw5cwwTE2JHspGb11yjGM3kJA4f1ndx4oTNN3gSACYmMDKiuM9B3cpYAm8DYWGYP19W2ugodPrHlTYPYTC+Ng59a7oOrxMT6OlRm06cgJB/+/bZR/cLLtAjOp0A5s838bZjdrv27QMGB/Vb9d+HMDio61nPSL4NK/YGmBAOxk1ves0J+DRGR2VBTk5aFJ2nsXv3uCyuJUsMvZlsO6dTjzg2ZhslmJjQPcfG1K8zZ8I2nRwOxaZOmhkREbFAp/yJCWD+fIyOAjMmjgM4BQwNweXSc1jn7iVLLJTaGQBR5u9ZAC4L3hinZaWMjQETE7KKZs7EFTOP4jSMpeX1Anv2yFpBOIAo4EMf0k3MvzNnmniO+XpPj57z8OEJAAvVubGxGBuTx2HhQl17ppmbo6OwacMOHoRNV3bkCHDppbLu4HBget9+YNEiREbqvbAw9bvHA8wLD9eYGxNxaAiYmDgOa7JERwPkhDo1NhZ79sB8x6aFlSUUFWUm6XEAtsGFs855ci4sXGh1FzA5qX79yEcQGwvjnQjA6xVLF06cQF+f+icM0L2tjjJzFQcOGOt9HLjySsDh0NozbUBsLC46+Bu9FxsbpPGynhWj+v/MmfosLg4ul+b5iRPjeo7RUSAqCseOjWsORUbixInxoJkeEQFccgkmJy0WtgCE7HaYMZ6BmbAefQ7Ot7wfaMy/Gnm/te17ETtmZ+I9wINkQ4PibTk59EHVCH4EJYYTJjE6M5OMjjZsKDUEVvMHxp9vMRXdZ50qzUmuuJg6BRYVKX5nFW+tqeFjJqb1inmWJ6w4Q3c32dbG7m792Q0YBNoWu8p2W5usx267DZtIn0+xlqYmE7PbwupqUyR0cNAuE9PZKUtyA5TTNADlEm5HkJGktVWnzicghOAac0IeHJQVVFpKWT6Dg0xMVNWDDijRtwOK8T1h+sY6/fb3Gyb8nBzlEcEknRcW0ubMKi8PMl9YlpCJ1TE/nywq0pgkJgZzINvaeML0426YHMfISJljERGMiZERNwjYFbmFoBtR3LKigg0Nqj8nuq4uIQc7O3XKT0lhYaEspZUrTbyrtpZLl5oYpN/PxERZRuvX0yADx9jYqPhoZaVB7iUk8E0ot3PFChOzi4ggXS4mJpJCpj5FYK+shJqaYD9XVJjT/lM2CrgesAkNGBPDiAhzf1PHrbpaw27n21VW0g9VJygtpdwKCQlkSgobAfb2Kt6VkmKuk5cXLLZYVaX4lEnW5/CwYlomx+wMRImVlaXp396uKhH9ULzZZtAxFRno97O93cRj8/LY2UnlCjY02Mwmj1nj29BgwXT5PKACDGYevQzQMgtPAezslJW9DiY2XFfH+HirVrBPiyYvj0NDhvatpERcBWaO9/eTLCuTFRkeTuNqUKwuMlLx7+5ure/kZOXMVVXp+729ikO2tWkd19drTTsc5PAw+/sN9ZshfOjvp50nKDdQN1laqu8UFRnvwPm17LYC7DqH19YPsGU3pZXdk2ajBRq5DTDAgqN8DAJbHIapUu5w8DAEJjkGGLaILQS22kCLBQtUoZkxMbwPAnvInfVL/gBWMuYTdBuFcBhiT1lvFhETEzXpTQkUFhbadGGBAO2SJH4/DZtJjxaaSWRNS7OgzNvkPomPVxJ6TY1WdUsLZ882gBZDScSsLNKtytdWMvZOgOzsZE2NYUaBkr+VyNzH8HA9olU2rLpaie/HTHsGzLW2Q+CEQQhGbyqh6KKFhfIr1tSI5ssoHHo8QQBPZSX7Yai+hoe1iViBfJeLdLm4HoJCW0CFDuv/hYVkYqLt7qPXqx24tlZu4aQko9T6lMDc1mbcuZPMy6MppdNnKxgLSt8GUb7R4zH0a9uUhtHRIXdxXR0tTrDCQpprbpELuKxMdFkdHWRDg5RfSgqLi2nD7YFhFhfLbRsI0Oa9ZGoqmZfHkhLDxpKVpecKD6cbcmcyPNx243k8NJXq3WRVlVx1/f3a8SsqSLdbrsGyMrKuTtfKzQ2y7TQ1sbDQJJ1nZJAJCVy71mzOcXF6npoasqxMvzXUerNnm6KrDQ2kz6eDWEyMxsDwktocl6mpQTqtwkIODRlGl9pasQlZB4HiYht8wpISm1uzEdDzxsdLoXZ2kqmpWh9Wdd2cHLKoiJWVWkfFxdShqa5OCjg7W4eV1lYdCOPiyN5eAa2cTtLhsEFXjI6WG99SXrGxGvv+fjI/X89gaiiOm/nf0MAgm09VleZeaqraMDgol6nVDivVxeFQB7W2/km4MV8FuOscXq9+gJXdlLZqv5CcbHwks5CUm4swAC0ts3ELgIXR0XA6HHIfFhbCmZ2NWACRlZW4LCkJghdcJdb0oSG8+CJQWxsOHDmC7wJ4EHJzZWdn4+7YWCwPD0dGxlcwBwLmHwWwBErgfmt0FGe3b8fbL78sf8/ChcDdd6OzE2hqAqZf/CGrwglmPLUGuPVW0L8A994L4OabbXfr9A3rsWBBEpY1NABpabj7biiH4bHHgK4u3HYbkOTzAddcoxIyu3cDIyO4yeHAEgCOhAQkJCXhDcf1cDiEc4HTietiYzHD5UJq6pW4/XbgFz8/jZsWHUJUVBAbEBkbi/kA5sfE4DOm7S7IEfPo8l/ha2G/ENP+ww8DTz6JQ3v3Alu3Yj4MaOXxx4G9ezH84evtOjHzAMxa+6jcYytWyMcVGSmY/8qVuBrGZXX77YgEcENCAj4XHo79d/4QePhhfKrnvzEJ4Gt3zwFuvx2HvvpV+eQWL0ZzM9DSciXm3PNPsHxKKSkXYHQUWLsWYCAGryZ9Gw/eexwYGsKddwKfqq3FmjXX4jN3XA10dGBoKAnT8/Pxy303oL8/Cc986Mtyce3YAZcLOB55BRobk5W1kJ+Pi8beBvbuBdaulWt7bAz/eech/Pfdb+Bf7jiN1NTLsGoVkJV1qVyM7e3o7w8Hbr4Zp6sexf33mwyIri5B9T/8YVzb0qJk9eXL8fTT+vzqyTeAPXtQUXEtvjf4DVRVQc/11FOaW5s2Yf/Tr8sP2tysvHGHA1i5Un0/ezZ+9KN9mJOXJ/ddeDh8PuCKsEN6/oUL5Yvv7FS6wt/8DfDKKzh27AC6uoAXHF8EduwQMOrMGewA8NaGDbjtQ89h2zZgTtm3gRMncPJjH7OrDlzufQOOnBzg1ltxVVaW8kGWLBHu3+UCSkqARYswOToKjIzgBgCor1fVhfp6/HDz9Rh5+WXMGDJw/bAwGyjyzWW78JmE43jxRWD0ttvkAy0sBD72MVxk/PBfjI8HXC6cdF6FhYmJ8s0XFWFhbCxw4404eOQIkJgoF3NGBhARgenx8YDDgdd++lMRTbjd+N6OL+Ki9HQsCQ/HFxfuwvHHHrPiCYpNOBxAcjKwbh2WLQPm5eZq0Do65Nfs7NRa2L0bv/zl/2U3++Nk2nl4fVBlSiu746+8gsmf/hTAODY/9hgcBQX4/OePYwugyb50qVBYCxdix5NPogl4BzPKKIDTKhmSl4d77oGdy/Y6gJsBNAF48skNONjXh1+cOYPnn1+P5yBltx/qPAuROQbgsogIYPt2bSbt7XjqqQkpiIICbN5s6m8ND2PLk08i/1szsGoVgGXL8Pjjpo6Z240DB9YBq1YBe/Yoz2z1aiA7G4iMxCOP1AN/8zfoe+wx3HortGhnzsSuiQmxccTEAH19NgvGs89CeUpeLzB3Ll5++SX87Gcv4dUdM4CREbS3CwTY2Qmgrw9vADg5MGDX+AMMog0ANm/GLMdp4IILsH9oCK8DwEc+gs0AXgMwsns30NaGy32/kfLZsQM9gGCfJ05I85o6f5FKCEMXxKICl0vXcziw78wZXLXvJQWkDh7ECLRfj/zHf2BecjJOtrcDUVH4TOxbcLmg8jMjI8DWrRgZ0e3KyoBfrp2OiQng6KTYUtLSALS3Y8cOQyoyOYnKSgBjY+jrU399Mew54Gc/w5aJG/BPtx7FrB2/RlOTOU9t2IBfbrwMh1K+DNxzj2Ky99yDnzw7D9+ruxZ4+GEsWxYEKl6x8b+BDRsUo923D/v2AdO3bsFddwFIS9PzZGYCX/4ysrMB7NmDr938tpRhVBQwNITNm4FbbwWuHXsNbwzNwdG+PsFC6+txfOH1opCZORPLlgEnH/qJFM8dd5hEzLnq823bMLR9O1atAo465uEt08/o6QFiY/EP/3AcKCgwTC7P4FOO1/GFHf8O3H+/DiLx8bCiwoiM1Dx1uYAPfQgX5eQo9jUxIcqWZctgF9tbulT/v+Yadci+fcCSJQhLTwc2b9YB6StfAW69Fadvuw233GJKJq1dC9x2mxq+bBnwt38rNpdbb8XddyumjdFR/ba/H7tGR9UPF1wA3HknLtqxRZ/n5OgUFx0NuFyYHxEBOBxiJ3K5xAo0fz7w7LOYY9YvPv1p/OetrwMOB04b9OWslJQg9NLhgBL+ooC5c/Fa1Wvoe+wxla+qq9Oh9Mtfxm9u/jaQnY070/bhfMsF5+H1gZX327R8LxJEYz5AYCv3AgS+xspKmnjcAwTcnDZNSLDwcIvt5EECTQTc9Bo3nSHiYLdxXcgN9UtmZ4tD8j7j/gMe4QBEBg1M0uUSn6JYGQYI7DJ5VFvtaiosKiKrquQaMiguITebbQRmfz/lZsnM5NKlZC9AYK9cNp2dDA9XKCA8nIb0ehfz8uQ2CwRomGG+Q7GRDBDoVOkg414Sk8VGAiNyK1munIoKm12CGRnme0/RYoFRO90E9pOBAFevVnOEGtxEYJtBxj1BMbcMMzxcXp8ge8YmpqUpvpSYKA9cRYWF7OyhGFM2GrfjanPdYuNi3mQYW1ZzcFDdt2qVmhUIUO6nsjKysZELFgg96IdiT7W1tKsZsLxcLj/DQWqVeHE45BIG3OzuljvKmissKeH69fp7GLCRlCwpCcaKoJw/er1kdLTGOzGRzMmhF2BaWpB1BzhEjo8rt9GwsDA8nImJBvWYnGy7l9nSQrrd4pHMzGRRkRmj3FwCzayuFrqW6enMyJAHlw4HPR6Bcy0vMYuKuGIFDcr1R3ozECCwhfT5xFASCJCxsQYh/Bp9ULzP4dCYZWfTVLY/zZwcxS8zMhQ/dbsp32Jvr5WmZ3lr2dAQLCAwe7a80tXVtMviaA6dJvCMPVfY0cG2Nn0/EBBqtLGRClq2tKh/y8o4e7ZhV+ntpdst17Hi08Ps7KTNKMP+fiYm6r69vVYIeS9zcw2faiBgFRMx63Yb4+MVm21pMcw9duz7KFtaDNuQ12v3i+Z/j3kdMrH0XWRuLpubyS9/+fy7MV8D+MY5vF77ALsxp7Sy2w4YSPmIXc0gOprBOJIVT8vIYMDEn5idTSYlcfZsA5POyyOTklhaajab1FQBXWJjjXLr432AUahSeAwP52GI6d9tNkN2dmqVeb0KzJWV2Zy3VjmYtjazEAsLtcAtiHhjIwsKFJKaO9dAnmNjCQxIGdbUWET4imllZAgAkZtLer0csGJ1OTkMQACANWvMJpmerlhKaiqBETocuo/fbyPzWVmpmJ3HXPt5E7sbNnEMwGdjdnw+KrBTU8PeXgM0KC21cRC9vQI3uN20ab5WrdJm099vYOHFxWR1NXthqkW0tLAfiqceAwTQMPRYzM/XrpeYqN9mZpr4YyeBRvp8wTzjFSvULsXPDpEREVIMppyPG0pLYX09z5iDA7OyyJISAq+R4+OKn1VWcvZsxc+AJim64WENXkeHGtfbS+bkMDdXSsDawH0+KZjSUpo+f40sLOQpQM/gpl2iiCkpmj8eD1layuZm2jXVRCU3QJaWqi0FBerA8XGyo0NVE7xe0uMRfVx+vjSOx0PW1opTGdDJoqKC1dXmugYowuFhsq5Ovy0uJoeHmZdHuzxVQwPZAZMUHhtL5uRwwQKF34qKDPGylYw9OMiaGgPe6O1VPC46mnQ6bWKFvdZ7UM3JpwD1Z2qqPe9YWBisfpCYaFdeqK7Wsh0aUhd0dpLMyFAs0WjmdVaM0O/neiiuHoAAMV4rbtfSQkZGcicEKHMDUnwdHWRMjNqUn89tZr1bBOTs7SVzczlurmmVn+rvN+WlKioU90xN1WGyqYlDQ+RTT51/ZbcDYM85vHaElN3UEmvgN5rNEtiqyV5cTKBPweqICDI+XgswO5s7zcQ/ZRSgcqrc2ljLy6lcNTdZVCSEWHi4Qc09wr2AsfC+y59CzCKbzIJym2uOAzrqORwCj5jcuNWrSfb2MiXFADyystgLMDHRLNrGRmZnG0WbnEzgGS3i4mItfCs3Lj1dG3VEhBbu8LCC9Z2dbIGp1ZeYKOXT2GiDUJiQINRdZKSxUPu0eQ8Osr9fiikj490AlV5zMDgCWUoMBIJVLZOTOW4dHEpK2Gwp/MhIBfAzM7UbxsSo/Ep5uY76eXlqh2EBYXY2N8AAUmpquM70YQcQBALU1vKAUd6nIIQbo6NtxpbaWtqs/GxoYEyMyekaHBSoZHiYmZmyztraSDqdnDbNsMcYQAbz80mfT8ojL4/MyAhWHsjJIXBah5XqalZW0i7B09hI0u9nZaWxNKqrmZWlcQwPp13oNifHbIhWUdLeXrKoSJZKbS09ZvNncrJdu27VKhrl6NPhwusV0MmMLYuKdJAxlS9cLkoJlpZq487LUz5ecjKZnc1hmPp3gYBdSohFRWRzs0BQTU0GsLM2WMKmsFBKrqyM2yHwF/v7g0UE8/P1f6tkU1mZfuPxSEFUVkrRZmaqzXl50uTl5arbZxQKCwqklAcH1XlWSYvOziBLS3MzmZgoJK5VB6+hgSwp0W/T06X0WlvVtuRkDVRZmQ4zVtmp+Hid7qqqaFefzcmxWYOOAbQG0WeNS3W1+qGhQf1rlVFITSVTU23FeQJCnXZCSF1WVtL39a+fd2X3OsDfnMPr9ZCym1oSdGN6ZOE4nQS2yLUHIS1zc7W+MjNpYOluAj2sqDAkyxkZZEoKu7tNsc2cHDI52Xz3CePaaDLW3SMEvmsU3r20CKVjYnSab2wMWjO9vSTj46XkrKJx5eW0sl17e02pk4QEodq6u3X6rarSJhwZSWC/oPPx8TYSurGRRhnu1Ube28vmZp125TIcYVubSR7v7ibz8ujxqK0ul9anF4ZCqapKRMMZGXqVlVHJ6LuMG7fLQtRLCScmqg25uWR/P9evN5ZLczMBlWIZHyfp8diuuvFxkwBdWqoNrKlJjQgE2NpqPfd+Aj2GyNhtkyzX1AQt4Oxs7XXh4SQ7OxkdbYrsVlfrBoYCjd3d9vU5Pk6mptqVyIFTtmUyCNjgToaH0+OhXU28vV2WTWenru/1KsmfpaWqTG/eZ3e3xre/Xz8uL5eVYyDxzM8nBwcZF6f7xcUZJZyaytWrta+73cFyS5Ye8HoN2bJRyuMwUPr8fFZUmD5pbpY11tSkHwUCDEAejoICki0tIgKPjyfQx+pqQ7RsCLCtKu5W9fkARN81OCg3cHOz6V+/n8AkU1KEbJ02jWRKiuZsQQGB/aytlf7o7laXFxTQpNjsZ3W1IbPu7SVbWgjsZ2amviP3Y7NdQB14lNHR8kaYswBra/XdjAyNv9stD0FbG8nhYSYn0xzedpn5f5SrV1tMYJ2WR5lADxcs0LP09lqux6O2C7mmRuMto/MJioauk8BpDg4GScYV1jjKzEy56YNEFX3MydG8VaL8Lm0ofj+feOL8W3YhZffeZUorO9/MmTZj/zZz6p02TZWcWVSklWQKL+6FaqxZjClWLUerdlhBgVnkjY10G6VQDcXoBiCeTeBe3gewAoZPMz5ep8GkJK2G4mKytFTxtsZGm1uR/f1ctcpYBRUVPAEE62I1NLC21tS9Ky0l0KeTal6erJaqKq24sjJ9ZmrNtbfTtgSGLUurpYXMz2dbm2nL4KA24eRk46rrIrDNroqel6cNwcpB6zDW6aB1yo2J0Yr2+8n6esUsqqrI6Gh6odpyO995IjapBYEAg6wxHo/aWVGh9oyP6xp+P7ute6amynVbWCit1tmp1/AwaTZgr7FIBgE7f8yiI2RbG9nby4qKYCxz/XqNQUkJyYgIuQ9LSpicbBS1VS28uzvIYdnaSjY00OsN8nkuXWpcrz4fu7u1afp86tvBQQ15RQXJlha7YG5lJWVhFRcL2p+dTXZ3SxEaehq3W9cYN33E+nr929Gh+JbTycWLTaxrfFw7dWysxiA2Vv1TXU3W1xMYtmvXtbbSHP7G1JcKEnPatCC/qJ1r19hIYL8OaMXFBFbrua2SASZPrdZY4N3desTxcTMeCQkKzlVWSmu0tko5p6ToeZuayI4OjX9kZNDCr62VVZeernxUKGWBCQnBnL7OTllmRUXBtJ7OTnk9WlulncLD+YplVZnP2dgo70dRkfo0JkaHj8xMzU+r4rjF7Spty26YGooZGTR5Lfp9cbH+zcjQPYuK1D95eWRxse5dWirNnJdHRkZqfXm99D355HlXdjsB7juH184PsLKb0mhMzJlj6ESOqYZbTw+SkgwzxtiYzSKPgwexMDxc7xtGjCNHxnHmDIA33wT27bM5AdHTg8sglOBFAICFmB8erusjEbMQ5JuE4f+zKVW6uoCDB4XUm5w0TCEAnn0W4+OGJX3HDkyHgGZDQwA2b8boqGGU2LcPwAVCih08iEsvhaDkPT0GrjlLFPcXXyzwXF8f4HLhIhhYrehZ8JGP6LZvTc4zHH0wN7sU4eFJYiEJC8NHPhIkqnCEh+t7IyOYZV3vxAmhItvbgZ4eoUk7OnDa8IJeNLTfRqRavKM4dgzTd7wG9PYKcbdnD66OPQ3s2yfGib4+wbQNh+BZADhyRKjPiQkNwqJFQspt347TugTmhIcDdXViMXE6gdFRzJ8vcCLCwgCHA0NDQVabRYvUyR/7mJo1cyaA2FgsXGij5VUCb3ISXV3Apz8NQSknJzE2BkzHWWBy0gYYAsCpU3qsWUO/wSHMw7yo00hKMhUhRkfh8+nao6Nm/jmdIuQPCwMWLcLl097G0airge3bVbdu3z5cFB2NQzOvDqasxMYKZQrda/Nm07dRUYDXqzGIjhbUds8eYGICixdfhutijwMf+YieZfFiACOwG+9wYOFC4JPXHAfCw9V/hsomOnoBrnKeNFQuAbzlvEGIzq4unD1zBpicxEkIu7xokTI/Ljr4GyEnBweFvGxvt5lc5s9H8Pp+P9DVhavnnwwymvT1GViy+h4TE7pWUhLgdhvS0Uj1X1ycmFKOHAEGBnA24Xpxp3Z1iavS5cIYgJnh4Rqkw4d1nchIDUJsrJ4lKkrr/M03NZ+t54uMBBYtwn4IfTwHAD75SSA62l7f2LdP/bxkiV5hYUHI7cc+hpkOh5Cgl1+uZ3W5xJPa0wNccQXOt4QYVN67TO22f+QjwLe+BYdjvkh5w8JEWgxoF7/8cn1n0SIgMlKT+ZZbgGXLsHjxxUhOhhb/hRdi2TKhihEVhUmILCoSgMt1AYbOnDHlf4YxHVKmEwAwd67ez80F7r5bO+bdd2uDuvBCLFwIfPSjAG6+Gbffbtb4rbfioqQk+P3ms09+Erffbrhpb7sNMTHztSCPHcP69dDGMzEBLFsGl2u2Fl54uPamyUmcnTkLM6OjRa6cmgokJWH9eq39KyZFGYVFi4CPfxxAAGfOBKQgenpQX689MzYWOG218bbbMGnaiLg4ICEBr8/8DHDXXXjgAQB33YUZOTmY73TihZ6r4AQwLy4O+M53MPz3/wSkpmLLxA3APffgMqcTr8d+ET+smgHcfTeefRY4FHktsGQJXu2ZgyjTzxgd1di4XMCNN+KNfTNwaPIyvDr7bzEjNVUbuMOh0jsA8PLL2B95vcrrADi75AbsGpmHtDQNw9CQUTgPPaS0iksv1ZhAXfuxj+mP8XHgbML1uH7+2/B6gf0T83Dy5n/EFX1b8Mu103E04XPo6dFvXt0zC5+M3o8LLwQQG4t5e17C2bAZGBqSwn1ryRcBCBGflAT8Zv7nAKdT6R9OJ1BVhV+8eBnmOE4CS5eqKbGxykfs+TXwla/gN/umA3v26FBkyIqdTuDX+64QvP7WW9XmEyc0t2++GXC5dI6ZmAC8XrXTHHpOd3XpHikpGB0FdvXN0sO+8orSQKKicORIAIdGL1LdGiwUE9nQEHDLLSJI37MHDigfctUq0Y1tGboauwCMHTmCke3bNS7Ll9v0dJNPPimlMDmJk1/5J7zRdxFGuroEzx8aAhYtUmrLrbcCYWG6T1WV6gilpOjE0NcnJVpbqzWam4vpT/8K81wunF7xTRwcHcXB3bsxHcDBM2d03b4+ICoKBwcGgJdfBo4cwej27ZrkkZGGjB2YeOopHTK7uoBFi3BVeDjmQ0XC0NaG/QMD2hgt/sEVK4CuLkxs2KBn27MnmGIRHa11N3euiOnnzsV1i87iZMKncPbaRQjJX5C836blexHLpH8KYk0Abqcfoghzu0Wv9QDAcuOK7DTf6zVm/BMAlYrwNT4PMYbk5cnD8RgE1PAa9xzwGj0QWCMmhnY5FKak8D5zj+eNG+R5y51YUUE2NLC52cQDHQ6uWWP8+c3NZG4uIyLkjRkHDCR8I9nSotiUcbcCe20XLGtrhRRMTSW9XqakKBWBg4N8DCpE2wBTvDQ52ZQBGuHPjMv1pwDXr7cKsA7bBTPpdnPuXPJliBrseYjm6THTtgoIyt/cLNfeXgj8c8L0UbPlRsrKstMd6HSSCQlCiDY1yR1VUaEOzsvjOuMyesoaw8pKPg9ROv0XxEjhgRCD2yEibqtsC/1+A9YZI+CWa6mgwBRn/SWBQ5w9WzEUdnfLpeRw0OUSg4oFyqPLRaBT5ViGhwl0ys3n85FNTQJ9eL2cNs24hPv75aqLiOBegPHxuh4rK8n+fgNt/w6VPvGoXIMuF+PjDbCktNT0/X42QqhQi/UGGOEgBGxYtYo2yCMxUX8vWEAFrRISeAqKLSYmMlhRtaND7ejooMe4fYuLqXGoq5Nbb3iYHB/XfMvPVyfExZEeD/dCSNzUVHkBa2vVDdtggFeJiXLVud360JRwam83bCqxseT4uCjpSkrI+Hi+CdF3uYEgUMQAOuj12qCX9UAwFuh06sbR0XJt5ueTTU12PA8YsN2dgYAJA0RHc3BQZbA2mbFkZiYZEyO3pNNJxsZyg2mjTWlmSKzZ20vm5+s5y8vVxooKuqF4qRsQRV5np/zZiYk8A4PiHB/nMdMOP6DgpeU2zc/n1752/mN2uwH2ncNrd8iNOTXlQsAc4U9hFEpK3b1bLpfLoGKPJ6GCqDhyBPsgS0IuybcBzAoW/ESQHHgSSl59AwBwASbNtwcGzmB0924M9fTg5KZNuAhB8uFJyCXnAGx3zc9/rsPq5MSEyUsd14lwwwZ8+tPyrkwAGD4yHUAAcDhw5szbOs739ACYD0xMyNU3fz4aGqDPHn4Yk5PGBThzJhxQm+dY97/5ZgwPA3PnXgqneX8OZBxs2ADMnn2ZXHhf+hJ+E3atyCrMNRymHcchN+5FgF0Mc2LClBI6cQL7Icv3LdM3ppKlrLPoaCA8XO5Nr1cEuT09usiiRZgEMD8yEhPWbycmMALAacYQKSm4Ojwc6OtTGd4uAB0dSvz92c+AyUnEx18M4KNyNS1caCyhiwGcxuWXG95fl0tvBwJITDTXnymvGJYuBbBAbZi4DMBHRV48NARERyMuDkBYGBISjEs0LMyudRQJ/TnL9D9geebiID6Zq0S0HBMDlwuYHhERdG/BYbwEsxAJU+I2/FIAMg7mzjUTcXRU7lOnUx6AyEjA64XD6UR8vIw6dHXJmlm0yHbjz4GMuZ07obnW3Q1MTODQ5GVBfywg91xfH/aHXY2roPF/+eUzGBlRk2bteRUT0Px8e/t2WWWArLGhIaC9HZ+MO4o5Pa/axOJXwdz8xAm4oHXmsBo2NgY4HHJDh4WZsstmbe7bhzNngBHL73/xxbanBuPjWLEC+PznAeByJZ07HJje/iqujjqKkSNHMM9xFHNgygjPnAmLuXq+5c50OHAcwHyYNdPXp/no9er7GzaokPO+fbrnnj2YDuCKqJM4bl3XYjAfGkKY04nLo4Mloy8CMMO42TExocnhcmkOnmcJuTHPQd5vbftexDrl7ANMYvB3bR683l4VnbQKqz5pnbqSkuzEcfFc3kWgmHshsloLpfYKBKPvh5XWMGATxTY2UmAUQxJtWYUWaOWnMGTQiYk2uKG2VuVZFPPeRqak8AjAmhqTwAoYVJfbWCz7dbzu7haIIT5ez5+bywULDHDCEAyfMifOTRD4Zr1pH10uk2t2ii+bz543z2+VM8nJoUAD5eVKTzJW4RPG6lpv/r/GXM+y1sohC/IJc80G891myPplcjK3IUgm7TbXs/qVSUl8Csrhs56NVVVcD1ngT5mT/ikIJPQ8VKiVlZVKL+nvt/PNfD7KqkhKMgCcRwh8305sjomhrIqkJJkgSUl2qRv6/SwqkqWamGhSRIxVUFNj/i4r4+Cg4ZQsLVUKQlaWKSPUI5BGUZGdjyVU4AoCrwmlWVkpkzgjQwjcjAwCbmPZ/VhjVVpKoIbNUHpERgb1gOXlXLPGoHBbWlhcrAKlA4CN5vQAQZJzl4s+n9CjVi4cW1vJggIhcMfH7VQOer1kSooszuFhMjqaq00/NzYa6zI1VWOel6f0k9RUAY5aWngYweKlpaUiImdhoZ6ltNTO7xyGKZqalxfMsYyI0CRMTdWzOBxkRwejo01pH6sYakICOTzM2lragCqgkXsh78zatca6tZDPMTF6o6NDVnVHB1lUpPXi83EbVMR4L2AX75VJWMNeM39N5SSNf0wM/X55TzaYz4qKKAuvqkr36O8nw8O1Po2XxE6xSUric8+df8vODfCtc3i5Q5bd1JRjAPYAAK7C5MQEFkZE4NlndWJ0QqdGF0wBkuhozIROYiL/iQIwGwvj4+FyOvHUU4exfftuXAcAcXGYb74BHAOWLsVZKEyCBQsUy0pKwhUAFgI2aGUREAygnzhh81NeBWBiYjOAK3F20yYchQ6cO3YA1wFYt64f4eHX4uyGDQD6dYqMisK1Q7/Gvt27MSMvD9i5U/yZOAvExuL7X9kPR2EhEBmJMMhym4DsiqM9PYrLod8+8UZCB/CFC4ETJybQ1QWMjI4Cjz2GpCRgRl4eYs3zz09IQAL03FcAONvTg6NDQ9jX1YUw6HRstXkOZBG+DWArAGzfjt8A2AVZgfsgC/kkgEOjo0BnJ+YD+I25xhUAkJiIKHPd6QCwbx9OA+gx7yUmzgVOnBB9VVgYfvysYlizel5TkA4Q3xdOAXgL994rTMfAwAGN1fi4VYcJIyMGwGNo1U5DRtPICID778ehdet0yXvvxel778XYmAmBVVWJ3i0tDc6YGADbMScxEbjkEjz8MIBHHkF09HzIpzCCo489JjLUI0eA9nZs3gxMPP88Fi++Vm3G2/r30ksBTGACwKcmfi3QVEICMDSEfftkKOHxx/HAA8cxYcbHGCuyUjIzZTUtXYpZYSdVhHdCv9uCzwBhYXZRXjz7LC4D8MPH5cuYnp8P9PRg8sgRU6RHRkl0NBTXKy3F2UceRZjLBXz2s7J+tm7FScjAev55UaX+BlBgMyUFaG/H008DmDkTl1lclO3teOABExZ84AE9YFoa9gEan7AwHDnSjai4OKCvD78c+hxQXo5fbrwM994rYBCeegrACCbMfNq82Vj8UVHYvRuKQX7rW8DMmdi4Efj12A3AjTfikUeA7z80C0kREegDsDApCU1NwAtjn8GPn54HjI5iBmSdWeXANm7UYrn7buCKrCwMQV6Rp58G/rvreiA/H1dNvKFJ43DIA7RpE16fuBbYvBnPjH4O6OzEZ73P4HxLiBvzHOT91rbvRezUg7Q0k3rwIFlWJp99fj7PQCVCnoRiWTYUOTqajIvjm1AFA2C1He9ifz/9fsoyS00Ve0hEhE7aNTVkZqYsreJiQabLymQtGYvuFWPh7YQg8oZkhL295M+guBewTb8vLrbL/1SbkzawhayoUA6VycnLzCTZ36/YUHU1m5sN1H58nEAPW6E4TS8Uj3jTsq4M5D0+nlwHwcbXm/s0Nyt0tno19QW3m4CPnZAlfACKPzZCVmuNuR7Ly8mmJj5hToc7ISvSA1h8bMGKCJGRZHy8LIqEBDIzU8nuGRlkbq5K26Sk0ANZ5szP527z7J2WlWBg84JKbyX9frZBMVlmZrK6Wswl3TCWtM9nUiv08vsNbD8/n8zKUnynoMDOf+vvNxZDZCTT0oKVawYHNd55eSYpf3ycQ0Mmv6u+noyO5ibIGu+wTvQFBYbJZ4vxGEzS4zEWoakC0dpKU7bpx4as4DWNX00NgU08DFn/K1ZQlnRdHQMBdWlbG8mWFlkQERF2cQk6nerXmhoeg8oX9Rqrp6iIMt/b2jTvDdVML6D3Kyr0d2cnmZTEVihmt369sfo9HptYwE6tSUqSyRwdLestENBzmETtNwFN+PFxMjnZtvhtri0rgbyx0SYgGIDyHisrTTpDbS0ZHa15UVJCdnfL0gwEFMOOjydjYuh2q1IIi4rsceyF4mY+nxlrl0sx48xMroFi8E+Z/mFOjr7T2mpXRXG7tSabm83n+fl8yprjjY16Pz2ddLlYUWG8LFaaRne32jg4KEs4J4fAyHm37DwAD53Dy/MBtuymtLLrNxsysEkbQVYWq6u1aN5EkNngMEDGxtJnlNIms4ECj2vyxsWZ/fqoTY1klfIAtsrt43DIdVFaKleF2Qy8kEvvR0YB3AfIpeLxsLhYeVkqKbSRERHBxO7sbGE2BFA4ygULrAToPrueHevrtdDKy8nISFU/7+3VjuzxaNOor2cbBIx5BXK9DkMuy/BwbX5uKDA9NGQl9J4SsxQUwI+PJ1lYyMOmLZYbsd8onwCCbDHV0OGg1fS9FfRvNP8Swfp528172yCFO2g263HIpdRtNiCrnQcgpew199punicnh/Zm2t9v6NdKS9V+s1kxIoLi9iy1uwg4JI3ncmkMCwtJt1t5cN3dXLFCbqqsLKP8k5J4AnJrMj+fjIhga6vZ/FJSVBm8rc2AojZKAVRVccUK0abFx5Oqk7hVG15engAiMTGMiRHFVlwcDfXco/pOTQ2Bx+Xm7e6Wi7WwkMzNDZbTSUykwyEQ0WHI9bh+vaFqKyzUl8rL2d9vSiIFAqypMQCOykpugym1VFRENwx3aEqKnm1wkIyL4wMQ1R47O/Xd5GSyo0NAjJwcsqlJCsiUxnG5LM/lmJR+RITWTG6uDmkJCWRSktzgycksKDCEB/39WnOdnVL2cXEGIKRwAWNipIxaWtjSIt1WUUEyJobAJg5CrnNxj54ic3MFxrEANFVVVmUgsqAgWN0+O1sHy5wcTpum89uKFSTT03nGzO+WFindBQvU/pUrSVZU8EcQuGvxYrWZjY0igqipIdPT5cZNT5fSzcxUjmdkJH2/+lVI2f0FyZRWdr7bbiPz8jQpGxvt5HCWlUlBtLVJcaSna3KWlGhzjY1lcrIOdn4/ycFBxsdr3bG7206Q5eCgkpL9fm148fEsLtZmm5dH2rQWiYnSLDU1dj08trSwqMgg/8rLOXu22TQDATI8PEiOW1PDadOClJpxcQwm1Rr6r9paHZZTUqj21NaSJSUMBIz1UFkZjK0kJGijqqjQterq7BpgbW3qJyHbjmqzTk0l+/t1Sna7eQpi1GBTk07xdXV6qJQUtTMyUvGozMxgvbLoaN3b4SD7+4OxmOJinZgBWRcxMWp0WZks58pKsq1NiNX6eptGjG1tZG2tNu6iIllzXi+ZnEy3W18bH9cztrbSroWmA8sI2dRkin3uZ8AcLKz4FX0+0icartZWHT7mzjWWkpkEgC9YU627m93digMDPo2xKazLggIODooLk5mZ7O3VhrhiBRXvamsjs7Ot0A7PAHZRV+A0mZTE9nZZhB2AIQ7YxWHzTM3NZvyKinQIMn1SWGjQluHhukdFhSZaYyMZH685W15uU5KxqUm7dGqqTaFmV+MtLla7o6Ptg0RDA8mMDHZ3q8u8XjXbbw5RdDgYHq5LREdT88KqfpyUZCsJBgL6QkKCGZsxu+ipZWn391vMI8/YHLBWrNtiJiks1BgDG/WfiAj7Mx3e9pLd3fR4aCOOi4v1OCtWmGf0+0mHg62t6obCQinftWtJi8tPjEivSSnX1RE4JYRuQoI5yEzaxOZLl8pREQiYtg4P0+/XMFhMO77W1vOu7PYCHDqH196QsptaYis7w2Lc3ExZZB6PIOOJiVr4HR1kbq4WX3W1TuuG7baw0ATivV6uXasFkZJCbR6FhVopDQ3vUp6rV1PXbWgIKoOKCu2aTU02ZRZbWgy12DZyeFibR0EBW1oMnVhhoTbwzk49Q3MzOzvtn+raxcX2hqwS1G1ycdbWSskUFmrDqK0NFjVtbpaic7tZW2uuZdGDNDdz9myxaKxZo3vU1ooyymY2aWwMumQsBozGRra0mEU9PBzkd2xqUlsKCrQTWugXU7jS5mUzrCAWvZlFjWZbDUVFBMa0Q1RW6rOGBpsVZXyc2h0rKnSd5GSyuZl+v2EE8Xr17IWFbGgwG7WhffN6tbEFAqR1bK+tpeZBWZkUfHY2mZ9vs6kwMVHzqaODTEmRFWjSEVpbKaVcXi5rs7WVzMtTP/h8Nhzd/l5MjMagtlbuUbdb7W9u1mGpspKDg0ap9feTMTH0em1+bz2rsfBKS01be3vp8xnXZkUF2dSkzTUQkIL1emWZ1dRIMYWHkx0d9Hpt3mht5gkJ5OCgXQ2dvb0MBIwl2dRk827aXoSaGra3G/BGYyM5PGxXAWBDA30+Mx4WKKe1Vc/Y1iaFbeUzjI/rvbw8sqhIh7WMDN2nspL0+ej3m3Hs7LSJ0llVpd83NJDd3ZqzRtF7PCTLy9Xv1dX6biCgz801WVcXpJRrarKLr7KhQXMjM1MH5JoajZ05yNDjIXt7NbZud5BPrrNT7czL0+9KStQXOTksKNC68v3zP593ZdcL8O1zePWGlN3UEmvgS0p84gEsKGB8vKFxMhW+rdBBSgrJvDxzeuyTe8Pv18ZQXKzNp65OCy4nh93dUoJiWTpFFhWxrU0bEFtbmZEhXWpxNmZl6ZSXkqJ1UlxMY1VsE0qzwsSGhoe183o8BHrIQICVlUYh1ddLwba1kYmJ9Hppu0AbGsxm6HZzADBlRB6140n9/XYYhZWVho+ws1MLOxAg/X663dqIjgCiAxs0G5xFqWSqc6elqZ3t7fqorU33LixUG632ipdwwFQFGDFI0zFZND6f3QcpKbJ0cnJUFYCDg+9i16+uNi6jpiZLR7OyMsizuXhxcANNS1P3xcQEq1aXlJjDw/CwlFVeHpmQoDEeHiZjY22qr4wM2lUmurtNH/X3a1wrK9nbq350uXQdi/2pv1/fLykhmZ/P9evNeKSmsrvbWAaGzNuO6Q4PMztbh4hVq0xfp6TIPWopzcxMKTO3mywutnlc2dKijbW3V1Xom829k5K4alWQblUWzX5ZeG1tZFsbY2L0vs+n+7C6msCk7tPRYcekWFjIuXPNs5tK4kVFlALs7DScnW62tGgsLJ7UykraNGY+n67V2fkORVxRoUoAAdoV3SsrzRgGAmR9PXt7NfarVhnr1DpolJcrx9TrDXovDPF0crLJm2xspFUN3pr7Lpfmyvi4rmFz3Zrgm9ut3xUVqW+am4NeFPp8pN9vrE6fxrW3l/39wXm4dq1Zvx0dwYOe10u/P3iYMuBp5uWZg6SpJr9y5flHYx4AOHIOrwMfYGU3pdGYb70FXHwxgIQEPPyw0I24807ce6+QWrt3i5gh/4JHsXQp0NZ2JU6cAL62YgZQXQ0MDWFG2FmczvpyMI8GSsGKjQU8Hgdw5ZU2UxCionD33SpM/KMfCQT3ne+IYCE2VvRTM2cCaWkAh6/CrAri+HemKd/m1luBF1/EdbdejYaGjwL79mHGt6YJNVlXB9x/P6Z9+qPAokUICwP+M20Lbr1VqLebXG9h2sdmYX5HB65fdBqsJtrbAYyN4YqJ36C9Xc+0b5/64N+brsd3664DXC7s6pmB3buVUjTdSxz9+TOYt/EXmLdpDeo/8SDKD/wj/r3uKqCvD+XlAsotXgz8wz+oS8LCBHS7914VRU1LU23Q9vb52LwZaG6+FAUFQHHxxejrA7521yy7VmdkJGzmmMcfB7545zx86pbLcOutNjOX0Hxxf4s77lAbRkZ0zxf2XY1bb1Vd0ediv4mSEiEQ778f+MzT38Ty5cC/338WV725Hv/ddBnS0yEWj9RUFWdtbwfa2jBv3xZ8t2wWnrv3NfzwkYsw/aercV3Pr/DDzdcDmzcjMlLXv+rn38OZMwIHYuZMJCXpWa7oeQnX9fxKyL+EBHxhydu4adlpYP58q4Yp0NODv/974NrRV0WfcvvtWLhQxB3/mr4Ld94J4PHH8dBDwK6YvxWlFjSnTsZeC/T1ITZW5D7YuBGXD+9C+VNXAevW4SbnLhXqzczEhz4EbNumuXbt0K/B/gvwn65fYPgjn0L9wKfw1ub92LoVmGVhK4eGQN84RkeBowtvsFjVgLAwHNpxCLdN+xU6/v4/8blVNykP9O67cdJ1PWbOBNg5gc8dXoOLyr6HtWs1fpdfDvxnwWHccQcwa1Llfa8f/TUOHgQefXoOXl/2bdx9NzC95w2Ub7oBJ9O+iI0bgeZmaNL09OCqsV3o6VHd4ago4Meun6CoSH04Ogr8uG6OqgnHxqoDu7qwZe0hrF0LYOtWrFp1GYaGgF8+exGucLyNN1vfxsn5V4tp7847cd3uNfhiwn6grw+7nDfh2qFfAz09ePDe47jrLq2lOV2/xoyqHwKPPIL6dTNw773AqlWzcNPYM8DDD+OKrucQGQlctOwG3Bb/hlhptm8XXLOuDujqwqJFwJwNa9DUpLeamoBH8U/aQrq6MH3Rtdi169z3uJCcR3m/te17EduNeeAAmZ1NYC8HBwXwYGQkWVXFMwjWrGJBgU6W1dVyOcTFUezmPnZA4A1WVZEtLey2Ylam2Or4uDmt9fbqt9axr7eXdDh4BkKc7YVyioYhQElDg058bW3kfYBh9j9Ku3BdVRXXrCHLIeDItGkki4pYUSFLyM7v8ngESnC76XbLstHJu49uiJyX2dkyo5xOHTVrarh+vdBqhyHAzCkICBIIBEOSTEkhW1pk9SQk6Pem1MEJ038HYMoiuVxkWRnrARtk0wko3qMSETIBi4p0nZQUMjZWsbzYWDGvmJhcK4QutUitLdYNFhbqPb9f4wGYKhbPsLGRXA9Tqqe52YZTvgmBDoJFQfcSkImYnGwYalpa7LariOt+xfEqKoL14kpKbPehVb1h/XrTL6bvLQaNvYANSmFqqtra1GQKpX7TjvPm5pKMieHQkMmfy80l8AzbICDSCTN+wBYGAIaHayiPALI6mptlEbe1qb1mjGxLw+nUfM/OJhMSGB0tMFRhobHahodl5VlVJ9ra5O43Lv5j1rwvL6cHQnOuWmXixvX1dskjFhWRBQWaB7297LVijx5PsFBuTQ2ZlESfj7Zr3iqQzN5ePU93t65h0MZsaCBTU5mbqy70WmNVXk4fRDTe3m6KrTY3C8TidJJOJz0es2Y8HhtwxLg4treb+xtS6OZm/d0NgWEGoAK1lqU2OGjmSFwcc3IU47NJ1HNz7RI+Q0Pm/aYmsqWFK1cai9XjIQcH1b7eXsXhDYF2WNj5t+z6AB49h1ffB9iym9LK7rrrfASeILOyFH8xfo3sbCkor1dvAZMsKZHLTHDg04pxZWXZDPzHjD+bHo9dwiYlhVJ63d36e3ycq1YF3Wdr1miNy423yaQXbJTLxVBYMTmZNTVSeGxuNi6THinM1FQ2NlIVFHp7CZziAQgEMD6uxQzcTpaUMC2NdmHWQMAkTJeUkH6/jRKbO1f72oIFJkielcXKSumVykoGN82CAntzjIujNtaaGlPex23lH9vUUToYuA3a0UerWjtwiImJKoUEvEDgcVMbdCOBZ4zyaaQg+QMEBpiXR+OKHSAwZruzYmI0HHPn6vGE9NtEYD+9XrlnU1O18Q0DNviPKSlcs8aARIxyrqyk3FFQ8rMFaHG7zcZZV6d/29rkBjdxQJWL2WtSUw4J7GIAS0Cf5kdBAVldLSXe3EzW1po4yAt24rqQoVtYUqK+X7qUZHQ0gR47Nsv4+CCy1OUisF9u4IwM1tQYAFRbGzk4+I5nGrGAvmxtfUeM2eu1UZSFhca1W1FBlpdzaEjz0+/XuSItjcEiqeXldgwP2Ggr3/Fx43YuKyNjY7liheYc0GyT/jMpya69BPQwI0P3yM4mGRNjJ11Pm6bnPAZDeJCba8eMgUMaB69X6TWDg8zLM8o+J4eMixOCt6ODwCR9pg+AF+yUgspKjaflDqbfr4nhcklhR0QIMFVbq0NQSYnGLiKCjI3lmjU6Z6WlmT4zhWNra81zFBRovWZlkTExOuDk57OkRH2ycqX2lIwMkvX1ar9RqFor51fZvQVw9Bxeb4WU3dQSa+Dj4nxMTFSuVUWF6rA1N1vKZxdVl2qj6ooNSgnExYkbsh+C1us7Pht4AmxhRYU2qJwc2jG7igqSg4OsrdWGIoaSXQS2mdchAtsYEaE9oKWFNjoCOEo2N/M+o6ysumSCXE8yECB/AFMZuaqK4+PBuJA2mVIpzuFhWSemtkxhIcnubjvmALgZE2Ng116vzf8oxWIAJVYhzfJyO0zIoiJzjS4CPtNHI8ZK2kYGAvT5rMrdhyzwnq244+LUV6tWqd1WZSCr+ktenj7LzLQU3RZTH+w0gdPMzaVRniMERtjYKJ2ydq1ifqys5Pr1Jm4TCGizNAFSwE16PBwaIrfDcDmmpEjLNDSQnZ2yAEpLWVholJ0B3YiVY0zxm+xssqTELmjLsjJZc1VVAmu0tRlFPkBgo1FeYwSOypJra+N2CMI+YDbuykoaRTmmaw4Pm/qIL5g0k04bRJKaSm3WBoiRlialZqP93G4TCx4ja2s5NET74CBlNWxq0G0NFkE1CMlVq9QdFm7IymmoqdH/XS7NH4vTkamp7Oy09TpXrNDyKCxU37S2Ugckg66JiaHJ1xyw80fFA+omMMa2Nj2n1sxpsrWVOTnWfUcUY2tq0nozxWunTTNK2yrq6vfzFGAjQH0+krW1TE3V3zrIHiXb2uyashbOqaVF/SNE5Wmys5NDQya25/Fw9epgkXeruF9ODk1/nta8Gxwkm5rY3k4baGWx8SxebCx3v9/Ga61ZQ/qqqkLK7i9IprSy8z38MA8b9wsLCzk0ZJRERYVMkra2IILPQvrl5JDp6XYhZQYCZEsLc3PN6c5AiFlXR1ZU2B4aZmUFT8zZ2UHkiDliB6Dkay+U59TbS9LjUQ5bQQHDw3X4vA8mudqQDLOiggsWaKGVAzbwhR6PTars9dKuNr1mjQE81Nbabk5mZtquUeblkfn5bG01VkNVlU7oJn9haEhN6O6mkDbFxUKZjo+rzUlJQRi5VXg1Pt6m72JkpFy1WVlyiVVUyJUWHS1i6thYAUOgZORTlvIxCFKmpmpMTII5a2uDvFN1dRqf+nprt6QP0KbU2qprV1drY4mIILOyZMFmZJDp6WxoYDAXrrZWinJ8XFZ8S4vGtaFBQJDubrWx0yic7m49Q1yc5kFiorS1hWooLWVmZrB2XVaW2YwbG1lToxw6kx2hw0ZkpNpWXk4WFMiCjIlRv+flBT0RVlX1sjK13++XgktOJvv7Ze05HMzIoCyUlpZgddOiIhtybxWTt05TllXJlhaeMBYuq6tJp1PrpbSUgYBR/k1NPGLmFzs6dA2DHq6uptpQW0u6XJrfpmbj2rUG2Rkfz03G7cjKSvWvhURxOsmcHJaWatnU1JB0uTR3Leqwzk4bDOSB3LBWCkFamp5pHCYZ3JyyVq40oLG2NgukqnHs7WVJSTDLJC8vuM7HzSEkLU0WmWWFMTVVSn54mF6vUVzNzWxr0zVOQDl4paWawq2tDJ7iamv1g9pa3b+4WM+VkUHfbbedd2V3EODxc3gdDCm7qSXWwB+GOBgjIgwDfSBAoFH+eWtHz88nq6s5DiWjHjCbL9DHBQts0gNjATVrdpvgSSug9woL2Ws2gxOW9ZCUpNXmdPIIDMuCyStjeDhZWEigRxt1bS2titzMyOB9UFJsSwtNDGnTOyqRlwZzvBIS2AEltApZ9//I5GS5gwoLOT6uzcoPE5uMi5OLprHRTiBna6s2xYoK28pds4Y25NxCUvv9il14zLUZG6sdo6Ag6AqKiZGrC4bTMj6eLVByeSNM0nhhIf0IxvS6jcLqNv3D8nK9EhLEngHFcN4EyOxsuYkqK8nGRvZDSecNDdQm53SSMTFSOKmpZEGB3H3V1WRKCiMiDEtNQYGx9Mek7Ds77cK669ebE7yVQxkTw7g4bZTHbGu/Szl+gL1n7zWWWGurfh8REcw/A9xS9H4/Y2K0B+62+tHA2YFJDkIVxe2qCvX1ZG4uFy82TDBJSVJYRUWkz6dNc3DQuAoPqbpEYaF90NkJ2BZRbS31WXMzWVnJlStN/NFUSli9mtqtExM1D02B1cxMkm1tHDTts/IcdkJx4rVrDfdlQgIZE6ON3vxrp62Y3Eu3W/O5tVXK1+3Wd1lcbFtk/f20U3Z6YfL20tPtRG4WFHDx4mDS9+LFJIuL6YbIBaxKDJYFyYgIKdmOjiAqtL/fApkG+UZbW+2At8W+09BAsrGRA9a+UF3N9evNuszOtnMMGR3Nigp5J1asML8zceUzZt3Z8erkZLmA6+rou+yy867sDgEcO4fXoZCym1piDTzQIVdRSgqBQzqFxsYyPFxujYwMLUa5205x9my5a6ZNo07SJtC9Zg01YZ1OtrWZmJrfzxUrtAkBA4KNJyRw1aqgK8eKgVjuoO5unRYNUQftOiRVVcH8I6+XaWmy8OzK1S0tZGGhTvSxsQTW2iwhhYW2Z8UkHX+THo9xtRkoP7CLc+dqLScnG+vGYPsLCtQXixczmDcVG0umpHD9egNkaGiw2dRmz1a7LNxJWhpp76aDg+zs1J+rVwfdjGlp6g8rH3/1apv/mAwE7Grt1dV63+eTWwk4aifpSlENE9hrpzKwpcUeR5eLcuWWlGhjT0iwQURuN+3q3iwuJgMBnoFAQayttSmtgC7S5TLuwL2GRPwQa2s1zrNnM5gb1tzMxkYplDMQIMWiorKYSWyrJyFBFpGV8xIRYaXN2ZRzxcVUJ/n96vPqaqamCmjEigomJ5sxbmgI5qPFx2velZWRHo9N0uz1ymVbWUlNPBODsziUq6tJ+nxculS3tC22wUEWFJg2WvmXtbXMyDAx3eZmm07O79cz+3xmfZj8uNZWkjU1Ulrl5UEl09nJBQs0VYRX2sbsbCm3lSuDBCetrSS9XrpcclXm5MiF3dZG20Vvucx9PvOcOTmaXE1NZG+vnsfjYUuLnVZKYD8rKtQ3RUUaQ+AQV6wwCjkQYEyM/rYAPlYuJoeH7blcVERTHmuvTXBgJY8PDtImeGd9PVet0ny3UmzY0mKDX7xesqXl/MfsQsruvUvY+cN1/vmlqsqlCt8rVmC8aa4gwjU1eBFKSZg71+acxXN1p/HGQQe2bp2FPXsgst1770VsrIFj33EHMDqKqCjA4/ko/vErKlZ5VYEbjJ2D13uAo7E7kTmiDIWPflRw46gou0A5AMHJZ84Erp14HT+uuh4zvvVRzFpD/L/HbwK+9CVMj5qDjRuBjz1O/NQ5DX/XSVz/8/uBhx7CBReMg8XZ4K1xeCsK2DL/+xh9HJg+ehSLFs3B0Y3pYOok0P4L1F/4/+GTcQ5gdBRr1sRj5swgke1XvgL8+6oZ+P7Wp3H3z/8Jd9yh5zyEL8LpBKZ3dgLbttkVX8p3fxEPfnY97rnnb/HQQ8B/3n8a+w/OwJEjqpv5462/wOUXAvV3qi8XLbLrkeLhh9X+ri6h/VesEDz+6afVFz98eDr6+oCwL12BrVtt7lykpV2G7Gxda2JC6Q179lyG+fMvwxf3/Dtw++343iOfw7JlQq3v2wekf/UyXHPNv+OHQw/i1xU7MX8+cPXkG3C5dA089BAwPIzTk9Mxo7sbX9v3DHDLV7C1Crj+oYewdu/HgcT1ePCR7+IOz4NYuJBYuUoZC/M6O9E+U6ken8JG/PrG72PfPuDvhoeBvj54HwKwezdmzZyJyairgNFRLFoO/Hriu/jcwoV4afQG3FRXp9yPW27Btm2C6x9fchzLfg58e9FLeGHsJnwh7KzSG57uw913Ay895ANW7UBamgie5/3HfwC33IJfrp2O//fzn+O17avRseTf8MmmHwILvw2/H5gzcQhz+vuxJOoksOdGbJm4ARMjwPfvOo4f/nwWvr3sdaBrDK+mbcbZG7+PsDCggzcgfEipG3OeXA0syQOWLcMzfdcHibDPnMFN4S/hplWRQI8D/7lsCFjbh6jYf8KufRdhY/un4HIBPx77Gr7peBu/nP9d/L+xX6OvD/jx1uuxcaPmwy/ueQM/SUvCHXeIm3nuXOD7Y98F1jqAFStwFPOwebMKnY+MAL+42w3ccQeGn38Nm1+Zh9tGVuMLycnAiz0q4XT//fjN5FW4uvpe/HDZc9izBxgbuxr/tOw3+Ny9fcBEFLxetWP67f8fHly1Ctg3id7eubhq9HWxRi+/EwkJM/AF137ddO9efDHQg1d7/j888shlWL4ceP3GbwLPvggsKQPW/iNQPwHMn4+FC4HpT67BvAULgB078GrVTNx0zz/ipbAvAI8/jsnJy1Qb2XNQlZDWbUfSV27AP//z+d/zzrVMz5TONTtXeb+17XsRO2a3Z4+xdjoVZgJ0ui8poR8CC+wGgtnBxcU6zcbGEugjECz9wcJCsr5e7iSDMmNqajBJ1socbWiQa6+ujuPGDddi7lUNA9OvqbHBGl6vYnGNjTrBsqJCL4+HnZ0mhmcC4ayuZm6ubuX3mxNpfz8PA+akSDthGmjiJiBY0NXl0iszk2xsZHW1mnsAouqyygF1d8sya2+nLub1MjFRSE+7UKcpdDsIpVQwNlanXI+HG8z3hq3PnE4FbuLi1G/l5TrqlpTItDEm4jEYJGNRkaixGhrIyMhg4dfwcBslOj5Oxa+Sk+3Ug+5uWTPt7bRppjg4KLdxSQlXr7ZSD44SeIZsbWVhoUlH6egIxuiamwkcEjNOXR1ZWUlgF1lTw8LCILvMqlUmJpSbSwYCum93t2IxkGt5HLBdkRweNoCL77K0VNZfSgrJlBS2t5tk/8pKAk3cDdGBWWMCHDJIQzcLCzVmgYDGPi6Omgw1NbQYDZqbqYkVHS0Xoomrzp4tN/uqVSa2WFamuGJZmfqgv1/fT08nfT65J5uayIoKHjHWq5UFwpYWjXtkpE24QJeLfn8whmXNJxvp5HSyt9e4F2truddyD1rsMjU1Kp3Vqz62qPwsMoRBQNZ7bq7c6ePj9PtpJ9kDp2TKJSfT7zfWVGOjrMXaWgbMeujsVF+zslJu44oKuf6Tk/kmoDVkPm9upuJ28fE2sGTlSqo9KSncDqW/cHxcc6akhKysDMZsu7uDpONNTaysVHyd+fkEdp93y+5tgBPn8Hr7A2zZ/Z+VXWtrK2+++WbOnTuXALju/2fv/+Oyru/9D/yugV0zcJcKddnAXTqwyyYOmzRs0qRJw022aLHJWWyxxYZb7MQWO3FOrDjDki1abHgWWyxZWHCSioUVUzJSEqYkpCikGAgoJCiXggICz+8fz9f7fdU5O5/vmad9d/qe3rfbdVPe1/t6v1/v16/nr8fz8Xzuufd8PzU1Jffff7/MmzdPHA6HfO5zn5ODBw++55rR0VG56667ZO7cuTJz5kxJSEiQ7u7u/3YbrIGPjfUKPCVSVqYus8JCOWdNZgs/395uCxDNgzIwYYuk1+0WycqSFkxOUF6etLf7GI0s6rHkZN1zSkt9DEQyOSl9fWLq0XWa6gWn1U1aU6MbYUKC9PVpesHkpIUa26mbibnp/WbzcDh89cgUhblb43Qul2Rna+yko8NyszTrJlRfL7m5uhda5NIREQbkYvIEBwfNhlFQoBt+fr5IcrIkJ78rTSEqyvA0erVfJid14xkbE0Vl7hYol4gIlUvh4SpcFFX5mkCNwCaTMvCaQLVJSygXTUsYsDEqVlqFab54vSrnNm3SmEh5uZj8s2ckKko3lYwMfVZVldYctNydkyg5dGysvkOvESRSXS1NYLOpWa9uc2aZXC97jNvbzTs8JVtAYLPATjvvDp7SyhGJiSKxsT6i54IC057f+uJtSUkCeZKaqpekpyuMHar1eRaEsqlJXYo2Q/64SEGBVFYaoVtYKCMjmhbwHEo0bdFQlpcbN6mhvpLsbKmt1d/ZtHWRkTYTVleX9nldnYg4naok5eTYLF1wWiegQd5Cq0hsrPSileK1qkOzNDUZN3l4uE46f3+BI+qmzctTVKnTqb7FlBRZtkznYzumNqIJHWgMWsmfvV7R3EuvVwoLRV4ySqRVB1HdlLsNGXS/wA4bbGYDb4qKVPi3tGjfBgaKxMTIGUx8OS1N12V4uEwapfQUGvtbtsy4eg3Fm8TESG2trkUJDZXAQJ1nF1GC+QtgFdCQnBztOysHLzZWXd/qnq36UNj9Lzr+amH34osvyr/8y79IZWXlXxR2GzdulMDAQKmsrJQDBw7I17/+dZk3b56cPXvWviY9PV0+9rGPyfbt2+WNN96Q2NhY+dSnPiUTExP/rTZYA/+xj3klLU1LrSgsfLeBGV8wG+6LAjUSGKibZHCwJfC6bVCJ5oS16uJsahLYKfHxaiTFxIhIYqJkZIjNvJ+e7lN09bc1Aq0mLviaLFhgpz3pzu41McKODvkF2MUKLP5NGJfaWrXwentFpKBA6uvNNVj5d9k29VdVlWhbY2LU8ujqEoXDnxDolNDQdyXVxsaafmgWeFYFXl2dHYMrLDRCMDlZNI3iRbHy5/TvnQI1KpgNL+C0adqH4eFWGkebrFihwqSpSS9NSVHtODTUR0e4bZsKLE09eNOkGxwT6Db36TbWdpttxIyN+Wii7Fy6yUkdl+RkkagogRO6u09OKkgnNFQ37eJim+cRJkTi4hSMYbgcs7PFAIIuaHw1KsoOLG3YYP62+KBMKkNsrJX7uMMItAFZsMDE4/LzpcZshF1osnZJidW34wqGKSszAJgaIyR2a/qI262bbXS0KiK9vRIXZyitxsZEEhNtytYFC8zYdnTY3AYKxjlmlK1jtuZTXKzzzur3kRGVA7W1et6ihfR4tMskKcnHouzVFBQrbmuFnLdt0ybV1RmFz+vVjb6jQ2CHHaPTdIgqCQ3VNlpAXGgVaWmRBQvE5KI12cI0JUXnttLRvWmnS0hSko3Gra3VNtXWiki/phNYtHXwZxtUU1pqV18ya7XbKF9HZHBQlay4OJ0PpaUqkC0+2Y4OHX4VsqdtirqREZWrKSn63q2t+oykJOMFmJyUnByfwub9znfed2E3ADL+P/gMXKKw27Rpk7jdbrn88svluuuuk9dee+2/vHbnzp2Cec67P4cPH37PdVu3bpXFixfLjBkzZPHixfLss89eUt/8d4//kRvzPwq7qakpcblcsnHjRvvc6OiofPSjH5XHHntMRESGhobE399fysvL7Wt6e3tl+vTp8vLLL/+3nmu7MbOzpcNonpKcLB0dBtpswdibmnTGJiSoil1YqC6chAQ7f8jrFTtpPCJCRLxeH+t/fr7NwC4xMbrwcnPtkidSW6urZs0adXUUFMgZFHHX3i4mSD5gyI4vqFFl3ClquQ2LFBeLw6Fa4v0gMTEqIMbGRK0Eh0O6urRUT0KCbjhWCkRHh6gQjInxoWRSUuz6bZs2iZ63TL/JSent1Q2gtVVs9FtNjdiJ5RIRofe0dtGcHJHISBmzNvHQUHUdJiSotMvPV6HscKj7DWykpc2gkpSku6lVY6ylRZ+dnKxjYqDuUlSk983L03f395delA9UGhu1bSUlClZxOERSU9XVGxpqp1ssWyY2SbddHcFUsJbJSZGmJgWb1NTo2FvW1diY/cyYGNF3swbGuMAtMJK0t0t8vLGeDVDBGvfYWIORQd2rUlEhEhenEH23WwVwXp5aogbAlJws2o+FhSJdXdouj8dOWhZ/f0lIEBXmjY3ab9XVtpuutlabn5MjdspIVpaP6LwXVCCbenzp6dpHdl28yko5hdbok8JCXTvGNWwToZvqHh0gkp8vGzaoFWklmO80ngspKlJQU2+vvp8x5y3uzw0bxE49mDSeFKmrs7krW0w7yst1yXo8IlJXJ2dA119goIjTKSUlxqVvFkR7u1mnprRWSooqcklJvjSEMTRksGKFCqeYGDOPLGllGBss9OaWLboMLLBTVpbY6T+SnW2zFUl0tEhBga635GSbqMC7YsX7LuxOg0z8Dz6nL0HYlZeXi7+/v/zud7+TQ4cOyT/+4z/KFVdcIV1dXX/xekvYtbe3y8mTJ+3Pu42Z119/XS677DJ58MEH5fDhw/Lggw+Kn5+fNDQ0/I/76r863ldh19HRIYC88cYb77nuy1/+snzzm98UEZHa2lodtNOn33PN0qVL5ac//elffM7o6Kh4vV77093dbbSFZwV2GFi4Jt12m/Px8brYIyJUG1aL7lnz6Za9KCReJielvt64D/EVWVV347PSASYW9Kypb9cp0C2hoRbKs99YKDuNtdIp4eFG84yKEklNlYICEzsrKjJuv1x1n5qcnMNGUMbEqMAzmQsmCbdKpKlJWluVLssyXMrLTUwvNdVYbi8a7fZN3TxHRkRSUmwrNT5eYy3i8ejCNlUVamtFpLHRWMRHBJ6RhAR9RmioL7l+2TIx73daNBlcE4a1P8tFE+v7DRLvmLHUys31neJw+BCey5ZZSfDPCjQbl+WL5lqF91dWWhb6CZGODgkO1phnXJyIVFX5kHSpqXacqBdl6ejtFTXjTUmgDRtskKS+WE2NbkypqWo5xsaKJCaa/puQLrPhLlsmdnIVvKaxmLo6FTjR0Ro3TE2VDkwNvKIiLZEEAsckPl73/LQ0EcnMFI9H21FcLCLh4YaxZsJY4Jt1sy4psVGrbxsBmpsrIi6Xza4mvb2mBE2zLbC7unS+xMeLSr6CAunr85Wj8Xp1o05PF5GODptQWpqazJh1awy2tNSk8AyoYG9qEtCyQElJYqMu7ThoUZHAm3aeW1qa2GTqtbVqmSclad9YJY0s4m94Tbq6jJIZESELFhglLzZWGxcZqfHjDmN5BgaaOWfM1PZ2gQs28bYl8S0CiLExo+xkZZmyVt2+2KtF7Fxfb+Zis/6uutq4bCfsVAU4oUpyZqYK59paKS9XhdYqKxUern87HNr++HiRmJj3H4359xB2119/vaSnp7/nnMfjkXvvvfcvXm8JuzNnzvyX9/za174m8fHx7zn3hS98QdatW/ffbtdfe7yvwq6+vl4A6e3tfc91aWlpcvPNN4uIyJYtW2TGjBn/6V5xcXHy3e9+9y8+5/777/+LZnE9CnRYtsxobRkZdoFUiYzUVWYBJox0umCsk4QEs8iMWys01HDtVSvwQyorjZvsiOwEGTMbmKxZ4yvgigFoWGV/RkZ8jO3V1TI4qJtMSorYFGBWFWQotxOarXyglhZdPPejwIWUFBHJzbVDTBs3ijwDdk01qaqS9nYDdHA69Z2NFdvba6yQNWu0jTExkpWlWmlcnNmAjWVRWSlW4FGFMBqwt5JtIyJ8hvHYmOiqrq7Wl/N4tJ+9Xt1Ympr0u/Z2kZQUu8xQaan2rXR16TVOp7bb5bJ8m3KKd4FkIiPVCsjK0g0mNtbuQ6mrM6kK3Taf5diYaupW2Rmo8SX45ueLw2Hlyp2wq9nDDtXK6+p0POLiRDo6pKnJ5FJ1dQk8ozHAjAwVDmNjUlnpg9CHh+u8Mal+IiMjuuGZnQ86tWFRUWqJVFfbsV4pKdE5bFFxtLSIeA37fk2NegWioiQx0Qj2ri61zkw+n3R0+Bh5Cgu1r+rqROrrNSZnCqNKQYG0thpvQ1WVSGGhNDTo8FuFaaWuTgWhiXXbnKv19TrfJydVQZic1OsM/6q0t4uUlen4hoerNyAw0EciYFUxyMhQAdPers+25lpGhl3At6PjXeWOTFko6e21ORxs9paWFh/pQmioSFmZWpxGUEt4uPan5YKuqPB5D2prVWvLyhIpKvLloxoviomHyBmU8qu3V/T3FrducbFIbq4vXzA2ViQ8XMYsy9bfXxoadD56jWL/fgq7IZCp/8FnyOyd3d3d7zEgRkdH/+Jzx8bG5LLLLvtPLsYf/vCHcuONN/7F31jCzu12i8vlkptuukleeeWV91wTGhoqjzzyyHvOPfLIIzJ//vz/QS/9v4+/SerBtGnT3vO3iPync//x+H9dk52dzY9+9CP777NnzxIaGsqS730PVq9mdQPMWJICkZF4PDCn2wWbNunF+/ZpOYLbNZfA8fzzsH8/qwcV7k5PD/j5sXGjQvcJDWVVRITi6IOCyM4OY9XTbkhOJm1gARCi3505A/n50NamDO1BQYodDw1VrPXWrTxc/yUejH+NjRtvxOmE3bvhZvdbMDzMli1f53gQxC9Rlv/qaoXq33UXPHB7Ew98+tPEbxFYdx+LDr7JH7YupaoKXk9IgI0bOd3wFhevWspwLzjy8jQPoKQE8vL49sRv+f3QIb4dDeO3v8iMnmPgdvOLy94mJ2cBf3rgdQgLY2HYlQwMLOLsq28oTt7t1tyCxx+HkBBNz3A4uCdaUw3cbq1UMCMoCI4c0RyCwEBYu5ZxxyyGBmDf8HW4I/S6hQEBXHEFHO+ZzpIlgHMxbw7NZ2kQnO06w6w7v6b3GB2FtDSC4uOhp4df8UOWLIHlEwCrtb8feIAvu4/D3Gvg4YfZvPlGBgZC+MpXYPt2ZdF/4AG4KfI0rzTPYXLyZmgLYW0bMOEmORnCPl1Ew/J5EPEwfn5+bPJ8Hj7aB0NDlJd/HRITOdYzg+t4g+ah6zgfNJ9Nm+ZrWsm9eVx78HXoC+FWv2YIWw6by3lr350QEMCfdkznC1+Acb+ZVFRA45lFfKaxkeKGj4NDr1kbBK/7fYkbnn+Wq9auhaNHuaG0lHHXfGZs3szrnVcztFtTV8BBR8dccDzP7Q0wZ+Idnc+rV0NbG9XVS6Gzk+a+hZpCsnwV3H235mk0N2tKzj/+o3bO6tUALOItvfmSJXwm4jwvvjxT3628HIDfFI5zengmc5xOlvb9SefAwIB+HngAd/S/8sqr01m1Cqh8mS96OmGfH6xaxdolgKuI08tvZs7mzfDYYzA6yrGhOSyMi9NKBn190NfHoN8ipkdFaVWD0VGcnZ0QHc3Co6/QF3CTXjc6quvp4EGeevw2TgzNBODqgTe1ZMYdd+g1q1ZBYCAL09LA7ebfHpvO9zs7dUG1temCGh3VEiW3367/Hj2q/9+3j/p6uHXgt7p+s7I4ffe/MmdiAufQEEX3wdWjx7R8x8SE3ue22+Dhh5nf8O88NfE1/iFgM1RXM+PIEfAsgvJygoNhxtA7jM6d+//c8y7lmMZ/3l//qt+LABAaGvqe8/fffz8PPPDAf7p+YGCAyclJrrrqqvecv+qqq+gzVWL+4zFv3jx++9vf8ulPf5qxsTGefPJJPv/5z/Pqq69y4403AtDX1/dX3fN9Of4nkpL/H7kx/+NhaTnf+pZXtbTwcOnrE4FqSU+3AtL9ogCLcUlPVwXVIlFOTxe1+KKjxSIq3rDBCvS/JuHhqsB1dIhx42jtNomIkG3bVMNUFNYRsQEOtbUa86io0ArjXnWftbf7kHB2ieTISJHcXJtZH3arNZWVJZs2afu3bFELT62RGpGqKgkONlWbc3IMum/cpj9KShKbpNr261VXG0DFuEybZpKJW1tF8vJ8iL3MTOOKKpd588T04x7xcVWOywsoQ4rtxsvPt5nzS0pEO87fX62ypiY1A+PipLdXmUQuWhabcQGuWKHjkJGhirFllAQHqzHR0qLN2oMCetrbRS2ElhZjhTXJFpBNINCv1ktEhEhtraIuwbh3y0VQtpoW0IrVCQnS2qrutUmUaxG84kVTLfpB4EkpBpHAQI05RkfLIAg8ZFyr46Y+YrcxBE5LKZqCYhXw3GNc4rVgwBq58oTxOFjuOgvs09QkIqWlMohJJUlO1hhbdbUSolhWaGWlWg/t7dpRWVkiIyMGRbvTnnPS0iJSUSFwRMdpcFB/l5Jirr0gsn69FSJUD0JNjVqzjY0itbUmFWK3wE7p6zPMZpjUj+BgCQwUnwuypMT092aTFlNuLO8ndWzq6oyb+m6dyyUlAs3GctaQA/zZ5mmFTQIPi8X3KuHh0oSibq1Jkp7umzs6BiUCue8CbClwTMnLHxLoNm3bYb5XAJbU1IgkJ0tDgzop1F3eLTExYtzMbXZcVSuZvyhWqpMFSLHQwlatWBgQaWw0IZX317Lz+vmp++cSP14/v7/Ksuvt7RVAXn/99fecz8vLk2uuuea/3f61a9dKQkKC/be/v7889dRT77mmrKxMLr/88r+iV/66428CUMnPz7fPjY2N/UWASkVFhX3NiRMnLg2gcu21Ugs2ek7jPKdtxoXWVuP+iYiwGW+7jessMVEFQ1ycGH/+HgHNT5OSEjsHyN/fUBxFR+u9ior0Xl6v7lL19SIRERrv6OqSdjQWaMWdkpLExBbu0A3H5ZJGlP/Ph6b8B7tkEFTZbqMjIPeDxkhSUnSDKC3VytDgA9gkJurK9Hh01TmdIk1NKhhra+2Phd7LyTHVDmJiRJxOmZw0bSkrk24U6m1L6fZ26UbzFXeBLhgjCM6BkgYbl/ILKDR/j3VtcLC8BLITpQ87gwG2eL0qkNxuVQ7a29XdmpGhLsyMDJGCAnUn+/vrhmkg/dLSInBEXaBut453dbVIaKhhXmkSiYsz6Rk7tS8rKrTf6uqkt9e4rbxe3bjj4my0XRVKcQY/l0Y0R8yqMLDdnI+K8hX29aEOH5YaI+iTk3UYnsPkbq5fL5KTI9CtLsu8POnr0673ekWkuFiRf+Z9kpNF21xTo7G6kRHD4vOkzUFqp4UEB0tHhyoomzaJTxEZHJSmJrGBKBIZqWPp7y+Sm2un6WzaJPZO/TYIDOuC6e+35xdMiOTmitdr6MmqqkQiI2X2bIvxv1/j0WlpNvn57NkiMjio93e5RCIijGL4c42D1tTIli0aX6+pERMjfFIVsOxsgRfNWI4L7FDOaaPcjZi5Zpi5REpLJTtbp3hEhCoR8fHqRdX2TQg8KxkZ+jxFhF6wFUCprtYfpqZKcbGuC4vKDZrVE4zGZC2C+RUrxGYUkuJiXQfJyar4paSogIyJkUP/i4Xdf7dNl+LG/EtHXl6eeDwe+++/hxvzrxZ2586dk/3798v+/fsFkEceeUT2799vI3M2btwoH/3oR+XZZ5+VAwcOSHJy8l9MPQgJCZEdO3bIG2+8ITfddNMlpR548/ONttYq0tWluTqhoSIJCdJuNO06a9Pp6rKRXxIdbdNTlZjNWPLzNccJ1KyLjhYpLNTYRUmJSG2tap5VVXptbq4cQdMXxsxirzf3KS0VkY4OO/5gJT5DrgwOqjU3OSkig4P6ncslkK1CtalJLZmWFoEaWbBALbyuLhHJyZGGBgu80WTX/JLISBUcERG6+/b22rnvR4ygaQGFvncZwMPkpEh1tc0dWGcsG8nKspn7W83mv2GDytLCQlFhZMiNJSNDn1tXJ5OT76rIbjETZ2VJTY2xXMbGVMqMjOim2dVlJ41LcrK23e32kS9nZmo/pqVJcrIRDGvWaFF1FDQUGCjypLGmCgt9ISPYY+cVWmjN+HjRF7CqEdTXq5KUmipSXW02xiZJShJTkeBNm2pKrb9xaTH9WAk2qKnbWN9qETwp06YpsGX2bH3ntDTRDjaVyuEpqUPjQe1gk5DreHdLV5dRrkygyrbETL6nZGdLU5OPWssyi1uNJXkRTSrPyhKRzEyNcVVV+WrKZWaKZGbqmMTE6HrIzBRJS5PWVhWalpfgAoa7ND/fFtJSV6djkZ+vil5ZmUhdnTQ1adJ/S4vp08xMVX5iYvScxyOHzXpsbxcd68ZGnQu1tbo2ExKkqUn79TnzW0lIsJpnMcHphCop0f8bUuwxNJ/OVkg9Hl3DsbEyCLLdzP+XQAVcTIyIy6Xv1NqqL23imVJZqRphTIxUgS6YvDwf2YRF6N3f72OGtopXNjVpn7W3C7S//8LO4RD5yEcu+eN1OP7qNl1//fWyfv3695xbvHjxfwlQ+UvHV7/6VYmNjbX//trXviZr1qx5zzXx8fH/uwAq/1UOxbe+9S0R8SWVu1wuufzyy+XGG2+UAwcOvOceFy5ckLvuukvmzJkjH/nIR2Tt2rVy/Pjx/3Yb7IHPzRXx91ehYpKiLaYKK+FXWlt18jscOmENk39LixpE4vWKdHRIauq7oNu1tfrbkhLx9/dttFVVovcoLhYb62wFvCMj9bzTqQLI+E2hW6S11a6o0G+EaW+vboiDgyZPa3JSOoxVZeXDS1WVSEqKdHWpwCstVUW8qUns0kMtxrqS0lJ9gfXrRQoK7DIrUldnA3WsBPMtW8w94uLs8jlSV6cbV0KCCvf6en1Xi0LepB9IUpJaVQkJ+l1Jic0rKoGBPonj76+bTVSUbh7h4T56jslJ7S9rY/F6dVyMa3nQ2mSTknypB1ZqQGWlQr8NKUBTk7pK2811GzeKXZumrs4wxaSmqgQxLjVLAFgleKSqSq/LyRHxeNSdl5oqEhxslwKSsjLJzTXjUlkpERFGKJnz4nJZ4D4VNGlpeo+xMZHMTD2XlaW/KSiwuT4HB808NJ4Ey01utbm1VccpJ0eF4+SkaB+OjNjAivR005axMf13zRobgSqpqXLYEq7tYleRGAEf6KSqSiZByWKMdW4J3a4u0Zc2c+MMCt7q6hKRkRFdEyUlyorj9YoUF9ulekZGROdERYWMjKgg3bRJVKGcnLRLTU1O6vBv26aIY7uMU1qaLoaxMZH163UeGBKIhgZdHib9VMTrlfJyFZQpKYZBxuRntrZqX4vHI9LUJJs22fJSXctmrCyQmBUK6O0VWymzKot0dZl1mZfnq3xiyjlUVopIfr6ma0RFifd733v/hV1AgA8AdAkfb0DAX90mK/WgpKREDh06JHfffbdcccUV0tnZKSIi9957r6SkpNjX//KXv5TnnntO3nrrLTl48KDce++9AkhlZaV9TX19vVx22WWyceNGOXz4sGzcuPF/d+rB3+uwBv7aa70al0hIECv5Wd1NrTopDfmwVvYeFnhKQkPNhuV0+qDEFRU2473U18vs2WJcOOXShZWw3mySkDsFTovH4ytxsmCBxl9qatTLFBure1U3mhfV2mo2EQORhn/Q5zY1SW2tuW5sTImrjWa+YoUVP2i2yY/vBwOa3KSbZ2urjI2JsRg6ZePGdxEm19er9jk4KLW1ug89B+pyGRvTE1b+lIHqeTy6Jqx0vS1bfMn4cETi4620gW6BnSamsVu0eGu1wLiUG1CjunyOCRwzaRxtNpquqcmylibE31+MUtAv27bp/VtaxIa/L1ggIjU1EhxsuQw7RUpLZcECkxRsCuAmJ4sKetNHUlsr4u9vl0RKTDQxy9pauzag1NaqohERIeL1mjnSb+KhmlRtCRXoV8Sf1WcWxHb9euNia/Nt0LW1Am/Kli0q+NrbRQRFglrvJjk5vrSCggIBr45dU5MUFxvUaUaGmbsXZBLE4dB3sErVwTG11jwekYQEFTKDg+q+LCgQGRmR0FAdP8nM9KUm1NTIsmVGkLlcIi0tMm+eugot3Qh26/fV1QLdNiG3lJWpK3JwUK2o3l5JTDQCOy/PB+2vqREpKpKMDF91AQkNFWlslOJi7cLAQB2z5GQdx/h4406PjtZG5OWJpKaa5PM9xrVYo2keprajFf+VyUnb8q+tFe3YoiK7Hl5fn1EqBwftuKTU15tUo06BAZ8r2CTsW6jn1FTxQaazs23kaHm5rvvMTH1HKz1HAgOltVUkIOD9Tz34ewg7EU0q//jHPy4zZsyQ6667Turq6uzvvvWtb8nnPvc5++/8/Hz5xCc+IQ6HQ2bPni0rV66Ubdu2/ad7PvPMM3LNNdeIv7+/eDye9wjDv8XxgRZ2R407LDvb8NHV1/viOTk5YptCqalyEWywgaSlSXm5XQ5MZGREli1ToeX1KjBCvF4DYHlTgQeBgSpYY2J0I0lN1d02JcVebHV1os8z6QeWRRIa6gPHbNkiRmj+UKSxUbKyfLW4amp0P3jGWE6ZmSJSWioNDXpNYqJJS0hNtd2qXV2iksVi/E9L08U8MqKfxkZ90eJiu5hqQYH++27+TptnzIr5WcXbyspk9my7tqluXJOTIo2Nvpp4OTk2K4X09tpVwSUtTTZt8pWKszao+nrxUTolJOhN3W7dtF0usXi2UlJErT1TVdq6h2RnGwE6LBERZgwNU4jXK4bNo18kKek9uWEKMtG8NmUyeVHnQ06OwA7t/LEx6e0149TVJfCkCmTjxrMYYSYndd5ERGjzLGeCRV03MiImVtWtQjgyUjfbsjIVfiaN4ADYoCFpbbXLBsnIiAqp0FDth5ERfWZ/v6ncfcJ+55gY0UGMjFS3XFaWr/ROba1IaalUVpp+qqqyCQmyskybTcHg8nLRSRgernNi/XqV1AaFkZLyLs7PtDRbGEprqwoKU4twBI3X2ikJra3az+ba+np1t1osCR0m1DA4aFzhViJ/U5NIVZWUlpqUhI4O5SQdMe/h8dj5qoPGHTo5ae7d0SG29lZYqPPRirNFRNj7Ql+f8XJUV/tiyqaUVXq6GQurntD69frwhASfxbt+vUq7qCi9UWSklJfr7b1PPPH+CzunU11Cl/jxOp3vW5s+aMcHWth5n3xSpKJCF6nTacrzdIuEhkpDg0m6Li3VxRkToxZUU5Ns2aL7aXu7LnCrVlVOjpn4plbd2+CLuURF6cYZGGjXVZPBQZ8rr7bW5luU0lIjHH9r01ZZMZbeXo1ttLdr26zyItLa6kuetVyDRrqYgtsCm0RSU1Xg9ffr8y3J4nLpRl9SIlFRYrvfCgvFpiiDXIFxm1FFQQPjPrLd9etVs7VYpK0NtqREJC1N3WKNjdouf3/bYpHYWN1xTbKy5VaSpCSfKzk52Rau0tVlcz+Kx6OgoNhYmynFKpRpxdgqK82YlJVpXLGqSrX2/HwpL/cRBXu9ZrM0eVCZmXq/8nJRl2iv2fBNqRoLkZqSIr73Nuwgdk0aK5EtK8ueM1u2+MChGzYYlpHsbK271irq8jNJ+5Kfb7P1WNLYqnQ9OCg+ctCcHJteTurrZcsWI3zq6kTy8rSPKiq0L3JyfHUXc3Nl2TJjWYWGqkWSlaVuvJYWu75heroZF4POlMhIMwfG9f17e9VyMzVyLoCOXV2dnSivrD+n7fqIkp+vY2wAMxYHp5SW2lPIyoGUmhq7WrsMDqqUbW1V685YXlYJctsFb+47Br4ySpYL1JTFkjVrVLJMTupa7epSwdPfr32Vm6vPr6jwFUXOydH5U1Oj89sC/qxfL7ZPtapKrMz7jg7Rl6iqsuPRXV1i55lasrkdRFpapKREp8zfolK5d+5cbeslfrxz534o7D5Ix3tiduHh9qaqUOUmmZz0EelbcTHbdbd+vf5dVmYW+zOi6QfPCPxZ4ITU1Pi8VJs2mThQf79IR4ctRAsKfHt8bq4Ya6LNt5gyM60C12JxVkp2tgq4zExpaLAInattF6kUFOgG19Iig4NKHqwQ8CaRrCx1XRo33P0g8JhIe7ttbdhVrrOyRLKypK5O3Tw5OfpoKzbX3m5YPGpqbBAA7NENs6rKdi9aRQukpkYkK0sGTdzQlDaTri4TXzIb3xlMesH69TZDvs0TZSVEt7SoGyolRUpLdZysempjYybOVFKifyQnS2urSZovKrIrlsOz6hZOShLYI+3thlRgclLruaFVJiyWOBkZ0XuOjPgqmxcX+yyZnBw73qNu8GdlJ8gzYHNBKoz8TYmL033DqsembsZmtWYiI0Xi4qSlRaQJTZIXU48tNVVs1K5ljVr0b1ZCfolxMcfGis3xKMnJBqW7SWwoqddru2JjYnQMli0TkfBw/Y0ZYGjS9+7o0OtTUox7/reGgeWYT+pabsmqKrsIqRY0/qWUlxsXYFGRWJVZk5JselK9vrZW0Y0JCXYdSSttQVJTjVu7XGCzSE2NKghxcSpga2tlxQpfFQN4TCDbuM87tf1Opy8LPjNTMjON9eT1FSKBHSJNTSYt6JisWGFVwnhK3aCVlQLPmu9bBXaKFBVJe7t2raWnFhZaROzPiJVOYWrQmvXqVYvSymcKDRXxeHT9hIcLpIl0dEg+fwM05ofC7pKPD7awe/ZZU2W8W3p7DXO6yyWSmSn9KFy+CXxlCsrKdGWsWSMWC/9LKE2YJCeL5OUpWispSXezrCwVHqmpPs3QVFmW/HzpQuHpF4wbps5o0VbNVhkZEenvV1h5To4NCh0ZEV1Zg4OKBE1IkNRUXbzbtoldadzKEfSCnSNXXy+GIeQxud86n5rq4+KKixPp75eSEhVoVvsuGJdvXZ3ufxbis7ZWf3IYgyrNzZVBsMuzdKOIz9paY50EB6vQshhwLc26vd0uACrt7RrcT0kRr9dYtZWV+tCSEi230t4ukpioz6yrU80hLk4kIcEu8dPbKyK5uQIvqjB3OrXdwcF2bLTLjG9srNh8kFCj7idrFxwZ0U03IcGOh9ruMIOGtHIhV6wQQ99l4omGGbi42PSz263md0eHWpmtrSJRURIVZZFEt0pJifZVQYGIeL0qpA36ExSktGGDcbdlZakFumaNuslHRkSCg6WlRX9vFd+V4GAVWLm5snGjmSe5ueq+N3mXmZki4nLZeaXidPqsbBOfkpwcGQHxeo273AgPycuTbdt8hXIrKxX8ZCGMJVvRwjU1ohqEIaO2OFfr63WednWJKjtWtfPwcB3HtDQZQ5HPNTWiisHYmLKPGMuv38QMT5rrJDPT5m7NyjIWdH+/Ley3bdPx6erSd91vrYf8fH12aqpIcrJ4QSrMu24z820viDid6mGwOFl7e/WdKitV6oWHax+VltoUSHtRAI+peCVSUSGDg0ZJM8w0+8HEOt//qgfeq65SCX6JH+9VV30o7D5IhzXwzc1esX1TxtXT0CC6YVRUiFRX25zGlm+vocFQABngiA1WMCt5cFB8JZUt0mBTxqCvT39nk0X39vry7To69LuKCtuV09UltuUlY2M2zVFfn9iWYnm5+Mwkk/BmE/Saqs0jI7rxjI2JjYKT9naprzcxvJYW2+U4OalN37BBfG2uqBDp7/flmNXV6fMrK21D1A7eWagJA3KxcwlLSmxBJuvXixQVab/29+v50lIbMNPUJD73XF2dvQH19urtKyvlPe21hH9vr6hrCVRbNuWILOHc3m7GxqJ/qqvTDnE4dIPp6PChSJOT34PUk44ObYcpn93S4su3k8pK/cPa7MrK7Hu1t6tQsipp19aKjyrL6xXp6tI5U1xs96l4vdo3BknY0WFAUZZL1uoTr1eKi30hIcnL87llBwd1szYE3SMjIhIdrV6GmBiR/n7ZtEnbFhdnLPWCAh1LC+5fUWGnpFhVuCU4WKSxUdGTFRWSmmoEWGmp1NaKnTtZUiK+lAAzVy2C6L4+seNptgXq76+E5R3aFqsrpbpa+zkjQ6S/XxoaNF3EcgPLyIhs26bDaOXeyZo1Orxgk2dbsVhLoFhk6TU1YtNz1dSI/AYlhh8c1HeSwUFtd3u7/r+mxqf4trSoEKyttYFBRm/zVS0xa6cebLexREdbnlOR/n47lis1Nfq7/n4ZGxM5cuRvAFD52Md0bVzix/uxj30o7D5IhzXwj4F0gEC2zfARE6Nw4gpjse15l4W3Hc29ew5N0oUfyBiah6Yu0COa6AoiDodJ5v2xdJvfQbf0YxCNwcHyBMjTRgvdZdpSb1mSBhSQlSUiycmybJmuFcuasdB6EhdnXJ3dxnXUrFZYXp4i5xITbfdYVJSoVdHa6stnammR+9FaYXssjdjhMHXlxmUvyO9AtoENSIDdaoWtWSNSWiqBgZqP94S5zwvm+ifN+1lCWyoqpAut6dWOAn6qrGdaAsoAT06a9tgB/IQE+//95h6/QV2FkpkpT5jnPWT6d6/ZjEsxqQcul27cpoBudraxeCoqbF+yMua86SsHNDYmmzapxZGQoBp3TIwRmv7+AjvU8m9vV1eysVhbWoxQS0kR6FfUZ2GhbvI5OSJOp8aa/P3tBGkFs+wQRfZViZSVySmQZcu0YoXU14vXq009jCKGW43FDRfUBTw56UNiRkWpC7muzg4fHQG9gYWINLl3dkmiqir9t7RUz8XGimRkSJ2xJMfGNE1DmprsyiAbN4pIYKDUYxh5Ghtt4oILZvwuGAEotbU6ZwxGv6HBlAYEkexsjVklJIhkZMgRFN3cBT50U1WVTfDQaubHfjPe7e3a35KZ6ctzNV4SSxkLDzfv6XDYoLAuo+zVmjUplZXqb6yuVqs3NVUkN1dGzPNOWkpRba0+JytLJCpKBWtsrArBigrZjrrsJTLSp0hZKKzQUH3x/HzpN+u+H41pWoWWJTdXvG+//aGw+190fKCrtH8EmAPACFcCAygdXp85PwvoAZYAVwMnACcQAsABYC4TwEz7bg6GgSHg2OgoxwGIYACYYa6ZAIaBiVOnmA68A4ya7ycAN8DBg1BeTno6ygnZ18eqVXDx4lm45RaOAvPmRSgHYnc3ISEAlynfHydwOJ1QVERgIODxKEfg7bezd2+X8vR9/vPK47lvH4SFsQh4Cxg378jWrdxyC6xY4c8cIAy4EvjFL06ydSvExX2WoSG9ruLyb7JuHQSZ3weYvh0w/ReAxdUIhIUxHXABpwE/f3+Omf4bBoiOhs99DubOxRUYyGlQ4s/hYX2HgAAICeE4sMjcewBg3Tom0Da4gID161nudsOpUyw13UlwMMOdnZCXB4cPA0rdyMGDsHat8niaY2JC6RXfODgDtxtmRUQQH6/P6+vT74mPB8LwA04HLdJeijYkoCgNIpGRLFhwJZ/4BDA0xOQkyqvocOBwwNmLF8HPj6AgmAqZb3p5RGfYRz5CkNPJqlWwMDAQwsKYFTDFqVPgMO0cBxxOJ9OmORgCxiemMzwMM4ffgbVrlbfS4WBgQNsT5u8Pp05BbCwhITC+dy80NBAdbRq8ebNylq5dy65dKJnpwYNch1JIzug5xiLQ8Rgehm3bCA4G5s7lSgAmORZ0vXJp7tun43f0KENgiGNRzsmtW6Gvj6goWOQ4zkyPB9auxQU6Fg0NhLndzMKsm1Wr4PLLYWKC0QMHID6eYWAhEOnvT4DDQU8PDD35pHJPDg/D5CRMTDB96DSf/CTgdNLdresFj4fpR9+Czk6CgKklS7VPL7tM2/7441Bfz5XR0fDSSwB0AkvRtcpLL+l7NDQoR+aBA/quISGQmAgHD+JG6TInmptZBEy5F2of79uni3piAtLTOWrmrROYvu5rOIE5zimYO5cp5xze98PP73/++b96/L2l7aUclpazFasA6yaRuDjZiwITmoyFst1ojnUosmwEpBTk1yDwKwHV+DSv6rRYpX8ugF1BALpV44yK8uVplZUp2stYNdtQVo3DxsK7iMYHLN4+cblMoLxV4wPh4RIaahBnHo/Jves0IJsBfXZTk2rdHo9qwzk5+reF8hsbE0lIkMlJTZWoQ6nFnrEsz4ICsSpc15r3ttyGGlsqV408IUHdWDExcsBYWxdNvzaaPpT2drvKp/V+XpSxYj8a2xvExPwcDtluztWjcZGTIBIRIXtM23aBlKBsJKfQuNfb5tlbzP1bQCQ6WlpRkIh0dUkHGu/p7VU3bWKiqNqfkiKSlibwU4HHDP3bhGRlGfeXqV94AOWpbGgQY0V3SxWYuO8Ru96hAaKKxMTYvKMSGalxw+hoY5k/pXD3zEy7SKoCGl4UuE8kJUXnW6m6Bjs6RKSqSsLDdbzg50qpFhcn8KRW1hgTH79qRYVa8iYJPj5en70NRQjHxorYSaOxsWqx1dRIFdh148bGRC3hqCg16ZOTRRITdbwbGzUoGBMjT5uxTE5WQFZqqmiagBVkLilR6z40VH8THS1JSTbhv/ZDf7+OmSnRcNFYdc+hMfBt24yrLzFRByUhQRqNVSQ1NWq1paSI7etOSpKuLssTMSAyNibwmEhenrSi8ckVK0QkN1dSUkwJLYtKzfL3r18vMjiofe/vr2wobrcUF/vwatLfL5KXJxdA+vp0Cmzbpms2NFTbWweSkyM+Jh/j056cFJHgYNlp3nXbNhFxOPQaEK8pRfa+WnYLF/oqJ1/Cx7tw4YeW3QfxGEGtD/BndPt2ZqDK7TFU05oFnEetBRoaOI9afGrZjQOzmIllzQwC7zATaANl49+7F3iHqSef5OzevTz6KKrV1tfDyy/jZ+5ypXlGEGpB+kVGQl4ew8NaVIGICO64A0JDr4WWFiaOHLGUbli8mOXLITT049DcDJzQygl5eYyMAHFxat0NDLB5MzAwwKytv2fKb4YxP1RbtSzYg0DAmjWG6f6zLEQtzkWo4fjAA6rwz5v3dWbm5MADD3DmDDA6ip/ps9OotTZkdXRYmGq9cXH6fm43s/z9udb07xxgjr8/M/z9YXQUD6rR9wFEReFyOMDtZqm53QzgWtTCGQKear6W6WbMZgB+a9aoBbJ4MTNRY5Z9+/ADbu78LVcHnOWyy9QA0C8xFtn1QBghIeDvfxmrVsGrr+o1brdany+/DF4vpu8uYyFwteM0MFvfcWICh8NYfxcvEhgIn/404O+vz1m8GF00n1JrwuUiKMh6/jwzA5aAw8E4ep8Ap5MrrgBCQoiMBNWt5+m8GxoCPkUQMGPgBMuXo5aQnx97946Ax8PJk7B4MRAYyCLgE58wP3M49D/p6XgAjhzBgxq5n/88zOg7rgvi4kW1WpcvBz8/beru3Wrm3nMPy9E14fHoa9x+OzAyotc0N8PJk8xv/iN873tw1VUwOcntt+tz1q411ltbG/NBLYeyMvwcDoLQNYGfH19cdV69HD09MDDA+AsvEGB9v3kzt9yCWlpHj+o1AQHMD5li1SpISJir51kFI+rFWbIEvvIVHcdPftJ4FpxOzo9Oh1/8Qi3RoSEoK2Mhxzh/8SJXAlOdndxxB8xoe5NZQ8f1WU1NvANc1fE6K1fCF+OnmOrr06oow8M4Td/cdhvMGj6hv2luZvrwWd46dYpZwHTgi87XOTs6Smen7gscP86Hx/+i4+8tbS/lsLScM+aTmCh2ntPkpKgv3uFQ1TMvz6ZGkvZ2qUORhjExJqetutrON4IJ1WZNsdSmJg1BtLaKxhtaWqS+XgEEJSWi8ZP8fBGPR7Xb7GyNE8TEiHWD3FwRKSmRBQtM/G79epGqKlmxQmzaqogIk96QlKRsEmlpql1bkOveXtWoTUKxDffu79d7OBwi1dVq0a1ZI/eDSWt4US4Ya+qUsSIkOFjgIYmPF3kBpBAFOEhTk0hhocZd+vtVDV+zRq1KC53mcmmcas0aRaGhqDPxeEQSExVc4HRKvbFyJTNTabRM34jTqVZGXJzG+XJzbXJmqayUXmPVjZkYiMX52dcnqk0nJ0t4uGHyGBuThgYDRCgpEcnLE2jT2FtHh10xfGxMbHCMuN12nTpJTZVly3xWV3i4aJzI4dBkbsWny6ZNJmYUHm7D5LVKxIBtgVl1B2NjxWaLEadTK633ii8lwKK8io0VOK39WFAgcEG9CWVlaj02NYnU1GjcraREpLFR45O5udJrLLuSEhFJTfVVtF+/XjlXUcYfWb9eY05WeYnMTO2QJuX/tBL8JSFBxoyl3trqIxuwkug3bvThkyQuTqxyALpeBgR2a9zTVHsYRGPDk2Z8vWjFi4wMtZD7+sT2TOwBnQ81NRIfb8ayv19SU9Wy1moIp9WqzcnRmHd7u+xHyQHggkheno5PRoZIXZ2MjIgPsFNYaFcll64ujeu1t8u0adqWFSvEx4lWXKztmpzU/cTjkQULdBkfMPsFXJDERB8uygIQdRurEnaKxMba8XBvfv77b9ktWiSyePElf7yLFv2fteymiZgCRx+g4+zZs3z0ox/l5Ekv4+OzmP/yb7lh83fZsUO/37FDFcyhIXWxP7L2Fb65+Sa+9CX4euw7qtXv2gXAb0e+Aajx4nT6yl05HGoF/GH5r3gq6If6f8d3ubnzt4B+/41vQH+/PisyUstzrVwJXz76CH8I+hHfjHyTn5QtZdUq1Zivc5/mtYNzuOYauGr2OP+6cYZdJ+7moDd4K+A6FoWc58TQTK4eOqRmwcQEz3ZeR1gYLB1+HSIjeaVhJje9/BN+7/k5fX1abuyWW+DGfY/A6tVUHF7K4XXT+OGgsH071NSotn5T5++1gQ88wLSnM+nri2JsDF78+DR+HyWsXq0l0DIyVGO3+vHhh9UIuHbnJiqCfkBtrRoK3177Dq+1XcnAgP7tcMCczY/AunX86eDV3Ox+i7OuRcxq+zN/Grqem7/yEYiN5Y/pL/LlfT/l9+5/ZfduLX32y1/CP60/S8VLs1i8WJ/r8Wj45bvlN7H45CscbhnnzbYZlJdr2TZQw+W229D+MhYwR4/yOjcQHQ3TJ8b51WMzWLkSruMN/thzHVddBZ/p/yNTa7/M9J7j0NzMKwFf5qaeP8Att/D7rbP49vI3dSIsX86z++Zz675/5tidD7LQPUXj3um0tqoBtnDoDQ45rsPphKuDxuHll3kj5MtcxxswMcF45PXMGHpH45XDw/DoozR+5UECA/UdJybg3DmIiICZPW/x7MFF3Lp2nEeKZhAZqXGjkBAtOdfQAH9w/YR/6Pk5d9yhY/Lww/Dm6CId4Pvug4cf5mv7fkJ6OvzgBzB7tt7jj22L4LbbWPzcg0RE6KsFBMBrez8C4eG8VvQmNzb/iuO3/JA9e9T6/cd/1D7OyIAXXoDDm17heNhNOJ3anuXLNUYeEKDGzvdvP8uxgVl2OTqHQ6/ZvVvbkpyswxMUpP9aY/joo/qOVjhp9251TOzYoesmIEDXZ0CAekPuuQdmDp3greGrSU/XPhgY0N8//7x6MF59VcOXixdreM7l0nm2apVe//TTGha04tFDQ9quffvgzjt17ZeX69y66y71iMTHq8F45Ai8lPkn/vnVm7nzTli4Zwv4+3Noyde4NuQsjzw+ix/tvpWzy5fz0X/5F7xeL7NmzXpf9jzvtdcy67LLLv0+k5N89NCh96VNH7jj7y1tL+WwtBw4JMHBmnSsHHf9IpOTpozHEVGuwwk9Pzb2rlI+O8Rr4gVRUSb+4XKJOJ0CwxbhuWqamZk21V97u4j09qpW19EhMGBicRcE2iQiQg2f8HCxK3RLeLhqpiZ3zyamLS4WiYvTZN2sLJHYWJtyqaRE9KLqaivVSAoLfVBtSUuzCT+03t64rFghBg14QeBFGRwUk3h+RJSjco/NaH/SxFa05l+rSG2tzfMJO6WgQGMl06bpp7XVV/cMxt9V+08rA1hlb2bPtsolvSlw2g4TwbBs2iTvKgvTKlAjiYmG09JUv9a8pH7Jzta0IFOqUKSrS0ZGtO6c5OWplWlYTSzKt23bNOeuF5OKkZiondbUZNN0wQXta4s/MjZWbA5Il0s6Okxic1aWjIyYZ5eUiGRnKyVXXZ0EB2vbNMl8XBGT/f0yMqLzcMzEK9UwnBCpqdHYT2+vWnXr1wuclgOgVujkpHSjvJft7SISHW2lxYmkpNi5ZBIXZ+b4bp2w+fmSk6PjkpCgz9JE6D0ikZFqUZaUyOCgdkNiolpplkViEQPoWmnTvu3v18lm6rs1NJh5aFCIqaka00tM1LZZZaVgwGZDiYrSOWpVf7AS8S00ZnGxiNTXS2GhmMojXl0nJpYmra0ijY2KcC0r0wkSHCwyOKjx9zrD4lJaKpKQoP2TlCQLFpjYqkmH8HoNg44pO6/zsEmt5eJiXdAm16C42LS7uFgnfn29WveBgVJSYmKGVk5pdbXI2Jiu77Iy054BHWO3W+dVV5ckJYm0tf0NUg+WLtWOvcSPd+nS/7OW3Qda2L1pAs6QJ5KfL1tApKhITqKFPX+DAkcaMbk0pvTPkyDwW4GfyzYUXm/2Ti0Zg0lOT0nRzW/NGpHISHVPlJWp+62yUn6HwvS3o6kNz1kB97IyO1De0qLCRYs6NtksFBkZuvG8DWYjf02kpEQF45o1dnFPqa1VyHldnU1iW1ioLpi3TVB9r3nucwbYccF2Yx7RagkgvwR1R46NCfRLeLhC8hXYcUEaTT/tMm7e/eZ3vzNuvo4O8SXjhobakGyv5YqyXGUxMSpMnU6F0xcUaP/l5alrKyZGnjEB/VYjGKSqSk6i6SIvgYjHo/1YWSndYAvEEdBE7eJiWbZMvbcXwebm1HSSNoHTEhWl3l8rTy4pSSHy2dmm9tv69bJggboxW1pUSbFy6aSxURIT9f9xcT5MhVRUiISHSxeIx2NywgoKRFpajJDPFWXr2KTuxdRUdV07HCJlZaZcT6dsQ1lxGsHQynnlpFG8ampErLpLmZmq2yQlic1mfdi4BIuLxVcvLzJSdqLgrBq0WG1Ojr5je7v46h0WFGj6Rq6WmpLQUJGYGC3NA7ZiFRysj7sAPje2KdkkqakieXlWvVZ1ETocWqkAbNfuOTN/GsF2xUpOjvSiCe3i8cg5M2etIrVWbqQkJtqlfyzSCC1rtVukq0vGjHs5Pl77oLxc7JqKIyPi4+J0uez0Aqs8U5MZb8nOtutGSnW1vnRHhy7KsTERt1va25Vzdz/4OEvXr7eZfaSlRSQmRsMkLpcK3oQEu6RTfPyHwu5/0/GBBqgcBSY6O4FR3vmnf8IFvBX3Aw5h0gPMZxbAunWcfeGFd6URXASO4UQBJmVl6roIAN4E9cE8/zz799cy+tJL9DU385vfAMXF6l/ZsYNhFMwxAUyZ54yCghkefZRDR2dw+DC4QkNxONAnDQ1BdTXV1fpfd3CwwZnMgp4eRXjv38+MnmOIXAQMgKaoiFea58DWrcTHq5vHBVxV9+80A8fN8/tMe2pqwAJgHEPBIKdX3cpTW2cAzdx+O8zy99f35Azn0bSF0yhAZxhfWkVPj7nM6SQAGO7uZqq5mYUopHto7171ixn/bxBwfmhI4dyg7kWvl+mJiRASwhw0gH/atBuXi+PAWdPW021t9vlOTIpBUREzHQ7uvBP13wGjoyP4ud3Q0MCcl7YAVwCXkZQ0m9FRuJoTtmt7YkLv3dOjLlf27OHttxsUku54i4sXD/CJT8D055+FoCDCwmB62R9obobPfAZm9b2lfq7RUc6j7usJUL9WWJhJH/kImugxixnDp5l64gkaGmB4dBT8/RVwxGz9HRc4a8/kSRyoW290FG2gnx8DAzCz7Q0cDhgPuhpeeolFqFutoQGdQD09UFWFB/jyytMsBTZsMJkVbW0sqn6EoeeeYyrvQbj7boY6O8HtZs5vNsDcufD88zaIqadHXYRbt8LVzvMKMDp1Sv2ARUU66YaGIDycdesUJHLLLTAxOgrV1Zq+UF4ObW30oVAdQH2Kjz8Ow8MEALO2/p4ec80MgLw8Ba9MTDD96S0KiAGorubq0WN4PCE6ZlwPL7zAjMBAQkIgJQV4+mlWrFCA1pXAzLLfqm913jz6+vp0TjY3M2rm8llgqWdc/Z7m2dTXc/TUKX3xfftg3z7e6uzkox/VfpkOzGl+hW/fPq7v/9JLCvLZt4/zu3ZxGhjq6yMyEqZeeEF9n2FhCrp5v48PUw8u+fhAC7tZGNQT/lwZGcl5YNHEIa5EX2zqXf+ybh2z/P2Zsn9zGTCD8+ZeQUHwsY8putADvoADkTji4nA5nSQkoE5/jwc++UkcqBCZAHsxTYGi35Ys4dw5CAyE0e5uI9BaFGnpcuF0mr3z1CkuXgQ4BiEhuN1AeDi43UybpgjAdwCWL9fmhIXR1mbQgmh7rkYFYg8+gXv77QD9nEaFYh8w5+if+YfV7wBXsHkzDF+8CAMDzJs3Dz8sJQDmm/e4GkUOOp1G2LW1MWzOTZjnTcfkKQ4P60VtbZw2/TIFuqm0ten3O3bA4cOcRYXpLEyeZGcnVvQgwNx/OsDbb+NEY1qsXMnw6KgiUt1uA8J0MNXZqQ2cN8+0qIe+Pn3ceNDVuFzajquu0ns7nWafCwwErvINPgEqjPz8ICBA94TLLiMkBNrb0aDPhQswNMQ4cOaMImFpa4OeHjMelorQD0NDTA8MxOUySMErrtDHMGLm3zv6jg4H8A5T2CBErMQ6p9NqG4qY9XjoRLvRzn10u+Gxx+gBjg/P4Rgat3r+eZ0b3HknztBQplf/Efbtw+ly6fxNTtY+ePxxjpvxdDr13lu3wpRjpuaMRkXpM1au1GCa0wk9Pezbp6++b5/mW7JypaJ34+NhyRKCTG+MAnzhC5p/6XTqnFi1ihCHg/OYtRgVpejSiQlYsQLCw3VdrlrFCcdCOjrMu3IC3G5Gz51jaMiAl91u/Px0Ho2CrlmPB0JCFAXs8cDy5facmgkcOjpDrwsJ0feKjFRBHRSk479kCQuBwUGdi1PA1KqbeGX3DA3Ox8Roe0+eZGZgoL3uGxpgusOh49fTo6jf9/u47LL/maD7H8T7PvDH39u0vJTDMulXr/aqWys7W+Mfvb2G6aRN/T9WXarqavH3V1dhZaWIXTGzpkZdjlVV6vYIDzcVoztNLKPGuJkGBDpNiZhm0XpunbJtm97GKs8jg4PS16deqNmzlch5cFDUtVNfb1NIwQ5FH/aKxhQKChRxODkp5wyaDY5Jfb3YrtOREa1HFx6u7jIr96y3V8z1JyzOYfW9lZSou66yUtvQ2Cj3o+jVmhr14nRgcvJMWR4LxZaYaFcR0oKfXl/pFVOfU927jY22y9CiS5TqapHeXmlpUVerVVW7tFTUD2S1p7ZWYmN9iNjZs9WDtGGDqHuorExaW/W5XV2+AubwrDQ0aB/39urYS3+/9m1vr00EbAdZDXeiVUtP1q+32KFEios1LmWo3goLjfuvuFgqKw2tWXGxyOSkomqzsnQsLabgpiZ1a61ZI1u2aH+NjenUKyw0VQt6e/V9DZK3pkbbNjamcyErS9/Fqozg9eq1vb0ikpgo27aZdldX63hWV9sVDFJStE8uokwhMCxSVKRuz7w82bRJ+zc3V0SSkmwUcUuLDxlpVSLv6BARj8fyzEl4uM4BJXQ+rfHH+nqR2FhpadG5YhHj2EVei4pERkb0+RaCt7dXZHJS12lHh7S0aHeHhpp8towMmT1buzM21rjLu7pESkulvV0fuWKFXSRBUamTk5KVpR5Wj0d8FSJM+SQYVldlY6MsWyb2mpSWFrsWq1WVobfXR+odG6tbQ1ycIb42sVjp6pL2dnXxtrfr/YqLrbV8wU5DhSMaJ0xJEamtla9//W/gxoyK0g65xI83KupDN+YH8VixQq0xenqYN+9TnOBqbnK58Pe/hrd6ZvLWxELVwBYvNgrNdaxaharFLhccOcLZhG9weuWX1fdzzz2cCFqKv//H1cICteAccwHLIryAv38IEMLRo6rs9/Wp0vSnfXMYHIQbBv7ISy9BUGIiAFO3fQ1CQljIMfrPzSQ8/PMQHY3LBW/6XQfr1nFV+2uc6JtOgMdDZCTk5CzgBuch1q6F4zHfYHQUVqMuLMjmiwGv8VrnfIaG1LMye/Y8QJVwmpth5UrNMVu7lpdf1i/uBh5FFfTly2FhdLRq2kFB3HefvkdYmHrmBgbUI9XXB7P8zut9d+5kYEAV8KuuAiYm8PefzerVqvCGhQEf+Qj09FgKMkuWwPR9f7bT4bj8cvVCDg/T1qaIuGOLv8SZM5O+gXU4YPFirg0bp6cH5o++hctl3JlEUFGh73m18zykp3PWcaVaYk4nhIRw9936vmddi8B0x+LFSuJBWBg3TfyJ69ynYdUqPhM1Zc+H22+Hu++Gs+u+y63x57l17Tg4HBzvma79npenL7puHYfapuv/PR645x6io30sJaOjiuiLiAA6Oxkdhf6rlnKD+wSf+hScjb5ZLTWHg4AA7evVqyE723hoR0c1B/PTn+aLzteJjIT+5V9Si3RkhLExmDFxnvh4ta78oqPhq18lK+sKCA1Vq29khAMHICvLTsfkqpFj7N6tBCKrV0NLC8wxcODhYZhoa2PHDn2tn/1M5/S+fQABREUZi+LHP8bj0f53u3Wo5g8fUndxWhrs3KlzJSyM/i98U9fZ7t2MjsLrfQs5fFjHw54v997LbbfpuWuu0bn54sH5HFv5TRoaFH35la9guwSXL9cBdbn0/3fcofPR3x9ISjLG4RUcPgynw64nLExd+vv2ab/u2KG/6+lRa7mtDZKS1HO8ZInO/SVLdCxfP3olW7cCfn4895y+/o4dVogAzjMThxnDK64AmKvz/J57YGiIH/6Q9//40I156cffW9peyuFDY74u06apZhsYaMrRdHSYXKdWgdMyb56ivjZssEp0vCjwpkwaUEdioql4HRgoEhwss2cb62hsTLVBFOkZHy8iRUVSVSU2ohL6ZfZsC1V2wVRUviBbtohdIVtKSzWwnZEhkpYmBQWmMKjbLTI4qBZPfr5ISormR6WmansMoXFOjmrmW7ZomwoKRCQ31yogYEre7Ja4ONVO9d0fEklONpyf/QI1ArutajZKHl1ba8AcfxYJDpaoKKscSpMkJloIv9MCnTZJ8qZNqvHHxmp/RkT4KrUXFup3ahEPC3jt+q+WEV1QoL/T/mqTZcsMEnZw0ORU7RQtKzMhcEyqqgxIp71dMjON1ZWbqxZVSYnImjVSV6fP7uhQK8Wq7mCz6RcVaQXwvDy1fLKzpaVF266W+mlpadH/19SYcTblgBISRME10dFq5ZnKDlZ5mtRUk5Nm8rvGQFn+waBOTxuLa8AmLpbCQpk3T0RCQ2XePFNZPjbWric6MiIi/f06BzMz9f7V1SKVlZKebiyb6mqR3FzJzrY5rhUt2tSk96urk+Ji7abeXlXqLZBRQYGI1NSI1ys2t6WFIpaaGrs6hUUx2d6uw2+RHdt5p0VFdoV0OCZer46rw6FtgmMSHq7nFizw4T6seazI3mqB07puDdNJb6+IeL3q0aiqUvPRgFAkJcVYbhNq6uXmyrx5VtX2C5KSYvqvo8NnBRqi7tRUEfizjm9+vjaytlZaWrRthkZU0ZRer8AxkYICu5K5FBRoWwYH1csxOCjh4RZC+ZhAv0H3Dou0tEhpqUh9/d/AsouJ0cZe4scbE/N/1rL7QAu7FSu86jLJyRFpb9faZf39Ulys6zAlRQwC7phIS4uBCXcLvGmjqurqzAawZo1NylxTI75qCgUFukn19qqLLS1Nfxsba6PbU1J0w9i0SZ8Lp0Wqq3XhGniyREaK5OdLS4vYxUqlulrdaMnJIqWluolkZ9vvYcPfJyfV7WZtAiUlUlxsoOr9/VJYaNXNK5d586xk3D+LJCZKeLh+t2CBbl6VlSJSW2vSEsYlKcls3u3tpsDruO2mKS3V31ob3rx5KszKy60Ug9NSUKDXpKToa6ib9YQkJdkVe8Th0L5RtOSwSVvYbNNyeb2Wu+yCrFih4M7Zs3Vvycoym2tOjiIb4+J0vKur7UT/jRtVoF60kKKTk9rfVsVuk4y/YIGOhwwOqpsqMVHggr5gZKRERRmkZlKS1NcbEoDiYpG8PJk9W8fGqmc4iKYXDA7q9U1Npm1paXIKfEjFwUEVWLW1eu+mJh1ff3+rrJ6cQ8mg+/p0fmVni75bXp7N6C8xMWajb1KXe3S03q+/X2BCpk1TYQbd+n19vQokUypp3jx1PY+MiE74+nrz2zaBTTrPenvVZ5qWpoNiUYYVFcmkcaGXlOicP4ePNm7TJp2jy5aZtVRSItnZ+tPgYNOnERF6X6sInSF2Tk/X621y5clJkfx87Yv8fJHwcEXs1tXZaSVRUeKrQl5UJOJyycaNxtXe1aXpKWVliuzMy1ONbGREBZGVq5GXpxO3t1d/6PXqgCck6F4wOaku3sZG7Zs1a7SNeXl6vfHxq9I7rm3KydG13dgoEREitbUfCrv/TccHWth5f/ITEX9/3RzGxnRxZGVZqp4uiOJi8Rq4c2urat+9ZqNasEDswMOGDT4Wk5oa1Yo3bdKFnZRkYhIJCZKWptctWya6u1dViTidylASEaEMJMnJarFlZalGGhsrwcEm7ycqSnp7dcOsrdVrkpNNbC4mxmZxWLBAdPHHxOimExcnkpdn6rUdUYlsKgDImjUiIyMKgc7JkRdMSgL0a2qAv78yhaB8k7rBjdtcmikpYpfyuYBhm7Fy1cLD7bSCQQwTS2io8iXiY86QuDhNOQgPlxYMg0pFhUyiDBoWp6RlDrZYkPTJSV9RUqdTJDxcBq3fh4aKOJ1SWGjiVgkJAidUO7fyv8rKVLBFRpoCoadtayc+Xuyq5vYmX12tArC9Xa2M8HCpqzMxn5ISkYQEnU8lJSIxMb6ySoWFdsxM+Sy7xSoj0d4uImlptmCHCZ0bho1HkpNVcKamSkaGsotAp24+XsO4EhUl0tWlc7CwUMe3o0PbXVxsc2NeMMKlvl50o6+stLWKzEwRQUvcSHGxFBSYGJhhapG8PJGsLFVurPnjcskYmm5i0VJmZ4tIV5fU16tSs2GDyoBzGGabjAzRQsdejWs7HCrZExJEoqLUSoyKUkvMrMOYGF/MS7KzpaDAKCcOh2zYoMK4qkr7sapKRFpapKpKzzscYjwYAyJNTYbL9pjAi9LaahTC+nrti5ISgVZVTIuKBCbsivV7jdCEJl8OZ2amvnRrqyQmirHkTovU1urv2tvlMFbq0LCt4NTViUhZmQplf3+TwtMpUlGhyklCgnhPnXr/hZ1V9/ESP97Y2P+zwu4DHbPjox+FuXM1nuLnB+npsHYtr++bAQUFUFrK2XXfZVZcHOXl6refAq72eFi1SuNfx+9+hPPlf+Tll5XykkcfpbNTYwe7d6vvfmAATp7UR46OapzJzw+47z7e8nwZsrMJ8nigvJxFLhcMDPCFLwDLl2sqwX334XQqIpnVqwkKUoTh6Chw7700NMDXvw5ERmps4ehRjc889hgcOMDrs7+klCbz5hEVBfBxyMvjlYGlvLXkVli3jooXZjIzIQFuuYVjwNgYwACz0tIgPZ2A5GSuBM42NABnSUryt7k0V66EiiPX8WbADTjCw/nn+6bz24alGqN67DEb+jkLCIqLg7vuYuqObzM/MFDTIcLCfFUH5s7FD4OyXLmS6YGBitJbu5YZoaEa6LntNuUtXfdtKp6ZzqGhq3l96FqIjYU772ROZCQej0c76Z57uPNOky7wmc/g7z9Px8kEdF5f8A0d69hY3G6YNm02s57/A7t3mz4wnJ4zj76pMb3YWL4YfRoGBjS+YtB8IyPAr38N27fz0EOT+t67djHDb0rH4pe/5Ne/BmJi4LHHmDYtRPsnPp6HHwb6+rjnHli/HpYtu8yuDMDAAISF6T327+dXeWeZXlpKePjH4e67mZiA0NBrNPi1ebOCSpcsgeho3ppYyMx9r8HRo7z88iTk5uKHIvmtmHL/Z2/Vyfi97+HxAFFRtLUBv/kN5eUG7HnvvTqZ+/s5ftfPKS/XufbGxFLw92dGVBRhERFcHXCWsjLDOfr88zz5JGzcqK/hcEBAaChXJiSYxedAEc0jnBgdVVqShx9mdO9e/drths2bWeR2M9HWRnOzZi88/jiMP/CglT0CxcWsXOkrjMHGjaSnw69eXco998DJk4dISwOqq1mwYK7GFwFlUl3ItW6NJ5+PvIE33Lcyfvu3gSs0NSMpCThKURE823M9VwIVJ28E/Nm6FY4cOQn33MOU3wzGw64lLEzjutOmzYaeHrZuhZ+WLSIEbTe8Q1GRDvs11wCTk1RW6pzXQGktoGwrOBzw0EP/ccf6nx8fojEv+Zgm8sGlC3v4YS/+/rP44cPzuSHkOMuXw7p1SiG1dauCRyYn9e8dO3TfCwrS1Jtf7VoGQ0PMn3ybU6ego0Nj6dHRSvzrdkNTE/z76Jf51eo/smMH/PEzG/jR4L9ofpxb90OLliw6GrZvP0tExCzerD7Oiwfn80XPMf61bCH79sEfy85CXh7/5v450dFwXeez5B+5lcpKvc91D/8Df7rjKW52/plne67nVvcbsGcPU+t/wC23qBz/ovsQp13XEhAAM277MjeP/pHoaKVbWrdOhemZM1BSArdun0Z6bS3TPn8DcIZ58+ZxYt8Jm3/qh+veYWhIBd2J700jlwHmzZvL6tU+Kqg9e04CI/T2htHXB9e5TrBw5dUMDSnAISxMN6mLFxWhfsUV8PVEpedqbtb2DA2pHCwrgwc/uQVCQ7n+nhvZulXb3NenY3P77doWi3Ktp0dBEmlp8OapeXwt5iS33AL/sORN/rl8KQ/epnRca+6/nsREBSrMuPv7OiAOh+44R4/Sf9VSsrN1s2pu1vaGhWkOHg0N/H7oVr59YZNC8ffsgdhYnnp+Jv/geNbmjzu25Mss3PFb3lr1XTo79V7//ugJfrjxan716BTHOqfjdMKce77t45u65RadUKOjvHF0FteFndV2ffSjXB9xgT/f+Vtuffm7rF4N3w/4Az9q/iaPLPk9x1d/m54ezflct07l/WfCT/PH3XO4+259h+pq/e7OO3VuTz3+e07Ef5urHad5s2cOR49qn69apePY0AAn7vhnWL2aaZ9fQnz8lQwO6r3G798Ayclcv24hf179z0o5BlS8MJN1604CV7Bx4yx6e1VmPv+89t/q1Qo8wu3m2/deyTXXKFT/059WYM7GjQouWb5c18qrr+oaKS/Xrunp0fM9PdrW+HidIx/9KFRVqX7ldquO9821p2k8MofPjLxC/t6bmJyEf5YNsHgxa353Ky8VvsWt9y7iwgXNQCkqUtn7/POq0JaV6dAmJ8MTT/QgY1ey/h9nMDamwi0wUPvojjv035/9TCv9gAJYPB7VP+69VwXdvn3w5u0/5ycDP2HlSs3DvCp4CiYmODEwg3vugae+sY2zmzfz0a1b31+6sNWrNT/2Uu9z8SIf3bHjQ7qwD8phm/QREQb+XiMSF6eusaIiOYeWvKlEGUFsn4XHo+6c0FADotgtL2GKtRoffJ2B54vbLYIW3zxjzsERdfP5+8sYypyyE1PaJi1NCXEzM9XlNDIidpn0yEiRkhJ174yMyNiYiQdVVyurSFSUxhG9XnVtGsoOKJfUVFOxua5OfUAmTQH2qKvPMKycwRBQR0WJNDVJVJS65hrxFZcdGVGvTVSU2OWYlWllQO5HSxVJQoJU4CtdtB3suF5MjKiryqrvUlqqLsrCQpGxMXXdFhXZsHoJD7djPDIyYpdH6TftPokyWkhysnQYd2c3pkyMScEQh0MBO5WVIkVF6qLEIgI+om7arCyr0o1xQx3T2JHbLbm56rqOiRGRqCjJyTEx05wcdUUXFYnU19vo7JQUMSV8jkhqqnpdt2zR2NOYaasXJRQWp1PdgQkJJlZbZU+zqCixUyokMdEGP8GEdIG6K/39xQsat62qUjBOZaXG/zweKS9X7xwM67MzMtT1WF+vLtjJSZE1azS9A2XNkcxMkZYWWbZMWUXGxkQkLk42bdKfjxg3voyNifj7633y80XS0tSdPTkpfX2GV9nMA+uFSkvFl65hylBJRoZd2HSn1QanUyQiQtlRDP1dKz6GHqmrU/dmdrYyrHg82sGJiSKtrVKHFgUeARsgVlBg3MkjI/qxgsoul0h0tDSZNS9FRSIxMdJt3vOMeYdaNMXiCTOGJy23fmmp7c613P3i8dhtqjVr2uJCa0WZWBoaRCeL2+3LY6ioEElL0z2io0PgxPvvxoyP97G0XMLHGx//f9aN+YEWdi8bQQPflv1mEm7YoJXKq1Aqr6eNcHobpQk7aa6DhwTukyNoJXNTsk4ajfBrReNZ8Iy0m3Pwpk2rdRil0vqFeVaLWVQnQawEsfh4w2fpchkkaLPmzIFF9ycjZuHAiybecETjjZmZitorK9PNqaxMkXYRESLr10tiotl8BwflCZBi8x6HjfDJzlaZ1IhSMm1DqxtERLwrPlJfLy0t+vc2tB7eLrRi+S/R2nJbMJXKTS5eF1rrbrtRCH6NqUgeGCg2UiYxUSQmRjcKK660Zo1uCsXFKuDCw2UTSAGIREbKL8xm9QSIxMWpEtDYKDtRln8JD9fYSFGRSFycpKebmEtiolgkkfCaQL8kJJh4XX+/1NZqrCktTZWWpCQj7JKTBbwyiNKhTZtmkICNjSKtrSpoOzokNNTEWi3CytRUEX9/SUkRu40mpVMU9dqs42wSF23gTGWlNDRoN7WigJQjaAzU41FqrpISE4vr7xeJipLERL3Nhg3a/+eM8JCKClUg3G5fdQOXSwVvRIRITY3GucCulLBhgwqLI9Y9iotFYmI0vhcVZRSIJo1BjYyIVFbKfpBJMyfOoeAQu8p3RoY2trRUBV99vQqwujpdSC6XtGDo5OrqtF3JyRrnbWqSnebd+61r+vt1PtfV+Si4srNFyspU+Dc2qtLjcvkSQqurVVjm5cku6z4tLdqe6GgVui6XSGSk1Jl32WnWh0RF6QSqqRFxOlUwu1wqVZOStD5ge7scAbsihVRUiJ0cOjYmUlKi683fXwfWosQz1/7ud38DgMratTrnL/HjXbv2Q2H3QTqsgf83lE8RHpIOtIBoTIwmX7+AjwuvyWyo+41w+g0I3CfwY530wcECzwqUyCmMdREaKiMg8KRIQoJ0g43gk5gYkaIimxfzSSMcLIF6wWwyqamG6NjjEU2F8IpER0s7yOzZBggQFWUC/RMiERECz+gmVlMjfX2Gf9GgxAIDxS5lIlVVKljGxmSLEbhW8dN2LIDKTtllvqsCKS62kl+VPPqCETopKSKSkCC7jMCzAAt1RshLfr7yFpr7NKF8gduNEH0G5SXchQIOnjbnXjB9sh/VsLvN93tR3sQa853098suVHn4tXl+u9lgt4FaH6mp0mquLS9XRaG0VFQ4JSWZYqw6pmNjiuaMijJoyfBwaWjQjT4pyQgUA3Z5AQwSdEAkLk76QZWMkhI5A5KQoMLuAqYUUm6uGacSHafSUj2fliZKuv2MwEMyZt63oUG5UQsKRCQ5WZKTLWH3kG6UUVECz+hmW1qq86WmRiQrS8mF6+sN0cG4nEIVi5oabVM/2FyrEh4uUlYmB8BOiB8ZEZHMTFXA6utVyAUHK9DGItisrZVWtJjutGk6P2prRed4ZqaPILSqSjf13FwRl8sm+V6wQFSAFBfrRh8cLF6vUQScTlU2nU6prDTJ7Xl5+oDISNmCzysybZqoQlRSogCiykqpqvKRjGv/los4HLIN5fGMjxeR0FDJzRW7kK5Vusjr1XcfHDTgo9BQKUGBUjk5qo/W1upzJDhYFbaODikv1+7vteZBTo5UoF6GxESxwU3S2ipSVyeDqDJ5GCWptsc6OFi8GzZ8KOz+Fx0faGF3yGhR8CvpNRunRYZbZTbcWtTq6LCEXkyMQXP9WeAp2Ws27fZ2nciNRoCeNPeD3fICGM23WXrNJnwGtUJKrE08MlLdqLGxCnluafHBxlNSfGkEY2MimZkquMbG7E0KTohMTmpuF4gkJQnskdZWZWKRkhJdRE6nSHGxwIQu8NxcecEIlosYtFx/vyQlqZJ6BJ/gT0xUFGliotiMLdnZuodVmPcZMwKvxAik50DS01UZttCk4vGooDQatVUxu7VVfAld9fV2jbS6OlGh1N8v0tGhGnhmpryAupolMVGeQ63pl0BkzRq5YIRzB8bll5GhQr+y0ozfCXX9Rkbqd2NjMnu2GnmBgYpyl9RUTbWIjJR583RDTE01iMA1awQ6janVKjAumzYZqy8mRsArJSVq8ZWUmE3OJCBeBGlqMoqIsfi0YsQztgGaliYi+fk6zgatqpUptP5ZSooKPYsxR4mDfUw8kpOjylBHh94jMdG22qS4WCsPlJaKrFmjvw8NVYsiK0ukqEji4owQysyUi2YMN2zQZ54CG9afliYqtSIitL5bS4tIXZ3U1Ihs4V1WnculfdnSoghPt1s7xkqibGmxBcYpMxd3ola69PdLu3luoxGM21C3bIcRhpKXp67D2lppMWvvpLnPhg06rhs3ij6zq0tPZGer1VxcLBXW+s7Pl4umzUeMENpvtSUpSeebyYVstZSFtDRtR1SUtsPlUgs0L08RnImJOk/cbuk279DQoOPkxVigKSlqTaam6pzs7ZWlS/8Glt0tt6j0v8SP95Zb/s8Kuw80GnM6QGkpcJQglOT1qqt8303HVMu+4goCUOJhmpsNAW8zcIzz5rrOTgWunAUWAgPmfhBEJIo9Cwz8FDNRROdM04ZhlDj6RHMzncDozp1Mf2kbBARQWQn798Pwk08a9NegovOeew63G471zODYkSMaOWcAOjvZvh2N8IeEAFFc6/eWcv55PMoFGBsLnZ34+1+m75OeznTzbscwLC99faxdaygpUdzaEDbBCBMTCgLg4EHcbgURXGmuOY5yYx43vxsFcnIUIHPXXdCzdy9n29rYB1BYSCfQ190N99/PtY5jcPiwFgvbuZPjwLVvb+NGx58VsfD887Bvn1aCP3iQs9b47N9vE1iPm3d1OJ18N/44ZzGMFaOjWoE6LIwgt5uoqHmEhkbYpNCnh2dw5szbbNyolwYEAPfey62rdRTj43XMgoIU4MGXvsTs2R9n4Nw5Xhu4logIfwICTPXr224jImIWYWEKprAYP4iPh6EhJoDt2w3nZXMzAF/9KsBsjhxp4OLFs8r44XKRno5dTfyeewDOMIQCNc6iCMfHHoPxnTv5yEcM08fTT8PllzM6CqedC/Vea9dCd7f+0OPRyffQQ+Dnp0Xpu7thwQLt45gYOjthOdiwzWXLFGThAIIiI5V6aGhI3+vttzl94AB79lzkrHsprFzJzZHv4AbcKEE4Q0PcGnmMcc9SFu7+gyI4Lr9cb7p3LwQEaOV2ICgiAr/AQKYD57dvh9FRFsXGEuTxaJX2VatwmTkwCzOnMzIYaGuDkBCWou10JSbil5WFx6OAnIoKFM1VXq4DHB+vpNphYbjxEb77RUcTEB7O1SjPbaTDoWv5wAHlf01P5+rgYK51OCAhAV5+mR7TLhITISlJ13dkpK69PXsUBVZYSEhoKIuA4GAYD5ij73P0qL54RIT+O28e7N/PlVfy/h8fMqhc8vGBFnb9YDY7pZp6B998O4pu2OeBo319XBkeTiTQc+4chwDd2nXj6UMFw9GjvqoBIcBSACaZgZIkf+xj4AwNZZbTyYyoKN5BO3ACFTajpg2MjcHhw9xyi/53Cgxd1hmF8iUk4HYrobwDDDPxIDz/PMHBKIovMlLbaC3UnTuVyX7lSrjvPlwu7IV2Gp9AOwRw773s2KGPehNoQCmSb79db/3CC2cUkv7AA3x35SH27DnJeVTgnUDvex3whvm7r08/QUH6DOv70VOnWIRJM1ixQmFv9fX64KIi3TAGBxXi5nbbDPTvAFPbt+M0/Ux+PovMmJ0G2L2b40NDMDzMeavvPvUpJQcOCIDQUHp6oLt7lCnTuDkDbwFdXLx4BntaBATQeHgWdHYyMKBtt6izqK3lzJmLTKD7dVubPueq4Cmt7hAAN66coqfHjLsThZ0eOUIbsG2bIR5uaIDRUZPq8YaOI2+ojHn5ZW3HgQMGzw8wSBtw8eIhTckYGuLcOa2k4HAY3ucVK6C31yb7HhpCBdzICOzYwdnIG1XeRUTA0BA3hx2jE5iKvoGBI0c45LeU9HQIcDrhsssYR5GxX159XudMeLje69w5vn/nOOMNDZwAYmP9OXwYKp6ZDkFBTJl5vygqSksMDAwwI++n2qi77uLQsm/Q/4N/1UogBw+q4lJWBmFhnDh3jndQBYzHH9eXmzdPN5wjR3Ru7NzJGwB+fpxlFkEulw6Ev7/2rZ8ffOpTPPqo9sH+/aOqjWzdyuk7f8IrEzficLs54bmJPlRBpa9P00MuXlRlJCoKHA5VaNva9L4rV+qgejyqXRjiaj7+cR2nlSt1roWHMwM4ZuVJREYqxZsZkxk9x5Ru79VXVen5ylcUXurnB/X1fxu58mHqwSUfH2hhNwO0bDCTzNAaOswcfseuRGBZCtMBLrvMFkwT9h3Och4VRhcu6JlR1LJxYDRFPsKVLhdOdN2wfLluFpGR+KEb/zC6kQ5jFpzJeRgeVivqNGbDYsDebS9eVD6/82B2Ui0fEhKCYrsdpgWjo7pAx8bUWrnqKqYcM3E6jbBzOGxG97PWuxpuSsz7O8x3ISFWNYSzmv938KCRCiN2xYNR897nzb9nwealnNX2Z30X9J36zP3PY+7V06OLvq8PhoZUSB89quctbaK5mWHzmxlWe0+dskdkyvx9HqCtjXGr7yYnOQ30X7EQIiPxeCA42OHb4AAYAY5z2WUKYT8bcLVq4ENDfOxj+jyPx1h9LhcwnVEzFiY9Uk18p1OFzsAAYWG2XNABGxlh2FxmC7uTJ/V2TKIq2FnztzGsenvV+nDrHFCx16W//8QngCNMoe1yONANt6cHt1unhssFBAUxevGi3Vdnzmj/gHaQVviY4jzvqogRFQUjWmXBz08rGUwAfOpT1oS0LdUhfQRjY5quw8AATrCrUTA6qmttaEif63IxNKQVzenrg4kJnY8mZ2DK/Ow05n3cbggIsDccB7peptAXHxgwz5iYgLlz9TqXCxYswOk03cQF6OrSEkJ9Ph7R4WGfp4WJCZ2sltYbEgIuF+PoXB63BiU8XK+ZmIAzZ/S8VT7e49HnT0zYpaiIjOR80Hww1qlVnWI6MHXqlE6QBQv0X4cDOjtNWa8Pj/81x9/bj3oph+W/zs/3ijgcMjamcXQrnl5fr8HnTZs0pGLx8tm0816vbNum50pLNR7T2qrUYpWVJt5iilDK5KTY1ZSjovRHdXXS1KS/tWDik8Z3P2liArW12p7KSgU3WDE5iYhQ/39Kio2ogyN20N6iHistFXnBxAM3bBCRjAwJDlbghZSUiNTUKAChvl66ugwQw6JbMpUFWls1fFZXp6EYr1cUtdDaqnGrjAyR9eult/ddLDH5+ZKebhcQkN5e5dL8hYmBdJu44AUUbCJ1dSKhoVKHFmQ1JRhsNN0TJjbyJAYFaNHX19ZqgyYntfEdHTbtlExOSm+vSDEYYMKw8kaiCDmPR6QWBePU1YmdF6FpFMMKpoiIENgk9SjKsR2UhzMiwqQAdMsFrMK5JRrrXLPGVKs/ofHXlBSN5YSGioSHC+yU7Gztp/h4TUlob9dxftrEfBwOEWlqsovOPoEiQSFdNmGQre3tkpCg882q8C7BwSLFxVpFAAPKKSmRBQtESlH0poSHa0zJ61VUoMulkPKREYmPN7Rv9fXi9eo0tdIfLCCTrF8vkpenMb6YGJ3fpur2GAaAMzIiLS3a10lJZi0UF4uUlUkFykS0CwVYSVeXpm8Yph2rSjmUSFKSoQIzc0Sr19fos62YdWWlxMToq8OTGkeMiRGHQ0N98fFiA1dazPjtNXNPuUdPSEuLmP49oW1qahL4s/j76zqCHQJtGmdcv95UHq+RZcsMH2hxsdKRFRWJpiMNCOy09xKrenx5uV4fGqpx79pajXvX1IhdbaSvT+dCaan2ifexx97/mN03vuGrmnsJH+83vvFhzO6DeHzhC9A5OkpfH0wv+hWdnerSvyHsHYKCVMFyODS0MKP8D+rrb2iAgQH6+uxSZHR26lcVFardR0ejWubLL/Nvj00nNHSWumduu01jIq++ynVhqr273cDQkLqknE7VAkNCWLVKH+VwgMPjAc5wdng6owcO0HnuHKxerfHFFSuAftU+m5s5eFCfb9VhG8J4wHbt4tSpo+rKbGiAHTuUJaKtjfmjb6kbr6dHrafhYfr6fDXPwsJUwX31VXjz6ExwOlX7NwnYfX36vPl+J6C5mcWLVcsPCtLzAfisV9CCrT2gmvCOHfR1d9OHib91djJu/X/fPtuCGwa92cSEmitHj+p7KK0+vPqquuZ279ainZxQrb+hgXnzrmAhx9RyOHiQkRHV0v30T2hr4/yuXcaVeEYZBVwuYBIPas1NmX4gJIQlSyA8PARHbCwzB44D13ClwwF79qj7lB6NU5WXsxBUW+/sBE6qRYVWDOju1j7et8+4ry+7jNmz9T170KTvqzGFVFF3YkiIzq3OTt/YADpRystZsgTmO51azNTtJjLSih0fYeDIEbVItm4Fp5NRQ23yxx0z6ezUsB6Rkcx69Y8cPGjGv6YGysr448sz9Bn19bS1wdSuXRAWxp9eVZv+tA4B7NjBUr9DHDdN6uszY9Laykxg1vAJjIOBqZD5+ozhYU4fOaLGYl8fMBuHQw1aJieNyRwCXNSvX3pJqxds3coVV2g8GK4EPz9Gd+1i1FR9mD0bRC7C229zDHU3n0A9MwMDEBg4j6VBJ/jEJ2DatHmcOaNuXgjh4sV3jGU1GzAOlb4+cy7Irt3K1q1q1dXXk5R0BRERc4Er+cxn1IgeGACGhpg9W61La115PHBV6yuaXL/7NTPGOuZbt5qBfv553vfjw5jdpR9/b2l7KYet5fziF1KDLym3stLkJDU2ijQ22oaDpKUpErCqSjXN2FgpLFSEYWmpBcc/LXBBuroUxej1isjYmGRlia2tS2qq1NaqZp+ervceGRGRyEjNX6quVoRXVJRIf7/U1JhE7Lw8gWdk2zaFJktoqEhvryLq2tsVUj02Jl0GLVhYqBplv0HDFRaq5h0fryA0i+E/PV1Utayo0PZ5PKreu1wiRUWaUmCZdRUVaqaVlcmmTWKjEy+CSG+vxMSYPHgU1m3x9UpjoxwB2WtQml7LqouJ0XcuKZExg1DbYlB7ezB5eHFx8hyawtCOpiFIaKhIY6Mi/Ix12tAgvkoGWVlqYaWlKRw/IkK6uoyG7XQaLskX5YBpS0mJiCQlyRnTP9Cq/V9TI/CsDnBpqUhSkubRFRTYbP9jY/rbwkKxqPplFwi8JnvMO1tJx5qG0qyoTK9XYI+2OzdXQkNFUaStrTYNYa1l5Zq8SHhNEYFer0hpqaY69PcbS2NArbbgYLsqgZSWirS3y8iIWjNQoqaFw6HWYVWV2INmar/JyIhNbi5jY4pWNTXopLJSUY8VFQLNIuvXKyQ/N1ckI0MOWB6E1la9f2CgsYBPSG+vNqfGzG3l9twpy5aplTSGIp4rK8WgiLXmYHGxQaxGRYmm9jypcP6kJPF41HocGdE5DSXan6GhAs2yYIFVheMZaW0VU8FjQsTfXxrRNAlosqd9erqxZCsrRVNr/mwqHewQeEqKi3U9pafrPTUVqFot45wckYoK2+kCT5nc1wnJytLfhYaKsU7/rO+wfr3O2dZWXQ9ZWZoKkZ2tnprgYGmD99+y+9a3dD+7xI/3W9/6P2vZfbCF3cKFZnMqt1k3ZHBQLhq48dvWhuXvL5KTI5PGpaabx2MCT8oImkaQnq7z/m3w4dedTpk3z2z6MTEq5YqK1GfR1GRDm/PR5Ogn0eRucTpFenslKUn3b80F9Kor0+mUcyh0vbhYN8mICOOuCQ0VOG0XAJW6Om27STZatsxULWhsVFdJcLBIe7t0GffiLgwrhL+/cemNy17Txr3GBdXR4SvFc8oIpAULRCQhQbrQlA2JipJuNEm9zty72wiX+9GUjiqwXZT1aApBC5pnZeUfNpnrdqHpHOfMpliLwsotlgupq5MuMw57TZsEH/MFtIq0tsrTYJeakZIS3YFjYlSApqYKlAvcLTk5YvIMjygMPDtbxy0vT6S1VZYt065tahLxmrGxCsparmQpLtYNrbparBoxKSkikp1tqhQ06RzJztaUi9BQU14pRaBfO7mpSd+lsFDggvldp+wEgYf13RsbBX6u6SEtptyUv79Iba20txv2mZQUiYtTV2w7SH298UaDzvmiIpGkJNmyReQwmrJRXm6S5AsLtd8bG0WysmQQTbORuDhtf1WViMcjv0TLZG3bZtyhHo+vusSaNSJ5eVJvlJs9aCK8VaygA3TxxMaK5OdrrmB2tkhgoBSCSGqqZGWZ1IHkZNUmrSoGMTHS0qKsN5PmWq9XRDIypKFBfOkYUVECT8kRfKw+0CaSm6tKY36+trepSdLTTaWMqirZsEFfsd/MJTGCsqPD3LekRN4266agQGXCggWifTWoY/EMmotplptIV5cv3y4pyU4HGhkRn+LpdEpd3d8g9eA739F5eYkf73e+839W2H2g3Zg4naag6qfpee45qKriwcfmMA6oF8jNcn9/uO02TvzsZxxEwSfXAfAl4BpmZmTgTEigt1ddFu6UFPUbXnEFx4aGOHnyVWb5nef8rl28eHA+5OYy/uST8OijhAUGMh8Ie9d9HaDwZeNedbm06CqcJCJiHu8MDXEMdb8tWQI3ou7U6GgD4SeAGZ1vMXP0NDQ0cPbiRbjtNkafeYb9+3u49ZYpqK5WUumiInj0Uc6jrsZoYKHbDatXU1sLGzb4szw0lBDTH+XlyrkYEgLf+Q4EhYbC6tXqfnI4GMWgI8+dYxaaghGGuiFPmH+XoOTRfUA86lJ6i3cBgebO5XrTDzNQ4MDKwEBGgYD162HVKm6KiMDldDJsfs/zz9MHOKOi8ANGt29XYAzqLg0MvBY2b+ZG4KqWP2l7q6vVf5iXR093N1NPPMG0aV8HVvOv941zVesr+jYxMQqaCQ3VFI/qaj7zGe3vzk6Y5fGwYMEs5jintHNaW9XVtWOH3j82Vn/vdis25O67CUhIAOYqMeVnP8vLL8PR7m6TWvAtVqy4Un1gR48qoKm5mWnTHEwBoaEf5wYAPsvViYkGKPJ5rgeW9v1J3WG33QbV1SyaOITbDRNPPgnAn4BFD4/xTQABAABJREFU+fnc8INlzOw8xHyAyEh+2v8DKCpiyRLwFBfz3R1fo7gYrp44Dvv28Txw/V3Xwy238KpZOhPbt8Pdd/OT3UpkHgCcO9fAF1/9Cb9a+e+KyrnmGli8mL6XXoKiIq42YxUdGsqGDQp2uvdeWOjvz6EXXtBJ5Xari3z5cvinf9K15nazbp0Bvtx3H2d//GMbVMPKlSzt+xMREQuYnpFB2xNPqOvwnnv4zOKzrFkDN/u9wjt79xITk8xBMwe/+lVIS7vGJrxm+XLG7/tX+MEPCA5WDzkBATid6o6/Mjpa+ys21iaenpiA8e98h7Ooi/5H605w773GHTw0xJzRE3DLLbiBL4a8ya9/7QMGWWhmBgbUp+l0MrPvGHR2cshxHaxfT6TDAIjez+NDN+YlHx9sYdffjxOAY7pp7t5NW5umHAAwOkrPxYt2vkwbGueZ7nQCB4ARjXOBDzl14ABUV3Oir8+kKGgsZQjd+06fOqXxme3bGT53jqP4kIXjaF4SQ0Nw+DC7dvUwd65V4VzJlK9MSuIEuthcLo1lud26ZlwJCcARRb3t2QMeD7MCA6GnB0dCAnBUG7Fxo6Z3Pf88fPKTTDfvdh40UHLHHURHm3eaO5eZ6EA/9hi88IKS+E5OAg88wNQ9P9E8rYEBjpvrRtvaeNN0xxSKyJsDOGJimIHGoU6gguwgKrDOozlNxMRwpcPBIjQOFIS2YQYo3NvtZvzAAYiIYAgVlAwMaAzQIFUdcXHMiopilnnWuXMjcPSoxgybm7kx8qwyDl9zDXR2EuJ0Mj0mBpERYJLTwzNg1SqCgx06Fp/9rI9x+s47GRszaMpRoLOT4WE4OzxdUYof+5jGoT71KYWaj47qBtHXR2AgqqX4+WnLduyA4GBcLlUKtPmjGpcLD1dmbIcDIiMJCoJZTqepaA3wEU3CHB0F/O20ip4e4O23IT5eK0EAfnFxhISY/h0ehmXLOBtyLZ1o+4eG9OFLJ96wy80PDaFaVEMDYZgQ5pIlzAcWhU2poNm9W1PEAgJUkHFSJ8cVVzDV3a35Fa++ShvwTl+fCoutWxnv7uaWW2DG9m18/47zEBnJteHh+lput1YhcbkUQQwQGcmSJabKeFkZs2JjoaxM58by5dDZSVAQnP31r/GEh7PQdV4HaGDArkzuNK8+DLj8/fl60hTr1sFoXx8zGIfmZmZ0vgUxMdx7r4mTBgRw552qVA43NBDm7w/793PnnbDU8RZfXHmWGcnJDKBxaPr66OyEb3xD+5WhIXj1VRaZsVm8GD6z+CwMDSlad906XY+zZyukd/NmGB3Vvv7Yx/jbJNp9eFzy8fc2LS/lsE36+fMNy0mT+vdQBgeJipK3jdvsnOXa6+oSSUuTFts19prAbpvwOSlJvYVe46qR1FSRvDxJTDQ1wXJyfAjIjg67gOckylCyxbjgKoyrrqNDXUJZWUrICycU/eV2i0RESHm5IreOoLRE4eFiEH/DYsPprNhWRobNqNHSot6Tri4RSUqSjg7DvejvLy+hiMhBMIU535T9xv3Yarmy6usNSu20oicDA5Wpo7RUxO3WWFtenkhwsFwwrmBxOESCg+WIcV2efJdLU8z/m1C0prhcUmlcoP0ovdUL5rvtpp2tqJt5DGWekdZWEZdLTlrPS04WcTqlybzPihX6zhaysrhYdLzr69VdlpFh4mDPCOTZRWrhhN4rK0v9lklJMjnpI+EoL1dX7rJlpoJ2QYFITIwyiRhmDenoUHeXx+MrFBwebrukJS9P27NmjYlxPSSwx8dVuX69SE6OusYcDpk9W8ccqhUB2toqsFleMO7J+Hh9llRXS02NiSvm5SnqMTxcqlAKs9JS5fq0GTuioqS+Xt3iy5ZpfxUXi8aqExPVFWkYYMrLRduWnCwSFSVelEM2N1dj3itWiL57e7sy7XR1SUuLKENKZqYcNu5YjdmpO19KS3USW27MjAwRp1NRuGlpEhxsqPNKSkQGB2VkxNCdRUaawr579F1qa+1YogJ7JzQWl58vkGfHgTWGViPS36/ryrip29v1NqWlIlJbK+npBhUaFycvmLUEF6SgwND1DQ6qCzYmxiapgdMiJSWKRM3OlqfBREmO2RyjMjmp7lYTs5bsbJvhZWxM+Vj/JvXsvv99u3r7pXy83//+/1k35gda2FWbTRyypQ5sguVfo/GjtzHcjuHh0o3G1Q6YuAf8VOBXGnQIDjYB734ZRGNMb5uNHZ4ULxYRtNcmnO43536Hxqt2mvtabO66qAZ0o4yIkKgoE2MoKJBasyHV1YmIyyXJyea7/HyBZ22W+ZIS0diKoWaC3WJupMH8NWtE+vulCuXm3I/Gz6S6WurqdJF7TXsPgMBp8fcXm0pMBgdtTt8RlJdym3n/J3kvS73k5IiUlNis71uMoLvfvL8NzMnNFQkOlklzXiIjfcTOGRkihYW6OQYHSykmxpmTY49ZhdlQJSZGJDlZmkBjSA6HKiJxcSKVlb7N3EIZFRYKVAvslLo6H1dwV5f2cX29poCkpxuuxOJi8ffXeFNV1bsKgCYlSWmpATZlZ/uIo7OzlUsxL08kOlpBCuHhIo2NOk5VVSYu+6aOZU6OSFSUxlgdDo0z1tQoexYIdCtYKThYAgNN3GtwUJ/V2iqSkqKCb2xMRkZ0vEZQwI4Vsz0FPiJok0Yi4eEira1KGp6dLRIXJ4OYagSDgwqmMPeXlBTJyRGRxESjNO5Uxa6r6z1jtstSTHJyVPitX6+BsPZ2/VixP7fbx9makSESHKxxuYoKn4bhdovU18vblnIUFyfi7y+lpSog7CrgGRk2yfbYmD5z3jwD8LJSXjo6tN/q67UvkpM1UJmcrHMiN1eFdm2tdJl3sMmiCwrsYr5nrHmXlGQDiPrRGKo4HNqukREVjFVV2q9NTSI1NVIHttIrSUlyDhMTLSoSb1PT+y/sfvhDVd4u8eP94Q//zwq7D7Qbcy4Yd9vNjAIzi4o4dWqQSOBawB0dzc3m2gl8lFjqsfwsoD5/7rsPkQagiTmZmaxE3WeKCj/DrNxcQoC0tFm4UdfcleHh3ADcZO53Aljk769uuccfh8hIHI65ioR2u9m7dxvh4dfAz37GAArdbm4GYmJ4+uldrFhxDfzTPwHjmux61118e+gR3ti+XSnRNm7U1sfHQ2wsn6l/RGN2zc3MAm5AWVSWANxzDwMDWo9vVlSUuq6AqKjZ3HOPel6Gh4G77+am3f/KxYsws7CQ5ag7cmVoKKuBSOt+t99O389+xvh3vsMQyhNyHoXELzVjsA9o2LsXmps5duoUO0w//bm5mfPbt/M6qMv44EHCwsM5ceoULgyl1cQE89F44SxQ7PaBA/Q8/TTHMS44f391vS1ZQv6RW1lU9lO+6/4Tx2/5obqP7rsPjZz2cGPnH7j9dqU3m9/zOrjd3OA5jSMhgcxMzZggKIiVK9Wt/dJLSgvGD37AoWee4Y47YHr09Qw89BBr16pnb/yhh/jSl1AmkdRUTp58VYubOZ3k5cHAV75Cbu4sNHoaQt/PfgZ9fdwaeQzQWml85St8/vNwpccD9OCKioK77uLcuXZ1Y955J/v3owEnp5M1a4DhYWZ+dhk//vEZXgHNVXjsMdauNekcYWE6j+6+W7+77TYoKyMqSouk0t1NA+qRZN8++oBHXr5W45N33qnzICBA5y39LOx8BV59leHt25leVsZbd/2KAGCG08nUz37GVTu2QFubFi12u3nx6CJNpbnrLsjPh6IiXlv1Uw0MP/GEuvwffpjXwr7NrXfPh8ZGePhh3AkJmp6ydi2sWsVdd0FASgr84z+Sv/cm3rjjV7w+cT133QUz2t7knd/8hokJZQNqGx2l/5obeb1voaajREcTlJbG6aKn4OWXOV30FC8GfRPWraPxO78lf+9NzE9J4S1gVm4uj+xYyhurfsSz7h9BaSnHMAQN69bxx1dncWj5Nwkwy5jHH6cHeL15Js++Ooenhr+ssTqHA3p67DUzPTQUHn6YAIdDp2JvrxbG+/+T49/+7d9YsGABDoeDT3/60+zateu/vPbZZ58lLi6O4OBgZs2axYoVK6ipqXnPNZs3b2batGn/6TNqUxy9/8cHWthda7EkEKMgkLg4VqyYy0p/f/wSEhQoEh0Nt9+O2+3menQ7nB8cDHwc+DQsXqyceETo30uWQEEBMyIiNEbC1zl2+0+51unk0UfBmZTE1bGx8MtfEpCUxMLwcPwwTBAXLzIFTJw6pYwXoyMa3nnhBWC65u/5++MAsrNN05ubgQsKOHE4tF2PP874um/CvfcyCkytvNFQeMDpu/9VI+vWp6+PVahwnwVa2HHxYqKjTQ5gdDTONWuYERNDZKTuQXffbej8+vpgeFiZYdLTiQ4M1NhNXh4ut5sZyck4IyJ4rbub11A20T5UuE9H6b08KJDlGIZpoqeHIVS5cKJCsNn8y759yqN42WXMQcE51wGsW8f1wJyEBK4HDfjHxLADVTg2bwbuvlvjKtHRNDXB+M9+Bl//upLPvP0258+dM2PaA3193H47XLy4VREUGzZo3O5732OR3zGam+Gp0Vt57DGY7+/PY49d5Of3vGOzvoi0cGLvXqaAbzr+nYWv/l7p4EbrGXfNxw68BQXB6CiXX67vqACVHhISrtC23nOPxhYff5z9+7eyY3RUBW1wMHAGIiM5fddPgS4VdkNDmn/361/DPffg8aDFWJubgXabT5Lbb8fpNLmMzzzDLbfAm8PKLENPD9x+O6tXG/3IzI077tDfzkfT5oZPnYJ9+3wUdKCj6XTCypX0AWcTvkFDg3JLkpDAawDLltGwcyd33QVvHJzBY4+pEsnQEP2f+xqsXs0dd8DUPT9has2XdE4sX85dd8Fzz53hxMSVGgszOYzj6T9kvPpPnDv3J42Xj4xQW6vyftcuk7N29Ch9wKlTZ2z2nYICzc+bn5nJj+6ZztmHf6tAlaEh7r1XqSxf6VlETg4UFgJhYUprt2oVDzygabNlZfrWU2YePzV6Kw8/rIrPzJISXT/z5tn5nA8/rO35Q/kMm9JvZkICIYGBOtZBQZCVpQCd5uZ3Udm8j8ffAaBSUVHB3Xffzb/8y7+wf/9+YmJiWLNmDcePH/+L17/22mvExcXx4osv0tTURGxsLAkJCezfv/89182aNYuTJ0++5+P4G9LOfKCFHW+/zRCQkHAZ091uzocs0nh/dLRqudHRisB79VXIyWFRXBzvoMLI4biGefPm0nhqIccClgLVwE5V49euhYceIig7G3//KzU3dMUKZva8pSts3Tr6l39JN4m77uI6VJ8nJ4fpgJ/Jxk1Pv0I19cxM4B0++Uk4fuoUy9E9paEBtc44yqpVmiAPCznvN4uBATh/8SKnMcTFIyPAzcoQtXkzQ//0T/zq5UUa4A8NJSApSdsA9Dz3HA6Hya+1JrghJb79dn3kxAT0bd9O3y9+wRVXmAWcl8cUcGj5N6G2VoVOdLRNCHwUFT5LgG+iwvXaqCgWAdcDfwY4coRDqLXnMf1yArU8p7q7lStzxQo6AceaNZCfz7NHl+JKSYHubt2QRkdhdBQ/FJG5eTMwMaFI0bAwnnmmXROtnU7tm9hYk/A+CVwBTzxhuHkvKirn5ZeVCRkgJITISPiH1e9ogrPTSU6OP4cGrmSos1NJqmniOOjmvno1rFtnKL7O6nguXgwc4ezym+DAAdrbDQ3dBEA027cbTsj77lOi4fx84ONMB76fPmUyyafgc58zwKgQ3MDwzp3ExKCWfHk5Z87opUq99SeuBkaP6HOnH31Lre7CQm50vaVCPygIBgZ4y+9avrn2NA88oPP2auAm1yG4916mZ2Tw3HPtBHg8HL/tR9zseA0aGggAIiI+xVTkdfRfsZDp6OZ+992mPQ8/rCCjvDwWAtu3d3HXXfDCC7vUanc66e8HHnqIt98+y/RXX6GhQefI+G9+w4EDPUCtGjtLlvDavpkcRfklZwyfBgaVY9PlYvv2Q2zerELq3LnnGF97q1KrMcoNKBjr17+GAwfegchImptVfjY3A9HR7NgB27ePMjEB27ef5eTJes7e/VPeAl7jRs6da+eXvxzluecOgMPB8sBArnU6GRrSLjxyZAQGBvjxjy/yVN9NnNDXZs+eHp577qjOud/8RknPXS4OnTsHRUWs//FMePJJnnvuKBw9ysnqat734+8g7B555BG+853vcOedd7J48WIeffRRQkND+c1vfvMXr3/00Uf5yU9+QlRUFOHh4Tz44IOEh4fzwgsvvOe6adOm4XK53vP5Wx5//Zv/bzpWreKb1dUc8wBfz2Pmjj/S0PBl+MUXVEIMD8PnPmfz9XHXXVy3fTvTHQ7S0hSs9pmx12BPN3Fx31CO1PKfw+rV9C//EleFh3N7n3Fx7XbwWt8ibnQMwMc+xlWzxxWx5fEQFBPDLXv3wvAwawHa2yEggN+sO8u3754Ffn5kZHyLqCiY73ZDYiIv7zPMEQ3NZGb+hKEhdRsmJFzJzLY32Dd8HTc2NbE2Lw+i3wGXi/Lf+XOD+wSvHV3IjXV1/HD0T4yH3cyM6Gj43OeY8cILMDpKiNMJmx+hqOhH8Ng+tRibm7nu5DYY+ghu903s2weu8HCYO5evJ47D734HQ0OsdDjAql4wOgo9PczPymJ+ZyfX79qlMM65cyEmhrAXXoC1a4kOCYGeHr545AgPDA3xgMMBgYH8+dQpvul2qxY8OcnxvXvZ2t3Nj4KC1BpYvRqWLGHtKmBolWr2ERGM79rFFHB7RAR0d3NoAp5d/iC3hpbxBtdRWAhBjmKFhR+F4See4OqMDFbsm82ePd+H1h/QtxtaWpLBfV7N2Vtugeef56eNX+LVV+GLKx+l0/MgN5aVcZtLjc5vRkdzR2goFee+TfSCfbB7N+cdc5jpmCIsO5vkzjW0tsJnLj9MREQanZ2wdMUKHn4Y4g+m8tOHISLCn54e+AenC9asUffe449TcEcUN+1Y4yuvwQ0QdYqZa2/C43mFK53RUFrKP/OWkm4GBbFtmxKg/L6wkI0XfsjVrUehuZmWwzBv3iLmV1XpvH75Zeb3Pc93j/6E305M0NcHR4/O4eWX4cSS33O1w6EIz1/+EoaGqKy8BiK3MT/oPGx+FV56iXigMx2mD59lcHAW17a0ED9sCiyEhEBnJzdER8Pbb3NlUhIbIj9uHAMxrO52wp13snTHI1BaSnbDLBga4obhP3AamFFTQ+VwCJ2dt3HnncDzy7lx+XlFTT/8MKxaRWVlMgQdg9Wr2ZR+Lenpap3t3p0IwPUREWxKn8dCv2Kc3/se2dnQ3HwljI7yysNvQOcwv304Enb0sW4dhIU5WL0a0tNnsWrVZ5nV+SZhQMjAs8TF3cratdDXFwFXXKP+ylOn+P6S1/j+x8/x3aAvwS23UBPpz82rxjnxDdWZDhwIITgYPvlJYEGaeoHS03UuW9Z+YCAFBWE8/+Mj3LRhA/zLv7y/e55FBH2ph7E2z549+57Tl19+OZdffvl/unx8fJympibuvffe95y/+eabef311/9bj5yamuLcuXPMmTPnPeeHh4f5+Mc/zuTkJJGRkfzsZz9jmaWU/i2Ov3fQ8FIOK1jbhdZbg2EFNSQlaSA+PFwRirGxIh6PDKJMDZKUJE+jidKKxuzU4HlBgQEW7FFkVlmZWLC/ZcsMw0dWlkhVlQIXGhttcIlERMgetPabVfH4bQPqyM42jC4ul8AOLcbpdssYyKZNJsk2NlbgNU1YjowUOCZSXa3AirQ0RcC1t4sUFEhcnLwnYC/t7crNaWptbUcTtetRVhR4064J1m/OaRLzsFj8j60YhpYxEUlMVI7Hjg4FYrjdCgYwwX0LWdlvQAKVBmBh1Qp80py/H62HdwZNKi807WpE0ZhnzH3E7RZJS1MQz5o10oVJMo+NFXG75SUUdLRpk4jU12uSe51J+jVVrGVkRMcwKkrglwI/FGltNewZ1XpNXp7+m5Iira0GoNLUJIWFykMZG6t4EgkMNEjJPSLBwXISZHBQkZ3dIDCgiNbcXIHHFOBQVSXh4YqIVcRetcCLWlvNAuzExAhMyNvWu4DAZgUilZYKVClbTGGhzoOcHJG6Op07Y2MicXECVSJRUVKBolNHRgxYw0LXZGTIyIgiVsPDRcTrVYCLVV3d7Vb0bWmpIjuLi/U7g4KtRLk8U1KU+3EM5fHMyBCRri6pqTH18UpLpQtEq7JfEPitEhHU1NjgpPBw0R8WFMg2M/8UvNOpLD2TilV5CUX+KgHAk9qfLS0yb55OQWVQqdI+CQ0V+LlIVJT82owFVIlUVSkhQ0WFiNcrLS2KbUpPV6yJ8m6eFqmosOc2tEpsrGLTbDRmVJTk5OjUgwsiWVkCF2Ry0iKFmBB4UUJDdSuQkREFumRm6li7XNrOuDhJTdUxfj95KG2ASna29vMlfrzZ2QL8p8/999//F5/b29srgNTX17/n/IYNG2TRokX/rbb//Oc/lzlz5kh/f799bs+ePfLkk09Kc3OzvPbaa/LVr35VPvKRj8hbb711yX30/+34QLsxL2JqbTGDiV/+Em67jc2bYerIEfys4m2BgcxxOpmZ98+waxdOMDlFTmBUtTMt6gX0qFtwcFBjH9XV7N/fo3GW8nLOr/4y03+zCcrLudGj1pZVPmQcIDSU84Db4YB9+5iYMNSPixcDZ1m+HE50dnIadU91dGDiJWfxeKCnuRnwh/BwVcA6O+16Xdx7L7t2qWEwY/Qs7NzJiYBFXDf6On3nzsHgIGGoX3oO8KeDVwMhuEzifRDw5sDVHAq4HpgkKWkeM8z55maYMXEeBgbU1LeqCJhg8XntGYbReN1bwDujoyxCGd+PovGjHgCTaH/c9Mk46vo8gbo6+djHcAYHa/yptxcOHFBX3v79OM2zOHwY+vqYwrgD0f6fBdwYdEjjWs89By0t9J+bCZs3c3rvXjQKOBeKitQax6lJ4fX1OqYhITidxiNsjjloyDYsDHA4TG4lDJ06xSHUPbZ6tXFTc5ap5deb2OoFdZN3d+NwqGtN+RHnA9dyFpjYu1et4L17gbNMmKHUmN24ulYjI4G56pJ8+GGNE61dC1u3EhAA/WdmMLV9O3CBtr17WY16ZWcOv6NM/wMDGki6805mDhznBpdL41wBAfj7A5s3c+KJJ6CujvkuF/zmNxw+jFp5LhdUVuKKimLYdGlRkcayrOoJFy9q39/selNzWsvKTCWEzxIT4wCiFfD1rW9pu0fVfchVV1kdwgQwb94s4DL27YPpd36b+UHndW5PTnJV7xvAPPUh3nYbfn76jhpKXMAPfgDHu7uBm+ncu5cgIDh4LhAD+/ZpErjLRePhWSzt3mbzcjoc2v3Tps0Gh0P7SxunYzyEklm+8AKn9+4lOlqX/4IFDujsZN48B9OZIgCIj78MiMXPz8TCn3tOF/eePfoeQ0N6vqGBl19GQWYvv8z7frxPbszu7m68Xq/9ybZBBH/5mDZt2nv+FpH/dO4vHU8//TQPPPAAFRUVXPmuvMPo6Ghuv/12PvWpTxETE8O///u/s2jRIn79619fQqf8N4+/RjI++OCDsnz5cgkICJDg4GD5yle+8v9h7//j6iyvrGF8RUN6qkGJDS1xgiWOWHSCEkda4ogNrViYSkd8SiszpZWO9AkdcaQVR2akSl/SIa3U0pIqVao0REMjUSqoaGhEgwEjCknQYEIMJifhNJDkJDmGk3Cyvn+sfV9Hn+k7b5vab8enPZ/P+YTAOfd93devfe29116L27Zte89nTp48ybvuuovz5s2jz+fjpz/9aW7duvU9n5mamuLNN9/Mj3zkIzzjjDOYl5fH3bt3/87t8E45683bAFbK24iNZVaWToxvGCR41E6W9PnYA9XCbbLvAKsF309NtZPnTtI8xhPw4PrrybQ09kK1PQc9zyYhwUH9n4MUtvfZtVlZSdbXMytLpU1MSorW0mVkcACqlaquJpmYyPR0Oq8PWK3jtakRMD5eR8mMDLWvpIQsKHAK6AwGuREqGfBou1heTo6MsKRE7R2FYN6LF+vr+flGS2V8mZ2dlFKDeVxBe/ZRqJzBg7AzO5sDiNKIBex+PVDZgMeR6fXRXfY7xsfzoI3HRuunMaisoR+CpnfbNTo9jygmhoyL43qIxonLl4uOrLRU3o7fL682EHCcoMB6Au3s65Nj0dRkJQSpqaJ+ApiZac9eVqZ6Mp+Pq1ZZfVtJCZmernqwjg4yI4N1daZSnp2teq1w2Pgfj2oA/X4puFdUMCZG9WLABpUIpKerFisxUeUJJSVsavJKD56iFYsR2M0tkOfd1ERB70tKOGeOlDvY38+KCkHzIwAZDKqkITaWbGjQsxUXy9OIiWEkYrVy/f3y+CCqOLa26vuRiDqooUGlBDExFu3YxcnJd0UOiorI7m552z6fXKaeHk3kQIAMh9nTY/yXdXUat/p6lTaUlJAZGYpM1NWRk5OKkBQXy1WOiZFHlJVFpqWpD+PiyLo6RWFaWhgMynFlKESmp3POHM3nN6A6Uk+dwaPn4vLl6oP2dnlsLS3yXiMRMjZW94uPV9RkbEyRjqYmx0HL5cvVT5EIGRenPi4sZL95uX6/jX9Xl+7R3Mztth7CANndzSNQmccQwOBDD73/nl11tZ7zFN/B6urfq03hcJinn346165d+57f33LLLbzqqqv+2++uXr2aH/7wh9nR0fE73eumm25iTk7O7/TZU3n9Xsbuc5/7HB966CFu3bqVg4OD/PznP8/zzjuPR48edZ+pra1lbGws29rauGXLFn75y1/mvHnzePjwYfeZpUuX8q/+6q/43HPP8dVXX2VWVhYvvfRSTk9P/07tcAO/bBk7IQkVlpZybMxCg9XVKjIdGdG/y5drgWVnqxA3PZ3z5mnT8/s1f+PjtXdwbEwTvrGRLClhTo7Kb7h8ua47MkK2tWmj7eggm5s5DOOUTEvjk7aZc2SEixZp7SuM0876etV6DdmGU1dHM7SrOTTkfe4Au7sVOt1iRjTKDbhTm5+R+AWD1OZTWuqKeJmdTSYkMBi0Il6vnqiykgMDeta6OkVuInZAWLVKhoENDXwLEK+gPRurqvgQwBVQyLjdjPtrZriYlsZ++3szFJpsh/gzw2bwmqEavrD9ncXF+rmkhKyrU21XcbHGKiNDP1dUcBlECpCcTLK/X7V8k5P0+VSYvR3iGGVWlnFcThO4R+M0NETgdh10wmEe8zb8ujpXY8ueHgsjD5KNjc5YA2u50TvUFBSQNTV8yw5IHmk1sN7F4+bNo0K4Ji+zdKnkmTgy4jZm4E7+BNAGWlxM4GWytZU9PSqO7gfI3FwZ3ZgYTk46tSY+DfG/7jNjNz5Osrtb187PJ0dG2Nlp5Ae5uTICIZ0BWF4eJXVMSyNzc9WfcXG6+PAw2dLCJ6HDXCQie/GGHTLy8mwODQzwAdvQVXM6bATOwzJ2nnGorCSwjn6/5vCL9lxKE6zRnC8qYkWFDFdPjy4PfF/h25QUAkdZVOSVlG4g+/vtULudL9qBSAX8L5Cjo1ywQOmC/HxaveNeAsdNBmgzgQHS7+cowNFRhUYVIj1AlpXJmKemMjPTI4JeT4bDrKwUx+prAIuKVAsLHI8STfT3a52kp5PDw0ptDA2pz1JSGMzJ+cAbO5L85Cc/ydLS0vf87qKLLuIdd9zx//qdRx55hD6fj48//vjvdI+TJ0/y8ssvZ3Fx8e/crt/39XuFMZ955hnceOON+Ju/+RtceumleOihh/D2229jYGDA8xLxox/9CP/xH/+B66+/HgsXLkRzczPeeecdPPLIIwCAYDCIpqYm1NXV4eqrr8aiRYvQ0tKCLVu2YN26db+fW7puHc6CpFawZAnOG/wVEhOh8NvIiGi3/H7gscfwatL1wJVXYieAo5s2Yd++wzh0SJGcWVOHsX//JI4c2Qf09eGsqd8oM/8P/4DFi4UexwUXAFNTeBMXAtdeKzmUwUFgYgJnwWr3FizAXBgE/9AhLFyoUMnMpCQAc7B1K+DLykISgBc2nKZwXFISgLOwaxcws6AAwGF8ZslJzJsnNKMPpl59xx1YsGCBQjs5OcDEBGbPBl6aeZXiNVNTGD90CHjxRewdH8dZ217Go4+a5ImJqqalAbMGX8aGDcBzzwkHsffIEaSlWd3dvHk4BJM1iY9X46em8EkA10Ahv3MAXB0bi7SkJAmnxsdjIQSuOQMAEhKwy36eFR/vyhKuhkJ98PmA9esFzY+LA5KSsGEDFM5raREA5rOfBT7+cSQAmJ2VhRtu0HDPBPDqrnPw4Q8DFyQl4YL0dFF7PfYYzsrMBNAJ4BCQloafbrgEwHzMzM8Hjh6FLzMTZ63+GQ7f9C2kpCh0efLKq3By/XrMmHEp9l77DSnKAwBCOB8mDnzDDThQ+h8aU8yTJujUlEbm6acBqO+WAHhp6jIAs3D//ScU6tuwASkGDgKW4EIoaq742enAunW4KuM4gLPUl2lpksW58kpMTQkUcfnlHrdqCAk1NXjCpsw7GZ/RnPtf/wv42tfw92l7MX8+sO3pp/GpTwFnrPuV0JFLlogU9ROfwOHBQWD1ao31bbcpzH/jjUBTE86Ffvz851XueQ4kZXPoEHDy1m/hV3suwzkATi6x++J1g+6/iB0AMDCA6689bnH7dJy77df4VOo76ocdOzQuOB1pacDOu3+Bj3xEv1m40KPqO6oQ49AQgINISwM2bToMYAda3/qk6jHxLK5MTsZeAAcPHgawFyeTzsdbb+3DF78IfPnLwNrpL2DOnHlITIxRX+NjAA4Cs2fjN/C0b89yUk2Ha36Mc9PTgauvxvg4cOTIFICzgFdeQW2ttpGjAFauPAxVmE5gYgI4f+5hHE75pMZ/0yagpUVRy74+hX5HR2GaU+/v60+AxvzWt76FBx98ED//+c/xxhtvoLy8HG+//TaWSpsJlZWV+OpXv+o+/+ijj+KrX/0q6urqkJGRgfHxcYyPjyMYDLrPVFdXo6urCzt37sTg4CD++Z//GYODg+6af5TXH2Ipt2/fTgDcsmULSXJ0dJQA+Oqrr77nc1/4whf41a9+lSTZ3d1NADxw4MB7PnPJJZfwO9/5zm+9z9TUFIPBoHvv3r1bp5NHH+UmKDzHvDx3EmZJiUJ/LS06mff2OmFOz7Pw+Qzo0NNDdnezvFwOBVtbFQIpKCDj4x3GgCUlOsXV1cmTGh11HtaLEJtKEMasHh9Pjo5y3jxFPLZbqKq2lmRsrDy7sTH29up0C0woVObz0eeLisKGPC8xHDaKqm1qS2GhwjBtbTqxGd0RU1P1c2Ulu7osBFZTo74wpo32dkb/lpFB1ohei6EQmZsrz7e/X8fk8nIyN5crAd4HscO0mqf2qHlWEQsB3WtekaeY4IUzf2Jhp7s8Lyk9XaGr3Fy1OSNDz5KQoOdJSdHzFRezCTCPahs5NKSQ6sAAy8tF1eY37ylo7cjMlDyL5y4Aj4jdIqIQ4OgoycpKZmebx9LebvI7GzW+RUXcbx7ipOeFpqfLW05OJrDdeYfALvXTwACrq6nw69AQgQ52dko9IxiUUoEAGPfwcfMQ5KUPkHV1Rmu2TuCR6moWF2tO+P0k/X5WVdG8muMCHpWUaIL09vINe25Pk7ivT21jby/b200xIS+PfkAsK42NPAjRgh00r7Cri+TYGJ+EQCSSCAhwn7W7r4/yCAsLBSjp7eVzEAPQ6Kh5U2lp3G/tkHe710URXgTIpiampioSOjlJMj5ebDSJiRwbo8kcvUympjIISUx1dorCLTWVZHU1hyBavVW2JsQ6dIzs6HAh6/p6rdPEREe0w3nzTGbLRIUlcbSX1dUWscnK4iaLIFRU0GSiglH9rvp67rcIwqJFukxbG6OUa01NZHW1xmt0lAyHtZaLixn85S/ff89u+XI6fbJTeAeXLz+lNq1YsYIf//jHOWvWLF522WXs6elxf/va177GT3/60+7/n/70pwn8VxDM1772NfeZW2+9leeddx5nzZrF+Ph4XnPNNXzppZf+0G76b1+nbOxOnjzJvLw8Xnnlle53vb29BEC/3/+ez5aUlPCaa64hSa5atYqzZs36L9fLzs7mN77xjd96r7vuuuu3dl7wsst4DFJYDgbpDB6rq6MqzsuXK7fWS7KriwHbiBcvNv2r1layrIyZmRb2KS1VzqSnx4Uax8ao37W3s7NTYZ7qamrTrqgg4+K08drGwsREbSKeZl1+PoHd+rm8nKysZGOjUiIsK2NsrKHeysq0uDs6nMT4QRi9U1WVNp5AQEaztZUcGdEiKy0lKyq4EaYQHhfneBgjXqgrNlYLs6nJwkYrFUpMTHT5ETY2KiQVCCiMW1Gh7xYVkRUVjm/UU7x+DlDD8/PJxERGoFxcP0BCObowLGxbUMC7INQm8/K0CRYUyGAMDZH19Wp7YqLGzfJZTEsjw2EdROLjuWqVqWcPDUkDcIw61FRV0UPYtrer+c6gmfH3tN6qqzUXVqwgmZrK5mYbi5QUsqJC86KxkSwsZF+fhTyTkxUWNnJN4JjGYGxM9zH+S4XB1mpyNTa6g0NdnebL8DAtdD2hm9bUEJjgKBQ+XrSI2pja2hxg0tNaY1sb10BSPF6o2e83mq2UFHZ20nhfp9nTo6FZtkx9ddDr25ERd93RUaFRPQ7S7m4ZGE9xvKlJz97Xp/OHy5kWFHDGDJrB2aCDQTis/mtp0TxvaSELC0Wf19REYJrJyYqm+v1mLGJiyLw8Vlcr3Dg2psssXUpydJRlZR4YOEiOjRFYSY6M8EUz2EDAMZ+xu5scGHAySfX1Mqw5OZYrj0S40Qx4TIymrMcO5hHOpqe/K50RDhM4wOFh6QkWFdHxezY1af709mp+jdk8LS7WPGhuJh8H/jhK5X8iY/d/w+uU0Zg333wzNm/ejEcfffS//O1UkDv/3WcqKyvfgxzavXu3/pCcDF9cHFJSoNDjpz6F044eFgQrKUnxv7g4pBldFGbPxkdjY5EGp8qhV1ISkpKs7nj2bMVV5s61cJN5/oODwLXX4u+XvINLZr6ueiFPAjwlBefGxABz5+Lc2FjgzjtFyjJzpoCNPh9KSuaLRmjrViAuDklJVsPk8+Gmm4zh4rnnFNVMTRUjhs+HuLw8PcsTTyAcBk7O/agYT1JSgA0bFOL0+YCEBCyEFSAnJwNZWbjtNuC0zEz9/a//Wg/8sY8ZyDIfs1JTFT5MTMRZW1UzM9/nU1wuLk4PPjWl709MICkxEbNNhQGBAK6OiVEfzJ0LfOQjOC0xEY8B+GRMDJCUhDcBzEpKwiUpKcCuXfgCgF9BfZwEwGmtpKRInSE5Wc/qMc4nJQHj4+h/bRY+8QmxfixcaEryFmI9ehR45ytfAY4exeLFmZgx4+NIS1N47NZboee47jpcM/dVYPZsPPaYFalv2iQg5G23ISnJ+j85Ocpaf+gQMDGBTyUfEBNJWhqmpoC1T5wGTE9jzhyfYJoQQ5f37+zZwJw5+YIxjo/rnZOj0KHPh4vnH1atFCZU+xcKAfDh/MREXJz0Dn70IzilhNWrjXHqxAkx8ff14Ytxcbj/fgPMHjqEc6fflnRSejp27AA+k5SExsbTMT2tEOi/33YcWLcOccuX6yGffx7z5wNX+F7F+bN/g/OysnA+hCEdH1cEeelSXfvKK/WIn4p5FY/csRmXpKdrTgwOoqZG0fTMzL/DOfHxUuAoLta8uBpCv159tVCsR4+itvZ0fOUrwIVzD+DcHS/gy5l79ZwXXIDv3HoYJSWpOO+VtZi1+hdYvBiu+L+oCBgZOQu45x7k5X0FeOYZLLSll5f3UVx89GWtq2PHgJkzccnM13HttZo658w+jsxMsXvh+eeRAOBjvWvxz/+sscrIAM565dcK8z7xhPeP+nrHDqxYMQcXz/0N5kPPeuutwD/8g9XZpaTgiolfAUeOqM5uwQI3b+bONeX6/6Ou7H15eXV2p/o+/fT3v00flNepWMibb76Z8+fP586dO9/z+z9WGPP/fHmnHM+LAr5DNjTwIagOyA+hCj2CZCYnyz1LTRXBK0DgVgL3sh1CMTY26sT/EzslHwTIjAzVX1VWkvn5SkB74q319XwcAmKsgcAarZ5nVVNDNjSwpESRjh4LgwAv6KRvqK+eHrIfqgEENpNDQzrZDwyQY2MKzwZFPs1IhAMDdtIfG2N6uk6cbW1C923Cu9CN2dlsbxd4YA0UWn0cqhkbHtbJta6OOtq2tkpY3U74m6BwbL/14aOeZ2k1et1QMj8M1eht9/o3JcUBSw4Crk7Nq/FiVpZcrcJChTQTEyViC4UZPaTmMKCOyc/Xd+PiCEy78FkkQrKpiZWVGobXALKjw9TmVeM2Z46+3tSk/mNenjzg2FiWl1ud1NgYKysVzvM8mKVLKQ8hHJb3NzbGyUlTRBgbI3t7OQmh7xITVdPG5GSyspKdnVJQF8H4dn2+pkaeQ2GhwnfhMIFhqw3tEEl5YyOBYfqh8F1TE50wrQewLCsTUILV1dwOKbJ3dqoWjikpZFoa37B59DREht7XRwc+YUODPLKurqjUvYeyLCvjCfPsKitpwI9jZFOTxjEpSd+trHQ1cSHzAru69D4BAU38MORlUxOZksIBm3seapX19dwEqD9tDuyHQC91dfIcOztJlpVp7gSDHB42TzwcJrCBLC3lMYvUlJSob5ct0/x9w7t2S0sU6NTYSNbVcaVFJbrNu2NREdnUJA8zLY3DNrcGBmzOJCSQwaBDHTc3m0pCaSnZ2MhIxIRcfT5FUrKy1K/FxXrn5/Of/umPIN76ox/pmU7xHfzRj/5sPbvfy9idPHmS//Iv/8Jzzz33txb/nTx5kgkJCVy+fLn7XTgc5tlnn83777+fJHno0CHGxMSwtbXVfWbv3r087bTT+Mwzz/xO7Xi36oHH5u/FISsq6EJnIQja3A3Ijc/M5H1QzkmIrS4tzqIiAusIPKUYTkqKAvNtbcoXWUhrfJyKs0xOsreXDoXmoMtZWey1xcH+fobDVlLQ2Ehgt8JgeXlWPB4Q8q6tjTNmWL4wM1Mhm7g4Bi1t4Ifye0xLEyO+KVKzqEirLRRyuZsmMxjrAQvrdXHMDNJrtqkIrbaNwMNOGcKFaZOThagsL3es90e87zU28ggshxgXR2Zm6prGbH8M0XKPJ81oekzzIxAi70WouJyJibzLvsOCAj1ocrIzzPvsOZiUpO+OjWkXio1lXZ2a19sr5O3AAF0+FnhEIcThYQLTLCuzHFF1NVetkrJ3YaGFrmJjCex0BhQY5glrkycZsx9gerq6ejcsN9zVZWUOTWp7d7cUEGpqCBw19Yx7SKh0o61NCNy2NpJlZYLSAwQe0fwsKCDQrkNKXR2zsuhCcqmpdKFS4CiZmclegFVVdOryDIdlvWNjyaEhjgJctkzGsauLMngpKe7AxspKzbXeXkH8s7LYZv29bJk+3tlJhdJDIaeO0dRExfFyc8niYsbHeyHG7SJR0OmKJyD0cAA6dPVDiN+lS3X7SET3ZmurcoB2WImJocLnbW0yKsEg6+q8sPAxsrubwDqypYUDNi4LFmj9FBSQLtkdDLK52Q4oZWVsarJDTEcHmwCyq8tLa+v3ts6Zne2U4Ssq9KzAIEMhhYYLChRiXrrUnsGDrZaX82kb60WL1A6vTOT9VBj4i7H7w1+/l7ErLS3l2Wefzeeff5779u1z73feecd9pra2lmeffTbXrl3LLVu2sLCw8LeWHsyfP5/r1q3jq6++ys985jOnVHrwhBkW4FYO2EabmSkYeK8ZvNcQrRl71P5VXuNhAve6zVo6VkcZgqDN2yGPDVjBUcDg3zs5ZJv6fvv7SgiK32+b+pAZ1vFxza8VK2hG7CiB42RxsbFxHBBoIC6OeXnSymJhIYG1zgiUlVEn68xMk7CZ1uqvr9d38/MZiZD3WTuGPMNSXc2mJm0uw2aIhyCmkHnztGgrK0k2NTEUUk3WPqh8oAtRfb5OezYGg+4Yv9uef6MZsmb7zjEzaKyrU5tjYnQA8MBCmZkyDvX1PGKfv8u+T5+Py6F6vQdgOcaYGLKxkW22eTI+XqftxkaytdU7f2jjrKkhe3sJbCCwi2VlsgPDwzpsT0Le0EHbtFatIpmXR+A49wMG/5/WptfUxJGR6Ibv9NQaG3UoaG8ni4t1UElN5eiolbsMD1Mw953y4Ds6HJvGEQi8Eokon3TEDOpBm0cLFsiYdtnZi0NDZHKygBXhMIeG9CxveX3c0KDxS0qK5h6zs6MeTVMT58yhvM6GBm4BXBtfgw5CbG8nm5r03fh4qz1dp7EeHiabmtTuoiJ9JyXFsQp5xkqdO6mxamjQwayhQQMTG8t9sAPn8uXR/GViItnfz+12qDloxrC9XeuEzc16p6XJww8GHYNObKzWC+PjXdnEW1AkYNgOUQyHNfj19Wqz9ZfnvR5D9PDG4mLdw2pwvbpV1tdzC0wWKT1dObmxMb3b29VOS3oGvGv6fOr/mBhdo66Ou3f/ETy7hgaXez+Vd7Ch4c/W2P1eObv77rsPwWAQS5Yswbx589y7tbXVfeb222/Hrbfeim9+85u4/PLL4ff78eyzzyI2NtZ95t5778V1112HL33pS/i7v/s7nHHGGXjyySdx+u8ZT/4IjHEdJ3AaBPlPSRFjw0yIvWMzgIV5eVIPgNhTLgEATAA4jL3CIiMtDUhNPRNvIyrZ8w4A4BMADIaO45iCINO/sTYchu432+5/HgBcfjk+Vnc7amuV0sPgIGprjTtvyRKcASAnZ44UlI2lHYixZNT58Bkzy9atAJYvx8kXXwTmz0dMzOmCkt93Hzo6gOOPPw5ALChH7dlOs3ts2KCUyBn23KdB4ucTE0pj3XkngBtvxJNPKlezFypF+Kj12yF7rilAiai4OLxz5TU4DbrmUQCzTAF+rvUZlixRsiw7G/jbv1WfGZk0TpwQ3H3hQrwJwFdQ4MoSUFiI0+w6c73BSEsDEhIwHyKrgM+Hd8bHBW1vacHBg0aG0dAAADiZcQWAZABzMDEBp/owPg6cExOD9HQgLj4eM2daKnbhQsTHx6hcAsDixadjZ9r1wNy5uBBvCkGfmoqsrNNV7vHFL+K86Z1K6jz9tHKr27bh/PGX8G/lx3H8gout9QcBXCHmlvnzMX8+MDsxEZiawv79StkeBXDixAkcBTA3IQFxcRq7qSkrM0lIAFJSEBcHHJ6aha1bgYvn/kYk2RkZQCQiJhZTXz90CMrHxMYCiYnAzJnKRx85AvT34xyoAuft2RerFGBqSjykjz2mEpqbbjJWoY9qrAFg3z6Vh6xciUMA3t62DbjyShy/8RtiMH/+eb0bGjTuyclq30UXqdQgLk6k6N54Pv+8mG527wZmz8Y4gITYWMTFxAAnTiAnB/jNiy/q2Z95RsS1W7YA69bhmzcdB44exZIlWi+49lp1ZF+fCLp37dK8P3FCOeDBQY2T3y+Jh7Y29AE4LzFRkmCvvKI8nbXz0NSU5uGuXfqblUB9edGb2LVpE86LjYURjqo8ZnDQJfzfAeBLTwcWL5Z80V/9leQaLr9cRO/v9+tPUHrwf8trBkn+qRvx+74OHz6Ms88+GwcPBhE3ayZuueMM/PjWnZqEH/qQqHpeeQXYt0+ok4YGLaJDh/DSTT/HFdt+juNf+Toefxz48o5lEn5LSVFG32PevvFGICUFv7rpV/jC7F8Du3bh5/g6vr76GhXrHDokNYOpKZHApqcL+bBkCdbO/BL+1/8KgR3P483kz+PClu/g36e/i/Fx4Oe3vQ4kJeG795yBq68GrvjRl3D4wV/i8suBN594HZunL8Yl068CU1P48StX4JacN5Vhv/9+AUO2bcPPJq5HRwfwq9tewDuXX4Uz7vwWcMMNwOzZeGTwYixZok1z1syTIsROSNBCPvNM7Lzo8zg/7gAOzzwHZx3di9cPnQufDzj/zn8UTVdXlxAKr70mtv79+6UcAaB/+zkizn7iCVnNO+7QpjE9DdxwA9buuATXXqt9zecDrhr/JXZe/iVs2AB8dcnb6rOUFJycOQun4aT6rbAQdz/0EO5OSNC9X3wRKC0FXnkFL0x9Elf922Ic7tqIs57/FXDBBeg/cjE+1XY7Xrj2+5g5E7giYScQF4fXx8/BxARw1eXv4PyFZ2Dnt1cABpRBSwsu2/oLvLruADAxgc8svVDkwVY7+fbURzF/vqbPAw8A98Xcgq8f/THmzpXt3rZN/fmtY8uwt/g/cO7WZ91cfH3+Nbj4rU68mfx5b/gBiMErI0OP+OXQz4Fjx9A6918QiQD/yFWSn1q3DpiaQv/HvwQPK3TDDcB3r35BF7jxRnz1R5fhzjuBC2u/DsyejVdv/DEuu/PvgSeewDvTs7Bhg4bq3y76FZ6a+QUsWQKc8ZXrcc7za3Hggk/i2ZqXcc0T38SXJn6KjAzgW/dfCCQk4IWaFzBzpp7t62mvArt24cI7rsebDc8Cs2ejdfcV+PLECske3XknzsrKkhF65RV855kr8N2Hz8M7u3fjjLw8zU0AuPNObL7157hk8BeaExs24OSDP8e2bcDFj33XkRCfvPu7OK3mu9h703dw7j3fElDHwGSYPVsSA3v2qANfeQWorcXmiXMxfz5wzsM/xMlbv4UDp8/A3IICq2GE9Iyefx5v3/ZjaRjOnSuCZyMpx6c/rdrRDRscqAw1NTje8kvMuuNb+v8FF2gAW1p03yVL9N2UFI1HXBycdtLDD+OlPecBiG4ZnqLPhfd/C7jxRvxLYxJ++tOzEQwGcdZZZ70ve17w/vtx1oc/fOrXOXYMZy9d+r606QP3+lO7lqfy8lz6dS6M+W32WDhh0SLyIQtfvmGhMcbF8UUL0+23ECXwMwL/ScbG8giUj4mJUYipy8KS91kYM0o4Pcz1FiJ9w8J9D1m4rx9RFXS2tpIDAy4qw9RUQ9JPk9XVfAOCj3d3k4yJYVkZCey2XNBTymOUlCh3YHRmIh8OOLBHfT2VFPf7+ZCF/96yUA3b2lhbq/zCPmvbG/BYJ6YdwIHDw+ztVRhzFOAPLOT5uD17t705OqowyMCAKy1oA8iEBP4EAgLt88JATU1qc0KCvltcrJBSQoL+bWkRVD05mcvtnkxI4F3Wfyuh0gTGxTkQUH091ScxMQqJ1tSws9NyKy0tQnD09BDYTmAvly1TmNYLY4agGirGxrKsjE7Z2+dTKLGz0+DpAwNkXR3Hx01FvqODCxYYEKKjQzlbiw/n5VH53UhE4a7eXopyTm1gdzeZn69wIyCARjDIzEzl8IBpR/+VkqJ2DA9b2NvYTvLzSUYiHBvTc7wB6MFKStQnFtIuLtbzeKw/LC9XyDw5mSwp4SaIpDoUUs0ea2oUyqyu1nMUFhpoa61CjW1tZHW1xikri09CKQK2tirE2tISJeJuadH8rKsTW017u8KYKSk85oUxW1v1+bY2zYPWVg7B8sGxsWRMjAA1HnKqrk6hwpYWcmDAlcVkZhr5tdWHsrVVpSyNjZr3WVkaw6ws/T0lRZ+tqqIfCrvve3d7iorIlhbuhwGxsrPV9+XlHAYcldoRC5Wyu1tz2BTqOTSkMGpsrH5XVaWfjT38rbf+CGHMBx5QHP4U38EHHvizDWN+oI3d9y3mD9TwBJRXq61Vge99EDryRfs9CwoYtM30XjNiwLc5Ca9weSeBwSiiMS3N+CjX86At2qwsCh1RWkrW13OFbfoeinG/XYv5+WR9PYeHDXhSXs6CAhKYcPVHQEAbVlkZV6wggV1kQwOBA0KotbUxPl5/Z1ISuXy5DFRKiivYZXY2/X7lKJ+2Z34UhlINBgm0s9UM4QOASzuIQ/KYDEp+PisqZBC8nNkwlONrs/eKFWaYPYReejqZmsp99rlJz0ClpZFpaRyDEJ1DQJQCrK1NG19yMjdC+c4euxeHhrgFyuGtMAOwyTaYNyAkKuvrydhYIeBGR+3wsC1KhdTWRuDHBF62/txMhkICIUB5MeVgjzIc1qYJrFQxeEsLgRUOfOKldAQe2Umfj2RpqYAJ6emM2HwJmOFob6ehMWso4NMtZGsrXwPo8xlitL7egUwHIDRmN2CGbzfHILRsba1RURUVEThKNjYyJ8dQmgUFLv+WmMgoSKm+Xpt+czM3QUCT9nbKqhvwyEN4Mj9fwBS/X3Nx+XI+CR2Gli6Npnc4OancWFOTDEcgoP6pqCA7OjgwoLldWSkwyuQkhS410oYBRPPlzMhQjqu3l0xO5uSk+t/jlWVqqg4MFRVqW0eHDFUgYCjbCQ4NkcAg2dsr8oZuRjldu8lHAdcOZ8y9w0F7O4/hXbnlyUk9S3e38mutrRrLhgaXnx6wQwizszkE5e+6u6lnKCuTsRsb4xFbe+vtM9thCitpaQzu2/f+G7uHHpKxPsX3+8nX+UF7faBVD84AlFfABF6C2PV7e03BGXBqBOcA2LVmDV6Gcm9y3kMAJqMq46a/HQflVDA8jB19fQAUstoKi5h4tPDPPIOTUM5uJ8Ty/zYg1nyfDzj9dKxbZzm7V14RJRYAdHXh8KOPAjisv734IrZsAYAphfHwlvJIe/aoXqmvT+G4xx9Xnu3QIVw2/TL27NF9zt36LPZAz3wWlCP5KIDWp88CkCHxTHvuqDrzWVi82KewTkYGnnhC+cadagXetn49DOXuvrn0JD4z8wVg2zbsADC4aRMGt2zBFEQB9jKAA08+qQ6KRDATymnuAaIUYP/xHzgjMRFISMBZNiZv2hsvvohBa7f3vUMA8MwzeBnAU8+cBmzYgONHjuDCuN8AExO48UYgNfUTihM+9JBCq/AB+A3i4oDk5FS8uu0M5OXp+ZcskaJ6fv6Z2LULSIiLA/AR5RULCgCki15u1y5MTVn6dGoKwDzk5yOaQ01Ls/li1GLJydi1C/j7+Zuh/O6YZuL27ZgPabfGAcANN+CqC/ZicNAUMnAcZ8BTTz6IwwDOiTuJUAg437cXOHQIixefCSQlobJSTdm5Zg0uBPBvhW8rZ/jii0BHBzYvuQWX+Xyq4wPw7zfu1XzbsEF9uH07Xkr5OpCWhjcffxxnTLwtsTi/H29edzsus3FsbAS+fvXb+PrVbwPr1uHk/v3KU91zjz7//PMKh+/ahaQklUmmpGjOndPwXeXPL7oIyMjAR6H1eQgA5s1TzmvuXODMM3HOfcsAKN81F5rTwaDm/Bl3365wd1wcsGkTkpKAnJyP4JKjLwGYB9x6K6ahYff5gHe2b1d6F8BH4+JwzhM/h9e4aUDXmZqSioO15/DMc/TlY8cUMr33Xs3DQMDVd54G1fjBVEq+nPeO6utmzpSKRUoKsG4dDtgzJAH4coEUEqanASxY8H+NUvn/Na8/tbU9lZc75Zx9NunzCbUIOHYI5uUxCMHi2dhI5ufr/8XFOtkZhB04rtNtXR3T041xo76eLC/X6bqrK4qsy83VidfcquFh6vRZWkonjlVeLi+nt1eeTMg8sHCYZWV22m5tJevr5S1UVzMUEptEUxPJmhqFz9LTWV+viBHLysjhYU4C+n9xsfOyQiFGywNKSxVGys1V6cWQIS5Nzy9oHhRHRhzCcNI82OJiOimEsF2D5eXy4JKS5Fm1t+v32dnqw+xshavKy+n4mTIz9f2sLIWr0tN1/Ddvlnl5Cnn19CiclJ+vIqpIROw3UBj2LvO+3Yk7EtF4DA2xqEiez/i4IjN+P513mZNjY9jW5hGsqM+tDo5lZY79X5Rd2zSG7e3yotPTyYIClTN0dZGpqUxPpyPc7uqibl5ZKaj82BjZ06P5V1np2DXi4ynPIiZGDCYpKbpGd7fak5en8a+pIUtLhewsL5eHGomoJtBDf1ZUkD09rK83iq/GRrK+XvWffj/Z1iZ0aXu7+rGri6ypcYxB7O3ldphyRDjMIzCi7+JiB7xkXh6PQPWGYVsnoZCeLxwmGYloXpaXMwAwHJYHmppqlFsNDVFatcZGRSyKivRMsbEKX/r99Pu1NLxymv2Ao4kbG1P0Mmx/YyBA1tVxaMju0dOjvuvqIktLuWiRaRA2Nqpvi4vJQIAbzUNta1Mburr03BwY0LxtbPS6lJ2dQsGOjVE3NzhsczPJ5mbdb3TUqUswEpHnWFWl/rCwukdwvmwZydRUfa+ujsFHH33/PbuVK6PlEqfwDq5c+RfP7oP4OhAMAj6fAHlxccCttwo5t2kT+gC8sn8/cO+9OPz44zrBHz2KCQCbjxyR5heeBSorgW9/25OmA+66C9iwAeePv2SwvYhQVu8+pR06hLg44M1t24AHH8TU+vU4vHs30NAgr3LHDiAhAWfseVPArgcewMyZBvIaHweSkjA1FQJuvBFnPL4KF11kjkkwKBLmEyewcKExfSQlKdEO4JKFJ4GZM3Vq/8pXcMbjq3BaYqIIlp9+Gq8DmHr6aRyCDnAPPwzs3LYNmwEMAkK3HT0K4G3s2GGI0qkpeYmPP46Tzz2HXXYNPPQQ3t60Cdt27cLe8dME3pk/H3juOXkmhw6JCPmVV4T6M8/iJCBV7EOH5Ol5TDQeIfKuXcCPfiSPvKND71deAV58Ea9Cnl4czCOYO1de857TdCB94gns3w+cj51obARWrgTOfa0TJyHEZVeXQHpvLrweO3YAsyb2aky3bVP/rlkj8u0lS4TMwAQObNtmSMmDosm49FJclvIO3ky6BkhLw/i4HBrMnStP+4kngHvvxYkTh0Wp0dcn7bwvfhGPProHDz8M7N//umNX2bYNwK5dOGv8TSAjAw0NwMSTT2Jq6nVBYg8dwjPPHBZU9qab0LrmNJw7V+jDPXsApKRg5/yr8KlPWQTimWeAtDS16ehRx3SCu+7SOD34IJCermHetAnw+TANAW1OzpyFAwAuTnpHHvb4m7h4/mG88+ST2GtLaFZ6OvDZzwpJuHIlZj3XCUxMCIQxc6aiBEcPID5eU9Png8ib587FnueeA3btQk4OcHjlSrxz773Yc+SIQB47duDcic24Ai/JA3zsMZwEMDg+DnzoQ5iaUpfNSkgQGOTuu4EdO7BwIfDkk0DgE1cpKuHzAbt2YeFCc7ynpjA+Dhx/6CHgjjtwAYRJy8kBjq5ciWuuNpDW/ffLe7v3XiQlaTpfeaWiCefNPqA5OH8+cMEFetbHHtOzPfgg3j5yRNEJAOcc2hkl0/7iF4HpaSGWDx1Se848E1/I+A2wYQN+c/nf431//cWzO/XXn9ransrLnXJ++Ut2Ww6DLS0cGjLwQVsb2d8fPcV3dChOX1GhepjiYqamRouTBwaU1pg3j2Q4rFOxEbzW1xsZbXOzvhAIkB0d+kwgQPb3c5/F7FlQwE0wKZvRUS5aZNyEkC7e6tV0enns7pbnlZlJYI1O0DExBI5x2TIdMr0C8eZmWv5oQjyA9fVkYaEjC2Zr63vlcdLSGIlYvrCtTQ/Z0qJTfDjM9nbje0xMJOPi2NdnYI/+fh6B2GQ4NqZjf1sbG6F84OPWnjegvOAAQBYWcjcE1Flp+ZenYbp0cXFcBhW7N8EKiC2nw6QkeSnt7Tol19fruF1Zqefp7hbTSkqKcidDQ45AGzjOjZbX6+ujvhMXZ7ItK/Qwvb0EbiVjYhgOiwNyaEjjWFRk+nU1NQbmGJQHHRNjpMsPs9tyQExNJSsrLa/bJI9hcpLANgEYxsaYkiKCYuX+hllbS0k+maehovVbea/nRdTUENhODgwYCfJmAZuys1U7mJjIyUlN2bo6GknzI2RsLE9YvopNTfpOUZEKppuMwzU3V55eMKjIRXm5PtPaqj6vr1cNXmKivMGODrKnh/0QuKu3Vx7zaxCjS2YmHVDkIct3tQIEBllb+y6Jn+xszeeaGgJd7OnREtpi60J54iat1YYGzWPAFXED1Y6MG9jJrCyvoLyLbG7mestt9tvc0lhvIEMhxsfL+8vM1HoAAvRkgqQv2EWGQpy0vgM6rCB+N9nUJE8zK4vJySpgB9ZxfPxdICcIwAYMEJgQmCkQcOvfA4q1t5McGRH5QGIig5df/v57dmvWyCU9xXdwzZo/W8/uA23sttqGCzwioENGBisrtcA2QsjISTMuWyDAxCgEWgGGCdzraKvS040ANjaWYQiQMgYBWVhayrcg9g16xiw7m5vsuh412Wvehm+J9r4+A+xBgIZFi8ggBKpZsEB7fsTuPWeOwjvAXq3+ri6BMWJiyJIS+u07XL6c9PtluEzbqtnuPQwDyCQlsbFRBny3Pe8WgO3tQvvNmGHGLS6OrKmRMff5uN42klG7Xq9nxEtKtOmnprIbKgR/zvpnwIzgFgigw7g4huz/62Eh1qwstSstTWGruDiOQOCXfhu3x82INpuR2WiG7i7vMFNVpdCnMct7VFJemE7kynsJbOTq1Qpz1tXR8aOtXk0H6KmoIFlY6FCQbW1GJlxV5ajWODJC5uWxvNyYSJYv16Gju9so6gLaYTs6dDjIzjbx1g0EdtKrbPcopVatIllZyXnzaIazSyTdZgi88ODSpdQhIDeXnZ0WZmxsZGOjaeYVF5N5eQp7Z2SQ9fU6UJWVydgVF5NFRWLzqKoia2r4EITGZH+/ruHJFXhtT0w0VqFAVPXWq9pvbY2CkpKT6bGWeyKnbW0KPQYBHSTLy3UI8/neSywwOanf19QozpuRwVFbn6ys1HNXVkbD7XZgGR42ZGxJCePj6cBPwaCRA3jox4QEWafSUo6PW78lJtJx5CUlCUATE8NVq4xZx2jB9ts8Zk8Px8c1xMcAx87zHJSaMECtwvlGCM6sLK1R7/CZn6/PpKUx6Kmz/MXY/Y94faCNXXDlSieGyWCQlZViB/H7tWkUFJi3NjLCYFDj7fcbxVRaGllZyTlzorSOZWWGcpuc9GgeNYHb2zk8HOUCrKujY8/PzyeBvU5osqjIFtrYGFlfbyxKa7W46utd+DwvT/spsFb5qPZ2tWt0VBtCdbU2ykCAhYWM5pFiYx0FFfCUVxHA5mY9X2+v8ShmZZFjYyws1HMsXWon/5ERcmSEw8NypkIhkgkJzM7WnrRqlfIxnsp6VpaYZebN85Ccw3biPsrFi6PM+snJundPjwzqihXqJw+RDWwjw2H29VkJxtgYu7rULiOtICMR5dYMbp+SorbcBeVjZ8yICpq2t9NKNo6zqIhO3ZpZWWRJibyfwkLnQfl8GpPaWj3vKOA8ge0w5F1BATk56bwqsdYECRzTuAwPc9Uqk7Xx+1lcrO6srraIwuQk3wI4MmJzIC2NwAHlsmJiRDUF8WqyulptGRggCwqknr58uXmBA2R3tzb5tDQ2NTlmKj2X38/mZpq3UcmhIcvvFhbqmh0dpN/P7m61a/Vqm48tLSwqUp9mZ5PAt+WdDA2pL7wykdJSdnZG109VlexeZibJ/n4Cu8iODs1PG6uqKptfTU36T2urjfs02dPDUEh9snixMc5Y/isUoutA4JgrmfGqWDwJoLo6fc4jcvH4NxmJaNxHRx3glMuXK4/q95NdXbYGB42f9ihZVcXUVHX9qlV6xoICu+bQkFvgwASBDayvp2NxWbTInjM1lcPDjLLqFBWpjeXlnDNHvw+effb7b+zWro1uRKfwDq5d+xdj90F6uYE/7zwyP58FBUalFIloc/H5tLImJxXeMyny/YB2yIEBFhRoQfX1aYNOTpahCwapH6qquB+CjjM93XEmTtrp0CWtjRSaNTW6T0ODiz/l5MgAtLfLIHR2UjeLj2dKCp1cUFmZnVL7+wVuyMrS5yz0GgySDIf1t6QknegbGtjebmS0CQnyvDyNu95epqTYRuLB9gcGmJysDau8nC7JHg7bQm9rUyd4Vr+kRM9SXy9jPDqqew0PO+kfR4QbG6sNrrJShw8Pnr18ucI8VpNUXGwbnRc7jo+PhtMgeD4LCiQ9M0Z1TlUVOTIigzc2pnsHg07eyOM25sgIKyrs2crLmZWl21RVkSwtVZi4vFxeXXs72dOjsFtxMTk5qY2qpSUajuvuJquqmJ1toejly9nUpGsadSUZCjmjy+5uBoPvkq+pryfz8mTECwpUtjA5KTLpSRs3L2wbDmujzctzSvKsqIh6eZOTIkOuqZERLStzwJdwWENQVUUyPl5eqVde0N2tKERhoYcdIZuadI2CAgaDCtutXq3PmgxjNCZYVUUGAtIEhKD1zc2aiywtlVGtryfT0hgOG0l5Vpa+n5fHvr53eUKVlTo4Dg3R76cDQg0PS/PPm+teRKS9XYe2SIRaY5mZ+kxqqpNAYna2QpDNzWRpqQPAMD1d411ZSUeQ2tOjz/X0aJJ4gzA6SqalCbwSH+/0IbeYZxeJkGxtdfyxQ0PqQzY0aPKlpOh6+flqU1ISly7VnAn+8z+//8buV7/SBDzFd/BXv/qLsfsgvdzA5+QYz+TLZGurJuzYGJmcrJ9jYhTezM3VpE5N5TELnQBrlauxSV5VpX3PWzx+gMzMZG2teXcVFdrhvNBFczPDdq3HLZTpFZszM5Ps73cioZ2Q5t6cOZSxSkggAyKC3mTh0cWLaaG4aW1YY2N0ULTcXLKiggUFxgDf0iKjEhenTTMpSeKkFlpkYaGxxAdV2+bzORReMKg9rKKCalxNjQxtQ0O0v0zoMgQRN4dgodu4OFfHN2zP64VlX/PCmImJ3GLtGLLPjdjfGR/PIxYCZWwsmZCg9g0PuwNE2AtjmWDnPoAzZqg/7rIQ3NgYtXG1tamvi4vNM9hF4GcyBOGwTvElJdENrr6evb3GgRqiNrzYWHFfjo05AVtHEFxW5owtCwrUZ5WVDAPyGH2+6NwqKjKO0zuV08nOlpHPyCB7ehQi9/mYmOjV2d3jhGWBFRyx8cnJoZ4pHOayZboMGxp0IElK4n7AGZwtMFRsWRmZm+v06bxIZFsbNRc8N8mMUHe3jX16uixrSgp7bY46Dy4uztXUMT2dzMzkCUhUthMq0g+H1T37AN2svp7Mz9d9KyrIggLlblNTo95vWposSE2NDlfV1SZuO6FQYn+/1lt9PVevtrDuyIjltjdw1NZYV5cRAVRWqm/q68nKSvb0aPp4h6XubhnAfbAQv6G3IxHzviMRbrJr1tcrMlRcTLKoSN59TAy3QIoQ3nkyHNZ86ezU/ZmeTra16fddXaTfzyMAt237IxSV/8XYnfLrg23sfvYzsq1Nizcjw8KCQTI9PVp02tWlk2tDAxkfz1AoGmpjJMJVq7QIq6u1Pvv6qA0sI4MhWwDMzyfj4xkfL2M45hkVz5MbG3N5NA/XwcxMJibSeQPj47ofGxud5+gJY7a30+UAsrPNI/P56K3c0VFa0fQuMhCQIe7piXpaZhS7ukg2NjI52cJaNTWsq4uGCWXgt+ths7MJ7BWEfmhIJ/CGBsc8z6EhcnRU7R4ZEWw5aM/R1eU8HWZny5AYa8zAgOVYhod1+p+clBc0MMBVq3TZSMS8F2P86OsjWVHhwrYOQGLUIZGI/s7R0aiHZ1Dx5mbb2CYnnTSSV9IRDNoGa3UcwWB0LCIRuqJlBgL6vo1Pdzfl5bW3a+NtayM7OtjeLq/NA4A0Nmr8GhupQfQYRjzQkAeSGhrSnAgEouUHw8NqmyfDE4lo4xwa0tysqmJnp3mAXV3Oo6itpYxXQYGetb+fZWVm2DIzNV+rq92G7nkcS5daHxkhNauryeFhZmebJxoOMzHR5l5Pjzyc9nZyeNgxoRjBjDo2OVnvjAzHsGNDRNbUsKhIhnBy0g6LTU0aJ28BmgTCsmUks7JkKGpqyLY2jo8zGuJtb9cB0dPLSk9X+43AgKWlupERRodCdEX0FRXU30MhcmgoWoaQna351NQULbo3INLkJJ2aBUMhMhDQ/Ozu1vdaWzUWWVkupxcOW98mJZHNzWLcCYUY/NrX3n9j99RT6r9TfAefeuovxu6D9PIGfvv2IBMTzdsJBDT5vdNoaakmcGamNpqWFoeA9PvpkJshWK2PeS7MyNDbFlEkYiGXjg6dsktKtLgyMlzdGcfGnFF0OZ0uIdJYVuYU0let0oG6ri6aW2BZGV+0/FFKCl2ITWwqAwS2M2LfdaJa7e0E1irs0tqqna6mRptKMOgkTNjcTCfU19wcVd0eGCCrqpiTIwerslKIM2Znc/VqykPz1BbKypiS4gmHP8WhITNmttl71GRiiNnG+npJr8yYQTIcps8nj7a8XF3n5VvKy6m25+U5CjCOjpL9/S5sChwnw2Ft5MGgNkvz8ICdukdWFkMhPUMkQkNX7iQnJ3kQQmBOTtpzWx5sZIROA4/hMNnW5vJJwAZDZDYReJnl5TT2jqDQma2t6pfERDIhQZtjUhKBYS5ebKf+QIDAI6yokJewYgVNUkh0YU51wJh22N9vygvbHTuOdygYHpYixnrAKbB7Wny9vbpWdzdduC4YJNnfz1WrTG/P+rO93RTIa2r0+0CALCx09Zx1dbpvKKQ+ycmh02hkTQ1ZXMzERA1VY6MpOeTmMgSwuNjWoHlw+yGUaMQOi+Xl5HMQ+GmLeYeE1L+5fDnZ0iJgSl4eV6wQ081r9n4aAu7ExGg+r1hh6OjcXK331la1LyFBbTIpqBMWlej1niEmhk1NmudBCATVZm2JRKhJUVmpqI2FM7db1KK7W6HWgEUqOiGl9IEB2f3sbHv+sjLW1gogt2oVCTz9/hu7Z5+NstGcwjv47LN/MXYfpJc38N/8ZtChFQW1FlVUba2ntRXw9EJdgffYmOVY2tpsY9xLYC/r6rSIgWPOqfL4tYABbcSNjfp3YICjowqHpaZSF6+v10ZkXkU4rLXT3a3rxMZSO31srFZHWhq7uz3Qx3Y10udjW1u0DncVRG80bx7JkhIuWGAaXg0NjEAinRweZmWl7rVsmZ2Iw2Ftek1NXLRIoRkvh+WdstnR4aRcODBAYJpLl8oweICbefP0PU/8dQvguCG9U/jICMmqKoa9MGZjoxqTkuLAH0xKUq7TLKW3UTc2qr1ega85vBwf1+axESCDwSg6srmZrKsjsJN3AfyJhd44NCSj2dXF6mqBd5iQQOAFsrpaxgOme5iVxVWrrPA7JoZVVXrGIIT+FI3YZqEWvXdqqkHiN3LGDA2f6MF2c3xc/3/IwrVe0fEQJDC6BTBQzkqVI2RnOzHWGTPkwYZCmkMRC9N6QrGsq+OyZeQKM+4sKYnycwLOo1HK82WOjprn1d5u4dFdsnLt7c4wMhzWIaGoyIGa0tNJ1tXpQGBebMBCtcBeeqrBkxBQiElJHv5JIcS6OkOodlgecLWBOzZqcEdH7VqrCWwzDtiARSv2srZWy3hkhAbqWUegy7hcAzziGSy/X23IzuayZVG2NB0IHibQZLJMAXqoWF1rrQ6SgQCBaQK77T2gvaO4mAyFWF2tNQTsZmamU1py8yozU0AXYEI3r6vTwczAVt3dtH1omOzo4FbgL8buf9DrA11U/tOfRsS8/+KLWLvuLABTuO46oLUVmJraByCA7dvFCu+pkjzxhBUJv/IKsH49gDMB+PCtmw7jG9f9BkAIU1NjmJ4G9s48T5XL2INfbDgfqKnBS+Pn4+25l+GZZwBgDFu2RHB4+gwgIwNnnw0gLQ1nrO/Ea6+pfvMzS04Cg4Oin9qxQ9WuKSnAtm2YPx84b+Ze+HwX6G+FhViyBDhyZA8mJlRY7UtKUgHrpz+NCy4A3norBIRCOK2gAAsXApiYwOrVYoZ65RWguxvof02CRNi2DW+8Abz2Wgjr10eQlAScG/eOinYjEdG1X3CBFcy/he5u1d8CExgfB/btm8LWraIiOw6TL5o5U8W3cXFAQoL68sorMSsuDnOTksRg/zd/A+Tl4dVxCccgPl6FtykpQFoa9uwR09Xzz0twYuZM/bx79wieeELPsHGjaKhe33MW1q0D9s6+UIz4CxdixowFmAuJNP31X1ub5s4FBgexcCHgS03FofFxABM4etdduO020aEBW3F0/XpMTAD79/dh8MQJbNsGrF+/By8DwKJFSEhNBZCswueyMrwKYGrLFtPeORPz56uuOSkJmDFjPkZHVaA8G5JJOnECwMMP43wAN98MvAqgpAQAdqoPcnIwMQF87MOHMXMm8MwzKorG0aM4LSsLr0+dD9x2G1p3XwF0dGD3btFcxcQsAFJSMDoK9X1MjPr2+efVNIQwOCjOAsTF4bRtrwM4S43NyJByz/z5ODlzFi6/HMDUFK68UpfaskXz9sorIdWQBQsk14MYxMTMU0X6/PmYAvAmLgR27cKhQ5q7CQmQ5M5HPgJgAm+8AWjmHgRwQh2VlGQz6MMA5lgl+gg2X3A9gNexfDlw4sSkrpWYCODjAOYiJQWYM0ciXhdAz3UGtBYA8ROsXg1bizsAnC6ZIwSgETkGEeDNwYc/DLw+8VGoNP8EgI8B+Chw6aXA+Dhe3XYGGhp0PWASL754ApfM3aumZ2TgE1L6AjAfQIyUHm66CfffD/zwsfNw000qUv/STWchO/tiYNEiJGZl4X1/nX76H1ZQ/nvKqP1f9fpTW9tTeXmnnH37ghwYkLfT1kZX7MyeHkYgwMawnUa9sJB3Ms7K0oF9pYVLmJlJpqfzae90XlLiaLK8sgW2tHh6kvKc4uMV+kxKIhsaVPTc0yOvcHJSp76ODoFWsrIIDHPADpOsqCCHh7kPsDq8vbpHcTGLi2lJ+wCBA1xp+RJmZzM1VTkWYGNUVLK1Vaf2qiqyro6Tk1HF5RPmWUWgeiaOjal9xl7f2yvvIgjIY+vvd/VwEQvdeDnOpiaqnzxkW2UlWV8vmHVQuazeXpKhkPo5EODAgJ3YR0ZcPvM173l6e+XRjo46UmI2NMj77OhQrqS3l8Bx5VsyMxX+zcpidrbAC3eZN1RdrWdW3+yKSh4EAmRjY7Sso7GRbW0WDvRg65abAe6Vkrl5gXl5VB5zZITAcW6HwDWPQ+UFGyEQzpOAFSQHOWOGTvjz5smpCgbpxkhFzj/maxAoaTfgNEQ9jysUojyp/n6x7w9bOYwHhDFwUjhMfcYQtGEYcCU52StrU44rEtFF+/sVam9t1cMHAo5wnP39es7WVtbVKZzb2Kj5fRBwNGTBoOY1W1reI2Zq4FjS55N3Y+Ch7Tbvh4ZIlpdzn621d1NuhS08y64uMi3NoTNf9NZkYSHr6uRBVlWpKR4F3+rVjKJACwu1jiMR9V9qqjq2qoonbIwYDEoFZWjI1Rt5CFHW1Gi+hUJ6xtFR0ueTh2/0fwyFtJ7y8rhqlUV/2ts5MmJ548ZG9vRIMNnvV0E83m/PrqdHz3eK72BPz5+tZ/eBNnbBRx91i4GlpWQgoM2iqUkbdm6uFl5Lizb7xkaF3yoqojkMk0wZGDBgSV1dtGCsrY0LFtgGVF+vxd7bS/b3K85fVqYd1svzpacrfjow4DbQpiaSRUXKuVmhMhsbOTxsuYKqqmjiPjHRiT+vXk3H1sLJSVcUPjQkQzgyojbR59OmsHy5QiuGvPPykl6hNAsKyEDAgVVqa6k+6u7WxlZRoc8WFOi5ysqiEPSysug1EhPFmBEXR6eXk5XlmFGOwPJaubnaULKylEsCyJYW5UiNa5Q1NXpPTkZLFVJSnMI8Kyu53XI7VVUki4sdaNLJd3ugldhYMhLR5yYnyeXLHaqPwSBdnYbls9jdrVxgd7f6MhjUmNfURFF11dXa9EpKSL9fnw+FyOJioWdNsTscpisgz8+PFoK7/KvfL7DE8uXKU+XmqqSlo4OhkIaQzc1kb6/mRGmpM1K9vRqbcFgozuFhkgkJasvQEJmRIZCHgXVGRzWu9fXWvuZmDkC1fX6/rsFIRGPvIXFrahiG8mtBgCwtlUHyErRtbTJw5eUav4oKVz0yNKSue83Gl+Gw8lfd3WRTk0LK4XDUSoXDMmSTk26++f3WZyMjkoXyJrqHcLHSjMlJap0NDHDZMisJCYU0zgMD5OQk3wBYVWUGsKFBh5yeHl0rN5csKFAOdXKSY2NWslRRQZaUuHzrsmW2Nj2qofx8umR/fz+5fLmrqaPfrxKPsPV9KKR5VlrKwcE/AhrzL8bulF8fbGNXXa1gfyRCpqayvNxAHmbgGAhoI2tu1mZdWqoJv3w5x8b066YmGZY5c3SibWujjmmRCNnTwxkz7AT3LoQi/X4ZkkAgir/2GIO9nFx5OWtrHfcyFy82rzI3l8zKYmOj5t+KFbIHjETI0lJHYBwKUafTxETW1+u0W1hI3X90lGFIcug1QJtye3sUPFNTQw4Ps7PTTvgGzvHSQR6BBtPSyPJyhsMGmBkbc7D3yUm6AnRmZjIEJetZXKyDgyfWZ9I7Ic+rLisj09OVWykr0+aZmanvVFWR5eU6/cfFuc19eJjRTbWoKFrLGBdHpqaqL7yc3eSkwDd5eWRxsTbW2FjHtFJYaITJ3d0ySGNjLq/oabWNjpLs7dVY5+e7Q0DYPNmUFHnEW8yDY3Y2mZzMmBgDm7S2EhjUePb2Mjvb4PfDwxwfNw/Y59PAtrYaofi0+sDcbp+P5MAA29qM+KChgX5vjAMBzS+/n8Gg2gLs1Pe7u8m6Oh2QWlrImhouW2aeWGWl2lRdHUW8mle/YgV1yMjL46JFyiV2dxs7TFcXGRenfvUOiVVVbGqy/LaRMrj8eH09ly7VusnJIdnYyEnPQ6uv1/NMTupAlZvryBXi4+mAL+3tJNPTOT6uZZOYqCnwlo1jcrLWXHOzrYXMTD2jeWQeCHhy0gBWo5oS252XfdzVkOblGeI5NZVdXRryvDwLZHgRj8ZGNje/az1a7WVzs801I143EKn6ub1dVjU/n2xq0rxua3P0gsGLL37/jV1vLx2LwCm8g729fzF2H6SXN/DAowQ2sgtgaqrpXXV0UHx4Kwm8QHHyrWdXFy1p/n0C1XzcQlLz5mkNnwAsfLWNwLQLc4YhFvXERJLt7ayr00FQHHuPEGgncD+Bey15vYYxMWY0S0rI1lYtfojL0QOgMCGBbGnR39LTOWzhQj+EzOzuJtndTZ9PC39ggGRpKcvK6KiaKipoyf/19v4OgQ6BACIRoztbSZUc/FinUOMIPAEVzKek6LpiSnmBwJ0GDNhp1+xwxcQ5OQIfzJghcA6wxu63mWIaOWCIxnspJOl6AwS0W3L/Bft7h/XdBgIBh0SUHt3PmJMj8Ib4D/eSLS1W+reLHBjQqdvKHzzmFY9pZQ1Ak7Qg8/MZiZgH39Kiaxn3Zm0tDSG5kmxs5DGIC7KwkGRRkefAaaPLzNQG2NjI6mqFzf2QAG9XF8mKCvb1aeN8DeIBLS622sn+fgFCenpkmPPyCGzkJogvNT6eJiZ8rwx6Sgo7O81QFRU5/k2PCg+o1GRsbKTPp3mWn685pdKbGv19YMBVY1RVaZzz880b8vvZ2xstvfPmLTMz9c7KckjSdztYwDSDQavDKy11qgbAw2bQdwowFAoZdVqAgKGYBwbI1lYZx64uFheTwBonmce4OIWNOzrIQEB939urSEVSEru6yMfNawNW6JCVnq5xWb6cQFDjbJ50KGQIXCv3WLBA38vMpP4wPCwr6vezqMjQw4GA032bMYOOLg5YoTBvXh7Z26twZyTC8XHaWmnX3OrpEfApEGBsLLl9+x/Bs+vvV9tP8R3s7/+zNXYfaIAKkAzgWcyFCOBTUi4F/H4oifx38PkyAXwcPt8S7NgBADEAIgDScBqkfpaTA3zlKwI7TADw+T6BkpLTMXeurnkagPp6Iwu/9lr4fMJzpKQAwBIAl0LQhCFr0+s4cWJSP27aBLzyCvbt24FdAC6GpMGOHOkDiouBQAD79h3E3k2bcHFiIm69VVe6+27gM2kH8MPBz2Bq6lUsXQo89xyA++5DTY3AHL9+/jRhAsbHAXzE3ufaU00BExMQv3k6gFS9x8eBo0dxBoCZiYmYmjqIkREAM2fixhsB6bEdw803GyAClwKYjxtuCOFrX9uDZ555HUAfyE4A3QBGIIDPEICfAmjBxo0RAG8B6IAU8X4EYBNefPFRAOeJTd/1/nwAPlx1+Tt2nQwA5yImRpiGfft+CmAMaGoy0Ylngblzcdpt38J3+67B2gtux8c+Bnzn7tMwNAQshHQHT976LaC4GDsefxw/+IHwE98Z+Sekp88TmmT7dpSVAfi3fwOwALjnHvjq67FjB/Doo69i78qVWLIEeOihSRx/7FdAbS3Wr58E/vf/9ojxsQNi6d+xA8DEBDIzgU9mZWEbgKsAPPTQJsyeDdz+2Cfxuc8Bxz/9adx11w4DuszBTgDAZbjnHl0LCOGRVy4EFi9GS4uaCQAfm/Eb/OMd52FPXx/uucfG6CtfAf7qrzA19Rg2bBAw4o471C4gQw+ckIBzHvw+nnlGkoKFhRr+rVsB3HYbVq9W26++GoiNvVRjuH27FCGuvBI/+MEe3HwzcMnErzE+DtNjfB67dgEvvvgYcN99wLZtOHDkCIAI1h69BhUVC9To227DjTcCxcUfBTAgJY+lS4E770RhIXA44xrccAMATOKmm/SsOw4dwjPPAL/+8OeB225DTQ2AO+/E+MqVQHMzPve5KZwF4P/5f8YA7AEeeggHTO8OfX2orj4LtbUQeKqlBWfc813ceivUMTU1Ar8ASEsDcO+9Uoe49VbsxblYuTIE8nV1yOAgUFMj0QqfT9fHMSmaPPkkcM89+NREJwCJocyfDwBzkJw8Dzh0SP9fvRozZwJr1+L9f/1F9eDUX39qa3sqr/ecckpLlS8qLzfP5GX6/bRQRoAxMQaP7up6r/5YdbV9ZyWlWr7TOB8H2d4exU14oQ3PK/LCbt3ddLyaJSVeCcGgA6UwM9ORrgDD8kA8/L9V/IbDKvSeN48Ke3V0KP8wOcnubmNzyc4msJEsK1PocXSUrK5mI0Qm7OVdmpsZTZqPjuo+Q0MEDryH/Wlyki5MGwxSX6yoILCTeXkKocbGytuNibF8knH/MT1dOTELc1ZW2v2am12+zXVQaalOwF6I1fTIxsaMSWZ4mGVl6ucFC+RxrFhhBdteSUNFhXKXJSVkebm8kupqAjuVC0pNlbdnNXWsq2MkIg9vaEhfq6szcFFqKkdGzCvOyCDDYRdC8yjlIvBIwgf4nAeSiETIsjIXSszLU//IMzlg4x7kES+Ma17XiJfXHBoiBwbk5WVmcp951B5bf3U1XcH6Mqi0w1KE6r+iIrt3Fzk8rLloZOAcG2Nfn/oQ2EvGxak0xQqmHS9nb6/m39CQQes7yKws5uRoTni1dsPD1C+MV06RkBc4MmL5X88bCgbZ1BQFBDEUsnF5gWxuZnGx1z8r1PcdHSwp0ToA1pJFRXruujoC02RrK+vrjS2ltJTAywRuYUWFeeUGwPEAWAwEnNc2Pq62ievzYbK0lKtWyVNLTvaiETsJBKxEYZDd3SrHAfaqVjBkoJfRUU5Oqt+Hhrza0kGuWqX5qXKjaUVmKivVltFRdUR9vZ61tJTA97Um8UcoPfAQX6f4Dg4M/Nl6dh9oYwd0KKaekRENNRYWcsYMLRJPWzQ9nWQkwqVLteB8Pjpgh2e4TkCUWFqUuxy7iljp98pgZmezszPK5DVnjhaUh+4Lh+lY9dvaqLBIe7sWg1en19zMujpDSXoAgI4O/a2tjYyPJ9ClUF1xsWPwZ2Mj2d1NIOCB4BT+KSzk4sW0MM00Y2KiNpX5+UxPVzh2wQLK4I+MqNFpac6YMxRiXZ02hjlznG1hYaFtQKmp2k26utSW7m7HeJ+drWtEIrp0T482OscZ6TGC1NWxsTGa4gCmmZdnYbWGBgvRbXbsLx7HpsdCn5VFMhyO0nwlJMjADQ9r81dcmSwu5tCQDF53N8mSEl2rsZHAz/gapACQk0MGDLjR1ka+CETZUcrKyNFRof0AMiNDOaT+fvW5sWg3NlIP71GWWeOPWI4MCJA+H3Ny6KjGHBCqq8tCZLtJv98hijs76SiztsCULhITHVp1wQLqUOHzaewiEYegzMmJFlx7xDqTk+rHggIzWNXVmqRNTW4T94w2u7tlyY3ntbr6XX3uTbj2dhf+Y0YG2d6uOZKczMWLNW/i4zUvKiv1PIa9YThs452ezvh4Haaqq2WYTIdWi3V0VGH71lZ9OT1da8To25Yto0OB1tdrPIDNWqOFhVywIEqCUlFBJ5DsibZ6B6ueHuqw3NLi0vqrV2veuwOo8Z+ysJAcHtYBZHjYgT4Vlp8msN1Qu8cc886jj/4RwpiDgy5vfyrv4ODgX4zdB+nlDfz+/UGXx/H76eLtTuetrY1+vy34/n6XUHf5tP5+Z4BcJts4kTzCX46MaAMIBBSP9/DkVVX00CQ6Ae60ovS9BHY6Zg36/czMFGch29rsRHlUm2ZbG8vLhZCbnDTQSGamE9JSEe56sq4uqoxcUMDy8qgidyRCMhzmwIAWc2fnu9hE6utdX4TDdECDcJhkRQVzcsyIDA2prYGAO0lzZMQBJOT5/pge3RhwjPHxetbGRlp+Zg2BR4xtpIPABqt9vt2++wjz8hxIzxNg10Zq6FSGQo5BRLpktyp3VVjoOC2DQQFQ5MWvJUdH6fdbfiw/n9vtwNLdLYM3YwatfGEvWVWlnM3AAJmSwqVLjfoSUjnX2Gw27sp2xsbSeV/AXpWWGLXYfqjIeWSE5gXdL4MWG2tF+muNkKBdagkAgcoomXBCggxMQYF5bhPKbZnWIru7ndcEPMxOAyQtWqTnkZF6OQpOqanh2FiUOWdsTEwmhr1gc7PGqa9PyguZmVG1DOXjAnpQk/UAntKETEzUAWd0VLmrsTECHQJGmXK5z2flNLm5rKoS9J7NzWRZGWNiNKV7AUnsFBfrIJaaqvxoQQGZnc1VgMM77YYK/ImoZiEwzCPwCt1fZgQq4ufAgDzq1FQ3h72DK9PSuN3z0IeHNberqlQKFBtLvwGQYmMNnRwTQz+M37anRw/V1qZ1HxensgkPPGVw5/FxM7ie/s/YGJmfz85O8tpr/wjGbuvWaNnHKbyDW7f+xdh9kF7ewJ9/ftDJ1nhCrCwpcdy/PT3aUMfHo2hmRxJraEunPZKVRRYVRfXOgkEZrOXLndzNQUuQe6dED1nOmhoZ2tJSsrGREYjZw++n5E08NJxXktDQ4Nyhg7bIPRj68LBsTVsb5alUV7OzU5vUqlUWku3v1+ZSVsZwWKfUzs4owt6rQ+LAAEdG9HcPZs/ubrKhQR5Eezs5MOAYS7q7tfF59Fx9fRYR9RZ5c7PQemVlCmsWFqove3u1o3nWq6WF9PsZiZgHm5+v73sdZn3rRVvZ1cXRUXmRnZ36WFcXtakMDxPYrvBpSQmbm6MeyhHP+NTXk2NjjES0adXV6bMzZtCoxQ6QsbEyBMnJFvJ6mUELdwLV2jBN2cHj01y2TMwrzM4mly9ndrbmUihk3vbQEGtr7TCVlUWWlmpDLS01Srd1bAcoIM5GHjGwEwMBB1N3QJa0NNbVWRUJ4IxzQQHJ+Pio5zUwoIOBBz9MTib7+9nZaaTRVlPqhYI91L/bjG3M2dEhz8zzVkzdYmSEjppuYIDvKRk4AdUFhsw7Znd3FC3Z2srGRo1NbGw0wuchQ9PTDfATiZB+vxMvEEBmu6Ithpjt7XUlrm5tOA/SxGpXr9b0KC+nA5MZB7MDvXjSUx4oh4EAJycVvTBdYq3f9HQLUQYo8dbjUXLp/n6yp4eTk+rf4WGPaWkbq6s1djokDVjkZZ07NOfk/MXY/U96faCN3UGA9Pm0mWVkkNnZLiTJ+Hi9ExKignXp6TqtxcXZBD2mxZOby6Ii85Y8iZLMTDItTWGjykqjTzqmlRwbq1OkCVQyI0OrraCATElhYaFtMMGgDGd3N/PzDfGVm+sIk+vrSfb3s7lZoRCmpzs5GYdca21VGMsrgB0YiOZJLH8S9E62eXl6HkMpVlaqL7yTrhf+9KiTvILp4mKF644ALsTJtDQyLo5hwJFZu0Jyr0auokL9m5ERjRl5cke5uQZnDZOTk+qPykptHnl5ZHV19JRcVKT6Le9EXllJ5ufLaJunxNJS7Uz19a70qqyM2nmCQY6MaHirq2UwvTAocMAM3nGyqSkqO1NcLC+vtdUJg/b1UR3U3y9j29JC4Djj4+nyhd5u19Vlfbh8uSsVAY4ZEHTQkSUDx6VinpcXzR8WF8sge7JKFgMeGaGVNRzjMkAG1e9nZ6fNp5QUPW9TE9na6g50oRBNCTjikIaxsZorPT0kk5IclRWzs99zkPH7KSOTlCSv0QxCby8dmbVn7Dk0RMbEROdoIKB7xser32Jj1RijdWNKitMIZEuLnre7O6runZAgLy41lRwdVRvb26Nzqb8/Kr80NOSiIW6g29u1Br0614oKupqi5cv1GSMMZ1VV9KDmyU552pFeEbpXuV5TQ6ana6yMCs0hNfv7yZoarbmaGp6wdbPPDk6jgL5XVcXgL3/5/hu7bds0aKf4Dm7b9hdj90F6eQN/9dVBLf7SUvb2RveNigqtz5QUeTVz5kTBG6OjVhsUCDjZnORk84aCQZaX67Tm1Iwtid7bS7KoyCkbNDfr+kVFdIz7IyOMamd1d8t49veTra1Rkcru7ijhrFXl1tXRScIYcYNg3+ZNeQoA+fmWeysoIJuaXHgpL0/P2dgYPd0ODJBsaWFBgbzSpUsZ3ehrasj+flecHYnItpeU6DPz5jlBbC5dqjDfG4Du29BAx0jc06N+mZxUZxQWapdsaXFG6RhUZ3cEkmXxQs6rVtEBJBYt0ph56u2dnQb6sTyaz0enR8ehIf0DKaEPDFDtqaoiW1rkAaamWo5ur0Hjj/MuGPFwW5uFRHfxCMC6Os2PtzzPNT2dwHEndfQarMA9N5fATi5bpo8NDMgAehKCk5CETGcnHSlxba3kcAT0uFfcou3tnpgAly5Vt3V1Uf2WmqpnycjgggWay83N2kDT0+mAQSMjGlsmJEgmKWQHqVCIbW32dxM6ZXa2jLi57F1dVl6RmEgWFXFszNbD5CSHhjQ9/X6FQCsq9IyeF8u8PC5dqhILExZgVZUZ2+ZmemAW4JiFtoPkwADDYa2pmBjLM3d0yLCGwwRe9uQRtSZaWpierjFZulTfOwJTGfHyhF1dDhxWXe0JDO8WWbTVPSqHfZyxsa4Sg11dWieLF+u5CgqotWo6esuWebSj02qfMSZ5ArLZ2ZqfsbGW4jCl98ZGtSEcVnuqq9VnwcrK99/Y7dihvesU38EdO/5i7D5IL2/gVwGGftpGxsfzLai+ydNPGzPPwWm0JSZyE8SELu2zza5gWOGLAzxmf/cEIYEJfT8hQYamqkozv6mJvRAlmTtZlpVpQ/aYVQz44QEUy8tt066uJjAoD83vp99viz0SUX0OQDY0KFdg3gwDAfb2alP1+6kdJi+Pvb0qLN8OFUFvBOR1DgwQOMaQ/f4tqI5P+Y+jepa6OrKpSQYjPZ0H7TqTEAH1PvvZxL91X0+doLGRLCiQMcvLU6ipo0P9XFREQ5zIuDY2KqRVWKgLxcZy2PPM4+OdrtwaQAwfZWVkQoLCcaYq4enRBYO0cNEBAi/Qxd76++kRWGvD/RlZVaXQZVMTi4q8kOYjHqyOwAsycuXlBB7WwaS5me3tFgpdvjyaS7MCaE++obDQFDNCITY3e4jIl009/WUdXAB57MnJZGWlU1Cgz8f0dBnziBcSTEx06MqocsIasr7ei+ZqzE3xHHghWig/MqK25OeTPp/zhFhTo8OJeVUjI9Szh8NR3af+fs230lKuXq2uN6Cn2tTc7EApbW1U55pujykSkXl5bGoy9HB+PiMwZGpMjMbP85ZaW8m0NLa1aY4fsfcJQO3x0Lft7fLkTd7Jk8pavNju58lBTU6ShYUcGpJSwjHvQJWcrHmWmBjV7MvIUFF+WprmZnW1KP6GqHtnZGje9vaSJSUc9g4YdXVkVlbUM25q0rMEAhoPIw/fbuvrCIwOrbqawbfe+oux+x/0+kAbO0C5CubmRlGXeXmMjaUDHxgTEPv69HNqqp1kMzLI4mJPxEALw0I0wDBXrbKi1LIyAoNCjAEOeJedrft57O8DA6TjPQoGHUKRDQ1kXR3Hx+2E3NamNqekaOPp6tKi9SqAfT4Ce3Uaz8uLgm3MWwSmPTS7kuqFhczM1PouKIgqJrS3k6yoYGWl1nBZGbWB1NVpsbe0yDiFQo5NqaBA7+Ji9VVZmZVdpKYqLFlXF0U/Wmhy6VK+ZxOtqtJH/H4rPq6rk4EyYU3vPFBYqHsVFpIcGTEjcZT5+dpThoYoEV2/nrOiIkre3tNDMitLYdfGRseMwspKp7v3mo0Vk5PVl21tBB4RtVggIE/IaLVKSnSIMJF31zerVwvMwaws5Yu8gl7TdunuZhS7X1Cgjp6cJHNz7VAxQcbGRgFFpaWOTZ/d3SYDs5tjY/J0nbZhdTX9fvI/IXkbT4fRGe+yMjI5WW3t7nYSRsXFFm5tbCRDoSjisKeHK1bYODU2Oomj8XHNXY9pxhVOj40xHJbt9GhQu7upAW1sZDhMR0c2NGTeWnIyy8q8fNYu5uXpe5Y6Zl2drlFURPOedzI/36v/38vmZjvwZWQwErE+8ggEPF6yoSHHRdndrW7Iz6d56jt1bZN4suAH583T1Fi92pREVsnrs8ojekSi5eX6bF1dNDvB3FwyEnG0c319ijqMj9OlKrKzPfKDgJX6BMimJtbVkQ0Nf4Sc3VtvRfeLU3i/nwb4g/aaQZJ//Gq+9/d1+PBhnH322Qg+9RTWHcvF9W8sAy66CD8dvx59fcDDDwPr1gETE6oTTUgAvrHkTbyJC3FhwmH84omz8NXpnwMXXIBvPXEVxseBjAwVim/dCnzr2jdx1U0X4oYbVIR6xZ5f4oWEL2HhQqChQdf+m78BCgqA/fuBpiax73d3i+n+lhsPA3fcgc1Lf4pLtv0SM76cDra8BMTG4vqHv4DaWtW0fh+3Y8YPysGRI8DWrSh97nrcl/+spBnuuQev7zoDgO6XlgZclfIb4IYbgJoaoLYWV0z8Ci+tfhtvTp2H6WngyBEgGASuSXkb/fvOw6eSD+Cnq89BRob6YuZM4DPTz2JzwjW4ZP4BPNV3Dv4+4wD2Tp1jagciuJ87F+7/s2erLnfhQuAHPwBKS4FPfQoIh1XMfOaZIpofHFQba2uBf/kXIBQSg/zCherXxx7T5x9+GPjiF4E779Q9Dh3S3268UY+2axdw4eAvgSVL8NXbPoqEBOD7K+cBjY2Y8Q+fxfj4mQgGpfAwMaGi3qkpjd/5r/xShdEdHbh+3kasvfNVXHPHZXjsMY3rFQk7gdmzcffHPoa7Gxtx1m3fwOEHfwnccw+u8r2MF+55GZiexjtpV+CMqQPArl346o8uww03AH+f8KokAh57DN+duh3fuWkvXj90Li5OOIDba8/BlVcCX0h4Gfjc54ChIU26W29F7ls/xdNVLwHr1+PfQ/+B7920E5dcdz42L7kFry/9MWbOBC588HY8e/X3cU3DF4C0NHxp23fx8MPAGTs2o/bSS3HeKiIpSX0zPQ189cqd+NId5+Puu9XvcXEa26s+NwPfrya+c+WvgY4ObL7xh7hk/FnsvOAaHD2qovIdO3SNpUs1Fikp+v6DDwI/3vH3Gohdu3B46e3YuhVWaC+RDJ8P+NVjx/GPN85CbS1w000aw8cf13inpABXHH0W2LYN+OIX8dMnzkVfH/CL2zZrIs2fj9vvnIU77gDOmX0c70zPwuAgcMVbq4DJSXxh3S247Ta15+mngX8r12d+8hNgzhzgG0d/iC88/y1cfbWe5XuXr8WbC6/Htm3q+0d2fBL/mPBrYNcu7FzydZw/821gyxYcWPx51NRofm7bBnxv7g+x87pvYWpKhfjz52uOf2vuL/SQZ54JXHQRbr//fIyPi+AgJwe4Iu51vI6LccEFwKzpd4Bdu3Ag4WL4fMAZfb/G2xd8Budtexbf2XANfvADIHDLv+Hs738fwWAQZ5111vuz5+3e/Qdd6/Dhwzg7MfF9adMH7vWntran8vJOOYOWA1m6lHKzSkt1OkxIiHL8tbYqVFZZKfcgOZlMSHA5I/b0kC0tjI+3YufmZh3tzH3y+QzwUlCgOj4rIGVFRRT4Eg47Vn+n+m2J77o6nQK9ejFPyRrYzpER87hCIZ3Yu7q4YoXdr6xM7QkGdXRtbycDAY5ZuISNjezstBNwTIyjtXKwN69fSkvVF5mZ8j4nJz1RZh31PZG7qio1NC9P/dbQoGNzaSmB3UxOjtbR2eM6pne2tQnBFwjowh7xbFkZy8vV9Lw8PR9ravTF2Fg6lVn77D5YIXZ6Ohkbq/EpLFSouKeHoZB5yx0dVvqwUbD77m6yt5e1te8VH2VKikKKxcUEdpGwUoTGRgtpriYTE/mW97NH/Dwyov6pqKBIB47q921t7t+qKjqwRVcXrWZumhwY4IwZ6p9Ndt3dFrLNzqZTJq+qovclRz/lERfMmKH5s2iR2pCSYvPgXYS+hYWeqOy0PI+kJI2hqXvX1VF9a4kkv59yWzo6yHCY7e1Wlzo2JrCFx39p3/fyft7887wYVlUpgtLQ4BTb2dqqz8fHaw7GxUnotrRU41Faqrll9ZBjYzbHrbxgt81343JWH3nJ59FRLl0arQddseJdfVFQoKjD8uXKKRcV0amYj46qT9LTNeciEc1nY4wIhWyNWhiazc0CR+XlkdnZnLTxGhhgND/e0iJP24uQNDfrGva8lZV0NZbs6GDwBz94/z273bujsiun8A7u3v1n69l9oI0dcI9CFzExBAZVn5SYSEG9BwkEuHgxbWOctqT5AIHdZGoqx2yClpUpjBUCrEh0I8fHtVdItXqzDE9MDGtrFW5SDfMAgQMu5NferrBeTw8dqMQh0ywXQL+fVVW6biRCB9NnZqZDCQLruGKFQmh9fQpN1dfTwphPuSJZr1RBApW7KEHKvVy0yIxCVpYl6jcS2CnDNDIiFKSpqnd28l31f0GqTnCXcf4dJzCtvFxWlgtJeeEgD/6dlRU1hF6tVH29hcd6ehyD/IoV6gal83bSQzoyGDSx3ZUEnqL4STeQNTVMSYmWHnJykgwEdGiIiXGSLm1thr60gujxcRWML10qFv/MTFqN1gtkWpox5aw2g9fOGTPIeoj1v6nJDGZdHcvKpLDNuDiuXq2+Kiw01pP8fBYWGoOI5YBGDUQxYuFHYI3lh1/WcxYUkF1dOoQY+QFwnGxoYFmZHYYmJ8m8PN2joED56ORkcniYjY2yj6GQ0LOO5Lyri+np6m8r0ST9fi5dKpuRmUkHvVy2jI69x1OCAI4rpDc6ylWrLDw+Osr8fM11J49UXy8jXVGhe5iSRm0trf5uN1NTZV+A3VywQNfy9FHr6jRvNGeP2lybIGDqICMjrvSlrk7/jo9TByAvd9jbq1Dv0BBXrdIzi6VoJXNy9LHiYj33jBlqYm2t5mNKitZnU5Pmq5s3zc2OyccL4QO7yKwsDgzoO+GwxsfTCe7rU19rDIcJeH25wRnHP0oYc9++KBL7FN7BfftOqU0rVqxgUlISP/ShD/Gyyy7jCy+88N9+/vnnn+dll13GD33oQ1ywYAHvu+++//KZxx57jBdddBFnzZrFiy66iGvXrv292vT7vj7Qxu4pS3ADGxmxn4uKlPzeZCfG/R4QoqCAByFdqxfhFSWv1MrMzKSnXhwy0ABLS02delgrprRUm4t5fJGITu7b7T1sm+KYgTpYWMjiYssLVFcbEfJRrczERAJ7tfHU1xtryzFyYEBGNSODbGmR1+JBwJqatOFnZGiletLIwSAHIF21dgOjHAFs89nAI/Y7TzGbkQgF7jimTTQ7WxtNQwMnrX8YG8v9BlB5C9Dmb7LUnqI3fT7uhwA6HhCI8fFkVxfHvDYY87/rz9RUsrmZByES7v12wGAgwIMAO+33TElRH5aXa+z8fgeD6+6myw0WFNApOjA/34zlBsei79X9ezptb5lB88o5gHbl8EZGCGx26hWeQ8O0NC5aZF5pfLwOBklJZFwcgRcE7MjPlxfl9xPYZpvfUwLTAI5w2qu5TE/3iuKf4uOA5RLXqkC6u1tzZGiIoZDJGmVksLvb8tGFhRyDSkFmzGC0zrC3V9GMzEzuhxCsTgupoCDKQNLRQZaXqw887rjubo7ZGDY1aRMfG6Ob//T7Jc0UYpSmrKyMFRVRvNEJL7cYEyPAz9CQU6jfb+PsaRmyokKWIzNTHp1pQWZn09HoeUQDXv1nSgoNuTnggE9eqpSlpczOtkL0vDx9NxjUuCcnk2Njep7MTKGb8/NddcPkJKPlIxCYystz7oax1yxfzn02jiUldjhsaHCMQczK4ihEIt/dTTIlxamkBJ966v03dvv3u7rHU3kH9+//vdu0evVqxsTE8IEHHuDrr7/Of/3Xf+WZZ57JsbGx3/r5nTt38owzzuC//uu/8vXXX+cDDzzAmJgYPvbYY+4zL730Ek8//XR+73vf4xtvvMHvfe97nDlzJvv6+v7gvvp/e32gjV2wulohCCu29WqSnI7N0JAmveG1PXUMTwbFmwDDwzpxjoxQvzPNs2XL3qUJFwy6UqaBATp009iY9pLsbHlzBQVGNVRa6qRNgL1kZibDYR1Ok5N1ApXA42apHgwbOCIrS6utvZ1AUKEmK6plaipZVSVvtqpKRbqGNTeAXFQ0tr3d0Zo5BJ2JmXq/6+mJ6n6xt5ejo7aYh4fZ06OvSES2icAG1tfL+1uwQHZt0aKoNwscd8YlK0vdKwDGoBmAjWxu1qM1NUVr+j1otyeO6zrJZHQ85B4nJ7XhBwJkW5uDmzMU0riZSCuTk8mGBnULQKCaLCnRIaK8XMX46el8ywtpjoyYh3eMTU1WCJ2Xp3B4VxeB3c5z9/hLHe2a36+Hra/njBl65iO26XkkBMDPHCIY2Og2cfb2yqIGAi5UzJYWsqqKwI8da4xUEg6QjY1csSJam1lVJYO3aJHNx/p6MitLhs6LNQeDUr8Yi8pJeeUp3d2aTn4/o2UyJSWamFVVLnQaiUS/A2yz0O42MjvboXM96T5X8R8f7xCLhYVmVFJSonJNgQBZUqIDRX4+mZ7OExAq1StEZzAoY5ufz9pa807z8pxMEJubHbMRy8ujvHUdHfp5aEgHpKQk15edndTEi4mJhqXb5dl3djKKOktLI+vr2damfqus1HpyOkRlZVGZiZERjVtqqtOI9AzmHyWM+Scwdp/85Ce5dOnS9/wuJSWFd9xxx2/9/O23386UlJT3/O5//+//zYyMDPf/L33pS8zJyXnPZz73uc/xhhtu+J3b9fu+PtDGDqiR5xQT44iL5aVttlBY0Ihg97KkxAuvvExgkExJ4UGAy5Zps540D1Cf2cixMS1yv4Wh5s3TCbaujg6VpTDmUa5YofXpbSgeUnJ0lFopVVV0BU5DQ2JzAfRBL6aSnk4PAges5urVCsF5XH59fSSDQQLryJ4erl5tJ/DhYSpke5SiUppgcrKFxBISLHS7WWHM/n5ybExeU1oaV682JN3kJBcv9kIyEwSOMzVV/ZmYqJAgfb4oq4yRSK9aJdtSUUEyIKJd2yudJBAbG7UplpSwqEjtUqpqmMA0Fy/W/iPi7hUu5AccIMvKWFSkfbKujnrgyUkBXj0vMBBQLiJoNX319U4gNCdH4xcfT8vLPcxJC2sCq1lvIWrgGO8yz8bzHFlZyWXLBGn329/a2jRX2tpIlpc7pRiWlZG5uQqrhkLsgULUwGpjUHmKwIQexLxSVlfbMw+S/f0eHac8pPR0oVR9PgLH5f2OjjIcNrowb6P3+8nKSqukOM6iIvt7dzc5PKzIwdiYiwD6/Tq8OJRwe7vJK21WnsnyyR5BeFmZ63Jt6HV1jr5tZIRO2b6sjGRNDYGNzMvz0IkTjI3V/Kqr0/rwaMs8VLEYS7YTOKA+NVRtX58+74kaBwDHi8mKCkU8jLOyoID2DE3OQOfk6PvJyWriqlUaM4+1xcsqtLXRsRPU1dHlsqUoH2DEvL3ycrqDc1+f1rZHWq5n3UigyUgIupy23R8ljHnwoAbwFN/BgwcJgLt372YwGHTvqamp33rfcDjM008//b+EGG+55RZeddVVv/U7mZmZvOWWW97zu7Vr13LmzJk8fvw4STIxMZE//OEP3/OZH/7whzzvvPNOsYf+v18faGMX/Kd/EqXWyAiZnW2GahvZ3s6hITpNLjY2Rpk9YmPJ+noXxgZ2GbflZgIDyq20tGghtLcrlBEKkSUlMjimlzU6+i6ouJ3OKyoYZVMZGnKQZzHAW5isupoHAc6Zo2Zr4+/S6qyo0KaYnU2Gw/RbaBIYsBP/Uceq/4bnmfj9CsuNjekZ29rUhuZmR8c1Ph4lZ5+clN1NT2dU0b2jg4sX2yk/O5srVkRTJE1NFGAlLk597bFb2ObH3l5dIylJIceMDDpSyZIShqH6J2e1rDD5hIXwXOmHV/Xb0KDGVVXJ2nrxypYWegiVxYvpitiBe8meHoYBB/GPWChv0SKSo6Mat+Zmsr8/uqlWV7twnpVN8i4LuQGPcNjCuJ4Ar3K3KwgEOG+eDPmCBbT837flfRqrSHW1HWaKihwjS2qq8aNCeeJVq6yso6pK3lhSEk94YU+rtyspIdnVxUlvDjQ2OtXynh6S1dWsrX0XAMgLNxolmwPvGJ0a09IcYw5bWhQ1iEQ0fwxM5CrFk5PNe54gJyddGz0+tcWLPaqvYxqvtjYZ15ISjc/IiHhXTZlEhn01gQDZ0cFlyzQHSko09vHx1h8tLVQOert9Z8JbqDKUdXVkXBwLC83LHRhge7umPRAge3psve1iZ6eHgVH+nklJBI7ZPrFdz++xokQinJykM6A6RO7W4TIzk9UKEBDY4PKbknYPOitZVkanvsKSEpsz76+xO3gw+IfYOh486DkK733fddddv/W+fr+fANjb2/ue3y9btowXXnjhb/1OcnIyly1b9p7f9Zpo7N69e0mSMTExXLVq1Xs+s2rVKs6aNesUe+j/+/XBNnazZ/NxqD7qhOVjgM1a+d4mFwhotyovJzMzlVMw5pSSEp38tKi/Q+DHCmdYuI81NYyJMRBCXp5O3W1tUUaUYFCLPz+ffqjY21Fupad7e7sR7W7XSTU5mWMAe3vfHep7RC5CTAyBaXJ0VE2AiqwLCmjIwoBOosuX8zkITMPR0ai8Q26uDKV5YQ6oYuEaL02Tk2MbS16eY3YvKiLZ388AxH84Pk59eXTU5SJfNI+QMTHa+DIzyYICDkPF7A9BudHtZqSZns5+iLB3v/W7h8Q4BjgW/aVLqU2srExtKigga2pUIJ+dTUdMmJtrzCgbhNz0yIRrahgArLB7gC8C1q+b5YG0t2tDbm5WaLC3lxwdlSE3XsTubrGG3GWhzzaAdYCj8uo3I+iFwoF2oRFbWwlMcD1U87dsmYaiEcp3eiKjwHYxqFjeCzhAhsOOOIWZmXwU4PAwXR1cRQXJpiYT4b1VB4jiYnJ4WPPPxq6720AzHrn56Kht1jv13ImJijLYd4H7yeRkF6ZjVxdDgAzm8DDZ1MQR5wFvk0EQqkSHjthYV9c5Z44pw+fmyohmZDA1lY6Vh7Gx9vzHCKxRiL+yUrJBXp6ruZnALhnk7GyKSHzAQEtdZGsr15th9PLIixebIodxmPb2GouM9RtwlMuWeeC0Lq1hgGVlNKHnYzJKxcVqaGIiQyENV2EhjTlpl9ZeYiJjYjxWls06ABcXayyLi3WIiY939HzA/WR9Pdf8EYzd/v3BPySKaeT5v7tn5xm7l1566T2/r6mp4Sc+8Ynf+p3k5GR+73vfe8/vNmzYQADct28fSRm7Rx555D2faWlp4Yc+9KFT7aL/z9cH2tj90z8FCWxgJGJx9ZIShgB5W11dOlm3tGhBhUJmDPfqRGin8CMQIONFGHOKVy3a36/Ts2XC6+vpoNFjY4xK85jsy5w5JJua7NQYFJODp5UzMsI3IICIwqqDdNauo4OrLJzqqSN4no4AF9/nQTPo+82gqvB9raNX8uptPWIIp/7s8Qt6xruxUSEqk6hWrn+aq1aZlM3wsDajzEytenPvhJp7mcALLCqKPtbixfqIwp+DBJrs+TYS2GjGZ609xzTT080DCYcZE2ObutVfeKUZnZ22ARvbf3s7nXbe0qX6jIeQBY4xCIEjUlIoIm/PCyor44DnDfT3EziueeF5PyMjngwbPSE/qadXm8H7NoGfufIO4Nush7GUZGbKWBcWko2NXG+GsKDA+raxkUCRo6wbGKApKTRJKshzH9rbNddKSijk61Nkb6825oEBgR9GxZbygHmrqam6h5ydaZc3ZlGRU4liuwyx3zzFnh4dbubNI9nWxmHAcXP29Og7mZnUBt7aan3/Ahkby0025wTimTBmF+NjNX0+YMJpBublkU7CPSaGBQWapkMA7zPP1kPfALvIzEwJCEAglr4+sskOT/2Q8ry8trVkfr55ey+/R6aKBQVkRYXC85YuCEKAsX0wpqWsLPW9tWE/BNqyoI3WS1eXI9f2+8k3IKBVVpbWZcDatcXGoqvLPaY81IoKFhaS3YB5lz/7H2vsftc2/SWM+Sd+vTt+vR/QTtjURGAb4+NdVJPAMWZm2gbg4fQrKgTQCAQsZPICvRIC5RGO6mTeSHJykp2dZsgGFEaKROi07jzPzUu4l5QwimKzXIbHyQnsdQSzYVuU3d2K/wMP6wSenMz8fLW3qUneQb9t7CpJCMqbqK62DXbaEeh2djpeaAdDDIW0N1dUOHIRB0Hu7aVuYiEoYLvzJIAgU1NlzPLytBE9bQvdownzqKgiEZLp6fR7fy8tJePjddrv6OBG2yQmve8uXy4DY8oL1dXaY3t66Fjz2dUllgzAgW/Y3a0HaGkh0MSVkGQMcIDs6uIJ27jS061cYHSUQDtZX8+uLkY3+I4OcnJShyNjd8nPJ1lZyWGAbWbo7oK4N736xdcAAnc6bUCFxwJWgvIyG6HcXiikufIT81wPQnkfYAVbATIhweFAUlI0/p2dJGtqJIHj95O9vRwbM+86HGaTeZuORmZkRD/n5ZHBoM2v3VECa6sDATZqnJqb1a7cXKNSe4HMz2djow5uXV0ky8qUS7SazhE7NACPOKHb/RDKV5qLKleYMYP0LBqwwTzd9dY/T7k6FJUD/QuBdWRVlYiqMzIIHLDDxHZFYnJzqShLNRVGXENmZ7PNvF7a4dQrSRkf99bQbgIryI4OW8frqbzwGgLfUT6/sZHKEe6lcvqPqB8rKpynr1DlUcdjDewmm5QPlJfYQaBLHm51tdZTRUVUWLe1lcDPyNZWPvZH8Oz27Qv+IZUH3Lfv988jfvKTn2Rpael7fnfRRRf9twCViy666D2/W7p06X8BqOTm5r7nMzk5OX8BqPyfL2/gJyGQQl8fSZ/PBDO36cRtxMyhELWpL18u4lvAKSVXVmq/kDdSSeBenf7HxhwHY0yMbUZFRdp0jbZrcpJyOYJBsqaGYRgvX2ysi416YVKBWSa0WHU0dfyLOgGu17V8PuWZxsbU7thYvgWThYmP18nUMNxrAEd8y6IiOn2YjAxtCG1tjhibzc3RPGQ4zLw8A5UoTkV2dysENTrKgxAYo6eH+nIgoOvHxHCTZ8w89YiSErKykvvNoK2BQov7ABmqjAwGYKUfhorzuC73mzHk2Jja0tER1RRMTSWLigRMyMvThllV5YoZgZfV7rIyHTaqq7nFnaYnnBBrbKzRZ7W06IGXL496TRUVyrGkpZFdXVy2TCGyOghBuR4KaXo0cEJTvuylwwiskddYU8MZM+QFeCoDBQUCtvSY0WVMDOfNE6iGpaVGKzXh1BoyM0lWVXENwNHRaJvLyki2tlpo7Dtqa3Gxo/NiQYGr/Vq9mu6Q5aGRgd2u8DoUovo+ECBwP5mdzcJCA8RYLruykk4C6ghgtZcv65AYiWhcysvJoiJmZkYj5mEofF1bSzI9XWUEk5Mam9RUR2wNvKCceFmZyMrtIMDqasbEWMQkN9cOoJtdvo0jIxyx6AcTElzBd20tXXH7+LiRpDc1sapKB5H6em+5DXDZMuVyi4vpQGvAZi1QT6VjcjIqOlxXR2BQue3UVCYnayoCA1qjWVmOB/Y124sKCmie7vfJsrI/ilL57t3BP6SmnLt3//7Gzis9aGpq4uuvv85bb72VZ555Jnft2kWSvOOOO1hUVOQ+75UelJeX8/XXX2dTU9N/KT3o7e3l6aefztraWr7xxhusra39S+nBb3tF0ZhPy8BkZUVDCcnJBA5wwYIoB+y8efJSFi/WxuJIkFNTHRSeKSlkUhJXr9aibG/X9STt00HgON8AXOGuJ9mzaJEO4yMjdDyTHBpymAB2dWmTGhoS+GJ4mKOj4m5kIEAWF8twegJ41dUE1jgmlZERGUsvFAusJIeHZYC7u+2kHuCCBdHShxUr6Kjas7OjZQIODme5r3CYTjgsNVXYl7w8PZchwllYKNZ9AlFodyjkShkKCgxh19pKTk6++0/ypAoKnCyLx74/OekhY6eZlaXvazPcSQ9AkJhIMjXVADxBx97h9xs6DkYa3dDgdOhcXjUSYRhCYQ5B8j6vWbgtAhjabiWfcxv6bq6BgUMiEfVtXh4HBgRaeQMqffCQq55ahFNcMJLGEBQ29QN2wt9mG95GGQ2fz0nrcGzMeCEl9zQ6aqjHUIghSEGdaWnKy8bGcmAgSngzPExN5IYGB4IpKND4O9BUVZVCnqGQPGlT125utvHq6pLhHR7mokU2f2tqHKKYlZVu6FzdnkkTOWCJqXS0t9M8qgOmGnCUQFAAFdPXS0nRuHnwf+Aos7O9EPhuGZimJuchrVihdVZfT9UQFhc7pp9QiK6gPCvLK71b54mJc948L9R/nMABlpXJqHvixqmpOsw5hpSaGqeusXgxLVcY0DoZGXHF5zk5WocLFuiePT3qfm/uKkIScGtkzZr3H435pzB2pIrKP/7xj3PWrFm87LLL2NPT4/72ta99jZ/+9Kff8/nnn3+eixYt4qxZs5iUlPRbi8rXrFnDT3ziE4yJiWFKSgrb2tpOqW9+19fM95V77P/Pr7i4KzB/vn5etw647TYADz6IwvvnYP588QV6744OYMMG0U4eOgTgQx8CFi7Enj3A0aMA8vOBPXsQCAAFBZlISxPX30cvbUBOx+dRVASk7KjGYzeJPs/73sKF4ho8eBAInH0GpqaAzbgEt9x4GJt3nYXzDh0CVq0C+vqA4WEgORnzl1yM0wCRHT74IM7Z8aYuMj0NHDqEefO+iD17gJkZGRgf172+8co38HrCzxAT8xWg7+e4+isXA3uScP5fz0B2NvHXfw1MTgJ/+7fiDVz7ynm4fscOzJ4NfPvbwMgIgJtuwtt7TsN5990H7N+P8XFgYuI0xC38Au64Q3yTUBdicFAcmKEQcH5ioog309JEJNjXB8yciWenrsLVV4vzEs8fBXw+nOE7iWeeOQ1XX63+w7FLcWDJ9Tjn/vvR2gosqj0Hzzxmf8Ppjq/w6quBlSsXID8fuP9+4PnnAfRdi5wlwL33zsKSJQC++BWc27cWN954PbAuFRdv2QJkZwO1tbhw1y5gagqzXnkJWL0aszIycHMucMmGbMQPxgD7gezsj+C06SzccAOwcmU+ro6Lw/z5wNVXz8cVPwAuzAWwYwfmz78QOHQIlyXsxRkAVgO4e2ICR4+eg5e2iWsUSUnY+gRw2Q05epg77sAZAL665G28AwAnTqC4+BPIeQgAPgbgTKCgAIsWaTwxNYVDh4A5cy7DZQuP49nnZ+Gavu8CaWk4o7wcSa8ASMtEzlwAEwkAgAuPvoo7f3QZfnntL0RgmpuLt2++GR0Zv8Arr2jMvvxl4OniXwLXXouHrwNw3XX4TkcHlt97MVJ3iVfz+PzzcehDn0NcWhp+lvZT+HxaI6iowGWrf4HLllwOvPY3uPsrwMVzf4PDvo8Czw8C116LjARgZkEBbr4ZwBRw/tTruPuxi/GFLXcC2IjpaWDx4jOxceNh7NsHICEBO9YBbwyfxNonTsPs2cD06aejpISYP19tvuGG+Vi6FMB4EnDddfjmhg0oveujuC/+O0Da1VFizoYGYGoKq1drDd98s6biwoXAvHmfxfQ0cPHffhhL8o/hs58FHnssBmlpc3DHHcCsowdw6NA5WLJE/K1XTf8aP/rRZ3Dxko8CNTXIzgaWL9e1nn8eePDBjzoC1sHBC/HdV/4e15ffCmAm7rzzM9i/H7hq7uvY9/mLsX8/MDW1AJh4DtnZHwUyM/HS4BnIyDj8B+5w//XlbRN/yPdP5fXNb34T3/zmN3/r3x5++OH/8rtPf/rTePXVV//ba37xi1/EF7/4xVNr0Km8/qim9I/0cjm7887jEcBpzYlpfqeOcJOTrvbXkwthUZEg4ibW6ulAKk7fQWCtcmI1NU5w0mnfNTbqGnZE6u2lTrvmjTE+3hWFD1iIrqpKnpKAbLscKGW7hSYLCjzJnUd0/cpK5VPKylTTZmFa4LjlqgJONHU3hJrs7aWOv9XV8iAt98fKSmZmWg5vZIQMBlldHVUinzPHvpeURDY2OtquY5Amm9E0Km+UnEzGxKjeq7hY9yot1XG9spJhwMmcsLLScUEyO5tveR5YcnJUmmFsTIwXjY1Rcc6ODl2zvNxJzL8FQy+OjurfggLzIII6UpeXq2/8/vdA5U8AFr7aSy5frvBXbi6Znq6QsLlSq1eTjI9nWZmcCg8UAXybr8FYcYyQ4C6orrOtzaOTCjjvFVgpoFNbG1esMBV7C+OytNTqI3c7DsixMXkkHBoig0EmJ8t73ud5TKWlXLpUHgabmsiEBJePYkIC6+vluRzx2hcIuAgH6+rkPdXXy5vPzZUX19hI5uU5Pk2WlcnD9EAZWVmsqpIXFw4r5FpdbaUFnvp5aiq7uxUOjI/XEMTGkh7aaNkykvY9jowIsJObayjjowQedkXmfr+u48H4gRf0fIEAgS5GVcNfVig+Pl4Am+xsBqEaysJCrcH4eAUosrLkZXZ2ahlUVtLo/zY4JpucHLV78WK1PRikE21dtSqqJakwZpfTBASmjULvqMZldFReYW+vQielpfL8q6uVSikp4et/hDDmjh3BP0Thhzt2vH/e5gft9YE2dg88oE1kdNSolQz8MTzMaLiurs7jk+WKFQo59PSQbG9XyA1CbXn0WExLcywPq1bR6dd5aEyvsJSjow46v2qVoeRaW21xCTTA0lKrTPdzFHCSJIBdqKWFHBpiJ4T4yslR2HR4mKay/Z8Evs8h20BGIfVqV7dXXMxIRAbJ79dC92quRkepB21tVezF05rzWJwrK7lihezVyIjlXUz4kvn5andDgyX111NIxUEWFUXDpQUFurTCPhsIPGUIzAkCO41ZZSW9uqnCQgOD9PZy8WIL85patFfsPDSk/VdF2U0KuQ0Ps6nJjEi7F1reSGAzt0NoPQ+AQIBeAf2Q5Xa0Ae2U4fbQqSa11NlJ0uczxN8KAo9YsfmdBF5mUxMNxVvDu2DaawkJjmqN6el8GiBwrzbj1lYrLbjdyh8OkD099pn/1ObpycibTqEYVI5rXjQ0qI/q6hz3JNDE52wOVFSQ9Ps5OakQYG+v+ofJyVy1KlpP1dZGMinJhZlHR+kK+BkbqzzhyAgZiXB83EieMzIcOQCwUXyteDfN3F5XfxYByKoqRuxgUVlJp7UXhkoUjpkxKygQ/dYDABkToz4vK1M6wecjx8b4muVHly0jn7ZDRwiiwVMOrsMON9M67KSlkRkZWqtZWWR+PkdhWnJZWULLJidHyQeysvSMsbFOw8dju0lPV1iU9fXqg8RErROfjycsF8e0NFeCcwRwe4qBabVmGxrY0yPGH4Xfe/5i7P4HvT7Qxi64bBnHxuhyE7vNs2BNDenz8YgtGHZ0aJF7ebOyMmZlaU4Pw7gwDfjxBqANsaXFMU6wv1+brtVRNTdbHsOTQfbEs+Ljtfs0NZGtrVrUgYBWU1kZgd2sq3M1v1oteXlkfj5nzLDcoUf1NDbm8ldDlgtiTQ2HhqJoUyYlRTXVCgudRp+O3xF5a8nJamNsrDbikRHW15vB7uggg1YmUVgY9do8BYWEBAdcWLrUDENlpZ6pu5tOlNMAE3199gz9/ervcJh9fe9CiRpps4OIt7eTxcWCtnvI0JISl/Bra6PTfevt1b1XrybZ2soZM/RYzwGODb+6WpfJy7N2BAIaP49NxKM8MW+xsFB9yI4OM8wSyGV+vsvrcHLSsW2cgEArm8wD22Je6wnAareUgzQn3alYsLGRrK62Iux2hswz2W7jmpWlca+qsvnmKWi0t5PZ2fKevLoXyy9VVzMqXFhWJk86HCaTk2UQh4cZDtOp2bOnR3MlEHC5PxYW6hplZU6s2BvWnh7rL8vjeSQKDARIvz+q4jE25tDJjImJ1sCUl8vg5Oc7cV0mJ5Px8Y6BhsGgYynxDj2rVzNqrHp6yKEhl28vKdHlw2G62khOTmptJCVFozzNzVER5YYGsrhYYCcxRusiRnlUX299ZMLAo6PWloYGMhAQkGp4mN3d1idWp1BXR5c3d7W81uceO9Ell7z/Obtt24L0+3nK723b/nyN3Wm/T8jzvvvuwyWXXIKzzjoLZ511FhYvXoynn3763SFR3H333Tj33HPx4Q9/GEuWLMHw8PB7rhEOh1FWVoa5c+fizDPPxBe+8AXs2bPn1GKwgQDOe2UttmzZA/T14RAg4bKBAfRNTeElAFsBoL4epz3dqQD/2Bhw//0YHAR2796CVwH0ARJFm57GTkBJlfZ2nDv+KtrbAcyeja9edxjIyMDNNwNfzXgTX84/jh1HjmBi926Mr1kD3H03nt+/X3pgl18O7NqlPEhcHHZs2qRkAEbwrbRfIyFBebUDcefj8JNPAocOgezG1698E/D5sLZjlpIZOB1JScAOAF+dvRaYNw+7dsHlZzA+js/s+jnwk58A69fjeF8fph96CHjjDfRvOg0zZwJvb9+Obbt3Y/ORI7ppXBx27FB+D/X1wMQEHnwQOPzoo0BLC/DYY5h+8klMvfgiBsfHseHIESxdClRWAn9/5WEc/c//lJBZQ4ME6zo6gGeewaw1q/CpmFfx9Q+tAp55Bqfd833gK1/Bp2JexRmDL+GsB38IPPwwrp/4GfYC+t4TTwBPP41ztz4LdHTg5KZNmH7gASUN/+M/cP2SA8CNN+KxxzQ8x//zPxGJAGhowNVXK4V4FABuvhnfnPtLPPywmvT888DXM14HZs5EbCyADRuU2z16FJiawnenbgcGB5U3PHQIiIlBdjYwb95HMXs2gIkJHD2q67/jU46urw+YmZCAawF0QP3/NoB3AIwDuO46AOjG+vVvoaVF7cXMmfjbv9U44brrcOONALAHDwN45plXsQ2aFuvXbwF278amTRoSTE/jvOmdwOmn46W7n8XVV9ucvOMOoL8fSUlK2WHfPj1wUhLeAfBC3ywc374dKSnA3riLMeu5Tnxs5AUlqebPR0ICgH/4B1w4cyeu2PozPfvs2br2v/4rcPPNSEmRftvs2ZDQYGMjLvO9jvO3/gqfCv1aCdXHH0dsrDQd9848D2hpwT8m/BpvnzihL+bkAI8/jq0ADj/+uBJFJl64Z/9+XI+1ylc/9hi2wu41fz7Q04Mvx/8a76xfr3V4993AunVISQG+8hUt7UuOvoRZLT/H0aPApk0Atm3Tc/n92APgioOdEkz87Gcx/ZOfSHjRu94//zOeB/DOBZfoITdswC1/3YmPPbYC6OjAoUPA+fOP4/Wp85Vfr63FNgD4/OfxmT2/wOWXQ7nDf/kXxMVBeeQ9e4DnntPcSknBrKMHgNFRfDn4M+zc+XvsZb/jy8vZ/SHvP9vX72MZf/WrX7Gzs5MjIyMcGRnhv//7vzMmJoZbt24lSdbW1jI2NpZtbW3csmULv/zlL3PevHk8fPiwu8bSpUv5V3/1V3zuuef46quvMisri5deeimnp6d/53ZE0ZivE3iKTEpy5MMsKmJ8vA6ZOTnygBYsUJhCyLuVBDYzBMHl29pMusNyTkuX6rPV1RYKguDj7e2GUvP75Yl0dTE11WNf2UZgpYUo19ErvvYUCxw9Vny8UxP38mydnVG9PE9BvadH91H90LEoy4bpdU1OWhH16Cg7O6PsXAo1DhOYYFOTQkcpKbRcwzEyElG4xfS6gN1RyrGREUMpNjluTyOWYE7OuzkAByg5oeME9trv19v7Z+bh3E/gXsvTrLfv7SJwjHPm0OjZVIC+dKn6UrDunQR2Gp9n0PpVnoQO5dvpSRp0dtKxjSh0PEg/BPcvLlb/7rewb1eXDvWFhdT3TWZJPKQvON42QdLbecz6DVjj8mpAgExOdhyrd1l4LTWVZGWlI5o+YflKtX03BwY0NkxNVai1ooIxMeQDgMKeo6N8EnB9yezsqOdvRd/FxTSljiCBCXlT/f2cM0feVn09neabz0eX+2JSEsvLtRZ6elwql/u88G44bHm5XfRqziIRkr29gtz39JB5efKWJicJ7GVVleV7rcTmhLW9pIQu58XiYlZUePno1XrutDR6RbCVlbRi+ZdZVibPf8TWYnEx5Zq3tJDLl2ttVFUxP1+esOjZNiqKER8vJGhKivK+4bDWrCfJEAopQWchXkD1m0xLk8eZnMxly+h4YdnYqElvlHbHbP4Aw1rLiYn6t6GBjEQYich5dDSDy5er3CI/n5mZ5LXXvv+e3datQY6N8ZTfW7f++Xp2f3AYc86cOXzwwQd58uRJJiQksLa21v1tamqKZ599Nu+//36S5KFDhxgTE8PVq1e7z/j9fp522ml85plnfud7ujDm1VdbTuNlcVF6Ycz0dPZChdAvmpFxoQtjV1AR6gBboeJkj2Wk1eL7XrH1qlXUgrHQot9PMhxmJEL2QmwKk4CjxmJhoVZAT48LuQQtbAccdRBzD1wSAoxBY4JdXZbHmpy0BPluLlumGi4X1gqFODSkxekHtCvGxDBo7QhBsHePHHg3RK/0lhfGiURYXEynS8ZwWLDvuDiFc5OSuBuC278GFYp7Gmd9fdQm19amfGRcnHZQywsGg1YU7nFmVlcrqWFMM155Qq8Zd8c2bWSdAUD5nrExMj9f4aWCAm2AoRDp86nYPyHBGeqNlmscH4+WOAIH9Dm/Xw0KBLhsmfraOJLJ7m4WFpqigt/P8vLooUicmwE2N6vLvJwXs7O5BZIiqqqSwaPP52oggXYCu7lokeUmh4e1Gff3k11dBpF/hE9DvKZ1bjPdTubmMjVV3cmKCifk4enNsaFBv0hJYUWFbc5ZWcpLV1aKiqy9nfsRLQtwlDpdXdGwuuWg2dqqtjc1aRPPzSWHh1lWJsM5PKy+mYQK+zk66spKWVXFYPBdc9WM8gig++Xmch+MkSguznHCMj6evZab8wSS90GF+KOjAqx0dmq99HtzpKbmXUX8R9UAK7lpa1P/ZGZqjTznhTFrasiCAuXg09PJuDiFu7OzVfvY0eGo9bq6qD7IyGBXl42/Fc6zt1fPkJvr+HCZkcEIVIuan0+Xt2dXlxO5Ddmc0h7z/hq7wcEgR0d5yu/BwT9fYzeDJE/FI4xEIlizZg2+9rWv4bXXXoPP58Nf//Vf49VXX8WiRYvc5/7hH/4BcXFxaG5uxq9//Wt89rOfxYEDBzBnzhz3mUsvvRTXXXcdqqurf+u9wuEwwuGw+//hw4eRmJiIYG8vztqxAz89+lXccANwzs3/CCQkCJN8553AxIT89scew9tHz8Hs2cA5W18AxsfxyPSX0NEBPPL4h4Hycry99Hs4b/YBICkJ/37zYXzv5r346RPn4ps3HMDXbzsHaWnALYNfx78n/BwZGYpMfWPqx4rBbNsGnH22Qh9/93fYm/8vOPfub6D1sz/Dhz8MfKHhGuArX8GMr+WB7S/i5xNfwNcnvo9fX347PjPxS2DPHpzf8C3srP0l8MwzuHDDz/HmK4dxy51nYXwc+OGaGZjf0gL09uKSDT/FDTcAS5cC54y/Hr2/V1+RkKAQzQUX4JIbL8PmG3+okNG2bcAFFwApKVh+7BaUlADn3PENhZyuu061G3Fx+tx11ylO19cH9PXhzdq1mD0bOPfB7yo+93d/B8THK3yTna3vTU0BW7YAixcr3rR7t8o5vLjJxITF3qA6g/vvx86kz+D88ZfwetwVuDjlJPCf/wkkJ+sZ+vqAG24AtmzBm8mfx7ZtwBfu/3v03/UUkpOBEyeA0VFg9t/NwCWtrcD8+Xj26BXYsQO49lrgvOd/gTczvorHHwf+bcb38fYNt+O8ue8opHfrrcCOHWh965P4cuv1wKFDeL3h18jIAA4/+Evg0CH8+oJv4DMblwGpqUBODn7YMAvfWv1JvLppE94B8M3/H3v/HxZ3eaWP4zca7GhDRA1KbLDEDS71I1lipRJXVGxwk26w4koVFStWUmjFihWbcYMRl1hwgxUL25CKFQWFKtFJIToa1IkZAzGjIXE0mBAzIgk0IWZipmQSxvvzxznPM/Gzu993m02/7/Wqc11zhcDM6/W8nl/nOefc577TiM3bTsYDhw7hJwA+6iVqa6XrL7pIwpOz2u/Dh7c+hPNKrgSefx4f7j0df//3hxDEyZgaSxx2TMG5Uw9g0iTg0UeB7809jH0HT0JrK3DnGW1Adzdw111Y+cl3MHMmMGvTU8CJJ2Lf/JsQHw+c8N5mGdMHHgBefhmHN27GSbffgqfmPoVbrvgYV956Dl5r3SV9edFF+Bjn4Jz4Azg3fQp2dL0v4/HqqwLt37oVOHQIny97BF1dwNULPseBgyfA4ZCvX3opcMInHwPLlgHXXYdXDl2GiQl53vP3vyXjvGkTMH06Ns+8FrN2rpIvrlsH3HUXRv/xWpzV9oiEK5OT5d/t24Ef/hAfuj/C9OnAKTvfl4W1f7/87eab8fHE2XjvPbn/Sy8B139rM7B/P145dBk++UTCmxs3ApccfEXi1yUleG37Ofj614GLh1diR/q1OPfQ+8CPfgSUlgJdXVh96+9tBc3C1LVy8SefxDvptyE5WaK3C6/4MBqSvecerIq/Bfv3y/1O2Pq+tO+KK6TfNm0CJk3Cqqm34eoTu2XOTJoE/6eTccEFpyIYDGLKlCnHss1+Yc879dRT4fMFMXnysV/r4MED+Pa3j0+bvnSvv9Q6bt68mV//+td54okn8tRTT2V3dzfJKKv18PDwFz5fXFzMq666iuR/z2qdk5PDhQsX/rf3XLJkiYYtv/jOygoaLlwJJ+Xl0QeFPptEudPJ5mYJQRYUyIGysZHqVoXEO0pJiQqwpqaKJ+H3C8ggIYHt7aoSUFv7RYCJxgaGhxUlV1bGkhIJixhNOdbWWoFHc6gG/BJK0bjNmxAm/JoaQVzGxPAokdVl3KbPNKxhHAmdbCIzMjg2JqdRgy7v7BRH1O9nNHEeCsnpfP582kx7fj4HBqJ4ECN8mZOjfeP1ymdbWw2HtgB6/FHF6aYmeR5z8o6Jkb+lpETJNqZNE4/L4F5aWkg6nZw2TRkwwmGyq4vt7dJd9fWWK5qpqRbbId7n4KB4bMnJzMmR4f0DhBszJ4dW5gIISoOzsjg2Jrfo7NR719ezokIpspxOCX/pTYUPc69SsW2QcSgrU+/qab6kYBQLhEpI4CgMebR4jz4fFTXoZmHhUUCK3Fw6HOqRmZoQp1PCXsGgFleLazw8rMwm8+ezuFic3wCEFcb2md8vbTce81EesM9HqwtoqOfGxmT+B4Myj03huVE0qKoimZHBgQEZ2+xseQ5T0M6uLubliaNueV9VkDcnh9ajKimhXGx01Cp9l5eTzM5mHwQM1ttL0u2WkGdBQVRRQaVxtkGR0VlZEm0IhSw7SmOjer9OJ9nVJfd1ucj+foaB6LrLzZXnU75UOhzMz6dFkTInxwq59vfLOIVClPBpUxN9PunzjwBZ20qPx7g4cv58i+T1eGRvKCkh2dEhKl4Q4JGUMx1fz87nC1oZvWN5+3x/u57dX2zswuEwt23bxrfffpuLFi3i1KlT6ff7/5OEg3ndfvvt/Kd/+ieS/72xmzt3Ln/84x//t/c8dOjQFxi6h4Y0PPDppxK+GRy08O05c0gGg4brmM3NGm6prbU1agyFrHbYaadJLm/GDCtWIMZQ1QXKypRAt6kpqord2clAIKpawLIyMjY2GrLMyyODQRYUKGqzq4uG5PczqLK34TEcHSWwgqyttXp6RiyzRUOsCQnU0N1WYZRwOhnSzxqCw0iE0RVbVWXr5Aw3Z0+P/Gw+4vNRNqzcXJsDHByU3+XnS7tbWqQdzwKs17Awk5Ik9GfCOxo6e9X8vaiIRzS8y4oKPq3GodtsMpWVlgvSoNcGBkh6vfJ7c0jx+YTANycnKtCrbCGAn7+D0JOlpJDMzeVu3URjY7X+rKiIwHIyO9uWmBQUkMzPp8sVVZDn8LAYoPnzuQ2wpM5NGsplXh6Zl8fPIOUFqp/L006T+SJ5qVEJacbGCupzbExC6oEAB2G07aotX2Zvrxieigo5HBQUkMzL4x7gC0aIHg/dbnIpQKA9iig02lWpqaTHo7V+4xwbU6NTWclAQHPDVVVkfLwcElTqIyZG5lN3t8yJ7m7JT6WkUAxYbS0HAM2djtqYu0fbf0QPXW635iOzs5WA+7CG659mUdFRoda6Ogpx98MEhsiEBGGIycjgnDlG+WOt5d+UOrv1Ub2/nBw+qwZkPWAVGlJSZP1Ixck+Al16aNlB4HX9vptAu+1jyduv189skD6MiyNra+l0GtmibWxvl2HIyiKZmcmlSw1TynrZD/r7ZU8ZGyNra010VQ9GO8j6en6I419n19cXpN/PY3739X1l7I759d3vfpcLFy7k4OAgAfCdd975wt+vvvpq3nLLLSTJnp4eAuC+ffu+8JlZs2bx/vvv/7PvGQWoeFhfL3U5kmj/udZLbSNwF4ESCiClnd3dhtvuIIHHuA3C3yhAil9KHL+lhUJCO8qcHOUozMggcFhqbYqL2d4ua18W2M8pYIwhBYisZVqaGI2REdp6uTlzSI6N8W1oHZBCxNnXx9RUNSrqobChgdnZcoLv0c0NeJrDw7IpFBdTjEF6umwmo6MUUMxmCuntOjmVh8MchxAIyyZzv6lIkLxYTg5zcxVOXVSk+Sa39t1zes2HpW8yMgQQ4Pdzxgw5DNTVGeBL0PLhBoOyQZgyvdhYkj6fbMD9/ZwxwxRkr9Zx2Exgl+ayggSqCTyntXqi3B0bK30XDCrpttYyDljDJCdd+v2S59GN10LwS0sJjKt46wbLHwlMcBACJKmqUvq22lqyqYn5+ZoP9fkk/wIpGBcwzgQBt3pvLubl6TyJjeUS9VxeAMjSUs6bR80P7xIvJi1N/79CC60bCUyQqakyRxwO8R76+uRZa2sl1wIhsRa18CExSCqgOjxsNuhfqXLDSqvGkJEh/W6ot0ZGopSmdLtZX29qNtfIBu73R8tYKisJbKPDIfcNhfgF6jG/n7Jm+vvFILS2ErjNel6ikvFTOhwybw2PJrDWKsBLHs7JkhKx4XV1VJq1wwSaWVKiXA6Q+tcjkLxkQUG0pKKw0MjdVRG43+YdpQ3brC0TYNUogdWm4kWiQVosN29e9HAnazuo5T9DBA7S55O+NhRnhhBe7qO1f2NjnD1b7Ht+PhnMyjruxs7rDVqVk2N5e71fGbtjfl155ZX84Q9/aAEqtbW19m/hcPi/BKh0dHTYz+zateuYASoXXhgksIPduhkAG9jWZvj21lAKnZvpcMjp1SwAYA1fsJvlOlmAHR26wJ+j0ynXSEkhWVjIYFD2yJERWbimlE2Qhm41qvergW0W5opQSHYYl4vAnWRmJvcANhzIwUFd2PeSFRUchxSWj2vYJhwmOTbGgoKjioeLi8nWVouoBPzKx7eTgsJcTWCThHxcLobVS5GNp0uuOTgoD1ZcTIdDPRwluhWZnuf05/WUMIz037RpRkmiUPu2i1L0LiroQt57WNGYXfr79TTK8EAX4+IMqvN+HaMdBHy6iRs2+vVsbjYc1X4C6/gRpIgXWCzhqrAcqEdGojyeIyNisJ5V75P9/WRcnOVH7e7WUOjYmIAmdPeKiVFPMBSyQBYjoePxaOgzELCM9oK+3aEoxCGWl9MWQ0c0pGmYQUzo0NSOZWRQDexyZcZZJzIxOk4sL1ew0oSMsdK1eDzSJukznxjEgQECazljhkwLoxMHrJZfuFwMBmXezJ4dVZCPi5N2SZjtIOvrjceyTHZpJfo2JAdVVVHlDGBUUbGraeU58vII7LJlpi0tMvcE2buDwP1y6FCyWGCCDId1vU7IWrBKCpvp8UTxIezslGfp6WFFhZF2Uh26qiqGIKkBlpayqEjXa08P2dPDQECVS7xePQSs0fW61Ya3zZiLQfNL+LO6miwsZHGx0aHcIWNTW0s6HDYjYKSiCgtlrip2jB6P1b5l8N57j7ux83iCIhl1jG+P5ytj92e9nE4n165dy48++oibN2/mfffdxxNOOIGvvPIKSSk9OPXUU7ly5Upu2bKFBQUF/2XpwfTp07lmzRq+8847vPLKK/8HpQey2b4JWFqgqGxPI8Vb2UrgV5YiC3iMwE/5tobeBAY/zjFAQzHbCOxlfr4YtTG9dmwsydJSy8wlG/QKXUQb1NBMEFjHkhL1mEZHyfnzZUHGxXFI4//FxfJ/o77A/HwGIHm7CECHQ8l1CwuZmiqbVUUFyZ4eq0jd36+F08GgPqePwvrRTmArfT6qN9NI8W6XWZLmYRhF7gkxzPX1Ryk6//Io6P/rBFzWMIixGz1KpXq99u9BqwMrfbxaDfA6LdY+rMoPK/Xv2wgs03Ga0L7cReBOAo+pl+zX0osdHBgQg5GSQjlej47KjpKUZNGVzc2ig7YNQkP2mQn5lZYS2KRh4A0Seg0EGBNDlbFZLWlMjQ6Ul1N2SZ/PenghHTcOD1t0+qcQEum2NtJYthfU0C2xh68hMi2NQDs7O9UbUDYXMXo7CIwyAtXgGxyUa5l8Vk6OhMbq68nycs3VrrAoxaYmGX+jkSgh1RVfYA5iMGhZbywKd3iYDAqhsBByLxcDoh6dKXFxOuWj7e209F9FRYrKbW6Wz6ekEHAr+tDFOXOioV05rGyQkhqFbzqdcn85NDxH4HU5hBQX2zxzOKyhXS2iH4Kgjt8GFGW8WhZgZaVEXLxe2vDi4CBHRmT9zZsXzV0b7zcvj/LdYNAArNnbe1QYPxDQMouDpMOhOfYnbS7P5Djr6qyghc7lZ3RsN6u80l6uXn38Sw++MnbH/vqLjN1tt91mma8TEhL43e9+1xo6kvz888+5ZMkSJiYm8mtf+xovu+wybtmy5QvXGB8f5x133MHTTz+dJ598MhcsWMCPP/74L2q0LT1YsIBuwDLeC0XPQbK2lmNjskcYmDl9PpEW0dxRcbGc9o0ignhAz7GmRjalQIBkc7M93bK4WFZ+X5+FPtukdlERx7Qdlk5Kk9WVldST5Vr5fnw8t0BKCdrbqaoFqg2nGyAHBtjbKyfZFwCpayouJrBZ7ud00gepCRwcpCxEg0wpLraeS2UlrYfIwUHW10t7ly7VeqaCAhptlYwMikcJ2L7x++WrQ5AShB4NDzI+XnbJxESyspK79e9t+uw+9ZqZlsY/QGrfPoLCwNPTpXMByw5fXKxj1NEhJ2ul8HABZFmZjGF9vbiWHR0EnmE/hLbJ5lMdDg3JbeAAoHJPK+XUEAyK8evrk406HBaKtLBc1wAv+gE2AQQK+WuoZFFHB9naShdA4F5DDkJgK/PyjLCrW3J0paUsL5eNcIk+P1NTVSPQJXnLwkIOD8uvXS5pS16eHHLWA2LItU6uuJjk4CC9UKXynBwJ0w6T9PkkHK2UXyUllDnQ1SVzV0NwdDqtugETEnQurieLiqKbe2cnjwBWeIPBIH32ILie7OtjOKyhXa9XQ7GjekDaIXnqwkIJnxcXExhnW5seThISyNxcPYyprpzLxZoaYS8qL6dSkG2QtpSWqvFYp4evX5EtLXRB1CrGIRRisbHq/fX0sKSESikm4rJi/A/qwWorgUYxsnFxutYP6sF0jbiieXmWK7SigpYnFtgl9axJSRQKvFF9js1RlpbaWplbeXlW4gh4miws5Coc/5xdT0+QfX085ndPz1fG7kv1MgPfAqkDys4WvkQRiRyyORt7lM3KkgmdlmbpnSRRPSF1MSEJrQGPRWm/lDII2CybTGxsFAVWXy+bYGqq/K2+nszKkk2muFhCJ1r4XFwcbUZ9Pe0iSUqS/T07W/7e3EyyslJOwVqD1NJCWVDhMFlUJF5EWhqDQUnk19WRDIWE0ig+niEoAXNsrM1LsahIEGhxcWxvN6TU+8TYlZfTipp1dZE5OXKKrq2VdhYUkAUFor7cQ9kJfD559q4uWx/HpCR5uLg4eZiMDDH6GRmyGTc3CwrQQCurqyUPo0X3zc0k8/L4rnqcjI2V9+ioJOrS0+VfXbFGw3T2bDUYLheZnc05cxSVGR9PYFQ3/DVkSopFugJ7ydJSvg0QeI5BmCLwdrKwkB/pps/mZnogOb2iIpKZmdL/bjfZ0yOGxO8nnU4hEAgEOG+eCX2JR7dEQ51uCLDD75frsq5OwCNOJ1lYKCFSBfqIV7BPw9TielkB4epqmirs4mKSXV2sq9ODWWWlzNuGBnJszHKlsqqKzMmRQ5LytCYkkPR45BAn6BmrdM7R0ah6cDAoRsLrNQBQsrjY5gpnz9ZQYUaGld9hSopYezP2hhB2bIw9PRoC7O8nU1LEuKenMwDYqAO9XtbUyPTr6ZEpV1Mj68bU1bGgwCrQMyNDZJeM4fd6yepq6ZOWli/QpDEhQf71eqM1dQ0NYuBTU6Ntr69Xg75VvqvEECMj8ryhEOWzpaU8AvAPAJ/WQ2Kbjjndbu74Kxi7V14JWrD0sbxfeeUrY/elekXDmKM2SF5cLGELNjQwI0N+njNH1mxRkRUzp8ulvIXKmlFXpwCDhgayuVmBLodteENOpRtYWCgnW0NGbBLc+fmUDbC1VQxBaytZUGBVyNnfTyYlyaZgRGRra8m4ODEAKvLKggKyo0NzUzvZ1KQAldJS+Xs4rHmTIfl+JCKhoXCYs2eL3WppkVtY6LrbzYoKsfX5+bQq2BKfHZP2akjntNNkT+rtFZulupSsrCR/By28T0ujxfyr8kFnJ+VgEB8vX/D55G8NDQwGVdTU4ZCC474+m0sybBmGad/pFBufny/jUVgonq14vvvkoJCZyWBQvrdFDzvBIKOE12oI2d9POhwEXOqRHWa3hm0N8z3QTi+godIV4kVq7UNqqoQpOTjIFgjTjngc+9jYKH3k88nHjYc/CDAIRXyqRwcMqcHbQOBe/gGSezRzS/Jm4xLGU3X5+np5ttNOI1lWxjlzhD0lL4/Sf+r1s7CQVq7b62VKSvRc5HbTPgddLin093hsnqm+ntHBNeoELS0Mh6XrOjtJxsVZ8M3gIMnRUQ5pf61Xz4rhsBwEBgY0371LD1NuJiWphmJd3VF5sb2y1vr6COykyyVzXcLaQzJvWluZkSHzIC9Pr5GSwgiE3MBEEwTENMqCApNzXM24OHl+YMjSwQI+xsRIf0citKFxo0PHSIRMSdHw6BAFHLNODiPNzRYp3Nws56/cXPmeEecoKjKqKbs0jzoua8/lYnDPnq+M3f+i15fa2L2sGxFwUGbi/PnMyxOjFDHhxMxM8TIKCsikJI5BangkBLNTVr6qEgObZJUZb62sTCZxeblld2dBgWwUFRXWY2JurpwaW1vJpCR7qhwejoInTPjE6Mnk5so+0NtLm9diTo4YtqwssqVFNiGjE1RebuWKmppIFhayszO60TIuTsIphtVkdFSS/0qIvRuw0irAXjHEGmf1+Wipn3brKZ+5uVL7FBvL4mLdAEtLaSF8Rj3c4ZB3a6ts8qWl0n6HQzy+0VHS7Rb0nIFpFhRwXMOQTEoyxYd814Q7U1NJh0NyXA6HjEd+viUGNgYnLY1RmSW3mzExeuDx+eRfvwBc2oxHl5IiYTOvl0NqhBgXp8jI1dZT8Pm0Hi02lgamzmBQ7q/eaUIC5fPZ2RblCuxS8d92srlZgScbJKSZk2MVtZmXJ3OprIxMS5NN3KgIDw4S2MmXADFK1dVsadEDmjm1qGhqKERbp8f0dBkD9aKMkKnfTzIxUe7rcpF1dSwpEa+pqIjSd7GxZGKizD3tz0hErtvZSTFCpp+hoJCBAba0MEp3pwcMe+rKzJS2zJ8vHqnmCRmJyJzIzOQHAAcAjkPKM9rapE/7+2UM+/ujUUYTlmdfn8zL/n7pM0ioO2IiEpGIHHwMNNjtFo+xp0fCvi6X9TI9HpKdnWKczMFBEblhSO6cwSCZkMD6ejGkPT3ShiMAWV7OoB4En9N+eQECQmN1NYNz5hx3Y7d6tSiqHOv7eOYRv2yvL7WxC65Ywbg4OWWPjDBaNO31ysIvL7c5NgaDXwB10OOR75SWRtnRNcTE4uJo2CYUEoTk8LCcBPv7ZUEZpIrm5qZNk8mUlCR7x/AwJUYZCMiGlJDA3l6DMpywrPhLl0pIsrJSva/ycktVJnDqITI7WzwWDfuUlOhG5fVKOMfrJUdHbclDe7u0m8PD0g8m7Njfz5ERpfRShFtREe2CZmenhEZzcqJV2F4vBW36UwqgZJwxMfLxGTPkWhISfo7ABouyi6pWL6aAeJaxro5f0NRjf7+MT0ODtFUlb4JB6in5LsumH4mIXfL7ScbFUUA30v/i8U6QHg/DEEBRRYUJKa1X7/xX0SLu6mp+CqlfHB6W3BGwV5Gk2+iDAHsEObqBkqsZkjrCqippd1qauFBjY3r9atkcs7O1/MWlubp7yZwc9fCKrUNuE36pqWR8PGfMUE9DPSQWFMhmXFdH4H5+oN5dfb2Ml8Djd33BO2EwKHN6dJTt7ZIHNErwWsMuqN7kZAJ75VqqVD9jhvSLiScCPqtzNzhocsvtWgqzPKpckZDA4mJ5jBCk1vFNQCZzUhJTUqRUJQDN4+blyZxLSGBjoxZ5Z2ZagFB2tqBjj0DqOIMaVga6yMJCAhvEq0xIsIrwhi4vCKlT3A2lOUtK4hZovaTXK2tO9SSZlsZPYUqWgrJmHA6G9dDFykoaGfaCAvneEcAeDOhyyYGgr0/G0+mUTq6vt6Hp668//gCVVauCBnB6TO9Vq74ydl+q19FyF0OALcDNyZEwRTBolU/Y26uG0OSlCgvJgQELFc7NlXU5b568KypknkciJD0ePTxO2CIbs5m0tMi8drlI5uaKQezvjy5Uv58ZGUfXsW2VE21SkixSj8eKbAJdYpSSk5maKm3weCR86IUWj1dU0NSkGY9g6VKSw8NWPocul0UgclRg4r29SnTdrxvd8DDDYS2cLyoSjyActqTCLCjgnDlijDo75XKNAH+lm9VnuqkwPp62CMvh4KtQAMv8+fwIioosLuav9eT7AhDlcgyH5TQeOco4B4OWAJs9PWQoxF8BpFPqsDg2JvcbHSUQpAtgBwS0wNpaRuzGtU1OFE4nASc/g+Q2t0DBEKWldDo1t6feIrCeTE1lAFIMDzSzwzynw0EWFqon+Evm54s3Exsr+9vAgHzk17qBZmTIUHRDdAn/oOE3oFg8vL4+MhKxEkKmHCACyTMXFZFMTBTvfWCAdXXkb6A5xcxMsrBQPJWqKmlfaysZDHL2bB1fc4jz+yWSUFcnRswYVrfbEjOPjdFyPhpgkkEpRgEqE5Zf9AVIbk1KAPxqcIdk88/IkNBrSwuBFayqUs87KUlrElcTEJ5L1tZatGlSEi0BOd1uLWVwU4rED4rHXVTEbjV6A+r9S9u2MRAwB0ghDmd/v0Zp1mr0pp1As62ZFe5UQSwDG8jmZun71lamphpCdRebmqTrjGGW0LefwFqjVUv29UlfNzdbwqHBQS0Dyc9n8MwzvzJ2/4teX2pj5/EEhZwWBpIsBkZO+pt0ga1jWZmso/p62cDnzCGZkKBJ6IcJNLO83CC6nqPLJQuos5OkyyXexOCgGIiBAVujI9DxXQT86t08xpQUMbjhMMmuLkXrraTPJ6hGQw7NcFgpwbpYXCwnXwVNRmmQ0tPJ6moCzzAQUI9MN7dtkJxlZ6e01eTX8/OVHUVReJITEWSZ2x3V7qLPJ7miYFDzWxOMi6PmQoL6PR8Bt5EsU4TaTiYl0aopmANGYyPlQ9pPbrc4yp2dsjFYCrNgkIDfSLVx2jQJXxkM0YwZVsaNgYD8PaIn86Qkkj09EibKyVGv5zExeOphsaiIu6Fkw4rU6+6mzV1lZclY0u8n3e4oC40ke8jaWgkxJiaSpaXs7dXxKivTzdNFoFEPH89YT5fNzTIPjfdXWEg2N1tNROMFiIfXpQi/LtLj4R5ork+NuxFZzcrS+VBby6qqKLvPyAhtPva000zubx/Z2SkGRp+tqkr6PjdXn9nnIzBuFT1MQb4xuKGQ9qNqvRkKM8PAY3Qc6+pIDg8zFJLvmNIPYNQK8Mo8chMY5+CgdLHk1rZZejIBhgXFO1OAj4SBdxHoYna25tM1bcC0NLa3ayhR0dUjIySrq9XgbbXjZbAy0TrC5zRdsJIcG2NhYZTw2ogk0OWyyS2jMwisYE6Ozu/RUWZkqDFLTCQ9HhkfzdU3NlI983VkMKiq98fX2K1cKfqTx/peufIrY/eletkw5uTJCgRoJisrBURRXc1xCHjhdwA7oXmo+noyO5thQFF2bgIr2Kaf8XplU2wxIZiUFCvyytZWsqLCSvuwuprs6aFLvR2Xhj5ajEfTLKdUj0f2GC8M0EILfpUL0ucTj0M2IXe0dkqlpmfMkI3NA8gOE4lwYECakJamCFSPhx/oaXc9RFiU2dla67SP3dq+5zTsFAzKYi0uViPS0sKMDDG2fn0PqYfznPYhBwZoEiivQ5QJwvqso0A031FUZI7ZljeSRUVixTIypNHp6eLlqZe4W0/V4xAh1PUAmZsryMTqanuKHxsTb8PQaZWVyQb1rnqT4iFL3Z/DIZtYfz/Fmy4qku85HDYCydZWlpQIEGVkRDZHUwNGl0u8nP5+yxYfCJCsr2cIYCMEoPGS8f6ysmyNm9Ss7ZC5Ulcn38vLs9430KUG72kpgO/qIuAik5JYUKB1foqkMlJLS5dSdnANvRmuV2ZmSr9WVnIbQLdb+sOGK1tbZQPPyJBJMzoqHrmhutJ8aUTnr8slxsbUFBpvk/X1Yq1KS6WBubns6YkeaJiaSra20gdYgWA6HHQbb7+hwSplfKTPbEpXvEBUHSIhQdqbliaAJs31mbw3MCQDlZjI9nY14lVVbGuTVMAWSHQlEtFnj4+30Ry3zteXIMoXVvnB5SLz8zmuXqtJzTI9nXS76dU1wYEBOTTpqcMK12ZlSR9pbSJra+UglpnJ7OzjH8Z87rmg5eU8lvdzz31l7L5Urygas59AF/2AhhkOK9Jrn3p1Ur8TEyObhuRg2gmsZJ9O/NhYmatmAwd2sKLC2joyNpahkPxsEv5RR2CTenePUXJTG3TDOyybpfIqAjvtRjVvnmrRqZy1CXkwNlYMa0qKDbuGw7KWsrP1O5WVVhW8v182Qa/XhFf86qU+TWAf/X5qSM5HqVlaGVWu1sQisFO8mKYmq50H/JKFhaZYVlhZcnOp+ay9lBqo9TSsKIJgW6/93aV9/6T2w2rtE5++91LCR10EntF7HFYveUJ/v1JppfwUlJ6brKrSw8IyGQCXS55D+UcNRuZtSGiToZDsxImJRvScfr+Seff0kGVlAnYoKKDhLDWbJrCPzM9Xb0m14wYGZGycTp1nPv4WQtgdGxttB2Nj+ap6d4amqrdX681U/Vw8uqfV4K1jOGzClJslkpCaypYW9YI1/OhyUfOUowQ2WWoXIMilS2X/nTbNGIRNYly8XrKuTpGCUtRvVJWYm2swUBr63Urgl3ICGhggm5qYm6sh+qDcw3iCMk+2yoZeVaVF5X5b4ZOSQrK5mTNmGFCWUzxyJVI2JThLl0o/xsVJu0OA1duzz+zziUVraBBKMRgGlTXS1sREKZ+YP5/Z2fLdnh6KoWtpEQ+0q4vs7NQ5tULWUV6ePHxDg4ZiJwj4xPiVlZFFRTZ1IOP9tDxrZqYFnoVCciYVCkKfJarOy6OGUoPHlZrrK2P3P399qY1dANB8wJMCg9dT4h7d9DogNTC7jWeUmspPAS3S7SKwgt16+mxvl9NyBzQJnZxMlpfLpNcsv8lxGE4jo4X3tno4Hmi+LjOTrK+3m9ZngNZR+2Tz7OhgTo7sx+PWs1tHRiKy2JubSaeTMTFy0hwALLMEOzpsxO4IQAaD9OvJ/E39l/Pnq3HYxD4gmk/TFTptmp6Ks7NJl/A7MjaW2yDJfL96WC9Bcm29vZrPGx2VfGNeHpmczFHTtxkZlsqMAwNimRX9yo4O+VtdnYSjOjvpBmxN4BAEIfeZtnG9OdFrv0QgcHd6PByDkAEzL88amiHjKfh8FMaXIBMSxAEJBCjP3NnJkhLxXtva1JCUlzMmRtBzDAYtkMKoBaSmkgwGWVenxAD9/WR9PbfpnJo2TfToGBdHOp0aOm/Ug8UO2aydTmlvWRnZ36/53y4+q4ZuiXoiQJfNmcXEkGxoiOYyvV6B34fDZFWVBVU4HJR7l5eT9fUCwmhtpR9RthfW1loKMlPWwtxc+yycP5/s6OBn6mUPD8uhsK6OouYBRMewr88y6bC8nP39Ua4GU+jug+Zly8ro1/UwrJ4vW1rIwkJ+oPcJqwc/AAlRd3aSjI+XsGBamniAtbVkfz+nTTMphs1igfPyLHiV1dXMz5foSR9U9aClhaytlbmpkQUvpIazD5rjb2ggnU6ZI+XlDOsadblkzoxC0goD2je2pKO21orGNjYyGrXIy5MJ19wsB4HW1r+KZ/fss0G6XDzm97PPfmXsvlQvM/Db1Yg5HLQqwk6nUHwxMVGOsYWFEh4pLZXfJSaSsbFMS9PcncqjlJVFZWL8gKzkxETGxAhaz1BLhSAhOsbGCmQasHVlwlklrPbDwyT9foZCsre0telCGh5WwMpO+YMSJZeXUxGIExLaaWmR9jU1kT09NpWyRTcHt1va2tSkBjM+Xh5AySD9ftJCGFXKvKJCrmGkc4JBWfeNjZL33KOGy5YExMWR6enMz4/WKRohUrpcUVaOqiqOjWnOx8D/JFkpISGjIF1dLRdqaiLz8+V+yjYTgUDQw4AlOm5uZjQJ6XRKmMjvJ+vr9cQ9bot8Ozuj3IzirQxFZW9SUpiaSmWoGRJwAZSlv7NTQS+byMpKCf9FIqypMQhEnwAvgkELTPL5aGmpZsygLSOJUp+NinEqLCQwbuvuKispB6Uu5Snt7xeD19ND5uYKOrKqSuZJTg6Bg4xEFKWr7WRlJfv7NQ8ZiUTnWmmpeLuVlQyHpU1BPcRZVeCuLun7xERpy+hodMyUYLuzM5qHY0qKxDTz8siuLplzRuW9ttaOLcvL2dam8zAQiBagJiZahhdmZckaKS21CNsjAJmTI4atvJwcGLB5chYUfIH5JxikDeGzocHWDUYgCOVRPeT5/ZTDZmamtD03V/5taRHDV1Ymhr64mMzONo47WV9vpYBMEtzr1flmwjrKn2tRq+np9mBsQGkhNYysq/ur1Nk9/XTQgseO5f30018Zuy/Vywz8rFkCvBgDLAt/KGQSy5s0bBYkcJidndQNcgOB1zkMoR1SoWlZXHl5NDBkw4LOrCxyYMBqv3FgQDaXnh4CezUU16yn+tc1hLfW6qVJqGytWJjYWObnH1VsW1BAYJcY5ORkCYVpuUI4LJtqRkY07WXjccEgGQyyvNzYlHEFEzxNIWAeZ28vFUEY1NDiVnq9anCzs1WyZquEmFpaLD8g8BwrKkxB7jiBzTztNMN5uZcSKvXpfZ7Uz22l5ED9R4E41lFCnCLXIuUHeykIOz8BgbvPns2j7j1EYLOOU1Dv8bpsnOEwgUbxHvv6rLp1UREtUbXJybCrixwe5hFIGQIjEQP0k5N8RYV4qg0NBFaKce3rY3u7hvmKi9ndLUNvtOGM/I3Mrc38A4RHNSWF0TBmairdegDKy5NDRFmZ1o/FxzMuzkjYuDR02UX29GhI081QSGDzMTGMInsGBsSDSE/X8dgqO35ZGYGtLCmRaWZKEIBtUicWlnEtK5P53d0tnzNK6Ab8IR7pTulbo4ZeV8eCApkrpv5N5tlODWeuk8hHU5OWMRyk0yn9awipp00z6duHpUC7uNjK6GhFC+Pi9IDpcjEAcMYMpeYbHIwerPLzydpaNjZK7lrm+SYyP5+fadSBEKSt4fJkWRnpdIpRrq8nW1sVvfm0AJSOykOKty16grZeNj5exrOhQcOUz4lHFx9PNjSIcWxoILu66PcfxeTT0GBBZqedRgY3bfrK2P0ven2pjd1HkFAmsF6MREICa2oEdDCqIaZxKIigo4PjGoKSMOaTBDbQUIxIPm88Wig3fz6ZlCQ5maoqMitLQAYdHbJQxsY4rGEaNwQEshsSSuzTE25xcZQNH9ghC7u6mv2QwtOlS40EzF5ZXLW1BJ6kJSlsaREvs79fgQxByx0ZCpGcP5/9/fK8H0HAMlvUQwqFxAjshoQLxwCRSxk0+bdxsaRZWeJVulwcR7REIHzU95iQIP2SksI/aN9+pH05qPfsM32emckXIGAA8/tuHadB9RiH9fdDahhCIXkGA/1neTmZmckBvaah7xoAyEhEPAplrGc4bPMvItdUTZfLIPD2yunb0EglJVmhW0Yiosuq3l5ZGWUDz8oSj0/7eXBQPj9oPEH1KIBdVsQzJoZkXt5RHKsSfqXLZXk+Z8yQeVBQQM3bbbahPMDNJeoRTJsmYW+/Xw84Wn84bZqMtwdgfr6EG63enmGwHh3lFr1HMEjpm4aGKM1HXh5ZWChzxwApVD3gdUie0dDbMT09WhTpdJKBAIcAS2JgWERiYyXywdFRuX5mpnhn+fm2vUxNZXGxImFra8UD7eiQEHRrqxppn/R/KCQgrZ4eVlXJODqdVPRrI5mayle1D4Bxsr5eDHh+PtnaaksAxsZI+nxsaVHAjWmL02lRrtYrlhMrm5ok2lNURDI3VzxqpY0rLxcD1t0t08nStEndhNwkHCabm+XeCQkMfvTRcTd2v/tdkB0dPOb37373lbH7Ur0sGnPxYtmEFSElXoOb7Ouj0ymbelGR0nbV1UkcrqxMktjDw1qLtEk9si4CWxkXJxtFczPJ0VEWFurm2Nkpk1jDMgMDAl2uqlLkW0+PhFP7+2WjTEqyefDYWFUydjplcWdmmturl3P4C3k+9vfT69VwbHIygSFy/nzJI/n9ZHk5m9WzYHU1GYkwHFaIvCkkV29U69NZXy9tCASientWgVblY5qbSba0cN482bcKCtSbbWqyh4n+fkqHeL3y3GNj8mH1FjkwIDdLSpK2zJ9v6cVMkX55uYyHiYampERJpxmJREUxc3LkmWprydxc+b7TSWCbGJPsbDE0Xq+EoAYG2NYmYqednbY6QU7iaWlkIGAp4Dg8LPNA1dgHByUHKvm01ZYVw9S07YaAfSorxeufNk29wHCYQFBCsoZBZHCQ66FhYWUymDGDRmOKBQVR9RpDzh0OK3m0Fj/bWsiCAj0sPU02NUn/19eLwWppYTAo+21cHElANurqajXIeyWUWF0tIVIVDAaeIRMTWVFxVKG53y8hz7o6MXSJiVpztsmCpQxBNV0uCzJpapK1IbnzXaTTyfJyU4rgtuKmYhM2W6/M4yE5f77kxBVI095OMj9f12Q1y8vVYy0vl7Xg9cpcUyRtJCLzvbvbAF5eJ0tLLZeomcPATqtdZ0LNcjDZZenWDIrU79f89PCw2sBxBoPiLHq9spZnzGCUiMKw1hQWineXkUHgYQEv4/iXHvz2t0G2tfGY37/97d+usYshSXzJXgcOHMCpp56KV14J4sQTp+DKjQ/jQMm9ePJJ4M7rdqFv6Gy88QaQkAAcOgSsWwcsWwasWQPs3y////3ljcDgIDoufgShEHDb3I+BvXuxeuRCAPL5ZcuAC/e/hgMXXYkpWzdg4ePfwYrbNwDJycB776H27SsxbRrw/PPAkSPy68FB4NVXt2BsLA2nb3oNWLMGN+58CM8cvBr4p38CiovxVPtJuGXySuDf/g13Z7+LR6Y/AkxMADfcII287jqsXjcFn30GuFxATQ3w3nvA9xLfwb7kC3H6pAOAwwFMTKDjD6cgGAQOHpTnuugi4IIL5HLX/vscvFK1HocOAZMny99GRoDp04FT7lqI2r9bgWnTgCuuAM7ZuBJvJV6Lhgbg1luBjRuBqVPlNs8/L9ecOhV4+WVg3jzgk0+ADz4A8vKAd98Fdu4EsrKA+677ELdUn4fkZOmP554Dhofl3ps2AY8+CmzfDrS2AgsWyDW3bwcSE4HPPgNCIeDBBz5Hx3MnwOUCTj0VaGyU5/n+94GXajfjnYlZuDB+B94/dC6Sk6WNN98MPPPut4A5c4BLL8XqxNvwvedvw2Xbn8DaO34POBzoO+tqjI4CV2+8H1i0CDh0CDFnfA2srMXhxQ/iV78CcnOB8/e/BSQnY8ehs3Fu4p+ANWuwsOtqrPiHRoxe91PU1wMPbbwK5+18Bb29wOmfbMaqnbNw9VAj0N8vnb1oEbB1Kx7bdBnuXLADePJJ3PbJg3gi8T7cfeghPPLSt3DCwAf4/IEHMbJkCS6cRux6/i088I//iNeyiLXpd+LDOx7DeTtfwWuTrsKVO5/Aqqm34YEHgHcW/R44dAiP7b8Ft98u/XrokPT3XXcBq+54BX2nXoWLU/ah49XTkZAg45WZKXPktusO4KGGKbhv7gasGvkONm4E3n5b+hYXXABs346PHedhYkLGZft2YFbqYXzrH07CB8u6cVvnP+OJa1bhofeuxn3fbEPpuptQXw90dcn7ie+24eqOm3D77TJ3AOCpv18KnHwyNs+9G2edBZx18gHg0CF8fOhMnHPzZRh5801scBFXzzsMTExgx8gpmJgAzks8ADz+OHDRRdh1+eVYVk4cPChz9JLtTwHp6cCPf4wPW9YDAM6btAN49lkgPh73j/4UD17zDrBzJz684FrcfLMsrynLH5YFc889wKFDOO/SM3HPPcD3fhyDgwBSq6qwIvF+LDz0GD6+5k7ceqtc8qy+VcD27Xgm8W7cmPwWPvnHf8R0jwfvT70M5+N9WVg1NXht7kNobQUezfsDTr36agSDQUyZMuW47HnLlwdx8snHfq3x8QMoKTn1uLTpS/f6v21tj+VlTjlLlwrbg9erBeAKZPB49GdTbOX1yuk+GLTkx21tR8njVFZaVBu7uqzyNUdHSb+fLS3qHSqzhcejtE0DA/K5nBwJY6SmkuXlHNUT9sgIyf5+7gEsTVkkQvms8gR+pF6IYUJpahLHyeOhHEurqixxcFOTel9er0DhExIEth2itLWjQ/71+chwWEJZXm+Uj9DQc42OSmiovp7s6aHXq7kp5bG0aDURwBLUa3y8/C02VtqVmSnPayqK09OjcsiVlVGatthYMjtbiJVNvVZzc5TWZXRUHnZgQMZjeFhCS+GweIdNTQR8ghDMymJjo3qwgUAUvKKMMd3dR3mjfX1MSyNrIXB1ZmbK96qqmJ/PaI6mv5/AY+ICBwJWO49eL5cuFUg8y8vJ0lIJK+qYezwyjvX1GgrTZwYmpJ+6pAxDyj92iheRmCg5xOZm8eAbGuhy0QrIOp3iaCzRsDf9AulncbGMpctFNjSwuztK+8XY2C9KAunf2dEhDRsbk77y+2lZoLW+LAJI3/v9ZHExfT4J09XX6/cN5NJg7ZOSRAwBSkwdDMp8VAYjo95tlcS9Xlkbg4MsLlZPVREwJv1sdCaTkiifHRiQ+ex2R9e1JmjnzKF4VFpWAEywuVk87PZ2WjaY/Hx5ZJ9P5oLHw+hzGyKB0VEGAgr0ycwkR0eZkCBtmTFDr9fRIVGF+nqrUs6xMRWwXcu6OmlOebnOp54eGWelkjv//OOPxly+PMiWFh7ze/nyrzy7L9XLnHKC2dmYsns3rpz2AV5Lvg244gq8NfMWXLL4SnElJibkPWmSnLb37wfmzgVefhkPTf8PbNwIrLzh98CePbh/9Kc4eBB4JHWFfP6994CREdyIZ/DMTd04tGABTokhPj9rmjQiPh7IyZFrXnCBuEzf/jbQ04OzX34C770HnL5/B2qfOxe/KD2AhfdMwdAQ8FLoMjn+TpqEZ148BTfcALS3A08+Cbwy9C28Uv8BrsIrgMOB+16+DA9d8Yr80eHAnxqewCn4E5558RTcmP4+Nk+cj1nT94mrtWABkJpqn/WR965CZiZwSc3V8rtDh7Dr8dV47z3xqp66bpW4RJmZuH/ZFDz43LeAuDhx8xwO4GtfE5fsk0/wzA2rcMEFwKxNT8nptatL7nnkCNDRIX1xzz3yIFOnAjNnypH+0CHsq1mBQ4eky87uXSkn8XXrpM9uuEHanJwMvPkmkJYm/blgAXDwIPbdejdOv/l7cu2XXwaqq4Hqamy+7kHMOvgWOoYuwfUzNgAXXYTN752ANWtk2GfO1PttfQ0x3/0WluJsPD6D2NH7R+yaOBPx8cApv1qKByP/invuAU65/UbciGfws58BF+/tBqZNw8dTL8Q5b7bhHOdNSE4G/p//B/hNyiP4+Lq7cc7EDhyYei42bgSu3N2Gw/k34aSD+3D1raejpkamwXjgj8DNN+P0ja/gmU9jMK+gACuueAa33w6c0LUK78+8GmecAZxVeBVQUoL3U6/FzJnASffciZhfl2MJzsUDoRDgcODjT07AOYmHZe62tgLLlwOHDuE/Zj6CM84AZs8Gztv0exyY9wNM2bQW2L8fU26+Ggd27sPq3tPxvZrL8NTta3HLDYeBu+7C5w3/gd5e8QanTgVmHXwLePxxXLnzCbz26GZg5kys3XgKLpu5S9ZNSYmM2803A9/4BkpLiN+cdp+4V/HxMo433wz09uLjxStwzs61cuH2dmD6dIx+f6F4RfHxwKWXinu1Zo24pGbcly0TL3jyEzIHt2+XeTF1Kt7ZeTou3LkSB+Zeiym9r8h1ExPl78uWyZxZtEjamJgIfPSR/G7aNGDvXplre/fKvM3MlM9Mny7/Ll4s82vRIlnDiYkyJ/fuxTs3PIwLJzZIOKKmRubg3LnAe+/hk+9/H9PLyoAXXwSOHMHEyAh8vcQ3M2Pw+3rizhMbcSAUwqm/+MVx9ewaGv7nnt0dd/xtenZfamMHeFBWdhkee3sObpyxHgcPAqu2fQsxW99DWdmJmDlTwjc7d8p6bWgAXnjhENLSHNg8dBqQnY3Pn1+JkRHg9G/EYD+AVU3Ej3/8PurqzscbbwCrJl2LmBceAzAFIZyKS2cT06dLO0ZGxC6UlMjaXLxY7rd1q/ztloveB154AcjIACZPxodTL8F5jo9x2wPn4ImNsyQ8k5gIvPgiDpfciUmTgI9PjMEM7MXg4Bk494NuPOj7Z9x/wUrZxZctw5ntj+HXv5b7Dw8Dd793G2ZtfAKffCKb/Ntvh7B06deRmQlc+eQtuHvqU9i7V/aZxz65VnbisTHgjDOAggJ8OHEuJiaALVvEbm3cKPvWoUNyTkhOBu6Of0J+mD4dH+I8nDfxPt7afz4OHgR+9Stg/nzZHz79FOjulp8nTwYeeED2mOXLgZ9cswsrus5Ge7tcauNGaVN8PLDqgXdwbfWFeOGFEObM+Tra26UfU1OB3l651rPPAklJsp/Nmwec8Ogjsnmlp4sRNBsegL6fPoWvZ8bA305c778foz99EAkJwIknPo9fIh+L+vtx4a2z8M7MH+D+1N9j3jzgku+ejIWF44iPBx7eeCVGn30NS5cCj705G8jKwsm/fQzjuT+QzjnxRCAcxjvJ1+LCZTdG793bK4OwfDkWJr+C3/72AFi2GI/NfAzp6cBliR/istvPw6OPAhe+tBQdM/8VN9wQAgeGce2i8zB3ruyl5028DyQn44Gvf10MXk0NcPHFwMkn4wfLr8Tvp98NvP66hMAfOIB9E1PQ2ip9On068NDMJ4Bbb8XadSdg0ybgzlsPYEX7FJx6KnB9wmtiTA4dQt+WU5CQAFx3ndjQ86v1WR59FM9sPA+9vTKGy5eLvbh67xPA+DhWxP4Ul14KnL99FXDFFSj9xRT8JnQLnrjiKXzyiUzruXOBH/8YCAZlDmRmAudiBx5sPRf3v/cDxDz3FFJSHGhoAP7pnyJgOIJZF52EzZkLJV6dnS2N+sY3gIwMfLj/TJz3xgr86eaFWL4cuP124I035By4sv0wYr52IhobT8RPRu7HSTUP4t/+Tc6ijz4qn+nqkjPWggVyWXNWu953L9YueBjV1TKstbWyjl99FRhP/hbg8WDlujNx7Rt3AjU1GP3sFJwV2oG7G87FIzWHcfV1J+Hll4EjRw6BfZsRc/EssOJ+3HnoYcTEHMBjjx0fw2L2vEcf/Z8bu7vu+ts0dl/qMGbwppssZyPLyxkMqsRLR4fEKMNhBgKKTOvslLhJdTU5Nmah/W63hCzy8iS6ODxMsqGBTqf8vaKCQroblNCIKtTYujgGpcjTRO/Gxiih0aIiAbZoUayRTSkpkZ8zMuQ+KSkahgyHuXSphuhUDNPtJhkKsbf3KABHUpLEZQoKotyWHo+EDT0eCQs2N9tarFCI8iCBgIRsVByzt1f/5vGwt1ciTqGQ/J2Dgxwbk/tFIhLWycuLRsFMgarl+BwbY3+//L2oSH43MiJhq85O6bfKSrn0vHlK49XRYUOthYWUG5kYbkUF2dxsQ11MTyebmkyUi36/ABIMt6HXK91gSLpZWCggglDI6vi1tJCsr2c4TP5S0XPAVglh5eYKSEj5rwYH9bm09qyqihJ6HR0lc3Lo9WpobGCA7OtjcbEiNgdJVlQI8GVwkMzIkNBbdTVZV8e6Ovm11Tn0emX+GjXUggLS7ZbQpaoKL1GUYHOz9GM4TFsEz+Fhy/3NSISfKVqSAwOWdcYMgAFE9fYq/VgkYvX46PfLmJSXy4OoTEIwaLEnzM3Vfhge5tKl8vwmih0MapmOEXCtqyObmiz/ginqNGUMIyOM1mseFTI3c8Tvt1zg9PmiylAMBq0YQUmJPmc4LCHuykpBR/p8ZFOT/OxykV1dHBmRtRCJ0IZ4DQNeMGgjrTInfT5pREMDs7Nlvg8MyPMZ5iKbjjBor56eaH/X1nLpUilHCC5efNzDmI8+KooXx/p+9NG/3TDml9rYLV0aFNivrhLAx/LyKLGwEVu0NTuqtNnZSatNBuxjbKwsZEF0jTM7WzdZ1dYCdsmiLC2VFRgIsKdHjMC8eZTJXlgoeRRlojYbfH8/tW3bZBNwOKRh1dWC+gqHCayRFR0by6oq+bGzk6yH1AIC41pkPC6GobqadDgsRZHLJc/o8Wiuoa/Panjl54sxKSyUvweDjBY1NzWJYRkbI3BQNsH+fsbFRSXtiosFVfZrKO9mYaEtBmZ1tRjI9HRugxTes76ezMmRfFBfH1+CsMqsh/ImtraKkQ4EbLH9wIDsG/Pm6eaoBLt/AMimpmheqKGBdLsJ7GAjwHoIbyYrKqRNgQALCpRZJilJyjgSEtjdLXB5Iw3T1qb0aykp7OkRirCQlllIKctaNmu7GRcnKMrERALNjIuT8SkqEhquzk4ZzqVaWmHyQ16A3d0idyPUY/fzN4DdDF0u2RDz8zWXVV/PCJS3sbjYqo83NZkc3npRow/J8zIjQwapr4/19YJ07O2l3fjDYaUyU8X55mbK/G1qksNXRgY7O2W+lJSQzMmRsgjVLBSdyF0y9/UA9Da0AD4+ntOmRctYWF3NMUWrCtH3Y1aVgHV1msvyUajmNinF2JCuv4Pal5vp80lhutRkrtHay11kcjL/AOGX3QYpIjfiyUa2yzAiCRGzcM2KEOtzBNrlcNDaqnV6Gyg0fxsEZaxI3bw8qpzQJqtuYaSPWlqMlJVP+nVsjOzokPEeG2N9fVRZBBgnu7q0pvL4Grtly4JsbOQxv5ct+8rYfaleZuDnzQsS6CLHxmTBVlYypCdhjo3RzEC3W2yUUA4NyclZhR2ZnGyLgb1QqqpAgBwbE4OnrAsej24kg4NiMYzbMTxMp1PZ27X8ANgpp+DMTElwBwJSE+X3a5HqrmixTnMzX4AQUefmkkxMFEM1OqqL/mkyI0NkhwBbhwQ0kgkJDIXEQLjdYiwMXLuxkbZez3Ji6inXSCVI8faEeGkAOTwsHk5enuwgXq9VXxbYeDNzcuSyRUWy+AUosI9SOF6l3IkuAu1asCwSK8BhpqWJVyMcjgelf5WoeXCQluC4vp5KrPwMm5pkE6mqEsPQ30++rgCO2FiS8+crT+kOMjNTC+ndZGur1PcF5ESfkRHFaHi9lDFUGSZTgCib5F38LUDREryfPh8VkNDIVwErUf4mQDY0sL+faiDbZX40NysM/y4Lf3c6pSYOaJd5EQ7Tymp3dpLp6Vrn+bSoJwRpJalkI1/PJQDLyhTI4XZzcFApw0ZH5UBVWWk1dQ3biQ9gSYn8zihts7+f3QZgUlvL7m75W1wcZTCHh7XubT1p1oQSkwN+Dg8LiGMYwrYjzz4q803LY8Z1rjM5mWlpUqbRDyEVD5kDQUWFGDynkwyFhM5OGWoMsfoYpEZT1BF8ZFKSlkOsE8BUUpKsleRksraWQSh7ic4D828bQBYXCxNOQgLHITWer0PIr8vL1dutqpJSjbg4Dg4qyXhCAtPSpAxojx7a9gC2zq6xURhzTA3hvHnkq4AeQH5z3I1dbW2Q9fU85ndt7VfG7kv1smHM7Gx+AGFV+AjRQm5C6tOYnW13Zh+Upy89nUxN1cLqISvWWlCgaKv6ejk5JyfradVNBgKMGERlcrLsDEYLLimJA+qBhSE8lGxpIcfGWFOjm096OoG9rKiQdn6mi8xo4aWlyYLzQ1WOAwF5d3bKona5OABhe4lEGEXaqeLzNkB2ssxMWyhcWEjLI0mHg0xPZ2OjrOeSEg1fZWaSbretG/pMFzLT0uS+SonGlBT5fWwsB9TLe1V/H4IUl79t+rewkMzI4Ac4StWgulo2zc5OWs6yrCx+BC34LyuTw0B+PgdxVDF7XByfhurQVVdL36sna/k2BwfpgxSnO526ofv9ZG2tIFZ7esSNC4ftiaetjaTPJ4eigoIowrOpiUxIEO+4ooJMT5d+8vnIri4xVGNjZHGxHG58PrKlhe3tokDhdgsqr6yM1vNlXx+ZlSXGJTNTjGtaGoFR6YfRUfEE5s8nm5rk2YzGVE+PeHjx8Swroy08H9CDCXNyyLIyy51pai2DUA1ERaz+ElqTGQ7ztxD5IyObNGeO9JEwwgzJ7+fPFw9Pq7NDOtZMTJTxqq4WI6PoVebm0gXYEGhNDa0X/xGkkHtkRB4rGFQOTWNhNYxRXCz9/AdjsFQW3OfT/o+PFydR56elDktPtyjikRFZ++3tylrT0kKfT8P/Or9ZVGSp4Hp6xOMfhkYl/GLM29sp6zscJp1OmfudnUbBKsoEb8IwBQXR1El1tSWjDq5a9ZWx+1/0+lIbuz26WQJBcnRUNsixMTI7227OhuC4vp5kczPf1I1aTvH7bEG0oYIMA7KJulxkICAbYigk/3e72dMTPdGNA2RiIof0JMq4OO5Wo8fBQXo80ZIFCesclBVWXs6aGs2BZGQwI0PDJX19csLu6CDHxsSwJSRYXkivl+SoaNjR7yerxJMyXH7dEOaSYZic1Dp+oIZgEEqj1dGh7CI+jkNCdcEgxWUqLJRwo9stiz0pSQxldbW0yeGQTaG2lqyslA0uLU36MCVF+iMtjR1qrCL67tST9XOQEoZtxmOYP5+sqrL6e1tM3zU1kXl5EkYsKmJPjzzuHggpdFOTeIdGxsbvp4bKnASeZGMjLRWZyeGMjZGMjbV0VfRJyDugc2P2bNJIt6elUS5eVESvV7kptQib1dWa49trpW1qaqhE1EM6r1ZYQmQODJD5+TL/VMH6U4DAJinHqKwksJUewKq+s6GBDAQMS5pB/dvCc+AZ2ZC1XOIDgIQQLP87tADd52NVlXjIgYB4w9R71NdrmN7t5gd6UBtWIyhe/E7LEtTTI5GDkhKVlBI3i8BOpYpbzX4IOTUdDrKoSJ61oIBMTGS/juGMGdqPTU0sLpZn2a1zQELJ28iqKpaX65ppaDiKNk7UJ4B7pcQE0KLwTYxExNM0LDElJeKlGf7SigpNNVRVydzu6uJpp0XTFkuXyrpjUxPz86XYPC1N2hkTI+PaByhdnp8VFWpIBwclDVFZKf0fFyeHnMJC+nzybEGP57gbu6VLhZz8WN9Ll35l7L5ULzPwPl9QjNvwMJmSwqwsBTv09bG7m1Zzq6ZGCZTz81lZqaCThgYyHLZ6jcZTKi+n7AQNDWRWlngHfX1kRYWAL5KTZZNJTbUgD5P8HxigvYZGyaydHBggLXfRUQoKbrd6FT6fbBDDw9FMuLK1+Hwk09KkNq6vT0KwwWDU0LW2ksPDLC6WZy0upuXZNPttY6NsWEVFFKOXmcnGRtmA2tpoWSTcbtIUEyoFp6WUCQQYFZUtKpKwa1+fXLSnh8GgbK5z5kS/NzKi4baWFsbFyb3mzVMlgYaGKPt+cbE8TyAgv/N45ISsbCcsKxMjVVgYZZfv7BTDn5goKzkpScJitbViiLxe2dSbmy3jDcvKrJBpKHRUPrelRcbB1A1qItHvl7bX18t4tbcrw0YgYNKdMl4VFeINNTSQ+fkCdFJwEfv6yKAIDY+M6D09HlZV0TLS5OfT1oJ1d1Oew0ykigrS7VZqs2es4vnAADXk2CgbutdLwMVaQIxmdTVZVqZ53+sFiKEeDPPy2N0tvK7Z2bS6cW9C86vhsK0zPQKhoGtulv630ZOkJI4DrKyUXNrSpWpEfT76/dEz4/Awacg2W1o0CtPUxN5enSeqk9fdrevU7bZsKpw/X6IM1dVyEEpIkDWemyteqPJZ+v06pwDh2gzommpoIKuroyoSgYD0qwK6gnoQM8TQrKiIAnXKyqKHy5SUaF2i/t6gVxobaXUWGYnQ75clEezrO+7GrqoqyNpaHvO7qupv19jFkF/e0oNZs4Lof30CaGhA7dfux8CAsDfc7bvJQtsNi8PEhKDGn3xSys6euW4l8O//jkfy12PSJOBOxwoAwIMjC/Hkk8CO59/BgZkXYsoN38PZm1bj5ZeBWUNSg4UXXwTOOgvfafkpFiwQ6LbDIajtkZEoxDk+Hjh/5DVg8mSsPfQd/P3fA2e5n8LHV9yCP34zBhcFAsDkyeh49XRcn7FDKEn278c5zpvQ1QXMqrkRePRRfD71TJxw6E84POkUfO1ru8Hg14FDh7B645n43kV/xIXzzsT06UIKsX8/cMcdAkG/atPDWBF/r4XvL1sGnDTxJ/nhpZfwVt16JCdL9UN7u0DEd+6UNxAtJ/jNwJXyMLfeij/NvRqn7HwfB6afjxdflM+ZZz1h+4f42HEepk4FTjn4R4Fsx7+GP2VeiVM2vYX34y/ByIiUNdxxh5RnzZwJ3HbzYTy2/CQsWyZlCVdcIbDytbc+gSdwGyZNklKE++45DNx8M+6b+Xs89MsYIDYWhw8eRleXVGac8/IKgarPng383d/hocpx3HfDDsHkHzmCmJvPAVN+hB+kf4hJk4Ann42BI4ZYvBh48NEpWNt1ABddJM90ygP34nD1wzhp7mXA1Kl46KKVtnxl6lTgJxdtwAmZ38HEBHDC1velTw8dEqz+c88B8+dj4fILseLQLdjxwFNYswZYOPIgkJmJ/9h+FX4y+Smc/ONb0NkJfO/lO1H7jcdQVgac8vxTUiv6vJQXnBd6Fx/Gfwc72jfgXMcudLx5Nq6fsQEPXHwxzmkmbr4ZOGnTBtzf9R3s3ClzPDMz2s5Dh6Rq4eLZh4GSErxzxxNITwf27AHCYeAcfIyF1efg3/5NSk/mzZM18tDMJ1C75zZccQVwcVhq97BxI3bc+iCmTgWmTOyTko9Fi+RGL72Eq+r/Gd/9rlzn3Xe9KCr6R9xzj5TlADKvJk8Gbrv0Q8z/2Xm49Vagp0faO326/O2SSRuw8pPvYOtWaYvDAZx/11Vyj1tvBbZtAwoKgBdfxOg/3yZMLL/+NWIW34Xi4q9jxQO7cNvis/FEw58Q8/VtyMn5B1x6qdzj5ZeBs84CIhFhmtm6Fbhw8ofAzp3YdcFV2LpVbmMYWj4skbrKN96QMqLPU8/HxISUYXy4+Cng0ksx+vVz0dMja+fOeR9i9fbzkJgIXHjBYRzo7cWpl19+XEsPqqqCcDiO/VqHDh3AkiV/ndKDTz/9FHfeeSdWrVoFALj66qvx61//GvHx8f/l548cOYLFixdj9erV2LFjB0499VTMnTsXNTU1OPvss+3nrrjiCng8ni989/rrr0d7e/tf1sD/29b2WF5H5+wENTYhHk51tZzukpIsqsxIyLCpieMmF5SdTWC9oNI6O8muLs6Zo8n/4mI5EZeXk3Fx4r0YJKahOCkrk5Nfbq7N2X2gIc2gCZ/W1QloIhAgExOZna3MHhUVfNeEVUMhMiGBSUma26uvJ7ApCmeuqJAw5vCw8mjukL/FxsrJsqpKgAEZGXLqVbJmFhWxpUVPuuXlcswsKmJhoXhWTqcCWBoayIYG8fYiEatRx5YW8YyM2mdiooQos7Loh+TitkBya3sQVUn/TE/VuzW8zLg4q6L+gQmjtrZaAmQmJ5MOhyAMDQQ0OVlcgYEBCZlmZkpeKTVVTv2BgHiXlZVRppb+frK1VcFBz5GBgCIgN5C5uQKISEy0Ej6GWGdgQJhLYmIo91ShOGBC2pefL300OBj9XGcn2dAgobPsbLK/X4ApqakqCbRWUjrmeVNTNfK3i0Go1lxmpoTe4+LUM9sq/WM8yORkNjZqecvwMFlYKN6xSjgNDIh3uASaI9UyBRYVkQUF4l15PPR4JPTL4mL5e10dWVUl90hIIPPzLUQ/qKHBkhJxXjohuTYGg+LJFxSQ+fl0OkUkNzdXQoB1dZr/6+8XT9Pwp9bXyxyNjWVQw8+Gt9Pno7gZUNWC1lYmJCihdDhMp1M84Lw8XZN1dfwMgrwdhIBcsrM1ipOZKUjLzk4yKIolDIVkfitpuI2AJCSQFRU2zGlCtKMm9B8KsaZG101amsyzujoyNlaRoYdZX88o45Dmby3ZqUJDXS6SgQCDzz573D27ysqgDb8ey7uy8q/n2c2bN48XXHAB33rrLb711lu84IILuGDBgv/28/v37+fcuXPZ0dHBrVu3cv369bz44ov57W9/+wufu/zyy1lcXMzdu3fb9/79+//i9n2pjd3QUJD0eGQD8XhkAbW0yMSbP182o5QUCaMo1ZLBB2dkaFgrPV02kZaWKO1Va6uspNJSmfADA3LNSEQMZ0uLbLLFxQarTOblyQZfXi6roatLwo4tLRKG8XplgaiCAevq5Brx8WRXlykLtOHPtjaSoZAkxBU0096u4IeqKmZlySI9ogbGJqO0lkzR1GKkc3NFUNNv9wTZiDo7OTKiVEcGlNDQID/n5soGkZUV3fg1X8P0dGl3UZF8p65OwC5KRWZrIRoaLHFvRHNKDASigBGtqXO7GS1oqquTRjY3yxjU1xNwSogxJ+cLYVzLIp2ZSVZX25qw3l6SkYjkY1JSosZOKcxEkXxC+mt0VEJ+TqdsikZNIRiUMGphodCljY3JXFCttd5e7bNQyIbEhoc196ria4biLDdXf9/aKkYyI0PaVl7O3l6dh3l5DAa11jE2VjZtrUiwXQ8AAQAASURBVOG0/VpWRgMvDYelbUsACxZhMEj29ETp1pqbZYOvraXbrZv4/PlkdTU/AvgbwOagmZ/PigoLNpVDVVKSGG1zcnI66feLcfP7aQURIxFK25Rc2zD1mfsPDOjPfX1y/+RkWa/KgN3ZqfdMSIgCv6qrZY7V1sq88PnESOfmkn19rKiIRrQLCig37ewkk5JkneXnyzMEAmR1tRizvj6Gtb/CUJCM0b7LzWV7Oy36NhgkGRcnY9/SIqmLnh4x7PX1zMlRsJjWqdbUkKyoECOblcVIhJwz5/jThTmdQVZV8ZjfTudfx9i9//77BMDe3l77u/Xr1xMAt27d+mdfZ8OGDQTAQCBgf3f55ZfzZz/72f+4jV9qY/fRR0GGQkZk008mJTFkcgvGeHV0KBR8udRWacF3c3MUpcXqalmdfj+ZnW0XfVwcSYeDRUU8SvxTNsdp0yiL12DZtSCZY2NkXZ0sOK9XEGIqRJmfL20tLCRZXi6bsIpwaTkS6fOxuVmMXW+vlgxUVMiGmJrKrKyoBhwrK5mTIye2nh5aEU5WVJApKeKVpqfLgnc6rYr64KBu9jk5svk0NxtgoT08uN20uS2GQrIZqZROZaUa3fR0trSIgbFF1i0tYoD6+6MqEZmZ9HrFi2JpqbRJN4alSxk99dfX29q7QIBkVxeXLpXzgcMhY1VWJs9qc61FRfbUmpdnZQJNXbPVvguFpC1jY1I/NTxMq97g88mjuly0m7/Ho/k0l0s2MM1fsayMrKuTjdfplL7u6GBdneyvxcUKiIhE5BlMxXskQgaF15CVlQLoUM5Fp5MWQev10vKzjo1J95sartmzTQlDo8y9SIRjY+LhfaQ5szcBAneRXV3MyDBCC+P8HUA6HDztNLEJaWnybLXqobO/X9fJWgJ30uOJKpEL+/8+sqJC+s3pJBBUb+cgWVdndQCNrA5HR2WsVS4gLU3nrMvFmBjNm2t5UEqKgldGRxkXp15TdTULCow2pWg3AqPi5efnq8TPEOfM0bkRDJJFRUZLmPR62dwsNrqmRtdqfb0Vwx0clH5wOKQtFRWypnNzZR7V1Oi4qIqH0XMcHpa/m1Rqe7vuKT4f8/K07c3NZHY2Gxr+9xq7oaEhBoNB+z506ND/qH3Nzc089dRT/9PvTz31VD7xxBN/9nVeffVVxsTEfKHPLr/8ck6dOpVnnHEGzz//fP785z/ngQMH/uI2fqmNXfDcc7U2bAd7e8mnFd3FvDx6IajLgIYo2tooCzo9nX4NfQKj7AHoARiJiGFxAdZjMYbUFJMfzaDA0dEo3D41lSwqkk2jtlZ2CYVPtrdTNnefj8AoIxGxB93dSnKblqabxw6Gw7rJ6+4GvM7GRgnvBAKUlTg2xrw82fj2QGsKMzLItDRuMZ5eaSlZVUVggq9D4P9vm+fq6mJW1lFEyF1dUlqlYVimpFCho/wIguKcN08ecWCAslOMjkpDMzIs4KO/X9teWyu/6+8ni4oEbGHYYFJTycJCi16zxtblIsvKBJLucMj/09Pl0FJWZtlpOH++9FlZGY0Ib1gBDU1NckkhBthlmUu6u0kWFTEmRkidDfaAyckCz09MVO/xcJQlpLCQwBDb2+VxZ8zQ76Sk8FMd85ISBVOoKregGH+l9XKbbN1nSoqOf0qKFiXv4zaA06apHl1pqZWxiYvTQ4uSetfXU8Ocm6UDpKAwCvBRgoOPAC6BoCl9EORgczNJl0ueJxSSvu7qknFxuSSkXlrKMaiGoULtpY1DUiqRkkJmZzMUioqds7nZkOawuVnXQ0sLGxspaNvWVgse6Tah9a4umezJydwDRW6mp5N1dSK2axhkmppsSNin4yrrYBNjYsToVlZSQuFh9Qb7+9nTIzVxL6nB1+JPiUqoxdyjEYk9QJSguqjIIlbZ1BT1Ut1usqBAWIU0auP16rOmpZEVFfZwxK4uuUdurhj5jg7pt+Jinnvu8Td2994btBH8Y3nfe69c5//7XrJkyf+ofUuXLmVKSsp/+n1KSgofeuihP+sa4+Pj/Pa3v82bbrrpC79fsWIFX331VW7ZsoXPPvssk5OTOXfu3L+4jV9uY3fRRaTbLZMwM5ORiOpvZWeToZAN74TDlAWQlma9L1Os3NQkp7iEBNmLBwcpP3R2kqWlVoGaVVXizagygg1lqqYYQyEuXcooTZGWG3BwkAkJUTHNlhaS5eWy4INBnnaabnBjY6ys1FxaRQWZnS3f8XjkO+GweIRa28eUFKsLR5dLjptud5T1PhJhJKILcmyMgYCcwisqSPp8HBwUj8wU4Le3U77f2ipvQ2WlIqeGusyoVtPnEy/EhDFVxcCkhxgIkP39Njzb2xtl1A+FaPNsdLmkvU1N0qcdHWQkwuHhaLkhCwrIhAQZm6wscmzMnswNmzudTgNeJePjOW+efDcnh9GcVl4ei4q0ZKSyUgxiVhaZnS1929pKFhdbj5CFhZw3T8cuO1sOTOEwPR69p8vFcFjshEVlOp2yeXZ2kgkJMkatrWQwKP3V2Um3Wz321lb516hSQOi+iotpadSMGrcp+xoeJun1SnuLishg0OaglmhYki4X6fdzZETyaxwcZHc3rYp2UxPJuDgrPcjBQbt5j4xQ1khRkYyrCYd6vSwri6b/2Noqfa3hZxO5Zk6OrLOeHjqdOreV78ugRxkOi0HQKAbT02WclZFkZETz26pKz7ExMhSS+3Z1WUfZ1JSaA4phPTK5UI6OkhkZdh7b/jOnCqPPZxDFzc1RtZG0NBYUyLzt79d+qa6OIqVzcsTzMzn+3Fxr6GfPVmHmtLTjbuzuvjtIp5PH/L777r/Ms1uyZMl/aRyPfr/99ttcunQpzzvvvP/0/ZkzZ/KXv/zl//H5Dh8+zO9///ucPXv2/7G/Nm7cSAD0+Xx/Xufp68tt7L72NaUe8nFsTJgLTP6oH1Ioat6VlSQ7OrhNT4BCJ7SVoxCQhdMpuRPLolJZGQVDKAcie3psqqG7W4p790DAFwPqBYXNaV8ZWJqaJLcmYZh1EgrTer26OtnMJIe0gxwelhCYx0OOjckptbaWR4xnNzbGkRHZX9rbSSYmynNlZJDx8XRpOyLqYQLr6VbPzgtIDs3l0vDTkJx+MzKivIjqHZow6B71jC1xZkGBeCNNTWRVlZzKU1JkFRUWipeWkyP3Sky0iu8f6Lj0AGRyMl/SvmJmJpmfL5tYcTHfhoAP6HZHYedaBOxyRWviDIFNRQXJlBQrRgtUE1jDGTOswyxjV14uHqHDwaVL1Xvz+eh0infc3i6ecihEsq+PnZ1q3Pv62NurYcm6Otk0U1IYhhT474ECREIhpYlaSWA1gRWykTY0yEErL082S4+HaWnihQCbBJBRWUlgG7dAZKFycynj5PHQ6RTjVFcnYx4Omzo6l7SvoIDs6eGbAH1q6JYABJaT4TDdblopK6+O9chINAXNsjK+C1GN3wNoOmCIhkjBnAhNGQETEsQ4pKQwKcmEGPdxt87vbbp2BgdJ5uZywEQUqqpYURE9SOblUeZUXBzHtd0JCSQLC8WIh8NWTktq7bZp/y5mKCRsLMLOs4sMhcRD1zrPggINqasx6+3V/8fHC+ApJ8eGIQMBzZeq4HJZmQxnWZmMQUFB9DkkNT9hS41saL+iQkBvKSlyiKisJLu6+CnA5547/p7dnXcGbdj1WN533vmXtWnPnj384IMP/n++x8fH/0dhzMOHD/Oaa67hrFmzuHfv3v9jmz7//HPGxsayvb39z3oG85r0l2E3/3e9dvf/EY4ZU8BNG4BvnIxbphGJrcA7j1+BTe+JCOvevcJuPm9RDJCfj2eqiN27AcbdC9x1Fx58nJg5E3jomj8BDgeuHCBeS+8GTjsNuPlm/GjPWnzg7AXWrcNlW1dg7bZpwOzZ+N7u3XjFTSAZ+HinQLzHx4Fz8z/H/Q+cgHsmCZx64Q0HcPdW4o47gEf2NgG9VwAHD2K74yrcfcU7qK0hyq4B2Pw68PgneMm1CNg4Cdi0CfctmApMvx11vBe/KPkeSr+5Gr+Juxd3AsC821F6zW785o3LBMe/YAGevP10pKfLM49sBJg+G/MTiaVLgZdfBB71CLz7g6a1wC9+gQfnE1u3AtdtB2bdeiswbx4+PHgVLtjdCDz/PP44aRYmJoD4ZGDKmlVYW/IMtl7xDFLX/ACYORP3zSbmtb4vNPKLFuHDSedjZAS4fWdU8PW994CLXwfGM9/CdzGBJueJWLxYoN/3JT4BTJqEU26+FkhOxitLiYtu3QX87nfA7bfjmb1X4caXb8EvLugGmptxZxnx2P4Hga3zcPfMEeCieCzc/yFW/MtsIC8PTHocWDAMTHbLjVNvwOZDt2DW7bfjgknAI0vHcd/kFVLv8MlB3Hzzhej5B+L6aWtx/bIJ6ffp03HtyCogORVwJGJ0E/BS0e+xevLdmAfg3ms+RGoqMH5WNxa6iEsvBS7YClzy8v1gwXbp4E8+wcdpq3HOnH144w3gqscfx1kTf8To31+Gze3v475Wgt9oxL0BonoxwOkrcOMbxDN/txS4IQOrJ36K7+1fJeoFE5fi7v2twMUX48DXFqACT6MW30dmJvH+9GcQHw9k4S6cdtqvsO/gKnwXy7EEJbjl9h/jqf1XA1OnYsdNv8M/4kZkOdrQnhiD81wunNf6JGovXolFOBupqYvg9QINDwBuJGE/AMQHBfs/MYHz06fg/CNH8KBzHPcvfxDXXvAhdr4QgxPOSMdhbMI9ZcQDv4rBo5XEDXnA+Ttfw+cvrsKTi2WdnnId8PBdVwHb78FjpR9g+c9igO82YPO6AxgfB65cejX+eIUDHf/8ezx0QwxQ4sV/VO7GT964EQvDI0DcRmDdYoyiGqfM8+CeHOKVT27EYjwL3JCLDVvfwI5NB/Dv/w4803wSMO9xvDb9Flw5+gQu9j8sZTptn2L/fmDmDcDKkoXAoWpM2fI2frV8ATC9Gjj5ZDz28nmionEoHoi/HM8k34cPb12F3uuAV+45E4ewB479wzjl9tvxeddqXN17H3DPPXgy8WHMnAks3PowsHgx1vaehGW5ROvXX/r/xzb4V31NnToVU6dO/T9+bs6cOQgGg9iwYQO+853vAAD6+voQDAZxySWX/LffO3LkCH7wgx9g27ZteP3113HGGWf8H+/l9/tx5MgRTJs27c9/EHzJJX5++9sgTjhhCm578Wo8c8MqOBzAtdM34KrF38E114jydTgsNTbt7SLz8cknorpz/ehjwN69eGrmg9i5U2Q9Tti5A6u3nos1a4Bf/Wo7gGlgRRXudzyMJ58EPo6fhZgt6wHsBQA4nd/Eu++KHFdystQRpaYCt+19WAp2zjoLANBx8J9x/fAjwN69uH/SQ3A4gPvuOABs2oRHNl6Guxd8CDzwAO6d/gweTnwEHd+4W+R7pv8e78z8AdrbpY7tPscjWJ16N7ZuBe6evAJvXbAQkyfLc735piiFf/e7wMUtP8Fr1/0HUlNFnmXePCkNfPjUpUAohBXJD2HhBW+JQfjNb7Cj811cd52U+bW1yXeMLBIgtvS996R2qOOFk9DUJGVX7e2ixpKRIZIutyxQ/bRLDwCTJ+OSS0Vj7pQ1q7AKVyM+Xuodv/516a9vfUuea/9+4NNPj8DlisW6dcA110it01WZB3DhFVPwTtcu/Cle5IE2bZLxvOEGqW/bl3g+WluljSdsekeKBl9+Ge9n3obJk0WBfcqt1+LAPQ/KhWfOBBYvxiPTH8HdN+zCF+S4p08X/b5N5+PG6Wvl/08+KYWEvb1YOf1OXJv6PnbFn4+zJ/1ROikxEUhMxMcjJ0mdn7nWdddh16RzcPbzj+HG3jvx/e8D16e9D3zyCd6afBUugaihX11ytpH+w5Q/tKFv5k24OPB7TLn9Bziw/3OguhqHF92PN96QObph+Tu48PYLcd11wH2XrpXOePVVPDH6z7gt831g5kzccvtJOPfpGBwoJx5JfwpXP38LVk29DauvewK33gr8y78AvynagM8v+g5OeHElnjp4LXbuBO5bEoNnWijK9Z+8hVV7L8H4OHDDDX9Ebu6ZuOsuqVG97NAruKz6KsTHy+OuuOt9PPj8+di/H3jk9dl4puJd3HjBZtz//CyRT1p0Gf7jhrWIj5ezwN690kULFois3dSpojx18skylxMTZfwnTZI1nJ8vPxv5uYdrPsc5ySdg7lyZny++KMMUHy+fe/55Gbo77pB3ZqYM84IF0XrSqVNlThvZy95e+e7NN8v+UFkJDA0BXq/M7fZ2+fzcufK5M86QOdzZKd8ZH5fa0ORkKfPcuxe4wPEOTv32t49rnd1PfhLE17527NcKhw/gP/7jr1NnN3/+fOzatQtNTU0AgIULF+Kb3/wm/vCHP9jPpKam4pe//CXy8vIwMTGBf/mXf8E777yDrq4unKX7JQCcfvrpOOmkkzA4OIi2tjZ873vfw9SpU/H+++/j5z//OU4++WS8/fbbOPHEE//8Bv5FfuD/kpcNY65cyZISRXKVlUUlik1JQFKSxCU6OgTuXFQkIbueHrpcShWUlmaT0KysJIuLJSxRXEympLCkRMImzMoisFNCc+npEq5MTLQwao+HZGEhBwakKS4XbbiPo6MC3AiHTR5c8kVVVRIyTU+3ucOREUposKGBwDYJs5SXSwgoFBI4dn8/AZ/83NEh8aSiIqvgbcrk2NwsObXsbFuTV1KiiLGGBtbVSQQ0KUn5CiGku69Da+bi48mcHGZkmJDV5mj5gIJC6HRamsCYmCghtWFXSU0VOqf6eisyTfr9FvDBxERa2GBLC61eTnU1gcNkZaXkfXp6bPWHF0b9e59FVNbVad6stpbAPvb304bm6PNJf1RXs7FRc45Op/RtKGTzXkKwvYPDEJUBYIhpadJfs2eTTE6WPu7qknF3OoV9xOViXJw8RjAoYS5giC5XVAZHkLwHJYTa2ipxQSUvNvoxwN4oI9DYmBFwZ2ysjk8gIN+vrjYkN2Rzs4TxXC6OjGj4NTeX5eVahzc6Sra0MC9PQ3ZxcWwEpCMrKpidHU1DGVALm5pYUkK+BOE9ZU4OmZ9vnyUvTyjPWFxsOUmHh0k6HGxp0b/l53McMNUwdENoyXYDpN9vc5EsKiLnz5fv1NUxHBZE6Uf6fhvgyIiul4YG9vTIXLQlDPn5ZGYmQ0C0L+PjLb/qgHmGtDT6fJJSiGh4/jnAshSxo0MWQkKC7Af5+QL20tIJP8BRvd6bEFJuw5na2KilFsqc8ykMEfT24x7G/PGPgywr4zG/f/zjv16d3djYGG+66SbGxcUxLi6ON910Ez/99NMvfAYAf/e735EkP/roo/82D/j666+TJD/++GNedtllPP3003nSSSfx7/7u73jnnXdybGzsL27fl9qzC959N6YcOYIVFzyG238cg4kwkZwM7Er/HvDTn4ra54sv4p0F9+PCH82Wk3hVFXDDDbjxrjORmhoVXF28WAVO79ohMbapU4H163HJaR/grbn3A9u3Y8UVz2Dhmh9II5KTgX/4B6C/X47lkyYJlcpR1C0xR8bBYAgHMAXj48BZkV1C2/Dzn2Nt/bu49NIoY8mVyTuA+Hg82HA67i/5o6hHxsUBJ56ItXH/jMuevA3nrHkCHz/5Gia++11Mam7G4Ztvw0l/PwPIzZVjp1GqXLYMl1x6Arq65IR5XtcjwO234+SzpqCiQjy2s19vw445N8HhkNNveztwUs2D4maZ5zvxRCAUEplut1vcqY0b5d0roV3cfLMcgQFgzhzsqn4CZ+98y6qrY9IkoUR5/HE8lLlKWFCee06Ov6+/DvT14ZWbn8JVzy+U67/8snhgDoeER884A08l/Stu+GEMTiookL42qtIOR1S9e8kSvNP5EV5+Gbjvjauwr/0VLFsmhCa9vcBl1VcB3/8+1qb9FJcdegW44gq88sZJuOrxH8CqxW7fDixahNp/2YBfTCyVsX3ySWnPpEn4weTV+PWvgbMG1uLuFy/DI/EPArffjpW9Z+Pa98RzfOvgLFxywQERXHU4gPR0vD/zatxxB/Dagkfw4YK7cd7WVVjYdTVWTL4bHRc/Aq8XeOzvG4HqanQ8uhvX54iHvH07cOf0lcDBgyhdfwt+M/YD9P3897i47U48NvMx3PizGExNSMB58X/EzTcD31sSgw/biBvX3CZ9Pm8eHjjrLDyQk4MrJ17B7bcDN76xEG/dugKb/zEGJRUVOPf5h/H448CV7z2GO7fficcW7QIaGvD5L3+JEzIyrLLr51u2YOcg0doK3L/mMulYQMIBY2NAYiIWblyIFc+dBjQ1AXv2oPbgT/GL6W1AURGwaJEozA91Ay0tMigNDXhk+9W4e+ON6Pj+M7i+eIpc95prUPvcufjF8J0yvr/8JXDaadjXuhonnBGD+K4uvHXaP+OST7uBxkYJ73/rMbxz6Z24sPpaIDMTu26+F2e/3iYKx3PniqJsZqasv0mTZH5fcAFQU4O9L7yAzwGc6fPhrUMX4pKJtcA//ZO4dRs3Siji5JNlMV16qbifl16KtROX4LIX75bQSXy8de3+Y+8PMG8eMHXlMpxaUXFcPbsf/ziIk0469msdPnwATU1fibd+aV5HA1REYmRciG5VsmWPeikGOs28PHbqqYxJSWRSEjMyxFNhbS1ZVMQ5c9QbqqsTxGNGBncDBH5F1tVxFCqLAoXHz58vqK7YWO7WUygTEizZLPv67KmWTicdDvHcPgNsIt3rJVldzbw8rcmFsFiwrk6O2mNj0haXix8AksRvaZHTt5EaSkujx3hiGRny+bIy5ubqvfPy5NSclKR1NnJKHh6mPIPHIzWDOTkc1pP3EX2HoDVYVVW2Lz8D+DSUPzEvz8qwfAQF55SWkkVFHNbvMyFBCp2htVx1dQLAUEaUYf3O2zpefRAy6w8g4I/fQQAkLCgQL72zU7xcl0u8llDIqh5UVmrxttdLer1salLUXnKyZeowWnmmMJ8ZGQwEaMVdmZQkHlNLC5mWFpXkcbvlMwqXjI2luFGdneIRxcezsVE8wMJCSj/k5IgXmZgo362uFo83I0O8VvViExIoHo5hzA8EBCVqUBQFBayvF9HZQEAiDb29lO/X1hIYFw9VUZWDEIYTtrSQOTkKWnmdvb3kb/UajI0lBwelBKWrS73lfRLVgBROs6HBemFMTibLyuTvpjBxdFQ6uKhIwEfKNuz30zIYfQbIpOvrs8jTL+gipqWRRUWWdeQl9WA5Oko2NMj4DQ+TWVl0u7Xco6DACgtbZGVZGRkOMwRERWO1vtXUR4YAMjfXcnIOD0v5xxEz32pryf5+Qd8mJwtgqbJS0Lt1daTXa4v5zXMzM1P2GKdT2q2co+zrY/D3vz/unt2PfhRkaSmP+f2jH/3tcmN+uY3d0BAjEWrJwYRM7oICWTh+vyzIwUFFvLXL5lZXRzqd8pnRUdmABwcZCERVytvbJaQ1YwbJ1FSrTs7MTMbEyL6fkCDfN8gsI9kcDJIsL5eQmhFRVbHUpqaoiKJB+rGvj4GA7B+GncnUtx+thpydTYsqLCnRtnu9Fubs9VI2P9VTY0qKGGdVTKDLJSGf/HwODmpRfF2dFVwzBd70ellSYsuObMmEy0WB8PX1MSNDw5Tz57O9XdZ+T4/2uQnxBQLyXYH4RcNbtbWy6pSxxESf8/JINjfT65Vmud0kOzrk94GAlBA0N7OkJFpQ3t8v/ZeUJH2qFSKsr5drGvVsU9rBzk4bxhwepsyNrq4oa0ggwMFBuZYtRPf7pSi5qUmMpMdjFS3Y0UEGAhwbk/4yJDbz5sn3jBL8yAijyhKDg6TbbRWzrYJ8cTHr66Nh3pYWuebwsAyp6NptUy2/660cgttNKRjPyWF3twnx3kgWFRlBDwKvizwQBAXa3a1h2UhEvpuSIm3Ny1M0abOV2pP7BiWE73SK8S8vJ7BPyzF36P+3WfSmYX9ha6vMB7+fM2bQigMDfpnDumZycrTPAgECPkF+9vVx9mxZa8q+R2CvzNv587Wo/CAzMiRMHonI/ADGLWLXEB7k5WkJS0sLOztlbpi+BvZaoeKkpGhReWOjRG+NXI8U1o+yrk7LWcbG6HQySinmcrGkROdMKERmZXH37uOPxvzhD4OWt/pY3j/84d+usTvh/55PeRxeLhdOmHsl3n4b6O8/EaipwdqSZ3B14gZg+nTscpwrWe39+5GTcz3WvvG5hMlGRvDee8Aoz8TqT2bh40nn4vbbJRpxoPCnmDMHWLhgFzZuBOD3w+EAnmn9HCguxvr1wIcbD2DNGgCTJ+PsxM8lI754MTBpEqZU3yshRQDvT/4O9u4FcNppmDpVwCs/mbQCP9n7IDB9OmJjASQmIjlZ/vZQ+u9RUiJRlvMnfYgTbr0FmDkTHW+fi+XLgf+Y+QhmzgTq6wHccw+e2n4J5s4F7rkHuCRxR5QJ2uEArrsOF18MYOpUnIDPgcREjP769xJek9tKVn36dGDuXGzdKhFJLF+OpCT5++mOP2HyZAB33YWr37gb+NGPgOefx4ZH38Kq1gOAw4Hrc/bhqZtfwZWbHhEk286d+HjnTuDiizHl5d8D11+PAwBuObQC8UlJ0sZrrgG2bsUvct/HPfdIdKm1FcCkSbhk8mbcfcdhAR/84hdYuWgD8OabuO46AC+/jN8s3YfqakE/zupdgcd6v4PeXuAn3+zGt74lw3vnFZuxeLGQgGPyZFx50QHgjTfw4QXXYu5ciYCe3f6I9BMkonbRRQC+/32cW30bqquBU677Hk655ip8nno+0tIAdHXh5puB1yYuw/uHZL6snvwDfIxzcMcdwMI1P8DPfiaR0GnTAFxxBU5pXQEMDeGsvlXS7ddfL+OTno4nnwR2XfoDYMsWrFsHYO9e3Jm5AZmZAJKTccsNh3HqqfLx2zb+BCUlAMPn4AoAOTntEotevhzr1gG3OhzAz36GzEzgkowMZGW1YfV1T+Css6QPenuvwH0AHgLg9f4Dtm8XDueHak7ANQBw5AhOuecnWHvXShQWzkdc3G04afqZ2L9fIs5e7xSUlHwT+N3vpE8/+QTAiTKHAGD7dgwMzJSbDQ3B7QZ27J2CffNvkhh9by8++ugI/vVfj+CdiVmoqTkfSUkAFi3Cx/unYNEi4OWXDwE7d8LtvhCLFgFPvPcdvPtuBNu2fYTHHwfuHl+K0047A7t6PwbefRcTE8C0aV/Hk0/K2G3aBGy+6DY4nQ4bmn/5Zbn9Cy+E8PLLANaswcaNMv5PPilRyZqaM/DUo/vw/PMSHZ80SabopZdKBLO9HUBPD44ciQCI4IEHJBKKjRtxxx0y5aU/BMB9ynsbcEvJKUBmJk4p+9H/bH/76nV8X/+3re2xvKxn98MfWmHUMSBaUB0ba8OFTEwk8/L4OlSYtLKSTE9nVpZqaKWmclyT4B4P5dgnHEsaIl1LlpVxHBAgDCBHzYwMhjRU95H+OwhI7dToKAcGomTDTE7mvHlaq6SAjLIyBVTEx9PjUZBNQoKceJW3qreX4qqUlzMIYc4wqq+GoYMJCVEduLw8uZACMgIBufen2g9H1wqHQiQrKrTYfJQhDR8yIYF+fZaA/svqagl5dnRwDKJP97aGhMb1+SNAlHqtpUWK/AH5XjAobRgYkNO/8iy+a66fkmLDogMakg1oKO1pQMKCzc1y7NaaKIbDVsjWp21ZulQ8cKM6beipmJMTpT9rahLPWqnIWF5u9fEEieAnOzutXJMJXfb3q/eggrlOJy1HZzBIsriYxcUSVauspK0AD4VI1tWJB+B2S8gxPl7otXJzyaYmYVkpLLSMc6yvt+Kplt2jv5+/hejRDULYUlhVRc6fL3ybWsA/MiLh8IQESmOKi1V5fRO9XgWt5OdbzsykJJJ9fZZVaFy9RA4MyDrIyJCxi48X1zUxUdyZzk5LPsDWVgFxqRxTJEJbmE2HQ2pUnU7xZKuqrFAvS0vlHh0d1vN611wnPz/qqqub1t2tKYqGBnJU2IiYmWm1B9nQwHEIGxLHxuQZW1qkLRqOCUHFYTs7yepqqz+5B5C50t8vf8/NFbcwMTHKLqQh+CBEfJnNzVK81tNDqxdl5MG8Xi5bdvw9u5tuChpe92N633TT365n96U2dqtWBW0Ia2SEEk8rKrJ8dszPl7CZFnJzYIBFRbTUYCMjJNPTOW5yR7GxMnlzcqzGFoNBMXAG9ZafL5t6eno0ED42JoassJAtLVGbw/JyuZ7LJT8HAly61BJSREmX4+PZ06PhycFBaXtPD4FxCReaomi3mwZ2CKyQHERfn8RAPR7DrmSildIXVVWW7aW/X3kC9TplZbIfzJtHqzLe2EhLrcT8fLK6mhUVsvaBTRwYoGXCaG8n6ffbaCiwlZ2dEiJzOOQzKSkSMq2qkj27u1uesaiItOKCqlhhmFf8fpKhkGzig4OsqZEhtCxsEAWCjAzSJOZmz6bE/AoKCHTJpmvyS8GghKHD4ShrSDhMRiKCFHRHUzDAct341xJYboCSEiZX1hEODgqqsLlZQt21tYyJkTCR0SkE1jMhQe5VUkIyOZmxsVrQ3t8fNdyJiWRFhXJsPyPzraPDsn4sXSr9160Grr5e+jwS0Z+VAJsuF5uadGz0MNQI0OuVQ49hr2F+Ppfo7w392uCgTBFDoG1Shj4olZgSK5rQsNPJKB1XXBwLCzUMnJ4uB5OEBOlUgHV1siwHEBUWHhkhmZsrIeqWFml0XBxZX8/ubtKjh0ZDczcyogKtnZ2sr1c0phGv9HhkDRYUiKEeHCRzcjgEIS0IQugAmZ3N+nqlxUtO5jY9tA0OWj5qWY9KrsDBQblGQoIlkAhDRJqHIGhMo1c5Z44yvmRns7xcWGt6e0ng+eNu7K6/PsjCQh7z+/rrvzJ2X6qX9exWr46e2hMT6fFobq2qKnrqbGiQU3BKSlTRYHSUlZXqAYTDlpGjrY1ycm9uFoOmsHuOjlovyIo7dnbK7tvUJKsvO1sukp0tv0tPl/zC8LAVk+XYmLQtOztKm2RkSTR/5PHophMK2SS/zyccfbNnKwuFPkcwSPaZzaiiQgxfXZ1l8g+FdPOtriYHB5mfL00LBhklrx4dlWc0ScWyMjkgtLbK/2trhcUdsKCLI8aTdLtlBSUkCBDB8K01NcnPZWVWePNTs8EabRWvV3bI6mrxqCsrpa9ULZxOpyRR8vIkR5KfT0teOToq9zU8nenp3KLXLyuj9G9zs+RolUWDSUny4Jo/dbl0gzOlDQ0N8swpKXJwycuTQ4/bLZ5NWRmzsvSQ0tQkberoIP1+2egTE6MgFiUlpsdDFhaqEvdeMj1dDFNtrbStvp6Vlbp519aSiYkyJ10uuU8oJPMkI4N5eUepDRhGloQEfgQwLU0327g4uX5eniWK/o0e4mbP1oNGQkLUwyso4OzZysaTnS0HpNpamd/JyTIWqhrPlBSyrk5ynUlJ0ndGjUGltIqLSRYWSn8Y1YeCAst/2twsfTOoBwV2dkr5itLMMT9fDpx+vxwKMjJkjuXlkamp7O9XlhYtm/H7ZSwKCuS6TU0iDNvbqwwxR1He0emUdVBdLb/r62M4LJ83oCxDhu71Mno6q62V76p6B4eHbYlEMEjrxYXDlGcaHZXnD4X+KhI/Xxm7Y399uY3d7t1kOCwhoXBY3AmjQZaSQjocEt40R7eODstnCUwwN1e8mBAgC7u2Vk7s1dUyucvLZaG0tpJut2wwWofEzk6bPTeGYBCQzyrapb2dZEeHBWY0N2sozHBA+XxyeqysZGdnNIoWiURP4kYyxJy4KyqoifgdUifU0SH3NFT/FRWMRBjdmJOSxDhmZdk6rN5eWnCOYbVnbKx8qakpisBxOOTd0UH6fPI8Jk6XnR1FSHo8ZF2dHAaMCsTgoIyDglqYlyeGenRUkJoheQ7Onx/dXFpbpfYsSOkMl4vs6iLwc/ldRoZ0UEEBW1rkFnt0vHp65HJOp3iqbW1aT6gqD0YuaGREHjEpScdybMwqACQl6Sapm3BBAa1Kw+Cgtsls3ma+jY6SlZV2vICDDAalbVVVJCsrWVQkfxsbE7AHk5LEKM6fT46OioHLyZGx7etjBEKh1dsrTTQG0hxQurujsjy/MeG30lLx6srKWFOj88xwRA0ORiWPamvlvgUFYvAM+3hlpbVrOTny6zETZjYSPwZ8kpAg46dk5xZIpVJC9HiskWZysgCJqqvJ4mIZr74+O0/pcnFgIHo/Dg9Lv8bHS2NqaxmJyOWrqmg9QaPLyHDY9jNTU+XeXq9cq69PBjsrS9CigYCkGQYGJFxaUGDRtczN5ciIHoCGh207XjeHutpaMhAQRHdTE7Oz9SDZ2UmvV4FFpaVsaxPEtXjqO4+7sbvuuqDB4R3T+7rrvjJ2X6qXGfg9e4JHoTH9skrj4mRRG5GssTEtCG+WPEZ9vYUfMxyWDba5OWoQnU5WVMjXgSCZnMyiItn/pTB4BxMSNKw1MGA3cHo8sruqZospuO7tJdnQYKXajCilQYYZ1QEjp0Kfj263rNFAgLIYPR4xenp6Bg5bOHxRkYQmm5spxsrlEg/I4RDvQ4mTWVsrG0BiogIkt4o3kpREVlezrU03k54eFherkQ2H5dmUZ5FVVaTLxYoKfYaMDFZWMqok4PHIZzSvMzJCMU4ZGcKar+EklpWR2dlsbJSziUnHsbbWGnzjhTU1Sf8C42RdHXNyZAi7u2mJldvaonSaJiW4dGkU2WhIpQ3y1eOh/GJgwOq/eTwkIxETEWYgoBuf3y9tMLFOJc6sqqI0vLWVHBtjWxutUcvIoNWds4z+kQg5PGy13aqqSHZ0MBTSA0xVFZ1ODQd6PBa4OTAgnld3t4TLROKnmQwEGAjIvKmFFFDX1xvezV+SnZ3MzhZEcUyMIDY/BaxBnz1bxncJtCSnv58sLtYNusrmD6XQfh+BTVEB4/p6AkMqe7OVrK4WT7W0lHS5xKPr75e5UFlJdnZy2jQloA4EOGOGHiQ0pjxjhizdwUFZZ+3tJF0u5uVJRBHYwbIy8Y5nzCCZl6co052aXp+Q9et0Rr3ccJhtbXLGKSnRlEV5uRU8aGuLnusKCmQ+x8XJcpkzR9ZUdraGhaurdc3vY2enzFWtyZe0gMKHp03Tz/f1kcnJ7Ok5/jm7a64J2jTFsbyvueYrY/elepmB36TJdGAfGQhI4jsSIVNT+S4U5JCaavMdrK+nD2AHoHDqITItjRHAMol8anIR1dVkUJLBdDrJri5GIrRMJsPDElKJaFzfaMUxJYVMS7N6aSZEZfLt7OoivV7m5mo9lmqjpaaS7OyUTT87mxwdlb+XlYk10eQ5Gxrk92NjZHm5GJm4ODI5mc9qXsSQUQNb+bZuhO+qd8mODt1AGuVzGRnyULW1ZEaGnHwLCsjMTIbV6+3pUQh2WZk0VAVyg1BQTGGh7BxFRWRionjHGRniLba2yvMEAvTphntE8yVMSJC+9fnIggL+QXM6zM0Vb9vjkUExHkVqKtvbpRsyMjQv2NcnY+V2E9hkUj8E9nFsLKr7N2+ejNecOfL9IEDgsMyRnh4Cm8WDdbujRNDV1Zw9W9k79OTPsjKF6O+UtrW0WGNkSKiB5ea0JKHB2FjS5TJVMHpo2iqh3+xsAjsZ0jBsZSXF2mtZCf0C029uJtnTw34gqnrvcjEQkDn7guar+gA7ROGwjltXl8zL5GSyr4+Dg2pQ1FNZoqHO7m4ZythYLetobrbR9spKiqdeXU12dZnzihh2ZSfZYtaAipx+puPNvLyo0oOZsxUVPAKtT/X5JK/p8cg6jUTI4mL29sp9gQ1aerBe/p6QwKYm7YP+flujegSIpiJcLquWbu77AaTmz+ejFZ41xO6srubwcFRDmPPnywHL5eI4RNKpvJzSGapx5PGQbG3lkD7rvHkyTxgO84gexo+3sVuwIMi8PB7ze8GCr4zdl+plBn4HwDaAwHNWQbutjRwCrNZcAJJQZno6RwG+DqN68JxsSqmpZGwsHQ7x5I5AkWLK2g9skMXjcFjhSublkR6PVTpoBPhLSCL8l2YTHxxkRYXsjQMAgTUEgtyj7aqvl4W8B1LMa1j0gSHZ5EdHSbdbNgOlZZo2TRem0kkZ5KNXjdxLALdAaJM8Hnmefggjfh8kGd/fL5tZSormP9LSZMMqLuYgwGb93Zhe6001nrv1/78C+FtIIfmzakQ79N2txr8TYIv2xx/0/n8whw/9d/1RY8TOTvZDCntf0I1jQNvcAojX0NMjzP3hsHgORlaooUGMdny8juliq60HjMrulZws/VVaSgYCktcbGBDMEKQAu7GRtvA4K0t+NoCUwUGS2dniKSsdFfCMhAO19mxcxwdYRmCtzKPCQvl8YiJnzBB17Li4qPf1GSQMDTRaUoR582QsWFREv1+NTk4O4+IYPQwMD0vtnpmrqh1owromNdzfT7K+nl5o2Li0lH5IzSOzs21okrGxWnh+UA4lPv27HvCYk0O2tkr/p6QwBDkc1tTIOatfx5UZGWRRURQclZrKesjhsaREBXrdbjlMut2CwI2LI0Mh8RArKsi4ODEinZ30+aJelhzeXBwA6AIUTHSQLC4Wz9jk0evqWFKi+feODlZV6fdTU9mmhwuHQ4y9CR9/qvPN4MhmzyaZlyd/LyhgM0C3W9rS1sao1+52k2lpskazsqTfcnMl4hAby+Arr3xl7P4Xvf5Hxu6hhx4igC9Ipn/++edcsmQJp02bRofDwcsvv5zvvffeF7536NAh3nHHHTzjjDN4yimnMDc3l0NDQ3/2fc3Ap6QECWzlOEBgr0yytDQCe1leTovcamyUNWUKy/PzVdMsOTlacpCbS6aksKeHGp7ZQWAZg4CGDtu1KLeRwGMEVqvsx2ECuwjsYk6O2DmzFgyQZOnSqEp3QQEJ+GShdHXJiVZzjXl5YoBKSkiGw+ocHKTfLxvFMIRNRDVc2d1NBT8cJjDOggLZ5Px+2lNteXlUQZupqbIJu93k8LAY72CQdDpZWCjtiomRRQ0cZna2fDcnRwzk0qWmH9cTWMmqKilYBtoJbGJamvR1QQH18LCTSUnmdB5kTw9trkVEVtcQ2KyhKOE5jYmx2AUVEh21CtSG7jQcju5tRuTU6aRsoomJ8vw9PWRVFQcH5Tr9/erNKAI2GCQ5OCgeU3Ex2d/P8nINpxYVmeoIW+ZQWUnxWkpLpYMrKuTf8nIyI0PKB1TpngUFzMkRZzcc1r6vrrZacC6X3HN4OMr5mJqq7dM8anY2pSPLyyXkV1dHYIg+n2xa9fXyXbvRa+G/4WY9AlicFbCPzMvTA9AEe3ujIV8WF6tXepBLABu9yMqSy8rflhEYFWMVCrGmRmx4VZWEknNzZX4aDgdGIlZzMCcnSrjClha6XDIfcnMFZTo8rAXllZWG4lU+rAadgQArKjSvXFdHQKIl9fVU2Z+hKLgsFGJnp3jzvb0yHn4/yYEBVlRIONMI4rpc8gwiFbSNwOvidUeimBhTeqJKSuztjebUTSh9zpwora7fH5Vocrn4Vyk9mDcvyNxcHvN73ryvjN1f/NqwYQOTk5M5a9asLxi7mpoaxsXFsbOzk1u2bOH111/PadOmfUFGvaSkhN/4xjf46quv8p133mF2djb/4R/+gRMTE3/Wvc3AezxB2U0aGsjCQiYkyOQNBml1rMrLZVL7IeGSxkatd8vOJoNBu7Gauqj8/CjGgj6fJcql12s1zgzbihGsNIwe3d3ynbY2TV77fAyF5GTZ30/ZKPv6yEBAruV2yyZqVo+hdTDCsypc2dgooS+PR77DsTHS5WJurhpRDU01Nsqz1NdrjqqsjGVl8rNRla6ro3zI47G6nAb1NzKiYS+lTLJaYGaH9vvlGSsqSLebS5fqJqYJx0iEZFDQYholYiRCWx/Y1kYLI7d5ObO79PVJWwIBG171euUZWF/PwUHZdCyzSWcn2dXFujr1cBSEYyWZ4+JIt9vWyxlGKebmWsBNW5tuii0tUaoSv1/+7vWSPT1yWtdQpbmOScGVlUXTciwtlfvqv8PD8vn+fnkmQzhthXIHBlhTo3PP5xODWFdHRiLSx/394jm63XJNLaUAxvkmhODakHoDazl7ttH0G6LbeG8uFzk8zDGAwGoWFuohLxIha2u1XGSnhMUDAUYigtJ8AVECZ4+HtEnPSIR0OMQgGXaU5mbm5ko0padHDHZzs/RJW5t0p8mdMhhkWpoQPbtctOHE4WGSHR2cNi0qNtvSQvGMDTAnEJAxbm6WvlKRvZERmY8m7+tTI19cLHMkEJC+NtFys3wMkfY29YSDQR0nl8uQ7ZAeD10uRtG8ublW+zEYpD0Ieb36LIr0dbul64MrVx53Yzd3bpDz5/OY33Pn/u0au2NiUDl48CBuuukm/Pa3v8Vpp512dIE6Hn30Ufzrv/4rrr32WlxwwQVoaWnBn/70JzzzzDMAgGAwiObmZtTV1WHu3LmYPXs2WltbsWXLFqxZs+Yvakf6N/bID7GxOPj009iz5wj+/d/HMGXTWvh8wlO8f78QHOwCgNZWK8WDqVOBvXvx4ovCktDxwkl4bevZ6O0FTnl5pfAhd3Vh/XrgpCdXAC++iGXLADQ04Jyda3H2ut9j/37hf/3gA2FVaG8HDsy8EA4HcPr6buxLvhCTJgHNzaIsg+2qd/bkk8KoER+PF18EDhw8QWgdzjhDaEyefx6nr1slVA4TE3jjDeCEvDw0NECoIWpqgHXrsG0bMDknB9i6Fec6dlkO6vFxYP16AHv3or1dnnfTJvnqzp0QAtzWVjzwgPweAEb3nICz4v4k/9m/H1Mmf46dO6XvNm8/BZg5Ex9PPl+YKC66CDhyBF1dwLmTPpYPxcdjzx7g/U+m4L335FeTJ1syGSAzE48+CnR3A59+ekja8ckn0nGqAWdeJxUVAT/7mXwmPV2eb9EP8MknwCkb1+KUSYeBr30NmDEDzz8PTCktFdqSSSrP2N4O/OIXwHvvYeNGYN8kIf1etEjGzzzY0JCynWzfjgOTz7ZsH1iwQOg1PvgAvb3yvHl5wPt7z8Qbbwgzxwm9b+HIEeEE3rgRQiy8fbv8Z+dOnD35ALBuHbZvh7Tr0CEcdkwBGhrg8wF44w3ExgprD954AxMTAJ5+Gti+Xb4zc6YQe4+MCL1OYiJOmD8fwCgmQRhACgpMtz2Pd9/9BGd1PwHgfeyH8EBjZARoaMDpAIDdePFFwJGTg48/kfl28CAAtKC9HXhn7znYuRNIB7AJwsmdni7yN2hvB5YvxyOPngA4ncIK1NYGDA4CXV1ITgamJyTg5ZdFtum2uR9j5kzpp8cfF5IePP88MDGBxETgIgBXJ29Gejqwet0UnL34NmDNGlx3HXABgANTRWZL6EkALFsGrFmDA5s2Afv3y/17e4GaGpy1pg14+WVkZsrjXhgbi9vS35F2792Lc7a+Ahw8iE8/BbZtkyV1+otPYOpUGbJkAKdP/BFTRj4UVprWVpze9RSunb4BSEzEpk3CB46LLgK2bsXIiIznFByQ51+3DpMny5LCpk046Y1X8PzzIjsElwtfvf4XvY7FQt5yyy286667SJKXX3659ewGBwcJgO+8884XPn/11VfzlltuIUn29PQQAPft2/eFz8yaNYv333//f3m/Q4cOfUFCfmhoSE4nS5dySE9yzMqy1QCsqLAnS/b0yGnM65X8XFoa2d/POXPEITHhqpgYEhiXU1wwKH/MymJVlZ7yNFTEqiqJW7S0ROvVcnIkbjcwIN5Fbi5ZWkrAL0c+PbX6fLTq0OEw5fTe0yOfCwaVw3OvtNftZlDzbzU1Jge1jmNjejrX521upjRQQTTs6LASML29UVXlSCSKdOvsZJRkuL6e7e3q9XR2WsJdS/I7KuwqH5j8SmoqmZQkwByVUvpMc4aDEFRfGApMKC3lBxBplN3QEhDjQalXwOpq8XSqquTIrQjFnh7JbbGpSTydrCyBo9fWct48kWo5AlgOT1ZWakhqSD4bDhNYLTlNr+SyDMIyGKQtDmdpqYCDWlrIlBTNr661TC50OqWmESL7Y0C3pgqCkYig9gAbiotEVJKnuZmMi1O0sE9+p4jd3FzaAvqCAorXkpgonkhHBz0enb/BIEf13qbu0rjkneoFeTwadisqkjENBi3HaQQg6+tlviUkkAMDkpNUuSJDRMDsbGZlRYEtS9TjcTop87m4mJw/n8XF5G4IKbrhA2V8POnxyNrLyWFZWTS8yepqMjFRFcdH6fMdFeY3TDLNzYyL0/YNDxPYa1GWwBAZH8+XADY2aj87HMzP1yhFVhYrKqSv5s2LhjBnzIiWYsbEyDixspK9vdLf5pECAVqQGQMBG/plfT2bmxWoVFysqY0JOhwyvejxyHoxdYk9PdJx1dUEJhgMCnAIx9mzy84WLtFjfWdn/+16dn+xsXv22Wd5wQUXcHx8nOQXjZ3X6yUADg8Pf+E7xcXFvOqqq0iSbW1tPOmkk/7TdXNycrhw4cL/8p5Lliwh8J81j4JZWWoENpC5ubI5BgL8DFEtrPW6CbGwMKr/Nn++5tkOWvCGSXi8C9HdOlqdoE/ze8CErasb02u/DoHzs6lJwAPKVMLOTksiy+JisrqaZWVRwmSnk7KSkpPJ7GympEgYsrmZshorKgisY0mJGLdAQEOTpaWau/AJMKCnJ8oAo/mjkRGxvb29tHRe1KR+cbFuUF1d9HolFAbsogeK2CwvZxtALwScsgWCKCwsVBaLyspoXd/AgGwUWuBeWRmNOJnatro6WjouE976VA3fZ3p9NjRIWURCglwvECCrqwX9VlAggAfDtuJycT2geZadskn191sqNAnr7RVof16eHDA6OiS3lZTEvLxo0XBenrSRwaBFF2ZlkYyLI+Dj7NmyWfr9WpZhEllJSaTHw22AJf4WouBtnDcvWg/PoIAJGAySublMSpKNN6JhvGEI4MPlkvYorskyVZeVGQKfXQIA6ekRyz46KqALvVFPD23Rt6lZcblEj44ZGWRDQ/RglJIiRreigmPmoKiHD5Pn9njkNksA/hoC/mFcXJTyLhSSBzTgn+Fhut1CfMCeHnsw2mbWVU8P34SworRon/0BWlOXliYHqIICBjQU+qquyWF9m1I4j0fWTn8/o2wnaiB7oEwpAwMc1TU8qnO4G6pp5/HwaV3XPRAgVSgk4xcGJM5XWcmIfpfJyXwVkINZUpJVGOnHUWFYRV/S55Pv+3wMAjoPPzruxi4rK2g5LI7lnZX1t2vs/qIw5tDQEH72s5+htbUVDiXR/a9eMTEx/1/v8T/97r/wMP/bzzidTgSDQfseMvppv/sdli0DkpIygMWLMR0AFi3C5IoKJDscSARwDiAEtRdfDFRWYvXkHwCLFiE/fxry8r6OwwAmAULS+/3v43QAs5KSMDkxEY6cHDzwADBLr5GdfSJwxRU4ITsbpyckYBb0b7m5+Pz2hTgJwOg3v4PHHweQmSmkvn6/xFcefxwXXCCRro4t50tIbedOYP9+7Hr9daSmSkTvtvR3JN546aUAjmD58gg0uIhztnSL1t5FFwFYi4MAsH49HKWlODsnR/62eDGefFI+f3Hc+3CkpSE5MRHIzcV110lI6dZbAfT0YOdOkewCvo7PzbMsW4ZztN/OAzATR6uJ75Z+nDMHmDsXo6eehxPKyvBhxk148cVohHDZMuDf/x3ArbfijTeE5HnnTglpbt8OxCcn45Hlp2ByYSEuAID9+3F6djZQU4MTnE4cTjwHSE+X8OA11whR8h13AJdfLuFUSJtjY7+J/Xv2APv3Y9MmefwL978G4H3cv+gwsHEjLkz/HEhORnw8gOpq3HWXtAF33YVf/AJATQ0+nzwF99wDvP76GN58cwAbP/sMwADeffdt3HADcP7UP2LJkkM48OabEmrWfjodyiX9+OM4cuSPcDhmYs4caerQUC/uq5mCiy4CVq6ZAhw8iKGhCMgDOCElBVdfcQBnJyUB11yDBQvk+fbs6Rdy5b17gcmT8cADouQNAG8BQHo6Xtt0OrB3r4QpFy3C4aEheTYjza2y3OPjwAQgenTZ2ZbUGfHx0n8zZ2I/JEz5+a234fP5/4y5c6Ohy2XLgKkA9gJAdjbwjW8gEpG5sGv/KTKn33gDh3buxDNvnI3Jk4FT4uLwluNKWYc33CDrKjMTbzmuxCEAOwFMBjBl/8e4CMAj7WdLuxcvBtavxzmxsUhMBD4EsA/AdgDvQzIOb74JXJZ+AAemny/ze3BQOr+kBNi6Fd8BcAoAbNqEMxMTcVD/fwqAPwJwANgcfxkm6c/7ARwGcMrBPwKZmRI6nzsXOHgQJyQm4sziYryzcycOADic88/YMTSEiS1b8LF+d/t2CYni1lvxYM1JWLnzQuDTT7Hqkwvxjg4h0IOvXv+LXn+JZXzhhRcIgCeeeKJ9A2BMTAxPPPFEbt++/a8Sxvz/viyDihb6ALvklNzczDlzJMxCp9MSJXNggLuhysSq0xUToxI+LS1kQ4NVxjFQdi8Ehg8cJpOT+TZEHbsF4G8AkUbJyLDhNKamClqvsFDCagMDjIujBXSUlChHYm0thwBbCM3cXFZVKYijulrQh1VVZFmZJN+rqiRU0tIiIR3V12pvl2txdJTjgOVqZHU1vV5F6ZlMu3JkSnHwYQm/NTRw6VIJ2Rho9puADUsOGK8gI0O8hcJCq4G323i0gQDfNB6hYVoxrl1trYxJXZ1Fpvb2Uk7Ayif6rl4naE7e1dXiRWj4lK2t/BSiUzem7Rk3n/P5LL+loZ9RoXkODIjzMTJC+UxOjmW/sRI8Xq+czFtbo6FQDaMOD+v3/H62t9MyuvT26mne7xfvcGDAhjXZ1GRRfO3tFHCR12u184zH5vGQrK8XWHtHB5mXJ+FKp5MMh8VrUY7PpUt1Tnq9ZCTCEASkdES9FKanky0tjI2lZaTx+6me6ajErdLS+BmkrtTrZVSfUEPxwD4JcebkEFhm6bCYm2tZTJZAyk0YCtl6v08h5MkR9RLZ1CRuaSAg883rlTbW14trnJMj/8/NJd1uCXmXl5PDw9Im1aKziC+fzzLqRHR9hcPCi8rWVquV+Af9l8XF0ufGWzQ6UTk5Ml+SkiwdHAsLo0w4XV18HVLOwIQEaaP2mWFfMaryzMuTaxko8MCAXLejQ9qs6NlgUOZI0KRbjqNnN2dOkFlZPOb3nDlfeXZ/1uu73/0utmzZgk2bNtn3RRddhJtuugmbNm3Cueeei8TERLz66qv2O4cPH4bH48Ell1wCAPj2t7+N2NjYL3xm9+7deO+99+xn/uzXbbcBP/whMjKm4ezYWGDmTHz/+0BiWhrsMTUxEau2noczAWQC+PyOO3Gg8KdYsEDEiHHoEJCUhBtukIMx4uJw0vz5mA7xdAoLY4GsLKQCiIn5JqYDOBOQpP+CBTgzJQWTcnIEWDJjBnD99ZKcXrcO3/iGOgKHDqGxEZg/H0BiIqan/7/s/X94nGd9JorfCVYQwQpyiIgMFpVzrDDQKMg008oU0YiNONYSUdSiBS1oQQWx9p7MXmiLuugUNdGpXKQDWtBBXqKGKVEjN9ZJJmGInETEwlHiwVKSSTyxh0jY43iijC1hj+2JPbHG9uQ+f9yf95mwbfdbTPLd5iJzXRM50sz743mf5/n8uj/3XYN//6mX5cWXluLrX7e/rV6N5uZ3Odn0XA546at/BZw/D7zlLVi7VmHZZbCi+alTwJkzKG5oQHlVFV646c+A6mrMzQEPPACFip/6lMbh5psBXAG/vwjvfCfwyi23YGZGDnoqpfuuAYBbbsHK8nJcayrb8Pmk1LxmjaKMP/xDlJeX4wMAnj31Xvw+gJrSUqClRaiIFSvwk7n3Ahs34t3FxcCNN2JiAsD73y9pohUrgNJS/N2PrkSNz4drAFxRX48PA0BHB7B5Mx7bfSl+cepdwPvfj1K/X9EgABQX4xVAXv3ysi5+507g7Fm8VH4tvvpV3ebyMnD5zh/j6uwhzZObbsLVS88CN92ENWuAfB54pfbD+FDpIbzc/DlUVgJXPrQN449cCVx3Hd595hdYOnkZ4PPhMxtewBWP/hjPLl+LP/C/oijq4EF82HcCWLECH/kI8KGjO4DrrsNHPiJcyWfW/wLnan4f5274MK5Z+Uvgi18UYKK8XD+Li+HzQQiJL31J4IZNm3AOl+F63zmFTzU1LhOA8nLgRz/C5VVVuPtui9hOnRIa5OBBnD9/UtGvzycA0fnzaGp6F1Bailf27cPKykoAJ3HXXUBpaanGxAuz8QL6+gB84QsA2hTWHT+uc+bzwHPPYQ2AFwE8+OjlAmgcP45FAIv2e2+OPHvmGl37mTP6/g03aA6Vlio0e/RRPbPz53EpAHz5yzhR/G5FZD/6EV4CBDx66ildx/w88PDDeMqW+2Vjf4eVAFBfj3MAXjl2TOvw1Cmda8UKXfvyslBaZ84Ap08Dk5PAsWNAU5NSDHNzuo7lZSCfxwVvPb/lLcC+fcDp01hZXAzceqs+e+ON+rl/v+be8eO6JwCoqcFLG/8dXr7pkzrmxo0Cu6xYgYO/fO2VwC9c+M3fv7Wv39RavrpmR6r14B3veAfvu+8+7tu3j62trf9k68GaNWu4c+dOPv300/zYxz52Ua0Hmf37mYBACkynubhohe/5+QKb+tSUY5VnKCRvuL6eHR10fTVMpdjdbV700pKjK+L0NLdvtwgwmSTr653Uy5YtdCqrJ6HGadbWcg/UhD0zI6d2+3ZaH+Ckjm8AD0Yiqn/4fAT2Ksrz+9nSotrdjh2q6TyDAku8x7qSz5McHlYNb2yMjuLEqL881cn2dro2AVdQs5piVZW1LVRUMJUyeLg1GIdClJc+O0uOjXHcIq9Ji3ifN4/eq4fmLUKL2Bjs8qK9ujreYbWRh6zWQb9f11hWVijiebylk5N0D6KrywmL1tVpHD2y3ooKRXopFGpmIgC4QGCnnkswSGCroiBTGQiFSNbVsanJBDiHhkzpe07ee2UlCfVsHgOcijZDIevfPKLodGqKwBFFg8mkOAYs8gGW2NKiZxePC5Iv0MV2B+kXeCnjqOGAw/rcxITAMhUVDsjT20vLKsTJ8nIuwepsPT0qKHZ3O5LyQIBkWRl7ezUdPF5uBgIFeZ7ubtVABwc1Lps3k8PDjEA1XebzmpeNjdy40cYpm+WOHUYePTRk0ldPGFPNJD3UhkcuAvytxjqf1zOfn6d6Kncp4xAIiP2mpobptNeT+U2F0M3NXL1aU0O9n4dUkywuJrCbtHnm96v3NRQq9Lpt2kTjUp1gSYnXQ7eTwBNcXFRUGw6L4UY11hOKcmtryVCIwIJlP+7hli0a4vl5SSrpXo+wqEgBXCzGQjtJW5tLMHjcqywuZua7333NIzu/P8MNG3jRb7//tzeye82NnddUXl5ezre+9a386Ec/yn379v3Kd86ePctbbrmFV155Jd/2trfx5ptv5gsvvPAvPqczdtZfNzNDcmysQEibSGildHbKyJWWkp2djiXdI+Lr6aGKz0bEHA6TjEaZTGpznZpyWRdyaorptCb/zIwZB+uJ8xqYGQqRlZWu/86x2BubysyMNunpaWVLduwo1LZ37NCiYjRK5vOuidUzuictfSNeyxNO0oc9PUrH5PPawMbGSAPubN1KbdbNzfpprBhNTUbQDpBNTfqcl4Yy6g1PEYCBgAxKKiVD5TU0WWf34qLG3sEKa2s1Ll7aampKzyUS0cbqpWcbG8mREdfDyFhMu1NLC5dgrDfptBCgs7OuFc64rsn5eSEq02mltDo6mMm8ahMKh8lkUhtPUZE2Qk9Pz/ivenrolBYGB+3vporBZJLs7OTgoGu50z0uKc1sUnZkIEBPJbu3V4+vvd3uqaNDKWJ7rtmspTg7O/V7Ixz2ZHa4tEROTGjuQMAdjzg1lbJ+wmyWbGtjIiH7FY8b4tbrP7Prm54uAGvSAHt77XPl5W4snaJ4X5+8n2xWlqe3lx0dGmtPJX3LFpJDQ7wV4JYtBQWtjRu1hg4AToWip4dyXry5mUgwEinQjmUBpfdbWrgAQybn8wROcB6mR2c0OJOTBR5Pp/g+POx8ovl5FhjUUymyttbxrXrahZkMC8on6TQ3bdK4bNqkMfXGw1NX7+rStW7fbr/3+8n5ecdFymhUjmBtreaJAcqam0l2dyvFPTDwujCofOhDGVdduJj3hz70prF7Q72csTOG+I4OaqEaKa+DtU9NOfHQeJxagLW1Vr86Jw83FCJjMW7darWrri557J2d5MgIMxnbXGMx0Ull6Wo1HB8nh4Z4FAa799CExcVkOMz162VwEoATB2Bvrzz3YJBDQ4quNmywxvWBAa5dq0XoscuzpkYLPBTi+vXGrNHV5fgDFxepjbWzU/fm95Pd3Z6TrI1sfJwcHGQs5kpRYpIIBMhAoKCEMDVFlpc7tgtPvMyry7lorqKCOVg7wubNZH0998AQbC0tTMJaD6qqOAmh5B7xNkOjm3J1ncFBbY5ek/LwsMYineY4QAYCQl3mctwBOCkXLwrj2JjGY2jIBHnv0aaVzRKYYNY251kznrmc9ia/38YxEFBk19qq+y0pUdRVVka2tTn6ODV0L2j3Gx4uIFPN6TgPkPE4gQc5M6NNdH6e3GM1R+B27oH03djUpHN2dtrfdmv+hMNsb9d3N22SXd6yhWRpqc7X10fafM9kFPHlofp0Lmd1u6oqPffJSf2sq9Pm7FHpRCJC41ZU0AnuTWic+vv1WJqa6FpFUimbF+PjTNpY3gpRiwWD1upTVUVOTyuaCwbp8xVaPA7Y9RUV6XQMh8lsVgahs5Ojo56O4GMifjAu0FhMj6SkhOTIiI3/Eo9BtUKfTyTUcv4Oe5wHTCR0PE9G0iFsPTHZ8XGuWkVXo89kzOnz+7l2LS3iO+PRX2p8SkpMz/EIu7vlZMzPsyDbNTbmOOA9Am/W1jKzd+9rbuyuvz7D9et50e/rr3/T2L2hXs7YnTzJDRtschmDqwf3T6Wo2ReNanNsaiIDAa5fb9B7T4vLiyo8vSsDNLC2lqyvZzxeoPoCDjFtaconbWEyGOTWrVpQsZij2iSXlmSk0mkZ0dpaMpNhd3eBVd9j5GBVFaenbWObndVKbGlhSYnB/QcG9Pl0mp7L3dJCbWLRqE48OcmWFlqa5pzuua3NCTpMT+u2OjpIDg8baOEJAs8WqM0CAf29slI7gSlbrlpF21x20eeTf6DescNOokXUaYeNBmySwBlTK4gTuIfr1wt2v2WL9s6yMsoIb96sjdcIetPpgooDsFdjODFBbt4sp6OqiqchMuT160kmk66Fgps3k16aL5XiM1A/GAcGtCmnUgV2meFhx/rFhgbOzyvNU1VVIImuq3NMYiwrU8vA4qIZlZISZjKFPqySEjqtOaVQl5hK2VyYnzcWE0UfU1M6Zyyma2NlJdeuNQfE2P7Z3c14XM9t9WqlRSURdFhGPp1mU5POCWS0MY+NsaJC11lXZ2CUqSkykbD0XMYRVHvGEVhgICDjPzqqY7CxUddQUUEWFfGkOTaF1KWoxR6AeGE3bbKN33To9gBaW/PzrKqS8XkA6sVkUxNzORnBpiaSiQTPwgBR09POUWBfnxTBAbK+nlu2FNhfgAv8IawtoqhIYKn2dq3fZJJP2hpld3ehpWZwUD197e28B2odcsTxoRDZ26vxqq6Wk+WpmwcC9PsVHf/QDC0BMhTS87ZIMJWyNWSST6Oj5F/8xWtPF/amsbv410UxqPxreXX/5aVYswa45qqX8Mot/xkvFF+LG28EjtR/DvfeC/x07t2AzyeWiU9/GrjuOjzzTF51+cVF4MknVVz3+QR0iEQw+8xlwHe/i5dnZoA1a/CB449h5dgY8PWvY3R0La6sqcFlZWXwAZg9/QHgU5/CjTcCn/gEcP11r6CxURD8n+5/Fw4fBp598Ur81+ZfAL29wJkz+OAHgfe9D3jv9v8b/7DzXfhY6dPA17+OmhrhFVBcjAfL/wzw+bB/P/C1rwH4yEfw3qtexglciRe+8bfAhQsiCyktBV58EbNnr8crN30cx48LAwC8pO6ENWuwezdw++2C/193nTE9DA9DjSPvA3ANLn3qCdG8fPazglP39AC/93v4+fI1+Nney3Fi7wuIx4H1629EV5dAIJc+tAPr1/8O4PPh2spz6O8HNmz4HQEY8FHU1b0dKC1FT88HsHbtp3HvvWLlWLNGRfLTpyFQwQ034OWFBeB3fxfDw2Ke2LZNP/v7P4grVr6CX1R9AvjEJwSkALCysRF33gk8PXEE0JAJil9cDDQ26h7+9E9R09mJ+275KfDFL+LrXwf+z+F34z/f8DN8+cvAP6z6P/CB28TKcuTOn+Dar/8J1qwRnuKKujp0dhahuBj42y8/geuXn8DGjcClPT2Ix+3ab7oJp05ZwX/FCtx7L/CB53cIqLRzJ3y+d+Hmm4FzZ87h72euxZWTkxgZ+QBeLn23vvORj+D4ceCx2r8AurvxqU8JT/E3+z+J++58CfjiF/GBgz/Gf/yPYgJ6t9+PK8+8gJKS3wEqKoC+PtTWAh9Y8xJ8vivwox8Br7R+DuvWAZfW1KC0FCjt6LABW4mKilXw+68QcKOuDpftfQKXF7+CVavWYP9+4E//1Nh1SkuBjRvF7PK1rwE334wLEChmaMiP3buBYPDtuAHAU1Brit+vjocHD38AFy4AtW1t+Mned+HpM9fi058WVuXmmhqs27wZ+N//d1x25gTWtbfjgQeyGH/yGhQnk7h2fByYm8P73w9c0dQENDfjCp9PrSm7d+Pmm4Hi7m5g0ya0tLwFywA+DgCbNuGjAA594++Azk68sua9uKG5GZcFAsAtt+CjtbWoaWgA1q3De94D4LOfxacBXNnYCF91NV5evlQTE0BpOo2f3f4s/l1xsfpY3vIW4Kqr8Hu/JwDLRwBc1dgoIFVlJf70T4FDG7TXfP7zAPJ5/Puvvgs4dQqf/SyQyVzkxvY/eb0JUPkNXv+rre3FvDwv5447MmJHyGTk4mazSuuZcKpHJFtdTbnow8MEzgpwYsKgLsKrqSFraxXlmOYd29oU3VRXk5GIjlNVRfr9jl2ekQh7exWBqZH0jKKWdFp1gqkpecxFRS762rGDOq/H7lJU5DglOTysHElvr0nxLJFjY6onplK65pYWpeGMy3F+XvdZVaWADNgtOLvPx/Z2/gr5bksLyaYmi14mCdyn+w8EyNFRpxfGnh4uLupS1q+npQgnWVFhtcBslkCUnJ/njh20NM9jds1/S+BZIx6OE7jdeBh3e4T3BA4UlNubmsixMXZ3K7rwmtiBuAM6eKrerK1lFmp0DwT0HGMxqx2VlDANOIDRktVjmM87gn8vlav81ZIjaebsLIGzXLVKKbxLLlE2OpEgGY+zpISu4T2VsrRlOi3vvrpazzwWc6rewCGneuQphAMLzGZf1dwdpS6mspJFRQZsGBvT35eWXPq9ulrqDErZPagIZ2lJKdF0msAZp3AAnGDOUp15r+6Xz1PE5oeUySgpcVkNYI5+v34Vidicam5W9qOykmctVZq0+bJxo5bAVgiwpJTmBUYimis9PdLcm5/XEJeUKOqe9aK3lhbm86rbAWd13Y2NSuOOjDAet4h0eFi1PYAsLWV3t6VWUykCO/mQRVpsalIacnTUKYnHAaco8QwMGNXZqftvb+cDdi3PW6TOcFgFyvJysr1dzfijoxrnhgYCC8xDIKsDgGuk376dZDTq+utzMP5aW5+vpXact+dde22G738/L/p97bW/vZHdG9rYHYTqQcAJpQmtN4mlpZqQloo4bYvEQ0vGAQLPEjiuNM/YGIE5Ak/IKHZ26r15swyc9e54GwpbWwvsJz6fSHAt3TJr+X+GQuzttbRhSwuBObFqVFeTpaXs7TUgQ2cngQNCvdXWEnhWi3Z6mgwGxX5i/25uZoF23ep227cbc4XPx7Qt8ig81NlxsrhYG3NRkdJ38TiBQzJYxcVMAQWm+ZqagjKz15tUVOTkq3Ow2mRREen3a+GXlPB5SPfuEduYwrYRLth7FyDkHeC0/573jtPQ4MZ3ydJLHB4mOzoEXoDYY1hTo80ukdD1Dg6S8/PMZAy0MDJC4E4Cyttu2iRjlc2yoKzd1MRgkE5Bvr+fjnIsECDp9xvF03GypYU5G8e2NpJFRUqF5vPWn3ZE6a9IRM/O6LbEzCOqNw/YcN6Mj1Nk8PmU0qyvt+d/RvWqUEjp2HSarK8XgCLDQv9lUxNjgCMPz8PAHIODDn18FNC9eCw93kTzJB3GxnQ/Q0P6bl+f5ralFS3brzWUSslp6uqSESwudtp4nsYecIG3wkAmo6NcsjGjz0eOjTFhz7qry1DNS0tK/Q4Naa309pLd3bq/wUGnlJBIaHguucTqySUlWp8+H79jTszGjXouwSBVhjBA0tSUpWQjEfb3G6J0fFzpyelp5yi1tppDbAZ9cVFDuWWLUqlr1+px3w2hP6uqCioO7O7WvG1sdGnTzk6tqeZm1QEzN9/8mhu7a67JsKqKF/2+5po3jd0b6uVqdseOkTU12gwbG9nZaV6zsegzldImZ0AWDg3J+zaG/lCITurFQ+9HoywobPf10eezY/b1ucZdh1z0oMde8X94WK5sLufqdSMjdMzwjMcL9YVoVDUaDzCQSHAXRI00OmrFceP3ikblGTc3W1S1tCR9twhlMLq75ZZ7iummlOAMoym2e+oHmQz1+/b2Qk0xndYxRkYKVfZwmB7haNoMG5uatDFXVelCw2EZxZIS/ezt1fiXl2vnKC0lEwnVOqzFYHqa+t7wsJMb4uCg7rm3V0aisZFsaGDGNvdcjvQ4r3p7qXPV1HB+XhyaaTPSoZAdo6pKBsZr+B0ddRGV1/HAZJK5nKFw+/p0/MZGRWKevtHEhKJ+Y873+FYdfdX0NCMRo/7yorJUShYylXKacT4fSb9ffx8bY0+P/uxJHnFpSbRVOTrnhm1tmgsQL2QYQlUegNoUPNCUJ63k6bH9CvpyZIRTEL3a/Dwd1RXLy8lk0uFXaE7PgjkkHvAmEtExPJTvATMYO3YUpozHpTk9rblVVaW15GnxMZnk9LSuMRAgt3nRt0FdEwmNw+go+dcWFf4Kr20oJOM5P69oa3qaQ0M6XiqluTwyYoATgA0NiibTadlp7xrZ00MuLbG1tZDteMBbj729TqWjrc0MrLemuro0PzxgTSajPae1lV5Im0iQXji7fbvmQOaHP3zT2P0rer2hjd0CYOmnMDk+zrsBcmBAisUQ68M+GIJwbEy7SmUld1kKBXiQYYB3QRx58bgm/1lAMz4YZEODpaw6O+Xxen0Dk5Pc5h3borrnLO3BVEqLZXBQG0ltrfUfLbjzrF1rKbLycvPcdzq7xKoqU96+k1NTJnviQcTb2tjcLI83Y1HPPMRCEoOhII3vsaREG8sjMPaY4WEyl2NJiYE7mpqc1tcuKLXjIS6fgdI2j7zKqw2FKCMwNlZgo6isJMfHubhom9vgIB0G3+938kmRCLVhecwqUJ/cWdtszls0+IyN4QIgI1BczGTSNt2hIQFKqqsJTBC4U9GGpXmBQ9Zb9Zh04hob5WyUlBB4jCmLeiIRurQii4osUtvDLVss2q6uJrCb/f1q8wDOKmNQVKQIGWLAmfccqL4+SlPwz1hWRgJhoWZ7ehQBFhczCxiZ8BKjEIAkavff3ExTPz/iwD/s6HCGE4gW5H6Ki7lli6bZ/Lz+zo4O3gMBcw6Yc+BFGU46aGREB25qImtq9PuBAXLzZvGT+v1MJFxbqjoRPAcnkSikf1ta9ExN7ml+nuToKKenrQ8vnyf9fqYADphTlE6TbGsTxyugeVJaSra18ftQutGLkmdmBAi7B1BaZGDAnvVZlpUZR+noKJlI6NzmuXhiwskkHRNPEgKc5GHAktJSrdGpKZf1SSTMaRkY0DWMjWmdWA/gaVjacmJCN1tdzRwk5spMRqCohgY3fuzu1pzs7uZb3/rapzF/53cyXLuWF/3+nd9509i9oV4usnvvex1Sy6s59fRQE9fY6hkOKw1nndNnoZRae7ulp0xo0iEfQ6FC/1w+r00hkdBEt16bfN6Qdz09Wmy9va6fiO3tSqkODTGZVHCQybyqEXVoiBwcZFubLtlL23gIQW9zSqcpr9JD7Y2MyICOj+uzTU0FwuWmJm1mzc1kSwvTFiH6/XSUVBwZ0T1NTLC42Ah9jX5r+3ZL7U1PO5V113PX06PvJRK6mYEBHXN2Vv8Oh3UDAwPawMJhHaOkhE5V1cv9jI3pxIODciCGhwveezisTcX67xw61gvX6+vJ5mZ3WZ7e3tQUtQsPDTlmd46OsrOzIMTNbFYbY3OzjJ+pZVdXU+nUWEyRd0cHWVurf4+Pu0hsZIQkTFTXot7iYrreyk2bdMytWzV1NmywY1VVaZ50djrdvHxex66qou4pmeTq1dSc6e52jd3JpG3s1tDnlBlMwby/n2RZWaHva2zMUWPF4yRrapTKKy0tNJBPTJCplOZ9W5s27HBY5zal8+3bXxWRedkDU1LI5WxOWnTtSQcuAS5b4Bm8jPe7jg5ugQiejRFNc7avTxPU5lFzs+4jk1Eacds2XbaLssbG9JnhYbKykt3d5nxt3qzWgrY2MpnkzEwhKeFRuAWDWsM5qM7q9dQODpoB7+sTEXVS4xoOq27omvKrq9ncrDU8OEinvzc9TY1pURFZWSlHrKVF4xsMMvOZz7zmxu4978mwooIX/X7Pe940dm+olzN2N93EjRsNdDE0RBYXKwVVXV1gmGhp0Y5ojTWeqOrWrZYSbGnRLE6ltBG1tKguZfLeoZDSR+rHOuSUqM+b18jKSsZiOh2zWTY3WwvB5KSOF49rY6qocPgFjyLQMbiXlnLLFtUgYjHKUFRXE9guA9zergUUi8nbHh3V9zdv1kbsYcfTaRf9RCK6Ho6Pu025paUgbstg0AtUtDmWlpJ+PzMZFthDmputphQkcB+B+9jaqqGZnjZpGmtgXrtWEPjubkUFa9fS6oM7CWQIHCmkYYNBbbRew5snB93eTo6MeF0kBCa1sdizDIVI9vXxGECpo99Ojo6yt1fwfGaz5ObNbG+XvY0D6tMaHSVw1nq1DmuulJbKGbC+gtWrZaSqq2mR4C5rpzjDDRs0hB6cndPTutbGRj2v3l4Cd8mAhcOcmZFclKeszdFRPg4Q+Ft9fn6eTkumuprs7mYoZNHY2JjGdXpaNd7BQQL/D89CfXBDQ5q/nvp6NGr1qaYmsrraielu22ZAj/FxxuMyYu3tFjWWlckYTE/L6Zma0hrK552AbiAgoMlpL83X0kLgb9nTowB9j2UQnrO0aFUV9Sw9g1dTQzY0ONWhx6F2naMAN25UHWzHDpJtbXzey9IEAvT57LrLyki//1XAnAvk8DA7OwWWOu9lVUwx4XGoz7O3lxyA6vIsLeV3UGD2GR3VvX8PApo8DhTqdj09yjjU1xdaDCIRsrlZ63lkhEft+vNAQWzYI1YYGtI42c+hIfJzn3vtI7s3jd3Fv97Qxu55gAyHCWTI9nYes3Qkq6sd2oqlpVqwgYA8uKIipgCuX2/SQCbZ09+vzSbvpSX7+sipKS1ia74dGWEhyksklBIBFI20tGgV1tTI/ZueJmdnZegmJ5lI2EaVSFiP2h5t/KOjZDyuzSaV0ucNGldSQhmwzk55wJOTZFkZR0YM4dfby1SKDiF2HiCLi5k3T/qSS+i05k4CroEeOKQUod9f8ESrq8nycuZhxNYlJUzZJuShI2dmSOdSRyKuKZ0DA9pEp6b0N2+sOzpcU7JHusyhIdLnE4LOq/MFg6TPx6i36bW1MQNDtnkE001NZFeXi0qA4wQO6HwmfVNUpICqvb0Q4Q0OkhwcZFGR6mpNTRpnacQtaOz6+gRKmZ/XfUxOKpJKp81QZwrsKp2dzos/avOPS0vWGP2EoUiXVHPy+2WwamvJlhb29pqDUFzMtWtljNnSIkPd0uLIabyacXs7yZERHcNTUG9ttd663eTQkByVpSXNW6P8cQwkXh1582Yyk5Eh9MBV8/OyfLGYvmv1W+/XkYjNw44O/U8iIWdjfNxFeN5h6PNJwR1wqvG3enOuq6tAFh0IkA0NhV66piaNoTGvMBTSM+/qKqQOIxFu2FBAE3vOz+IiHb3Y5KSM6XmIpo89PWQ4LLRmfb2+2Nio/aCkRM/RdCZTKWqtek2q1ue6wzIe7O5mFkJeZ7Ma1+ctcxKP25yvrydraxWJd3VpzEdH+e1vv/bG7uqrM1y9mhf9vvrqN43dG+r1K2nM+XkCd5FTUwwCTkh1G9R0OuUZvVDIrZhnbKMDJrgV4KC3USSTWiAlJZrAvb2q05WXkz098vAmJnSs8XFug5CGHgPDDvMgmc9rswiFmM0aY38ySSBO5nKOWctrrtXmHXY0YZ4YJHAXt25VHTGbpRaRQfSBXXzGFp3HWJKEUJHs7WUkorrcKFR3u98iwsVFuhYFj2hz/XryfhhEu7SUuyCU6z323rSpkCllSYkMWU+PosGyMnJiorBBjo7K2MfjZG2tNp9sVhtkaysZDIpHtKGBR72xa2/nWaheNw/VR7Ow5vCiIvb0mKFtaRGfKSRmCjym8QsGrb7mGZ2tMuaBgDZ4n08Gq6iIo6MWXW7erOizspJcWnKPvK6OxrP5IJua9DufT3vhWajG9qRtqhFYpFdfb+K//wcF8Y/LSZqfV220uZmsqLC2jElOQqw50wBZXq5zNjYSmFTEFYk4odFUyto0Kiu1SZeXc3DQaouWUuTmzdwB1Tjn7WdPD100yKEhcmxMWQ1dhEtjs7dXzqDP54AibW163ge8tTM97dL67OlxKhDRqGUJxsYYiymiymRINjTwJNSWwNJSnbexkSlbL65m19vLuyxK4vg42dnJWEzn/Q7wqszCIZaUaLMOhego3SYn6dBcj0M1+kSCmn9FRbp2c6z2QPXDHd75RK7JeNxSmZ2duk+PyaehgRwbE2K0vNz49ZbI4mIHGGI2q+/19uptdG/PAxaR/+w1N3bvfGeGZWW86Pc73/mmsXtDvbwHfwxe68GDZFubNvp8Xv0uUCpjn+dtDgyQVVWM2OYP3EXgb3kWStWsXy8j8Jy3gdXUkK2tXLXKFkNzc4EceWREQBMIin+HGdZJCBjDsjIyEnHtensA2wzPaOFUVDCZFGLseTt3RQXJkhKlLdPpAldiebl24JISryzJdNq8/6oqcmKCSSi9cj+UmskABoh5lrOQEOY0oJ0zn2dJiSkfQRFhRwddNHW3GaKsjd00FC2yqIgLAIfsHM9AwB6PrHrKjEAa6o3aYRvM42ZEHzdDlrLPzpphzgGu72qffY4lJVx41f97ys87AC9TW6Chqa9XHbax0YAMvdyxQ5FvURG1CbW0yJNvaGAup808m1V95hjg2WA925KSQlq8utoh7Dy0L5ubrUdxuzbsujpFrfX1Rmj8V8oYlJUpkhkcJBsbZfwqKgicNXRkt9Jm8/ME/m+NczqtyLWhwdWbpqfp2D+eR0E4NB4nHQdXIOBEXJ80YxeJFBhRTgOOio3FxTJ0ra0yoD09PGnPtaFBx+3spBwai1o9RdeYjfMBgFVVWiYlJcbp2tCg+djRUSAgLy2VwWtuZnu7pfcHBxVpTk0xAaUEYzFjhmlullFMkRwYcMpAgQCNwegunrX1q77NOTIUcil9dneT4+OOTo3T0w5BexomI1VezpISrZ+eHnps0UwBrvKxfr3mjcdvez/U6lBdre95VGgeX+wCFEFGoyQ7OpjPK+rPnDz5prH7V/R6Qxu7jBVZurvpJrqXtnLEzGNjsjiZjAACgCs4d3TQVczXrrW6TyikNE8ySabTWvj5PD2o2vw8yWxWm01fn3bJjg6thKmpQipzbIwzMwYySCRYX2+RT1sb2d3NLVvsb5kMq6utEN7ZqY12YkLXZdpasRjJ8XGHgsvlSLa3M5WyTa+1VWGX1R+zUBqzoYEF+vixMd3H9DTXrrXoxufjeYjvMBikzldaWiBC9mB909MaF7/fwbQZDuu+DcjBzZtV05qc5HkYytI2elZVFRiFh4b0/ZISOSCTk7/KW9rcrHN5TMMexr+xkayuZiplm3EiIVb9GH8FoLJ+vcZvdFSPIp+n48RkT482JGP77+igIwcYHKQ2TL9fSMqhIbK2lrGYRRNFRXo2RjpcVKTjMRTS9QwOcts27Z0bN1JzrrlZY9nXp/Hu7NRzHh6Wc2MXWFJCh1Rta9O9LS4a/N4ax1avtjluzz0cLvBvMhLRnGluJnt7NZ51dXIKvNYUo7bj7KzO4dUbQyF9z4z26KiBfsrLCwAVj2TZ0vcekKa7u+CwMZlkOk1ugRCReRtXTw/PU5J3OoPBoJ53PE6OjalWOj1N5nLs6lKNsafnVajT3l5FwIEAWVTE9nYD6WzerLExII+nLzg6WpgH/f26hwxALi1xaEhj61pajBB0ZkaHHxpSVLxhg11raSlNOpO9vbbmJiYKAJ+yMrK+XuPd2SnAUjDIzJe+9Jobu9LSDFet4kW/S0vfNHZvqJczdj/5CevqbKPevLmAvjDZE9bXk4GAQy+yp4dDQ1qvqZTxGtbVFTppjZXfIdgMAHIAIDs6CBzS32pqVMBuaSEbG12Uxqkpby1qtVnz9/btKrpHo1osIyN0+f3FRUVYnZ0F3koGAgZ6eFApLJ9PaUwPOTc5KTRgR4c+29ND9vWpjpfNMhDQ3smeHkUrHR3k2JhrmE0mSVZXewGjPHpzAkIhi/jq62VgNm+mGvBPELiPXV0F3dSyMpLBoGeTCSwY9aLqCqp5PcsCs8oFx/a/aRM1EK2trrGYkYg231SKnJ4msEuqBlmS3d0as2DQIvMDSgt3dpL5vFOsoN/vykyeFAzHxoSQ7OuTUUskyNZWB56gz+e15hE4yxhAYDfXrrVxzOcJnHGtLuzpkUPT26vNsL6ewLMF2aBMhkDU7l/k0UnLQIyMUPfY10dnkTs62NFh6OC+Ps2DcFiG0Y4Vg5qe164l2drKcNg28WBQhiIUIkdGHNfn1q3kJODmgABE58jubj3fcJjs6+Pq1VoHmzYV2GLY28uNG1UHe8SL2oqLCexkJKL5/QBUm5uFGsanp0m2tXFqSt9jVxfZ2Mj2dq3PW6GU+DEbw1lYTayri0uWFeHoKJNJpdRpvxuF0qgNDXSKDSUl+ncchVq1E5Lt7uYBwBEShCGxZVZUsLdXfYSPWNbhfgjA45ESHEABuOJIDFAgEr8HBSmrSMTW48CA9p9MRvtILEZWVLCr67Wtj3l73sqVaim62PfKlb+9xu4NzY350vv/AI8/nsWxY8CJvv8OfPe7wB/9kcgbX3xRpIJ792LlSgBf/jJeue3/wsyMKBRLS4GTJ4G5xx/HiQcewPL3vodz3/8+8L3vAYGASBy/9jV85aZDWFdWBnz722huXisOycFBXNXeLtHIFSuwYgWQTgP40Y9MmzIr0dR77wVWrsRn3v8sDgKYmZEG5De+IapOFBfj6h1/h6cgXcjjxyESy89/XiSN+AmA+zE3N4c774TUZb/xDcy+4+NYXh7HuTvu0MFuuAF4//uxZg3wSrEENltbod9PTAArVwKJBP7Lpw7hxhvFVYjaWtTUiI+xthY4AwDXXYf9+03I8uhRiVu++CKAowB+BiCLd74TePhhcXDedBOAm27Cd78L7Nt3EsCM+BVxEkePvojZA1cCmAdwHAcOAFVVb0EuB+Dee7G0hIKw54ULula7hiN4t4ljHsKR5Stx+DBw5Ja/QWUl8MJNf4ZzAIAogINY/M53gAsX8OUvQ2Kkp07hjjt+jhtu0D1ddx2At70NTz0FoKpKw2okmNddp/tHURHKy4EDB8YBTOBnAIC78fzzj6OxEbjvR5cCuBcPA3o2t98uxdvhYVy97b/hiV27ADyMxx+HnvupUwDC+OneKwG8DVi5EpKRfRr9/RAPa2mpfn7mM8C6dZibA+66ax/wtrfpGktLcQ0O4ZWVVwDYhacBzM7aMH32szh8WNqmuO463HEHgD//c/zixq9g0yYAX/saSkuBcgDPfvr/wtLv/L7GBxrzSwH83fFPAskkbrsN+OAHgVwOuGb332tsbrkFDz/8S1wJaKy/8Q2guxvAW3DDDbp0HwBs2IBSPU7s3w8s33UXdu6EeFeXl3HkoYewbp2W4XUA9kNir78o/X34AIyPA/jud/Guzk4sQ+thzx7gCIAHAawBcAWAn634KB555Glgwwb84AfA6dMvAmVl+AAADAxgRXU1LgcwA62RKwGcAPAydC0vATi1sICDB4FfAngvgMsAXA7gFzX/Dt//PoBPfxrrKivxLgDXAEB7O5YB/BzAwoKEnD8MzakV9jvceCNw882YmQF+/uIVwLp1+EXx9ZhZWMDyMrC09CDefP0rev2vtrYX83KR3V/8BSMRQ1XG4/LUTMpjwby3KQjwwFSKrqO4oYGidbrAe6DmaXZ2ksPD8lhLS4VIbGxUCgWq+QUCVJTU0EBWV/MZmPpBSQk5PKyaRjKpNEc2K085FnON08A5BoOKJqan6Tx+lpcTiHPLFgNizM8bynSS69cLyLB1KxVVmKYacCd3wdBn1dU6R3Mz6fdzcVG3OjJSQMidtNrI9u2WHrOmXK+B+HEI4MK+Ps5ClGPPWI2oq0tRx+rV1PjG44rEgkEH8Eil6OitPJUFtrdzcNCBJZ3+3JMwmquKCoF3enqUNquqImtq5DUb1RP7+hSVxWKKprJZ7gMoerclNaHncty4UenD0VESuE/1IQ9rPzUl77umhm1tpnRg8HxP2FffW9I9AgR2sqxMtT/XZmE1sgWo1haxyMCT/wEeI3CB3d366Py81anyebK52aKrA3ze6kOeRFJ3N615em8htZjPs7dXzwrYyyzgIpDR0QKrDxsbyXBYEVM+T/p8HBpS0HEUVqsz1GU0SiF4ATKT0XdMt4+TAsdUVxfaIkch4V02NZF+P7u6rM4VDut3w8MOSRkICCiVy9l5GxrEFjQ4yGxW6eJnINBKb6+YXHI5qh5s/ZQRCAz1OCBqr6oqsrjYKXZs2eLaYpUCn5rSekynuQ/giEWL56EaHCsqmLBIbBtAxuMCoPl8TEJ15d5eO1Z1tbI5oZBOVlNDlperud3rtB8cVFQMkQqEQiz0xGazZE8Ps1ndm6L6idc8sisuzvBtb+NFv4uLX7/I7sSJE/z85z/PK664gldccQU///nP8+TJk//T73zhC18ggF95/8Ef/MGvfGZ5eZm33HIL3/nOd/Lyyy9nU1MTFxYWfu3re0Mbu2PHMoXUZV2d4+tjNKqZOD3tNt9jgGMQYS5Hzs8X2CoMcu1pvTGTUU4nGOTq1bZJDw7qb6OjMpiZjFZdJiOr4u0wltZkJMJcrtDUvG0btWt6GjnpNNPpQieD0weamODMjLUWBIPk5CTn58kQxOEYieh6OTnJyUkKzeahH+26MxlLk0YirqeOiQQTCTpGEy/dm8vZ5u8VO6amdD/z89ooJya0GXqQxMFB1T7q6wt8Uc3NLmXsGqc9hW8TGmVZmYN5b9tGp5rOeNw1WqfTJPv6mAIKTedlZezvL9BCcXpa/w4EnPbg4+bYcHJS99vWRvr9GqtUSueZmNC9+/1Mp7XHx+M2Fka/xokJGXHbuBgIkPk8z0P1px07bPxCIXZ3G83W7KwcjrIy5QNzObqiWizmiMbb20kODCh1NzHBoaECXdjoqNWGWlr0M5vVsbz/NwmoKMSx+bwZ22iUZGUlL7nEnncu53gZg0HqBltanNJ5f78M7OKigUosveml83t6NJZnAa+PXAM1OamxCQQEAvPQtek083n9eZs5U4mEnI6ZGZv7mzfrHmZnPX5z3uqlAWdnyViM8bim2+AgOQSlWEMhyskMBnUgq++yutorv3NmpvAMIxEd+w6ojy8Y1JrasYOOVNsjft+2TXMpGhWClMPDZDCodbi0xK1brW7pKfdOTKiNor1dF+o17nd16R6Mis/L73sE35np6dfc2K1YkXH9sRfzXrHi9TN2Gzdu5HXXXcef/exn/NnPfsbrrruON9988//0O1/4whe4ceNGHj161L3T6fSvfGbTpk18z3vew0ceeYRPP/006+vr+cEPfpAXLlz4ta7vDW3sorZggV1MQzDpTZtUq0lDCMXnoHobS0tVe2ttJWtqCBxWDa6oiCwuZn+/9jZPQ+soPKb3c7zHPEVg0uX1Zy2qmzIv1oExolEtGlOpjsfp1AqM5IEcHKTPZxvcxAQ5MsK1a/W3ujrr9fP7CezVwqysdA2/5+1+AgE6SqO4XQ+bmgQSyeVcod0jqmZxMSsqCmIOnJpyqt+trarT7YJqFTtsbJ+zMfVg+T4fZRTDYbKlhdmsbbxNTWQ2q2gum9U9ZrNkURG7ulRbmpqi4wykRUSuPtLby5iN+VEv2jCWGa+VI2dRp8HwCCwReExGKZ1mOKy9aHJSm15ZGcnqatWz6uu5fr1qr8AhMpfjeUiA1KuZARe4ZYs5Hj09LCnxLvUMOzpYMLCdnY7JhcXFrvhbUaGa5eCgxqq/n6Z+cFj3UFbmiYCTfj+3bLEm9aIibfweI0cmo7piVxeBsza/FxwZcy5HcmREIJiBAXJ6Ws5KTY0ioUjEKXmftuiGbW3ctMmizJYWOqn6ri5FrF1d5OQkm5qMeSQWYz6vupwnTPw8wOJiGfxIxOrY7e0yfkNDeralpWRfH++GIaBLSx2hwywKlHaRiFGL9faS5eWq1xnR+I4dNv/Ly4UIKS4ml5YcFyfHx+X0GF/rHig69pDBySR5D9TSctoi0+dgLS3Dw4xapLdg69jj1Y3afbK1lbu8yDIa1f2FQjKIRUXMwvoHJya4uGgae54z2NWl8TYGpttvf+1rdv9ajd3Pf/5zAuDMzIz73Z49ewiAc3Nz/+z3vvCFL/CP//iP/9m/nzp1ikVFRdy+fbv7XSqV4qWXXsqHH37417rGN7SxG4dkPoBDMmpdXVy7ltwHK4SbKsFpW0zHILFJwdn3ENitlTs2RuA7BL4tS+DzyZusriZwHxkM8gCMw9AIijkywtNQEfx5WCG/uVkQcos6ursN5RcKETgiY1FSwgTUihCNkpyYILDA+nqvf+wxJyHCZLIAijCBUKfY2dBA5nKMxehUwmehdos9AFMpZVe9pvKYbSRio5hgVZUM53nAoVmPwdI9gYB2bNswGAo5lKfXaH7WzukZrBTUppCE0sIPmME8aePjFBSskfwhz7CVlDCV0nV6bSHH7Ni0Dcjr02JVFZnPywiGQozFLF3a02POwT0EbndN5K2tZvDLy8lcjqftGWaztN67I1yA0oPAEs/bOHkGKgrB8Xt79WzWrqUihGBQqXO7gOJikn6/CdxeIHCPew7hsKKprVuplo4sLW0dJZuaeN6ciQUobc6lJTlIDQ1qV5icNEWHBbKkhEeh1PX27ZTTkM3SwUmjUbKkhLGYpvXMDMlw2Kmos6mJ3LxZ8zgUUkRtqgx7AK5erUPk83SqB4OD1GYej8ugtrSQnZ0m6XSGwFk5Wh63l9+vaKqpieztlQGpreX27fJTcjlqPvf2yuDZPAsE7F4HB7lxoyJEneO4U/aoqtJxdwGsri6klrNZjT+TSTKZZDRKl/bfupWOEHwScrIMqyaQ1OAgOTwsA9vcTI6OCslZXMyyMg1vBIoWN2zQOaNRXatXHrjL5n5nJ/mIOQWsr2fmrW99zY0dIFmzi32LJAFcWFhgJpNx7+Xl5d/o+oLBIN/xjnf8o9+/4x3v4N/93d/9s9/7whe+wHe84x0sKytjVVUVv/zlL3Npacn9fWpqigB44sSJX/ne9ddfz7/6q7/6ta7xDW3sFgDT8HqMHBxUlGW0YffYJEyYEWBvr7wzn4+PA46wdxKK5LzU4SOA8vfWC7R+PV2zT08PtYtMTYn53TZ7Fhe7OiGrqrw1R27erM22oYGLiya5MzLiZGMmJ6kNbnhYm19fn75npJnAfZycFKu/R9rLyUlPfMDYerP6e1ERE4CTllFUkuH9UG3ifs+IpVIETmihFxeTo6NsaxPabMmMd8IMzqQZrro6paayWSoS8lhUjBKKQ0PaxBIJXWNfn8a7vt4TYSggYjs7ndrzSbtudnaSJSV8BEYEXV7OZwAODakh3yPPZm+vopOBAarmulPRkaX7yspoDfcXFEG1tLClRYYEeIKnAZeZUnR4XI5FczOBA+zosPRVXR2BE8xktEGUlRWIlfNmEAMBq02ZlNSGDSTQbRHeLn3eMggewbb+lmHEDNw85IQ1NJAcG3P7dSikc01O0unVsbvb9aFlMtrAZ2bo2i4eglKXZ20u9/bS1UxZXV1g6je1ipERKowbGnLMIqkUyUyGO3YYbVp1teZnKsV0Ws9xAaYRmEgUeDR7e8lIRKjH2VmyrY1Hbf3lPUPb1eWyKIzF5IDU18vgDQ25OiWnpsiSEq3Zzk5zRKP0+zXVPHkgZjKuvMBolBFYliWRUPRXX6+6XUuLJJ7MQUtAEZsjRpiedpkYjo7q2OPjZGUlEwmLvouLdV8eP6ynB2j3yvJysrhY42Icruzs5M03v/aRHXCSQP43eJ/k/1gjA8Bbb731N7q+LVu2sKqq6h/9vqqqin/zN3/zz35v+/btnJiY4L59+/jjH/+YH/zgB/m7v/u7zvhu27aNl1122T/6XkNDA7/yla/8Wtf4hjZ2eyFww4YNqmdoYWS0eLu7ZSC6urSQSkoULRhpsXEmOxFP65smp6YE1BgfZw4CHsw7j/9vGbMFE/W80ooKTfpo1JE39/eTbGpif39BSccjoGU0ag3QF8hYzFu32pymp1ldbdyATU1KVdkGkM/Lq0wAWmBTU8zlZKBPewtyctLRQXV12XcnJpRGCwS4alWhJZDBILdsUWQ0OEjS55OhtJSvG6D2dpaVFUh/YzG6aGPrVjpNOq+G4ykgMBola2o4OCgv2+PLZiZTqI+VlOi6p6d1nOpqjWcoRE5M6B66u8neXs4DDubPsTH296tvKBxWEGwBl+tJvOQSGhDpAFldza4uWuryCDk2ZgZwSQ6Q30/ghGvQSqUKmziwoKgjkSCTSWYyGtZsVu/5+QLoZ9MmOl5JxuOWBj+gVFdtrSLS8XEyHte9RCKO8o75vB5EXZ2IBfx+enyQ7e3UyUIhGePNm51UkCkw6UJqavT3piY9m8ZGxzlqvM46//w8GYtxft5aGaJRMpvlxo2WrvX6BUyT7qQ5QcXFsq3t7Za+SyZ1ju5upXXHx8mBAd1TSws5O6txHBvT2uvsdPWuSXN4ODTkmFYYDOr80WgB0WTH5OCgvh+JOOmkY+aoehkHBoPMZJTZ8dqPHHBreFhzrqNDqcnOzoIM09QUWVTErea8HoAi3WSSbqy4tKS5NzrqWn1YVqa16mk1RqOMWoQXj5OZ//SfXgdjd5xS2LjY9/FfK7K79dZb/0nj+Or3k08+yS1btvDaa6/9R99ft24dv/nNb/6L7/PIkSMsKipiKBQi+c8bu5tuuon/8T/+x3/xcck3uLG77z4RDDuvMJcjx8a8vl9yaYnz85bGmJjgjh1a3A0NdNRVjuDP79fizmbJaJSDg9Z3NDvrSPnKyuhEMhkIOCYTRYl7OTSkug1wnxbRwADZ3q6GcijP39Gha4hE6Go300ABKFJdrQWeTBJ4gsBdZF+fDEVDgyOe3bCB5OSkJH7mtV6rqgpNzUNDJCsrnVycJ20XjVIbSUUFV6+WvYnHqZtYWpKR6OsjMxmH0xHbzCRFCH2I1dVe9mmP63vS3//B+uzuIrDTVNP/b3qsIsCz7OhwbE4Mhy2tFY+71NzICN09Ab0yIEYbAxwXtgZgUZFFytaUXlFBV5d14A/boJlIKHWXycj7HhoiAwEGg3QSTqGQ9xwPm2NzgEVFCobFRfmYos5EgszlOA84SUNWVhJ4TGNbVmY1wCeYzWo+5PM0pp8gmUwyHFZaLhQi2dlpRjHKjg5FixUVdA3WjEYJPMspCJwCHCA7Oz2aVK98KmRv0mqVLS2cmZHTtH27PrNxo3oIk0mSJSXs6NDhPe03YE6b+Ph4IWXusayYDiHwTes5fExR6fg4E+Y0bNtGMhRic7OlZJeW7DuHWV1Nl0FhZ6ciqYYGOQWhkGNasYSJIv+GBtLn03kmJrhhA/kQPCYiNdA/Zw6uV8LwACRnAfccPIoy1T4zopCzSPakZQ08gY5ZKI1/wAz5WTOgQIasquLzgKuDxmKUE5lOF8ikR0fpSZ1UVb0+SuWvlbH7l17TsWPH+Nxzz/1P32fPnr3oNOY/9Vq3bh37+/tJvpnGLLQefOMblsY8Qo6MqDZhxWs2NZF1dVoItml4HJfirdvtNkjW1zOTkQN3FoX63lkYasy8wG3bqNSdSXqwvJzHYPVBT+DUkF0cGmJREQvcmCatkkySrKtjPq8F4sHA29r+B507Y6/wFLZ37NCGlU6TLCvj+vVC3W3bRrKtraBjZ/phW7cal6UnU9DczPr6VzUPz897mqaq2TU3K2XT2Ej6fLqn8nKNj3nWMzMGHggEFAW2t2vxt7VpXLxUj6ecXVqq8e7uJqurde+hkKDZS0tkXZ08fq/AaGgZT5GGHR2mYn2W7OpSNN3XRzY1ORYvT1jVU5IoKtI9ekpN7OlRRFNfT3Z1sblZn4tG6ZyW5ma6+g6TSSaTShEmk9SztEg0GqXO39Ag/wpwzCSeyjXwrJwHYxRhby+3bbOodnJS0XpZmaKx0lJyft5xdHqGiQ0Njq2sp8eudWmJHiuBBxKJe5v60pIe9vg42dZWSC8ODmpcvbz69HQhVfcqKShOT5NdXayvV3tJIKBrTAIOlHHU5ilwQuedntY5R0bIwUGnDM5oVAfwZBw8mY/RUXJ8nBEoleyx7TCfJ4NBTk0JtLJ1KzXfPPYZj0jWi3BLSnROD8Xb2CinwYBnQ0P2rL3WhNZWsqdHLUKTkzLEwaCO7/Oxp0cgKy+9GYnYeFjpIgWQIyPOAfNIpuNxa+ExnaBkUn/L5aj5PjvL//JfXg9jt0RpcV7se+k1u6ZXvzyAyuzsrPvdzMwM/38BVP7H1/Hjx/nWt76Vo6OjJAsAlfHxcfeZI0eO/PYBVDILC2RtrTYVE6QcGqIWkUVsHofdMVjdKxZzfIdOETyddv1UHjsIk0lyYICrVlkbgJeqMTJmlzvzcpDt7VrQFRU6p7UmDA3RKVtzdlaeqtXOtm+noy9iPO56j5xCdFcX2d3NaFS8kO3tthlmMmQ4zOlp86Jfnd6ZnnbwabchjI251oPR0VfB+K1HyaNTcgrZU1Ou14+hEFlXJyegooJsb5cD4clRezp0ZWXanTs7NcZVVdoIfD7BsO3eODqq8fSs0eSk7sf6sdjVpY2wvNzxdfb30ynOMxTSvdXUSDU9zgLZ98SES/PR79e4zs7qGsfGNN61ta6OmE5rHBIJFqjljJWfjY16x+O6l6UlbtliwJCpKba327yYmuLUlEUjHqJyaUnXYOAnzs6Kgqy5Wd8Ph9ndTdcK0ttL3WBLi2uL8WjoIhE5YKOjQkd2dlqabnbW5RRLSgpCG21tmhNbttg8HhzkQxY5evXfHTsoryCVYlWVGdOSEra3i1vzrDkgU1MW9QeDuo/mZs1fi8QzGf09kZDCuPc7n0/XEovZOJox2L5djsiQdw3WhOlN261bZfC8vkcODOi5e6n46WmlPhMJbt2qsVtcpFtLgYDKGfX1dDR/vb2OWU7nSya5aVMhfR8EnHZiLkfH7hOJsEAbODjo0rIey0wySRlEu9F0Wt9lIqFrX1pi5vbbXwdjd4QCBl3s+8jrYuxItR5cf/313LNnD/fs2cPq6up/1Hrwvve9j/fddx9J8vTp0/zzP/9z/uxnP+Pzzz/PXbt2ccOGDXzPe97Dl156yX1n06ZNXLNmDXfu3Mmnn36aH/vYx377Wg/m5kRLtWmTtc95m/DkJFleLq/MUGVer1kgQDKV8ojlGYHqcccgwETai1Ta2hybP8vLyWRSacbRUW2egYA2+MrKQoNyWRm3b1eKMZejFmlvLzkwwGMoyAitX29RyfAw2d7uQCDNzXSCnkq7bCXwoIxLPq8Fn0oZce7t8rY9sVNPiTKRYHu7IdVmZ3XQ2lonbrljB3XygQGGw3Q6btMAWVfHHTusKda8epaXG8HxWQJ7XWqT2azb+Pv7adpvcW7dqmNWVNDSeGcILLCzU89pdJRkIKBo0tOxs4ZdTkxoU7UNBjhExmLctIlOAWBxUdBy6eQdcNRX/f2UkWlrI/AEmUhwwYvMp6ZEGxYOe/3VZDzOUMiMaG+vadDtJDDBIGCp18dkWJeWCEyKfKC+XjWfpiZFt6GQtTRMEjjHZJJGwv1t9vcrOx6Lqa6qzxyRU2BoX4bDZCLBkRGlwpnN6poSCXJiwlKoOxk2Z8GTjAqFLCKvqZGx8vm08edyZCTCYNBou6zW6KWO2dSkZx2Pk8XFeob5vIy0ifYKnXqcj0DoZYbDZE8PV6/WNNy0qSDRcxJw/JWnzcietLTiAQgV3NUlCjAPCc1wmHkI4ciSEjIadc5oNiuDdz9EFRY0Qw/sJScm2N9PJ4nkCA6GhpSF8Ry/mho+Y2v6SUjVJA4BeCYhEJdTArFSACMR7RGtrdozxsf5DATQCofpiMx/aL8zTA45P8/2dnOCmpo4MiL9S5EBDPxWGbt0Os3Pfe5zLCkpYUlJCT/3uc/9o6ZyAPzhD39Iknz55Zf58Y9/nGVlZSwqKuJ73/tefuELX+ALL7zwK985e/Ysb7nlFl555ZV829vexptvvvkffeZf8npDG7vM3Xdbnewwk0m6YjU7OxmHUIj7bINiIkGnSVJTQ79fSLutKHDnsaFBC8ADZ3hgC7+fjEa1UUejLi0Tg7GO1NSQk5Pq+Zma4uioIepGR9XYbgb0kksUDXR3W1QQi3HeDCzwrBZMPC4jNT1N4NssLtZGsW0bdU3JpN1zN3dBEiWsrXXadGxvZzardbttmzz5NAy5OjrqdPUWF+kAMn7/q8YuFOIzUG/SM+YINDRog1m7ljLyXkqst5cMBBzU27Q7mUgY9HtsjG1tsmM7dtDVu7yUGGtqBFBpbRXK0+fTvVhkVF9Pp2EXDpMcGmJ/P02iaZJAVJtnLMaqKgXXQqH+Z2cA8nkdY9Uqkps3MxYrGIzBQcpRyGTY26t6GBDlHoBAL4FnuXWrV9Na4qxFPXGgIP8yMMCj8FpZgiwr0+0Auzk6avW0aNTAMScITHDeNtDnAbK1VWCTqSkCfXIkvMxENsupKRm7Z2Dp+OFhbt+unrnFRSqt2tfnGs5ZXs6tW/WMnzcHy0MOBoOaQ3HbrJ2yfEeH4yQdHXXZcM7axs5otPD9WEzOQl+f5urwsJMGusebp+YEfsfGx2uT2AG1C4VCus5EQudgOi1vqbmZo6Oa77fCUrRFRdbSscD+ft2300Y0w87ZWSbNmM7MkGxrYwoCrWQhlOa0rc17ALKnh6dtjm/bZunqcFhz2saTAwNkebkkgTwjODrKeaim19VF96xsWpOjo4zHRQAhB6nvdTB2LxJ46Td4v/i6Gbt/7a83tLHbvz/DpqZXpRw8xFUkohVrRY9MhirUTE4WGoQNYs3KSn3OQwIGAvqupSXDYWoTjkQUFfb1Oe0tRxy9ZAV6qw+1tVErMpkkh4bkqVdVOUPj0WpxfJzMZrkAsaN0dFAGwAyzemLOucZn9vW5RqiyMpKdnVrElm5MJknm89y40SK7sTGlGjs7yXCY8/MWWRmBracw3dIiwAS7uws0U57BDwTc8VavNri7hXddXSRnZxmJ0Hncg4P62dKij0k2LMNt2zRUHmnu4CC1uQwPO701Tw/MI+EuKaGLUhYXzXuORvkMwFWrDKRTV+fUBxiJkPX1uq7xcdKMCmdnBXTxHB5jOXFpsLY2JpOOnYqzEArX57PoqaeHwFmN0fR0oSbU0qLJVFfHqipDYxo7DrCXU1MaRi+dB5yRAfee48CANvrZWfb26jHNzxciBk9Kyuezuu/UlKKhlhZGo5YJKC3Vs56cJMfGXJ1261YzpoEAOTxsYsUXSJ9Pz9fvJ5ub2dysZxqNFsZCUfUF1zvJsTGyp0fzOplka6tFdj4fs1Da0KPucjp5psIQj+vxTHpOgti2Sb9f7TPeTft8ev4DAyJ/LivjrRAF2MyMngtHRlxd29H2GQKY9fVkTY2cT6/NwfoSH7HzBoN0LQjzniNcUqKJ6tUwrD2Js7M8ZlHg9u3k9y0SnIYAL+GwtUHE4+zuNmesqcn1BG7f7oHVXmtjl6TaBy72nfytNXZvaCLoRx8FHnjgIGprIVbi0lIglcIrtR8GvvpVkez+wR9gYgJi0K2pwR13ZHH77QAeeAD/9oZfAlVVwHXX4fi+fTi+sAD8wR+IKbm4GHjnO/HJG44Ai4uAzyeS40wGOHZM7Laf+ATwkY/g7x9+F77+dQCf/jS++lVxL79S8yERE1+4gH37gCMHDuCa4iN46CER+l6x8hXg/HmcW3E5DgPw+SAi4WxW597v0eY+pvv67neBRELEzMeP49ixJHDhAj5aWYlXbv4kcOON6OsD/mH7pXj44ZMie96xA0d8HwNuuQVHbvgkjh8XtzMefRT4wQ+waRNw4MDPcfPNIsXF7/4u+vqAqwBg3Trgj/8Y+OxnMTkJ3H33eRw9ei9uuw34f+68Aj9bvAbf+lYeL1/3+/jBD4AtW4CjR+/H7t3A0aM/xj337MOjjwJPPhkBcD/6+4E77oAjzb3tNogIevVq4KmngPe/Hz/d/y4cev8n8OxN/wWvDP93nD79E/y89MO46SagrEyXjRdfxCKAkyd/ibk5iLj4q1/F35/5E+D227G4a5c+t7yMp2CczOvWIRYDXqm8Bq/UfAgvX7gMWF7GH/4hMDIC4MwZvPeql3HgQBrLyz/BCwCAGczNxTSON90EYB8OAnoWN9+MC//1vwIf/CBeuPBuvPL44zhwIIb16yGW7O9/H8AuPPwwcPgwsHcv8NJDDwF4TIdqbwduuw3YuFEX+O1v4847gR/9CLi2/CUsLgK46irgPe/B3BwwN3cUMwCeLv0YHn74JeDMGRQXa9jQ3a3Pl5cDVVW4/34Ai4s4fRo4Dl37K5v/DxFe4wWgtRUvAkBfH1Bbi4MHgR07xDF+de4FMWdfuACRfxsRdCoF7N6Nu+56Hj+Zey8mJoBHARyam8OjNp2evepjwLp12LsXeOHJJ4FVq4DKSnz1q3rmiwB+AYhBORgE9u3DAw+kgd/7PWDvXvxibg44fhwv3/IXuAA9uHdDpNB/UPJzLC8fBb7zHezeDTz//JNYvOMO/OKRR8Ss/s1varyWl/Hetja88q1vYfH8eaC4GHO2ilBZif5+4PKiIjwB4JRGA/jBD3Cu+ArNxR/9CJidxcG5OeDMGfwSIqIeHARKIRLpMwAutWlw+DDwcuUHcPvtNjcPHEAspnGPx2FX/+brX83rf7W1vZiX5+Vs3JhxMjpKA11wJTXlp89Zym+3vD9DwwGHFGK0tDiZG8ZiZDTK6moDucRi7rgjI3RclPT7FQ1WVbn+s3BYUUd/f6EdiOGw9LdSKccNqO7tWYULbW1Otywep6KE6WlPfUbFpKoqZjJ2vFzOtfnkoFrM5KQc254emid5nE1NQm329JAsK3MRSlGRIqH+fpKdnY7+KRAgmU5zdFSObUuLUkWGS5H3bQjNeNy82akpcnCQfr+lb0z0zaMdbWujUyjn7Kwist5eAhnHjwicVarToiyvTrRxo66huJjk6KjDzLCtTRFAZSVzOdWHvCZx5nKuBYDT04rK/X5dw8QEBwf1+YoKktEo+/stCistpc+nMVkCdL2ebqBXiCovJ8vKPJFubthgfZM9PVy7lk5WiQ0NQvRNTbmUsUcZ1txs7S7t7WRbmyKy4WGuXm1zbWBAEWRnpyZQNusQmM3Nuq9slhbtH1f60aOom5+3DMBeiygPiKUnYZGa1XmLiiyqz2T0++Zm5vNaC8AT7O+31heP67S0lImEgp48RMwwNWV6gSMjiqSKisjSUo1zKERAvK7z87Qm+0MMBAzFOD3NSMQYb6xvTXPWItyJCU1806Dz+WwOxeO81VKHGYvKPAQy6+o0WWprWVFh63hpiYzFuH17Ia29uKhrqKuzFOjUFJnPa0zjcX3RyKi9bIjHSerku2Ixx5+5Y4eehdfX5wGe2dfHmZkCTW5m4PWo2T1PtQ9c7Pv539rI7g1t7DI/+QlnYc3G1dVcv94W4/i4Q2e59JfHEN/WxlxO6zWR0KL0+wvkDk6bK5NxvUCtrST9fkfj5AltbttmG4rXiJ3PKxVq6ZBVq8w4TE4qhZTLMeulc6ypV0wpu8npaZ40A+RJukWt7tDRQdOV26Pj1dSQpaWOA5tTU4X0nOWNRkfpGtlTKb07OrRQt2+nbtIg5zMz1lhutGQ9PTpMJKL7i1kKx0t/eUwrHqvLktX2ZgGXDk7aZ/cAjoaLyaQeSi6na45EyMlJpflGRvTTdsTFRao/ykuN1dW5dG5RETkONfa3tFDWsK6Ok5MyojnAaNjijpA5Cbia08iIbfyjo2QuVxAFtRQVcB9Dlupie7vS1WVlBNTvtXWrQ64zk1Fa7W6odtvVpbkTNoOXt5oXMKH6j2kYbtrk9EZl9Lu6lKqcnnYwTctk8gEITcnSUo1hXx/Z2qq2j2iUnZ2qPzObVQp0YIDJpKV5GxvJujqNoWnorVpFMf8nC2LqrK4WgCWZJINBPmTzzufTZ+nz0esqz0NAlFjM0rwlJUa/dtaIHS6wp8eMz+bNZG+vAZiiMvoDA9yxQ+k+v5/k4KCudXiYrK0lsJfAggGjjvCAV8PL5/m41eH6+23crB5fV6faPWdn2d6ueSCDe4GAuDUZCHBkREtU2dQLZCAg9KmXejUFDSaTjMWMT7SpiZs20VGkVVdrvrq2HCN5iMdpAKm95MgI9wKvg7E7SLUPXOz74JvG7o30erVqL3CWC4A1Px9iLufViQ5RCMITzpioyXkPgTsZM0NSXS0mDjY3G71Tht3dMprbtpHs6+PiorzM/n6S0ahj6VdO/hyBMNVwfYDALgI7XXuACH0XnFe6fbvV9CYmyKYmbRAVFWRlpYxsSYlDHiaTJHCuwLA/Pq6NcHaWzOcds4dXawJuJzDHoiIZzGcgEVJd42HG43QLUsTWx1X/mJpiMukhKrezv59W49H4eYIG2jj+gXV13t8l/qlm7BMEjnDrVq+RfC9XrfJAH1u5erWazbVh7Caw09GepdO0zWovgSXXKA0sqDbZ22tRy255D17/RDbr8UBzZETAhikDIDAQ4GmgoISRShWkgix6koxS1An7jo5a3dRqTVu26Hvs7hYCsLOTHR0yIkJgnpHjEAxydJSOY/JJgG1tegaeIjbb2rTRV1cTWGAUAiXNz3sN51vJSIQpSCE7k6EDz8zPk6yosD6+v3A9ahUVtMzFkuvpBL4hZyRHcnjYE8ggcLzQRmO8ooqwj9uaCGtcamqYgfrdPKcvl6M1V+822rslGYjubgPnPEHOz7OsjC5qbWqie+Z1dVSE3NysMZ2cZDotg9PQoHF9CGqt4fS0Q11yZKTA7JPPO3kg4B/IQEA1yUyGC/ac29upARkcJJeWZPhHRlw0DdynLI2Hgh0bI0MhNjVpCuQ8B8fvF4CnrMzG/D6ysVE1WyOVyOdJ1tZy2zY5Gl6D/MyMHMRLLiEzB187w/KmsfvNX29oY5fZsoX7zGCdhWDOGzawMJnjcTVL5zSR456nPjbGVassCsxmnTRKXR0dRdFJi0ZWrTK0VmkpIxEdJwUV5zk6SjY28oBX7K6u1t86Oy2tY9Rh5eUEjmuhlZUJtZlIuIgFWFJ/WEkJgTOFVI9x+uXzNJaOSW1WttlxaYkOTlleLs+9u5ucn2dvr21WyaQD7qxdKyPiJIWMlqm/38bBOP4YDOqYfX1kRwefhLFfFBXxgEV5dwFkQwOPvur/E4A2F7+fz0OtHI9D4IBtgE48NCRvf2yMLC1VdDI4qKgxEtF5JyfJ6WnOQmhXn0/PNGEb0datAmyc9camttY1CAOHtdn19BA4QGd1amsVOYbDbGqyqCASIbu7ZVCt/eEojHAYKJAQdHYa9dgFF32WlJAeE8HWrSLjlvE8y0TCyAm8NOjsLIEnOG/Ojgd4YTjMyUmLynw+srlZKetAgJycdEpDByAu1ykI5ceyMqEgIfj/hg1mUCcmHH+pZeB50ubm6tWaC8cghpkDtnGvXatpMA8hXBkMFnTb4nFmMoX2HEKk2U47z0N7+Xw8a4aIw8NOPjIUsnEIBJwoez7PAktQU5MyFZGIxkBUPA51GY9rOp21eeTJA7GsjJyfd9JR2aycUU8X0AMKG/ubrisQUJQ7NsbBQX1+dJRkQwPvgHhg02l9zNM55NKS5lJVlQihI6+SYzK0LFtbC0CjkREyHHYtSpn//J9fB2M3T7UPXOx7/k1j90Z6OT07wHquzsqIdXZqAvt8TtqEfr88Q6urTAHmVe8lcMK1ESgC2asFPDamCdzd7XUdyAVdWtLnPeLjmhqytpbPwNQCKioEOy4pIWMxdnebt1leTuBBbarGSLFtm/2tro7ATtXGSksVacRibiFFLFXFri76/dYXls9rA85kVNcoLiZrahi3MXkGMC//hKKAkhJtOsYXBlyg369N63lLSXnjswNwDfX0+913T0Npykdg6cyiIrVpFBfzORvTbVCbw/cA3g1Bu3cAvMO+87gZwLP2eZaVke3tzmBl7PvcvJlsbOQOqE4TDJIcGuJzZtyqq+15eI3A0aiJ424l0O0awIEnFEF7BrSry9lbZjJC0EH9XiMjGv/nvUilpMSRUAeDQh8Cr45y9jhC8KoqpeTUcvAYgQdlHIy9g5WVLCoSOnJqypsPOx1nI7BXiMGxMUWWo6OOxDmRoGUcdpPV1dwBRY1MpxVpzM7Kgxkbk+2FWkWYzwsl6dXCGhtleIeH9fvhYRnj5mayrIxhCFXZ0WHRWXExYzGrFxuJQgQgh4d5DCBwwaLvnWox8FhSKivlNPb0kGNjuq+iIrNjC04Ckvm80tTG7QZMuNqCp74gsdsnuG2bxhf4B4fSVO39MBkIaDxMuzIS0XAYX4K1LZwjJyfloCWTBE5wwwbr1/Och8pKjoxoqFatItnWxtWrtSzuAOxaFrh6tUX8RhbA1lal78vKVNvz+bhxo5QuMjfd9DoYu+eo9oGLfT/3prF7I72cnl00I3LkBLWCPG9vfp47dliLQSqlCGdsjBwc5Pr1ttlFInIdUylN+K4ucnhYXptpV7G9vaA1EgppEZeVkaWlXPCiikjEMUPE4wKHtLUVgAvbtlkkNTHBTIau1sH5eY6M0KWbTParwC7c0sJNmww0EAzKqC0tKWKdmtImtLTEWIxOqqWzU8cALui+Rke5dSsdLZjXu+0VY5TqPaEIzqifOjupjWpgQFp5ls7z6kItLXSNyB6H4+Kiju3ptQHHZdiXliyVqefkKW97AZxHH3IMIPv6ODUlj3v9+oIyeiaj+2coVKhXNjZyyxbbdHI5btli6bChIbKmxgGE8l4k1dvLVasKHKLd3dRuGospIjL9sdZWywxUVdHn0zG3bdOYbdyocycSdLyI8/NWk+3uZlOTefy9veTkpAOEtLbSRekeQGb7dj2D6WmNn6fO4DF3DA7qmJkMC+m50lIH/PD06IwBzRGveFgttrbqXI2NjES06RtjnKNpGxzUvdXX69G3t9Mx+TAYVC10eJjs7HQabn6/xs7nI38I9ac+BDgGMiYS7O5WOndxkQ5g4zl8rK5Wa8Goxri62tZtT48uLi5SAs94s6NDjlVbm7IPhnbZuFER3gMAWVcnx8l0FoNBA3D5/eTsrCgEq6vJ2Vk5lJFIQU6ptFRrrrdXg9DTQyYSInHwiBrGxzUWjY2Kdhsb5Yx1d+v3ySR7egxM09paYFnK5/ntb78edGFvGruLfb2hWw/WveMYXnwRuObCL4Af/ADPLl8rSPuBA5ibEzT72ePvxr33AgiHgTNnsHIl8NBD0B/n5vCT/e/GfbvfBXz2s0B9PcJhAJEIcOutwIoV+PnyNTj3wAPA3r14/PGkoOIVFQDUWQCfD4ODQlP/+Z8DDz+8jIkJ4N+W/gwvHL8c//6mX8LnAxAM4oof/b2+A+CnL16Lr9z4C7VNzM7iY9cZlP7FF4HbbweWlzE/L9j2K1/8MywtAa9c9S7gv/5XYGICt9wCPPjUu+DzAZfiFWDFCszMqCsCOI9fnHk3cO+9eOAB4MwZdTI8/LB1NKxZIzg55gD8Enj/+9Xu8J734LnnIOh5bS327hVs/i//8ih+8AOAfBr33DOPqSngp49eioWFnwBr1iCR0LGXl3+JvXsBIIJjx07i2cV34eTJxwE8hLvvXsatt/4S27cDd94JHD+uscOaNbiqpQWoqsLysjovbr5ZSPqjRyNqG/nWt4Dbb8ctt9iDP3oUc3M65/j9lwEQYh5jYzixdy/+29d/iZdu/CQOAmhrA1BTg6uvBq696gR+9CPgb264D+jvxz/svx5XXQXgllvw452Xo7YW+OAHAbz97SgrA/7NvwGGh3Utq1YBKC7G4cM2fxIJ7N+vx4U//EPMzQFXZw/h5VtvBXbvRmkp8B98T+Duu38JnDqFI8eOYWHhIHDnndi2DcADD2guLCzgzD334J57lrF1K/Dhg3+PP//zPFBZiUcfBb7f+Qu1GJSU4PBhYM+eGF554AEsfeLPsGaNumLuuedFPPwwcOnGj+Nb3zqKl+6+Wy0Ozz2HD5/cgdJS4J57sppLV70LqKzExo2aC7t2JfHUU8APf5jFDTdAg/r1r2teJhJAcTEuLyvDFQCefHIcy8vA3Nw8zgD4GNRScPfdwIoVwC8uXIMbbgCeAnD1217CT/a+C/ffP4/3vQ/4+eIisG8fcMMNeN/7gBMHDuC664BfLF6B43/915i7/3684vuAWj1WrABaWoDDh/ESABw+jJIS4PD3vodDK67Fww8ncQN0Hhw4gEsBYf9vuAGf/jTwBPSsMDeHZwFc2LcP52p+Hw8/DKC8HD8DgOPHce7UKXzkIwC+8Q3gqqvwwl//NfCJT+i4jz4KrFwJfOpTuOeeZeDCBRyCrY2DB4HlZfT1AZiZQXk58AerXwAuXMA1+38MbN6Mf/fZS/GlL/0am9m/+JV/Dd6/pa//1db2Yl6el5M0rw044mQ9Nmygft/UJLe6rIwMBpmH0Qn5/WRrKy+5xNBiY2POS167lmRPj9JDpaXGfr+klA4EKHjcvNlJS10c8zxHz81ubxcIxNTIubREzs9zaMiij0iELClRlDg5SYbD3LrVUnOTk3SAlbY2ecsWkuXz5tVXVjpNM05Nib4Pxn7S2+t4/urrLbrs7JRXXVvrYParV5McHtZ1mrQLy8uVjqmo4HlLNXpk17EYyVRK6VxTlz4L1Y8S3nPo7NS1Wt3CjWMiocjTqK+81A9DIT4Pq3VWVck7r6rSd0ZGFCp4lPT5vGqh3d3yqsfHXQtDLqd7SKf1CNrbFWENDdEhFVlcrLpNayubmy3Srq7WeG7eTC4tOaYTDg0VYPuW8gsESCaTSiGn02QkohTo/Lwj8eDSEtvaFBy0tOjZ0O9XZAeQ4+NMJgvRX28vyb4+5mGsH55UQyymaMNaFjyBXo//NZ+n5nYmQ9bWFlCXHuIkmyWbmhRNtbQoEikpod/PAtuOR+Kcy6k+GYuZUsOCrm9sTAU26615wNZOKKSxm58nnSSEsW+nUlQEvnmzqz86KqHNmzWXTFEhHrcaZ1EROTioevDYGNnYqPN7UGAba7a06OFmMrqmQEDXV16uGp73DgY1PmVlrm7Lhgb99CZHTU2hztbdrflTVMQ9sLqktVQ8AhT6elpbtY77+gpUgXav5yEULsvLyViMpwFF+/PzzNx33+sQ2cUsI3Ox79hvbWT3hjZ2J09mNLFyOZcGi8VIzs46BLdHfuzVR7q7WUB6GaGr48abndXxpqe1oru6lGrq7TUGjAUBKoqKuAABYphOO0qpcNgTDz2gDWF+ntmsbbxWU0mnWRAjjUZ1/JGRAp3W0pIWfjjMQICOQ9JLU3kMwqEQHTs/YzHm80r99fe/iim/pYXbt+tzqZTSVoa2J8vLC2i4+Xltgp6U0MiII+j1JJL6+wt7WC6nMS8qsnHL59nZqX2C0SgvucT686JRq3UcccQ08/NKP7a0sFDnqaoiR0Y4NUVX05mfN7madFrjMTqq75iWWDxOJ8RqgEnHlu9xX6asDsXaWtbX0yl4h8P6bDRaQANaFkyp0ZYW9vdrvLq79bOsjGR9veOups/HujozdOEwR0asnmoE0Js26dodxVpRkRycvj4BIBobdT81NSQEitmxQ9daXU2dMJcTWXGQMhaWFmZZGdnXx6oq7cPFxbKtvb2WHi4p0edqa3UdU1NctepVztbmzS6tDFxgIPCqFHdXl9P/c1pvRtu1YQOtr+8wd0HCrEteTTWfJ+fndY+trU541kNlunRiOq0JtHmz6x3MWn03FLJzDg3JKRofd3Vxj+s0m9U8isKEfmFtCV5ToJez7evTsdrbnapJR4fWCuvqNMc3b9Y8Sem+noFAbF5LB9vayHRaDlNjo+rJfX2FRjqrgTrAl8fqbeTiJ0++HmnMpyl8wcW+n37T2L2RXt6DvxewaOgfyOJihm3BPA4wZO8nAZejz9tEFkAlSuAeJ8waCGiNROx7rK42YMCSA2IAJ7RjNDWRfj+DMDLZiooCgWxvrya+kdrGYtR/4vGCfM/sLIFD8tZHRw2kcJzz868SaO3oICDpkxxg3b15LTiv7aC0VC1r5nm7SCkQ4OSkItUohKR83OpX0ps7K4MfiTCblQGL2mfSEH/hrH3vEYh89pJLrLnWk04ZHHRgBXZ0MJMxp2F6WpvU9DRZWsotWwok/p5UzpKNZ9w2OYZCTEKgll0QYjYH66ErLy8ooHtKt+XlBO4k8A0NWDRqrSfiuFQLxbNkdbUMR20tgQUDMx0iZ2f5HEDgLs2NhgYCQcc45rWLCGa/0xEgs7lZRqeoiIODAiFwcpKMxajWi17r8drDnh4PVPEg84ADuNTVCRjkaRwuQUoGbGlxY7V9Ox1ll5CbExr3yUmXOQDO6GEa3+szgCO1TCToNPM87T6nZeixhHu1smzWIYi3bdNz8uRrpryNv6ODHBlRpBmPy1lob9dcNo2okREpc7CtjY/bXHocBjYyodWszc9IhAKL+P2MwNDNJu+0fbvQl0kvymppYUWF7JNHCO56RGWtyUSCt0IZl3SaDgm8zwxiCoYUrqqS1I8Z6oznsCYS6oc0SfqzUOYmGjUj3dysse/sJIuKmIbq9fk8HVl62jO4xcWvs8TPm8buYl9vaGOXuflm6yHay3xeqCkvpegZrWfwKoj6xAQZDDILWF9ahj+EmNU5MECOjwtV6enhTU46+RNOT6t4Ho3qOMPD3OUZF7+fHBvTgorH1Ts1TR3TmFCky3aC4bDW6OCgFou3yIAnFIHmco5AGuhldbVEK7dvp1JSJhfkkQNPTlKL1Jg+WFVFTk9zaqpgvF1rhJHnOmLlUIjRqMAX07b42dnJKApqzXsAA5mcUdTgaXbNz7vmZk8/r6ODTvZoZoZOEX779kJakbGYjITJIbG8XJFPfb2MYGmpotv2dkUJ3d0MBg1s1N3NrVs9BYEggTu1yVsE4ffTiJPvlKE08Vp2dbGoSJtoWxsdA8fGjdRzHh011J7Ea0XMvZVr1xbYMerr5YR4BMLM5ZTq6u42RfsJAn/Fqiqvv+w4OT+vVPnAgBm7OQJz3AdoPzQnrLub1oy9S1GCRVRbt3q9ln/LDOAIDHp6XjXWoZBTzojHdY+ehE3GNmzmcmQwKMdreJhnIS5Wj/zzvDkczGbdOHpz4kkY4jMalbOTSikr0denuW0qFZ2d1lifTHIJIhK4w8aHmYwrI4xALQQp++wUlH70UoyBgObsVlh60OczJOdhtre7wxUk6oNBMpPhQ1CE54FfvNT+MXPcpqH0eBgqcXiG91cItUdHC6iimhqyr08GOxh0IKkFM5SGExMYxUsLm2r0PsAcoIdeB2P3lJtHF/d+6k1j90Z6eQ/+6NGMDE88TjY1savLUkzJpBah9R3t2GH9PqEQ0+lCdBWJ0MHYslmS8/OKThIJ/f/0tDZ42ywmJ6lFtrQkS7W05CixGI8rghseVjrKYwQZG9PG7xV3EgkynVZUZ0KbXuTH+Xl52/m8ExLN5ZSZeQ4o6HIlk05o8vveRmWRXzarSwoEdK3ZrK6F0ahTcM9m6ZgyTBJNi9ZonDgw4GSGnCDnwEAhkqitdTB+t+F4OUVrWObEhI4XDis91dHh0ovbtlHXazeXTJKMRjUmwSD32CbFVIrcvJmjo45YxaW+ODGhX+TzfM6Ms8tdb97s6iyplN1rJKLn19lJTk0xn3cgTB3LIwOemNAkMscoHqeyBuFCCYkTE4UoMJnUfPIkzaemCunoSESOQT4v5yIWc2ln72MeIDgSoa7bdAcdg3I0WnAwzJDRxmb7dpIVFSwrs/Tr7KxqhEVFOt7oKNncbBHmWXZ32zpIJNSQPT3N6uqCCGkopAifRUW6Tus59WqJnq5cIqH7zuf1/EdGZFi9tHpvr34mEixo/HV3u2u+wz7LZNJJCnl17ag5XDMzVntva3OqDRwaIgcGnBqPTXm3nkZHhdIMBCyjYkhhRyOUyRQkfWZnyUxGzq09K+bz5NgYYzHbRzZvpsfJNw/IObAm9elpauFEIoXGe1s/6bSd7vnXjpqrYOyeIPDz3+D9xJvG7o30cpFdXR17e63+EwiQtbXyeIuLZZSGhlzenQMDZF2dAxl4tRgOD5MjI4UNp69PG6ff75jSdwDWDxdVlFdRofRXc7NLGxnZBdvaLIoZHtYmn0goZdjQwGTSmn89bTwP9GG1te5uq5tUVZFFRQQWFH0MD3uMRPLC/X4dZ2BANbbublfjYV8fGxosZeVRpoRCZDxO4IzqLokE2ddHIE7gsGtE9gAQ5wFn0KQE/wTVkBp1NFfZrBlJi+w6OpQ27e7WoRoaaE3WR7hqlVNQcvXL0VEqqqqocGoF7Osjx8a4aRNN321Jm5X1/MViNjYlJRQbxLNkNMqeHv2aqZSjcVu7VvdRVkZydFTXU1VFx4taU6PrN1q4jRt1Px5036O8Wr1adnPHDtKRk2az+qDViXWf4oH0eBU3bqSN8QI5Pm5MI3sLtVerQ7K2lgwEODVl5+jr03yemFBNdGRE86621kn7MBzWtRuHZm8vnSr59LTut7OTjs7KK4ONjNi5PYHaSETrZWnJpQiDQZLRKGdmjC/UaxmoqiIw4alIKeJrbmYc6h1saNC1JxLkAKBJMjjIjg7NxQNQivw81CN3jxd1jo9zn2VfWF+vGmtNjRZSV5cyH7GY7ndw0OvUYA6WJi0rI1taZLyrqhgIyOAtQenw78PSpE1Nmnt1ddxqf49DvZFev+E8QLa08C6LCr26fW+vxuQ0DAhj8yAUomp5aT0n1tQ4BY7+fvKuu16PNOabxu5iX29sY3f33Y74OJ02aRoPkWh9NCwpIRMJeV7T0/LUp6edUcp5E7u9nezt1aIrL9fENWXjY5Z28/upTa6jQ7Wbigrl7GdntekFAp64OJ1KaDis1e7zMRJhAXTihSpDQ2RJidMRYyrlSIiBSaXBfD4ZQU92eWmJwCFp1aUpj7u72+nMeS1CmQy1mTY3k4EAYzGlFONxkmNj3LJF9qa31xTPa2uZyShNyKoq3WNTE4uKaMblCa8Ny2vjc8rjqpOdZTBIxyMoiq9zv2LowmE6miUODWnj8FKiPT1OmNQTfo3HC3SaySTJYNC04XYT2EtWVzMSUeOwJ8Tq9QPmYOCJgQEnC9PSYhGHEWl7NVWVfw4TOGMpx10E1Jw+MyPf56xFHa5Ru6VFRqOpicAuVlUVpP6AM0wmNUWYyVhq9DE5KZ6hGxjQ8+nuZjptzczDw7rPsTH293tpzEkuQEQEnnIUs9lCT5oGQHPOlNMHB8We4qmAe44Y02kuQLXttKVjGQ5z2zbdZ0eHlsLatWpQjwA6WF8fS0r07Lu6rI5slGyjowVi7XCYYioKh8miImYyutUFwFH0BYMypI7b0nPWBgbY2UlXZ2NREY/Ck8s5Sy4tsbfXUrh+v7wqu7aTUJ0vFtOxbzWDO49C3d47bwoiPnjOfpdOU/PP8qR7PGPd0sIkLOXb0kIWFSmTUlfn8CgMBBzYjE1NZCrFJcDmwL7XwdjtseNe7HvPm8bujfR6dWS3uGibRHu7vECjCEt5qa3SUk3C8nJtrsEgWVtrm9sCj5rH6XEtOkbonh4yGJQgKYTCamuj0jqzs+TEhAxEaalWfzisNEcgoNTZq0mOw2HHpm+ZFAJHtOkODZF1dWxtVe0gl6MsQzhMIC5PvrZWxzCtrVDI4OamubfkRWJe+m5oiJs2GftFebmcgOJicnaW6bQ2snyeOt7SEtevZ0HVvbOTB8wBWLJ3dbX2lvZ2uqZ2zs4WIIDz85ya0n3l84UMpWdQTW5Pm4qXNw0ENF4lJRo/Fc0UVba18TSMKaSiogC3jMXY1aWNUzDquI41PMxcTvfr6dJNTZGsqdH49fYSOEdWVMj4JZNkZaUoqkz11UNDbtlCY7KJG+/kOa5fbw5KVRUZCOgas1mNayhE9vQYsfABjozI+Vq1iuToqJyVnh6yooI+n0WgpaUcHDTnrKtLBjAaZXPzq5C0U1P6GQ7r2mtrZTWc1uFep5QbDFIbv6cHaOnpNKxO29paaHAvK9OxDH3snI7x8UIWYGRE2UMYQGVykgyFFPWOjMhhsbQkx8fJSITptKUdjSD5h4BLlXJigjkINMKKCgfR5+xsAZzS0eHUCI55xq6khCwrY3u75ruXUU+nqfk3OqoBS6W4z3NaPdWLnh7eCtWhnwfkuNXVac22tuqcdXU6Zyql44yMOJ3KA97YefV703ZkeztHAC97KUfNnFqvPEKfz9o6Xo/ITk7exb93v2ns3kgvZ+y+9KWCfEpvr+OvZGWlFk9NjVIwHn6+tVVpnkSCQ0OWUqyqKjCeGxb9gLc4/H7HOs+WFgJzWqx+vxaucUnm88a1ODHBnh7zcoeG5PFZLxxLShiJ6DIiEftMNMpcTh64hwbNZilvt6KCwD0ELpD19dqUUiltAL296pVrbdXKb2/XtaTT5NAQN2x4FSBkZEQLOxjk+vV0rA9KsV0gMMdgkO5+vPogASfwCeyk0Ks7uWWL7jWXs3vo6ODMjBfZZbhpk/ZTn49kJELgWQJLXL1aRmDLFpIjI9qgrQeMQ0MuwuHAgMYrnyewh47J2FJ93LyZEcCuaYLs6XHSRB6wZeNG3fIBGM/l4KCMjt+vcTMKMTcWlZVOxaCsjJZyvMcM2Am32WYAOQiDg46KLpGgMd1PunsWWnLOQEZRcnKS+wAC2/VcJib0bm/XRjo0VDBG0agil/FxRxgO3MMFwGONI4eH2dBQ4D7t6bG54MkaDQywo0N8lx5vY2enMaiMjjIDA2yZUfMipnjcosbJSba0CNUcBfRwa2sJ7OTWrZqe0+ZgPQMU5IGqqzk5SdGH1deTPh+7u2WTwhDCMQFwxw6peXuR6VnPuLW2srdXKdIsRDG3y6JT4AI5MuLkf86/+tra2/kMVOddXFQde94M3a0wxHRZmZvnWyHg2j0w+rZMpqB+UF/PEARC8XpUR0ZI1tQwCqU+Y+ZUj4xo35mcpAxeQ4MWd00N+/vJ669/09j9a3q9oRlUcNtt2LlTRBz41KeA5WV8+M6vAN3dwNwclkXnIcaQ0lLgq18VI0dlJW68EXj724GDBw7gyJNPAs3Nosx45BGs8/v1/1/+Mm66CfgwAHz+81i79n2i99i4EaXV1WJpqKzEpWdMcDMYxIoVQCgE4ItfxAcO/hh46il8/Kqncfj0aSwvi42jvx9oagLw6KO4bPi/YQYiZikvBy6/7S+ATZskromDAH6ME7t2oaYGwNe/DvT14dzX/wpHj96Nl+6+W3QelZXA5s04dOpK4Oab4fNJQBaHD4vtYe9e4OBBPPSQLv/EyvcCsRg6O9+CoqL3YWwM2AsA5eV45BFgGdC9HTgAUaqsAfB2AL/EdddJ53J52Z7BZz+LRx81Zhbsw403AseOncT8PCAajvMA9mHdOhFyVFYCOHMGTz4Jid/ecINoSBoa9PnKSnz8xnMS0sRLwOIifrz8ceC221BcDODb35YYJ14C8HZc+Ou/xofOPKbr2b8fOHwYDz/8PG67TeweX/wigOuuQ2mprnV4GDix4RPAH/8xfu/3gBfwXmDDBnz608DcXAzHjv0EP4Xu5cCBpxEIrEJfH7BnT0TMHNEo8L3vidrmwAFcs/xzHLnrLgAnRUpzww34wFW/BDCFn174KC655EM4ccPHsQIAkMV3vwtgfBzI5fTQfT7gne/E/v3A3XcngcOH8fnP65rvvBNYuuETAPJ4TNMW+/ZpsnzkI8CePQDuugtvfzuAxUW8MvMEcjkAy8uorTWx1JtuAhYXcfgwcP/9WeDhh7EXxrozNoa3vx1Y4rvw1rcCH1jxC7x3+RfAVVfh3ns1ws8CwB/9EVBUBOAKfP7zIhG5AgBKSnApgKkpLb9X9u3Diy8Cvw8AK1fil3NzuO464OhRyZjuhZ7Jv73hl/gANC3x6KMobm7Wta5bh89/HngMwAyA/QAOA3jLWwAgDezejcOHgbm581hRXY3rYXPs8GG8C8AhAFdH7sMnbXacAFBj533x2DGcOiXWlVpIiPUCgI9d90u8cOoK4MYbUVxejgu7duF6AJe2teHn3/kOnl5cBAD8wvaSZyEx2P/+6AfwlS+/Atx4I+6/H5g9ez2wciV+XvphzOzdi6Ii4NlnH8Rr/3qTQeWiX7+OZbz11lvNuyi8r776avf3V155hbfeeitXr17N4uJi/tEf/RH379//K8dYXl7mLbfcwne+8528/PLL2dTUxIWFhV/LQrvI7qabTF0gSPb2qj+ut5enzSMMmRfHgQFFfh77Qnk5ge0EJngHjNF/dpZMJPT5sjKlO0pKVJz2+10flAsBamv5ENSTtsc+u81LkeRy5NiY0zaLAUY2vaTUk6EImcup0G/sFZmMgWbicevFW2AgQEHcl5YKQq/j4wT2cBwqojuNPCOZZjLJtjZdiqczF7XUy9AQHbiBs7MMhawpGQbPrqjgLhuTB2wMPdTgyAhdyvS0edUOMdfbq7ROLKbUVjisqM1DwXV1uZrSXQA5McHzMJDBxARTEEghDSgi7ejQNVZWKmU3Pa20XyxGFhXR5xOH5gNQfSUcVnpWGmYSBnVQR4v+PJBHZyfJfN4BFgxEWvhefT2LihSF5nIsKENYe8QeqH72iI0Fi4uNBFrRb0uLpT2XlhRpmXafyKnv4STU+hKxeeHxWHpJCA4NkdPTDIeVWq2qosYjECB7e7m4aGjBujpFRLOzBSWC0lLu2MGClM3mzWQgwGTSfldV5epkUxYJsbOT9PlcvXnTJo3PA1CfJSsqyOJiLi5airW1VdFtOKzvjo8zlzM1hERCY9LYyD2wNGg8TlZU8CSMMD2TUdQ5Pq75OjxMzs7ySYs4495cNNYDTzC1uZlOEYKzs3o21jCe8L6TSpFNTVq/lZVuLd9q8+RbUEki7kVvuRzp86ldIBQqiPSZQPM3YfX8wUEXobO42JE6sKJC4+DVcaen3Rx+LRUGCpHdTymQycW+f/pbG9n92sbud3/3d3n06FH3/uUvf+n+3t/fz5KSEoZCIe7bt4+f+cxnuHr1ar700kvuM5s2beJ73vMePvLII3z66adZX1/PD37wg7xw4cK/+Dq8Bx+B9MuAPVoY5eWOIX3W0iD0FmxvL1ldzXGAP4TXVP4PrlFY4IS9qlsZQk7NxQe0WVVXK2U1NaXFmctx3tItEVvEJ6E+IhYXk7EY43G+CgUYZ3W1NfpWVLCiwkAcdXW85BLZU/VrLejcs7Pk0pIW7diYSwlxdFQbXSjkYNF77DrCthFPwVM9iDpj96RnKExuBjjDJ6Gifns7yYEB5mE9hy0tpM/H572UzebNZHMzl+zYB8ywPgCJuO6D0lC7ICDA3XYtUShttceewx6ofnLazpP0NtLZWeagNNcOM3oxM3xecy9HR/k81FcYDJJcWpLhz2SUDq2uplQPtjIel231+/U51tSonggBMzxGHZ9PzsCOHUbXVlnp2Ew4MsI84MpJLCnRs4xGjWxgUg/XY3ZpbqZAPLsIfMfVm/J5PdfubpJ+Pzdt8rTw/lbGob2dwF3aqBMJXfP4ONnV5fwDT5LqtI2hM9hlZQVIfk0NczmlLrdtM/FfGzenw9bWRpaVycj39Wm37uzkczZ/N23SdzwZIk5Pu/YZZjJKdVdVuWZ9KQ8cktPV0yOSAwiw8rx99gEondjbawCZeNz1qU7as1aq1orZg4OOgCAY1Ok8cV1PV+4uwGMpI9vb9XyMhYeZjCvNs67OdcV4NTx2djpJpM5OOkkqT+Vh61YrJ3jzIBLhN+35rV9vLT2Tk4XWnPZ2Pm734anKj47qGWduv/1NY/ev6PVrG7sPfvCD/+TfXnnlFZaXl7O/v9/9bnl5me94xzt4++23kyRPnTrFoqIibt++3X0mlUrx0ksv5cMPP/wvvg4X2W3caM2b28lAgA9BCLEcjI0dprvmFcSqq7XIy8stf/0gt3qfGRvTArON+axtxB7jPOvrNZnr67WwbCGHvc2/tpb3AIUeHNMqYzIpg9XTQ+CcdqF02tGDPWebAnCAzOUKkcDUFIGdbGhQU7mrzBuHF3CfWiImJ3kUhSJ8Hor2/H5FJlEzQrOA11rnlJg5PW1ItwX+0D7H2lqGoKjuHtsEg0FFnK7Hq75eYxIIqI5l4nnT05QRTiQc31ciYawX4+Ou52nKrvusXZenI3fWc1BMtHNqitaCcUbRsCllJyCJGeCcjERLCycntSlKZHavrqWnR2CGQED1oZoaRwHGcFj309zsojzgrDYzgMABtrcroshmbcxMb20X4ERX2dLCPGBitg8SmGNzswGIlkzP0JgEPAHRhyCNvlmbm17zPHBB0bEBQqandf5LLqGTQ+LEBJlM6rhdXcxB0dAxGBtIQwPzedMvBXSzTU0MhfTPLOAAV3Eo2md3N1lfz6Ehd2rOzIjl5G7PwBUVCZiSTssYt7c7RhdOT5NLS5rL6bSutaRE87O83DltUcjR5Oys6m3j444tiIGA1kkyyUmbe1lzqrzS88gIXRO761mtqSFjsYLmok2EJXO8TkLO7rfM0N1qDsa852wZV+sxwEXB7Oggi4t5FlD90WMV6O52lGJbt1Jz3OOMm552DkICXmT32tXHCsZuisDMb/CeetPY/Utet956Ky+//HKuXr2alZWV/MxnPsNEIkGSTCQSBMCnn376V77zyU9+kv/hP/wHkuTUlAb6xIkTv/KZ66+/nn/1V3/1z553eXmZmUzGvRcWFvTAfvxjrlpFBwTh0JDSgAMDSk/MzpLT01rQxoKwaZOlCr3ua0uJuEgpFtOm2tJC9vRwcVFQaFF6ndDktqI6QyFycJCdndoPtm/XxtTQQHJiQhvt1BTr6613LRp12mnhMMnZWXnvUAuBI/Rtb7e+vgUCZ8mJCS2u2VkZ7J4egRI8THkiQQ4PO8mgSy6h49yMxUjmcozHdemdnTY+TU0W3T6rLxmK04F2BgdddAlM0qNXu+QSHWd01ODgsZjX4kVgzoAqcQLHDTYftmjnCIuKZDAXFy2qnZpyzDUcHyfTaZfxlOL5hJ6VueGBAMmGBmsNWCBwyImnNjeTJkXPqSkZ+ucg9hfOzmpsu7vVgjA4SLa2Mhi052D0X36/RXgQRdrGjfr/HTssKrGIPZulNtmJCTktPT0E9uhYdXVGYXfGADqHyHTaorntZDotI97c7ABFrKryvkYODCi683rgxscJPMGzEBBk1Srdpydx5FFBegTjzc0kOzrY3W0o4p4ezszoM3V1lpatrHSyUF5PZnExRUeX1lppbbVWC3Pg6PcTuJ2bNuka7rG/PQDRurW26nmGQuT3POdxdtbhjx4BXGP2tm1K4Xr8qVkYnZetz4xd91lYanJqSqne6mpTDj/BBaiEwNZWT+aebGpiMkluRQHwstWMLPv6HIL5VruWWYgJxUMOnzbDNgIUWo+Mg5T19dzhHbe4mAyFVNawnjrHRG4M5Zs2kd3drwdA5ScEIr/B+ydvGrt/yevBBx/kvffey2effZaPPPII/+iP/ohXX301jx8/zkgkQgBMpVK/8p2Ojg5+/OMfJ0lu27aNl1122T86bkNDA7/yla/8s+f9p2qFAJjZv58bN9I1xrpGIC9nUlVFVlQooohECo3e2Sy7uszoeQu6oUE7QnGx0lnV1TpwPq/FNzKiTai5WTt1SYkTN+X0tDa9tjZ2d5tBSaW0iDyjUVLCxUVtUNu3U78bGyOHhnjWPOz2dvu9yUwLyXhOml1RFtg5hocJxJWatIiUnZ2OxcHTRuPkpLx24zb0JLuYyZB9fWxv1+Vv2mQweL9fZS5A3nlNDdnSwvXrlW0E4gU9t/l5pYcGBxmNenbmrGudq68nmUxy9eqCzl1zc4Gqq7ubsvoeQ3N3t1Mo95hSiou1h1RXk0yntUF3dXHJGbtzqp8aXRjjcbKzk+vXGzq2pMQpLXgtCF6roicbODVFMpGwVrUDBM6aOOkcgSNyGqamtFEWFelGjJmEjY0ai4YGAofY3m6w+EyGwAVOTtKRASjNOiejGQw6TlR2dDilhQ0bqAe0tEQmk05lADjEBYsme3t1P9msjFQOqqmyoYGcmlJkuLSkFlEzIJmMDM769SRDIWUiZmclOrxN17t9uwz/yIh8uKYm1XFDnkGxOmZvry4/DTiNt0DAnIbWVobDpoIejZJ+PxcX9cz3mNFJQrXFBUBzsa9Pk6ekhGxu5vS0DOPpVxkk5vMyOOEwZ2ZsnBobtf4GBlzK2ROzXYL66NjVJUo9i8Z6epTmnYdqeLOA1ozXzGnF1ufMOObtmrds0bNPAarhlZQwHDbnpKeHW7ca5VhpqeQxASNFeD367N40dhf7+rXQmI2NjfjTP/1TVFdX46abbsKOHTsAAKOjo+4zl1xyyf8IgPlHv/snQDL/0890d3cjk8m498LCgv5w4QIOHxY6DIuLgldefbWggitXOrTk1dlDElDLZnH4sL5XU6OPCOIHYGFB3/P78crhw/rdiy/ihRcvFfrvxRelK/bMM8DCAk6dPg2cPy+U57p10iYrLcXJkwIXvlz6bly2/JIubs0a4J3vRCQiwGBREXDfi78P5IWMOgPgtttMH2/NGuB3fkd6e0jjkkuKgAMHhFwrLhZKs6oKwC9xQ2kpUF2tL546JURiaSlefNEOffiwvrNmDbBiBQ4fNr27p54C8nns3g2cPn0UuRzwMgCcOoXFReAUAJw+rTEoLsb+/Rpe4HkcPGgabuXl0qSz02jIDmBxUZfz1FMAVqzA0aMnsbx8Evv3S6ZscRHAjTfi5EkI0Xjhgu7pxRf1gdOnceaMfr28/CKuXPES7rwTwPHj0vvz+bAbgPB0S8CGDXjhzJVYsQKCK545g2eeOYrrrgOOnD6t71x1lcbvne/EqVN6zJd/Zwv27xeyFHv3YnERqKhYB+BJCH/3NIDj6OsDfl7+MezfD5w5f15w1lOn9CAvXMDMDGwiHcdTTwFXFr+Mc8VXAHgUx48Du3frtk7t2wfgJSEnV67U+KZSGqziYhw7BuzZcxT42tfwwvK7gPJynD/voV6P4yAKQ4TlZczN6TIuCwZ1b2vWAGfP4tQpAE8+if37Tdftuutw5oym6ec/D+C55/AsgHM1v4+a1lacOaP1kEgUwKE33CBk8CkA52xeAMD58ydx9Khu/Ze2Ji7To9HzfuopHDwoxCUOHgSefBJbtwJzc/rdcQhh+fTeS7EMm4u5HHD8uNbTc8/hqae0Hl60cx8H8PLypThwIA+cPo35eZtre/bg3JNP6tr27sUZCI0Jnw/HAdwEza+DECrTB+k6FkP39W8BPGjLGZWVwEc+oj1gbg6XAUA2i3MArtVw48j58zgDITkXT5/GypX2bD79aezdC8RiAPx+HDyo69Zzy+G1f72Jxrzo129qLW+66SZu2rTpdU1j/o8vV7OLRl3NhZWVDASsGG2NtZycdHI0aUBeYCKhulcqxdFRawzN5z1GLaHhkkl51yMjLC42r62tTUXvnp5CA67HgehVwaenycZGRW6hEJnLcfv2gryOuelkOOx4Fh2LRzqtUCYS4eKisTMYR+PiopShR0d1LV5D+LZtVCqnq6vAa2kUG52dpCPT7O11kj1OBimVkkedSikK9LRrQiFFHMmk/j0+LnffU3sIBsWe4fX4TUzII25pURjT16ffNzdrXAIBjbGh5jg1VRif6WkyFnNpJC+HuQABXxgMOtCRuxe7D3Z0kMPDTKUEhpiFkHipFJ2atCPk7usrgC06OpwGXijEgvp7LudqUdksNabNzYqoy8qYybhMOTkxwS1b6OSgwmEqwrT5kEyyELnl82QopIjM49o0SSBPXmp62oiurTF8xw47f1eXG7twWIjDLVsszTc/r3urrXWRs0f7dfbVNaXmZlN4OM7+fkXwiYQBSBIJjzecbGhwvYnnofpuNstCo7rVHTOAWzPZrObj4qJQsYlEISOeSll5oatL4/0qDcIBO75bM6kUs1njcYDqbtu2UdGet9YCAc2ZhgZyaYnBoG7Pi8xSKWVNtkEUYB7IZWrK7iGX0zyenXWPe2ZG1GIMh+moVEIht86cBEQwqDH3bqy31ym+O+SxRzo7Pq7aYirFzHe/+zpEdhNWFrjY98RvbWT3Gxm75eVlvuc972Fvb68DqAwMDLi/53K5fxKgMj4+7j5z5MiRiweobNlClpaq3uDzkeGw0mPV1VpIHrP+7CzZ0FAQAO3tJXBWTcBjY+TYmOu95vAwuXkzZyHgSVMT9X2/XxufV18oKnKilAmYjFBxsWpz9fXk1JRL+2QhFpKtW0k2NOizJvZJCNwwOkprXM9okxgZ0eKqrtZC6uggcFjXUFoqozw87ERCWVysTb252Rm7kREWqMTGx+nzaUNJJuk2+Hze7jsWE+ikrEyGpKJCRqO2ls979ZaeHofQnLIayUlL9Txp6R2Oj8soAo6aiX5/AQ3a3a30qPU8nISAA8cgwIInSMp0mimoUXj1apI1NTpGVZWMfXu7ri8Wo4eZb2sTTVc2q+fqNZK7bmzTOysrK1CdcWBAABAPAVtXp7S4cV+yr08D2dJCv78g6rphA7UZ5vMyoiYyCywIkNPcLANWVcVcTg33HrpTz/kC2dlp/k9G8ykSUbqutpZcWuL0tNV/q6vll1iajh0d5OSkawPp6jIQ0OysxqOvT0bZ2EjOA44qLAchdY9CwJDWVu3RJyFQTjpNcmmp0FQ9Ps5dgGuzGB014EsopGsOh+XAtbc7x2JxkeT0tCOvZns7MxnTkRwY0LxtbCxowU1NsaTEDHB3d0Fj0iNYLinhWVuLd3gpdtONc8KxiYTOa2LJ6TRd20syafuDCTe71GU2S4bDvBVCAcfjWrr5vH0+EtF6Kitz5O+O8DmTkWPd10dGIkol9/YymzUD3NbGzLFjr4OxC1OEChf7Dr9p7P4lrz//8z/no48+ykOHDnFmZoY333wzS0pKePjwYZJqPXjHO97B++67j/v27WNra+s/2XqwZs0a7ty5k08//TQ/9rGPXXTrwZNmeICtKkKXlLC6Wl7mkuXwp2yTPgohy05CaDTgOwTulDGprTWAxRmnpfUIxLwA7CErKvgkRCocg9B4B6wO8IDVBB6HkITHIHShoOgZLfCqKm7caKwimzfzeQg+PjpKsrra2TTB0Pdqox0Y0AbW3k6PfRc4LuNVVqYF3tQkAVi7VqcDNjLC9naD3peVCQYN8JJLVO+or6c2/nicuZxBu8vLeT8Ebfd6luKAA+ewtdWh56KwWk5dHcft33FAxnJ4mPT7mbYxYXU12dmp4v/8PDkwoM82NHAahs4bGeHd9swe98bP6kRRCABxFiat4zWjGQky+/pcTfKSS1RX9FSS+vuNB7O6WgawtpadnRb9j46qJRJqPRgcpHY5j1IskXBRejpNsqenQK3V0CADWVtLBoM6x8CAQfHjes5Gh5ZIkPT5FM2OjTngBxBV9Do0pGOZsR8ZoWOCaWigUxjYssUYUUZGyI4OJSfM4fBovNjervEYHBRgZHycSzZuTU10vXC5nAGmmpoEaOnr4zzEB+oosMrKdH3t7U4PkaGQ5p3fL2NjWlV5wEK2AT03T669s9NdI0dGCgXYYJBRW4fs6CCLijg0ZDqOZjwYDhcAWH19pN8v1S1ANXUrLu6xeZV/9XebmwtcqxYRev1xx2B17kBAzlUwyB2wPrxAQAYzEGDUxukszLH1uG49TIA5OgfsuPT5dE6vTjwywszs7JvG7l/R69cydl7fXFFREd/97nfzT/7kTxiPx93fvaby8vJyvvWtb+VHP/pR7tu371eOcfbsWd5yyy288sor+ba3vY0333wzX3jhhV/rol1k96EPORj2WZv0zc0U3NmTaQmHtYCrqjQhJyfJTIbhsAFFzNvv7zcqq0SiQL3l87G6Wv1N8nwl9pkFClRMtvFEIgWFl4oKFmivQiF51YOD8mItPbp+PclAQBvr+LgMXzyuTde4OT1FEYbDjEQUGZ6EINKpFJ28CuvrybY2B8TxEI0cGdH9DAyQwSDr67XGAwGSXV1sbnZMYk6EkomENrOuLhmu0VECZ1znxuAgXRNXczO1qYVC3LbNItfpafb0GIP/wADr6jT0Xt+bl42cn6fSnh4/YUODzmdk0IzHFeVMT+sCvf6w7m6yu9txBMzMFCQAnVRLIqGIqKiIwFKBEKCtTVHi6ChzANeutTR2Q4MT0c5mSU5OakzSaRYXy755hi6TsahjZISTkwoas1k6WiyPIzGRoLWULOgei4tlBD3ZpfFxKcibMRgZITk/zwVzqtjYqHaH8XGNs/F5tbToeU9NkcxmuX27lBmYTpPBoJ5tVVWBV9TkmSoq7PkYx2o0qijV6/sPhwuKHGxsLPwcHHR6icACmclw7Vqbh+k0WV7OxUVzCEKhwj2Zserp0TNyFHy2DhKAjNLoKLfC0tBGn8dgUM/d5I088u0chFoeGSHZ0yPiZ88h88L1fF5rs72dHBkpELt70lObNzvUJWtryXRaxikQ4K3mED/nOW7WZD49bfPQ59O19PSQsVihT3RsTM94YoKnAdeFkHnwwdfB2N1PgUwu9n3/b62x+7UAKtu3b8eRI0dw7tw5pFIphEIhfOADH3B/v+SSS3Dbbbfh6NGjWF5exvT0NK677rpfOUZxcTG+973vIZ1O4+WXX8YDDzyAioqKiyk3At/6Fn4y9150dgLFgQBeKr8W9429DGzbpqLz294GfOQjYp7auBGYmsIvKj+OB3dfgU+WP4HGRsBDuPzX1hfwf978rCr5W7fi//z2lcC2bfj614GVmzejtKUFwL/BmqYmXN7Xh2sbGwVW+NrXMDEBbN8uUMX+/cDCwpPAVVfh4+sOAY8+KlDCt76Fa9e9ghMr3oUH13wFN90E4OGHhY/52tewZg0Anw//5X07gI4OnPjq/4V0Gvj2t3WNK1cC/+m6x1Da1AQMD2PnTgDLyzrOl74E3H47xseBp4s/jCtWvuIAA1ixAli3zlFAffGLwtVgbg6f+hTwe78nnMiZ8+eBri6MP3kN8Md/rA/6/cB11wEQIEJUTcCh5Xfjp6c+JEDND36AH6/4E9x+O3RNp09j927g0UeBlzb9BfbuBQ4cWMa+ffr+4qJooh5+GMDwsJA5N96of7e1AV/+sgbx4EEcOLCMpfd9VIiJr30Nd94JnPja3wAzM1ixQiCKP6h+GZed+qWAFo8+CkxM4ETpNfjSlwQqAK4AfD6UlwPYtAlf+xqA4mJc1tSEG28ExsYAnDqFm28WmOQHP9B1zcwAP959Jdav1xB86UsA7r4bx48D7y0/B4yN4fhxTbPL79+Ggwd1Pdi3D9eseAG3367zAVcDN9+Mc8vLSKcBXHWVAFW7d2PvXuDdxcXAzAzuvBP4+YVrYXgRoLwcAwMA1q3TvX3/+zhS+gGBg264AVddBQx873JUVWl4Xim9Eo+t+zNhSWpqBEZZXsbPlj8EbNyImhp7PpWVQCKB/fuBVasE0Ln3Xg3dbbdBD2flSvzdzvcWqNzuvRf4xjcAvB144AG8+CJQWl2Nn81dCTQ2Yts2LRucPYu77wbeXV+vwVhYwNycliMAvHT4MFBZiWtLf4lrWlvFMXbqFD4OEeP9bPlDuOz4EV3o44+LD+3wYU3ShgYchq7x0UcBfPGLeK/Ph+vr6wUo+fzndZK778a1LS06/9wciuvrcWFxEVi3Drt3A1ixAitbWrQmVq8GHn0Ut9wCLP3l/wMfgDkAvvJyYGREvH4GBsK99wIlJQ6c9Ivi6zEHrV20tACf/zxeafwEVjY24qPlvxBQ6+o//JfsYr/m602AysW+3tjcmDt24DvfkaHB1Vfjim//Ff7b7ZfbjgXg7Fng3nu1X5eWAv39mJvTOni2+PeFJjx+XDt4cbF2tbk5vPynf4q/2ftvgb4+lJcDM9//vqE2jwKPPAKMjODQQw9px+7vx4oVOsziIvDd7wItLX5g5Uq8sOIa4KabkEgAqKgAFhfxxS/qUL/3ewD6+oQsq6xEZSXwyU9dinMNnwC+9z1c+Y3/hGPHXhQv4Jo1uPde/cTevUBfnza1vXu1MRYVAf39WLcO+FDNK/iTT1+KL38ZMljl5XrfeCM++1lt7t8fEEr0C184idZW4K//Gljp8wEzM1i1CjI8t9+ujWbFCgD7sG/fz3H69N3YuVP3+Pa3A/v2nQR+9COsW6d7v//+LL4S/gR27VrGvfcCV6x8BadPPwrg53j44ZewvAzcdRfwoXUvadO+804dbGxM55uZAZaX8fdX/Rf8pPiTACKIx6HNb/du1NQAV276d8D+/fjLv3wR+/bFgOVl/M0P3qXxAYCJCRw4AITD4kcE3gK89a340pfywJ134i//Err45WVcdZXZ8vPn8eKLuoyZGQBzc7jjjix27hRa79FHgdZWAKkUrsEh/PzgZUBpKf79R17QebNZ3HPPQT3L+Xlg5UohSFesAPAEUFqKnwM4duzHAIwT8swZfPKml+VQnD8Pn08ATV9vrwyHzyf7sryMRx6JAdksHn8cDj155gyQzeqWV6wALt35E3z09n+v75aW4v77gZePHcOHLzyGlyqvx4oV+u453/XAzp1Ytw647PgRXLggP/DRRzXMJz7ySeDmm7F3L/DKX/81cPfdwC23mNc1hb+IfQ7nz2fx/+7bhw//m7fh4R/+EMvLxkF66hTe/37gzl275LCUluLgQdmVRQhlidtvx3+/91149O678ff4D+YhiE/zwxcew+a/frf4XqF5ePCuu4DVq9H4x5fhWr8ftbVadnP/2/+Gsbk5YPduvBfA8ne+Azz8MJ6t/hzG7rkHM9/8JrC8jPt27cJhANi+XUZyeRl/e889mPvmN3Ho/vvx92f+BDt3Aldv+c+oAXBbeTluW1yU0/X1rwOPPiqHaHkZP3vySRz54Q+Bgwdx7Ys/xZo4gZkZHHrxMuD8eVz6qU8Cf/iH2iMA7Nr1P9++3nz9//n1vzq0vJiXF9JPWAoIeMyhyOrq6Kimzlr60QNePG//nwYoerDd9GQTVq1SzY6VlQJCFBUZfVfc1byAc45dJWd1que8VEZVVSEtZzWBoSFLbRnys62NStG1thI4oDRqJOIwJmLJv6Brbm1VLW18XDkRU2o4bSmifJ7k6CijUfUlHbB0TR4gfT6PGYqsrOS8jY3XygYccshGjo4KbGH8gCmr+x2znwsAOzuV8p2ZYUGOpaGBDAZdbZTBoNKlJnjJlhaNu6fQblygjMeVVior4z6IaoyBAONWC3wG0KA1NXFx0dLT09P6nNe0ZulR4ByZSDi1aq+hPxaz1N70tNJ+fj/XrxfnYlERyUTCzYEFq5sBS7q2wUGmUnQ9hJ5iAwcHdf0GYNq0iRrg+XlHsQVk2NFh8yiTYQZgSYlpv/X0cGTE5kNNDf1+A3r4fKqvmRbayIil17u6BLwaHi5o8FlqjpOTSvFWVxeAH17hd3iYHBtTmvtVfaNbtxoKt6lJB+vtJVMpfbexkWxuZnOzoYCNgmzJamqnrS7lcYXmcnY+k9nJAJobNTU8aXNnh9VlnUZkTY2jNZuaMhSxXdseQGnThgYRQIyPay6ZjNTiIslkUojTri7NAwNwPWLpz0k7x+SkUfL19PCAVxdsayMrK/X74mJdS18f2d2tY/t8qvmXlurcJSW8FaaF2Nnp+uccB2ZJCRkKFcgFjCYtkVAj/+IiyXicmYMHX4c05v9LISov9v3//tamMd/Qxg44IkaM+XnViPJ55iCmicVFOt251atJxuPWOHxEG4XHmFJfT3Z1cRcMzGK6c4zFXJOyMXRpwo+Py5j19DgRzVzO6mCbNxvZ71knj+cJwR0DyNz/1973x0VZ5mtfuQ5NJT9SsbFlXPSIkSuGFbtQUk0bBa3skVbayNhtdqO0IyVtlOy7HJfP4snphEULb0s2JZukbNFGZ9ikjS3KScgmxUSdlBQNZUpcRp0UA6/zx/d+nrG39+yW1tmw+/p8RmGYeZ77ee77ub+/r++A2cCVeXkiaB0OboVkgtXVkbTb6XDIqUtKhPqK6elybsUwIULxWRGwRUWsrZUYmd0uh504UfEGRkbS72eYQDoQkM2kooJ9SojZ7apIV23c48dTNgKPRy66s5NDQ3IMYDCc5dbZyYICuU1GyQdwTAnTIxw/niZF1RlnyH0CDkjcKBgksFE2db+fbGhgb6+ERIz+d0Y9vM9HAvvDfcxCIW4HwuUTqit9RQXNvmN2O+V9VbDd1ERy5UpRKLKyWFysshwdDk6cKOOUpKU9BHZxK6Da620UQRAbS6BZjhkIkEVFsoF7vWRPD7sBM97V1yfnls7u20i3W4RWVxcrKlRyUHMzWVxslp8YAs1iodlbzucjmZhIh0PmdoNaP2bmaEWFfDcykiUlcpy8PMVkUlLCtrYwa08oJNdrsK/sgUp0sVrpcMh8LVki64OtraTfLxt9fLwIgZoa0mZjaSnDCTsqBn5ExT6NnnZGmyMjIcftlvVlUtrZbLJYfD7Gxorc7e5WSo0ied6gPveRUiiZkCDzrbIiTeXDSHrJzw8nK82fL2sqN1ee06Ii8xgJCeo8KqnmiKGkeb0iwBsa5HltaKDbHe54XlREUbZiYyWLNSZGFNGVK9nSIsxBwF4yPZ3jx4tSJc9u81cg7FapJJOTfa3Swm444cRO5ZLu/Rbp9UrGWHIymZ7OrZCMygZANpfKStkJ/H6V2biXwC4+BtXvKi+PnD9feDKdTqmrcTgkOF1Y+OmmlaqurBOSvditAt7PqgeprY2k328y729QDzJwzMiHkd2pu1usSLudwAHR3vv6zFRqYBsTEqQXGLu7yY4O2YQ6OwmskPPV15PJybKxKSu1s5NmrZGR/h+ApJzX1irror2d9PtZWiqboEnwXFrK9ZDsu3b1v98vwy0upuzIubmy8ZSUiABQLC51dTTLGTg0ROblsbdX1XEZ/f0CAbaqsTAlRTbAyko5bkaGbKJdXWRJiXw+K4vAWjmmxUIGAvwbYBDiy3wpgV9URMVxuVE0jYYGuc6KChlDRQU5NMT8fBGiPh9Jl4s+nySqGB0LDinBl5Ii80iv1+yh9pG6J729qmtBUhJ3AsrSFAozt1s2/ZYWlYgTDJKNjXQ6SeBxegFmZqrsys5OKW9xuwkcEQXKsGoCAVZWivJi3m+fL1zLV1Eha091vjC6pvv9yjKNjaVBm9PSopiGlFVNl8vk+GRjo9ngVZXTsbmZ4ecnPZ2MjQ0rfJWVZgcGg4uTgQAPKeuGOTlkSYkknagEFirB9axSEkJqDQyo8dPtlsSW7m6+pCzDIEBCavKWLAlb20aCDwcGxOvR1xfuoKEUiW4l4Giz0QfFfOL1CtdleTl9OKEjQ06OCD5FlE6XiywqCnc8d7tFS3G52Kq+V1kZTrIKBpVim5EhnSEApdA9r4Xd1wjDWti9D6Prweuikdnt7OiQTalDbfCHEObGY2IiX0W4pAB4VjKyYmLM0gOTFzM/X9VDHZDNNz5eNhjDrdjTYzL4vwRJofdDEccmJ5NdXWYHFHGBbjOZ6xkby+xs+dsQxNVlt8u4gb1yjuZm0u8XV1JZGZmeLnRiHR2yoQQCIrUCAW6AuBJb1XW/Cygrdj834ISMte5usqeHwC4mJAh35CFALDtlrdQbQtNmYxdU/VxqKpmYyIDarNarjWiV+v5WJShblWCtV5tVuzrvG0pIrIeUZxjdE7oBcQk1N/OQGuer6r1uSAnEX9TGwvp6vqs29JYWmlm1Zqp5djal68FDrKuTTTs2liJp7XaZO4fDbEptWMn7gDDFW3q6aVnT7SaTkoxG5GRGhrhEOztVl4xOsfpqa0UJSE0lcJjAMwRWyIQ6nTK+2FizS3hGhmj+wNOyFgoLCTzLVkixtsNBUzEz6MJYXs6kJCkbaMcJnRssFvmhspLMyWFHhwjQ2lrZt/1+kitXyka+ciXpdHIIUmph+rTLy3kE0oUiL09c1TU1FMno8YQp73w+yaBUFHkpKUIzB+wRsujiYpNmb8kS5UpU5SyMieGSJYrCrqVFvAYNDaIsKL5RICgnrqgQpdLt5urVNM8j8/s8mZDA5ZByFOAImZcnc2eQGPT1saxMXYPKcq2pIel0isDLzWVCgghPYx0wNpa0WNjaKp9NTycZEyPHdbu5GFKkn5SkSMTr6+X5a2kh8/MllJGYaK4TI/s02PLlkS6HhV0dJaPyZF91WtgNJxgT73IFRStWLA+9vSRbWkTLMlrx9PTI5uhwkD6fUeYj/4RCosWVl8tDB8ixqqrMV0sLZdNqaAjHVgyiR5+PbG83SRXY2Gi2izHdqFVV8nNurjkWZWDIBhQKcQgwM+yZlWXGt1Tz6XCxuEG3MjAgrrrGRtkwVNyqtFRcoenpyk2Xm2uSURvp/kuXUgaQlcXKyjAFKCMjwz34DI5Rt5v0+bh6tZzablclBR0dZFeXpMSHQvR6ZZMw/g4MMjNTZKsUegfp88nPdXWyP5tdwo0iadWBgaGQ3HvVcZ1eL6ur5aMlJXItfkjLGJOJpaRExlpVRSYmiksuL4+MiTGLpN1uJSQrK+n1yvwMDDDclaCjg2VlIj+6IW7MhAQVw8rKIjBoxptYWys3uKdHNubycukwoSxFrlxJYD/nzZNhVVaSLCtjZibDzCZlZeHiZpeLRUViLPX2Kuupu5ssLDQt8T6AbGgQV2RCAtmp6vlSUnjuuTSvKSODZGwsS0pEqBpk5RaLzAttNrEoc3JIl4uxsSJMmpvV/bHbyZwcOY/dLgLO5SKdTrkOv5/Z2Wo8kJiYuUY9HlkTNTUmoXRtrTx67VBuw+JiiUlXVUlphbJgmZAgCklurlhoeXl8TClU7OgQgZeVxVBIWbpZWSabCrOyaPR+8kNctyarT3KyvFdRIevHIG5VXJdB45k3+kyqrgc9Pcp16XCwulpcmg1KmfMr4cdAwFRQCgpkzZWWyv1vaiLHjPkqiKD/QOC5U3j9QQu74QRj4jdvDpoxO0OotLYyXK/j95ssQUbiyMSJSouvrDQ3bXZ3i6/f6ZQHLitLNFXl/gkp6wo4IFpgVpY8uKrerLhYHsDmZqpWL4PhxqFer2xAdjvp8bCsTDbYnh6SXi8LC8WiC4WUm9CgPqmsNHpmyoFra2VHmz8/zBQTCsnurFr/5OUZTUiPiMsnK0sE6MAAW1rkOS4qUuew25Ul8r5Yiikp4Zqu+HgRAN3d5ikkhrWJsbEiZDo6VKJLXx8bGoymqXu4dKnR6kbilhLPeIYzZsitW7KEZm8wdnfLDquIr1talJIwNKTc0z7zPrGlRQrvMzIYgLgN09PVPVB0U8zONumwDPdxRgbJ+nr5PxgUV19npxlvKSig6REoKJB5DEBq3bKzVWuf5mbZ/GNiTJJq2u3s6lIWVlUVJ05Uc2q1kjU1BKTZrsVCs4gb6AzTgaWmSh1mfT0ZE2MKLDY2ylhrasx48IwZYtUNDUnR+pD58zFFGL5fYlrl5QQGTbaRAFS8zeul9NrbS1ZUiOtQtcoBDrCoSObPcINKfeAgmZQUdo8nJBDYqzpZ7OVTypp/Carvm2LWzssTa9mgGktKkqX1rBIUrKgQ5dFiEWWmq4t0OISlx0+yvV2EU20t/wTVH9LtZna2PIfisdhDvzo3y8tF8BYVyeJPTBSL2WIxi8N9EPfmjBkkS0rM7gV+JVTNgnHFsuIFwq4Bl4tJSWQDxKW5XXkp6Peba9OIXTM1Veo2S0pYXU3ec883S9gdOHCAt9xyC6OiohgVFcVbbrmFf/vb3/7ud+SaPvt68MEHzc9ceeWVn/n7T37yky88vmEt7D76KGgWLA8MUBZ4fr5sIFlZZraXGSPzekWTHxqi2y2bdgAqY9NqJWNj5eE2eCArK4VtHyBbW0UQGO2cU1JM1yl9PtMqKypSG+TAQDjrzeMxM9aKimgmmbCigiwt5VbAZAcz6al6epTQ2ERaLCKES0rMTQXwiIuxrIxGC/JgkGRPD3NyVBKMxyPCMS+PdLno9yvLoq+PLC8343VOp7ICHA42NVESGIwM0+xs2u1UlsFb9PvVphgMigXV2Mi6OqpebdvpdstXJ06UewAcI7CXxcUyjNWrGc5mbGwU7duIqXq9ZHu7zFdXF4H9DAZls+/ooOlGFjfgRgL7Zb7a22VulEsTGGRbm1gfRtcDp5PCltEksm5gQI7Z1CRz0dZGSv+xTVwHg4PQJ9ZOSwuBw+J2NTqGZ2SQqalioUdGEljHjAwlCPv6CPhYU6O6B7RQFbi/LlaQ0TnB5RJzvKqKTU0qQaWiQuZH0V+JUuETZpsupRApKq7KSnGD9/RQTPSBATl/T4/ElACTJcdow8SqKnFp9/TQr1yiHBhgXZ3cl44OmQ6rVfr1Pa0ECp1OWixyLSUlqit5Vha3K4XC66XZgsfsKK+6m5eVka9C2Ib8CMcY8/Io819bKwKqtJRdXTRDAq0Qd7hQqh0ma2tZW6sybQ3LrrFRxmexhBNvAD4Gib13KuvwXUh3hg1K0D0A5TI3upO43fJwOp0ilD0e7lNjKCmRQvntSuCFIK71tjaStbVmKJUJCfR6JWbndpNfTczuKQL1p/B66isTdpmZmZw2bRrffPNNvvnmm5w2bRpnzZr1d79zYiPwffv28cknn+QZZ5xhto4jRdgVFBR86nP9/f1feHzDus4u4k/1WLRIaqMiFt0DfPe7Usj7yivAK69gv1CPY/Rrz0v9ywsvICcHwKpVsNmA0tITDlZYCNx9N0YmJADr18t7Gzfi5gWjhfnd45E6qt5es5vC4Pr1UqG9bh1+futxYOdOLLvqRaSlwawzwsyZwFlnIWr+fASDUkebkQFctugKKaYeOxbxkILmWbMApKXJOR56CMB5SEtLAmw2TNj4olQA33STFC4hHZfm5EhN0k03AWvWIGrzm8DatVi4ENi+HXKi/n75zNq1iI4Wwv0X144GkpKwcKHUR739NjAIAOvW4frJ72EvgP49ezC4fTvwX/+FsWOB1FRg/PgUTLHuxveDLwNr1kgdb1sbbp5zDLNnA7m5k/Hd78pw7r0XwGuvISfHgvT08UhNBa65RmqakZyM6mrINapaRVRVScHk3Xdj9CP/DmRmIiFhDKJuuh4vvABMf/tJqY9MvFHqphAHwIKR2dnAa6/hueeA9m9dBvziF4iM/Ba+H7kFoy0WKST+y1+kHm7fPlxyidy+iIV34te/Bq7fWQ089xxeew0oKrocEycmYRQAwIIZMy7GbbcBT+66GlbrORgNyI1Yvhz413/F8bY2jNi2BZg5E+PHp+KVV6QGu/4vowFYcMstsgyuHvUWMGYMLJZ0qS/0eLD3mp/K9Z95Jt7L+DdMnixllM/Y7sE7u0YDmzfjvND7mB5/EBbLxZgMYNIrj0uXBlU7eumlwIjKSixYACmW27ZN6i9vuw0jR6rOBB4PIm77KdaskeV4cMECjAWA1asxpaZG6gEB3DxzNxITgekr7sG1r9yHlBQgBsAEAOjrAwYHMWcOcHXMOwAgx4iLw+T4eCxdClw27SCOvfsubroJGAdg10UX4cDRozj3XGDOHCAC8v4UAHj2WRyDWiNr1gA7dmCU3Q5ceikmHd0CG6QA+DiAUZAGCklJ5wCpqbjuOin7k4UEedYjI3Hgk09wPtSD5HBgXno6Hn/qKQwCiAIwzWrFo7NeRgSkkH9RZCQSAeCJJxCxbZNM3KhRQH8/zk9KAvLyYIuJwcUA/iP5jzgMuR/3AXgQ0h0iIUF+mDVLfseiRUhOlg4LyckAkIIvH1/PovKtW7dizZo1eOKJJ5CWloa0tDQsX74cHo8Hfr//f/yezWb71KuxsREOhwOTJk361OfOPvvsT30uOjr6iw/yC4vHrwHMbEzVhbmriyZNVl4eyZUr6fMpl6ZhYRnJDMEgGQgYDcNZXS1ab1qaGGqdnRR/VFUV2dAgrpW+PjIjQ9xLBQWiARo1OkNDptvMKMVKS6PpSj0xGD4wQFHHFcO+0UKvsJAyrpISrl4dtmAGBkjW1pouKsPj2t1NMj6eeXmq/kqVCHBoiPT55O/NzWxpkbeVoRAO1vf1kS0tbG1VbkODh1PVwbW1yed9vnDPt54ekvPns6nphM4J6nzmScrLJf4RCombTFFnGf3S2NxMdneHszUNjjUjdtfeTgaDZoduM5Zi1I91d5MOh8RH8/PJUIh1dTJ/J7o/WVIi5+jpIbCNQcBkv8/Lo4xPZc0alll1NeWinU4zbZ4OB0tKVFyvq8usv3O7aXoHjDgtOzrMOKzBvcmEBBYVqRKAxkZZSzabuMZDqgecilFWVFAWgtdL4HWzvtGoIayoOGEtq+Qkn0+Mm2CQ4Z52oRCHhsSCLixkuMaxr49sbmZjo7w/MHAC6XFfn9mtPRhUa1F1c6iooLgHW1pkztvb5ToaGmTue3pM8mbTLdvezq4uebaCQZIeD71eGZNhQdLjkS8EAmR5uVnp090tlmBxcZge02hVPjSk1tDKlTSzilQH3qGhEz6vnhmvV57L6moVe+3ulnluaGBjI8MdEYJBOU5Hh0lMzYYGpqereGsgYMZajW7ui401VVws7k+rlbW1BqH2LtLl4g7lcvtyLbsnKElQJ/t6ggC4Z8+eTzXEPnr06CmNz+12Mzo6+jPvR0dH88knn/xcx+jt7eXIkSNZV1f3qfevvPJKjh07lmPGjOHUqVP5y1/+8lN8y58Xw9qyw9SpwKhRQsLwy19ixQqlLcbE4GK8gysm78WBwxF4b3CSqIOHDwO/+x1gtcJmE4KQq64SpXjWLPnIqFHSi+57tf8GxMVh0SJg9+HRAFTbsrFjhf7k8stxXuTHwNGjmDRyN3D0KBYuBCJWPomxYwHs34/Dh4H3FtfhBz8QmqPeXoiqv3w5XDtvxMsjr8fSpULUsOWDKODttzFjBjDh7efxzOCNiBh5HLjmGky3fQhceCHWrwcmvPYHTIg5CNTV4Te/UQruCy8AcXE4jhHA5MmY8Juf41evXYur99Vh6uAmjH7hSUxatQS33/IxbrkFmJI6GoiLwxV76nBe8x9w3/778P3qnwqFyP79+H7CAcTFARfHvI8p/W/hu98Fzt/2V+C223D95Pdw9RM3Y/quF3Hw8Aihjmlrk5sZHy+UJDt2SJ+y/n5M2v8WDiIKPzn3Zbw56lpg40ahGdu8WdgzrFa8+cEEsZZtNuC553DFNRG4fuXNMscrVmDL6k1AQgL+vHkC3nnor2IBJycDg4OIiwPu+eAenNf+IgIfjcCLnhHh/nX796Os7AJElZfj6iNNwKhRwoaxaxcwdiwaG1UPwbffFuYRjwdITBQWma4u4NJLkZkJ3J+9Be/0T8LRo6LB33QTcBwj4PFAFhAArFmDETiOj3PmYvZsCE3KNddg9mxgZFERjs/6Eab0vwXU1+Pqybthtaq+gJdfDsTHY84cABdcgA8uvxwVFemIKyzEsqXHMOKD3cArr8jfly5F+0eTxAKeORMXxx/AmjXSDnDzZuBXl76MF185GyN+/SvExwOP3voOXh+8DLjtNvzqodHYO+1a/Gj/k5g3T/qtPfecrL3XN482WVWifrcEWLgQ2L8fcXFiPWLaNCAuDtMnfwzcfTd27AC2JN6AC+dejPo3zgcWLMCERTfj2tSDeN12I57c/D0cPQrceevHiDq8Fy9bfojL9r+In2QdhNUKTF1xHwKX/hAHr7tO5qKyEtPvSMPGjcCE267FNdeIg8ZqFXIjbNwI3H8/RlyeJp6ShATcuOM/8N68ZeKWuOMO8/m8YsXP8fyon2LHDhn242un4s55x+U6entx5zXv4T+23QCrVbHRzJmDZU9EAbfeit0XXYRdF5yBLbar8XHmDXj9jjpkZspavXPOh9g7agq+/325J1e0EK//QPXgzM4G5s/H2LFAjM2G0tLv4L3Z9yH2vvtOfY/7DI7j1Ky64wAAu92O6Oho8/XAAw+c0qh6e3sxbty4z7w/btw49EozzH+I2tpaREZG4oYbbvjU+3PnzsWqVavw2muvobS0FA0NDZ/5zOfCFxaPXwMYWo4XMAP/XZB6oMhIVZdmsZB2u8TjVD3YBvV5Sc5YSyBgqpGSrBEkExPFZ+90ciekZGAIkkIP7DLZJIxjv2ucKzJSrI2sLNFACwqYkUEzUWbJEpUpV1vLT5RPn4EA2dHB0lJlkbrdErdxOMjsbMnsqqkRDba5WQqK588XTbKz00yBDqh7wdhYiYkEg+zqUlpuerok2ERGEjhCq1WG2dkp1lB1tbIw4uO5FcIuE1RxiUPq/+ZmZQF0doop6nCYGZut6jPMzhar1yDuTU2Vuj2PJ9xfsLFRtHKr1axj2qmSDnaq83VDpbEXFYml53CEW7SUlJBZWaYlU1xMOaZKBDr3XNU9oquLaWlyfWlpYlnV1MgxMjJUnWN5udxPhyNcTB8Mkk6nWCihEJmfz/x8mkw3Q0M0WWcKC2W+2N4u97mvzyTRsVhIulz8BKDTqfrPtbezt1dZYOnpkkWck0NaLGLp5OfLvWltlWPb7fKZri62tqpYa06O3F+/XyzZE7NYPR75vbiYDATk3ng85lx4vTT79IVCND0XS5dSzpuUJB6JgQGTpYbZ2WIS2e3ys8GC3ddHrlwp1+LzSfzMSJ4yztnSIv+npMgcuVwmQw3b28PsRvn5YVJpo7+d32+SgYdCyjp0uaSO06ic7+4m6+vlea6qkpteVSXjyMoS89VooKfKT+h0SlaTUU/S0SHPUHm5rFW7PVyPa2Te5uebtXT0esVib283+w0uhpTMtKq95SXAzPANlpV9BZbd7wnUnsLr91/Islu8ePH/mERivNavX88lS5ZwypQpn/n+5MmT+cADD3yua7zgggu4YMGCf/i5t99+mwDo8/k+13ENDGth97QKegMBWewOB5OSGM6YstnCwqu0lIyM5CoVmAY2EfCZmxfwEIGHRSIlJpqbB7CNrKhgEKonWFmZuOva23kIkno9oIQhy8okSF5RQbpcZv6FuNP2SzaYynZzOESOSa+zA/K51FQC+8X36fezq0vV5bW2huuJFKML7Xb29cmG3qUE1KuQzLM9gJn+HlK/b1eBfsmQfJ/AMbPTQW8vZTAWi9RFGYXzsbFm5h9bWyUDNSZG6u6ysoSF3jhfZCQ71X33QerB3oXUZR1S96YbMI/xkvFzSopsmpGRfAlSizegrsdIETcLFlNSODCglIbublZUMOx2ysmhFM2+rui/BllZKckth5Sw2wfpjRcKkYyJCStJK1cSWEcmJbEbilKsuJgbIOwgmZkkY2MlczMQUJ/3ybhqaiTpxOUiMKiKyx/iIbU2CwqkLU0wSLOUQzIbfSII4uNlXUCyHhVpD2mzyThaWlTCS4DMy+NWSNq7sfG3tVGEVV6emZlYUSH7eHU1wyxBFRWmEDJKOgw2nT1K6cjJkf28o0PWGQcGxGVcXy/jz8+X86gSlYkTRT6shyoMz8ggLRZZTw5H+HmIjaXbLbK4r4/yT1GRJL/YbGRysih7KmvI6TR5BXjuuUoRzM8X5cTlYjuEsaa6mlJaoNzDRkugvj7lKu3oYHMzzWSoNwAzSa26WmXiNjbKRRvkCAMDsh5jYsQFHpR6VKO8wGCrYWIiWVzMDkjSysPqvrshtIJDMGgJv2xhV03gyVN4VX+hMX300UfcunXr330dOXLklN2Yr7/+OgFw48aN//Czx48fp8Vi4erVqz/XNRgY1m7M4wAuBnDGGcp8HhxEf7+8HwVIRH78eIxTf0NMDCZBBd2RAOA74iuJiYGE3MeLL2TXLiFujomRI73wAkZAvFzCHg1g82ZEABhhsSAiLw/JNhswezbisrKEgf3wYcTHi7et/o3zkZ09RjobzJkDzJqF/n7goouECzkj41xxkebmIiFhDI5t3w5s345HHgFG5eVJksk112DmTABr1wr58znnoL8fCAQkiG8FMAmSBBAXGwtYLLDbx+Bsmw2jAIyGuM327AGAc5CSYpHslLw8nBd7XK7ZapWg/QcfmG7FEfHxuPVW4JkProC1uBhwuYCiImDuXESUlCAGQJzdDpSXY2pCAsYmJ+Nimw3fs1olGWHFCowqKcHe2/4dE5KTYc3JAWbMwBRIBwy5cAA2G6xqFiLi4xEVEyNu1TlzxN+2axewaBEiDh/AzJnAy9sm4JFHZJjHZl6tsntSkJCQrlbHTtw1Zy82bHgHhyGev8MA9u37EGe3/RUf9vcD2CGJFi4XgC3ArFmYEBsrpMa33ooJAHbu3ImODpm3hQshvuiJExEbe7GcfORIXHKJdHgAQuJGx/kYlZODfgDLl+/DQQBRS3+FNxN/DmzdCqSmYuLEi4G4OAzu2iXdBoqLgVGjMBVb8MgjwGBvLz755Ciwdi0eXTka6enjgNmzkRgZibg4tQznzBFy4wsvFJ9ceztGJyRg8mThQL/qKvUMpKZKVs5VVwGpqZg2DTh26WXiwp02DTEA4tPTMW2aXFJiIuR+bt4sRNlWK0aOBI6v+AMQF4d3LpyLhQvFa33vvcB0AO+PnCLr9Nvfxnn1j8oAAMQ5HMC0afj5nINYuBAYbf1YwgIvvSTPYX8/DmzciIcfBnb3RuBA3HRcd50k66SmyhIdHJT5WLAAwG234XuxsfjhD4E7Z+0Gensx5egmHOjtBbZtwzFrFEY/9zimHn0H2LUL19o2yXx+61u4VO0D9xccwI9/LEsLkyfjfdtlcjE1NcCKFZj0UjWO9fcDiMLIkUBiYiImT5Ywx5w5KvlEdUvphySu9EPePwDAarVghNOJkWeeieGOsWPHIjEx8e++rFYr0tLSEAwG8dZbb5nfbW9vRzAYxGWXXfYPz+N2u3HJJZfgoosu+oef7ezsxCeffILx48d/sYv5QqLxa4IT6+yMgDHd7nAAev580URVj6+lS+U9ZmWxooLhgLVRSGoUoKsgNQsKxIKLj5eU4oyMsMunoCDcMNTokt3ZKZ9raTEagJN9faI5FhSImqrojRobadaVsbY27OYbGmJ1tSjIQ0M005jdbpJeLxsaVG2az0e/0sKNix8aIpmbK4kSXi+BV0WzjY9nU5NYc1J/t53AAdG6S0spZNhuM2GG5eXikktNNRk02NnJ3l6xIDMzlVXU1UWWlsr9yM0Vl1IoxHnzRIvOz1fsFCoJpqREvuN0hn+eMYMmYbbfT7K0VNxxQ0NmQo/hoTSSJAYG5JpYWMiWFnWfa2rY1aWSDVpbwwkjfr/4v1RixcCAcut2dIQL1P1+trTQdOUVFqr3i4tZXa2s8oYGsqZG5qGqKpwI5HKRXq/MZ329nL+vT+5PWRmXLlWWg6JkYzDIlhZZe0ND4fXKzk45rrE21JiNzuN+v7K0XC6yq0tcnMqVaaw/1RaOXLlS3LUuV3huXC6yu5vz5qlrM6iv3G5y/nyOHy/zauQZ0eOR9T0wYHaqNxrpNjSIJ7Wnh8ISlJTEAUgijeGJKC4m6XSKRRgI0OdTSR4GZVBpqdk5vqhIjdvnkx8UMxGzs00ycKMpamdneC7mzaOMKTdX7kFDg6xJ454kJ4cT1zIyZNB5efLMlJbK9cfEmAk9prfG45G5Mb6r2BlKS9X5UlPF66KK5ZuaxEVeUSHrbzFUqUtJCUtLv6o6u0cJLD+F16Nf2pj+X2RmZnL69Olct24d161bx6SkpM+UHlxwwQV8/vnnP3NtZ599Nh977LHPHHPHjh0sKyvj+vXruXPnTjY1NTExMZEzZsz4Qg2/yWHuxqyHUFVFRqrasLIyAkF2QOh7TLJl9dAOKHcelasKGJTNpaeHwOMEVsjCt1rlyU9OJrCJTE2lT7k+TTdeTo74cGJjZVdLSJAHNSfH9PUbmYJGDV1hIWXHSU+nwyEfr6w0ZQ+ZlydF5BYL2dAgm4RB5OhySa1YcrI80AkJbGuTP+0zXIJWa9j9FwyaNEtD6m9FRXJ5wGHZFOvryfp62bwKCjgEofOi0ykvVUtWVETzITYZ6VW3ZjOGWVpq0kUxI4OMjJS/dXSE/bVG52inU75jsUhXBj/JyEhuN86vusfT75f7XFQkx1bF9UuXkgwGmZurBJjiwYyNVQrB/PkEjqii6VfYBWFcOWS4vBU9GbBW1klyMoFmsqiInwBml+996vMZGSTLytjaGlZksrOV0PJ45PN+P2fMkPEAm8iUFNYBBI6Ia7iyUjbQ0lLS5ZKN1+1mCDDZRpiSQpaUENirzn2EdLno9SpXanm5rIehIRHobjerq1WNV329CAeV9rt69QnE5Tk5IoTb28nOThFOgQDr6pQbODubzM42u5kbNGL0+UQAq5hxb6+sgY4Ompmtra2UuVTZxMzNlUVdXByOIxYVmZmOoRDlJHa7dCxQ3ejZ3S3n7upiTY2st9Wr5ZBtbfIctLVRNCCjA3xjo+kiN5/ZQCAsNNvbSa9X1m5rq6whFRPs6VFjr6+XMRnrNSuLLC/nkHJ59/bSFHhGQncopJrX2mx8CUK19p9K0C2G8KrS5eL7X4kb82EVdzvZ18NfmbDr6+vj3LlzGRkZycjISM6dO/czReUA+NRTT33qvZqaGp511ln/39q53bt384orruDo0aMZERHBf/mXf+Fdd93Fvr6+Lzy+YS3s5s4NEthLt1vFcSDEzE1NlIfMZpMHua/PYBOSTWZoyOwuvh4SYH4JwuH4CcLBcr+fsjF7PCI4VMqymXY/f748WC0tbGgQLa+pSTafwkKKpDMyFiBJKU6nKopVVGIBFe+bN08xgjgcZuo/sJ/ANvZBCmIZGcnVq6kKVgskThgIyGY5NMRgUMZWWamsoe7usJZsjKWjwyS8HRiQzSQvjyZ/YkUFRaBmZZldBAwlG9hO+nxmpcHAQJhg3igqNwgyxo+XzcpM6bYzAAAKiklEQVRgIWlqoqkN0+kUCyAYDCc0KKtIcSaTgQDT0uT3c89VcZeeHhYUCI0T0GnyTNLvl8SUQEDF6x6UgyjOzKYm2Q8NoWLGe9zucPKH203gdQK/V3yrj8txPB5F6rtNFKXkZEnOycmRxJzubnYABN4PKy2trQSeJrCHAwNqXlWXdGBtuA9RRoZZTdDXRwIPiqKUlCSKTnGx2UXjL5BUd8MC8/nUfUpPlwWRkCCC3uMxczz+puJ7TU0kQyGJOVdVcT3AxkYVD25vN7txsKqKzc1UbYoGzThwMEjS7zfIWMJCu7CQzM1lTo5K4rFa5RxOJ1lVxZ0q3jtvHkm7nevUs+bzkaytFcUuJ0eEb24uWVIiZNQQaq4QJGHJIPfu7RUZmpkpY+XQkHh1VLnJu4bi0NBgtk9icjLXqfhZba3qkF5WxgAk1mzoYZ2dSvidwMZktJ1qa6NJxO1T4wJ2sbSUijHomFxLSQmBPVwMqO4f132jhN3XHcNa2AXvuIOMj2dBgdIY588PEyRnZcnvSkvz+2laayFIllxODsWVVlZmtmljcbGs+qoqU0j29jJcH6f6spjnq6wUK8Rgb4mJIWtqzJ5WZ5xBMiODDodKKsjOJleuZF+fGIOcPz+c8ZeezsxMpV0HArIRpafLA5iSws5O2WjcbsoPBlFvWZmMF5LcYfQny81lmLgvK8usH6qtVVmLSpjR4wm7WmNjRSv2eMKS0KBkiY2V6yspIauqZLOsqjKzJJmQIFaMss5MC9tiIZ3OMP1TTo5818i+M1xRyclyroqKsOWcnGyy3h8CzNo6ejxkT49Z/8faWkZGimCsq5NLaGqiSIXSUpmPsjJWVCgKNoNLtaHB9GQbLYGcTsq9KCw0uT9ZUGD29WNNjQiwnh6zVyErK5mbK3MK7Je10NxsMnxUV1PudTCoEpGCsvYqKoSKLDaWHR0iJ9jcTFZVsbCQpgCrrJS1uk+tXQ4MhGsW1RwvWSICLjvbJNURwWSso+Ji0uuVzTsUkjUcHy8KnsXCxkYZrtMpw/T5VIigs1PWoNUqVn1qKmtrZQhmXz5Vb0e3W8aqFKx9AOl2s7hYKYCGlhQKybiLitjZqZ4FxZNZVyfrf/XqsDubNTXyLNXWCvHy0JCsb+U+ZXs72dHBnh4RQEaN7dKlSvHz+URZ8fk4b57JyCfjVv3xSktlCRQUyDWXlJAMBrldKbHV1eEcI4ORiI2N4jlxOkXRcbnMOrzg818Fg8pDlCSTk3099I0VdmeQ5BeL8v3zEQwGERMTgz033ojBP/4Ro6uqgIYGRL/6AoA/I/jHb6FozXVoagJmzAAeewwYvaEF2LsXWLMGx5+uw4jAPmD3bkRfexCS3rEdksaRjZ07v4VnngEWZO7AncsmY/Zs4No19+DFq5bhRyP/DEyYgONTp+GXv5Syu5kzgSv7nke0MxvBP/4VOO884JlnUDXhQWzaBDQ0SJA9WPU08MYbwKuv4u1V27FhA3DvvbsBvI/gL14EtmzBrJFr4PnN28CYMTiYnIxDAKbCj+Ady/DtugfR87vngVAIv1+wAPejEdu3X4VxIw/geMxojDh8ENi9W1gkBgex78cLsHChsLYEg8A77wB33SX38OhR4NLpx4AHHpD78NyjWL78HNz4YRXS6xdg3DjpgG21ArWZq4AXXsC+NWsQaA0i2boNGDdOkkt275ZW54OD2OfxYPySJcCWLcKM8dBDQH291NzNnw8cOACMHo07G6/D/x1TioPFv0Vbm3R0Li6W5AUMDgJr1+LDS6/HuLwfAH/6kxRMzZmDfcXLMP6BuxBdexM2Iwt2hwPRry7Cxo2pmHhzGj5sXIfnnwds90cjYlUQdXVyuPqfN0vL8dtvx9NNo5G/ewkQG4unz7od+ZO8QGcnnj7rdlyyIBofAMjF43gOtyME4Oxng0hNBQ7ZozEVrZg+PRnvvy+5Hh7PQWzeHIVp097Ae5iF89LTgbQ0eK/6Pxi8PhrTAIz56CPgRz/C7RPW4PFXE7Dtww+xyBFEeTnw618DL/zxGNDTA0RH44WJEzH7xReRtuhKrPvZ71HaMw+/jfpPHCsvRyweQ/DFbwPR0TIpR48Ce/ci89HrMXcusGwZsOGcmXj539fi2nO8wHnnIfqSaAT/80/Ad76Dj9Ovw9mFv8DyVDfuvfcvCK76BNF5aWhpORfTpwMRG9qxfNP3UTCpBWhsxPHaWpyLnQBaENxzHXZ8GIXJbzwlta3jxmHJMxMRDEqCVO3gXODHP8a4eTfgw9m3486Rj2PGDODeezsR/NuFwL33YopnGQKBPwOIRLA1Equ2JiPv7nGYm/Eh6iaU4Gd7H8CkScDiKasQPS8I4BMAPwOwF0HXa9h5//2YuGMH8OijwJYtWJ7ZgF/8AhjxaguOO36A3/4WWLbsTQR3JuLFtaORn78bCQkTcNZZwKZNfwZwMYK/fxXR86ahpCQJDzywG8AAgo+sBebOBd5/H+jrw47zLserrwIFsz9C9OQuACEEW6Ix6cZL8bOfAcuWtQBIwQ7YpY7unHMwuHgxRp55Jsr+7UMsWBaNSbgOwefvwG9uuAEPA+jv7z85xo8TcPDgQXWMBwGcdQpHOgLgPgSDQURFRZ3SmIYbhqWw++CDD2C32//Zw9DQ0ND4h9izZw/i4uJO6Rha2J06Rv6zB3AyOP/887FlyxZMnToVe/bsOa0m7eDBg7Db7fq6hgn0dQ0//G9dG0kcOnQI559//pd4VINB5VS+/83EsBR2I0aMwLe//W0AQFRU1Gn3MAL6uoYb9HUNP/xvXNupui8/i1Mlc/5qiKCHA4Z1UbmGhoaGhsbnwbC07DQ0NDS+mdCW3cli2Aq7M888E4sXL8aZpwElz4nQ1zW8oK9r+GF4X5sWdieLYZmNqaGhofFNQjgb89eQUqmTxVEA5d/IbEwds9PQ0NDQOO0xbN2YGhoaGt88HMeplQ/o0gMNDQ0Nja89dJ3dyUK7MTU0NDQ0Tntoy05DQ0Nj2EBnY54stLDT0NDQGDbQwu5kod2YGhoaGhqnPbRlp6GhoTFsoLMxTxZa2GloaGgMG2g35slCuzE1NDQ0NE57aMtOQ0NDY9hAW3YnCy3sNDQ0NIYNtLA7WWg3poaGhobGaQ9t2WloaGgMG2i6sJOFFnYaGhoawwa69OBkoYWdhoaGxrCBjtmdLHTMTkNDQ0PjtIe27DQ0NDSGDbRld7LQwk5DQ0Nj2EALu5OFdmNqaGhoaJz20JadhoaGxrCBtuxOFlrYaWhoaAwb6Dq7k4V2Y2poaGhonPbQlp2GhobGsIEuKj9ZaGGnoaGhMWwwhFNzyH1zY3bajamhoaGhcdpDW3YaGhoawwbasjtZaGGnoaGhMWyghd3JQrsxNTQ0NDROe2jLTkNDQ2PY4BhOLaNy8MsayLCDFnYaGhoaX3NERETAZrOht/eVUz6WzWZDRETElzCq4YUzSPKfPQgNDQ0Njb+Po0eP4tixY6d8nIiICFit1i9hRMMLWthpaGhoaJz20AkqGhoaGhqnPbSw09DQ0NA47aGFnYaGhobGaQ8t7DQ0NDQ0TntoYaehoaGhcdpDCzsNDQ0NjdMeWthpaGhoaJz2+G/tdhzbPwbBCwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(22, 549) \n", + " (6, 549)\n" + ] + } + ], + "source": [ + "# there is also an option to do all of the above as one process\n", + "# and also to use a cutoff for autocorrelation of X variables\n", + "# while also outputting the autocorrelation matrix \n", + "dfx = pd.DataFrame(pd.read_csv('28BenzeneDescriptors.csv')).iloc[:,:-1]\n", + "xtrain, xtest, ytrain, ytest = dt.clean_data(dfx, dfy, split='sorted', cutoff=0.9, plot=True)\n", + "print( xtrain.shape, '\\n', xtest.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "43ae1c23-786b-4aa3-9794-95e737dcda8d", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/charlemagne/projects/GitHub/qsarify/clustering.py:46: RuntimeWarning: divide by zero encountered in divide\n", + " I = p_values[:, :, None] * np.log2(p_values[:, None, :] / p_values[None, :, :])\n", + "/home/charlemagne/projects/GitHub/qsarify/clustering.py:46: RuntimeWarning: invalid value encountered in divide\n", + " I = p_values[:, :, None] * np.log2(p_values[:, None, :] / p_values[None, :, :])\n", + "/home/charlemagne/projects/GitHub/qsarify/clustering.py:46: RuntimeWarning: divide by zero encountered in log2\n", + " I = p_values[:, :, None] * np.log2(p_values[:, None, :] / p_values[None, :, :])\n" + ] + }, + { + "ename": "ValueError", + "evalue": "operands could not be broadcast together with shapes (22,549,1) (22,22,549) ", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[7], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# creates a feature cluster with 'average' euclidean distance and cutoff of 2\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# this is the tunable part of the system \u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m clust \u001b[38;5;241m=\u001b[39m \u001b[43mcl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfeatureCluster\u001b[49m\u001b[43m(\u001b[49m\u001b[43mxtrain\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43minfo\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43mlink\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43maverage\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcut_d\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/projects/GitHub/qsarify/clustering.py:120\u001b[0m, in \u001b[0;36mfeatureCluster.__init__\u001b[0;34m(self, X_data, method, link, cut_d)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mX_data \u001b[38;5;241m=\u001b[39m X_data\n\u001b[1;32m 119\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m method \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124minfo\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[0;32m--> 120\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mxcorr \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame(\u001b[43mmutual_information\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX_data\u001b[49m\u001b[43m)\u001b[49m, columns\u001b[38;5;241m=\u001b[39mX_data\u001b[38;5;241m.\u001b[39mcolumns, index\u001b[38;5;241m=\u001b[39mX_data\u001b[38;5;241m.\u001b[39mcolumns)\n\u001b[1;32m 121\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 122\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mxcorr \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame(\u001b[38;5;28mabs\u001b[39m(np\u001b[38;5;241m.\u001b[39mcorrcoef(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mX_data, rowvar\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)), columns\u001b[38;5;241m=\u001b[39mX_data\u001b[38;5;241m.\u001b[39mcolumns, index\u001b[38;5;241m=\u001b[39mX_data\u001b[38;5;241m.\u001b[39mcolumns)\n", + "File \u001b[0;32m~/projects/GitHub/qsarify/clustering.py:46\u001b[0m, in \u001b[0;36mmutual_information\u001b[0;34m(X_data)\u001b[0m\n\u001b[1;32m 44\u001b[0m p_values \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mwhere(np\u001b[38;5;241m.\u001b[39misnan(X_data\u001b[38;5;241m.\u001b[39mvalues), \u001b[38;5;241m0\u001b[39m, X_data\u001b[38;5;241m.\u001b[39mvalues) \u001b[38;5;66;03m# replace NaNs with 0\u001b[39;00m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;66;03m# calculate Kullback-Leibler divergences using broadcasting\u001b[39;00m\n\u001b[0;32m---> 46\u001b[0m I \u001b[38;5;241m=\u001b[39m \u001b[43mp_values\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlog2\u001b[49m\u001b[43m(\u001b[49m\u001b[43mp_values\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mp_values\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 47\u001b[0m I \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39msum(I, axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n\u001b[1;32m 48\u001b[0m \u001b[38;5;66;03m# set diagonal elements to 0 (mutual information with itself is 0)\u001b[39;00m\n", + "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (22,549,1) (22,22,549) " + ] + } + ], + "source": [ + "# creates a feature cluster with 'average' euclidean distance and cutoff of 2\n", + "# this is the tunable part of the system \n", + "clust = cl.featureCluster(xtrain, method='info',link='average', cut_d=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "bdcca1e4-0411-42e3-93d6-54a7ff99a8ef", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " \u001b[1;46mCluster\u001b[0m 1 ['HATS3e', 'R3e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 2 ['HATS3u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 3 ['MATS2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 4 ['R2p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 5 ['HATS0e', 'R2v+', 'R4e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 6 ['HATS2e', 'R2e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 7 ['H2u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 8 ['RTe+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 9 ['BELv4', 'BELe1', 'J3D']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 10 ['BELm6', 'HATS2v', 'HATS4e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 11 ['SPAM', 'Mor11u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 12 ['Mor11e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 13 ['BELv1']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 14 ['HATS1p', 'HATS2p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 15 ['HATS1v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 16 ['MATS3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 17 ['BEHv2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 18 ['BEHv4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 19 ['BELe2', 'BELe4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 20 ['nC']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 21 ['MATS7v', 'MATS7p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 22 ['Mor22v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 23 ['E3s']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 24 ['HATS2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 25 ['RTm+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 26 ['R2m+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 27 ['CIC0']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 28 ['BELm4', 'Mor17v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 29 ['BELm2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 30 ['Mor17u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 31 ['Mor17m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 32 ['R4u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 33 ['R1m+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 34 ['C-001']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 35 ['HATS0p', 'RTp+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 36 ['R1p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 37 ['R1v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 38 ['R1p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 39 ['X2Av', 'X4Av', 'X5Av']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 40 ['R1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 41 ['TE2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 42 ['H1u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 43 ['GATS2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 44 ['Mor19m', 'Mor19v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 45 ['BELm5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 46 ['Mor20m', 'Mor20v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 47 ['MATS3p', 'GATS3v', 'GATS3p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 48 ['Mor09m', 'Mor10v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 49 ['Mor11p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 50 ['Mor11m', 'Mor11v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 51 ['Mor07m', 'Mor12m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 52 ['Mor13v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 53 ['RDF020m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 54 ['Mor04m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 55 ['Mor24m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 56 ['Mor31m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 57 ['X0Av', 'X3Av']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 58 ['Mor09v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 59 ['R2p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 60 ['Mor18m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 61 ['Mv', 'HATS3m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 62 ['BELm3', 'Mor10m', 'Mor07v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 63 ['E2p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 64 ['Mor02v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 65 ['Mor02p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 66 ['GATS1v', 'GATS1p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 67 ['Mor19u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 68 ['R1u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 69 ['E1v', 'E1p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 70 ['R4v+', 'R4p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 71 ['R4m+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 72 ['R5m+', 'R5p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 73 ['R5v+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 74 ['DISPp', 'R3v+', 'R3p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 75 ['R3m+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 76 ['HATS3v', 'HATS4v', 'R2v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 77 ['H1p', 'R3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 78 ['HATSv', 'H0p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 79 ['Dp']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 80 ['Dv']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 81 ['RDF035v', 'RDF035p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 82 ['GATS3m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 83 ['MATS3e', 'GATS3e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 84 ['MATS2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 85 ['GATS2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 86 ['Du']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 87 ['MATS6v', 'MATS6p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 88 ['R6m+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 89 ['R6v+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 90 ['R6p+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 91 ['Mor07u', 'Mor07e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 92 ['GATS2p', 'MLOGP', 'ALOGP', 'BLTD48']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 93 ['GATS2v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 94 ['Jhetv']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 95 ['E2u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 96 ['MATS5v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 97 ['MATS5p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 98 ['MATS1v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 99 ['Mor22m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 100 ['X3v', 'HTv']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 101 ['X1v', 'X5v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 102 ['H2v', 'H3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 103 ['JhetZ']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 104 ['E2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 105 ['Mor03v', 'H2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 106 ['H3e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 107 ['SEigZ', 'Mor03p', 'H1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 108 ['ATS3m', 'BEHm3', 'BEHm4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 109 ['Mor21m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 110 ['Mor27m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 111 ['Mor23m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 112 ['Mor21v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 113 ['ESpm01d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 114 ['BEHm2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 115 ['ARR']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 116 ['H1v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 117 ['HATS5v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 118 ['BEHm1', 'Mor06u', 'H2p', 'R5m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 119 ['Mor26m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 120 ['Mor13m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 121 ['E2v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 122 ['R4v', 'RTv']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 123 ['GATS4v', 'GATS4p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 124 ['GATS5v', 'H3p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 125 ['H4m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 126 ['RDF055v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 127 ['GATS5p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 128 ['SHP2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 129 ['R4p', 'RTp']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 130 ['GATS6v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 131 ['Mor14v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 132 ['R2u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 133 ['Mor14u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 134 ['Mor16m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 135 ['Mor16v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 136 ['Mor16u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 137 ['Mor26v', 'R1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 138 ['Me']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 139 ['HATS1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 140 ['H0e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 141 ['SIC0']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 142 ['Dm']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 143 ['RDF010v', 'R2m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 144 ['RDF010m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 145 ['RDF020u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 146 ['TI2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 147 ['JGI5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 148 ['Vindex']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 149 ['Yindex']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 150 ['Lop']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 151 ['Mor12v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 152 ['LDI']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 153 ['Qmean']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 154 ['Mor15v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 155 ['EEig12x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 156 ['EEig12d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 157 ['qpmax', 'qnmax']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 158 ['R4e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 159 ['Mor28u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 160 ['Mor28v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 161 ['AAC']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 162 ['Ds']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 163 ['E1u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 164 ['R6e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 165 ['Mor18v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 166 ['Mor09e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 167 ['Mor20u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 168 ['Mor20e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 169 ['Mor09u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 170 ['GATS4m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 171 ['GATS4e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 172 ['Mor24u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 173 ['Mor14m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 174 ['MATS4m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 175 ['MATS4e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 176 ['GATS1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 177 ['Mor28m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 178 ['RARS', 'REIG']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 179 ['HATS6m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 180 ['Mor18u', 'Mor18e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 181 ['MAXDN', 'MAXDP']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 182 ['AROM']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 183 ['EEig04x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 184 ['Ms']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 185 ['Mor26u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 186 ['Mor31u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 187 ['Mor31v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 188 ['MATS1p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 189 ['Mor12u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 190 ['Mor08u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 191 ['EEig11d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 192 ['EEig11r']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 193 ['E1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 194 ['MATS2v', 'MATS2p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 195 ['HOMA']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 196 ['PW4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 197 ['SPH', 'L3u', 'L3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 198 ['L3m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 199 ['MATS4v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 200 ['MATS4p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 201 ['JGI3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 202 ['HATS5e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 203 ['L3s']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 204 ['IDDE']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 205 ['L1v', 'L1p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 206 ['RDF065v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 207 ['DP18']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 208 ['H3u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 209 ['HATS7u', 'HATS7e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 210 ['HATS7v', 'R7v', 'R7v+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 211 ['R7u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 212 ['L1u', 'L1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 213 ['ATS7p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 214 ['GATS7v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 215 ['Ku', 'Kv', 'Ke']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 216 ['GATS7p', 'R7m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 217 ['GGI6']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 218 ['DECC']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 219 ['Mor29m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 220 ['Mor29v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 221 ['G3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 222 ['Gm']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 223 ['G2p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 224 ['ICR']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 225 ['E1s']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 226 ['IC1']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 227 ['PJI2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 228 ['PJI3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 229 ['IVDE']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 230 ['EEig10d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 231 ['IC2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 232 ['Mor22u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 233 ['Mor22e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 234 ['E3m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 235 ['EEig08d', 'EEig09d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 236 ['GATS5e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 237 ['DISPe']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 238 ['MATS5m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 239 ['MATS5e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 240 ['GATS5m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 241 ['Mor15u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 242 ['Mor15e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 243 ['Mor15m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 244 ['nOHPh']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 245 ['H-050']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 246 ['Hy']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 247 ['MATS6m', 'GATS6m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 248 ['R5u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 249 ['R6u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 250 ['C-040']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 251 ['MATS7m', 'MATS7e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 252 ['R5e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 253 ['EEig11x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 254 ['Mor08m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 255 ['E3v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 256 ['E3p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 257 ['HATS5u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 258 ['GATS1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 259 ['Mor32m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 260 ['E3e', 'De']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 261 ['G1v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 262 ['MATS3m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 263 ['JGI4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 264 ['EEig09r']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 265 ['RPCG']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 266 ['RNCG']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 267 ['E2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 268 ['H5u', 'R5u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 269 ['MATS1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 270 ['RTu+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 271 ['H6u', 'H6m', 'H6v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 272 ['E3u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 273 ['MATS1m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 274 ['Mor21u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 275 ['Mor21e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 276 ['SIC1']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 277 ['CIC1']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 278 ['HATS1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 279 ['Mor13u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 280 ['Mor13e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 281 ['Mor29u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 282 ['R2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 283 ['ISH']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 284 ['H0u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 285 ['SIC2', 'CIC2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 286 ['IC4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 287 ['SIC4', 'CIC4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 288 ['EEig10r']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 289 ['Mor10u', 'R1e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 290 ['R3e+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 291 ['R1u+', 'R3u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 292 ['Mor10e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 293 ['HATS1u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 294 ['E1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 295 ['R1v+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 296 ['BELv2', 'BELv5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 297 ['RBF', 'BEHe5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 298 ['Mor04u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 299 ['ATS5e', 'BELe5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 300 ['HIC']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 301 ['H4u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 302 ['BELv6', 'HATS4u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 303 ['BEHe3', 'R6u', 'R6e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 304 ['BELv3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 305 ['BELe3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 306 ['HATS0u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 307 ['BELe6']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 308 ['H2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 309 ['RDF070v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 310 ['Mor25m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 311 ['HATS2u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 312 ['R2u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 313 ['HATS6u', 'HATS6e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 314 ['EEig09x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 315 ['H1e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 316 ['Qpos']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 317 ['Mor24v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 318 ['PCR']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 319 ['ESpm01r']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 320 ['GGI5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 321 ['EEig05x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 322 ['BEHe8']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 323 ['BEHe2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 324 ['BEHv3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 325 ['BEHv6']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 326 ['RDF060v', 'L2u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 327 ['R3u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 328 ['Mor32v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 329 ['EEig08r']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 330 ['R4u+']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 331 ['ATS6p', 'Tu']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 332 ['BEHv5']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 333 ['BEHe4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 334 ['ATS3e', 'R6v', 'R6p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 335 ['BEHe6', 'Mor05u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 336 ['Mor04v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 337 ['ATS5v', 'BEHv1', 'H4v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 338 ['Mor25v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 339 ['Mor30v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 340 ['Mor30p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 341 ['RCI']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 342 ['BELv7', 'BELp7']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 343 ['GVWAI-80']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 344 ['BEHv7']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 345 ['BEHe7']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 346 ['BELm7']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 347 ['Mor27u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 348 ['Mor32u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 349 ['Mor30u', 'Mor30e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 350 ['EEig10x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 351 ['EEig15d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 352 ['L2m', 'L2v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 353 ['Infective-80']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 354 ['EEig14d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 355 ['E2s']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 356 ['EEig13x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 357 ['ASP', 'Ks']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 358 ['P1m', 'P2m', 'P1s', 'P2s']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 359 ['P1u', 'P2u', 'P1v', 'P2v', 'P1e', 'P2e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 360 ['ATS4v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 361 ['Mor05v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 362 ['R5v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 363 ['R5p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 364 ['ATS3v', 'Tp']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 365 ['Mor23u', 'Mor23v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 366 ['BEHp8']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 367 ['ATS3p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 368 ['ESpm03d', 'ESpm08d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 369 ['EEig02d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 370 ['JGI2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 371 ['MSD', 'J', 'Jhete', 'X4', 'Mor05m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 372 ['GGI4']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 373 ['EEig03x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 374 ['BEHm5', 'BEHm7']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 375 ['ATS1m', 'ATS4m', 'EEig04d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 376 ['GNar', 'PW2', 'EEig01x', 'EEig07d']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 377 ['S2K', 'X5A', 'EEig03d', 'EEig05d', 'EEig06d', 'ESpm02d', 'BEHm8', 'GGI2']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 378 ['Mor25u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 379 ['PW3', 'X2A', 'X4sol']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 380 ['PHI', 'X5sol', 'BEHm6']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 381 ['GGI3']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 382 ['Mor27v']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 383 ['IDE', 'HVcpx']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 384 ['DP14', 'SP15']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 385 ['EEig08x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 386 ['RGyr']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 387 ['SPAN']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 388 ['JGI1', 'JGT']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 389 ['EEig02x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 390 ['S3K']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 391 ['EEig07x', 'EEig07r', 'BEHv8']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 392 ['VED2', 'DP03']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 393 ['X4A', 'ESpm03u']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 394 ['SEige']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 395 ['X3A']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 396 ['HATS6v', 'HATS6p']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 397 ['Mor30m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 398 ['R6m']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 399 ['X5', 'EEig06x']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 400 ['Mor03u', 'Mor08v', 'Mor03e']\n", + "\n", + " \u001b[1;46mCluster\u001b[0m 401 ['PW5']\n" + ] + } + ], + "source": [ + "# export the results of the clustering, returning the dictionary we will use later\n", + "# optionally, print out everything\n", + "# optionally, also graph a dendogram (mostly for tuning rather than visualization)\n", + "clusterinfo = clust.set_cluster(verbose=True, graph=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "acbe1e18-9c07-4e48-81cf-e60b9adb742f", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'clust' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[8], line 5\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# this is the important diagnostic for the method:\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# if you have chosen good parameters above\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# then this histogram will show a smooth curvature \u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# resembling either a pareto or skewed gaussian\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m \u001b[43mclust\u001b[49m\u001b[38;5;241m.\u001b[39mcluster_dist()\n", + "\u001b[0;31mNameError\u001b[0m: name 'clust' is not defined" + ] + } + ], + "source": [ + "# this is the important diagnostic for the method:\n", + "# if you have chosen good parameters above\n", + "# then this histogram will show a smooth curvature \n", + "# resembling either a pareto or skewed gaussian\n", + "clust.cluster_dist()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "37a5bb2d-b9dc-4f95-bdc6-baa29d073cc1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Start time: 11:43:20\n", + "\u001b[1;42m Regression \u001b[0m\n", + "10 => 11:43:20 [0.5646699236881829, ['R2m', 'X2Av']]\n", + "20 => 11:43:21 [0.6583947897894367, ['Mor04u', 'X2Av']]\n", + "30 => 11:43:21 [0.6583947897894367, ['Mor04u', 'X2Av']]\n", + "40 => 11:43:22 [0.7742657151910233, ['Mor04u', 'X5Av']]\n", + "50 => 11:43:22 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", + "60 => 11:43:22 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", + "70 => 11:43:23 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", + "80 => 11:43:23 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", + "90 => 11:43:24 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", + "100 => 11:43:24 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", + "110 => 11:43:25 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", + "120 => 11:43:25 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", + "130 => 11:43:26 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", + "140 => 11:43:26 [0.7932755997633875, ['RDF070v', 'X5Av']]\n", + "Best score: 0.7932755997633875\n", + "Model's cluster info [104, 368]\n", + "Finish Time : 11:43:26\n" + ] + } + ], + "source": [ + "# let's try single-threaded feature selection \n", + "# giving training set, clusterinfo, and number of components to select for \n", + "# model is either regression or classification\n", + "# learning is number of total epochs to train\n", + "# bank is number a memory of best models filtered \n", + "# interval is how often you want updates on progress\n", + "# the system returns a list of features it found were best\n", + "\n", + "# this is a small data set, so smaller bank and intervals are used to show convergence\n", + "features = fss.mlr_selection(xtrain, ytrain, clusterinfo, 2, model=\"regression\", learning=150, bank=50, interval=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "ec1718ed-3022-4554-8627-dbba0b4af243", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model features: ['RDF070v', 'X5Av']\n", + "Coefficients: [ -1.45342979 -96.40117135]\n", + "Intercept: -0.07684397375001017\n", + "RMSE: 0.250852\n", + "R^2: 0.793276\n" + ] + } + ], + "source": [ + "# we can export this model for now \n", + "model1 = em.ModelExport(xtrain, ytrain, xtest, ytest, features)\n", + "# show summary data \n", + "model1.mlr()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "8a1ee23e-c76b-4057-bdf7-9fa88ca57c06", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwi0lEQVR4nO3deVxU1f8/8NewD7KpgICiJppLLqglQn0UxZTSyiV3EBVxIzUVU/q5JO65lLlbCC4ooLnikmaWFohGotVHKUxE2RFlQGBY5v7+8MN8G5FhBoGZgdfz8ZjHg7n33Hvfh+Fy33POueeKBEEQQEREREQvpKfpAIiIiIi0GZMlIiIiIiWYLBEREREpwWSJiIiISAkmS0RERERKMFkiIiIiUoLJEhEREZESBpoOoD6QyWRITU2Fubk5RCKRpsMhIiIiFQiCgLy8PDg4OEBPr/L2IyZLNSA1NRWOjo6aDoOIiIiq4cGDB2jRokWl65ks1QBzc3MAz37ZFhYWGo6GiIiIVCGRSODo6Ci/jleGyVINKO96s7CwYLJERESkY6oaQsMB3kRERERKMFkiIiIiUoLJEhEREZESHLNUR2QyGYqLizUdBtUhQ0ND6OvrazoMIiJ6SUyW6kBxcTHu3bsHmUym6VCojllZWcHOzo7zbxER6TAmS7VMEASkpaVBX18fjo6OSie9ovpDEAQUFBQgMzMTAGBvb6/hiIiIqLqYLNWy0tJSFBQUwMHBAaamppoOh+qQWCwGAGRmZsLW1pZdckREOorNHLWsrKwMAGBkZKThSEgTyhPkkpISDUdCRETVxWSpjnDMSsPEz52ISPcxWSIiIiJSgskSERERkRJMlkgniUQiHD9+XNNhEBFRA8BkSUcIgoCsAikeSAqRVSCFIAh1ctyYmBjo6+tj8ODBam/bunVrfPnllzUflBKCIGDAgAEYNGhQhXXbt2+HlZUVHj58WKcxERFR9T158gSXL1/WaAxMlnRASl4hzv2TiSsPcnA97QmuPMjBuX8ykZJXWOvHDg4OxqxZs3D58mWkpqbW+vFelkgkQkhICGJjY7Fr1y758nv37uGTTz7Bli1b0KJFCw1GSEREqrp+/Tp69OiBwYMH4++//9ZYHEyWtFxKXiFiU5+gsFRx9u/CUhliU5/UasKUn5+PiIgIzJgxA4MHD0ZoaGiFMqdOncIbb7wBExMTWFtbY9iwYQAAd3d33L9/H3PnzoVIJJLfFfbZZ5/B2dlZYR9ffvklWrduLX9//fp1vP3227C2toalpSX69u2L3377TeW4HR0dsXnzZgQEBODevXsQBAG+vr4YOHAgvL291f49EBFR3RIEAV9++SXefPNN3Lt3D9bW1sjPz9dYPEyWtJggCLiVKVFa5lampNa65CIjI9GhQwe0b98eXl5e2LNnj8KxTp8+jWHDhuHdd9/FjRs3cPHiRfTq1QsAcPToUbRo0QJBQUFIS0tDWlqaysfNy8uDj48Pfv75Z1y9ehXt2rXDu+++i7y8PJX34ePjAw8PD0yePBlbt27FH3/8odDSRERE2iknJwdDhw7F3LlzUVJSguHDh+PGjRvo3r27xmLiDN5aLLuwuEKL0vMKS2XILiyGjalxjR8/ODgYXl5eAABPT0/k5ubip59+gru7OwBg1apVGDNmDJYvXy7fplu3bgCAJk2aQF9fH+bm5rCzs1PruP3791d4v3v3blhZWeGnn37CkCFDVN7P7t278dprr+Hy5cv49ttvYWNjo1YcRERUt2JiYjBmzBgkJyfDyMgImzZtwsyZMzU+Zx1blrRYURWJkrrl1JGQkIBr165h7NixAAADAwOMHj0awcHB8jLx8fHw8PCo8WNnZGTAz88P7dq1g6WlJSwsLJCfn4/k5GS19mNra4tp06ahY8eOGDp0aI3HSURENUMmk2H9+vXo06cPkpOT4eTkhJiYGPj7+2s8UQLYsqTVTAxUy2VVLaeO4OBglJaWwsHBQb5MEAQYGxtj69atsLS0lD/7TB16enoVug2ffxSIj48PHj16hM2bN6NVq1YwNjaGq6sriouL1T6egYEBDAz4Z05EpK2ys7Ph4+ODM2fOAABGjx6N3bt3w8LCQsOR/R+daVlatWoV3NzcYGpqCisrK5W2KR9Y/Pxr/fr18jKtW7eusH7t2rW1VAv1WIuNIK4iERIb6MFaXLPPnSstLcW+ffuwceNGxMfHy183b96Eg4MDDh06BADo2rUrLl68WOl+jIyM5M/GK2djY4P09HSFhCk+Pl6hzC+//ILZs2fj3XffxWuvvQZjY2NkZ2fXXAWJiEgrXLlyBc7Ozjhz5gyMjY2xa9cuHDp0SKsSJUCHkqXi4mKMHDkSM2bMUHmb8oHF5a89e/ZAJBJhxIgRCuX+PQg5LS0Ns2bNqunwq0UkEqGrrfI/mK62FjXeRBkVFYXHjx/D19cXnTt3VniNGDFC3hW3bNkyHDp0CMuWLcPt27fx+++/Y926dfL9tG7dGpcvX0ZKSoo82XF3d0dWVhY+//xz3L17F9u2bcPZs2cVjt+uXTvs378ft2/fRmxsLMaPH1+tViwiItJOMpkMq1evRr9+/ZCSkoJXX30V165dw9SpU7Wi2+15OpMsLV++HHPnzkWXLl1U3sbOzk7hdeLECfTr1w9t2rRRKFc+CLn81ahRI6X7lUqlkEgkCq/a0txcDBcHqwotTGIDPbg4WKG5ec0nEcHBwRgwYAAsLS0rrBsxYgR+/fVX3Lp1C+7u7jh8+DBOnjwJZ2dn9O/fH9euXZOXDQoKQlJSEpycnOSDqzt27Ijt27dj27Zt6NatG65du4aAgIAKx3/8+DF69OgBb29vzJ49G7a2tjVeTyIiqnuZmZnw9PTE//t//w9lZWXw8vJCXFwcunbtqunQKiUS6moq6BoSGhqKjz/+GE+ePFFru4yMDLRo0QJ79+7FuHHj5Mtbt26NoqIilJSUoGXLlhg3bhzmzp2rdJzLZ599pnAHWLnc3NwKTYdFRUW4d+8eXnnlFZiYmKgV878JgoDswmIUlcpg8r+uN23MvklRTX3+RET1waVLlzBu3Dikp6dDLBZj27ZtmDhxosauZxKJBJaWli+8fv9bgxn5unfvXpibm2P48OEKy2fPno0ePXqgSZMmiI6ORmBgINLS0rBp06ZK9xUYGIh58+bJ30skEjg6OtZa7MCzLrnamB6AiIiotpWVlWHlypUICgqCTCZDp06dEBkZiddee03ToalEo8nSokWLFMa4vMjt27fRoUOHlz7Wnj17MH78+Arf7v+d9HTt2hVGRkaYNm0a1qxZA2PjFycnxsbGla4jIiKi/5OWlobx48fj0qVLAIBJkyZhy5YtVQ550SYaTZbmz5+PiRMnKi3z/Pii6rhy5QoSEhIQERFRZVkXFxeUlpYiKSkJ7du3f+ljExERNVQXLlyAl5cXMjMz0ahRI+zYsUMnHzul0WTJxsamTmZVDg4ORs+ePeWzSysTHx8PPT09DigmIiKqptLSUnz22WdYvXo1BEFAly5d5I/Q0kU6M2YpOTkZOTk5SE5ORllZmXxunrZt28LMzAwA0KFDB6xZs0b+MFfg2Xiiw4cPY+PGjRX2GRMTg9jYWPTr1w/m5uaIiYnB3Llz4eXlhcaNG9dJvYiIiOqThw8fYty4cbhy5QoAYOrUqfjyyy91egoYnUmWli5dir1798rflz9Q79KlS/JnlSUkJCA3N1dhu/DwcAiCIH9sx78ZGxsjPDwcn332GaRSKV555RXMnTtXYRwTERERqebs2bPw9vbGo0ePYGZmhq+//hpjxozRdFgvTeemDtBGym495K3jDRs/fyJqCEpKSrB48WJ8/vnnAJ41aERERKBdu3Yajkw5Th1AREREtS45ORljxoxBTEwMAMDf3x8bNmyoV18QdWYGb6q/Jk6ciKFDh8rfu7u74+OPP67zOH788UeIRCK1JzwlImqoyp/gEBMTA0tLSxw5cgRbt26tV4kSwGSJKlE+o6pIJIKRkRHatm2LoKAglJaW1vqxjx49ihUrVqhUtq4SnOzsbNjZ2WH16tUV1o0aNQq9e/eu8NBgIqL6qri4GPPmzcMHH3yAx48f44033sBvv/1W4dmr9QW74ahSnp6eCAkJgVQqxZkzZ+Dv7w9DQ0MEBgZWKFtcXAwjI6MaOW6TJk1qZD81ydraGrt378bIkSPx3nvvyZ9RePjwYURFReHGjRvQ19fXcJRERLXv3r17GD16NK5fvw4A+Pjjj7Fu3boauwZoI7YsUaWMjY1hZ2eHVq1aYcaMGRgwYABOnjwJ4P+6zlatWgUHBwf5BJ4PHjzAqFGjYGVlhSZNmuCDDz5AUlKSfJ9lZWWYN28erKys0LRpU3zyySd4/h6D57vhpFIpFi5cCEdHRxgbG6Nt27YIDg5GUlIS+vXrBwBo3LgxRCKRfJJTmUyGNWvW4JVXXoFYLEa3bt1w5MgRheOcOXMGr776KsRiMfr166cQ54u8//77GDduHHx8fFBSUoKsrCz4+/tj7dq1nMCUiBqEo0ePonv37rh+/TqsrKxw/PhxfPHFF/U6UQLYslTnBEFAQUGBRo5tamr6Ug8rFIvFePTokfz9xYsXYWFhgQsXLgB4djfEoEGD4OrqiitXrsDAwAArV66Ep6cnbt26BSMjI2zcuBGhoaHYs2cPOnbsiI0bN+LYsWPo379/pcedMGECYmJi8NVXX6Fbt264d+8esrOz4ejoiG+//RYjRoxAQkICLCws5PN4rFmzBgcOHMDOnTvRrl07XL58GV5eXrCxsUHfvn3x4MEDDB8+HP7+/pg6dSp+/fVXzJ8/v8rfwebNm9GlSxesWLECt2/fRufOnTFr1qxq/06JiHSBVCpFQEAAtm7dCgDo3bs3wsPD0apVKw1HVkcEemm5ubkCACE3N7fCusLCQuG///2vUFhYKAiCIOTn5wsANPLKz89XuU4+Pj7CBx98IAiCIMhkMuHChQuCsbGxEBAQIF/frFkzQSqVyrfZv3+/0L59e0Emk8mXSaVSQSwWC999950gCIJgb28vfP755/L1JSUlQosWLeTHEgRB6Nu3rzBnzhxBEAQhISFBACBcuHDhhXFeunRJACA8fvxYvqyoqEgwNTUVoqOjFcr6+voKY8eOFQRBEAIDA4VOnToprF+4cGGFfb3IxYsXBX19fcHCwkJISkpSWvb5z5+ISNf8/fffQo8ePeTXkk8++UQoLi7WdFg1Qtn1+9/YskSVioqKgpmZGUpKSiCTyTBu3Dh89tln8vVdunRRaHq9efMmEhMTYW5urrCfoqIi3L17F7m5uUhLS4OLi4t8nYGBAV5//fUKXXHl4uPjoa+vj759+6ocd2JiIgoKCvD2228rLC8uLpZPZnr79m2FOADA1dVVpf33798fvXv3hrOzc8P5VkVEDVJERAT8/PyQl5eHpk2bYt++fXj33Xc1HVadY7JUx0xNTZGfn6+xY6ujX79+2LFjB4yMjODg4AADA8U/l+efGJ2fn4+ePXsiLCyswr6q+wzA6kyPX/77PX36NJo3b66wztjYuFpxPM/AwKDC74OIqL4oLCzE3LlzsWvXLgDAW2+9hUOHDqFFixYajkwz+N++jolEogpJhrZq1KgR2rZtq3L5Hj16ICIiAra2tpXOhGpvb4/Y2Fj06dMHwLOHLcbFxaFHjx4vLN+lSxfIZDL89NNPGDBgQIX15S1b/75tv1OnTjA2NkZycnKlLVIdO3aUD1Yvd/Xq1aorSURUzyUkJGDUqFG4desWRCIRAgMDsXz58gb9BZF3w1GNGT9+PKytrfHBBx/gypUruHfvHn788UfMnj0bDx8+BADMmTMHa9euxfHjx3Hnzh3MnDlT6RxJrVu3ho+PDyZPnozjx4/L9xkZGQkAaNWqFUQiEaKiopCVlYX8/HyYm5sjICAAc+fOxd69e3H37l389ttv2LJli/z5gtOnT8fff/+NBQsWICEhAQcPHkRoaGht/4qIiLTagQMH0LNnT9y6dQs2NjY4d+4cVq1a1aATJYDJEtUgU1NTXL58GS1btsTw4cPRsWNH+Pr6oqioSN7SNH/+fHh7e8PHxweurq4wNzfHsGHDlO53x44d+PDDDzFz5kx06NABfn5+ePr0KQCgefPmWL58ORYtWoRmzZrho48+AgCsWLECS5YswZo1a9CxY0d4enri9OnTeOWVVwAALVu2xLfffovjx4+jW7du2Llz5wsnnCQiaggKCgrg6+sLb29vPH36FO7u7rh58yYGDhyo6dC0Ah+kWwP4IF2qDD9/ItJ2//3vfzFy5Ej897//hUgkwtKlS7FkyZIGMdEuH6RLRERElRIEAaGhofD390dhYSHs7OwQFhamdN67horJEhERUQOTn5+PmTNnYv/+/QCAt99+G/v370ezZs00HJl24pglIiKiBuTWrVt44403sH//fujp6WHlypU4d+4cEyUl2LJERETUAAiCgK+//hpz5sxBUVERHBwccOjQIflULlQ5Jkt1hOPoGyZ+7kSkDSQSCaZNm4bw8HAAwDvvvIO9e/dWe8LghobdcLWs/G6C4uJiDUdCmlD+0GRDQ0MNR0JEDdWNGzfQs2dPhIeHQ19fH+vWrUNUVBQTJTWwZamWGRgYwNTUFFlZWTA0NISeHvPThkAQBBQUFCAzMxNWVlYN4hZcItIugiBg+/btmDdvHoqLi+Ho6Ijw8HC4ublpOjSdw2SplolEItjb2+PevXu4f/++psOhOmZlZQU7OztNh0FEDcyTJ0/g5+eHI0eOAADee+89hIaGokmTJhqOTDcxWaoDRkZGaNeuHbviGhhDQ0O2KBFRnbt+/TpGjx6Ne/fuwdDQEOvWrcPHH38MkUik6dB0FpOlOqKnp8cZnImIqNYIgoDNmzfjk08+QUlJCVq3bo2IiAj06tVL06HpPCZLREREOi4nJweTJ0/GiRMnAADDhw9HcHAwrKysNBtYPcHRxkRERDrs6tWr6N69O06cOAEjIyNs2bIFR44cYaJUg5gsERER6SCZTIb169fjP//5D5KTk+Hk5ISYmBh89NFHHJ9Uw9gNR0REpGOys7Ph4+ODM2fOAABGjx6N3bt3w8LCQsOR1U9sWSIiItIhV65cgbOzM86cOQNjY2Ps3LkThw4dYqJUi5gsERER6QCZTIbVq1ejX79+SElJwauvvorY2FhMmzaN3W61jN1wRESkUwRBQHZhMYpKZTAx0IO12KjeJwuZmZnw9vbG+fPnAQBeXl7YsWMHzMzMNBxZw6ATLUtJSUnw9fXFK6+8ArFYDCcnJyxbtqzKSR6Liorg7++Ppk2bwszMDCNGjEBGRoZCmeTkZAwePBimpqawtbXFggULUFpaWpvVISKiakrJK8S5fzJx5UEOrqc9wZUHOTj3TyZS8go1HVqt+fHHH+Hs7Izz589DLBYjODgY+/btY6JUh3SiZenOnTuQyWTYtWsX2rZtiz/++AN+fn54+vQpNmzYUOl2c+fOxenTp3H48GFYWlrio48+wvDhw/HLL78AAMrKyjB48GDY2dkhOjoaaWlpmDBhAgwNDbF69eq6qh4REakgJa8QsalPKiwvLJUhNvUJXByA5ubiug+slpSVlWHlypUICgqCTCZDp06dEBkZiddee03ToTU4IkEQBE0HUR3r16/Hjh078M8//7xwfW5uLmxsbHDw4EF8+OGHAJ4lXR07dkRMTAx69+6Ns2fPYsiQIUhNTUWzZs0AADt37sTChQuRlZUFIyOjF+5bKpVCKpXK30skEjg6OiI3N5cD7IiIaoEgCDj3TyYKS2WVlhEb6MGzjW296JJLS0uDl5cXfvjhBwDApEmTsGXLFjRq1EjDkdUvEokElpaWVV6/daIb7kVyc3OVPhAwLi4OJSUlGDBggHxZhw4d0LJlS8TExAAAYmJi0KVLF3miBACDBg2CRCLBn3/+Wem+16xZA0tLS/nL0dGxBmpERESVyS4sVpooAc9amLILdf8ZnBcuXICzszN++OEHNGrUCPv27cOePXuYKGmQTiZLiYmJ2LJlC6ZNm1ZpmfT0dBgZGVWYwbRZs2ZIT0+Xl/l3olS+vnxdZQIDA5Gbmyt/PXjwoJo1ISIiVRRVkSipW04blZaWYvHixRg0aBAyMzPRpUsX/Prrr/D29tZ0aA2eRpOlRYsWQSQSKX3duXNHYZuUlBR4enpi5MiR8PPz00jcxsbGsLCwUHgREVHtMTFQ7XKlajltk5KSgv79+2PVqlUQBAFTp05FbGwsOnTooOnQCBoe4D1//nxMnDhRaZk2bdrIf05NTUW/fv3g5uaG3bt3K93Ozs4OxcXFePLkiULrUkZGBuzs7ORlrl27prBd+d1y5WWIiEjzrMVGEBvoVTlmyVr84rGm2uzs2bOYMGECsrOzYWZmhq+//hpjxozRdFj0LxpNlmxsbGBjY6NS2ZSUFPTr1w89e/ZESEgI9PSUf3vo2bMnDA0NcfHiRYwYMQIAkJCQgOTkZLi6ugIAXF1dsWrVKmRmZsLW1hbAs75iCwsLdOrU6SVqRkRENUkkEqGrrcUL74Yr19XWQqcGd5eUlGDx4sX4/PPPAQDdu3dHREQE2rVrp+HI6Hk60V6ZkpICd3d3tGzZEhs2bEBWVhbS09MVxhWlpKSgQ4cO8pYiS0tL+Pr6Yt68ebh06RLi4uIwadIkuLq6onfv3gCAgQMHolOnTvD29sbNmzfx3XffYfHixfD394exsbFG6kpERC/W3FwMFwcriJ/rahMb6MHFwUqnpg1ITk6Gu7u7PFHy9/dHdHQ0EyUtpRPzLF24cAGJiYlITExEixYtFNaVz3xQUlKChIQEFBQUyNd98cUX0NPTw4gRIyCVSjFo0CBs375dvl5fXx9RUVGYMWMGXF1d0ahRI/j4+CAoKKhuKkZERGppbi6Gg5mJTs/gferUKfj4+ODx48ewsLBAcHCwfIob0k46O8+SNlF1ngYiImq4iouLERgYiE2bNgEAXn/9dURERCiMzaW6per1WydaloiIiHTZvXv3MGbMGPlQkY8//hjr1q2rdPJj0i5MloiIiGrR0aNHMXnyZOTm5sLKygqhoaH44IMPNB0WqUEnBngTERHpGqlUilmzZmHEiBHIzc1F7969ER8fz0RJB7FliYiIqIYlJiZi9OjR+O233wAACxYswKpVq2BoaKjhyHSLIAhaMZifyRIRUT2iLReXhiwyMhJTpkxBXl4emjZtir1792Lw4MGaDkvnpOQV4lamRGEiUrGBHrraWtT5NBFMloiI6glturg0RIWFhZg7dy527doFAHjrrbdw6NChClPeUNVS8gpfOAFpYakMsalP4OKAOv2b5pglIqJ6oPzi8vzjQMovLil5hRqKrGFISEhA7969sWvXLohEInz66ae4dOkSE6VqEAQBtzIlSsvcypSgLmc+YrJERKTjtPHi0pAcOHAAPXv2xK1bt2BjY4Nz585h1apVMDBg5011ZBcWK30GIPDsS0B2YXEdRcRkiYhI52njxaUhKCgogK+vL7y9vfH06VO4u7sjPj4eAwcO1HRoOq2oir9ldcvVBCZLREQ6ThsvLvXdf//7X/Tq1Qt79uyBSCTCsmXL8P3338PBwUHToek8EwPVUhNVy9UEthESEek4bby41GehoaGYOXMmCgsLYWdnh7CwMPTv31/TYdUb1mIjiA30lLaWiv93p2dd4ZlDRKTjyi8uytT1xaU+ys/Ph4+PDyZNmoTCwkIMGDAA8fHxTJRqmEgkQldb5c9Z7WprUadTYjBZIiLScdp4calvfv/9d7zxxhvYt28f9PT0sHLlSnz33Xdo1qyZpkOrl5qbi+HiYFXhS4DYQA8uDlacZ4mIiNT37OICzrNUwwRBwDfffIPZs2ejqKgIDg4OOHToEPr06aPp0Oq95uZiOJiZaMUkq0yWiIjqCW26uNQHEokE06ZNQ3h4OADA09MT+/btg42NjYYjazhEIhFsTI01HQaTJSKi+kRbLi667saNGxg1ahQSExOhr6+P1atXIyAgAHp6HL3SEDFZIiIi+h9BELBjxw7MnTsXxcXFcHR0RHh4ONzc3DQdGmkQkyUiIiIAubm5mDJlCo4cOQIAeO+99xASEoKmTZtqODLSNLYnEhFRg3f9+nV0794dR44cgaGhITZt2oQTJ04wUSIAbFkiIqIGTBAEfPXVV1iwYAFKSkrQunVrREREoFevXpoOjbQIkyUiImqQcnJyMHnyZJw4cQIAMHz4cAQHB8PKykqzgZHWYbJEREQaJwhCnU55cPXqVYwePRrJyckwMjLCxo0b4e/vz2kW6IWYLBERkUal5BXW2WSaMpkMmzZtQmBgIEpLS+Hk5ISIiAj07NmzRo9D9QsHeBMRkcak5BUiNvVJhYemFpbKEJv6BCl5hTV2rOzsbLz//vtYsGABSktLMWrUKPz2229MlKhKTJaIiEgjBEHArUyJ0jK3MiUQBOGlj/Xzzz/D2dkZp0+fhrGxMXbu3Inw8HBYWCh/ph4RwGSJiIg0JLuwuEKL0vMKS2XILiyu9jFkMhnWrFkDd3d3pKSk4NVXX0VsbCymTZvG8UmkMo5ZIiIijSiqIlFSt9zzMjMz4e3tjfPnzwMAvLy8sGPHDpiZmVVrf6Seuh60X5uYLBERkUaYGKjWuaFquX/78ccfMW7cOKSlpUEsFmPr1q2YNGmSzl6sdU1dDtqvC+yGIyIijbAWG0FcRSIk/l+LhKrKysoQFBQEDw8PpKWloWPHjrh+/TomT57MRKmO1OWg/brCZImIiDRCJBKhq63yAdZdbS1UTnLS09MxcOBALFu2DDKZDJMmTcL169fx2muv1US4pIK6HLRfl3QiWUpKSoKvry9eeeUViMViODk5YdmyZSgurnzQX05ODmbNmoX27dtDLBajZcuWmD17NnJzcxXKiUSiCq/w8PDarhIREQFobi6Gi4NVhRYmsYEeXBysVO6y+f7779GtWzf88MMPMDU1xb59+7Bnzx40atSoNsKmStTFoH1N0IkxS3fu3IFMJsOuXbvQtm1b/PHHH/Dz88PTp0+xYcOGF26TmpqK1NRUbNiwAZ06dcL9+/cxffp0pKamyp8oXS4kJASenp7y95zqnoio7jQ3F8PBzKRag4FLS0uxfPlyrFq1CoIgoEuXLoiMjESHDh3qIHJ6Xm0P2tcUkaBrbWH/s379euzYsQP//POPytscPnwYXl5eePr0KQwMnuWJIpEIx44dw9ChQ6sdi0QigaWlJXJzczlnBxFRHUlJScG4ceNw+fJlAICfnx82b94MsVj3BhDXF1kFUlx5kFNluf84NoGNqXEdRKScqtdvneiGe5Hc3Fw0adJE7W0sLCzkiVI5f39/WFtbo1evXtizZ0+VfalSqRQSiUThRUREdefcuXNwdnbG5cuXYWZmhoMHD2L37t1MlDSsNgbtawOdTJYSExOxZcsWTJs2TeVtsrOzsWLFCkydOlVheVBQECIjI3HhwgWMGDECM2fOxJYtW5Tua82aNbC0tJS/HB0dq1UPIiJST0lJCRYtWoR33nkH2dnZcHZ2xm+//YaxY8dqOjRCzQ/a1xYa7YZbtGgR1q1bp7TM7du3FfqeU1JS0LdvX7i7u+Obb75R6TgSiQRvv/02mjRpgpMnT8LQ0LDSskuXLkVISAgePHhQaRmpVAqpVKqwf0dHR3bDERHVouTkZIwdOxbR0dEAnvUKbNiwASYmJhqOjJ6nK/MsqdoNp9FkKSsrC48ePVJapk2bNjAyetZcl5qaCnd3d/Tu3RuhoaHQ06u6YSwvLw+DBg2CqakpoqKiqjypTp8+jSFDhqCoqAjGxqr1p3LMEhFpWn2aLflFTp06hYkTJyInJwcWFhYIDg7Ghx9+qOmwSAld+JtU9fqt0bvhbGxsYGNjo1LZlJQU9OvXDz179kRISIhKiZJEIsGgQYNgbGyMkydPqvTtIz4+Ho0bN1Y5USIi0jRd+RZfHcXFxQgMDMSmTZsAAK+//joiIiLQpk0bDUemGzSZsIhEIq0YxF0TdGLqgJSUFLi7u6NVq1bYsGEDsrKy5Ovs7OzkZTw8PLBv3z706tULEokEAwcOREFBAQ4cOKAwENvGxgb6+vo4deoUMjIy0Lt3b5iYmODChQtYvXo1AgICNFJPIiJ1lc+W/Lzy2ZJdHKCzCdO9e/cwZswYXLt2DQDw8ccfY+3atfwyq6L6nETXNZ1Ili5cuIDExEQkJiaiRYsWCuvKexFLSkqQkJCAgoICAMBvv/2G2NhYAEDbtm0Vtrl37x5at24NQ0NDbNu2DXPnzoUgCGjbti02bdoEPz+/OqgVEdHLUXW2ZAczE63r/qjK0aNHMXnyZOTm5sLKygqhoaH44IMPNB2WzqjPSbQm6Ow8S9qEY5aISBN0bU4bVUilUgQEBGDr1q0AgN69eyM8PBytWrXScGS6QxAEnPsnU+lM2mIDPXi2sdW5JLqm1ft5loiIGrr6NltyYmIi3Nzc5InSggULcPnyZSZKaqqvjxzRJJ3ohiMioopMqpj8T91ymhQZGYkpU6YgLy8PTZs2xd69ezF48GBNh6WT6lsSrQ20/wwiIqIXqg+zJRcWFmLGjBkYPXo08vLy8NZbbyE+Pp6J0kuoT0m0tuBviohIR+n6bMkJCQno3bs3du7cCQAIDAzEpUuXKtzIQ+qpD0m0tmGyRESkw5qbi+HiYFXh4ig20IOLg5XW3vEUFhaGnj174tatW7CxscG5c+ewevXqCs/uJPXpehKtjfhXSUSk45qbi+FgZqL1syUDQEFBAWbPno3g4GAAgLu7O8LCwuDg4KDhyOqXZ0k0OM9SDWGyRERUD+jCbMn//e9/MWrUKPz5558QiURYsmQJli5dCn19fU2HVi/pUhKt7ZgsERFRrQsNDYW/vz8KCgpgZ2eHsLAw9O/fX9Nh1Xu6kETrAo5ZIiKiWpOfnw8fHx9MmjQJBQUFGDBgAOLj45kokU5hskRERLXi999/xxtvvIF9+/ZBT08PK1euxLlz59CsWTNNh0akFnbDERFRjRIEAd988w1mz56NoqIiODg44NChQ+jTp4+mQyOqFiZLRERUY/Ly8jBt2jQcOnQIAODp6Yl9+/bBxsZGw5ERVR+74YiIqEbcuHEDPXr0wKFDh6Cvr4+1a9fi9OnTTJRI57FliYiIXoogCNixYwfmzZsHqVQKR0dHhIeHw83NTdOhEdUIJktERFRtubm5mDJlCo4cOQIAeO+99xASEoKmTZtqODKimsNuOCIiqpZff/0V3bt3x5EjR2BgYIBNmzbhxIkTTJSo3mHLEhERqUUQBHz11VdYsGABSkpK0Lp1a0RERKBXr16aDo2oVjBZIiIilT1+/BiTJ0/G8ePHAQDDhg3Dnj17YGVlpdG4iGoTu+GIiEglV69eRffu3XH8+HEYGRlhy5Yt+Pbbb5koUb3HZImIiJSSyWTYsGED/vOf/+D+/ftwcnJCdHQ0PvroIz6UlRoEdsMREVGlHj16BB8fH5w+fRoAMGrUKOzevRuWlpYajoyo7rBliYiIXujnn3+Gs7MzTp8+DWNjY+zYsQPh4eFMlKjBYbJEREQKZDIZ1qxZA3d3dzx8+BCvvvoqYmNjMX36dHa7UYPEbjgiIpLLzMyEt7c3zp8/DwAYP348duzYAXNzcw1HRqQ5TJaIiAgA8OOPP2LcuHFIS0uDWCzG1q1bMWnSJLYmUYPHbjgi0kmCICCrQIoHkkJkFUghCIKmQ9JZZWVlCAoKgoeHB9LS0tCxY0dcu3YNkydPZqJEBLYsEZEOSskrxK1MCQpLZfJlYgM9dLW1QHNzsQYj0z3p6ekYP348fvjhBwDAxIkTsXXrVjRq1EjDkRFpD7YsEZFOSckrRGzqE4VECQAKS2WITX2ClLxCDUWme77//ns4Ozvjhx9+gKmpKfbu3YuQkBAmSkTPYbJERDpDEATcypQoLXMrU8IuuSqUlpZiyZIlGDhwIDIyMtC5c2fExcVhwoQJmg6NSCuxG46IdEZ2YXGFFqXnFZbKkF1YDBtT4zqKSrekpKRg3LhxuHz5MgDAz88PmzdvhljM7kuiyuhEy1JSUhJ8fX3xyiuvQCwWw8nJCcuWLUNxcbHS7dzd3SESiRRe06dPVyiTnJyMwYMHw9TUFLa2tliwYAFKS0trszpEVE1FVSRK6pZraM6dOwdnZ2dcvnwZZmZmOHjwIHbv3l0hUeLgeSJFOtGydOfOHchkMuzatQtt27bFH3/8AT8/Pzx9+hQbNmxQuq2fnx+CgoLk701NTeU/l5WVYfDgwbCzs0N0dDTS0tIwYcIEGBoaYvXq1bVWHyKqHhMD1b7fqVquoSgpKcGSJUuwbt06AICzszMiIyPRrl27CmU5eJ6oIpGg4lcGQRC06hbS9evXY8eOHfjnn38qLePu7g5nZ2d8+eWXL1x/9uxZDBkyBKmpqWjWrBkAYOfOnVi4cCGysrJgZGSkUiwSiQSWlpbIzc2FhYWF2nUhItUIgoBz/2Qq7YoTG+jBs42tVv2/0qQHDx5gzJgxiI6OBgDMnDkTGzduhImJSYWy5YPnK+PiYMWEieoVVa/fKn/9evPNN5GYmFgjwdWE3NxcNGnSpMpyYWFhsLa2RufOnREYGIiCggL5upiYGHTp0kWeKAHAoEGDIJFI8Oeff1a6T6lUColEovAiotonEonQ1Vb5F5KuthZMlP7n1KlTcHZ2RnR0NCwsLHD48GFs27bthYkSB88TVU7lZKlFixZwdnbGtm3bajMelSQmJmLLli2YNm2a0nLjxo3DgQMHcOnSJQQGBmL//v3w8vKSr09PT1dIlADI36enp1e63zVr1sDS0lL+cnR0fInaEJE6mpuL4eJgBfFzXW1iAz22fPxPcXEx5s+fj/fffx85OTl4/fXXcePGDXz44YeVbqPO4HmihkblMUuRkZE4fPgwPvroIxw/fhwhISFo0aLFSx180aJF8j70yty+fRsdOnSQv09JSYGnpydGjhwJPz8/pdtOnTpV/nOXLl1gb28PDw8P3L17F05OTtWOOzAwEPPmzZO/l0gkTJiI6lBzczEczEyQXViMolIZTAz0YC02YosSnt0QM3r0aFy7dg0AMGfOHKxbtw7GxsrvDuTgeaLKqTXAe+TIkXB3d4e/vz+6dOkCb29vGBgo7mLTpk0q72/+/PmYOHGi0jJt2rSR/5yamop+/frBzc0Nu3fvVid0AICLiwuAZy1TTk5OsLOzk/9DKZeRkQEAsLOzq3Q/xsbGVf7jIaLaJRKJOD3Ac44dO4bJkyfjyZMnsLKyQkhICIYOHarSthw8T1Q5te+Ga9KkCTp27Ihjx47hxo0bCsmSut/qbGxsYGNjo1LZlJQU9OvXDz179kRISAj09NQ/YePj4wEA9vb2AABXV1esWrUKmZmZsLW1BQBcuHABFhYW6NSpk9r7JyLSBKlUigULFmDLli0AgN69eyM8PBytWrVSeR/WYiOIDfSqHDxvLVbtxhei+kStZOnPP//EhAkTkJOTg/Pnz6Nfv361FZeClJQUuLu7o1WrVtiwYQOysrLk68pbgFJSUuDh4YF9+/ahV69euHv3Lg4ePIh3330XTZs2xa1btzB37lz06dMHXbt2BQAMHDgQnTp1gre3Nz7//HOkp6dj8eLF8Pf3Z8sREemEu3fvYvTo0YiLiwMABAQEYPXq1TA0NFRrP+WD55XdDcfB89RQqdw8s3btWvTs2RPdunXDrVu36ixRAp619iQmJuLixYto0aIF7O3t5a9yJSUlSEhIkN/tZmRkhO+//x4DBw5Ehw4dMH/+fIwYMQKnTp2Sb6Ovr4+oqCjo6+vD1dUVXl5emDBhgsK8TERE2ioyMhLdu3dHXFwcmjZtiqioKKxfv17tRKkcB88TvZjK8yzZ29tj9+7deO+992o7Jp3DeZaIqC4VFRVh7ty52LlzJ4BnU7uEh4e/9E035QRB4OB5ahBUvX6r3A33xx9/oGnTpjUSHBERVc9ff/2FUaNG4ebNmwCe3Z0bFBRU4Wabl8HB80SKVD67mCgRkS6rD60lYWFhmDZtGp4+fQobGxvs378fgwYN0nRYRPWeTjwbjojoZej6884KCgowe/ZsBAcHA3j2KKewsDA4ODhoODKihoETZhBRvVb+vLPnb4kvLJUhNvUJUvIKNRSZam7fvg0XFxcEBwdDJBJh6dKl+P7775koEdUhtiwRUb2l6vPOHMxMtLJLbu/evZg5cyYKCgrQrFkzhIWFwcPDQ9NhETU4KiVL6jwolneDEZG2UOd5Z9o0oDk/Px/+/v7Yt28fAGDAgAE4cOBAhWdZElHdUClZsrKyUvlbV1lZ2UsFRERUU3TxeWe///47Ro0ahTt37kBPTw/Lly9HYGAg9PX1NR0aUYOlUrJ06dIl+c9JSUlYtGgRJk6cCFdXVwBATEwM9u7dizVr1tROlERE1aBLzzsTBAHBwcGYNWsWioqK4ODggIMHD6Jv376aDo2owVN5UspyHh4emDJlCsaOHauw/ODBg9i9ezd+/PHHmoxPJ3BSSiLtJAgCzv2TWeXzzjzb2Gp0zFJeXh6mTZuGQ4cOAQA8PT2xb98+lZ+dSUTVo+r1W+2vUzExMXj99dcrLH/99ddx7do1dXdHRFRryp93poymn3cWHx+Pnj174tChQ9DX18fatWtx+vRpJkpEWkTtZMnR0RFff/11heXffPMNHB0dayQoIqKaoq3POxMEATt27EDv3r3x999/o0WLFvjpp5+wcOFC6OlpvluQiP6P2lMHfPHFFxgxYgTOnj0LFxcXAMC1a9fw999/49tvv63xAImIXlZzczEczEy0Zgbv3Nxc+Pn54fDhwwCAIUOGIDQ0lE9KINJSan99effdd/HXX3/hvffeQ05ODnJycvDee+/hr7/+wrvvvlsbMRIRvbTy5505WohhY2qssUTp119/RY8ePXD48GEYGBhg48aNOHnyJBMlIi2m9gBvqogDvImoKoIg4KuvvsKCBQtQUlKCVq1aISIiQt5CT0R1r9YGeAPAlStX4OXlBTc3N6SkpAAA9u/fj59//rl60RIR1WOPHz/G8OHD8fHHH6OkpATDhg3DjRs3mCgR6Qi1k6Vvv/0WgwYNglgsxm+//QapVArgWR/86tWrazxAIiJdFhsbi+7du+P48eMwMjLCV199hW+//RaNGzfWdGhEpCK1k6WVK1di586d+Prrr2FoaChf/uabb+K3336r0eCIiHSVTCbDxo0b8dZbb+H+/fto06YNoqOjMWvWLK18Dh0RVU7tu+ESEhLQp0+fCsstLS3x5MmTmoiJiEinPXr0CD4+Pjh9+jQAYNSoUdi9ezcsLS01HBkRVYfaLUt2dnZITEyssPznn39GmzZtaiQoIiJd9csvv8DZ2RmnT5+GsbExduzYgfDwcCZKRDpM7WTJz88Pc+bMQWxsLEQiEVJTUxEWFoaAgADMmDGjNmIkItJ6MpkMa9euRd++ffHw4UO8+uqriI2NxfTp09ntRqTj1O6GW7RoEWQyGTw8PFBQUIA+ffrA2NgYAQEBmDVrVm3ESESk1TIzMzFhwgR89913AIDx48djx44dMDc313BkRFQTqj3PUnFxMRITE5Gfn49OnTrBzMyspmPTGZxniajh+umnnzB27FikpaVBLBZjy5YtmDx5MluTiHRArc2zNHnyZOTl5cHIyAidOnVCr169YGZmhqdPn2Ly5MkvFTQRka4oKytDUFAQ+vfvj7S0NHTs2BHXrl2Dr68vEyWiekbtliV9fX2kpaXB1tZWYXl2djbs7OxQWlpaowHqArYsETUs6enp8PLywsWLFwEAEydOxNatW9GoUSMNR0ZE6lD1+q3ymCWJRAJBECAIAvLy8mBiYiJfV1ZWhjNnzlRIoIiI6puLFy9i/PjxyMjIgKmpKXbs2IEJEyZoOiwiqkUqJ0tWVlYQiUQQiUR49dVXK6wXiURYvnx5jQZHRKQtSktLERQUhJUrV0IQBHTu3BmRkZHo2LGjpkMjolqmcrJ06dIlCIKA/v3749tvv0WTJk3k64yMjNCqVSs4ODjUSpBERJqUmpqKsWPH4vLlywCeTaGyefNmiMViDUdGRHVB5WSpb9++AIB79+6hZcuWHMBIRA3CuXPn4O3tjezsbJiZmWH37t0YO3aspsMiojqk9t1wP/zwA44cOVJh+eHDh7F3794aCYqISNNKSkoQGBiId955B9nZ2XB2dkZcXBwTJaIGSO1kac2aNbC2tq6w3NbWFqtXr66RoIiINOnBgwdwd3fH2rVrAQAzZ85ETEzMC8drElH9p3aylJycjFdeeaXC8latWiE5OblGgnpeUlISfH198corr0AsFsPJyQnLli1DcXGx0m3KB6Q//zp8+LC83IvWh4eH10o9iEj7RUVFwdnZGdHR0bCwsEBkZCS2bdumcAcwETUsaj/uxNbWFrdu3ULr1q0Vlt+8eRNNmzatqbgU3LlzBzKZDLt27ULbtm3xxx9/wM/PD0+fPsWGDRteuI2joyPS0tIUlu3evRvr16/HO++8o7A8JCQEnp6e8vdWVlY1Xgci0m7FxcUIDAzEpk2bAAA9e/ZEREQEnJycNBwZEWma2snS2LFjMXv2bJibm6NPnz4Ank33P2fOHIwZM6bGAwQAT09PhWSmTZs2SEhIwI4dOypNlvT19WFnZ6ew7NixYxg1alSFR7NYWVlVKEtEDUdSUhLGjBmD2NhYAMCcOXOwbt06GBsbazgyItIGanfDrVixAi4uLvDw8IBYLIZYLMbAgQPRv3//Oh2zlJubqzB9QVXi4uIQHx8PX1/fCuv8/f1hbW2NXr16Yc+ePahqUnOpVAqJRKLwIiLddPz4cXTv3h2xsbGwsrLCsWPH8OWXX2okURIEAVkFUjyQFCKrQFrl/6KGFg+RpqjdsmRkZISIiAisWLECN2/ehFgsRpcuXdCqVavaiO+FEhMTsWXLlkpblV4kODgYHTt2hJubm8Ly8mc7mZqa4vz585g5cyby8/Mxe/bsSve1Zs0aTsBJpOOkUik++eQTfPXVVwAAFxcXhIeHVxhiUFdS8gpxK1OCwlKZfJnYQA9dbS3Q3Lzu53PStniINEntZ8PVpEWLFmHdunVKy9y+fRsdOnSQv09JSUHfvn3h7u6Ob775RqXjFBYWwt7eHkuWLMH8+fOVll26dClCQkLw4MGDSstIpVJIpVL5e4lEAkdHRz4bjkhH3L17F6NHj0ZcXBwAICAgAKtXr4ahoaFG4knJK0Rs6pNK17s4WNVpgqJt8RDVlhp9Nty8efOwYsUKNGrUCPPmzVNatnxwpCrmz5+PiRMnKi3Tpk0b+c+pqano168f3NzcsHv3bpWPc+TIERQUFKj0/CYXFxesWLECUqm00mZ4Y2NjjmUg0lGHDx/GlClTIJFI0KRJE+zbtw+DBw/WWDyCIOBWpvKu/FuZEjiYmdTJZMDaFg+RNlApWbpx4wZKSkrkP1dG3RPHxsYGNjY2KpVNSUlBv3790LNnT4SEhEBPT/XhVsHBwXj//fdVOlZ8fDwaN27MZIionikqKsK8efOwY8cOAMCbb76JQ4cOwdHRUaNxZRcWK3R1vUhhqQzZhcWwMa39/0vaFg+RNlApWbp06dILf64rKSkpcHd3R6tWrbBhwwZkZWXJ15XfxZaSkgIPDw/s27cPvXr1kq9PTEzE5cuXcebMmQr7PXXqFDIyMtC7d2+YmJjgwoULWL16NQICAmq/UkRUZ/766y+MGjUKN2/eBAAEBgYiKCgIBgZqD9uscUVVJCbqlntZ2hYPkTbQ/H8KFVy4cAGJiYlITExEixYtFNaVD7kqKSlBQkICCgoKFNbv2bMHLVq0wMCBAyvs19DQENu2bcPcuXMhCALatm2LTZs2wc/Pr/YqQ0R16uDBg5g2bRry8/NhY2OD/fv3Y9CgQZoOS87EQLVWclXLvSxti4dIG6g0wHv48OEq7/Do0aMvFZAuUnWAGBG9HEEQkF1YjKJSGUwM9GAtNqq0+7+goABz5syR3wjSt29fHDx4EA4ODnUZcpUEQcC5fzKVdn2JDfTg2ca2zsYsaVM8RLWpRgd4W1payn8WBAHHjh2DpaUlXn/9dQDP5jB68uSJWkkVEZE61LmV/fbt2xg1ahT++OMPiEQiLFmyBEuWLNGKbrfniUQidLW1UHr3WVdbizpLTLQtHiJtoPbUAQsXLkROTg527twJfX19AEBZWRlmzpwJCwsLrF+/vlYC1WZsWSKqXercyr53717MnDkTBQUFaNasGcLCwuDh4VFHkVafts1rpG3xENUGVa/faidLNjY2+Pnnn9G+fXuF5QkJCXBzc8OjR4+qF7EOY7JEVHtU7Rb6T7NG+Oijj7B3714AgIeHBw4cOKBTjzJSp5uxIcZDVNNqtBvu30pLS3Hnzp0KyVL5w26JiGqSKrey3/nzT8wZPBN/JyRAT08Py5cvR2BgoLz1W1eIRCKtuh1f2+Ih0hS1k6VJkybB19cXd+/eld+iHxsbi7Vr12LSpEk1HiARNWzKblEXBAEXjxxE8MolKJYWwcHBAQcPHkTfvn3rMEIiqu/UTpY2bNgAOzs7bNy4EWlpaQAAe3t7LFiwoMpHiRARqauyW9QL8/Ox67OFuBJ1DADQ/+2BCA87oPJEt0REqnqpZ8NJJM+mxG/o43Q4Zomo9rxozNK9239g48fTkXb/H+jp68Nn3iJ8vWa5znW7EZFmqXr9rtasYqWlpfj+++9x6NAh+WC/1NRU5OfnVy9aIqJKlN/KDvwvcTq0F4Gj30Pa/X/Q1M4eK/Z/ixVL/h8TJSKqNWp3w92/fx+enp5ITk6GVCrF22+/DXNzc6xbtw5SqRQ7d+6sjTiJqAFrbi5Gx0a5mDp1Gn4+ewoA0NN9ABas/wpvtW8tv5Wdd28RUW1QO1maM2cOXn/9ddy8eRNNmzaVLx82bBgfE0JEteLXX3/F6NGj8c8//8DAwACBy1fiozlzYGNqLE+GOC8QEdUWtZOlK1euIDo6GkZGRgrLW7dujZSUlBoLjIhIEARs2bIFAQEBKCkpQatWrRAREQEXFxeFcpVNWllYKkNs6hO4OIAJExFVm9pjlmQyGcrKyiosf/jwIczNzWskKCKix48fY/jw4ZgzZw5KSkowdOhQ3Lhxo0KiJAgCbmVKlO7rVqYEL3EvCxE1cGonSwMHDsSXX34pfy8SiZCfn49ly5bh3XffrcnYiKiBio2NRffu3XH8+HEYGRnhq6++wtGjR9G4ceMKZVWZtLKwVIbswuLaCpeI6rlqzbPk6emJTp06oaioCOPGjcPff/8Na2trHDp0qDZiJKIGQhAEbNq0CYsWLUJpaSnatGmDyMhI9OzZs9JtlE1aWZ1yRETPUztZcnR0xM2bNxEREYGbN28iPz8fvr6+GD9+PMRijgkgoup59OgRJk6ciKioKADAyJEj8fXXX8PS0lLpdpVNWlndckREz1MrWSopKUGHDh0QFRWF8ePHY/z48bUVF5HW4O3ote+XX37BmDFj8PDhQxgbG+PLL7/EtGnTVPo9W4uNIDbQq/JBu9Zio0rXExEpo1ayZGhoiKKiotqKhUjr8Hb02iWTyfD5559j8eLFKCsrQ7t27RAZGQlnZ2eV91E+aeWL7oYr19XWggkuEVWb2u3S/v7+WLduHUpLS2sjHiKtUX47+vMtFuW3o6fkFWoosvohKysLgwcPRmBgIMrKyjBu3DjExcWplSiVa24uhouDFcTPdbWJDfTg4mDFxJaIXoraY5auX7+Oixcv4vz58+jSpQsaNWqksP7o0aM1FhyRpqh6O7qDmQlbLKrhp59+wrhx45CamgoTExNs3boVkydPfqnfZXNzMRzMTNhlSkQ1Tu1kycrKCiNGjKiNWIi0hjq3o9uYGtdRVLqvrKwMq1evxmeffQaZTIaOHTsiMjISnTt3rpH9i0Qifh5EVOPUTpZCQkJqIw4ircLb0Wteeno6vLy8cPHiRQCAj48Ptm3bVqF1mohI26g8Zkkmk2HdunV488038cYbb2DRokUoLOSYDaqfeDt6zbp48SKcnZ1x8eJFmJqaIjQ0FKGhoUyUiEgnqPyfftWqVfj0009hZmaG5s2bY/PmzfD396/N2Ig0pvx2dGV4O3rVysrKsHTpUrz99tvIyMhA586d8euvv8LHx0fToRERqUzlZGnfvn3Yvn07vvvuOxw/fhynTp1CWFgYZDJ2Q1D9U347ujK8HV251NRUeHh4YMWKFRAEAVOmTEFsbCw6duyo6dCIiNSicrKUnJys8Oy3AQMGQCQSITU1tVYCI9I03o5efd999x26deuGn376CWZmZggLC8PXX38NU1NTTYdGRKQ2lQd4l5aWwsTERGGZoaEhSkpKajwoIm3B29HVU1paiiVLlmDt2rUAgG7duiEyMhKvvvqqhiMjIqo+lZMlQRAwceJEGBv/3225RUVFmD59usIgTc6zRPUNb0dXzYMHDzB27Fj88ssvAICZM2di48aNFb5kERHpGpWTpRcNyPTy8qrRYIhIN0VFRcHHxwc5OTmwsLDAN998g5EjR2o6LCKiGqFyssT5lYjoecXFxfj000+xceNGAEDPnj0REREBJycnDUdGRFRz1J6UkogIAJKSkjBmzBjExsYCAGbPno3PP/9coaueiKg+0JkZ9d5//320bNkSJiYmsLe3h7e3d5V34hUVFcHf3x9NmzaFmZkZRowYgYyMDIUyycnJGDx4MExNTWFra4sFCxbwIcFEVTh+/Di6d++O2NhYWFlZ4dixY9i8eTMTJSKql3QmWerXrx8iIyORkJCAb7/9Fnfv3sWHH36odJu5c+fi1KlTOHz4MH766SekpqZi+PDh8vVlZWUYPHgwiouLER0djb179yI0NBRLly6t7eoQ6SSpVIo5c+Zg2LBhePLkCVxcXHDjxg0MHTpU06EREdUeQUedOHFCEIlEQnFx8QvXP3nyRDA0NBQOHz4sX3b79m0BgBATEyMIgiCcOXNG0NPTE9LT0+VlduzYIVhYWAhSqVTlWHJzcwUAQm5ubjVrQ6T9EhMThZ49ewoABADC/Pnz1TpPiIi0jarXb51pWfq3nJwchIWFwc3NDYaGhi8sExcXh5KSEgwYMEC+rEOHDmjZsiViYmIAADExMejSpQuaNWsmLzNo0CBIJBL8+eeflR5fKpVCIpEovIjqs8OHD6NHjx6Ii4tDkyZNcOrUKWzYsAFGRnzcCxHVfzqVLC1cuBCNGjVC06ZNkZycjBMnTlRaNj09HUZGRrCyslJY3qxZM6Snp8vL/DtRKl9fvq4ya9asgaWlpfzl6OhYzRoRabeioiLMnDkTo0aNgkQiwZtvvon4+HgMGTJE06EREdUZjSZLixYtgkgkUvq6c+eOvPyCBQtw48YNnD9/Hvr6+pgwYQIEQajzuAMDA5Gbmyt/PXjwoM5jIKptf/31F3r37o0dO3YAePZ3f+nSJX45IKIGR6NTB8yfPx8TJ05UWqZNmzbyn62trWFtbY1XX30VHTt2hKOjI65evQpXV9cK29nZ2aG4uBhPnjxRaF3KyMiAnZ2dvMy1a9cUtiu/W668zIsYGxvzrh+q1w4ePIhp06YhPz8f1tbWOHDgAAYNGqTpsIiINEKjyZKNjQ1sbGyqta1MJgPwbPzQi/Ts2ROGhoa4ePEiRowYAQBISEhAcnKyPLlydXXFqlWrkJmZCVtbWwDAhQsXYGFhgU6dOlUrLiJdVlBQgDlz5uCbb74BAPTt2xcHDx6Eg4ODhiMjItIcnRizFBsbi61btyI+Ph7379/HDz/8gLFjx8LJyUme+KSkpKBDhw7yliJLS0v4+vpi3rx5uHTpEuLi4jBp0iS4urqid+/eAICBAweiU6dO8Pb2xs2bN/Hdd99h8eLF8Pf3Z8sRNTi3b9+Gi4sLvvnmG4hEIixduhTff/89EyUiavB0YgZvU1NTHD16FMuWLcPTp09hb28PT09PLF68WJ7UlJSUICEhAQUFBfLtvvjiC+jp6WHEiBGQSqUYNGgQtm/fLl+vr6+PqKgozJgxA66urmjUqBF8fHwQFBRU53Uk0qS9e/di5syZKCgoQLNmzRAWFgYPDw9Nh0VEpBVEgiZGSNczEokElpaWyM3NhYWFhabDIVLZ06dP4e/vj7179wIAPDw8cODAAaVj9oiI6gtVr9860Q1HRDXvjz/+wBtvvIG9e/dCT08PQUFB+O6775goERE9Rye64Yio5giCgODgYMyaNQtFRUVwcHDAwYMH0bdvX02HRkSklZgsETUgeXl5mD59Og4ePAjg2Yz1+/fvr/ZdqUREDQG74YgaiPj4eLz++us4ePAg9PX1sWbNGpw5c4aJEhFRFdiyRFTPCYKAnTt3Yu7cuZBKpWjRogXCw8Px5ptvajo0IiKdwGSJqB7Lzc3F1KlTERkZCQAYMmQIQkND0bRpUw1HRkSkO9gNR1RPxcXFoUePHoiMjISBgQE2btyIkydPMlEiIlITW5aI6hlBELB161YEBASguLgYrVq1QkREBFxcXDQdGhGRTmKyRFSPPH78GL6+vjh27BgAYOjQodizZw8aN26s4ciIiHQXu+GI6onY2Fj06NEDx44dg6GhITZv3oyjR48yUSIieklMloh0nCAI2LhxI9566y0kJSWhTZs2iI6OxuzZsyESiTQdHhGRzmM3HJEOe/ToESZOnIioqCgAwMiRI/H111/D0tJSw5EREdUfbFki0lG//PILunfvjqioKBgbG2P79u2IiIhgokREVMOYLBHpGJlMhrVr16Jv37548OAB2rVrh6tXr2LGjBnsdiMiqgXshiPSIVlZWZgwYQLOnTsHABg3bhx27twJc3NzDUdGRFR/MVki0hGXL1/G2LFjkZqaChMTE2zduhWTJ09+6dYkQRCQXViMolIZTAz0YC02YgsVEdG/MFki0nJlZWVYs2YNli1bBplMhg4dOuDw4cPo3LnzS+87Ja8QtzIlKCyVyZeJDfTQ1dYCzc3FL71/IqL6gGOWiLRYeno6Bg0ahCVLlkAmk8HHxwe//vprjSVKsalPFBIlACgslSE29QlS8gpf+hhERPUBkyUiLXXx4kU4Ozvj4sWLMDU1RWhoKEJDQ9GoUaOX3rcgCLiVKVFa5lamBIIgvPSxiIh0HZMlIi1TVlaGZcuW4e2330ZGRgY6d+6M69evw8fHp8aOkV1YXKFF6XmFpTJkFxbX2DGJiHQVxywRaZHU1FSMGzcOP/30EwBgypQp2Lx5M0xNTWv0OEVVJErqliMiqs+YLBFpie+++w7e3t7IysqCmZkZdu3ahXHjxtXKsUwMVGtUVrUcEVF9xv+ERBpWWlqKwMBAeHp6IisrC926dUNcXFytJUoAYC02griKREj8v2kEiIgaOiZLRBr04MEDuLu7Y+3atQCAGTNm4OrVq3j11Vdr9bgikQhdbS2Ululqa8H5loiIwGSJSGNOnz4NZ2dn/PLLL7CwsEBERAS2b98OExOTOjl+c3MxXBysKrQwiQ304OJgxXmWiIj+h2OWiOpYSUkJPv30U2zYsAEA0LNnT0RERMDJyanOY2luLoaDmQln8CYiUoLJElEdSkpKwpgxYxAbGwsAmD17Nj7//HMYGxtrLCaRSAQbU80dn4hI2zFZInpJqj5b7fjx45g0aRKePHkCKysrhISEYOjQoXUfMBERqYXJEtFLUOXZalKpFAsXLsTmzZsBAC4uLggPD0fr1q01ETIREamJyRJRNZU/W+155c9Wc3EApFlpGDVqFOLi4gAA8+fPx+rVq2FkxFvyiYh0Be+GI6oGVZ6ttn1vGLp37464uDg0adIEp06dwoYNG5goERHpGJ1Jlt5//320bNkSJiYmsLe3h7e3N1JTUystn5OTg1mzZqF9+/YQi8Vo2bIlZs+ejdzcXIVyIpGowis8PLy2q0M6Ttmz1YqlRfg6KBCrZ/lBIpHgzTffRHx8PIYMGVLHUapHEARkFUjxQFKIrAIpH6JLRPQ/OtMN169fP3z66aewt7dHSkoKAgIC8OGHHyI6OvqF5VNTU5GamooNGzagU6dOuH//PqZPn47U1FQcOXJEoWxISAg8PT3l762srGqzKlQPVPbMtNSkf7Bp7jTcu/0nAGDm3AB8uW41DA0N6zI8taky9oqIqKESCTr69fHkyZMYOnQopFKpyheiw4cPw8vLC0+fPoWBwbM8USQS4dixY2rdlSSVSiGVSuXvJRIJHB0dkZubCwsL5bMiU/2QVSDFlQc5CsuuRB3DzqWfoKjgKSwaN8Hsz7dg9rgRWn9bfmVjr8pxgkoiqq8kEgksLS2rvH7rTDfcv+Xk5CAsLAxubm5qfWMv/2WUJ0rl/P39YW1tjV69emHPnj1Vdj+sWbMGlpaW8pejo2O16kG669/PVpMWFWLHkgB8GeCPooKn6PR6b2w4fgFu/Ty0/tlqqoy9upUpYZccETVoOpUsLVy4EI0aNULTpk2RnJyMEydOqLxtdnY2VqxYgalTpyosDwoKQmRkJC5cuIARI0Zg5syZ2LJli9J9BQYGIjc3V/568OBBtepDuqv82WoP7/6NRSMH4/vDByESifDhzI/xWWgkmjaz14lnqykbe1WusFSG7MLiOoqIiEj7aLQbbtGiRVi3bp3SMrdv30aHDh0APEt4cnJycP/+fSxfvhyWlpaIioqq8oIkkUjw9ttvo0mTJjh58qTS1qilS5ciJCRErQRI1WY8ql/27duH6TNmoLCgAFbWNpj9+RZ0c+ujU2N9HkgKcT3tSZXl3rC3gqOF9teHiEgdql6/NZosZWVl4dGjR0rLtGnT5oW3Wj98+BCOjo6Ijo6Gq6trpdvn5eVh0KBBMDU1RVRUVJUPKT19+jSGDBmCoqIilR9BwWRJe6g6m/bLbPP06VN89NFHCA0NBQB4eHjgy93BsLS21blnq71o7NWL/MexidaPvSIiUpeq12+N3g1nY2MDGxubam0rkz3rOvj3QOvnSSQSDBo0CMbGxjh58qRKT3OPj49H48aNNfqsLqqe6tzRpe42f/zxB0aNGoXbt29DT08Pn332GT799FPo6+vXfIXqQPnYK2VdceL/JYBERA2VTkwdEBsbi+vXr+Ott95C48aNcffuXSxZsgROTk7yVqWUlBR4eHhg37596NWrFyQSCQYOHIiCggIcOHAAEokEEsmzgaw2NjbQ19fHqVOnkJGRgd69e8PExAQXLlzA6tWrERAQoMnqUjWoMpv288mPOtsIgoA9e/Zg1qxZKCwshL29PQ4dOoS+ffvWRnXqTPnYK2V3w+nC2CsiotqkE8mSqakpjh49imXLluHp06ewt7eHp6cnFi9eLG8BKikpQUJCAgoKCgAAv/32m/zJ7m3btlXY371799C6dWsYGhpi27ZtmDt3LgRBQNu2bbFp0yb4+fnVbQXppah6R5eDmYn8oq/ONvn5+ZgxYwbCwsIAAIMGDcK+fftga2tbMxXQsObmYrg4gPMsERFVQmfnWdImHLOkWdUZd6PqNo0fP8R0Hy/89ddf0NfXx8qVK/HJJ59AT0+nbiRVSXXGexER6TKdGLNEVBMqm01bWbmqthEEAecj9mPvmmWQSqVo0aIFDh06hLfeeuulYtVmIpGIg7iJiF6AyRLpPBMD1Vp5/l1O2TZP8yTYuXQBos+eAgAMGTIEoaGhaNq06csFSkREOqn+9SVQg/Pv2bQr8/wdXZVtc/ePW/hkhCeiz56CvoEB1q9fj5MnTzJRIiJqwJgskc4rv6NLmefv6Hp+G0EQcGZ/MD4d+z7Sk5Ng49ACR899j4CAAI7bISJq4JgsUb3w7I4uqwqtRWIDvUofBFu+TelTCdbPnoLgVUtQWlIM17ffwaWYWLzvodvTAhARUc3gmCWqN5qbi+FgZqLWHV0pt3/HwtGjkZSUBENDQ3y2ei0Wzfu4Xt7tRkRE1cNkieoVVe/oEgQBX3zxBRYuXIjS0lK0adMGEREReP311+sgSiIi0iVMlqjBefToESZOnIioqCgAwIcffohvvvkGlpaWGo6MiIi0EfsaqEGJjo5G9+7dERUVBWNjY2zfvh2RkZFMlIiIqFJMlqhBkMlkWLduHfr06YMHDx6gXbt2uHr1KmbMmMG73YiISCl2w1G9l5WVhQkTJuDcuXMAgHHjxmHnzp0wNzfXcGRERKQLmCxRvXb58mWMHTsWqampMDExwZYtW+Dr68vWJCIiUhm74aheKisrw8qVK9GvXz+kpqaiQ4cOuHbtGqZMmcJEiYiI1MKWJap3MjIy4OXlhe+//x4A4OPjg23btqFRo0YajoyIiHQRkyWqVy5evIjx48cjIyMDpqam2L59O3x8fDQdFhER6TB2w1G9UFZWhmXLluHtt99GRkYGOnfujOvXrzNRIiKil8aWJdJ5qampGD9+PH788UcAwJQpU7B582aYmppqNjAiIqoXmCyRTvvuu+/g7e2NrKwsmJmZYdeuXRg3bpymwyIionqE3XCkk0pLS/Hpp5/C09MTWVlZ6NatG+Li4pgoERFRjWPLEumchw8fYuzYsfj5558BADNmzMCmTZtgYmKi4ciIiKg+YrJEFQiCgOzCYhSVymBioAdrsZHWzE10+vRp+Pj44NGjRzA3N8c333yDUaNGaTosIiKqx5gskYKUvELcypSgsFQmXyY20ENXWws0NxdrLK6SkhJ8+umn2LBhAwCgZ8+eiIiIgJOTk8ZiIiKihoFjlkguJa8QsalPFBIlACgslSE29QlS8go1Etf9+/fRp08feaI0a9Ys/PLLL0yUiIioTjBZIgDPut5uZUqUlrmVKYEgCHUU0TPHjx+Hs7Mzrl69CisrKxw9ehRfffUVjI2N6zQOIiJquJgsEQAgu7C4QovS8wpLZcguLK6TeIqLi/Hxxx9j2LBhePLkCXr16oUbN25g2LBhdXJ8IiKickyWCABQVEWipG65l/HPP//gzTffxObNmwEA8+fPx5UrV9C6detaPzYREdHzOMCbAAAmBqrlzaqWq64jR47A19cXEokETZo0QWhoKN57771aPSYREZEybFkiAIC12AjiKhIh8f+mEagNRUVF8Pf3x8iRIyGRSODm5ob4+HgmSkREpHFMlggAIBKJ0NXWQmmZrrYWtTLf0t9//w1XV1ds374dALBo0SL8+OOPcHR0rPFjERERqYvdcCTX3FwMFwfU6TxLhw4dwtSpU5Gfnw9ra2vs378fnp6eNX4cIiKi6tKZlqX3338fLVu2hImJCezt7eHt7Y3U1FSl27i7u0MkEim8pk+frlAmOTkZgwcPhqmpKWxtbbFgwQKUlpbWZlW0WnNzMTzb2OI/jk3whr0V/uPYBJ5tbGs8USosLMTUqVMxbtw45Ofno0+fPoiPj2eiREREWkdnWpb69euHTz/9FPb29khJSUFAQAA+/PBDREdHK93Oz88PQUFB8vempqbyn8vKyjB48GDY2dkhOjoaaWlpmDBhAgwNDbF69epaq4u2E4lEsDGtvXmM7ty5g5EjR+KPP/6ASCTC4sWLsXTpUhgY6MyfIxERNSAioa5nGawhJ0+exNChQyGVSmFoaPjCMu7u7nB2dsaXX375wvVnz57FkCFDkJqaimbNmgEAdu7ciYULFyIrKwtGRi8ezCyVSiGVSuXvJRIJHB0dkZubCwsL5eN+Grp9+/ZhxowZKCgoQLNmzXDgwAEMGDBA02EREVEDJJFIYGlpWeX1W2e64f4tJycHYWFhcHNzqzRRKhcWFgZra2t07twZgYGBKCgokK+LiYlBly5d5IkSAAwaNAgSiQR//vlnpftcs2YNLC0t5S8ORK7a06dPMWnSJPj4+KCgoAD9+/dHfHw8EyUiItJ6OpUsLVy4EI0aNULTpk2RnJyMEydOKC0/btw4HDhwAJcuXUJgYCD2798PLy8v+fr09HSFRAmA/H16enql+w0MDERubq789eDBg5eoVf33559/olevXggNDYWenh6CgoJw/vx52NnZaTo0IiKiKmk0WVq0aFGFAdjPv+7cuSMvv2DBAty4cQPnz5+Hvr4+JkyYoPRZZVOnTsWgQYPQpUsXjB8/Hvv27cOxY8dw9+7dl4rb2NgYFhYWCi+qSBAEBAcH44033sB///tf2Nvb4+LFi1iyZAn09fU1HR4REZFKNDqidv78+Zg4caLSMm3atJH/bG1tDWtra7z66qvo2LEjHB0dcfXqVbi6uqp0PBcXFwBAYmIinJycYGdnh2vXrimUycjIAAC2erykvLw8zJgxA2FhYQCAgQMHYv/+/bC1tdVwZEREROrRaLJkY2MDGxubam0rkz2bB+jfA62rEh8fDwCwt7cHALi6umLVqlXIzMyUX8QvXLgACwsLdOrUqVpxEXDz5k2MGjUKf/31F/T19bFy5Up88skn0NPTqV5fIiIiADoyZik2NhZbt25FfHw87t+/jx9++AFjx46Fk5OTvFUpJSUFHTp0kLcU3b17FytWrEBcXBySkpJw8uRJTJgwAX369EHXrl0BPGvt6NSpE7y9vXHz5k189913WLx4Mfz9/WFsXHu3ztdXgiBg165dcHFxwV9//YUWLVrgxx9/xKJFi5goERGRztKJK5ipqSmOHj0KDw8PtG/fHr6+vujatSt++ukneVJTUlKChIQE+d1uRkZG+P777zFw4EB06NAB8+fPx4gRI3Dq1Cn5fvX19REVFQV9fX24urrCy8sLEyZMUJiXiVQjkUgwZswYTJ8+HVKpFIMHD0Z8fDzeeustTYdGRET0UnR2niVtouo8DfVVXFwcRo8ejbt378LAwABr167F3Llz2ZpERERaTdXrN6dMpmoTBAFbt25FQEAAiouL0apVK4SHh6N3796aDo2IiKjGMFmianny5Al8fX1x9OhRAMDQoUOxZ88eNG7cWMORERER1Sz2k5Darl27hu7du+Po0aMwNDTE5s2bcfToUSZKRERULzFZIpUJgoBNmzbhzTffRFJSEtq0aYPo6GjMnj0bIpFI0+ERERHVCnbDkUpycnIwceJE+d2EH374Ib755htYWlpqODIiIqLaxZYlqlJ0dDScnZ1x6tQpGBsbY/v27YiMjGSiREREDQKTJaqUTCbDunXr0KdPHzx48ADt2rXD1atXMWPGDHa7ERFRg8FuOHqhrKws+Pj44OzZswCAsWPHYteuXTA3N9dwZERERHWLyRJVcPnyZYwdOxapqakwMTHBli1b4Ovry9YkIiJqkNgNR3JlZWVYuXIl+vXrh9TUVPmz9qZMmcJEiYiIGiy2LBEAICMjA15eXvj+++8BABMmTMC2bdtgZmam4ciIiIg0i8kS4YcffsD48eORnp4OU1NTbNu2DRMnTtR0WERERFqB3XANWFlZGZYtW4YBAwYgPT0dr732Gq5fv85EiYiI6F/YstRApaamYvz48fjxxx8BAFOmTMHmzZthamqq2cCIiIi0DJOlBuj8+fPw8vJCVlYWzMzMsGvXLowbN07TYREREWkldsM1IKWlpfj0008xaNAgZGVloVu3boiLi2OiREREpARblhqIhw8fYuzYsfj5558BANOnT8cXX3wBExMTDUdGRESk3ZgsNQBnzpzBhAkT8OjRI5ibm+Obb77BqFGjNB0WERGRTmA3XD1WUlKCTz75BIMHD8ajR4/Qo0cP3Lhxg4kSERGRGtiyVE/dv38fY8aMwdWrVwEAs2bNwvr162FsbKzhyIiIiHQLk6V66MSJE5g0aRIeP34MKysr7NmzB8OGDdN0WERERDqJ3XD1SHFxMT7++GMMHToUjx8/Rq9evXDjxg0mSkRERC+ByVI98c8//+DNN9/E5s2bAQDz58/HlStX0Lp1a80GRkREpOPYDVcPHDlyBL6+vpBIJGjSpAlCQ0Px3nvvaTosIiKieoEtSzqsqKgI/v7+GDlyJCQSCdzc3HDjxg0mSkRERDWIyZKO+vvvv+Hm5obt27cDABYuXIgff/wRLVu21HBkRERE9Qu74XRQeHg4/Pz8kJ+fD2tra+zfvx+enp6aDouIiKheYrKkpQRBQHZhMYpKZTAx0IO12AhFRUX4+OOPsXv3bgBAnz59cPDgQTRv3lzD0RIREdVfTJa0UEpeIW5lSlBYKpMvy75/F1/Mm4E7f/4BkUiE//f//h+WLVsGAwN+hERERLWJV1otk5JXiNjUJwrLfjxxBF8vX4SiggLY2NriYFgYBgwYoJkAiYiIGhidGeD9/vvvo2XLljAxMYG9vT28vb2RmppaafmkpCSIRKIXvg4fPiwv96L14eHhdVGlCgRBwK1Mifx9UUEBtgZ+jC0LZ6OooABder+FL058Dw8PD43ER0RE1BDpTMtSv3798Omnn8Le3h4pKSkICAjAhx9+iOjo6BeWd3R0RFpamsKy3bt3Y/369XjnnXcUloeEhCgMkLaysqrx+FWRXVgs73rLe/IYi72G4WHiX9DT08NI/3kYMX0O9PX1kV1YDBtTPuONiIioLuhMsjR37lz5z61atcKiRYswdOhQlJSUwNDQsEJ5fX192NnZKSw7duwYRo0aBTMzM4XlVlZWFcpqQtG/xiiZWVrBsW17PM3NxccbtqGzi9sLyxEREVHtEgmCIGg6CHXl5ORgxowZSElJwc8//6zSNnFxcXj99dfxyy+/wM3t/xIPkUgEBwcHSKVStGnTBtOnT8ekSZMgEokq3ZdUKoVUKpW/l0gkcHR0RG5uLiwsLKpdr6wCKa48yJG/f5onQWlxMSybWiuU+49jE7YsERERvSSJRAJLS8sqr986M2YJeDbxYqNGjdC0aVMkJyfjxIkTKm8bHByMjh07KiRKABAUFITIyEhcuHABI0aMwMyZM7Flyxal+1qzZg0sLS3lL0dHx2rV53nWYiOIDf7vI2lkblEhURL/bxoBIiIiqhsabVlatGgR1q1bp7TM7du30aFDBwBAdnY2cnJycP/+fSxfvhyWlpaIiopS2goEAIWFhbC3t8eSJUswf/58pWWXLl2KkJAQPHjwoNIytdWyBLz4brh/c3GwQnNz8Usdg4iIiFRvWdJospSVlYVHjx4pLdOmTRsYGVVsSXn48CEcHR0RHR0NV1dXpfvYv38/fH19kZKSAhsbG6VlT58+jSFDhqCoqAjGxqp1dan6y1bVi+ZZEhvooautBRMlIiKiGqLq9VujA7xtbGyqTF4qI5M9SyT+3cJTmeDgYLz//vsqHSs+Ph6NGzdWOVGqDc3NxXAwM6kwg3dVLWhERERU83TibrjY2Fhcv34db731Fho3boy7d+9iyZIlcHJykrcqpaSkwMPDA/v27UOvXr3k2yYmJuLy5cs4c+ZMhf2eOnUKGRkZ6N27N0xMTHDhwgWsXr0aAQEBdVa3yohEIg7iJiIi0gI6kSyZmpri6NGjWLZsGZ4+fQp7e3t4enpi8eLF8hagkpISJCQkoKCgQGHbPXv2oEWLFhg4cGCF/RoaGmLbtm2YO3cuBEFA27ZtsWnTJvj5+dVJvYiIiEj76eTUAdqmpscsERERUe2rl1MHEBEREdU1JktERERESjBZIiIiIlKCyRIRERGREkyWiIiIiJRgskRERESkBJMlIiIiIiV0YlJKbVc+VZVEItFwJERERKSq8ut2VVNOMlmqAXl5eQAAR0dHDUdCRERE6srLy4OlpWWl6zmDdw2QyWRITU2Fubl5jTzsViKRwNHREQ8ePKh3M4KzbrqrPtePddNN9bluQP2un7bUTRAE5OXlwcHBAXp6lY9MYstSDdDT00OLFi1qfL8WFhb17gQpx7rprvpcP9ZNN9XnugH1u37aUDdlLUrlOMCbiIiISAkmS0RERERKMFnSQsbGxli2bBmMjY01HUqNY910V32uH+umm+pz3YD6XT9dqxsHeBMREREpwZYlIiIiIiWYLBEREREpwWSJiIiISAkmS0RERERKMFnSgPfffx8tW7aEiYkJ7O3t4e3tjdTU1ErLJyUlQSQSvfB1+PBhebkXrQ8PD6+LKilQt34A4O7uXiH26dOnK5RJTk7G4MGDYWpqCltbWyxYsAClpaW1WZUK1K1bTk4OZs2ahfbt20MsFqNly5aYPXs2cnNzFcppw2dXnc+tqKgI/v7+aNq0KczMzDBixAhkZGQolNH055aUlARfX1+88sorEIvFcHJywrJly1BcXKx0G10456pTN0B3zrfq1E9Xzrnqfna6cM4BwKpVq+Dm5gZTU1NYWVmptE1l59z69evlZVq3bl1h/dq1a2upFv8iUJ3btGmTEBMTIyQlJQm//PKL4OrqKri6ulZavrS0VEhLS1N4LV++XDAzMxPy8vLk5QAIISEhCuUKCwvrokoK1K2fIAhC3759BT8/P4XYc3Nz5etLS0uFzp07CwMGDBBu3LghnDlzRrC2thYCAwNruzoK1K3b77//LgwfPlw4efKkkJiYKFy8eFFo166dMGLECIVy2vDZVedzmz59uuDo6ChcvHhR+PXXX4XevXsLbm5u8vXa8LmdPXtWmDhxovDdd98Jd+/eFU6cOCHY2toK8+fPr3QbXTnnqlM3QdCd86069dOVc666n50unHOCIAhLly4VNm3aJMybN0+wtLRUaZvnz7k9e/YIIpFIuHv3rrxMq1athKCgIIVy+fn5tVSL/8NkSQucOHFCEIlEQnFxscrbODs7C5MnT1ZYBkA4duxYDUf38lSpX9++fYU5c+ZUuv7MmTOCnp6ekJ6eLl+2Y8cOwcLCQpBKpTUZrlqq89lFRkYKRkZGQklJiXyZNn52VdXtyZMngqGhoXD48GH5stu3bwsAhJiYGEEQtPdz+/zzz4VXXnlFrW105ZxTpW66er4JQvU+O10556qqmy6ecyEhISonS8/74IMPhP79+yssa9WqlfDFF1+8fGBqYjechuXk5CAsLAxubm4wNDRUaZu4uDjEx8fD19e3wjp/f39YW1ujV69e2LNnDwQNT6OlTv3CwsJgbW2Nzp07IzAwEAUFBfJ1MTEx6NKlC5o1ayZfNmjQIEgkEvz555+1Fr8y1fnsACA3NxcWFhYwMFB8NKM2fXaq1C0uLg4lJSUYMGCAfFmHDh3QsmVLxMTEANDOzw149hk0adJE5fK6dM6pWjddO9/KqfvZlW+j7eccUHXddPmcU1dGRgZOnz79wnNu7dq1aNq0Kbp3747169fXSRcjH6SrIQsXLsTWrVtRUFCA3r17IyoqSuVtg4OD0bFjR7i5uSksDwoKQv/+/WFqaorz589j5syZyM/Px+zZs2s6/CqpW79x48ahVatWcHBwwK1bt7Bw4UIkJCTg6NGjAID09HSFkx+A/H16enrtVKISL/PZZWdnY8WKFZg6darCcm357NSpW3p6OoyMjCqMR2jWrJn8M9Gmz61cYmIitmzZgg0bNqi8jS6cc4DqddOl8+3fqvPZafs5V06VuunqOVcde/fuhbm5OYYPH66wfPbs2ejRoweaNGmC6OhoBAYGIi0tDZs2bardgOq8LaueWrhwoQBA6ev27dvy8llZWUJCQoJw/vx54c033xTeffddQSaTVXmcgoICwdLSUtiwYUOVZZcsWSK0aNHipepVrq7qV+7ixYsCACExMVEQBEHw8/MTBg4cqFDm6dOnAgDhzJkzOlG33NxcoVevXoKnp2eV3XY19dnVZt3CwsIEIyOjCsvfeOMN4ZNPPhEEQbs+N0EQhIcPHwpOTk6Cr6+vysfRxDlXV3UrV5fnmyDUXf104ZwTBNXrpovnXHW74dq3by989NFHVZYLDg4WDAwMhKKiIrWPoQ62LNWQ+fPnY+LEiUrLtGnTRv6ztbU1rK2t8eqrr6Jjx45wdHTE1atX4erqqnQfR44cQUFBASZMmFBlTC4uLlixYgWkUulLP3+nrupXzsXFBcCzb1tOTk6ws7PDtWvXFMqU3wFiZ2enRk0qqou65eXlwdPTE+bm5jh27FiV3XY19dnVZt3s7OxQXFyMJ0+eKHzTzcjIkH8m2vS5paamol+/fnBzc8Pu3btVPo4mzrm6qlu5ujzfgLqpn66cc+rUTdfOueq6cuUKEhISEBERUWVZFxcXlJaWIikpCe3bt3/pY1eqVlMxUsn9+/cFAMKlS5eqLNu3b98Kd3VUZuXKlULjxo1fMrqXp079yv38888CAOHmzZuCIPzfoMWMjAx5mV27dgkWFha1/o1CGVXqlpubK/Tu3Vvo27ev8PTpU5X2qw2fXVV1Kx9seuTIEfmyO3fuvHCwqaY/t4cPHwrt2rUTxowZI5SWlqq1rbafcy9Tt3LafL5Vp366cs6pWzddOufKVadlycfHR+jZs6dKZQ8cOCDo6ekJOTk51YhOdUyW6tjVq1eFLVu2CDdu3BCSkpKEixcvCm5uboKTk5P8D/nhw4dC+/bthdjYWIVt//77b0EkEglnz56tsN+TJ08KX3/9tfD7778Lf//9t7B9+3bB1NRUWLp0aZ3Uq1x16peYmCgEBQUJv/76q3Dv3j3hxIkTQps2bYQ+ffrI91t+O+zAgQOF+Ph44dy5c4KNjU2d3g5bnbrl5uYKLi4uQpcuXYTExESF213L/zlqw2dX3b/L6dOnCy1bthR++OEH4ddff60w3YA2fG4PHz4U2rZtK3h4eAgPHz5U+Az+XUYXz7nq1E1Xzrfq1k9Xzrnq/l3qwjknCM++bN24cUM+5caNGzeEGzduKEy90b59e+Ho0aMK2+Xm5gqmpqbCjh07KuwzOjpa+OKLL4T4+Hjh7t27woEDBwQbGxthwoQJtV4fJkt17NatW0K/fv2EJk2aCMbGxkLr1q2F6dOnCw8fPpSXuXfv3gu/0QcGBgqOjo5CWVlZhf2ePXtWcHZ2FszMzIRGjRoJ3bp1E3bu3PnCsrWpOvVLTk4W+vTpI9+mbdu2woIFCxTmfREEQUhKShLeeecdQSwWC9bW1sL8+fMVbgXWxrpdunSp0r79e/fuCYKgHZ9ddf8uCwsLhZkzZwqNGzcWTE1NhWHDhin8sxcEzX9uISEhlX4G5XT1nKtO3XTlfBOE6tVPV8656v5d6sI5JwjPWodeVLd/1wV4NtfVv+3atUsQi8XCkydPKuwzLi5OcHFxESwtLQUTExOhY8eOwurVq+ukxUz0v4CJiIiI6AU4zxIRERGREkyWiIiIiJRgskRERESkBJMlIiIiIiWYLBEREREpwWSJiIiISAkmS0RERERKMFkiIiIiUoLJEhFRDROJRDh+/LimwyCiGsJkiYh0VkxMDPT19TF48GC1t23dujW+/PLLmg9KCUEQMGDAAAwaNKjCuu3bt8PKygoPHz6s05iIqGpMlohIZwUHB2PWrFm4fPkyUlNTNR1OlUQiEUJCQhAbG4tdu3bJl9+7dw+ffPIJtmzZghYtWmgwQiJ6ESZLRKST8vPzERERgRkzZmDw4MEIDQ2tUObUqVN44403YGJiAmtrawwbNgwA4O7ujvv372Pu3LkQiUQQiUQAgM8++wzOzs4K+/jyyy/RunVr+fvr16/j7bffhrW1NSwtLdG3b1/89ttvKsft6OiIzZs3IyAgAPfu3YMgCPD19cXAgQPh7e2t9u+BiGofkyUi0kmRkZHo0KED2rdvDy8vL+zZswf/fi746dOnMWzYMLz77ru4ceMGLl68iF69egEAjh49ihYtWiAoKAhpaWlIS0tT+bh5eXnw8fHBzz//jKtXr6Jdu3Z49913kZeXp/I+fHx84OHhgcmTJ2Pr1q34448/FFqaiEi7GGg6ACKi6ggODoaXlxcAwNPTE7m5ufjpp5/g7u4OAFi1ahXGjBmD5cuXy7fp1q0bAKBJkybQ19eHubk57Ozs1Dpu//79Fd7v3r0bVlZW+OmnnzBkyBCV97N792689tpruHz5Mr799lvY2NioFQcR1R22LBGRzklISMC1a9cwduxYAICBgQFGjx6N4OBgeZn4+Hh4eHjU+LEzMjLg5+eHdu3awdLSEhYWFsjPz0dycrJa+7G1tcW0adPQsWNHDB06tMbjJKKaw5YlItI5wcHBKC0thYODg3yZIAgwNjbG1q1bYWlpCbFYrPZ+9fT0FLryAKCkpEThvY+PDx49eoTNmzejVatWMDY2hqurK4qLi9U+noGBAQwM+G+YSNuxZYmIdEppaSn27duHjRs3Ij4+Xv66efMmHBwccOjQIQBA165dcfHixUr3Y2RkhLKyMoVlNjY2SE9PV0iY4uPjFcr88ssvmD17Nt5991289tprMDY2RnZ2ds1VkIi0DpMlItIpUVFRePz4MXx9fdG5c2eF14gRI+RdccuWLcOhQ4ewbNky3L59G7///jvWrVsn30/r1q1x+fJlpKSkyJMdd3d3ZGVl4fPPP8fdu3exbds2nD17VuH47dq1w/79+3H79m3ExsZi/Pjx1WrFIiLdwWSJiHRKcHAwBgwYAEtLywrrRowYgV9//RW3bt2Cu7s7Dh8+jJMnT8LZ2Rn9+/fHtWvX5GWDgoKQlJQEJycn+eDqjh07Yvv27di2bRu6deuGa9euISAgoMLxHz9+jB49esDb2xuzZ8+Gra1t7VaaiDRKJDzfQU9EREREcmxZIiIiIlKCyRIRERGREkyWiIiIiJRgskRERESkBJMlIiIiIiWYLBEREREpwWSJiIiISAkmS0RERERKMFkiIiIiUoLJEhEREZESTJaIiIiIlPj/O13PGprUcUoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# show plot of training\n", + "model1.train_plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "29df8327-de11-4d7c-8117-02c190947f35", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "22\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABUC0lEQVR4nO3deVxU5f4H8M8MOwKDKKuMgoqKuSGmgrmmQpZZ5tW0TAq1W2rX1FLL3RKzLCnNq6ao/So1w/JaZoo7Ku65kSZBIIIbyiIwyMz5/UGMjjA4M8x6+Lxfr3nJOfPMme8zDDNfn1UiCIIAIiIiIhsntXQARERERMbApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BAREZEo2Fs6AHNSqVS4evUq3N3dIZFILB0OERER6UAQBBQWFiIgIABSqfb2mDqV1Fy9ehVyudzSYRAREZEBsrKyEBgYqPX+OpXUuLu7A6h4UTw8PCwcDRGReRWXlaPzh0kAgKPvPwlXxzr1FUA2rKCgAHK5XP09rk2dekdXdjl5eHgwqSGiOse+rBxSJ1cAFZ+DTGrI1jxq6AgHChMREZEoMKkhIiIiUWBSQ0RERKLADlUiIiuiVCpx7949k1xbUVaORu52FT+XlkKq4lcAWQcHBwfY2dnV+jp8RxMRWQFBEJCbm4s7d+6Y7DlUgoA5vX0AAFevZELK9brIinh6esLPz69W68gxqSEisgKVCY2Pjw9cXV1NskCoUiWg/HohACDIxx12UiY1ZHmCIKC4uBjXr18HAPj7+xt8LSY1REQWplQq1QlNgwYNTPc8KgESewUAwNnZmUkNWQ0XFxcAwPXr1+Hj42NwVxQHChMRWVjlGBpXV1cLR0JkOZXv/9qMKWNSQ0RkJbgnHdVlxnj/M6khIiIiUWBSQ0RERKLApIaIiKzenDlz0KFDB/VxTEwMnnvuOZNdvzoPP2evXr0wceJE9XFQUBCWLFlitJhsiS6vnzkwqSEiolo5fPgw7Ozs8PTTT5vtOePj47F27VqzPZ8uz3ns2DGMHTtWfSyRSPDjjz/W+nl79eoFiUQCiUQCJycnNGrUCAMHDkRiYmKtr20sU6ZMQVJSkqXDYFJDRES1s3r1akyYMAH79+/H1atXzfKcMpkMnp6eZnkuXZ/T29vbZDPYxowZg5ycHKSlpeGHH35A69at8eKLL2okUZbk5uZm0uUIdMWkhojICgmCgOKycqPfSu8pUXpPqfV+QRD0irOoqAgbN27EG2+8gaeffrpKS8bevXshkUjw888/o127dnB2dkbXrl1x7tw5dZm1a9fC09MTP/74I0JCQuDs7IyoqChkZWVpfd6Hu4JUKhUWLVqE5s2bw8nJCY0bN8aHH36ovn/q1Klo0aIFXF1d0bRpU8ycObPaqcMrVqyAXC6Hq6srhg4divz8fK3P+bAHu5+CgoIAAM8//zwkEgmCgoKQkZEBqVSK48ePazxuyZIlaNKkCVQqldZru7q6ws/PD4GBgejatSs++ugjrFixAqtWrcKuXbvU5c6ePYs+ffrAxcUFDRo0wNixY1FUVFSlDgsWLICvry88PT0xb948lJeX45133oGXlxcCAwORkJCg8fyPev20dQ9+8skn8Pf3R4MGDTBu3DiTbQFSiYvvERFZoZJ7SrSetcPsz3thXhRcHXX/ati0aRNatWqFli1b4uWXX8bEiRMxffr0KtNz33nnHcTHx8PPzw/vvfceBg4ciEuXLsHBwQEAUFxcjA8//BDr16+Ho6Mj3nzzTbz44otITk7WKY7p06dj1apV+Oyzz/DEE08gJycHf/zxh/p+d3d3rF27FgEBATh79izGjBkDd3d3vPvuu+oyly9fxqZNm/C///0PBQUFiI2NxZtvvolvvvlG59ej0rFjx+Dj44OEhARER0fDzs4O3t7e6Nu3LxISEtCpUyd12YSEBMTExEAq1a+dYdSoUZg8eTISExPRt29f3L17F1FRUYiIiMCxY8dw/fp1jB49GuPHj9dINnfv3o3AwEDs378fycnJiI2NxaFDh9CjRw+kpKRg48aNeP3119GvXz8EBgbq/Po9bM+ePfD398eePXtw+fJlDBs2DB06dMCYMWP0ezH1wJYaIiIy2OrVq/Hyyy8DAKKjo5Gfn499+/ZVKTd79mz069cPbdu2xbp163Dt2jVs2bJFff+9e/ewdOlSREREIDw8HOvWrcOhQ4dw9OjRR8ZQWFiI+Ph4LFq0CKNGjUKzZs3wxBNPYPTo0eoyM2bMQGRkJIKCgjBw4EBMmTIFmzZt0rhOaWkp1q9fjw4dOqBHjx744osvsGHDBuTm5ur9unh7ewO4v59R5fHo0aPx3XffQaGoWNn55MmTOHv2LF599VW9n0MqlaJFixbIyMgAAHz77bfqOrRp0wZ9+vTB0qVL8fXXX+PatWvqx3l5eeHzzz9Hy5Yt8dprr6Fly5YoLi7Ge++9h5CQEEyfPh2Ojo44ePCg+jG6vH4Pq1+/PpYuXYpWrVrhmWeewdNPP23ycTdsqSEiskIuDna4MC/KqNdUqgSk5hQAAEL9PardJsHFQffl6S9evIijR4+qkxN7e3sMGzYMq1evRq9evTTKRkREqH/28vJCy5YtkZqaqj5nb2+Pxx9/XH3cqlUreHp6IjU1FZ07d64xjtTUVCgUCjz55JNay2zcuBGff/450tLSUFRUhPLycnh4eGiUady4MRo1aqQRs0qlwsWLF+Hn51djDLp67rnnMG7cOGzZsgUvvvgi1q5di969e6u7q/QlCIK6VSw1NRXt27dHvXr11Pd369ZNXQdfX18AwGOPPabRKuTr64s2bdqoj+3s7NCgQQP1XkyAbq/fwx577DGN7Q78/f1x9uxZg+qpK7bUEBFZIYlEAldHe6PfnB3s4Oxgp/V+fVZ1Xb16NcrLyxEQEAB7e3vY29tj+fLl+OGHHzTGopha5b5B2hw+fBgvvfQSBgwYgG3btuHUqVN4//33UVZWZqYI73N0dMQrr7yChIQElJWV4dtvv8Vrr71m0LWUSiX+/PNPBAcH6/W4yi6/ShKJpNpzlWN8DH39arqmqTCpISIivZWXl2P9+vVYvHgxTp8+rb79/vvvCAgIwHfffadR/siRI+qfb9++jUuXLiE0NFTjeg8OoL148SLu3LmjUUabkJAQuLi4aO3aOHToEJo0aYL3338fnTp1QkhICP7+++8q5TIzMzVmbx05cgRSqRQtW7Z8ZAzVcXBwgFKprHJ+9OjR2LVrF7788kuUl5dj8ODBBl1/3bp1uH37Nl544QUAQGhoKH7//XfcvXtXXSY5OblWdQB0f/2sgc0kNcuXL0e7du3g4eEBDw8PREREYPv27ZYOi4ioTtq2bRtu376N2NhYtGnTRuP2wgsvYPXq1Rrl582bh6SkJJw7dw4xMTFo2LChxkwiBwcHTJgwASkpKThx4gRiYmLQtWvXR3Y9ARU7jk+dOhXvvvsu1q9fj7S0NBw5ckQdQ0hICDIzM7FhwwakpaXh888/1xjP8+B1Ro0ahd9//x0HDhzAW2+9haFDhxrc9RQUFISkpCTk5ubi9u3b6vOhoaHo2rUrpk6diuHDhz+ypQmoGEidm5uLK1eu4MiRI5g6dSr+/e9/44033kDv3r0BAC+99JK6DufOncOePXswYcIEjBw5Ut31ZAhdXz9rYDNJTWBgIBYuXIgTJ07g+PHj6NOnDwYNGoTz589bOjQiojpn9erV6Nu3L2QyWZX7XnjhBRw/fhxnzpxRn1u4cCH+85//IDw8HLm5ufjf//4HR0dH9f2urq6YOnUqRowYgW7dusHNzQ0bN27UOZ6ZM2di8uTJmDVrFkJDQzFs2DD1mJBnn30Wb7/9NsaPH48OHTrg0KFDmDlzZpVrNG/eHIMHD8aAAQPQv39/tGvXDl9++aU+L4uGxYsXY+fOnZDL5QgLC9O4LzY2FmVlZTp3Pa1atQr+/v5o1qwZBg8ejAsXLmDjxo0a8bm6umLHjh3Iy8vD448/jiFDhuDJJ5/E0qVLDa4DoPvrZw0kgr6LElgRLy8vfPzxx4iNjdWpfEFBAWQyGXJu3Kp2gJNUIoHzA4PkisvKtV6rNmVLypQQUP3LLoEELo6GlS29p4Sqhl/ng9M0LVXWxcFO3WevKFdCqTJOWWd7O0j/GfRYVq5CeQ39tvqUdbK3Uw+m1KfsPaUK95TayzraSWFvJ9W7bLlShbIayjrYSeFgQFmlSoCivGozeSV7qRSO9vqXVakElBqprJ1UAif7ive7IAgouWecsub6u6+p7D2FAlevZCI4OBjOzs5QqbT91QMSQP3+BaBX2XKlChceGCgsfWj8jJ2O19Wn7N69e9H3yT64ffs2PD09qy27bu1aTJr0Nm7l3YZUcn+3ZpUgoKZvKFsuO2/ePGzevBmnTv9u1OsKgoAaPiohkUD9e7e2sqWlpcjISEdAYGM4OTsDuP8ZUfn9nZ+fX+MAZZuc/aRUKvH999/j7t27GiPqH6ZQKNTT5oCKpAYAOn+YBKlT1VUfe7f0RsKr95s6w+fv0vph2CXYCxtfv//cT3y0B3l3qx801S5Qhq3jn1Af9/10H7LvlFRbNsTHDTsn9VQfP7v0IP68XlRt2UaeLkie1kd9PHTFYZy5Uv3gPK96jjg5s5/6eNSao0hJz6u2rIuDHVLnR6uP3/i/E9hz8Ua1ZQEgY+H9pdEnbTqNX85qn/744BoY7yWeww8nr2gte2JGXzRwcwIAfLAtFV8f0d6He+Dd3pB7VfxOP/ntIlbu/0tr2d/e7oEWvu4AgGV7LiM+6U+tZX8a1w3t5Z4AgITkdMRt/0Nr2e/GdEVEs4oVNb87molZP2lvRVwT0wl9WlU0B/94KhvvbD6jteyyER3xdDt/AMCO89cw7tuTWst+PKQd/tVJDgDY/+cNvLb2uNay8wY9hlciggAAR9PzMHzVEa1lpz/VCq/3bAYAOJedj0HLtK8d8p8nQ/B2vxYAgMs3itD/s/1ay47t0RTvDagYM5F9pwTdF+3RWnZk1yaY/1zFDI28u2UI/2CX1rIvdAzE4qHtATx6vZcBbf3w5Uvh6uOayprqM6J3c0+8281LfXzpWqHWhNTZ3g4t/NzVx5evF2lNBh3tpGjlf/8LIP3m/bEWlbOgKtlLpWgd8EDZW3dxV1F9IiaVSNCm0f0Wmr/zilFYWv2iahm37mocZ90uRn6JZtnsOyVQCQLOX83HYwEy2P2TL2XfLsHtYu2DUVv7e8D+n8I5d0px665Ca9lWfu5w/CfRvVZQihuF2su28HVXJ6Q3ChW4VlCqtWxzHzf1Z9qtIgVy8rWXbdrQDSgvRUZGBpYuXYY3pryH81er/8wOalAPHi4VA23vFN/DldvFWq/b2MsVnq4VrV75JfeQmae9bGB9V3jVqyhbWFpe5ffzoABPFzT85zP4rkKJv25W/10EAP4yZ3i7VyQiJfeUuKzlewsAfD2c4etRUVZRrsKla4UAAKG8DNfvlGLsloPILqx4Tz/4GaELm+l+AipWSnRzc4OTkxP+/e9/Y8uWLWjdurXW8nFxcZDJZOqbXC43Y7RERESaxo8fj/DwcER274Hnhr1s6XBEx6a6n8rKypCZmYn8/Hxs3rwZX331Ffbt26c1samupUYul7P7yYJl2f1Ugd1P+pdl91MFW+t+0restXUT2VpZa+tS0qesMbqfbCqpeVjfvn3RrFkzrFixQqfyur4oRETmVFpaivT0dHVSYypKlaDu7ngsQFbt4ntEllLT34Gu39821f30MJVKpdESQ0RERHWXzQwUnj59Op566ik0btwYhYWF+Pbbb7F3717s2GH+Dd+IiIjI+thMUnP9+nW88soryMnJgUwmQ7t27bBjxw7069fv0Q8mIiIi0bOZpObh1SmJiIiIHmTTY2qIiEhcgoKCsGTJEp3L7927FxKJBHfu3DFZTGQ7mNQQEZHeJBJJjbc5c+YYdN1jx45h7NixOpePjIxUD0swpcrkSSKRQCqVQiaTISwsDO+++y5ycnL0vp5EIsGPP/5o/EDrOJvpfiIiIuvx4Bf5xo0bMWvWLFy8eFF9zs3NTf2zIAhQKpWwt3/0V463t7decTg6Ohq84aQhLl68CA8PDxQUFODkyZNYtGgRVq9ejb1796Jt27Zmi4Oqx5YaIiLSm5+fn/omk8kgkUjUx3/88Qfc3d2xfft2hIeHw8nJCQcPHkRaWhoGDRoEX19fuLm54fHHH8euXZrbXTzc/SSRSPDVV1/h+eefh6urK0JCQrB161b1/Q93P61duxaenp7YsWMHQkND4ebmhujoaI0krLy8HG+99RY8PT3RoEEDTJ06FaNGjdLYNVwbHx8f+Pn5oUWLFnjxxReRnJwMb29vvPHGG+oyx44dQ79+/dCwYUPIZDL07NkTJ0/e394kKCgIAPD8889DIpGoj3V5fahmTGqIiKxYcVm51lvpQysl17assU2bNg0LFy5Eamoq2rVrh6KiIgwYMABJSUk4deoUoqOjMXDgQGRmZtZ4nblz52Lo0KE4c+YMBgwYgJdeegl5edXvXQcAxcXF+OSTT/D1119j//79yMzMxJQpU9T3f/TRR/jmm2+QkJCA5ORkFBQUGNwV5OLign//+99ITk5W7wpeWFiIUaNG4eDBgzhy5AhCQkIwYMAAFBZW7HF07NgxAEBCQgJycnLUx4a+PnQfu5+IiKyYMTfY/HZMV/Vxz0V7kffQZpEPbk5rDPPmzdNYdsPLywvt27dXH8+fPx9btmzB1q1bMX78eK3XiYmJwfDhwwEACxYswOeff46jR48iOjq62vL37t3Df//7XzRrVrEJ6/jx4zFv3jz1/V988QWmT5+O559/HgCwdOlS/PLLLwbXs1WrVgCAjIwM+Pj4oE+fPhr3r1y5Ep6enti3bx+eeeYZdRebp6enRtdZ+/btDXp96D621BARkUl06tRJ47ioqAhTpkxBaGgoPD094ebmhtTU1Ee2RLRr1079c7169eDh4aFuFamOq6urOqEBAH9/f3X5/Px8XLt2DZ07308G7ezsEB4eXuU6uqrcbahy/6Vr165hzJgxCAkJgUwmg4eHB4qKih5ZT0NfH7qPLTVERFbswrworfc9vCHliZl9dS67791eJt/7qV69ehrHU6ZMwc6dO/HJJ5+gefPmcHFxwZAhQ1BWVqblChUcHBw0jiUSCVQ1bC5bXXlTbnOYmpoK4P5YmVGjRuHWrVuIj49HkyZN4OTkhIiIiEfW09DXh+5jUkNEZMVcHXX/mH5U2Qd3und1tDf7hpbJycmIiYlRd/sUFRUhIyPDrDHIZDL4+vri2LFj6NGjBwBAqVTi5MmT6NChg97XKykpwcqVK9GjRw91t1JycjK+/PJLDBgwAACQlZWFmzdvajzOwcEBSqVmV6E1vD62jkkNERGZRUhICBITEzFw4EBIJBLMnDmzxhYXU5kwYQLi4uLQvHlztGrVCl988QVu376t7j6qyfXr11FaWorCwkKcOHECixYtws2bN5GYmKguExISgq+//hqdOnVCQUEB3nnnHbi4uGhcJygoCElJSejWrRucnJxQv359q3l9bBnH1BARkVl8+umnqF+/PiIjIzFw4EBERUWhY8eOZo9j6tSpGD58OF555RVERETAzc0NUVFRcHZ2fuRjW7ZsiYCAAISHh2PhwoXo27cvzp07h9atW6vLrF69Grdv30bHjh0xcuRIvPXWW/Dx8dG4zuLFi7Fz507I5XKEhYUBsJ7Xx5ZJBFN2NFqZgoICyGQy5Ofnw8PDw9LhEBEBAEpLS5Geno7g4GCdvlgNpVQJOH81HwDwWIDM7N1P1kqlUiE0NBRDhw7F/PnzLR1OnVXT34Gu39/sfiIiojrl77//xm+//YaePXtCoVBg6dKlSE9Px4gRIywdGtUSu5+IiKhOkUqlWLt2LR5//HF069YNZ8+exa5duxAaGmrp0KiW2FJDRER1ilwuR3JysqXDIBNgSw0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiI9CaRSGq8zZkzp1bX/vHHH/WKoV69eggJCUFMTAxOnDih93P26tULEydO1D9YsipMaoiISG85OTnq25IlS+Dh4aFxbsqUKWaJIyEhATk5OTh//jyWLVuGoqIidOnSBevXrzfL85N1YVJDRER68/PzU99kMhkkEonGuQ0bNiA0NBTOzs5o1aoVvvzyS/Vjy8rKMH78ePj7+8PZ2RlNmjRBXFwcACAoKAgA8Pzzz0MikaiPtfH09ISfnx+CgoLQv39/bN68GS+99BLGjx+P27dvAwBu3bqF4cOHo1GjRnB1dUXbtm3x3Xffqa8RExODffv2IT4+Xt3yk5GRAaVSidjYWAQHB8PFxQUtW7ZEfHy8cV9IMipuk0BEZMWKy8q13ieVSODsYKdzWQc7qUbZh3fpdnU0zlfCN998g1mzZmHp0qUICwvDqVOnMGbMGNSrVw+jRo3C559/jq1bt2LTpk1o3LgxsrKykJWVBQA4duwYfHx8kJCQgOjoaNjZ2T3i2ap6++23sX79euzcuRNDhw5FaWkpwsPDMXXqVHh4eODnn3/GyJEj0axZM3Tu3Bnx8fG4dOkS2rRpg3nz5gEAvL29oVKpEBgYiO+//x4NGjTAoUOHMHbsWPj7+2Po0KFGea3IuJjUEBFZsdazdmi9r3dLbyS82ll9HD5/F0ruKast2yXYC9+O6ao+7rloL/KKyzTKZCx8upbRVpg9ezYWL16MwYMHAwCCg4Nx4cIFrFixAqNGjUJmZiZCQkLwxBNPQCKRoEmTJurHent7A7jfAmOIVq1aAQAyMjIAAI0aNdLoDpswYQJ27NiBTZs2oXPnzpDJZHB0dISrq6vGc9rZ2WHu3Lnq4+DgYBw+fBibNm1iUmOlmNQQEZHR3L17F2lpaYiNjcWYMWPU58vLyyGTyQBUdPf069cPLVu2RHR0NJ555hn079/faDEIggCgYiAxACiVSixYsACbNm1CdnY2ysrKoFAo4Orq+shrLVu2DGvWrEFmZiZKSkpQVlaGDh06GC1WMi4mNUREVuzCvCit90klmt1HJ2b21bnsvnd7Vel+MoaioiIAwKpVq9ClSxeN+yq7kjp27Ij09HRs374du3btwtChQ9G3b19s3rzZKDGkpqYCqGhZAYCPP/4Y8fHxWLJkCdq2bYt69eph4sSJKCsrq+ky2LBhA6ZMmYLFixcjIiIC7u7u+Pjjj5GSkmKUOMn4mNQQEVkxfca5PKqsUiVolDVFUuPr64uAgAD89ddfeOmll7SW8/DwwLBhwzBs2DAMGTIE0dHRyMvLg5eXFxwcHKBUVt+NpovK2Vh9+1YkecnJyRg0aBBefvllAIBKpcKlS5fQunVr9WMcHR2rPGdycjIiIyPx5ptvqs+lpaUZHBeZHpMaIiIyqrlz5+Ktt96CTCZDdHQ0FAoFjh8/jtu3b2PSpEn49NNP4e/vj7CwMEilUnz//ffw8/ODp6cngIoZUElJSejWrRucnJxQv359rc91584d5ObmQqFQ4NKlS1ixYgV+/PFHrF+/Xn29kJAQbN68GYcOHUL9+vXx6aef4tq1axpJTVBQEFJSUpCRkQE3Nzd4eXkhJCQE69evx44dOxAcHIyvv/4ax44dU7cAkfXhlG4iIjKq0aNH46uvvkJCQgLatm2Lnj17Yu3atepkwN3dHYsWLUKnTp3w+OOPIyMjA7/88guk0oqvpMWLF2Pnzp2Qy+UICwur8bleffVV+Pv7o1WrVnjjjTfg5uaGo0ePYsSIEeoyM2bMQMeOHREVFYVevXrBz88Pzz33nMZ1pkyZAjs7O7Ru3Rre3t7IzMzE66+/jsGDB2PYsGHo0qULbt26pdFqQ9ZHIlSOqKoDCgoKIJPJkJ+fDw8PD0uHQ0QEACgtLUV6ejqCg4Ph7OxssudRqgScv5oPAHgsQGaS7iciQ9X0d6Dr9zdbaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiMhK1KF5G0RVGOP9z6SGiMjCHBwcAADFxcUWjoTIcirf/5V/D4bg4ntERBZmZ2cHT09PXL9+HQDg6uqq3rfImJQqAUJ5xdYApaWlnNJNVkEQBBQXF+P69evw9PQ0aGf2SkxqiIisQOXu0JWJjSmoBAHX75QCAOyLnavsB0VkSbXZmb0SkxoiIisgkUjg7+8PHx8f3Lt3zyTPUVJWjrFbDgIAtk14Ai567CtFZEoODg61aqGpZDPv6Li4OCQmJuKPP/6Ai4sLIiMj8dFHH6Fly5aWDo2IyGjs7OyM8uFeHZW0HNmFFZs2Ojk7w5lJDYmMzQwU3rdvH8aNG4cjR45g586duHfvHvr374+7d+9aOjQiIiKyAjaTpv/6668ax2vXroWPjw9OnDiBHj16VPsYhUIBhUKhPi4oKDBpjERERGQ5NtNS87D8/IpN2by8vLSWiYuLg0wmU9/kcrm5wiMiIiIzs8mkRqVSYeLEiejWrRvatGmjtdz06dORn5+vvmVlZZkxSiIiIjInm+l+etC4ceNw7tw5HDx4sMZyTk5OcHJyMlNUREREZEk2l9SMHz8e27Ztw/79+xEYGGjpcIiIiMhK2ExSIwgCJkyYgC1btmDv3r0IDg62dEhERERkRWwmqRk3bhy+/fZb/PTTT3B3d0dubi4AQCaTwcXFxcLRERERkaXZzEDh5cuXIz8/H7169YK/v7/6tnHjRkuHRkRERFbAZlpqjLElOREREYmXzbTUEBEREdWESQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJgk0lNfv378fAgQMREBAAiUSCH3/80dIhERERkZWwqaTm7t27aN++PZYtW2bpUIiIiMjK2Fs6AH089dRTeOqpp3Qur1AooFAo1McFBQWmCIuIiIisgE211OgrLi4OMplMfZPL5ZYOiYiIiExE1EnN9OnTkZ+fr75lZWVZOiQiIiIyEZvqftKXk5MTnJycLB0GERERmYGoW2qIiIio7hB1Sw1ZD0EQcLOkDKXlKjjbS9HQxRESicTSYRERkYjYVFJTVFSEy5cvq4/T09Nx+vRpeHl5oXHjxhaMjGqSXViCM9cLUFKuUp9zsZeinY8HGrm7WDAyIiISE5vqfjp+/DjCwsIQFhYGAJg0aRLCwsIwa9YsC0dG2mQXliDl6h2NhAYASspVSLl6B9mFJRaKjIiIxEbvpGbdunX4+eef1cfvvvsuPD09ERkZib///tuowT2sV69eEAShym3t2rUmfV4yjCAIOHO95rWBzlwvgCAIZoqIiIjETO+kZsGCBXBxqegyOHz4MJYtW4ZFixahYcOGePvtt40eINmumyVlVVpoHlZSrsLNkjIzRURERGKm95iarKwsNG/eHADw448/4oUXXsDYsWPRrVs39OrVy9jxkQ0rfURCo285IiKimujdUuPm5oZbt24BAH777Tf069cPAODs7IySEo6PqOsEQcCNYgWyCkpQWq7U6THO9jY1tIuIiKyU3i01/fr1w+jRoxEWFoZLly5hwIABAIDz588jKCjI2PGRFXt4mraiXIWzNwoe2eX0IJd/pncTERHVlt5JzbJlyzBjxgxkZWXhhx9+QIMGDQAAJ06cwPDhw40eIFmn6qZpG6KdjwfXqyEiIqPQO6nx9PTE0qVLq5yfO3euUQIi61c5Tbs2uE4NEREZm05JzZkzZ3S+YLt27QwOhqyfLtO0tWnr7Q5nezuuKExERCahU1LToUMHSCQSreuJVN4nkUigVOo2OJRsky7TtLVxtreD3OPRLTPcUoGIiAyhU1KTnp5u6jjIRtRm+rUus5y4pQIRERlKp6SmSZMmpo6DbISh0691meWkbaxO5ZYKXQLAxIaIiLQyeEPLCxcuIDMzE2VlmqvBPvvss7UOiqxXQxdHuNhL9e6CetQsJ123VAhwc2ZXFNkOlRK4cQAoyQFc/AHv7oDUztJREYmW3knNX3/9heeffx5nz57VGGdT+UXDMTXiJpFI0M7HQ+fZT7p2HemzpYK3q5Ou4RJZTlYicOI/QPGV++dcA4HweEA+2HJxEYmY3n0J//nPfxAcHIzr16/D1dUV58+fx/79+9GpUyfs3bvXBCGStWnk7oIuAZ5weagrysVeis7+MnSXe+Fxf090l3shuqmPTl1G3FKBRCUrETgwRDOhAYDi7IrzWYmWiYtI5PRuqTl8+DB2796Nhg0bQiqVQiqV4oknnkBcXBzeeustnDp1yhRxkpVp5O6CADdno81S0nWsDrdUIKunUla00KC62aICAAlwYiLQaBC7ooiMTO9vCKVSCXd3dwBAw4YNcfXqVQAVg4kvXrxo3OjIqkkkEni7OkHu4QJvV6dajXWpHKtTE26pQDbhxoGqLTQaBKA4q6IcERmV3i01bdq0we+//47g4GB06dIFixYtgqOjI1auXImmTZuaIkaqA3QZq8MtFcgmlOQYtxwR6UzvpGbGjBm4e/cuAGDevHl45pln0L17dzRo0AAbN240eoBUd1SM1QHXqbFGnMWjOxd/45YjIp3pndRERUWpf27evDn++OMP5OXloX79+vxfNNWascfqkBFwFo9+vLtXvD7F2ah+XI2k4n7v7uaOjEj0jDLq0svLi186ZDTGGKsjCAJuFCuQVVCCG8UKrVt80CNwFo/+pHYVCR8A4OH37j/H4UvY0kVkAnq31PTu3bvGL5ndu3fXKiCi2uJWC0bCWTyGkw8Gum/W0sK1hC1cRCaid1LToUMHjeN79+7h9OnTOHfuHEaNGmWsuIgMwq0WjEifWTy+vcwVle2QD65I+DgWichs9E5qPvvss2rPz5kzB0VFRbUOiMhQ3GrByDiLp/akdkz4iMzIaCuZvfzyy1izZo2xLkd1mKHjYfTZaoF0wFk8RGRjDN7Q8mGHDx+Gs7OzsS5HdVRtxsNwqwUj4yweIrIxeic1gwdrDnATBAE5OTk4fvw4Zs6cabTAqO6p7XgYbrVgZJWzeA4MQcWsnQcTG87iISLro3dSI5PJNI6lUilatmyJefPmoX///kYLjOoWY4yHqdxqoaYuKG61oCfO4iEiG6J3UpOQkGCKOKiO02c8jLerU7X3c6sFE+EsHiJ6FCtZddxoY2qIasNY42G41YKJcBYPEWljRauO65TU6LMFQl5eXq0CorqptuNhBEHQ2FohKtgbt0rvcasFIiJTqlx1/OHJBJWrjnffbNbERqekZsmSJeqfb926hQ8++ABRUVGIiIgAUDHzaceOHRwoTAarzXiYmmZMyT3YMkNEZBJWuOq4TknNgysFv/DCC5g3bx7Gjx+vPvfWW29h6dKl2LVrF95++23jR0miZ+h4GK4gTERkIVa46rjec1t37NiB6OjoKuejo6Oxa9cuowRFdVPFeBhPuDzUxeRiL0WXAM8qyYmuM6a4mSURkQlY4arjeg8UbtCgAX766SdMnjxZ4/xPP/2EBg0aGC0wqpsaubsgwM1ZY3yMtvEwxpgxRUREBrLCVcf1Tmrmzp2L0aNHY+/evejSpQsAICUlBb/++itWrVpl9ACp7pFIJDolIVxB2PQeHoDNAddEpGaFq47rndTExMQgNDQUn3/+ORITEwEAoaGhOHjwoDrJITKWmr5UuYKwadVmywoiqgOscNVxg9ap6dKlC7755htjx0Kk4VFfqlxB2HQ4AJuIdGJlq47rlNQUFBTAw8ND/XNNKssR1YauX6pcQdj4jLFlBRHVIVa06rjOi+/l5OTAx8cHnp6e1X6QCYIAiUQCpVJp9CCpbtHnS5UrCBsfB2ATkd6sZNVxnZKa3bt3w8vLCwCwZ88ekwZEpO+Xqj4zpujROACbiGyVTklNz549q/2ZyBQM+VLVdcYUPRoHYBORrdL7U+nXX3/FwYMH1cfLli1Dhw4dMGLECNy+fduowVHdZG1fqoIg4EaxAlkFJbhRrBD9Yn6VA7BrwgHYRGSN9P5WeOedd9SDhc+ePYtJkyZhwIABSE9Px6RJk4we4MOWLVuGoKAgODs7o0uXLjh69KjJn5PMy5q+VLMLS/DrX9dxICsPx3Lu4EBWHn796zqyC0tM/tyWUrllRU04AJuIrJHeSU16ejpat24NAPjhhx8wcOBALFiwAMuWLcP27duNHuCDNm7ciEmTJmH27Nk4efIk2rdvj6ioKFy/ft2kz0um92BryM2SMrT1tvyXauUMrIfH91TOwBJzYqPvlhVERNZA73VqHB0dUVxcDADYtWsXXnnlFQCAl5fXI6d719ann36KMWPG4NVXXwUA/Pe//8XPP/+MNWvWYNq0aTpfp7isHPZl5aYKk/R0tbAU525Unb0kd3dGdmFplfNtvD1Q38kBxf/8DgVBwK2Se+pBwg1cHGqd8AiCgGPZt6GoYXzPsezb8Ay2F22LRX0nB/QI9Kr2tS3m34/OTPH+NNSDvzf+DsmW6Pp+1TupeeKJJzBp0iR069YNR48excaNGwEAly5dQmBgoL6X01lZWRlOnDiB6dOnq89JpVL07dsXhw8frvYxCoUCCoVCfVyZdHX+MAlSJ1eTxUpEZO06fZBk6RCIdKZSFOtUTu/up6VLl8Le3h6bN2/G8uXL0ahRIwDA9u3bq92921hu3rwJpVIJX19fjfO+vr7Izc2t9jFxcXGQyWTqm1wuN1l8REREZFkSwUamcly9ehWNGjXCoUOHEBERoT7/7rvvYt++fUhJSanymOpaauRyOXJu3OLKx1bgZnEZkq/kPbJct0AvNHTVHBQsCAJ2pt945BYJ/YK9DWrqr01sRKZ+fxqquKxc3UJzfMaTcHU0aKccIrMrKCiAv3cD5Ofn1/j9bdA7Oi0tDQkJCUhLS0N8fDx8fHywfft2NG7cGI899pjBQdekYcOGsLOzw7Vr1zTOX7t2DX5+ftU+xsnJCU5OVdcucXW05x+zFZCU3oOTw6OX0ZZIJVV+XzeKFVBJJDU+XgWgWKkyaP0auYMdPG85PPJLSS5zEe2YGjKcqd+fxsDPQbIl5Tq+V/Xuftq3bx/atm2LlJQUJCYmoqioCADw+++/Y/bs2fpeTmeOjo4IDw9HUtL9fmCVSoWkpCSNlhuyHbVZj8bUq95yWjPVBldlJrIMvZOaadOm4YMPPsDOnTvh6Hi/2b1Pnz44cuSIUYN72KRJk7Bq1SqsW7cOqampeOONN3D37l31bCiyLbVZj8YcC/RxWjMZytoWkCSqK/Ruezx79iy+/fbbKud9fHxw8+ZNowSlzbBhw3Djxg3MmjULubm56NChA3799dcqg4fJcgRB0HkPpsrWkJp22Q50r34n6MqE6FHdQ7VdoI/7SpEhavX+VCmtYrdjIlukd1Lj6emJnJwcBAcHa5w/deqUeiaUKY0fPx7jx483+fOQ/rILS/TeLbuRuwtC6pfhz9vVT9f783YxvFwcqzxel4TIWN1D3FeK9GXw+zMrETjxH6D4yv1zroFAeDwgH2yaYIlERO+2zxdffBFTp05Fbm4uJBIJVCoVkpOTMWXKFPVCfFT3GLr6riAIuFJYWuO1z1wvqHa/JXYPkTXT+/2ZlQgcGKKZ0ABAcXbF+axEE0dMZPv0bqlZsGABxo0bB7lcDqVSidatW0OpVGLEiBF4//33TREjWTlBEHDmes2rSZ+5XoAAt6pdSTdLympsogcqEqObJWXVtpawe4ismc7vT5WyooUG1a2wIQCQACcmAo0GsSuKqAYGbZOwatUqzJo1C2fPnkVRURHCwsIQEhJiivjIBtQmMTHGLBF9u4f0GfdDVFs6vT9vHKjaQqNBAIqzKsr59jJmeESiYvAiBXK5XGOF3sTERMyZMwdnzpwxSmBkO2qTmJh7logh436ITK4kx7jliOoovb4pVqxYgSFDhmDEiBHqFXx3796NsLAwjBw5Et26dTNJkGTdapOY1GZat77q8q7bZOVc/I1bjqiO0jmpWbhwISZMmICMjAxs3boVffr0wYIFC/DSSy9h2LBhuHLlCpYvX27KWMlK1SYxMdcid7qO+7GRXUNIbLy7V8xygrb3uQRwlVeUIyKtdE5qEhISsGrVKhw/fhzbt29HSUkJDh06hMuXL2PatGmoX7++KeMkK1bbxMQcs5j0GfdDZHZSu4pp2wCqJjb/HIcv4SBhokfQeUxNZmYm+vTpAwDo3r07HBwcMHfuXNSrV89kwZHtqEhMoNd4lYcH7EYFe+NW6T2TDODlsvVk9eSDge6btaxTs4Tr1BDpQOekRqFQwNnZWX3s6OgILy8vkwRFtkmf6dU1DdiVexh/wC6XrSebIB9cMW2bKwoTGUSv2U8zZ86Eq6srAKCsrAwffPABZDKZRplPP/3UeNGRzdFl+mrlgN2HVQ7Y7RIAo89EMte2CkS1JrXjtG0iA+mc1PTo0QMXL15UH0dGRuKvv/7SKMO1PuhB1a0HA8Dghfpqw5zbKhARkWXonNTs3bvXhGGQ2GjrXgqSudZqBeHaMGTcDxER2Q6DF98jAqpvjblaVKq1eyn1VpFO1zXVgF1uq0BEJF5Mashg1bXGONtLoVLVfq0XUw7Y5a7bRETixKSGDKJtsK8xWlg4YNdIVErOoiGiOoVJDelNl9V5a4MDdo0gK1HLeifxXO+EiESLi3KQ3nRZnfdRQhvUM+kKwnVaViJwYEjVXZ+LsyvOZyVaJi4iIhNjSw3prbZdTC72UrRq4I5WDdw5YNfYVMqKFhpUN65JACABTkysWOCNXVFEJDJGa6kJDQ2FnR0/JOuC2g7irexeqhywK/dwgberExMaY7hxoGoLjQYBKM6qKEdEJDJGa6mJi4tDfn6+sS5HVkyX1XkdpRJIJUCp8n6LAdeDMYOSHOOWIyKyIUZLap577jljXYqsnC6r84b5ybgejCW4+Bu3HBGRDeGYGjKIrqvzcj0YM/PuXjHLqTgb1Y+rkVTc793d3JEREZmcTklNWFiYzv/DPnnyZK0CItvxqNV5q1ttmC01Jia1q5i2fWAIAAk0E5t/XvvwJRwkTESipFNS82DXUmlpKb788ku0bt0aERERAIAjR47g/PnzePPNN00SJFkvbavzatv7iWNqzEA+GOi+Wcs6NUu4Tg0RiZZOSc3s2bPVP48ePRpvvfUW5s+fX6VMVlaWcaMjm6RtteGSchVSrt5BlwAwsTGAXi1f8sEV07a5ojAR1SF6j6n5/vvvcfz48SrnX375ZXTq1Alr1qwxSmBkm3RZbfjM9QIEuDmzK0oPBrV8Se0A317mCZCIyAroveCIi4sLkpOTq5xPTk6Gs7OzUYIi26XLasMl5SrcLCkzU0S2r7Ll6+HXtbLlK7uwxEKRERFZF71baiZOnIg33ngDJ0+eROfOnQEAKSkpWLNmDWbOnGn0AMm26LrasDE2vqwL2PJFRKQ7vZOaadOmoWnTpoiPj8f//d//AahYTTghIQFDhw41eoBkGyrHexQo7ulUvrarEtcV+rR8cfo8EdV1Bq1TM3ToUCYwpFbdeI+auPwzyJUejS1fRES60/u/y02bNsWtW7eqnL9z5w6aNm1qlKDIdmgb71GTyr2f6NF0bdFiyxcRkQFJTUZGBpRKZZXzCoUC2dnZRgmKbIMu4z0e5GIvRZcAT07n1kPlPls1YcsXEVEFnbuftm7dqv55x44dkMlk6mOlUomkpCQEBQUZNTiybrqM9wCAll714FPPiSsKG0CXfbbY8kVEVEHnpKZyVWGJRIJRo0Zp3Ofg4ICgoCAsXrzYqMGRddN1HIeHkwMHsdaCrvtsERHVdTonNSpVxYdpcHAwjh07hoYNG5osKLINHO9hPo/aZ4uIiAyY/ZSenm6KOMgGVY73qKkLiuM9jEfbPltERFRB5/9CHz58GNu2bdM4t379egQHB8PHxwdjx46FQqEweoBkvSrHe9SE4z2IiMhcdE5q5s2bh/Pnz6uPz549i9jYWPTt2xfTpk3D//73P8TFxZkkSLJeFeM9PKvM0OFMJyIiMjedu59Onz6tsTP3hg0b0KVLF6xatQoAIJfLMXv2bMyZM8foQZJ143gPIiKyBjonNbdv34avr6/6eN++fXjqqafUx48//jiysrKMGx3ZDI73ICIiS9O5+8nX11c9SLisrAwnT55E165d1fcXFhbCwcHB+BESERER6UDnpGbAgAGYNm0aDhw4gOnTp8PV1RXdu3dX33/mzBk0a9bMJEESERERPYrOSc38+fNhb2+Pnj17YtWqVVi1ahUcHe9P1V2zZg369+9vkiAB4MMPP0RkZCRcXV3h6elpsuchIiIi26TzmJqGDRti//79yM/Ph5ubG+zs7DTu//777+Hm5mb0ACuVlZXhX//6FyIiIrB69WqTPQ8RERHZJr0X33twz6cHeXl51TqYmsydOxcAsHbtWpM+DxEREdkmvZMaW6JQKDQWBCwo0H1HaSIiIrItot6UJy4uDjKZTH2Ty+WWDomIiIhMxKJJzbRp0yCRSGq8/fHHHwZff/r06cjPz1ffuI4O1SkqJXBtL5DxXcW/KqWlIyIiMimLdj9NnjwZMTExNZZp2rSpwdd3cnKCkxMXhKM6KCsROPEfoPjK/XOugUB4PCAfbLm4iIhMyKJJjbe3N7y9vS0ZApH4ZCUCB4YAEDTPF2dXnO++mYkNEYmSzQwUzszMRF5eHjIzM6FUKnH69GkAQPPmzU06lZzIpqiUFS00Dyc0wD/nJMCJiUCjQYDUrpoyRES2y2aSmlmzZmHdunXq47CwMADAnj170KtXLwtFRWRlbhzQ7HKqQgCKsyrK+fYyV1RERGZhM7Of1q5dC0EQqtyY0BA9oCTHuOWIiGyIzSQ1RKQDF3/jliMisiFMaojExLt7xSwnSLQUkACu8opyREQiw6SGSEykdhXTtgFUTWz+OQ5fwkHCRCRKTGqIxEY+uGLatmsjzfOugZzOTUSiZjOzn4hID/LBFdO2bxyoGBTs4l/R5cQWGiISMSY1RGIlteO0bSKqU9j9RERERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCkxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFm0hqMjIyEBsbi+DgYLi4uKBZs2aYPXs2ysrKLB0aERERWQl7Swegiz/++AMqlQorVqxA8+bNce7cOYwZMwZ3797FJ598YunwiIiIyArYRFITHR2N6Oho9XHTpk1x8eJFLF++nEkNERERAbCRpKY6+fn58PLyqrGMQqGAQqFQHxcUFJg6LCIiIrIQmxhT87DLly/jiy++wOuvv15jubi4OMhkMvVNLpebKUIiIiIyN4smNdOmTYNEIqnx9scff2g8Jjs7G9HR0fjXv/6FMWPG1Hj96dOnIz8/X33LysoyZXWIiIjIgiza/TR58mTExMTUWKZp06bqn69evYrevXsjMjISK1eufOT1nZyc4OTkVNswiYiIyAZYNKnx9vaGt7e3TmWzs7PRu3dvhIeHIyEhAVKpTfacERERkYnYxEDh7Oxs9OrVC02aNMEnn3yCGzduqO/z8/OzYGRERERkLWwiqdm5cycuX76My5cvIzAwUOM+QRAsFBURERFZE5vow4mJiYEgCNXeiIiIiAAbSWqIiIiIHoVJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYkCkxoiIiISBSY1REREJApMaoiIiEgUmNQQERGRKDCpISIiIlFgUkNERESiwKSGiIiIRIFJDREREYmCzSQ1zz77LBo3bgxnZ2f4+/tj5MiRuHr1qqXDIiIiIithb+kAdNW7d2+899578Pf3R3Z2NqZMmYIhQ4bg0KFDel+ruKwc9mXlVc5LJRI4O9hplNOmNmVLypQQIFRbVgIJXBwNK1t6TwmVUH1ZAHB1tLd4WRcHO0gkEgCAolwJpco4ZZ3t7SCVVpQtK1ehXKUySlknezvYGVD2nlKFe0rtZR3tpLC3k+pdtlypQlkNZR3spHAwoKxSJUBRrtRa1l4qhaO9/mVVKgGlRiprJ5XAyb7i/S4IAkruGaesuf7ureUzoqZ4+Bmhf1l+RlQwx2eELiSCUMO7y4pt3boVzz33HBQKBRwcHKoto1AooFAo1McFBQWQy+WQT9wEqZNrlfK9W3oj4dXO6uPQmb9q/TDsEuyFja9HqI87zt+JvLtl1ZZtFyjD1vFPqI+7LdyN7Dsl1ZYN8XHDzkk91cf9Pt2HP68XVVu2kacLkqf1UR8/u/QgzlzJr7asVz1HnJzZT308bMVhpKTnVVvWxcEOqfOj1cevJhzFnos3qi0LABkLn1b//OY3J/DL2VytZS/Mi1J/wE3e9Dt+OHlFa9kTM/qigZsTAGDmj+fw9ZG/tZY98G5vyL0qfqcLfknFyv1/aS3729s90MLXHQDw2c5LiE/6U2vZn8Z1Q3u5JwBgxb40xG3/Q2vZ78Z0RUSzBgCA9YczMOun81rLronphD6tfAEA3x/Pwjubz2gtu2xERzzdzh8A8POZHIz79qTWsh8PaYd/dZIDAHb/cQ2vrT2utey8QY/hlYggAMDhtFsYvuqI1rLTn2qF13s2AwD8nnUHg5Ylay37nydD8Ha/FgCAS9cK0f+z/VrLju3RFO8NCAUAZOUVo/uiPVrLjuzaBPOfawMAuFWkQPgHu7SWfaFjIBYPbQ+g4su79awdWssOaOuHL18KVx8HTftZa1lb/4x45vMDOHe1oNqy/Iy4j58RFazpM6KgoAAymQz5+fnw8PDQWt5mup8elJeXh2+++QaRkZFaExoAiIuLg0wmU9/kcrkZoyQiIiJzsqmWmqlTp2Lp0qUoLi5G165dsW3bNjRo0EBreW0tNTk3blWb6YmhaZndT2xattWmZXY/mf4zIu+uAh3nV7RwHZ/xpMbfLsDPCEPK8jOigqk/I3RtqbFoUjNt2jR89NFHNZZJTU1Fq1atAAA3b95EXl4e/v77b8ydOxcymQzbtm1Tv6kfRdcXhYhIjB7sinuwm4fI2un6/W3Rd/TkyZMRExNTY5mmTZuqf27YsCEaNmyIFi1aIDQ0FHK5HEeOHEFEREQNVyAiIqK6wKJJjbe3N7y9vQ16rOqfJr4Hu5eIiIio7rKJtseUlBQcO3YMTzzxBOrXr4+0tDTMnDkTzZo1YysNERERAbCR2U+urq5ITEzEk08+iZYtWyI2Nhbt2rXDvn374OTkZOnwiIiIyArYREtN27ZtsXv3bkuHQURERFbMJlpqiIiIiB6FSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJApMaIiIiEgUmNURERCQKTGqIiIhIFJjUEBERkSgwqSEiIiJRYFJDREREosCkhoiIiESBSQ0RERGJgr2lAzAnQRAAAAUFBRaOhIjI/IrLyqFSFAOo+Bwsd6xTXwFkwyq/tyu/x7WpU+/oW7duAQDkcrmFIyEisiz/JZaOgEh/hYWFkMlkWu+vU0mNl5cXACAzM7PGF0WsCgoKIJfLkZWVBQ8PD0uHY1asO+vOutcdrLv46i4IAgoLCxEQEFBjuTqV1EilFUOIZDKZqH7Z+vLw8Kiz9WfdWfe6hnVn3cVCl8YIDhQmIiIiUWBSQ0RERKJQp5IaJycnzJ49G05OTpYOxSLqcv1Zd9a9rmHdWfe6SCI8an4UERERkQ2oUy01REREJF5MaoiIiEgUmNQQERGRKDCpISIiIlEQfVKTl5eHl156CR4eHvD09ERsbCyKiopqfMzKlSvRq1cveHh4QCKR4M6dO+YJtpaWLVuGoKAgODs7o0uXLjh69GiN5b///nu0atUKzs7OaNu2LX755RczRWoa+tT//PnzeOGFFxAUFASJRIIlS5aYL1AT0Kfuq1atQvfu3VG/fn3Ur18fffv2feR7xZrpU/fExER06tQJnp6eqFevHjp06ICvv/7ajNEal75/85U2bNgAiUSC5557zrQBmpA+dV+7di0kEonGzdnZ2YzRGpe+v/c7d+5g3Lhx8Pf3h5OTE1q0aGHzn/daCSIXHR0ttG/fXjhy5Ihw4MABoXnz5sLw4cNrfMxnn30mxMXFCXFxcQIA4fbt2+YJthY2bNggODo6CmvWrBHOnz8vjBkzRvD09BSuXbtWbfnk5GTBzs5OWLRokXDhwgVhxowZgoODg3D27FkzR24c+tb/6NGjwpQpU4TvvvtO8PPzEz777DPzBmxE+tZ9xIgRwrJly4RTp04JqampQkxMjCCTyYQrV66YOfLa07fue/bsERITE4ULFy4Ily9fFpYsWSLY2dkJv/76q5kjrz19614pPT1daNSokdC9e3dh0KBB5gnWyPSte0JCguDh4SHk5OSob7m5uWaO2jj0rbtCoRA6deokDBgwQDh48KCQnp4u7N27Vzh9+rSZIzcPUSc1Fy5cEAAIx44dU5/bvn27IJFIhOzs7Ec+fs+ePTaT1HTu3FkYN26c+lipVAoBAQFCXFxcteWHDh0qPP300xrnunTpIrz++usmjdNU9K3/g5o0aWLTSU1t6i4IglBeXi64u7sL69atM1WIJlPbuguCIISFhQkzZswwRXgmZUjdy8vLhcjISOGrr74SRo0aZbNJjb51T0hIEGQymZmiMy196758+XKhadOmQllZmblCtChRdz8dPnwYnp6e6NSpk/pc3759IZVKkZKSYsHIjKusrAwnTpxA37591eekUin69u2Lw4cPV/uYw4cPa5QHgKioKK3lrZkh9RcLY9S9uLgY9+7dU2/4aitqW3dBEJCUlISLFy+iR48epgzV6Ayt+7x58+Dj44PY2FhzhGkShta9qKgITZo0gVwux6BBg3D+/HlzhGtUhtR969atiIiIwLhx4+Dr64s2bdpgwYIFUCqV5grbrESd1OTm5sLHx0fjnL29Pby8vJCbm2uhqIzv5s2bUCqV8PX11Tjv6+urtZ65ubl6lbdmhtRfLIxR96lTpyIgIKBKkmvtDK17fn4+3Nzc4OjoiKeffhpffPEF+vXrZ+pwjcqQuh88eBCrV6/GqlWrzBGiyRhS95YtW2LNmjX46aef8H//939QqVSIjIzElStXzBGy0RhS97/++gubN2+GUqnEL7/8gpkzZ2Lx4sX44IMPzBGy2dnkLt3Tpk3DRx99VGOZ1NRUM0VDZLsWLlyIDRs2YO/evTY9cFIf7u7uOH36NIqKipCUlIRJkyahadOm6NWrl6VDM5nCwkKMHDkSq1atQsOGDS0djtlFREQgIiJCfRwZGYnQ0FCsWLEC8+fPt2BkpqdSqeDj44OVK1fCzs4O4eHhyM7Oxscff4zZs2dbOjyjs8mkZvLkyYiJiamxTNOmTeHn54fr169rnC8vL0deXh78/PxMGKF5NWzYEHZ2drh27ZrG+WvXrmmtp5+fn17lrZkh9ReL2tT9k08+wcKFC7Fr1y60a9fOlGGahKF1l0qlaN68OQCgQ4cOSE1NRVxcnE0lNfrWPS0tDRkZGRg4cKD6nEqlAlDRen3x4kU0a9bMtEEbiTH+3h0cHBAWFobLly+bIkSTMaTu/v7+cHBwgJ2dnfpcaGgocnNzUVZWBkdHR5PGbG422f3k7e2NVq1a1XhzdHREREQE7ty5gxMnTqgfu3v3bqhUKnTp0sWCNTAuR0dHhIeHIykpSX1OpVIhKSlJ438nD4qIiNAoDwA7d+7UWt6aGVJ/sTC07osWLcL8+fPx66+/aow5syXG+r2rVCooFApThGgy+ta9VatWOHv2LE6fPq2+Pfvss+jduzdOnz4NuVxuzvBrxRi/d6VSibNnz8Lf399UYZqEIXXv1q0bLl++rE5iAeDSpUvw9/cXXUIDoG5M6Q4LCxNSUlKEgwcPCiEhIRpTuq9cuSK0bNlSSElJUZ/LyckRTp06JaxatUoAIOzfv184deqUcOvWLUtUQScbNmwQnJychLVr1woXLlwQxo4dK3h6eqqnLY4cOVKYNm2aunxycrJgb28vfPLJJ0Jqaqowe/Zsm5/SrU/9FQqFcOrUKeHUqVOCv7+/MGXKFOHUqVPCn3/+aakqGEzfui9cuFBwdHQUNm/erDHFtbCw0FJVMJi+dV+wYIHw22+/CWlpacKFCxeETz75RLC3txdWrVplqSoYTN+6P8yWZz/pW/e5c+cKO3bsENLS0oQTJ04IL774ouDs7CycP3/eUlUwmL51z8zMFNzd3YXx48cLFy9eFLZt2yb4+PgIH3zwgaWqYFKiT2pu3bolDB8+XHBzcxM8PDyEV199VePDOz09XQAg7NmzR31u9uzZAoAqt4SEBPNXQA9ffPGF0LhxY8HR0VHo3LmzcOTIEfV9PXv2FEaNGqVRftOmTUKLFi0ER0dH4bHHHhN+/vlnM0dsXPrUv/L3/vCtZ8+e5g/cCPSpe5MmTaqt++zZs80fuBHoU/f3339faN68ueDs7CzUr19fiIiIEDZs2GCBqI1D37/5B9lyUiMI+tV94sSJ6rK+vr7CgAEDhJMnT1ogauPQ9/d+6NAhoUuXLoKTk5PQtGlT4cMPPxTKy8vNHLV5SARBEMzePERERERkZDY5poaIiIjoYUxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEZFJBQUFYsmSJpcPAzJkzMXbsWPVxr169MHHiRMsFZCbTpk3DhAkTLB0GkVkwqSGyETExMXjuueeqnN+7dy8kEgnu3Lmj87V0+UJv27Yt/v3vf1d739dffw0nJyfcvHlT5+e0pNzcXMTHx+P999/X+7EZGRmIiYmpdQxnzpxB9+7d4ezsDLlcjkWLFun82Fu3biEwMLDK7zknJwcjRoxAixYtIJVKq/2dTpkyBevWrcNff/1V6zoQWTsmNURUrdjYWGzYsAElJSVV7ktISMCzzz6Lhg0bWiAy/X311VeIjIxEkyZNdH7MN998g7S0NPWxIAhYtmwZbt++rffzFxQUoH///mjSpAlOnDiBjz/+GHPmzMHKlSt1enxsbCzatWtX5bxCoYC3tzdmzJiB9u3bV/vYhg0bIioqCsuXL9c7biJbw6SGSGRu3bqF4cOHo1GjRnB1dUXbtm3x3Xffqe+PiYnBvn37EB8fD4lEAolEgoyMjCrXefnll1FSUoIffvhB43x6ejr27t2L2NhYpKWlYdCgQfD19YWbmxsef/xx7Nq1S2tsGRkZkEgkOH36tPrcnTt3IJFIsHfvXvW5c+fO4amnnoKbmxt8fX0xcuRIjVahzZs3o23btnBxcUGDBg3Qt29f3L17V+vzbtiwAQMHDqxyXqVS4d1334WXlxf8/PwwZ84c9X3BwcEYNWoU/vvf/+LKlSuIjo5GdnY2nJyctD6PNt988w3KysqwZs0aPPbYY3jxxRfx1ltv4dNPP33kY5cvX447d+5gypQpVe4LCgpCfHw8XnnlFchkMq3XGDhwIDZs2KB33ES2hkkNkciUlpYiPDwcP//8M86dO4exY8di5MiROHr0KAAgPj4eERERGDNmDHJycpCTkwO5XF7lOg0bNsSgQYOwZs0ajfNr165FYGAg+vfvj6KiIgwYMABJSUk4deoUoqOjMXDgQGRmZhoc/507d9CnTx+EhYXh+PHj+PXXX3Ht2jUMHToUQEWXy/Dhw/Haa68hNTUVe/fuxeDBg6Ftb968vDxcuHABnTp1qnLfunXrUK9ePaSkpGDRokWYN28edu7cCQCIjIzEnj17cPjwYezduxcTJ07EggUL4OrqCgDqpEvb7bHHHlM/z+HDh9GjRw84Ojqqz0VFReHixYs1tvxcuHAB8+bNw/r16yGVGv5x3blzZ1y5cqXa5JVITOwtHQAR6W7btm1wc3PTOKdUKjWOGzVqpPG/+gkTJmDHjh3YtGkTOnfuDJlMBkdHR7i6usLPz6/G54uNjcVTTz2F9PR0BAcHQxAErFu3DqNGjYJUKkX79u01uj3mz5+PLVu2YOvWrRg/frxBdVy6dCnCwsKwYMEC9bk1a9ZALpfj0qVLKCoqQnl5OQYPHqzuTmrbtq3W62VmZkIQBAQEBFS5r127dpg9ezYAICQkBEuXLkVSUhL69euHlJQUvPPOO4iMjISDgwOWLFmCw4cP47333oOzszO++uqrarvmKjk4OKh/zs3NRXBwsMb9vr6+6vvq169f5fEKhQLDhw/Hxx9/jMaNG9dqTExl3f/++28EBQUZfB0ia8ekhsiG9O7du8rYiJSUFLz88svqY6VSiQULFmDTpk3Izs5GWVkZFAqFuoVBH/369UNgYCASEhIwb948JCUlITMzE6+++ioAoKioCHPmzMHPP/+MnJwclJeXo6SkpFYtNb///jv27NlTJXkDgLS0NPTv3x9PPvkk2rZti6ioKPTv3x9DhgypNjEAoE48nJ2dq9z38DgVf39/XL9+HQDw559/IiEhAXZ2dpgzZw4SEhLw5Zdfori4GM7OzmjUqJHBddTF9OnTERoaqvG7NZSLiwsAoLi4uNbXIrJm7H4isiH16tVD8+bNNW4Pf7l+/PHHiI+Px9SpU7Fnzx6cPn0aUVFRKCsr0/v5pFIpYmJisG7dOqhUKiQkJKB3795o2rQpgIqZNVu2bMGCBQtw4MABnD59Gm3bttX6XJVdKA92Fd27d0+jTFFREQYOHIjTp09r3P7880/06NEDdnZ22LlzJ7Zv347WrVvjiy++QMuWLZGenl7tc1YOZq6um+fB1hQAkEgkUKlUACrGFDVr1kzjvnHjxsHLywuAft1Pfn5+uHbtmsZzVR5ray3bvXs3vv/+e9jb28Pe3h5PPvmkuj6VrUu6ysvLAwB4e3vr9TgiW8OWGiKRSU5OxqBBg9T/w1epVLh06RJat26tLuPo6Fil20qbV199FR988AESExOxZcsWfPXVVxrPFRMTg+effx5ARUJS07iNyi/VnJwchIWFAYDGoGEA6NixI3744QcEBQXB3r76jyiJRIJu3bqhW7dumDVrFpo0aYItW7Zg0qRJVco2a9YMHh4euHDhAlq0aKFTnR8UFBSEtWvXVjmvT/dTREQE3n//fdy7d099fufOnWjZsqXWFqYffvhB4/rHjh3Da6+9hgMHDmgkW7o4d+4cHBwcNBItIjFiSw2RyISEhGDnzp04dOgQUlNT8frrr1dpJQgKCkJKSgoyMjJw8+ZNdetEdYKDg9GnTx+MHTsWTk5OGDx4sMZzJSYm4vTp0/j9998xYsSIGq/l4uKCrl27YuHChUhNTcW+ffswY8YMjTLjxo1DXl4ehg8fjmPHjiEtLQ07duzAq6++CqVSiZSUFCxYsADHjx9HZmYmEhMTcePGDYSGhlb7nFKpFH379sXBgwd1efl01qhRoyqtZg/eHpw+PmLECDg6OiI2Nhbnz5/Hxo0bER8fr5GEbdmyBa1atVIfN2vWDG3atFHfKsfkhIaGwsfHR12usiWrqKgIN27cwOnTp3HhwgWNWA8cOIDu3buru6GIxIpJDZHIzJgxAx07dkRUVBR69eoFPz+/Kov2TZkyBXZ2dmjdujW8vb0fOQYmNjYWt2/fxogRIzTGpnz66aeoX78+IiMjMXDgQERFRaFjx441XmvNmjUoLy9HeHg4Jk6ciA8++EDj/oCAACQnJ0OpVKJ///5o27YtJk6cCE9PT0ilUnh4eGD//v0YMGAAWrRogRkzZmDx4sV46qmntD7n6NGjsWHDhhoTLlOSyWT47bffkJ6ejvDwcEyePBmzZs3SWOE4Pz8fFy9e1PvaYWFhCAsLw4kTJ/Dtt98iLCwMAwYM0CizYcMGjBkzptb1ILJ2EkHbPEgiIpEQBAFdunTB22+/jeHDh1s6HLPavn07Jk+ejDNnzmjtziMSC7bUEJHoSSQSrFy5EuXl5ZYOxezu3r2LhIQEJjRUJ7ClhoiIiESBLTVEREQkCkxqiIiISBSY1BAREZEoMKkhIiIiUWBSQ0RERKLApIaIiIhEgUkNERERiQKTGiIiIhIFJjVEREQkCv8PjqAziKyHb4cAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model1.williams_plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "0cedfc9d-83bd-43a3-908b-0d2cfb489d34", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R2 0.7932755997633875\n", + "Q2 0.7099699197171891\n", + "RMSE 0.2508516645820539\n", + "coef [ -1.45342979 -96.40117135]\n", + "intercept -0.07684397375001017\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByWUlEQVR4nO3dd1hT59sH8G/YQZYKCChu62iduNDWYrVK1VbrQFFAlLrqqANXX6tVq9atdU9cVESrdbRurXui1J+t0mJVkI0oAQlh5Lx/UFIjEBIkJIHv57pyac55zjl3EsK5eaZIEAQBRERERFQoI10HQERERKTPmCwRERERqcBkiYiIiEgFJktEREREKjBZIiIiIlKByRIRERGRCkyWiIiIiFQw0XUA5YFcLkdsbCysra0hEol0HQ4RERGpQRAEpKWlwcXFBUZGRdcfMVkqBbGxsXB1ddV1GERERFQC0dHRqFGjRpH7mSyVAmtrawB5b7aNjY2OoyEiIiJ1SCQSuLq6Ku7jRWGyVArym95sbGyYLBERERmY4rrQsIM3ERERkQpMloiIiIhUYLJEREREpAL7LJURuVyOrKwsXYdBBsLMzEzlMFYiIio7TJbKQFZWFh4/fgy5XK7rUMhAGBkZoU6dOjAzM9N1KEREFR6TJS0TBAFxcXEwNjaGq6srawuoWPmTnMbFxaFmzZqc6JSISMeYLGlZTk4OMjIy4OLiAktLS12HQwbCwcEBsbGxyMnJgampqa7DISKq0FjNoWW5ubkAwOYU0kj+z0v+zw8REekOk6UywqYU0gR/XoiI9AeTJSIiIiIVmCwRERERqcBkiUrEw8MDEydO1PtzEhERvS0mSwZCEAQkZcgQLZEiKUMGQRC0ej1/f3/06dNHq9cgIiIqzsuXL3Hx4kWdxsCpAwxATJoU9xIlkOb8N6ml2MQIzRxtUN1arMPIiIiItOfWrVsYOHAgkpKScOfOHTRo0EAncbBmSc/FpElxI/alUqIEANIcOW7EvkRMmlTrMbx69Qp+fn6wsrKCs7Mzli9fXqCMTCZDYGAgqlevjkqVKqFdu3b47bffFPufP38Ob29vVK9eHZaWlmjatCn27t2r9diJiMjwCIKA1atXo2PHjnj8+DHs7e2Rnp6us3iYLOkxQRBwL1Gissy9RInWm+SmTp2KCxcu4PDhwzh16hR+++033LlzR6nMuHHjcO3aNYSEhODevXsYMGAAPD098ffffwMAMjMz4ebmhl9++QX379/HyJEj4evri5s3b2o1diIiMiwvXrxA3759MXHiRGRnZ6Nv3764e/cuWrZsqbOY2Aynx5KlWQVqlN4kzZEjWZoFB0tzrcSQnp6Obdu2Yc+ePejSpQsAYOfOnahRo4aiTFRUFIKCghAVFQUXFxcAQGBgIE6cOIGgoCAsXLgQ1atXR2BgoOKY8ePH4+TJkwgNDUXbtm21EjsRERmWmzdvYuDAgXjy5AnMzMywbNkyjBs3TudzzzFZ0mOZxSRKmpYriUePHiErKwvt2rVTbKtSpQoaNmyoeP6///0Pubm5eOedd5SOlclkqFq1KoC8magXLlyI0NBQxMTEICsrCzKZjEvAEBERBEHAqlWrMG3aNOTk5KBu3boIDQ2Fm5ubrkMDwGRJr1mYqNdKqm45bUlPT4exsTHCwsJgbGystM/KygoAsHTpUqxevRqrVq1C06ZNUalSJUycOBFZWVm6CJmIiPRESkoKhg0bhiNHjgAA+vfvj61bt8LW1lbHkf3HYPosLViwAB06dIClpSXs7OzUOkYkEhX6WLp0qaJM7dq1C+z//vvvtfQqNGMvNoO4mERIbGIEe7H21p2rV68eTE1NcePGDcW2Fy9e4K+//lI8b9myJXJzc5GYmIj69esrPZycnAAAV65cQe/eveHj44PmzZujbt26SucgIqKK5/r162jZsiWOHDkCMzMzrF27FqGhoXqVKAEGlCxlZWVhwIABGDNmjNrHxMXFKT22b98OkUiEfv36KZWbN2+eUrnx48eXdvglIhKJ0MzRRmWZZo42Wm3LtbKyQkBAAKZOnYpz587h/v378Pf3h5HRfz8677zzDoYMGQI/Pz8cPHgQjx8/xs2bN7Fo0SL88ssvAIAGDRrg9OnTuHr1Kh48eIBRo0YhISFBa3ETEZH+EgQBK1aswAcffICoqCjUq1cP165dw9ixY3XeP6kwBtMMN3fuXADAjh071D4mv1Yj3+HDh9G5c2fUrVtXabu1tXWBsqrIZDLIZDLFc4lE9Yi1t1HdWox2LtDpPEtLly5Feno6Pv30U1hbW2PKlClITU1VKhMUFITvvvsOU6ZMQUxMDOzt7dG+fXv06tULADBr1iz8888/6N69OywtLTFy5Ej06dOnwHmIiKh8S0lJgb+/P44ePQoA8PLywpYtW2Bjo7pyQJdEgrbHnZeyHTt2YOLEiXj58qVGxyUkJKBGjRrYuXMnBg8erNheu3ZtZGZmIjs7GzVr1sTgwYMxadIkmJgUnUd+++23iuTtdampqQU+7MzMTDx+/Bh16tSBhYWFRjG/ThAEJEuzkJkjh8W/TW/6mH1T6SitnxsiIn1y7do1DBw4ENHR0TA3N8eqVaswatQond3PJBIJbG1tC71/v85gapbe1s6dO2FtbY2+ffsqbZ8wYQJatWqFKlWq4OrVq5g5cybi4uKwYsWKIs81c+ZMTJ48WfFcIpHA1dVVa7EDeU1y2poegIiISJvkcjmWL1+Or7/+Gjk5Oahfvz5CQ0N1OneSJnSaLM2YMQOLFy9WWebBgwdo1KjRW19r+/btGDJkSIG/0l9Pepo1awYzMzOMGjUKixYtgrl54cmJubl5kfuIiIjoP8+fP8fQoUMVfVgHDhyIzZs363Wz25t0mixNmTIF/v7+Ksu82b+oJC5duoSIiAjs27ev2LLt2rVDTk4Onjx5ojSXEBEREWnmypUrGDRoEJ49ewZzc3OsXr0aI0eONLhuJDpNlhwcHODg4KD162zbtg1ubm5o3rx5sWXDw8NhZGQER0dHrcdFRERUHsnlcixduhT/93//p5i0ODQ0VK37sD4ymD5LUVFRSElJQVRUFHJzcxEeHg4AqF+/vmLiw0aNGmHRokX4/PPPFcdJJBLs37+/0MVfr127hhs3bqBz586wtrbGtWvXMGnSJPj4+KBy5cpl8rqIiIjKk+TkZPj5+eH48eMAAG9vb2zatAnW1tY6jqzkDCZZmj17Nnbu3Kl4nt8p7Pz58/Dw8AAAREREFBiKHhISAkEQ4O3tXeCc5ubmCAkJwbfffguZTIY6depg0qRJSv2YiIiISD2XL1/GoEGDEBMTAwsLC/zwww/44osvDK7Z7U0GN3WAPlI19JBDwKkk+HNDRIZELpdjyZIlmDVrFnJzc9GwYUOEhoaiWbNmug5NJU4dQERERFqXlJQEPz8/nDhxAgDg4+ODDRs2KLrIlAcGs9wJGb7atWtj1apVapf/7bffIBKJNJ6AlIiIysbFixfRokULnDhxAhYWFti2bRt27dpVrhIlgMkSFaKoBYjzH99++22Jznvr1i2MHDlS7fIdOnRAXFyc1hdUzE/KRCIRjIyMYGtri5YtW2LatGmIi4vT+HwikQg///xz6QdKRKQn5HI5FixYgM6dOyM2NhaNGjXCzZs3MXz4cIPvn1QYNsMZCnkukHQJkMYBYmfA4QPAyFgrl3o9Qdi3bx9mz56NiIgIxbbX/2IQBAG5ubkql4fJp+k0EWZmZhqt2fe2IiIiYGNjA4lEgjt37mDJkiXYtm0bfvvtNzRt2rTM4iAi0meJiYnw9fXFqVOnAAC+vr5Yv359uatNeh1rlgxB9EHgSG3gbGfg6uC8f4/UztuuBU5OToqHra0tRCKR4vnDhw9hbW2N48ePw83NDebm5rh8+TIePXqE3r17o1q1arCyskKbNm1w5swZpfO+2QwnEomwdetWfP7557C0tESDBg1w5MgRxf43m+F27NgBOzs7nDx5Eo0bN4aVlRU8PT2VkrucnBxMmDABdnZ2qFq1KqZPn46hQ4eiT58+xb5uR0dHODk54Z133sGgQYNw5coVODg4YMyYMYoyt27dwscffwx7e3vY2triww8/xJ07d5ReIwB8/vnnEIlEiufqvD9ERPrut99+Q4sWLXDq1CmIxWJs374dO3fuLNeJEsBkSf9FHwQu9Qcynilvz4jJ266lhKk4M2bMwPfff48HDx6gWbNmSE9PR48ePXD27FncvXsXnp6e+PTTTxEVFaXyPHPnzoWXlxfu3buHHj16YMiQIUhJSSmyfEZGBpYtW4bdu3fj4sWLiIqKQmBgoGL/4sWLERwcjKCgIFy5cgUSiaTETWJisRijR4/GlStXkJiYCABIS0vD0KFDcfnyZVy/fh0NGjRAjx49kJaWBiAvmQKAoKAgxMXFKZ6X9P0hItIHubm5mD9/Prp06YK4uDg0btwYt27dwrBhw8pls1sBAr211NRUAYCQmppaYJ9UKhX+/PNPQSqVan7i3BxBOFRDEIJRxEMkCIdc88ppSVBQkGBra6t4fv78eQGA8PPPPxd77LvvviusWbNG8bxWrVrCypUrFc8BCLNmzVI8T09PFwAIx48fV7rWixcvFLEAECIjIxXHrFu3TqhWrZriebVq1YSlS5cqnufk5Ag1a9YUevfuXWScb17ndcePHxcACDdu3Cj02NzcXMHa2lo4evSo0us6dOhQkdfL9+b787q3+rkhIipF8fHxQteuXQUAAgDB399fSE9P13VYpULV/ft1rFnSZ0mXCtYoKRGAjOi8cmWsdevWSs/T09MRGBiIxo0bw87ODlZWVnjw4EGxNSevz8FRqVIl2NjYKGpxCmNpaYl69eopnjs7OyvKp6amIiEhAW3btlXsNzY2hpubm0av7XXCv9OQ5f/llJCQgBEjRqBBgwawtbWFjY0N0tPTi32dJX1/iIh06fz582jRogXOnDkDS0tL7NixA0FBQahUqZKuQytT7OCtz6RqjsRSt1wpevOLEhgYiNOnT2PZsmWoX78+xGIx+vfvj6ysLJXnMTU1VXouEokgl8s1Ki9ocV7VBw8eAPivL9LQoUPx/PlzrF69GrVq1YK5uTnc3d2LfZ0lfX+IiHQhNzcXCxYswNy5cyGXy/Huu+8iNDQUTZo00XVoOsFkSZ+JnUu3nBZduXIF/v7+inX50tPT8eTJkzKNwdbWFtWqVcOtW7fQqVMnAHlf+Dt37qBFixYan08qlWLz5s3o1KmTYiTflStXsH79evTo0QMAEB0djeTkZKXjTE1NkZubq7RNH94fIiJ1xMfHY8iQITh37hwAYPjw4VizZg0sLS11HJnuMFnSZw4fAJY18jpzo7DaE1HefocPyjqyAho0aICDBw/i008/hUgkwjfffKOyhkhbxo8fj0WLFqF+/fpo1KgR1qxZgxcvXqjVATExMRGZmZlIS0tDWFgYlixZguTkZBw8+F8n+gYNGmD37t1o3bo1JBIJpk6dCrFYrHSe2rVr4+zZs+jYsSPMzc1RuXJlvXl/iIhUOXv2LIYMGYKEhARYWlpi48aN8PX11XVYOsc+S/rMyBhwW/3vkzdv9v8+d1ultfmWNLFixQpUrlwZHTp0wKefforu3bujVatWZR7H9OnT4e3tDT8/P7i7u8PKygrdu3dXa321hg0bwsXFBW5ubvj+++/RtWtX3L9/X6naedu2bXjx4gVatWoFX19fTJgwAY6OjkrnWb58OU6fPg1XV1fFgs/68v4QERUmNzcXc+bMwccff4yEhAS89957uH37NhOlf3Eh3VKg9YV0ow8CYV8pd/a2dM1LlFz7ljzwCkAul6Nx48bw8vLC/PnzdR2O2riQLhGVlbi4OAwZMgTnz58HAHzxxRdYvXp1hWh240K65YlrX6B67zKbwduQPX36FKdOncKHH34ImUyGtWvX4vHjxxg8eLCuQyMi0junT5+Gj48PEhMTUalSJWzatAlDhgzRdVh6h8mSoTAyBqp56DoKvWdkZIQdO3YgMDAQgiDgvffew5kzZ9C4cWNdh0ZEpDdycnIwd+5cLFiwAIIgoGnTpti/fz8aNmyo69D0EpMlKldcXV1x5coVXYdBRKS3YmNjMXjwYFy4cAEAMHLkSKxatarAYBX6D5MlIiKiCuLUqVPw8fFBUlISrKyssHnzZnh7e+s6LL3H0XBERETlXE5ODmbNmgVPT08kJSWhefPmCAsLY6KkJtYsERERlWMxMTHw9vbGpUt5S2ONHj0aK1eu5EhbDTBZIiIiKqdOnDgBX19fJCcnw9raGlu2bMHAgQN1HZbBYTMcERFROZOTk4OZM2fik08+QXJyMlq0aIGwsDAmSiXEmiUiIqJy5NmzZ/D29sbly5cBAF9++SWWL1/OZre3wGSJiIionPj111/h5+eH58+fw9raGlu3boWXl5euwzJ4bIajAkQikcrHt99++1bn/vnnnzWKoVKlSmjQoAH8/f0RFham8TU9PDwwceJEzYMlIjIQ2dnZmD59Onr27Innz5+jVatWuHPnDhOlUsJkiQqIi4tTPFatWgUbGxulbYGBgWUSR1BQEOLi4vDHH39g3bp1SE9PR7t27bBr164yuT4RkSGIjo6Gh4cHlixZAgAYN24crl69ivr16+s4svKDyRIV4OTkpHjY2tpCJBIpbQsJCUHjxo1hYWGBRo0aYf369Ypjs7KyMG7cODg7O8PCwgK1atXCokWLAAC1a9cGAHz++ecQiUSK50Wxs7ODk5MTateujW7duuHAgQMYMmQIxo0bhxcvXgAAnj9/Dm9vb1SvXh2WlpZo2rQp9u7dqziHv78/Lly4gNWrVytqqp48eYLc3FwEBASgTp06EIvFaNiwIVavXl26byQRkZYdO3YMLVq0wNWrV2FjY4P9+/djzZo1MDc313Vo5Qr7LJUxQRCQkZGhk2tbWlpCJBK91TmCg4Mxe/ZsrF27Fi1btsTdu3cxYsQIVKpUCUOHDsUPP/yAI0eOIDQ0FDVr1kR0dDSio6MBALdu3YKjoyOCgoLg6ekJY2PNFwKeNGkSdu3ahdOnT8PLywuZmZlwc3PD9OnTYWNjg19++QW+vr6oV68e2rZti9WrV+Ovv/7Ce++9h3nz5gEAHBwcIJfLUaNGDezfvx9Vq1bF1atXMXLkSDg7O7Pamoj0XnZ2Nv7v//4PS5cuBQC4ublh3759qFevno4jK5+YLJWxjIwMWFlZ6eTa6enpqFSp0ludY86cOVi+fDn69u0LAKhTpw7+/PNPbNq0CUOHDkVUVBQaNGiA999/HyKRCLVq1VIc6+DgAOC/GqOSaNSoEQDgyZMnAIDq1asrNQuOHz8eJ0+eRGhoKNq2bQtbW1uYmZnB0tJS6ZrGxsaYO3eu4nmdOnVw7do1hIaGMlkiIr0WFRWFQYMG4dq1awCACRMmYMmSJaxN0iImS6S2V69e4dGjRwgICMCIESMU23NycmBrawsgr9nr448/RsOGDeHp6YlevXqhW7dupRaDIAgAoKghy83NxcKFCxEaGoqYmBhkZWVBJpPB0tKy2HOtW7cO27dvR1RUFKRSKbKystCiRYtSi5WIqLQdPXoUQ4cOxYsXL2Bra4vt27cr/ngl7WGyVMYsLS2Rnp6us2u/jfy4t2zZgnbt2inty29Sa9WqFR4/fozjx4/jzJkz8PLyQteuXXHgwIG3una+Bw8eAMirCQKApUuXYvXq1Vi1ahWaNm2KSpUqYeLEicjKylJ5npCQEAQGBmL58uVwd3eHtbU1li5dihs3bpRKnESkXYIgIFmahcwcOSxMjGAvNnvrbgb6LCsrCzNnzsSKFSsAAG3atMG+ffsUvwtJuwwiWXry5Anmz5+Pc+fOIT4+Hi4uLvDx8cH//d//wczMrMjjMjMzMWXKFISEhEAmk6F79+5Yv349qlWrpigTFRWFMWPG4Pz587CyssLQoUOxaNEimJho563JHwpviKpVqwYXFxf8888/GDJkSJHlbGxsMHDgQAwcOBD9+/eHp6cnUlJSUKVKFZiamiI3N7fEMeSPzuvatSsA4MqVK+jduzd8fHwAAHK5HH/99ReaNGmiOMbMzKzANa9cuYIOHTrgyy+/VGx79OhRieMiorITkybFvUQJpDlyxTaxiRGaOdqgurVYh5Fpx9OnTzFw4EDFH3MTJ07E4sWLVd7/qHQZRLL08OFDyOVybNq0CfXr18f9+/cxYsQIvHr1CsuWLSvyuEmTJuGXX37B/v37YWtri3HjxqFv3764cuUKgLwmnJ49e8LJyQlXr15FXFwc/Pz8YGpqioULF5bVyzMoc+fOxYQJE2BrawtPT0/IZDLcvn0bL168wOTJk7FixQo4OzujZcuWMDIywv79++Hk5AQ7OzsAeSPizp49i44dO8Lc3ByVK1cu8lovX75EfHw8ZDIZ/vrrL2zatAk///wzdu3apThfgwYNcODAAVy9ehWVK1fGihUrkJCQoJQs1a5dGzdu3MCTJ09gZWWFKlWqoEGDBti1axdOnjyJOnXqYPfu3bh16xb/SiPSczFpUtyIfVlguzRHjhuxL9HOBeUqYTp8+DD8/f3x8uVL2NnZISgoCH369NF1WBWPYKCWLFki1KlTp8j9L1++FExNTYX9+/crtj148EAAIFy7dk0QBEH49ddfBSMjIyE+Pl5RZsOGDYKNjY0gk8mKPHdmZqaQmpqqeERHRwsAhNTU1AJlpVKp8OeffwpSqbQkL1PngoKCBFtbW6VtwcHBQosWLQQzMzOhcuXKQqdOnYSDBw8KgiAImzdvFlq0aCFUqlRJsLGxEbp06SLcuXNHceyRI0eE+vXrCyYmJkKtWrWKvC4AxcPCwkKoV6+eMHToUCEsLEyp3PPnz4XevXsLVlZWgqOjozBr1izBz89P6N27t6JMRESE0L59e0EsFgsAhMePHwuZmZmCv7+/YGtrK9jZ2QljxowRZsyYITRv3vxt37JSYeg/N0TaIJfLhV8j44WfHsYW+fg1Ml6Qy+W6DvWtyWQyYeLEiYrfg23bthUeP36s67DKndTU1CLv368TCcK/PWYNzKxZs3DixAncvn270P3nzp1Dly5d8OLFC0UtBADUqlULEydOxKRJkzB79mwcOXIE4eHhiv2PHz9G3bp1cefOHbRs2bLQc3/77bdKI6nypaamwsbGRmlbZmYmHj9+jDp16nBdHlIbf26ICkrKkOFSdEqx5T5wrQIHS8MdGfb48WMMHDgQt27dAgBMnjwZixYtYrObFkgkEtja2hZ6/36dQU5KGRkZiTVr1mDUqFFFlomPj4eZmZlSogTk9buJj49XlHm9/1L+/vx9RZk5cyZSU1MVj/x5hIiISHsyX+ujVBrl9NGhQ4fQsmVL3Lp1C5UrV8bhw4exfPlyJko6ptNkacaMGcWuQ/bw4UOlY2JiYuDp6YkBAwYoDV8vS+bm5rCxsVF6EBGRdlmYqHfLUrecPsnKysLEiRPRt29fpKamon379rh79y4+++wzXYdG0HEH7ylTpsDf319lmbp16yr+Hxsbi86dO6NDhw7YvHmzyuOcnJyQlZWl6BSXLyEhQTE5oZOTE27evKl0XEJCgmIfERHpD3uxGcQmRkqj4N4k/ncaAUPyzz//YODAgYpuJYGBgVi4cCFMTU11HBnl02my5ODgoJjVuTgxMTHo3Lkz3NzcEBQUBCMj1X85uLm5wdTUFGfPnkW/fv0AABEREYiKioK7uzsAwN3dHQsWLEBiYiIcHR0BAKdPn4aNjY3SaCoiItI9kUiEZo42hY6Gy9fM0cag5lv66aefMHz4cEgkElSpUgU7d+5Er169dB0WvcEg6ipjYmLg4eGBmjVrYtmyZUhKSkJ8fLxSv6KYmBg0atRIUVNka2uLgIAATJ48GefPn0dYWBiGDRsGd3d3tG/fHgDQrVs3NGnSBL6+vvj9999x8uRJzJo1C2PHji31aeMNtB896Qh/XogKV91ajHYudhC/0dQmNjFCOxc7g5k2QCaTYfz48ejfvz8kEgnc3d1x9+5dJkp6yiDmWTp9+jQiIyMRGRmJGjVqKO3Lv6lkZ2cjIiJCaZHalStXwsjICP369VOalDKfsbExjh07hjFjxsDd3V2xGGz+gqulIX9m66ysLIjFhvElJt3Ln4G8JIsNE5V31a3FcLGyMNgZvB89eoSBAwciLCwMADBt2jR89913bHbTYwY7dYA+UTX0UBAEREVFITs7Gy4uLsU2HxLJ5XLExsbC1NQUNWvWNJgbABEVb//+/fjiiy8gkUhQtWpV7Ny5Ez179tR1WBWWulMHGETNkiETiURwdnbG48eP8fTpU12HQwbCyMiIiRJROZK//FZ+60bHjh2xd+9euLq66jgyUgeTpTJgZmaGBg0aFLu4K1E+MzMz1kISlRORkZHw8vLC3bt3AeRNmzNv3jw2uxkQJktlxMjIiDMxExFVMPv27cOIESOQlpaGqlWrYvfu3fjkk090HRZpiMkSERFRKcvMzMTkyZOxYcMGAMD777+PvXv3FhikRKoJgqAXHfmZLBERlSP6cnOpyP7++294eXkp1h39+uuvMXfuXJiY8JariZg0Ke4lSpQmIRWbGKGZo02ZTxHBT46IqJzQp5tLRbV3716MHDkS6enpsLe3x549e9C9e3ddh2VwYtKkhU4+Ks2R40bsS7RzQZn+TLMHKRFROZB/c3lzKZD8m0tMmlRHkVUMUqkUo0aNwuDBg5Geno5OnTohPDyciVIJCIKAe4kSlWXuJUrKdPJeJktERAZOH28uFUlERATat2+PzZs3QyQSYdasWTh79iyqV6+u69AMUrI0S+X6f0DeHwHJ0rIbYc5mOCIiA6fJzcXBsnSXcqrogoODMWrUKLx69QoODg4IDg7Gxx9/rOuwDFpmMT/LmpYrDaxZIiIycPp4cynvpFIpRowYAR8fH7x69QoeHh4IDw9nolQKLEzUS03ULVcamCwRERk4fby5lGcPHz5Eu3btsHXrVohEIsyePRtnzpyBi4uLrkMrF+zFZgUWSn6T+N+RnmWF3xwiIgOnjzeX8mrPnj1o3bo1/ve//8HR0RGnTp3C3Llzueh1KRKJRGjmWPQ6bQDQzNGmTKfEYLJERGTg9PHmUt5kZGTgiy++gK+vL169eoXOnTsjPDwcXbt21XVo5VJ1azHaudgV+CNAbGKEdi52nGeJiIg0l3dzAedZ0oIHDx7Ay8sL9+/fh0gkwpw5czBr1izWJmlZdWsxXKws9GKSVSZLRETlhD7dXMqLXbt2YcyYMcjIyEC1atXw448/4qOPPtJ1WGVDngskXQKkcYDYGXD4ADAq2wRRJBLpxQhOJktEROWIvtxcDN2rV68wbtw47NixAwDQpUsX7NmzB05OTroNrKxEHwTCvgIynv23zbIG4LYacO2ru7h0hH2WiIiIXvPnn3+ibdu22LFjB4yMjDBv3jycPHmyYiVKl/orJ0oAkBGTtz36oG7i0iEmS0RERP/asWMHWrdujT///BNOTk44e/Ysvvnmm4rTP0mem1ejhMJme/93W9jEvHIVCJMlIiKq8F69eoWhQ4di2LBhkEql+PjjjxEeHg4PDw9dh1a2ki4VrFFSIgAZ0XnlKhAmS0REVKHdv38fbdq0wa5du2BkZITvvvsOJ06cQLVq1XQdWtmTxpVuuXKCHbyJiKhCEgQBQUFBGDduHKRSKZydnbF37158+OGHug5Nd8TOpVuunGDNEhER6QVBEJCUIUO0RIqkDBkEobB+M6UjPT0dQ4cORUBAAKRSKbp164bw8PCKnSgBedMDWNYAUNR0EyLA0jWvXAXCmiUiItK5mDRpmU2o+b///Q9eXl54+PChotlt+vTpMDJi/QGMjPOmB7jUH3kJ0+sJ678JlNuqMp9vSdf4k0FERDoVkybFjdiXSokSAEhz5LgR+xIxadJSuY4gCNi6dSvatm2Lhw8fonr16vjtt98wc+ZMJkqvc+0LfHAAsKyuvN2yRt72CjjPEmuWiIhIZwRBwL1Eicoy9xIlcLGyeKuZyNPS0jB69Gj8+OOPAABPT0/s2rULDg4OJT5nuebaF6jeW+czeOsLJktERKQzydKsAjVKb5LmyJEszSrxzOT37t3DgAED8Ndff8HY2BgLFizA1KlTWZtUHCNjoJqHrqPQC0yWiIhIZzKLSZQ0Lfc6QRCwZcsWTJgwATKZDDVq1MDevXvx/vvva3wu0pwgCOVmnUImS0REpDMWJurV7qhbLp9EIsGoUaMQEhICAOjRowd27twJe3t7jWMkzZVlh/2ywDpIIiLSGXuxGcTFJELif2sl1BUeHo7WrVsjJCQExsbGWLJkCY4ePcpEqYyUVYf9ssRkiYiIdEYkEqGZo43KMs0cbdRqvhEEARs3bkT79u3x999/w9XVFRcvXmT/pDKkbod9bc6hpQ0G8dPz5MkTBAQEoE6dOhCLxahXrx7mzJmDrKysIo9JSUnB+PHj0bBhQ4jFYtSsWRMTJkxAamqqUjmRSFTgkV9tS0RE2lfdWox2LnYFapjEJkZo52KnVrONRCKBt7c3xowZA5lMhl69euHu3bvo0KGDtsKmQmjSYd+QGESfpYcPH0Iul2PTpk2oX78+7t+/jxEjRuDVq1dYtmxZocfExsYiNjYWy5YtQ5MmTfD06VOMHj0asbGxOHDggFLZoKAgeHp6Kp7b2dlp8+UQEdEbqluL4WJlUaIOwXfv3oWXlxciIyNhYmKC77//HpMnTzbYzsSGTJsd9nVJJBhaXdi/li5dig0bNuCff/5R+5j9+/fDx8cHr169golJXp4oEolw6NAh9OnTp8SxSCQS2NraIjU1FTY2qquTiYiodAiCgA0bNmDSpEnIyspCzZo1sW/fPrRv317XoVVYSRkyXIpOKbbcB65VSjwVRGlS9/5tEM1whUlNTUWVKlU0PsbGxkaRKOUbO3Ys7O3t0bZtW2zfvr3YtlSZTAaJRKL0ICKispOamgovLy+MHTsWWVlZ+PTTT3H37l0mSjqmjQ77+sAgk6XIyEisWbMGo0aNUvuY5ORkzJ8/HyNHjlTaPm/ePISGhuL06dPo168fvvzyS6xZs0bluRYtWgRbW1vFw9XVtUSvg4iINBcWFoZWrVrhwIEDMDExwYoVK3D48GGN/4Cm0leaHfb1iU6b4WbMmIHFixerLPPgwQM0atRI8TwmJgYffvghPDw8sHXrVrWuI5FI8PHHH6NKlSo4cuQITE1Niyw7e/ZsBAUFITo6usgyMpkMMplM6fyurq5shiMi0iJBELBu3TpMmTIFWVlZqFWrFvbt24d27drpOjR6g6HMs6RuM5xOk6WkpCQ8f/5cZZm6devCzCyvui42NhYeHh5o3749duzYodZQ0LS0NHTv3h2WlpY4duwYLCwsVJb/5Zdf0KtXL2RmZsLcXL32VPZZIiJ9UJ5mTH7Ty5cvERAQgIMHDwIAevfujaCgIFSuXFnHkVFRDOHnUd37t05Hwzk4OKi9iGFMTAw6d+4MNzc3BAUFqZUoSSQSdO/eHebm5jhy5EixiRKQN5lZ5cqV1U6UiIj0gaH8JV8St2/fhpeXFx4/fgxTU1MsXboUEyZM0Lsbrz7SZcIiEon0ohN3aTCIqQNiYmLg4eGBWrVqYdmyZUhKSlLsc3JyUpTp0qULdu3ahbZt20IikaBbt27IyMjAnj17lDpiOzg4wNjYGEePHkVCQgLat28PCwsLnD59GgsXLkRgYKBOXicRUUnkz5j8pvwZk9u5wCATJkEQsGbNGgQGBiI7Oxu1a9dGaGgo2rRpo+vQDEJ5TqDLmkEkS6dPn0ZkZCQiIyNRo0YNpX35rYjZ2dmIiIhARkYGAODOnTu4ceMGAKB+/fpKxzx+/Bi1a9eGqakp1q1bh0mTJkEQBNSvXx8rVqzAiBEjyuBVERG9PXVnTHaxsjCompiXL19i+PDhOHToEADg888/x/bt2zkPnprKawKtKwY7z5I+YZ8lItIVQ5vXRh03b97EwIED8eTJE5iammL58uUYN26cQSV7uiQIAk78k6hyJm2xiRE86zpW+Pe03M+zRERE5WvGZEEQsGrVKrz//vt48uQJ6tSpg6tXr2L8+PEV/qauifK65IguGUQzHBERFc6imAkANS2nKy9evMCwYcNw+PBhAEC/fv2wdetWNruVQHlKoPWFfn97iIhIpfIwY/KNGzfQsmVLHD58GGZmZli7di3279/PRKmEyksCrU/4ThERGTBDnjFZEASsWLEC77//Pp4+fYp69erh6tWrGDt2rF7GayjKQwKtb5gsEREZuOrWYrRzsStwgxSbGKGdi51ejnpKSUlB7969MWXKFOTk5GDAgAEICwuDm5ubrkMzeIacQOsr9lkiIioHqluL4WJlofczJgPAtWvXMGjQIERFRcHMzAyrVq3C6NGj9TJWQ5WXQIPzLJUSJktEROWEvs+YLJfLsWLFCsycORM5OTmoX78+QkND0bJlS12HVi4ZUgKt75gsERGR1j1//hz+/v44duwYAGDgwIHYvHkz56bTMn1PoA0FkyUiItKqq1evYtCgQYiOjoa5uTlWr16NkSNHsoaDDAY7eBMRkVbI5XIsWbIEnTp1QnR0NBo0aIDr169j1KhRTJTIoLBmiYiISl1ycjL8/Pxw/PhxAIC3tzc2bdoEa2trHUdGpDkmS0REVKouX76MQYMGISYmBubm5lizZg2++OIL1iaRwWIzHBERlQq5XI7vv/8eHh4eiImJwTvvvIObN29ixIgRTJTIoLFmiYiI3lpSUhL8/Pxw4sQJAMCQIUOwYcMGNrtRucBkiYiI3sqlS5cwaNAgxMbGwsLCAmvXrsXw4cNZm0TlBpvhiIioRORyORYuXAgPDw/ExsaiUaNGuHnzJgICApgoUbnCmiUiItJYYmIifH19cerUKQCAr68v1q9fDysrKx1HRlT6mCwREZFGLly4AG9vb8TFxUEsFmPdunXw9/dnbRKVW2yGIyIiteTm5uK7777DRx99hLi4ODRu3Bi3bt3CsGHDmChRucaaJSIiKlZCQgJ8fHxw5swZAMDQoUOxbt06VKpUSceREWkfkyUiIlLp/PnzGDx4MOLj4yEWi7F+/Xr4+/vrOiyiMsNmOCIiKlRubi7mzZuHrl27Ij4+Hk2aNMHt27eZKFGFw5olIiIqID4+Hj4+Pjh79iwAYNiwYVizZg2b3ahCYrJERERKzp07h8GDByMhIQGWlpbYsGED/Pz8dB0Wkc6wGY6IiADkNbt9++236Nq1KxISEvDuu+/i9u3bTJSowmPNEhEZLEEQkCzNQmaOHBYmRrAXm3EIewnFx8dj8ODBOH/+PAAgICAAP/zwAywtLXUcGZHuMVkiIoMUkybFvUQJpDlyxTaxiRGaOdqgurVYh5EZnjNnzmDIkCFITExEpUqVsHHjRvj4+Og6LCK9wWY4IjI4MWlS3Ih9qZQoAYA0R44bsS8RkybVUWSGJTc3F7Nnz0a3bt2QmJiIpk2b4vbt20yUiN7AZImIDIogCLiXKFFZ5l6iBIIglFFEhik2NhZdunTB/PnzIQgCRowYgRs3bqBRo0a6Do1I7zBZIiKDkizNKlCj9CZpjhzJ0qwyisjwnDp1Ci1atMCFCxdgZWWF4OBgbN68GWIxmy+JCmMQydKTJ08QEBCAOnXqQCwWo169epgzZw6yslT/MvTw8IBIJFJ6jB49WqlMVFQUevbsCUtLSzg6OmLq1KnIycnR5sshoreQWUyipGm5iiQnJwezZs2Cp6cnkpKS0Lx5c4SFhWHw4MFK5QRBQFKGDNESKZIyZKylowrPIDp4P3z4EHK5HJs2bUL9+vVx//59jBgxAq9evcKyZctUHjtixAjMmzdP8fz1kR25ubno2bMnnJyccPXqVcTFxcHPzw+mpqZYuHCh1l4PEZWchYl6f+OpW66iiImJweDBg3Hx4kUAwKhRo7By5coCtUnsOE9UkEhQ808GQRD0akju0qVLsWHDBvzzzz9FlvHw8ECLFi2watWqQvcfP34cvXr1QmxsLKpVqwYA2LhxI6ZPn46kpCSYmZmpFYtEIoGtrS1SU1NhY2Oj8WshIvUJgoAT/ySqbIoTmxjBs66jXv3O0qWTJ0/Cx8cHycnJsLKywpYtWzBo0KAC5fI7zhelnYsdEyYqV9S9f6v9p1fHjh0RGRlZKsGVhtTUVFSpUqXYcsHBwbC3t8d7772HmTNnIiMjQ7Hv2rVraNq0qSJRAoDu3btDIpHgjz/+KPKcMpkMEolE6UFEZUMkEqGZo+o/Spo52jBRQl6z29dffw1PT08kJyejefPmuHPnTqGJEjvOExVN7WSpRo0aaNGiBdatW6fNeNQSGRmJNWvWYNSoUSrLDR48GHv27MH58+cxc+ZM7N69W2lIbHx8vFKiBEDxPD4+vsjzLlq0CLa2toqHq6vrW7waItJUdWsx2rnYQfxGU5vYxIi1H/969uwZOnfujEWLFgEAxowZg+vXr6NBgwaFlmfHeaKiqd1nKTQ0FPv378e4cePw888/IygoCDVq1Hiri8+YMQOLFy9WWebBgwdKQ1ljYmLg6emJAQMGYMSIESqPHTlypOL/TZs2hbOzM7p06YJHjx6hXr16JY575syZmDx5suK5RCJhwkRUxqpbi+FiZcEZvAtx/Phx+Pr64vnz57C2tsbWrVvh5eWl8hh2nCcqmkYdvAcMGAAPDw+MHTsWTZs2ha+vL0xMlE+xYsUKtc83ZcoU+Pv7qyxTt25dxf9jY2PRuXNndOjQAZs3b9YkdABAu3btAOTVTNWrVw9OTk64efOmUpmEhAQAgJOTU5HnMTc3h7m5ucbXJ6LSJRKJ4GDJ72K+7OxsfPPNN4o/Qlu2bInQ0FDUr1+/2GPZcZ6oaBqPhqtSpQoaN26MQ4cO4e7du0rJkqZ/0Tk4OMDBwUGtsjExMejcuTPc3NwQFBQEIyPNv7Dh4eEAAGdnZwCAu7s7FixYgMTERDg6OgIATp8+DRsbGzRp0kTj8xMR6Up0dDQGDRqEq1evAgDGjh2LZcuWwcLCQq3j7cVmEJsYFdtx3l6s3sAXovJEo2Tpjz/+gJ+fH1JSUnDq1Cl07txZW3EpiYmJgYeHB2rVqoVly5YhKSlJsS+/BigmJgZdunTBrl270LZtWzx69Ag//vgjevTogapVq+LevXuYNGkSOnXqhGbNmgEAunXrhiZNmsDX1xdLlixBfHw8Zs2ahbFjx7LmiIgMxi+//KL43WxjY4Nt27ahf//+Gp0jv+O8qtFw7DhPFZXa1TPff/893Nzc0Lx5c9y7d6/MEiUgr7YnMjISZ8+eRY0aNeDs7Kx45MvOzkZERIRitJuZmRnOnDmDbt26oVGjRpgyZQr69euHo0ePKo4xNjbGsWPHYGxsDHd3d/j4+MDPz09pXiYiIn2VnZ2NadOmoVevXkhJSYGbmxvu3LmjcaKUjx3niQqn9jxLzs7O2Lx5Mz799FNtx2RwOM8SEZW1qKgoDBo0CNeuXQMAjB8/HkuXLi2VWnFBENhxnioEde/fajfD3b9/H1WrVi2V4IiIqOSOHj2KoUOH4sWLF7C1tcX27dvRt2/fUju/Usd5eS6QeAGQxgFiZ8DhA8DIuNSuRWQI1E6WmCgRkaEz9BqT7OxszJw5E8uXLwcAtG7dGvv27VMaNVyqog8CYV8BGc/+22ZZA3BbDbiWXnJGpO8MYm04IqK3Zehrnj19+hSDBg3C9evXAQBfffUVFi9erL3BKNEHgUv9AbzRUyMjJm/7BweYMFGFwQkziKjcy1/z7M1h8dIcOW7EvkRMmlRHkann8OHDaNmyJa5fvw47OzscOnQIq1at0l6iJM/Nq1F6M1EC/tsWNjGvHFEFwGSJiMo1Q17zLCsrC5MnT0afPn3w4sULtG3bFnfv3kWfPn20e+GkS8pNbwUIQEZ0XjmiCkCtZjhNForlaDAi0iearHmmT7OBP3nyBAMHDlSsMjBp0iR8//33MDMrg0khpXGlW47IwKmVLNnZ2andCTI3l9WyRKQ/DHHNs59//hnDhg3Dy5cvYWdnhx07dqB3795lF4DYufgympQjMnBqJUvnz59X/P/JkyeYMWMG/P394e7uDgC4du0adu7cqVjdmohIXxjSmmdZWVmYNm0aVq9eDSBvPct9+/ahVq1aZRuIwwd5o94yYlB4vyVR3n6HD8o2LiIdUXtSynxdunTBF198AW9vb6XtP/74IzZv3ozffvutNOMzCJyUkkh/CYKAE/8kFrvmmWddR51OI/D48WMMHDgQt27dApC30PjChQvLptmtMIrRcIBywvTve8TRcFQOqHv/1vhPqWvXrqF169YFtrdu3VrRtk5EpC/y1zxTRddrnh08eBAtW7bErVu3ULlyZRw5cgTLli3TXaIE5CVCHxwALKsrb7eswUSJKhyNkyVXV1ds2bKlwPatW7fC1dW1VIIiIipN+rrmmUwmw4QJE9CvXz+kpqaiffv2CA8P159lpVz7Ap89AbqcBzr8mPfvZ4+ZKFGFo/GklCtXrkS/fv1w/PhxtGvXDgBw8+ZN/P333/jpp59KPUAiotJQ3VoMFysLvZnB+59//oGXlxfCwsIAAFOnTsWCBQtgamqqk3iKZGQMVPPQdRREOqVxnyUAiI6OxoYNG/Dw4UMAQOPGjTF69OgKW7PEPktEpIkDBw4gICAAEokEVapUwa5du9CzZ09dh0VU4ah7/y5RskTKmCwRkToyMzMRGBiIdevWAQA6dOiAkJCQCvuHJpGuaa2DNwBcunQJPj4+6NChA2JiYgAAu3fvxuXLl0sWLRFRORcZGYkOHTooEqXp06fjt99+Y6JEZAA0TpZ++ukndO/eHWKxGHfu3IFMJgMApKamYuHChaUeIBGRoQsNDUWrVq1w9+5dVK1aFb/88gu+//57/eufRESF0jhZ+u6777Bx40Zs2bJF6YvesWNH3Llzp1SDIyIyZJmZmfjyyy8xcOBApKWl4f3330d4eDh69Oih69CISAMaj4aLiIhAp06dCmy3tbXFy5cvSyMmIv0iz81bMFQal7e8g8MHeSOEqGh8z/D333/Dy8sL4eHhAICZM2di3rx5MDHR+NcuEemYxt9aJycnREZGonbt2krbL1++jLp165ZWXET6IfogEPaV8grsljUAt9Wca6YofM8QEhKCESNGID09Hfb29ti9ezc8PT11HRYRlZDGzXAjRozAV199hRs3bkAkEiE2NhbBwcEIDAzEmDFjtBEjkW7kL/fw+k0fyFsv61L/vP2krIK/Z1KpFKNHj4a3tzfS09PxwQcfIDw8nIkSkYHTuGZpxowZkMvl6NKlCzIyMtCpUyeYm5sjMDAQ48eP10aMRGVPnptXO1LoIqICABEQNhGo3rvCNS8VqYK/Z3/99Re8vLzw+++/QyQS4euvv8a3337LZjeicqDE8yxlZWUhMjIS6enpaNKkCaysrEo7NoPBeZbKoYTfgLOdiy/X5TxnN85Xgd+zH3/8EaNGjUJ6ejocHBywZ88edOvWTddhEVExtDbP0vDhw5GWlgYzMzM0adIEbdu2hZWVFV69eoXhw4e/VdBEekMaV7rlKoIK+J5JpVKMHDkSQ4YMQXp6Oj788EOEh4czUSIqZzROlnbu3AmpVFpgu1Qqxa5du0olKCKdEzuXbrmKoIK9Zw8fPkS7du2wZcsWiEQifPPNNzhz5gxcXFx0HRoRlTK1G9MlEgkEQYAgCEhLS4OFhYViX25uLn799Vc4OjpqJUiiMufwQd4IrowYFN4HR5S33+GDso5Mf1Wg9yw4OBijRo3Cq1ev4OjoiODgYHTt2lXXYRGRlqidLNnZ2UEkEkEkEuGdd94psF8kEmHu3LmlGhyRzhgZ5w11v9QfgAjKN/9/V6l3W1UuOyqXWAV4zzIyMjBhwgRs27YNANC5c2cEBwfD2bl81JYRUeHUTpbOnz8PQRDw0Ucf4aeffkKVKlUU+8zMzFCrVi1WP1P54toX+OBAEXMGraowcwZppBy/Zw8ePICXlxfu378PkUiE2bNn45tvvoGxseEmf0SkHo1Hwz19+hQ1a9aESCTSVkwGh6PhyjnORq25cvae7dq1C2PGjEFGRgaqVauG4OBgdOnSRddhEdFbUvf+rfEEIOfOnYOVlRUGDBigtH3//v3IyMjA0KFDNY+WSJ8ZGZe7oe5aV07es4yMDIwbNw5BQUEAgI8++gjBwcFwcnLScWREVJY0Hg23aNEi2NvbF9ju6OiIhQsXlkpQRES69ueff6Jt27YICgqCkZER5s6di1OnTjFRIqqANE6WoqKiUKdOnQLba9WqhaioqFIJ6k1PnjxBQEAA6tSpA7FYjHr16mHOnDnIyspSeUx+h/Q3H/v371eUK2x/SEiIVl4HERmGHTt2oE2bNvjjjz/g5OSEM2fOYPbs2eyfRFRBadwM5+joiHv37hVYSPf3339H1apVSysuJQ8fPoRcLsemTZtQv3593L9/HyNGjMCrV6+wbNmyQo9xdXVFXJzy5HebN2/G0qVL8cknnyhtDwoKUlq7yc7OrtRfAxHpv1evXmHs2LHYuXMnAKBr167Ys2cPqlWrpuPIiEiXNE6WvL29MWHCBFhbW6NTp04AgAsXLuCrr77CoEGDSj1AAPD09FRKZurWrYuIiAhs2LChyGTJ2Ni4QHX5oUOH4OXlVWBpFjs7O1atE1Vwf/zxBwYMGIAHDx4omt1mzpzJ2iQi0rwZbv78+WjXrh26dOkCsVgMsViMbt264aOPPirTPkupqalK0xcUJywsDOHh4QgICCiwb+zYsbC3t0fbtm2xfft2FDdAUCaTQSKRKD2IyDAJgoCgoCC0adMGDx48gLOzM86dO4dZs2bpJFESBAFJGTJES6RIypAV+/uoosVDpAsa1yyZmZlh3759mD9/Pn7//XeIxWI0bdoUtWrV0kZ8hYqMjMSaNWuKrFUqzLZt29C4cWN06NBBafu8efPw0UcfwdLSEqdOncKXX36J9PR0TJgwochzLVq0iBNwEpUD6enp+PLLL7F7924AQLdu3bB7926drUYQkybFvUQJpDlyxTaxiRGaOdqgurW4wsdDpCsaz7NUmmbMmIHFixerLPPgwQM0atRI8TwmJgYffvghPDw8sHXrVrWuI5VK4ezsjG+++QZTpkxRWXb27NkICgpCdHR0kWVkMhlkMpniuUQigaurK+dZIjIg//vf/+Dl5YWHDx/CyMgI8+fPx4wZM2BkpHGFe6mISZPiRuzLIve3c7Er0wRF3+Ih0oZSnWdp8uTJmD9/PipVqoTJkyerLLtixQq1g5wyZQr8/f1Vlqlbt67i/7GxsejcuTM6dOiAzZs3q32dAwcOICMjA35+fsWWbdeuHebPnw+ZTAZzc/NCy5ibmxe5j4j0myAI2L59O8aNG4fMzEy4uLhg7969ij6YuorpXqLq5vx7iRK4WFmUyYTA+hYPka6plSzdvXsX2dnZiv8XRdMvjYODAxwcHNQqGxMTg86dO8PNzU0x74m6tm3bhs8++0yta4WHh6Ny5cpMhojKofT0dIwePRrBwcEAgO7du2P37t1q/x7SlmRpllJTV2GkOXIkS7PgYKn93036Fg+RrqmVLJ0/f77Q/5eVmJgYeHh4oFatWli2bBmSkpIU+/JHscXExKBLly7YtWsX2rZtq9gfGRmJixcv4tdffy1w3qNHjyIhIQHt27eHhYUFTp8+jYULFyIwMFD7L4qIytS9e/fg5eWFiIgIGBsb47vvvsO0adN01uz2usxiEhNNy70tfYuHSNc07uCtC6dPn0ZkZCQiIyNRo0YNpX35Xa6ys7MRERGBjIwMpf3bt29HjRo10K1btwLnNTU1xbp16zBp0iQIgoD69etjxYoVGDFihPZeDBGVKUEQsGXLFnz11VfIzMxE9erVERISgvfff1/XoSlYmKiXsKlb7m3pWzxEuqZWB+++fdVfKfzgwYNvFZAh4kK6RGVHEAQkS7OQmSOHhYkR7MVmRXYBSEtLw6hRo7B3714AQI8ePbBz585Cl2zSJUEQcOKfRJVNX2ITI3jWdSyzPkv6FA+RtpRqB29bW1vF/wVBwKFDh2Bra4vWrVsDyJvD6OXLlxolVUREmtJkKPvvv/+OAQMG4O+//4axsbGiiV0fmt3eJBKJ0MzRRuXos2aONmWWmOhbPES6pvHUAdOnT0dKSgo2btyomLAtNzcXX375JWxsbLB06VKtBKrPWLNEpH3qDmUXBAGbN2/GV199BZlMhho1aiAkJAQdO3Ysu2BLSN/mNdK3eIhKm7r3b42TJQcHB1y+fBkNGzZU2h4REYEOHTrg+fPnJYvYgDFZItIudZuFOthbYNSoUdi3bx8AoGfPnti5c6fW1q3UBk2aGStiPESlSd37t8b10Tk5OXj48GGB7fmL3RIRlTZ1hrL/ce93tHRzw759+2BiYoKlS5fiyJEjBpUoAXlNYA6W5nC1EcPB0lzniYm+xUOkCxqPhhs2bBgCAgLw6NEjxRD9Gzdu4Pvvv8ewYcNKPUAiIlVD1AVBwMmQXQhaOAc52VlwdXXFvn374O7uXoYRElF5pnGytGzZMjg5OWH58uWIi4sDADg7O2Pq1KnFLiVCRFQSRQ1Rf5UmwYZvpuLaiaMAgO49euLH3bs0WmSbiKg4b7U2nESSNx1+Re+nwz5LRNpVWJ+lf/64h+WTRiM+6gmMTUwwbOosbPruG70c7UZE+klrfZaAvH5LZ86cwd69exXt17GxsUhPTy9ZtEREKuQPZQfyEqdf92zHzEGfIT7qCRxcauC74J/x7Uz9mI2biMofjZvhnj59Ck9PT0RFRUEmk+Hjjz+GtbU1Fi9eDJlMho0bN2ojTiKq4Kpbi9G4UipGfDECV07+AgBo06U7ApesRscGNRVD2Q1i9JY8F0i6BEjjALEz4PABYGSs66iIqAgaJ0tfffUVWrdujd9//11plMnnn3/OZUKISGtu376NgQMH4p9//oGpqSlmzluAsePHK43QMoh5gaIPAmFfARnP/ttmWQNwWw24cmJfIn2kcbJ06dIlXL16FWZmZkrba9eujZiYmFILjIgIyKspWrt2LaZMmYLs7GzUrl0b+/btU1owGyh60kppjhw3Yl+inQt0nzBFHwQu9QfwRlfRjJi87R8cYMJEpIc0buCXy+XIzc0tsP3Zs2ewtrYulaCIiADg5cuX6N+/PyZMmIDs7Gz06dMHd+7cKZAoCYKAe4kSlee6lyjBW4xneXvy3LwapTcTJeC/bWET88oRkV7ROFnq1q0bVq1apXguEomQnp6OOXPmoEePHqUZGxFVYLdu3UKrVq1w8OBBmJqaYvXq1Th48CAqV65coKw6k1ZKc+RIlmZpK9ziJV1SbnorQAAyovPKEZFeKdE8S56enmjSpAkyMzMxePBg/P3337C3t1es7E1EVFKCIOCHH37A1KlTkZ2djTp16mDfvn1o06ZNkceomrSyJOW0QhpXuuWIqMxonCy5urri999/x759+/D7778jPT0dAQEBGDJkCMRiPelASUQG6cWLFxg+fDh+/vlnAEDfvn2xbds22NnZqTyuqEkrS1pOK8TOpVuOiMqMRslSdnY2GjVqhGPHjmHIkCEYMmSItuIi0jsGMSTdgN28eRNeXl54+vQpzMzMsHz5cowdO1at99hebAaxiVGxC+3ai82K3K91Dh/kjXrLiEHh/ZZEefsdPijryIioGBolS6ampsjMzNRWLER6yyCGpBsoQRCwcuVKTJ8+HTk5Oahbty5CQ0Ph5uam9jnyJ60sbDRcvmaONrpNbo2M86YHuNQfgAjKCdO/cbmt4nxLRHpI4zrpsWPHYvHixcjJydFGPER6J39I+pu1FvlD0mPSpDqKzPClpKSgT58+mDJlCnJycjBgwADcuXNHo0QpX3VrMdq52EH8RlOb2MQI7Vzs9COpde2bNz2AZXXl7ZY1OG0AkR7TuM/SrVu3cPbsWZw6dQpNmzZFpUqVlPYfPHiw1IIj0jV1h6S7WFmwSU5D169fx8CBAxEVFQUzMzOsXLkSY8aMeav3sbq1GC5WFvrdXOraF6jemzN4ExkQjZMlOzs79OvXTxuxEOkdTYakO1ial1FUhk0QBKxYsQIzZsxATk4O6tWrh9DQULRq1apUzi8SifT/szAyBqp56DoKIlKTxslSUFCQNuIg0ksGMSTdgDx//hz+/v44duwYAMDLywtbtmxRudo3EZGuqd1nSS6XY/HixejYsSPatGmDGTNmQCplXw0q3wxiSLqBuHr1Klq2bIljx47B3NwcGzZsQEhICBMlItJ7av+GX7BgAb7++mtYWVmhevXqWL16NcaOHavN2Ih0Ln9Iuio6H5Ku5+RyOZYuXYpOnTohOjoaDRo0wPXr1zF69Gj96ktERFQEtZOlXbt2Yf369Th58iR+/vlnHD16FMHBwZDL2fxA5Vf+kHRVdD4kXY8lJyfj008/xbRp05Cbm4tBgwbh9u3baNGiha5DIyJSm9rJUlRUlNLab127doVIJEJsbKxWAiPSFwYxJF0PXblyBS1btsSvv/4Kc3NzbNq0CT/++COb3YjI4KjdwTsnJwcWFhZK20xNTZGdnV3qQRHpG4MYkq4n5HI5lixZglmzZiE3NxfvvPMOQkND0bx5c12HRkRUImonS4IgwN/fH+bm/w3JzczMxOjRo5XmWuI8S1ReGcSQdB1LSkqCn58fTpw4AQAYPHgwNm7cCGtrax1HRkRUcmonS0OHDi2wzcfHp1SDISLDdenSJXh7eyMmJgYWFhZYs2YNAgICWPtGRAZP7WSJ8ysRUWHypxX55ptvkJubi4YNGyI0NBTNmjXTdWhERKVC40kpiYjyJSUlwdfXFydPngSQV9u8YcMGWFlZ6TgyIqLSYzAz6X322WeoWbMmLCws4OzsDF9f32JH4mVmZmLs2LGoWrUqrKys0K9fPyQkJCiViYqKQs+ePWFpaQlHR0dMnTqViwQTqeHixYto0aIFTp48CbFYjG3btmHXrl1MlIio3DGYZKlz584IDQ1FREQEfvrpJzx69Aj9+/dXecykSZNw9OhR7N+/HxcuXEBsbCz69v1vVe/c3Fz07NkTWVlZuHr1Knbu3IkdO3Zg9uzZ2n45RAZLLpdjwYIF6Ny5M2JjY9GoUSPcvHkTw4cPZ/8kIiqfBAN1+PBhQSQSCVlZWYXuf/nypWBqairs379fse3BgwcCAOHatWuCIAjCr7/+KhgZGQnx8fGKMhs2bBBsbGwEmUymdiypqakCACE1NbWEr4bIMCQkJAgff/yxAEAAIPj5+QlpaWm6DouIqETUvX8bTM3S61JSUhAcHIwOHTrA1NS00DJhYWHIzs5G165dFdsaNWqEmjVr4tq1awCAa9euoWnTpqhWrZqiTPfu3SGRSPDHH38UeX2ZTAaJRKL0ICrvfvvtN7Ro0QKnT5+GWCxGUFAQdu7cyWY3Iir3DCpZmj59OipVqoSqVasiKioKhw8fLrJsfHw8zMzMYGdnp7S9WrVqiI+PV5R5PVHK35+/ryiLFi2Cra2t4uHq6lrCV0Sk/3JzczFv3jx06dIFcXFxaNKkCW7dugV/f39dh0ZEVCZ0mizNmDEDIpFI5ePhw4eK8lOnTsXdu3dx6tQpGBsbw8/PD4IglHncM2fORGpqquIRHR1d5jEQlYWEhAR0794dc+bMgVwux7Bhw3Dz5k28++67ug6NiKjM6HTqgClTphT712ndunUV/7e3t4e9vT3eeecdNG7cGK6urrh+/Trc3d0LHOfk5ISsrCy8fPlSqXYpISEBTk5OijI3b95UOi5/tFx+mcKYm5srzWROVB6dO3cOQ4YMQXx8PCwtLbF+/fpCJ6clIirvdJosOTg4wMHBoUTHyuVyAHn9hwrj5uYGU1NTnD17Fv369QMAREREICoqSpFcubu7Y8GCBUhMTISjoyMA4PTp07CxsUGTJk1KFBeRocvNzcV3332HuXPnQhAEvPvuuwgNDeV3gogqLIPos3Tjxg2sXbsW4eHhePr0Kc6dOwdvb2/Uq1dPkfjExMQohjADgK2tLQICAjB58mScP38eYWFhGDZsGNzd3dG+fXsAQLdu3dCkSRP4+vri999/x8mTJzFr1iyMHTuWNUdUIcXHx6Nbt2749ttvIQgChg8fjps3bzJRIqIKzSCSJUtLSxw8eBBdunRBw4YNERAQgGbNmuHChQuKpCY7OxsRERHIyMhQHLdy5Ur06tUL/fr1Q6dOneDk5KS00K+xsTGOHTsGY2NjuLu7w8fHB35+fpg3b16Zv0YiXTt79ixatGiBc+fOoVKlSti9eze2bdsGS0tLXYdGRKRTIkEXPaTLGYlEAltbW6SmpsLGxkbX4RBpJH+02/z58yEIAt577z3s378fjRo10nVoRERape79m2vDEVVgcXFxGDx4MH777TcAwBdffIHVq1ezNomI6DVMlogqqNOnT8PHxweJiYmwsrLCpk2bMHjwYF2HRUSkdwyizxIRlZ6cnBzMmjUL3bt3R2JiIpo1a4bbt28zUSIiKgJrlogqkNjYWHh7e+PixYsAgFGjRmHlypUQi8U6joyISH8xWSKqIE6ePAlfX18kJSXBysoKmzdvhre3t67DIiLSe2yGIyrncnJy8H//93/w9PREUlISmjdvjrCwMCZKRERqYs0SUTkWExMDb29vXLp0CQAwevRorFy5EhYWFjqOjIjIcDBZIiqnTpw4AV9fXyQnJ8Pa2hpbt26Fl5eXrsMiIjI4bIYjKmdycnIwc+ZMfPLJJ0hOTkbLli1x584dJkpERCXEmiWiciQ6Ohre3t64cuUKAODLL7/E8uXL2exGRPQWmCwRlRO//vor/Pz88Pz5c9jY2GDr1q0YMGCArsMiIjJ4bIYjMnDZ2dmYNm0aevbsiefPn6NVq1a4c+cOEyUiolLCmiUiAxYVFYVBgwbh2rVrAIDx48dj6dKlMDc313FkRETlB5MlIgN17NgxDB06FCkpKbCxscH27dvRr18/XYdFRFTusBmOyMBkZ2dj6tSp+PTTT5GSkoLWrVvj7t27TJSIiLSENUtEBuTp06cYNGgQrl+/DgCYMGEClixZ8tbNboIgIFmahcwcOSxMjGAvNoNIJCqNkImIDB6TJSIDceTIEfj7++PFixewtbVFUFAQPv/887c+b0yaFPcSJZDmyBXbxCZGaOZog+rWXGCXiIjNcER6LisrC1OmTEHv3r3x4sULtGnTBnfv3i21ROlG7EulRAkApDly3Ih9iZg06Vtfg4jI0DFZItJjT548wQcffIAVK1YAACZOnIjLly+jTp06b31uQRBwL1Gissy9RAkEQXjraxERGTI2wxHpqcOHD8Pf3x8vX76EnZ0dduzYgd69e5fa+ZOlWQVqlN4kzZEjWZoFB0tORUBEFRdrloj0TFZWFiZOnIg+ffrg5cuXaNeuHe7evVuqiRIAZBaTKGlajoiovGKyRKRHHj9+jPfffx+rV68GAEyZMgUXL15E7dq1S/1aFibqff3VLUdEVF6xGY5ITxw6dAjDhg1DamoqKleujB07duCzzz7T2vXsxWYQmxipbIoT/zuNABFRRcY/GYl0TCaT4auvvkLfvn2RmpqK9u3b4+7du1pNlABAJBKhmaONyjLNHG043xIRVXhMloh06J9//kHHjh3xww8/AAACAwNx8eJF1KpVq0yuX91ajHYudhC/0dQmNjFCOxc7zrNERAQ2wxHpzE8//YThw4dDIpGgSpUq2LVrF3r27FnmcVS3FsPFyoIzeBMRFYHJElEZk8lkCAwMxNq1awEAHTp0QEhICFxdXXUWk0gk4vQARERFYLJEVArUXVvt0aNH8PLywp07dwAA06ZNw3fffQdTU9OyDpmIiNTEZInoLam7ttr+/fvxxRdfQCKRoGrVqti1axd69Oihi5CJiEgD7OBN9BbUWVstMzMTY8eOhZeXFyQSCTp27Ijw8HAmSkREBoLJElEJqbO22vGb4XB3d8f69esBADNnzsRvv/2GGjVqlEWIRERUCgwmWfrss89Qs2ZNWFhYwNnZGb6+voiNjS2yfEpKCsaPH4+GDRtCLBajZs2amDBhAlJTU5XKiUSiAo+QkBBtvxwqB4pbW+3Kr4cxoXc3hIeHw97eHsePH8fChQthYqK/rd+CICApQ4ZoiRRJGTIuoktEBAPqs9S5c2d8/fXXcHZ2RkxMDAIDA9G/f39cvXq10PKxsbGIjY3FsmXL0KRJEzx9+hSjR49GbGwsDhw4oFQ2KCgInp6eiud2dnbafClUThS1ZlqWLBNBi77FqZBdAIC2HTriYOg+VK9evSzD05i6fa+IiCoakWCgfzoeOXIEffr0gUwmU3sk0f79++Hj44NXr14p/roXiUQ4dOgQ+vTpo/a1ZTIZZDKZ4rlEIoGrqytSU1NhY6N6RmQqP5IyZLgUnaK0LfbxIyyfNApPHv4JkUiEz0eOx9olC+FsU0lHUaonv+9VUThBJRGVRxKJBLa2tsXevw2mGe51KSkpCA4ORocOHTQacp3/ZrzZDDJ27FjY29ujbdu22L59e7FND4sWLYKtra3iocv5cUh38tdWy3fp2CFM7eeJJw//hE2Vqpi1JRhfTP0aTtaWOoyyeOr0vbqXKGGTHBFVWAaVLE2fPh2VKlVC1apVERUVhcOHD6t9bHJyMubPn4+RI0cqbZ83bx5CQ0Nx+vRp9OvXD19++SXWrFmj8lwzZ85Eamqq4hEdHV2i10OGLX9tNVmmFBtnT8OqwLHIzHiFd9u4Y/mh02jxvodBrK1WXN8rIG90X7I0q4wiIiLSLzpthpsxYwYWL16sssyDBw/QqFEjAHkJT0pKCp4+fYq5c+fC1tYWx44dK/ZmJJFI8PHHH6NKlSo4cuSIytqo2bNnIygoSKMESN1qPCp/IiIi8Hn/AXhw/38QiUToN/oreI2dDCsLM4Pp6xMtkeJW3Mtiy7VxtoOrjf6/HiIidal7/9ZpspSUlITnz5+rLFO3bl2YmZkV2P7s2TO4urri6tWrcHd3L/L4tLQ0dO/eHZaWljh27BgsLCxUXu+XX35Br169kJmZCXNz9ZZ/YLKkf9SdUbuk5QEgODgYo0aNwqtXr+Do6Ii1W7ej/YcfGdzaaoX1vSrMB65VuCQKEZUr6t6/dToazsHBAQ4ODiU6Vi7PazZ4vaP1myQSCbp37w5zc3McOXKk2EQJAMLDw1G5cmW1EyXSP5qO6tK0fEZGBr766its3boVAODh4YEff/wRzs7OWng12pff90pVU5z43wSQiKgiMog+Szdu3MDatWsRHh6Op0+f4ty5c/D29ka9evUUtUoxMTFo1KgRbt68CSAvUerWrRtevXqFbdu2QSKRID4+HvHx8cjNzQUAHD16FFu3bsX9+/cRGRmJDRs2YOHChRg/frzOXiu9HXVm1H6b8g8fPkS7du2wdetWiEQizJkzB2fOnDHYRAn4r++VKobQ94qISFsMYp4lS0tLHDx4EHPmzMGrV6/g7OwMT09PzJo1S1EDlJ2djYiICGRkZAAA7ty5gxs3bgAA6tevr3S+x48fo3bt2jA1NcW6deswadIkCIKA+vXrY8WKFRgxYkTZvkAqFeqO6nKxsoBIJNK4/O7duzFmzBi8evUK1apVQ3BwMLp06VKaL0FnqluL0c4FnGeJiKgQBjvPkj5hnyX9oGnfG3XLu1W1wLzpgdi+fTsA4KOPPkJwcDCcnJzeOmZ9U5K+W0REhsog+iwRlaaiZtQuqpw65aMj/8LMz7/EXw/+VDS7zZo1C8bGxm8Vq74SiUTsxE1E9AYmS1RuWJio1wUvv1xx5c8fCsWWeTMhk0rh5OSEH3/8EZ07d37rOImIyLAwWaJyQ9NRXUWVz8zIwNb5X+P8oVAAQNeuXbFnzx5Uq1ZNe8ETEZHeMojRcETq0HRUV2Hlo/6OwHSvHjh/KBRGRkYI/L9vcOLECSZKREQVGJMlKlfyRnXZKa3ZBuTVKBW2GOzr5c8d3IfpAz7Bs8i/UMWxGkKO/oql380rt/2TiIhIPWyGo3KnurUYLlYWao/qshXlImTeNOzatQsA8OFHXbDvx2DWJhEREQAmS1ROqTuq6/79+xgwYAAePnwIIyMjzJ8/HzNmzICREStdiYgoD5MlqpAEQcD27dsxfvx4SKVSuLi4YO/evejUqZOuQyMiIj3DZIkqnPT0dIwZMwZ79uwBAHTv3h27d+8u8TqFRERUvrGtgSqU//3vf2jdujX27NkDY2NjLFy4EL/++isTJSIiKhJrlqhCEAQBW7duxYQJE5CZmYnq1asjJCQE77//vq5DIyIiPcdkicq9tLQ0jB49Gj/++CMA4JNPPsGuXbtgb2+v48iIiMgQsBmOyrXff/8drVu3xo8//ghjY2N8//33OHbsGBMlIiJSG2uWqFwSBAFbtmzBhAkTIJPJUKNGDYSEhKBjx466Do2IiAwMkyUqdyQSCUaNGoWQkBAAQM+ePbFz505UrVpVx5EREZEhYjMclSt3796Fm5sbQkJCYGxsjKVLl+LIkSNMlIiIqMRYs0TlgiAI2LhxIyZNmgSZTAZXV1eEhISgQ4cOug6NiIgMHJMlMngSiQQjRoxAaGgoAKBXr17YsWMHa5OIiKhUsBmODNrdu3fRqlUrhIaGwsTEBMuWLWOzGxERlSrWLJFBEgQB69evx+TJk5GVlYWaNWti3759aN++va5DIyKicobJEhVKEAQkS7OQmSOHhYkR7MVmEIlEug4LAJCamoovvvgCBw4cAAB89tlnCAoKQpUqVXQcGRERlUdMlqiAmDQp7iVKIM2RK7aJTYzQzNEG1a3FOowMCAsLg5eXF/755x+YmJhgyZIlmDhxot4kckREVP6wzxIpiUmT4kbsS6VECQCkOXLciH2JmDSpTuISBAFr165Fhw4d8M8//6BWrVq4fPkyJk2axESJiIi0iskSKQiCgHuJEpVl7iVKIAhCGUWU5+XLl+jfvz/Gjx+PrKws9OnTB3fv3kW7du3KNA4iIqqYmCyRQrI0q0CN0pukOXIkS7PKKCLg1q1baNWqFQ4ePAhTU1OsXr0aBw8eROXKlcssBiIiqtjYZ4kUMotJlDQt9zYEQcAPP/yAqVOnIjs7G7Vr10ZoaCjatGmj9WsTERG9jskSKViYqFfRqG65knrx4gWGDx+On3/+GQDQt29fbNu2DXZ2dlq9LhERUWHYDEcK9mIziItJhMT/TiOgLTdv3kSrVq3w888/w8zMDD/88AMOHDjARImIiHSGyRIpiEQiNHO0UVmmmaONVkafCYKAlStX4v3338eTJ09Qt25dXL16FePHj+doNyIi0ikmS6SkurUY7VzsCtQwiU2M0M7FTivzLKWkpKBPnz6YPHkysrOz0b9/f9y5cwdubm6lfi0iIiJNGUyy9Nlnn6FmzZqwsLCAs7MzfH19ERsbq/IYDw8PiEQipcfo0aOVykRFRaFnz56wtLSEo6Mjpk6dipycHG2+FL1X3VoMz7qO+MC1Cto42+ED1yrwrOuolUTp+vXraNmyJY4cOQIzMzOsXbsWoaGhsLW1LfVrERERlYTBdPDu3Lkzvv76azg7OyMmJgaBgYHo378/rl69qvK4ESNGYN68eYrnlpaWiv/n5uaiZ8+ecHJywtWrVxEXFwc/Pz+Ymppi4cKFWnsthkAkEsHB0lxr589vdps+fTpycnJQr149hIaGolWrVlq7JhERUUmIhLKeYbCUHDlyBH369IFMJoOpqWmhZTw8PNCiRQusWrWq0P3Hjx9Hr169EBsbi2rVqgEANm7ciOnTpyMpKQlmZoV3ZJbJZJDJZIrnEokErq6uSE1NhY2N6j4/lNfs5u/vj6NHjwIAvLy8sGXLFr53RERUpiQSCWxtbYu9fxtMM9zrUlJSEBwcjA4dOhSZKOULDg6Gvb093nvvPcycORMZGRmKfdeuXUPTpk0ViRIAdO/eHRKJBH/88UeR51y0aBFsbW0VD1dX17d/URXEtWvX0KJFCxw9ehTm5ubYsGEDQkJCmCgREZHeMqhkafr06ahUqRKqVq2KqKgoHD58WGX5wYMHY8+ePTh//jxmzpyJ3bt3w8fHR7E/Pj5eKVECoHgeHx9f5HlnzpyJ1NRUxSM6OvotXlXFIJfLsXTpUnTq1AnR0dGoX78+rl27htGjR3O0GxER6TWdJkszZswo0AH7zcfDhw8V5adOnYq7d+/i1KlTMDY2hp+fn8p1ykaOHInu3bujadOmGDJkCHbt2oVDhw7h0aNHbxW3ubk5bGxslB5UtOfPn+Ozzz7DtGnTkJOTg4EDByIsLAwtW7bUdWhERETF0mkH7ylTpsDf319lmbp16yr+b29vD3t7e7zzzjto3LgxXF1dcf36dbi7u6t1vfyFVyMjI1GvXj04OTnh5s2bSmUSEhIAAE5OThq8EirK1atXMXDgQDx79gzm5uZYvXo1Ro4cydokIiIyGDpNlhwcHODg4FCiY+XyvPXJXu9oXZzw8HAAgLOzMwDA3d0dCxYsQGJiIhwdHQEAp0+fho2NDZo0aVKiuChPfrPb//3f/yE3NxfvvPMOQkND0bx5c12HRkREpBGD6LN048YNrF27FuHh4Xj69CnOnTsHb29v1KtXT1GrFBMTg0aNGilqih49eoT58+cjLCwMT548wZEjR+Dn54dOnTqhWbNmAIBu3bqhSZMm8PX1xe+//46TJ09i1qxZGDt2LMzNtTdsvrxLTk5Gr169MGPGDOTm5sLb2xu3b99mokRERAbJIJIlS0tLHDx4EF26dEHDhg0REBCAZs2a4cKFC4qkJjs7GxEREYrRbmZmZjhz5gy6deuGRo0aYcqUKejXr59iuDoAGBsb49ixYzA2Noa7uzt8fHzg5+enNC8Taeby5cto0aIFjh8/DgsLC2zevBnBwcGwtrbWdWhEREQlYrDzLOkTdedpKM/kcjmWLFmCWbNmITc3Fw0bNkRoaKiiFo+IiEjfqHv/NpgZvEl/JSUlwc/PDydOnAAA+Pj4YMOGDbCystJxZERERG+PyRK9lYsXL8Lb2xuxsbGwsLDAunXrMGzYMI52IyKicsMg+iyR/pHL5ViwYAE6d+6M2NhYRef64cOHM1EiIqJyhTVLpLHExET4+vri1KlTAABfX1+sX7+ezW5ERFQuMVkijVy4cAHe3t6Ii4uDWCzGunXr4O/vz9okIiIqt9gMR2rJzc3F/Pnz8dFHHyEuLg6NGzfGrVu32D+JiIjKPdYsUbESEhLg4+ODM2fOAAD8/f2xdu1aVKpUSceRERERaR+TJVLp/PnzGDx4MOLj42FpaYn169dj6NChug6LiIiozLAZjgqVm5uLefPmoWvXroiPj8e7776LW7duMVEiIqIKhzVLVEB8fDyGDBmCc+fOAQCGDx+ONWvWwNLSUseRERERlT0mS6Tk7NmzGDJkCBISEmBpaYmNGzfC19dX12ERERHpDJMlfSXPBZIuAdI4QOwMOHwAGBlr7XL5zW7z58+HIAh47733EBoaisaNG2vtmkRERIaAyZI+ij4IhH0FZDz7b5tlDcBtNeDat9QvFxcXhyFDhuD8+fMAgC+++AKrV69msxsRERHYwVv/RB8ELvVXTpQAICMmb3v0wVK93JkzZ9CiRQucP38elSpVwp49e7BlyxYmSkRERP9isqRP5Ll5NUoQCtn577awiXnl3lJOTg6++eYbdOvWDYmJiWjatCnCwsIwZMiQtz43ERFRecJkSZ8kXSpYo6READKi88q9hdjYWHTt2hXfffcdBEHAyJEjcePGDTRs2PCtzktERFQesc+SPpHGlW65Qpw6dQo+Pj5ISkqClZUVNm/eDG9v7xKfj4iIqLxjzZI+ETuXbrnX5OTkYNasWfD09ERSUhKaN2+OsLAwJkpERETFYM2SPnH4IG/UW0YMCu+3JMrb7/CBRqeNiYmBt7c3Ll3Ka74bPXo0Vq5cCQsLi7ePmYiIqJxjzZI+MTLOmx4AACB6Y+e/z91WaTTf0okTJ9CiRQtcunQJ1tbWCAkJwYYNG5goERERqYnJkr5x7Qt8cACwrK683bJG3nY151nKycnBzJkz8cknnyA5ORktWrRAWFgYBg4cqIWgiYiIyi82w+kj175A9d4lnsH72bNn8Pb2xuXLlwEAX375JZYvX87aJCIiohJgsqSvjIyBah4aH3b8+HH4+vri+fPnsLa2xtatW+Hl5VX68REREVUQbIYrJ7KzszF9+nT06NEDz58/R6tWrXDnzh0mSkRERG+JNUvlQHR0NAYNGoSrV68CAMaNG4dly5bB3Nxcx5EREREZPiZLBu7YsWMYOnQoUlJSYGNjg23btqF///66DouIiKjcYDOcgcrOzsa0adPw6aefIiUlBW5ubrhz5w4TJSIiolLGmiU9JwgCkqVZyMyRw8LECPZiM0Wz27Vr1wAAEyZMwJIlS9jsRkREpAVMlvRYTJoU9xIlkObIFdvuXTiDVdO/QurLF7C1tcX27dvRt696cy8RERGR5pgs6amYNCluxL5UPM/OykLwikU4umMTAKB5KzccOrAfderU0VGEREREFYPB9Fn67LPPULNmTVhYWMDZ2Rm+vr6IjY0tsvyTJ08gEokKfezfv19RrrD9ISEhZfGSiiQIAu4lShTPE2Oe4RvfvopEqdfQEZi35xBq166towiJiIgqDoOpWercuTO+/vprODs7IyYmBoGBgejfv79iuPybXF1dERcXp7Rt8+bNWLp0KT755BOl7UFBQfD09FQ8t7OzK/X4NZEszVI0vf197y7mfzEYrySpqGRji7ELV6Bd10+Q8285B0v2UyIiItImg0mWJk2apPh/rVq1MGPGDPTp0wfZ2dkwNTUtUN7Y2BhOTk5K2w4dOgQvLy9YWVkpbbezsytQVpcyX+ujVL1ufdhUrgqX2nUxecVGONZwLbQcERERaYfBNMO9LiUlBcHBwejQoUOhiVJhwsLCEB4ejoCAgAL7xo4dC3t7e7Rt2xbbt2+HIAgqzyWTySCRSJQepcnC5L+PxdLKGrO3h2D+nkNKidKb5YiIiEg7DOpuO336dFSqVAlVq1ZFVFQUDh8+rPax27ZtQ+PGjdGhQwel7fPmzUNoaChOnz6Nfv364csvv8SaNWtUnmvRokWwtbVVPFxdXVWW15S92Azi1xIhx+o1YGpmplRG/O80AkRERKRdIqG4ahQtmjFjBhYvXqyyzIMHD9CoUSMAQHJyMlJSUvD06VPMnTsXtra2OHbsGEQikcpzSKVSODs745tvvsGUKVNUlp09ezaCgoIQHR1dZBmZTAaZTKZ4LpFI4OrqitTUVNjY2Kg8v7reHA33pnYudqhuLS6VaxEREVVEEokEtra2xd6/dZosJSUl4fnz5yrL1K1bF2ZmBWtQnj17BldXV1y9ehXu7u4qz7F7924EBAQgJiYGDg4OKsv+8ssv6NWrFzIzM9We5FHdN1tThc2zJDYxQjNHGyZKREREb0nd+7dOO3g7ODgUm7wURS7PSyBer+EpyrZt2/DZZ5+pda3w8HBUrlxZL2bDrm4thouVRYEZvIurSSMiIqLSYxCj4W7cuIFbt27h/fffR+XKlfHo0SN88803qFevnqJWKSYmBl26dMGuXbvQtm1bxbGRkZG4ePEifv311wLnPXr0KBISEtC+fXtYWFjg9OnTWLhwIQIDA8vstRVHJBJxegAiIiIdMohkydLSEgcPHsScOXPw6tUrODs7w9PTE7NmzVLUAGVnZyMiIgIZGRlKx27fvh01atRAt27dCpzX1NQU69atw6RJkyAIAurXr48VK1ZgxIgRZfK6iIiISP/ptM9SeaGtPktERESkPerevw1q6gAiIiKissZkiYiIiEgFJktEREREKjBZIiIiIlKByRIRERGRCkyWiIiIiFRgskRERESkgkFMSqnv8qeqkkgkOo6EiIiI1JV/3y5uykkmS6UgLS0NAODq6qrjSIiIiEhTaWlpsLW1LXI/Z/AuBXK5HLGxsbC2tuYit2qSSCRwdXVFdHQ0Zz03IPzcDBM/N8PEz037BEFAWloaXFxcYGRUdM8k1iyVAiMjI9SoUUPXYRgkGxsb/hIwQPzcDBM/N8PEz027VNUo5WMHbyIiIiIVmCwRERERqcBkiXTC3Nwcc+bMgbm5ua5DIQ3wczNM/NwMEz83/cEO3kREREQqsGaJiIiISAUmS0REREQqMFkiIiIiUoHJEhEREZEKTJaoTHz22WeoWbMmLCws4OzsDF9fX8TGxqo8xsPDAyKRSOkxevToMoqY8pXks8vMzMTYsWNRtWpVWFlZoV+/fkhISCijiOnJkycICAhAnTp1IBaLUa9ePcyZMwdZWVkqj+N3TrdK+rnx+6Z9TJaoTHTu3BmhoaGIiIjATz/9hEePHqF///7FHjdixAjExcUpHkuWLCmDaOl1JfnsJk2ahKNHj2L//v24cOECYmNj0bdv3zKKmB4+fAi5XI5Nmzbhjz/+wMqVK7Fx40Z8/fXXxR7L75zulPRz4/etDAhEOnD48GFBJBIJWVlZRZb58MMPha+++qrsgiK1FPfZvXz5UjA1NRX279+v2PbgwQMBgHDt2rWyCpPesGTJEqFOnToqy/A7p3+K+9z4fSsbrFmiMpeSkoLg4GB06NABpqamKssGBwfD3t4e7733HmbOnImMjIwyipIKo85nFxYWhuzsbHTt2lWxrVGjRqhZsyauXbtWVqHSG1JTU1GlSpViy/E7p1+K+9z4fSsbTJaozEyfPh2VKlVC1apVERUVhcOHD6ssP3jwYOzZswfnz5/HzJkzsXv3bvj4+JRRtPQ6TT67+Ph4mJmZwc7OTml7tWrVEB8fr+VIqTCRkZFYs2YNRo0apbIcv3P6RZ3Pjd+3MqLrqi0yXNOnTxcAqHw8ePBAUT4pKUmIiIgQTp06JXTs2FHo0aOHIJfL1b7e2bNnBQBCZGSkNl5OhaLNzy44OFgwMzMrsL1NmzbCtGnTtPaaKgJNPzdBEIRnz54J9erVEwICAjS+Hr9zpUObnxu/b2WDy51QiSUlJeH58+cqy9StWxdmZmYFtj979gyurq64evUq3N3d1breq1evYGVlhRMnTqB79+4lipnyaPOzO3fuHLp06YIXL14o/bVbq1YtTJw4EZMmTXrr+CsqTT+32NhYeHh4oH379tixYweMjDRrTOB3rnRo83Pj961smOg6ADJcDg4OcHBwKNGxcrkcACCTydQ+Jjw8HADg7OxcomvSf7T52bm5ucHU1BRnz55Fv379AAARERGIiopSOzGmwmnyucXExKBz585wc3NDUFCQxokSwO9cadHm58bvWxnRddUWlX/Xr18X1qxZI9y9e1d48uSJcPbsWaFDhw5CvXr1hMzMTEEQ8qqcGzZsKNy4cUMQBEGIjIwU5s2bJ9y+fVt4/PixcPjwYaFu3bpCp06ddPlSKpySfHaCIAijR48WatasKZw7d064ffu24O7uLri7u+vqZVQ4z549E+rXry906dJFePbsmRAXF6d4vF6G3zn9UpLPTRD4fSsLTJZI6+7duyd07txZqFKlimBubi7Url1bGD16tPDs2TNFmcePHwsAhPPnzwuCIAhRUVFCp06dFMfUr19fmDp1qpCamqqjV1ExleSzEwRBkEqlwpdffilUrlxZsLS0FD7//HOlX/ikXUFBQUX2jcnH75z+KcnnJgj8vpUF9lkiIiIiUoFTBxARERGpwGSJiIiISAUmS0REREQqMFkiIiIiUoHJEhEREZEKTJaIiIiIVGCyRERERKQCkyUiIiIiFZgsERGVMpFIhJ9//lnXYRBRKWGyREQG69q1azA2NkbPnj01PrZ27dpYtWpV6QelgiAI6Nq1K7p3715g3/r162FnZ4dnz56VaUxEVDwmS0RksLZt24bx48fj4sWLiI2N1XU4xRKJRAgKCsKNGzewadMmxfbHjx9j2rRpWLNmDWrUqKHDCImoMEyWiMggpaenY9++fRgzZgx69uyJHTt2FChz9OhRtGnTBhYWFrC3t8fnn38OAPDw8MDTp08xadIkiEQiiEQiAMC3336LFi1aKJ1j1apVqF27tuL5rVu38PHHH8Pe3h62trb48MMPcefOHbXjdnV1xerVqxEYGIjHjx9DEAQEBASgW7du8PX11fh9ICLtY7JERAYpNDQUjRo1QsOGDeHj44Pt27fj9XXBf/nlF3z++efo0aMH7t69i7Nnz6Jt27YAgIMHD6JGjRqYN28e4uLiEBcXp/Z109LSMHToUFy+fBnXr19HgwYN0KNHD6Slpal9jqFDh6JLly4YPnw41q5di/v37yvVNBGRfjHRdQBERCWxbds2+Pj4AAA8PT2RmpqKCxcuwMPDAwCwYMECDBo0CHPnzlUc07x5cwBAlSpVYGxsDGtrazg5OWl03Y8++kjp+ebNm2FnZ4cLFy6gV69eap9n8+bNePfdd3Hx4kX89NNPcHBw0CgOIio7rFkiIoMTERGBmzdvwtvbGwBgYmKCgQMHYtu2bYoy4eHh6NKlS6lfOyEhASNGjECDBg1ga2sLGxsbpKenIyoqSqPzODo6YtSoUWjcuDH69OlT6nESUelhzRIRGZxt27YhJycHLi4uim2CIMDc3Bxr166Fra0txGKxxuc1MjJSasoDgOzsbKXnQ4cOxfPnz7F69WrUqlUL5ubmcHd3R1ZWlsbXMzExgYkJfw0T6TvWLBGRQcnJycGuXbuwfPlyhIeHKx6///47XFxcsHfvXgBAs2bNcPbs2SLPY2ZmhtzcXKVtDg4OiI+PV0qYwsPDlcpcuXIFEyZMQI8ePfDuu+/C3NwcycnJpfcCiUjvMFkiIoNy7NgxvHjxAgEBAXjvvfeUHv369VM0xc2ZMwd79+7FnDlz8ODBA/zvf//D4sWLFeepXbs2Ll68iJiYGEWy4+HhgaSkJCxZsgSPHj3CunXrcPz4caXrN2jQALt378aDBw9w48YNDBkypES1WERkOJgsEZFB2bZtG7p27QpbW9sC+/r164fbt2/j3r178PDwwP79+3HkyBG0aNECH330EW7evKkoO2/ePDx58gT16tVTdK5u3Lgx1q9fj3Xr1qF58+a4efMmAgMDC1z/xYsXaNWqFXx9fTFhwgQ4Ojpq90UTkU6JhDcb6ImIiIhIgTVLRERERCowWSIiIiJSgckSERERkQpMloiIiIhUYLJEREREpAKTJSIiIiIVmCwRERERqcBkiYiIiEgFJktEREREKjBZIiIiIlKByRIRERGRCv8P3aArSzH91rgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model1.external_set()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "3792e6dc-0949-448d-975e-d98c508640f4", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAGeCAYAAADxK/mgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ/klEQVR4nO3dd1zTd/4H8Nc3G8hgb1CQ4UJEq9ZZtdVaO+yu3Xq99n5dd9fr3tdx197Zvcc5Oqy2tWpba+uqWqtWnCAqKCJ7EyBhJJDk+/sDpVJEGYFvEl7Px8NHGwjfvECTvPiO90cQRVEEERER0WlkUgcgIiIi18OCQERERO2wIBAREVE7LAhERETUDgsCERERtcOCQERERO2wIBAREVE7LAhERETUjqK7X+hwOFBcXAydTgdBEJyZiYgkZrfbkZ2djbi4OMjlcqnjEJETiaIIs9mM8PBwyGQd7yfodkEoLi5GVFRUd7+ciIiIJFRQUIDIyMgOP9/tgqDT6VofQK/Xd3czROSCCgsLMWzYMD6/iTyQyWRCVFRU6/t4R7pdEE4dVtDr9XwBIfIwp57T3X1+/5xZhqzSOiSGajF9cIiz4xGRE5zr9IBuFwQiojPZcbwSS3/LBwDsyTVCo5RjwqBAiVMRUVfxKgYicqpCY+NZbxORe2BBICKnSo7yhUzWsutSJhOQHOUrbSAi6hYeYiAip0oM1eHJ2UOQXV6HuGAtBgb6SB2JiLqh1wuC3SHiQEEN0gpqcKKyHvVWG+QyASF6DYaE6TE2xh9BOnVvxyCiPjQw0IfFgMjN9VpBqKqzYuGvJ/DNvkKUmaxnve/42ADMHRuFy0aEQy7j0CUiIiKpOb0gNNsd+OiXHLy7ORsNTXYAgE6jwLiYACSGamHwUqLJ5kBRjQX786uRWWrGzpwq7MypwpubjuHhmYmYNTyU0xmJiIgk5NSCcKTEhIdXpCGjyAQAGB6hx71T4zB9SDDUijOPay2sbsCKvYVYsiMXORX1uHvpPlw0JBgvXDkcYQYvZ8YjIiKiTnLqVQy5lfXIKDLB4KXEq9cl4/v7JuGSpLAOywEARPp54+8XJWDbI9Nw//Q4KOUCNh4px+w3t+GXoxXOjEdERESdJIiiKHbnC00mEwwGA2pra9tMWvvfthxcMTIcwTpNtwIdLTPjH18dQEaRCYIAPDQzEfdMHcRDDkR9qLCwEFFRUe2e30Tk/jp6//4jp89B+PPk2G6XAwBICNFhxf9NwI1joyGKwIJ1WXhqdQbsjm71GCIiIuoGlxyUpFHK8dLVSXhhzjAIArB0Vz7u+2IfrDa71NGIiIj6BZcsCKfcOn4g3r1pFFRyGX7MKMX9X+xHs90hdSwiIiKP59IFAQBmJ4Vh4bzzoFLIsP5wGf7xVRoPNxAREfUyly8IADA5Pggf3DIKSrmA79OK8fjKdHTz3EoiIiLqBLcoCAAwfXAI3pqbApkAfLWnEO/8nC11JCIiIo/lNgUBAC5JCsPzc4YDAF7dcBTfHiiSOBEREZFncquCAAC3nD8Ad02JBQA8/HU6Uk8YJU5ERETkedyuIADAY7MGY9awUDTZHbj7870ormmUOhIREZFHccuCIJMJeP2GkRgapkdVfRPu/nwvLM2ckUBEROQsblkQAMBLJceHt46GwUuJtMJaPPf9IakjEREReQy3LQgAEOXvjbduTIEgAMtSC7AsNV/qSERERB7BrQsCAFyQEISHZiYCAJ799hAOFddKnIiIiMj9uX1BAIC7LxiEi4YEo8nuwP1f7Ee91SZ1JCIiIrfmEQVBJhOw4NpkhOo1yKmsx7Pf8XwEIiKinvCIggAAfj4qvDF3JGQCsGJvIVbtL5Q6EhERkdvymIIAAOfHBuCvF8YDAJ5alYETlfUSJyIiInJPHlUQAOD+6fEYF+OP+iY77l+2D1Yb5yMQERF1lccVBLlMwBtzR8LPW4mMIhNeW39U6khERERux+MKAgCEGbzwn2tGAAA+2paD33KqJE5ERETkXjyyIADAzGGhuOG8KIgi8OBXaTBZmqWORERE5DY8tiAAwNOXD0W0vzeKahrx7Le89JGIiKizPLogaNUKvH5Dy6WPq/YX4fu0YqkjERERuQWPLggAMHqAH+6bFgcAeHLVQZTUcmloou7YnWvEyz9m4qNfjsPMQ3ZEHs/jCwIA3H9hPJIjDTBZbHjo6zQ4HKLUkYjcSkltIz7cmoNjZWbsyjHi0515Ukciol7WLwqCUi7DazeMhEYpw/bsKizafkLqSERupaquCaL4e7GuMFslTENEfaFfFAQAGBSkxVOXDgUA/HddFrJKzRInInIfccFahPlqWm9fkBAkYRoi6gsKqQP0pZvHRePnzHL8nFmOvy3fj2/vmwi1Qi51LCKXp1HK8eTsoThcUgtfbxUGBWmljkREvazf7EEAAEEQ8PI1SfD3USGz1IxX1mVJHYnIbXip5Bg9wJ/lgKif6FcFAQCCdZrWKYsfbzuB7dmVEiciIiJyPf2uIADAjKEhuHFsNICWKYs1DU0SJyIiInIt/bIgAMDTlw1BbKAPSk0WPLHqYJsztImIiPq7flsQvFUKvDF3JBQyAWsPlmLF3kKpIxEREbmMflsQAGBEpC8emJEAAPjnd4eQV1UvcSIiIiLX0K8LAgD83wWDMDbGH/VNdvz9ywOw2R1SRyIiIpJcvy8IcpmA165Phk6jwP78Grz9c7bUkYioD5ktzcguN6OhySZ1FCKX0u8LAgBE+nnjxSuHAwDe/vkY9uYZJU5ERH2hwNiAJ1Zl4KW1mXjm20Mw1vOKJqJTWBBOmjMyAleODIdDBP7+5QGuVkfUD2w5WoEGa8ueg+r6Juw4zrkoRKewIJzm+SuHI8LXCwXGRjz73SGp4xBRL9Op206b12uUEiUhcj0sCKfRa5R4Y+5IyARg5b4irNzHSx+JPNklSaEYG+OPQK0aUwcHY1JcoNSRiFxGv1qsqTPGDPTHXy+Mxxsbj+Gp1RkYEemLuGDOnifyRGqFHH+5YJDUMYhcEvcgnMH90+MxYVAAGprsuO+LfbA026WORERE1KdYEM5ALhPwxtyRCNS2rPr43Pc8H4GIiPoXFoQOBOs0eOOGFAgCsCy1AN8eKJI6EhERUZ9hQTiLSfGBuG9aHADgiZUHcaKSo5iJiKh/YEE4h79dGN86ivnepTwfgYiI+gcWhHNQyGV4+8YU+PuocLjEhKdWZ3BpaCIi8ngsCJ0Qotfg7RtTIBOAFXsL8fmufKkjERER9SoWhE6aGBeIR2cNBgA8//0hrtdAREQejQWhC+6aEotLk8LQbBdx9+f7UG6ySB2JiIioV7AgdIEgCPjvtSOQEKJFudmKe5buQ5PNIXUsIiIip2NB6CIftQIf3noedGoF9uRV418/HJY6EhERkdOxIHRDTKAP3pg7EgDwyc48LEvlSYtERORZWBC66cIhIfjHjAQAwNOrM7DzeJXEiYiIiJyHBaEH7p8eh8uTw2FziLh76V7kctIiERF5CBaEHhAEAQuuHYGRUb6oaWjGnz7ZjdrGZqljERER9RgLQg9plHJ8dNtohBs0yKmox31f7IPNzisbiIjIvbEgOEGwToOPbz8PXko5th2rxPNrDnMcMxERuTUWBCcZFm7AG3NHQhCAT3fmYeGvJ6SORERE1G0sCE508bBQPH5JyzjmF384gu/TiiVORERE1D0sCE525+RYzJswEADw4Fdp2JXDyx+JiMj9sCA4mSAIePqyobh4WAia7A7c+ekeHCszSx2LiIioS1gQeoFcJuDNuSkYFe0Lk8WGeYt3o4wLOxERkRthQeglGqUc/7t9DGICfVBU04j5i3ejzmqTOhYREVGnsCD0In8fFT6ZPxaBWhUOl5hw9+d7YbXZpY5FRER0TiwIvSw6wBsLbx8Db1XLjIR/fJUGu4MzEoiIyLWxIPSB5ChffHDLaCjlAn5IL8Ez32ZwkBIREbk0FoQ+MiUhCK/f0DJIaemufLy+4ajUkYiIiDrEgtCHLhsRjufnDAcAvPVzNhZv57RFIiJyTSwIfezW8wfgHzMSAADPfX8Yq/cXSZyIiIioPRYECdw/Pa512uJDX6dhc1a5tIGIiIj+gAVBAoIg4JnLhmLOyHDYHCLu/nwv9uYZpY5FRETUigVBIjKZgFeuS8bUxCBYmh2Yv3g3MktNUsciIiICwIIgKaVchvduHtU6kvm2hakoMDZIHYuIiIgFQWreKgUWzRuDxBAdys1W3LpwFyrrrFLHIiKifo4FwQX4eqvw6R1jEeHrhdyqBsxbnAqzpVnqWERE1I+xILiIEL0Gn90xFgE+KmQUmXDXp3thaea6DUREJA0WBBcSG6TFkvljoVUrsDOnCn9ffoDrNhARkSRYEFxMUqQBH906Giq5DD8dKsVTq7luAxER9T0WBBc0IS4Qb85tWbdhWWo+Xl3PdRuIiKhvsSC4qEuSwvCvK5MAAO9szsaiX7luAxER9R0WBBd207hoPDSzZd2G59dw3QYiIuo7CqkD0NndOy0OlXVNWLIjFw99nQaDtxLTEoOljkVE/dCa9GLsz6/BgABvzB0TDZWCv2N6Mv7turgzr9tQLXUsIupn9uYZsWpfEXIr67E1qwJr0ouljkS9jAXBDchkAhZcm4wLElrWbfjTkt04WmaWOhYR9SNVdU1tbhvrmzq4J3kKFgQ3oVLI8P4to5AS7YvaxmbctjAVhdVct4GI+saoAX7QaVqOSivkAibGBUqciHobC4Ib8VYpsHjeGMQHa1FqsmDe4t2obeBIZiLqfYFaNZ6bMxz3TY/DC3OGY0iYXupI1MtYENzMqXUbQvUaZJfX4c7P9sBq40hmIup9Bi8lUqL9EKzXSB2F+gALghsKM3hhyZ/GQKdWIPWEEQ9+lQYHRzITEZETsSC4qcGhenxw62go5QLWpJfgPz9lSh2JiIg8CAuCG5sYF4j/XDMCAPDhLzn4dGeutIGIiMhjsCC4uatHRbZOW3z2u0NYd6hU4kREROQJWBA8wL3T4nDj2CiIIvDXZfuxL5+DlIiIqGdYEDyAIAh4Yc5wTEsMgtXmwJ8/2YPcynqpYxERkRtjQfAQCrkM79w0CkkRBhjrm3D74lRU1VmljkVERG6KBcGD+KgVWDjvPET6eSGvqgF//nQPLM2ckUBERF3HguBhgnUaLJk/FgYvJfbn1+CBLw9wRgIREXUZC4IHigvW4qNbR0Mll+HHjFL8e+0RqSMRdajCbEV2eR1sdofUUYjoNCwIHmpcbAAWXNcyI+F/v57AJztypQ1EdAa7c414YtVBvLT2CBasy0IzSwKRy2BB8GBzRkbg4YsTAQDPfX8IGw6XSZyIqK0fD5a2HgLLLq/jMuZELoQFwcPdM3UQ5o6JguPkjIT0whqpIxG10nsp2tzWqZUSJSGiP2JB8HCCIOCFK4djSkIQGpvt+NOSPSgwNkgdiwgAcOv5AzA4TIdgvQY3jo1GdIC31JGI6CQWhH5AKZfh3ZtSMDhUh8o6K+Yv2Y3ahmapYxEhQKvGwxcPxktXJ+GioSFSxyGi07Ag9BM6jRKL549BqF6D7PI6/OXzPbDaOCOBiIjOjAWhHwkzeGHx/DHQqhX4LceIx745CFHkjARyviMlJnx7oAhHSkxSRyGibmJB6GeGhOnx3s2jIJcJWLW/CK9tOCp1JPIwGUW1eHV9Fr47UIxX12fhYGGt1JE6ZLM78NlveXju+0NYua+QhZnoNCwI/dCUhCD8+6rhAIC3f87GV7sLJE5EnuRwsQmn3mdFEThc4roF4adDpdiSWY78qgb8kF6CncerpI5E5DJYEPqpG8ZE475pcQCAJ1YdxLZjFRInIk8RG+TT5vagIK1ESc7NWN/U5nbVH25T9+3NM2JNejGKahqljkLdxILQjz04MwFXjgyHzSHi7s/38XgxOcV5A/1x15RYXJAYhDunxOK8gf5SR+rQxLhAqJUtL4NajQLjYlw3qzvZeLgM720+jlX7ivCvHw6j3GSROhJ1g+LcdyFPJQgC/nPtCJTUWrDrhBHzF+/G6nsnItSgkToaublxsQEYFxsgdYxzGhSkxfNzhqO4phEDAnxg8OKgJmc4WPT7YSVrswNHy+oQrOfrirvhHoR+Tq2Q46Nbz8OgIB+UmiyYv2Q36qw2qWMR9ZlArRojIn1ZDpwoJvD3w0wymYBofw7AckcsCASDtxJL5o9FoFaFIyUm3Lt0HxfNIaJuuyI5HNedF4VJ8YH424XxnJDpplgQCAAQ5e+NhbePgZdSjq1HK/DMtxm85IuIukUmEzBreCjmT4zB8AiD1HGom1gQqFVylC/eujEFggAsSy3Ae1uOSx2JiIgkwoJAbcwYGoJnLxsKAFiwLgvfHiiSOBEREUmBBYHamTcxBndMigEAPPx1OnblcHgMEVF/w4JAZ/Tk7CGYNSwUTXYH7vpsL7LL66SOREREfYgFgc5IJhPwxtyRSIn2RW1jM+YvSUWF2Sp1LKJO45U4RD3DgkAd0ijl+Pi28xDt740CYyP+/OkeNDZxiWhybaIo4n/bcvB/n+3FQ1+nocDYIHUkIrfEgkBnFahVY8n8MfD1ViKtoAZ/W74fdgcvfyTXlV5Y27roUnV9E77ZVyhxIiL3xIJA5xQbpMXHt50HlUKG9YfL8NTqg5yRQC7rj/8y2WeJuocFgTplzEB/vH79SMhOzkh47vvDLAnkkkZEGDB6oB8AQO+lxLWjIiVOROSeuFgTddqlI8LQ2JyMh75Ow5IdudAo5Xh0ViIEQZA6GlErmUzAPVPj0NBkg0Yhh0zGf59E3cE9CNQl146OxItXDgcAfLD1ON7alC1xIqIz81YpWA6IeoAFgbrslvMH4KlLhwAAXt94FB9u5UhmIiJPw4JA3fLnybF4+OJEAMBLP2bifa7bQETkUVgQqNvunRaHv10YDwD4z0+ZeG3DUZ64SETkIVgQqEcemJHQuifhrU3H8PKPmSwJREQegAWBeuzeaXF45uQKkB/+koNnvzsEBy8+JyInszTbkXrCiKxSs9RR+gVe5khO8adJMdAo5Xhy9UF8ujMPVfVNePW6ZGiUcqmjEZEHsNrseGntERRWNwIArhkdidlJYRKn8mzcg0BOc9O4aLx+/Ugo5QJ+SC/BbYtSUdvQLHUsIvIAeVUNreUAAH7NrpQwTf/AgkBOdWVKBJbMHwudWoHUE0Zc88EOFNU0nvsLiYjOwt9HBflpcy1CdBoJ0/QPLAjkdBPjAvHV/41HqF6D7PI6zHlnO/bkGqWORURuLFCrxr3T4jAkTI/zYwMwf9JAqSN5PBYE6hVDwvRYde8EDA7VobLOihs//g1Ld+VJHYuI3FhylC8eujgRd06JhV6jlDqOx2NBoF4TZvDCynsm4NKkMDTbRTy5KgOPr0yH1WaXOhoREZ0DCwL1Km+VAu/clIJHZw2GcHIlyKve3YHs8jqpoxER0VmwIFCvEwQBd08dhMXzxsDfR4XDJSZc9vY2LEvN51AlIiIXxYJAfWZqYjB+/NtkTIoLhKXZgcdXHsSdn+5Faa1F6mhERPQHLAjUp0L0Gnz6p7F4/JLBUMgEbDxShhmvbcXSXXmcvkhE5EJYEKjPyWQC/nLBIKz56yQkR/nCbLXhyVUZuOGjnThYWCt1PCIiAgsCSWhwqB4r756AZy4bCi+lHLtzq3HFu7/iH18dQEkthysREUmJBYEkJZcJ+NOkGGx88AJcOTIcogis3FeEaa9swYtrDqPMxPMTiIikwIJALiHC1wtvzE3B6nsnYsxAP1iaHfjfrycw+T+b8dTqg8irqpc6IhFRvyKI3bzOzGQywWAwoLa2Fnq93tm5qB8TRRG/HKvE25uOYU9edevHpyQE4ZZx0Zg+OBgKObttbyosLERUVBSf30QeqLPv31zumVyOIAi4ICEIU+IDseuEEe9vOY6tRyvwy8k/IXo1ZieF4bIR4RgV7QtBEM69USIi6hIWBHJZgiDg/NgAnB8bgLyqenyxKx9f7SlAmcmKxdtzsXh7LiJ8vTB9cDCmJARh/KAAaNX8J01E5Aw8xEBuxWqzY9vRSqxJL8aGw2Wob/p9XQeFTEBylC9GRftiZJQfRkb7Ityg4R6GbuAhBiLPxUMM5JHUCjkuGhqCi4aGwNJsx7ZjlfjlaAW2HatAblUD9uZVY29eNYATAIAAHxXiQ7SID9YhLliLuGAtov29EWrQQMnzGIiIOsSCQG5Lo5RjxtAQzBgaAgDIr2pAaq4RBwqqcaCgBkdKzKiqb0JVjhG/5RjbfK1MaJnqGO7rhQhfL4QZNAjUqhGoU7X8V6tGkE4NP28V5DLugSCi/ocFgTxGdIA3ogO8ce3oSABAY5Mdx8rNOFZWh2Pldcgur8PxijoUVTeiye5ASa0FJbWWk3sczkwmAP4+agRqVQjStZSGEL0GITo1Qg0aBOs1CNFrEKxTc48EEXkUFgTyWF4qOUZE+mJEpG+bjzscIirrrSiusaC4phFF1Y0oM1lQUWdFZZ0VleYmVNRZUd3QBIeIlo/VWZFZaj7r4wVqVQg1aDDA3wcDArwxMODkfwN9EKxT81wIInIrLAjU78hkAoJ1GgTrNBgZ5dvh/Wx2B4z1TSeLQxMqzFaUmy0oN1lRZrKg1NTy/+VmC5rtIirrmlBZ14SMIlO7bXkp5UgI1WFIqA6DQ3UYHKbHkFA9DN7KXvxOiYi6jwWBqAMKuQzB+pbDCGfjcIiobmhCqcmC4hoL8qrqkVfVgNyT/y2qaURjsx1pBTVIK6hp87URvl4YNcAPo6J9kRLth6FheqgUPFRBRNJjQSDqIZlMQIBWjQCtGsPCDe0+32x3IK+qAVmlZmSWmnCkxIwjJSYU1TS2/vk+rRgAoFbIMCLSgPNjAzAxLhAp0b5QK+R9/S0REXEOApFUahubkVFUi3151diXX439BTWoaWhucx8vpRxjY/wxMS4Ak+KCMCRM1yfnMnAOApHn4hwEIhdn8FJiYlwgJsYFAmhZgyKnsh57co3Ynl2FHccrUVnXhK1HK7D1aAWATIQbNC1zIIaEYFysP/cuEFGv4R4EIhcliiKyysz49VgltmdXYmdOFSzNjtbPa9UKXJAQhBlDQ3DhkGDoNM474ZF7EIg8V2ffv1kQiNyEpdmO7dmV2HikDBuPlKPCbG39nFohw7TEYFyeHI7pg4PhperZngUWBCLPxYJA5MEcDhEHi2qx4XAZ1h4sQU5lfevnvFVyXDQkBJcnh+OChKBuXRXBgkDkuVgQiPoJURRxuMSENekl+D6tGIXVja2f8/NWYs7ICFw7OhLDwvWdPsGRBYHIc7EgEPVDoigirbAW36cV4/u0YpSfdhhicKgO146OxJUpEQjUqs+6HRYEIs/FgkDUz9nsDmzLrsSKvYXYcKgMTfaWExwVMgFTE4Nx3XmRmD44+IxrSLAgEHkuXuZI1M8p5C0nLk5LDEZNQxO+Ty/Bir2FSCuoOXmiYxmCdGpcOzoSd02OhZ+PSurIRORCONOVqB/w9Vbh1vMH4Nt7J2LDA1Nw15RYBPioUGG2YtGvJyDjQlJE9Afcg0DUz8SH6PDE7CF4aGYiNh0pQ2F1IxeN6gSrzY6fMkphtthwQUIQovy9pY5E1KtYEIj6KZVChkuSwqSO0SvSC2uwPbsKwTo1Lk8O7/BST1EUse5QGU5U1mN4hB6T44M63OYnO3KxK8cIAEg9YcS/rhre4XCqoppG/HiwBCqFDHOSI/q8gJktzVh9oBiNTTbMGhaG6ADnlJmF23Lwy7FKxIdo8cQlgyGTnfnnarM7sCa9BCW1FoyL9ceoaD+nPH5XbD1agcPFJgwK8sGMoSEdXsHTZHPgu7RiVJitmBQXiKTI9uupdMeh4lpsO1YJfx8V5owM7/Opp6W1FqxJL4ZcJmDOyAj4d+MQIgsCEXmUwuoGvP1zNhyOlvOvrTYHbhoXfcb7bs4qx9d7CgAAe3KN0KoVSOngzex4+e+zJuqtNpSZLGcsCE02B15ZlwVTY8u6GgXGBjx56dAefU9d9cHW48gsMQMAMopMePmaJHirevZy/11aEd7fchwAcKioFnIBeHz2mb+v1QeK8ePBEgDA3jwjnrx0KGICfXr0+F2xN8+IT3fkAmj5e1UpZJiaGHzG+365pwBbMssBAPvzq/HPK4Yh3NerR49fZrLgrU3HYLO3/Bust9owf2JMj7bZFTa7A6+sz0J1fRMAILeyHs/NGd7l7fAcBCLyKMU1ltZyAAAF1Q0d3rfA2Nj2dnVjB/cEhkX8fra3r7eqwzeR2sbm1nJwpsfoC6c/Zr3Vhuo/LALWHYeKTG1uZ59WmNo//u8/c1EEis7yc+0NXfl7LTwtq90hoqS251lLai2t5QBAm9kkfaHeam8tB0DLHq3uXLDIgkBEHiUhRAud5vffls+2ezsl2hen9jwr5AJGRHS8e/mWcQNw6/gBmJMSgSdmD+7wN/IAHxUGnvbb8ugBfb97/byBvz9mpJ8XgnVnn3vRGTOHhUIuP/nDEoDpQ878GznQ9nv2ViswOEzX48fvihGRBshlLVkFAUiJ8u3wvqNOy6r3UiIuuOdZBwX5tDms1NeHWPReCsSFaFtvp0T7dWsVWM5BIKJ23H0OQmWdFWkFNQjWac55TDm7vA65lfVIDNU57cRDS7Mdv+VUQaWQ4fyYAMhkfXuViCiKSD1hREOTHeNi/Xt8eOGU/fnV2HSkHCMiDZg5LPSs9z1UXIuSGgtGRBoQrNc45fG7osDYgKxSM2KCfDAoSHvW+6YV1KCyzoqUaL9uHas/k+r6JuzLr0aAVo2RZykovcVqs+O3HCMUMgHjYvyhOG3eCQclEVG3uXtBIKKO9fqgJLvdDqDlhYQvIESepaCg5cS9/Px8+Pr6ShuGiJzKZGo5n+TU+3hHul0QsrOzAQDDhg3r7iaIyMUlJSVJHYGIekl2djbGjBnT4ee7fYihuroa/v7+KCgo4B4EIg9TWFiIYcOG8flN5IFMJhOioqJgNBrh59fxCZTd3oMgl7cMfdDr9a0vIBsPl2FTZhn8fVSYPzHmnCvGEZFrOvWcPv35TUSe5dT7eEecdpljgbEBy1LzUW6yIrPEjM925jlr00RERNTHnFYQTJa2gzjMFpuzNk1ERER9zGkFISFE1zqYQSYTMGv42a+RJSIiItfltLUYlHIZHp6ZiDxjAwxeSp5/QERE5MaculiTQi4758QqIqK+YneI2Jdfjd25RmQU1aLMZEV1QxNUchl81AoM8PdGfIgO4wcFICni9/G8RMTVHInIA5WbLFi0PRer9xeh1GTp8H5786pb/9/PW4k5IyNw7ehIDD/LmgxE/QULAhF5DLOlGW9uPIbPfsuD1eYAAOg1CkyKD8TIKF9E+XnD11sFu0NEbWMzTlTWIb2wFjtzqlDd0IwlO3KxZEcuJsYF4L5p8Tg/1r9bi9wQeQIWBCLyCD9nluHJVRkoqW3ZYzB6gB/unByDaYODoVac/Xpvm92BX7Mr8fXeQqzLKMX27Cpsz67C5PhAPHv5UKes8EfkblgQiMit2ewOvLL+KD7YehwAMCDAG89dMQwXJAR1+rd/hVyGqYnBmJoYjMLqBny4NQdf7i7AtmOVmPXGNsyfOBAPzEhw2qqIRO7AaZc5EhH1tXqrDfOX7G4tB/MnDsRPf5uCqYnB3T40EOnnjReuHI4N/5iCi4YEw+YQ8fG2E7j0rV+xL7/63Bsg8hAsCETklmoamnDLwl3YdqwSXko53rkpBc9ePgxeqrMfTuisAQE++N/tY7B43hiE6jU4UVmPa9/fgVfWZcFmdzjlMYhcGQsCEbmd2oZm3PjxLuzPr4HBS4kv7hyHy0aE98pjTRscjHV/n4KrUiLgEIF3Nmfj5v/tQrm546sjiDwBCwIRuZXGJjvu+GQ3jpSYEKhV46u/jEdKdMcr0jmDwVuJ128YibdvTIGPSo5dJ4y49K1fsSunqlcfl0hKLAhE5DbsDhH3L9uHPXnV0GkU+OyOsUgM7bsrDC5PDsd3909CQogWFWYrbvrfLvxvWw5EUeyzDER9hQWBiNzGgnVZ2HikHGqFDAtvH4MhYX2/FPWgIC1W3zsRV6VEwO4Q8eIPR/DYNwfRZON5CeRZWBCIyC2sPVjSerXCguuSMTbGX7Is3ioFXrs+GU9fNhQyAfhyTwFuWbgLxvomyTIRORsLAhG5vOMVdXjo6zQAwJ2TY3BFcu+ckNgVgiDgjkkxWDhvDLRqBVJPGDHn3V9xtMwsdTQip2BBICKX1mRz4O/LD6ChyY7xsQF4dNZgqSO1MS0xGKvumYBof28UGBtx9Xs78HNmmdSxiHqMBYGIXNpbm47hYFEtDF4tVxIo5K73shUfosPqeydiXIw/6qw23PHJHnz0y3GevEhuzfWeaUREJ+3JNeK9LdkAgJeuTkKoQSNxoo75+6jw2R3jcOPYKIgi8O+1mXjw6zRYmu1SRyPqFhYEInJJlmY7HlmRDocIXD0qArOTwqSOdE4qhQz/vioJ/7x8KOQyASv3FeHGj3/jUCVySywIROSS3t9yHDmV9QjSqfHs5cOkjtNpgiBg3sQYLJk/BnqNAvvzazDnne3IKKqVOhpRl7AgEJHLyS6vw/tbWi5p/Oflw2DwUkqcqOsmxwdh9b0TERvkg5JaC677YCfWHiyROhZRpzm1IGw8XIbHV6ZjwbpMVNZZnblpIuonRFHEU6sPosnuwLTEIMxOCpU6UrfFBmmx6p6JuCAhCI3NdtyzdB8WrMvkYk/kFpxWEAqMDViWmo9ykxWZJWZ8tjPPWZsmon5k7cFS/JZjhEYpw/Nzhnd72WZXYfBSYtG8MfjzpBgAwLubj+Om/+1CaS3PSyDX5rSCYLI0t7ltttictWki6icszXa8/NMRAMBfpgxClL+3xImcQy4T8NRlQ/HWjSmtQ5Vmv7UNm7PKpY5G1CGnFYSEEB3iQrQtG5UJmDXcfXcLEpE0luzIRYGxESF6Nf5yQazUcZzuiuRwrLl/EoZH6GGsb8L8xbvx7LcZqLfyFypyPQpnbUgpl+HhmYnIMzbA4KVEoFbtrE0TUT9QWWfFOz+3zDx4+OLB8FY57eXJpQwM9ME3d0/Av384gk925uGTnXnYlFmOl68egUnxgVLHI2rl1JMUFXIZBgVpWQ6IqMve3HgMdVYbkiIMuDolQuo4vUqtkOO5OcPx2R1jEeHrhcLqRtyycBf+vnw/imsapY5HBICXORKRCyisbsDy3fkAgCdmD4FM5t4nJnbW5PggrH9gCm4bPwCCAKw+UIzpr27Ba+uz2p3XRdTXPHMfHhG5lbc3ZaPZLmJiXADGDwqQOk6f8lEr8Pyc4bhudBReWHMYqblGvPVzNhZvz8VtEwZg/sQYSffKNjTZUG6yoqLOijqrDTa7CJvdAbVSBp1GCV8vJaL8vaFRyiXLSL2DBYGIJJVbWY8V+woBAP+YkShxGukkRRrw5V/Ox08ZpXhtw1EcK6/Du5uP46NfcnDRkBBcf14UJsUHQtkLi1U12RzIrarH8fI6ZJfXIbui5b95VQ2o6+QJlBG+XkgM1WHMQH+cH+uP5EjffrMnyFOxIBCRpN7cdAx2h4hpiUEYPcBP6jiSEgQBlySF4eJhodhwpAwfbD2O/fk1+DGjFD9mlEKnVmByQiCmxAdhRKQv4kO0XSoMjU125FS2vPkfK6vDsXIzjp0sAnZHxytPeinlCNaroVUroJTLoJQLsDQ7YLY0o6q+CWaLDUU1jSiqacTPmS2Xbobo1ZidFIbrRkdhaLi+xz8b6nuC2M31SE0mEwwGA2pra6HX8y+fyJMUFhYiKiqq15/f2eVmzHj9F4gi8P19k5AUaei1x3JXR0pM+GpPAb47UIyq+qY2n1MpZIj290aYQYMQvQbeKjnUChkEQUBDkw0NTXbUNjSjuNaCktpG1DR0fF6DVq3AoGAt4oK0iAvWYlCQD2KDtAg1aKBVd/y7pCiKqG5oRk5FHQ4U1GB3rhE7sqtgPm3Pw4RBAbhzSiymJgS5/eArT9DZ928WBCJqp68KwgNfHsCq/UWYOTQEH912Xq89jiewO0SkF9Zgc2Y5dudWI6Oots2bcGf5eSsRH9wytyY+WNvy/8FahOjVTnvzttrs+OVoJVbtL8S6Q2WteyfGxfjjidlDkBzl65THoe7p7Ps3DzEQkSQKjA34Lq0YAHD/9HiJ07g+uUxASrQfUqJbDsM4HCLyjQ0oqG5ASY0FFXVWWJvtsNoccIgivFUK+Kjl0GmUCDVoEG7wQqhBA71G0eu/xasVcswYGoIZQ0NQVNOIxb+ewGe/5WHXCSPmvLsdN46NwuOzh0Cvcb9FuPoTFgQiksTH23Jgd4iYHB/IQwvdIJMJGBjog4GBPlJHOasIXy88ddlQ/GlSDF5dfxTf7CvEstQCbMmqwH+uGYEpCUFSR6QOcA4CEfW5yjorvtxdAAC4e+ogidNQXwj39cKr1yfjy7vOx4AAb5TUWnDbolS8uj7rrCdIknRYEIiozy3efgJWmwPJUb4YH9u/5h70d+NiA/DT36bglvOjAQBv/5yN2xbtQk1D0zm+kvqaUwvCxsNleHxlOhasy0RlndWZmyYiD2G2NOPTk8vB3zN1EM9q74e8VHK8eGUS3pw7Et4qObZnV+Ga93egwNggdTQ6jdMKQoGxActS81FusiKzxIzPTr4AEBGdbllqPswWG+KCtZgxJETqOCShOSMjsPKeCQgzaHC8oh5Xv78DGUW1Useik5xWEP44N9xs4fKlRNSWze7Aku25AIC7Jsdy0h5hcKgeK++ZgMGhOlSYrbjx49+QVlAjdSyCEwtCQkjLdbVAy9m1s4aHOmvTROQh1h8uQ3GtBQE+KlwxMlzqOOQiwgxe+Or/xmPMQD+YLTbcsnAXS4ILcFpBUMpleHhmIp64dAheujoJY2P8nbVpIvIQi7efAADcNC6ai/tQG3qNEovnj21TEni4QVpOPUlRIZdhUJBW0pXHiMg1ZRTVYnduNRQyAbecP0DqOOSCtGoFlswfi7ED/WG22DBvcSryquqljtVv8TJHIuoTi07uPbh0RBhC9BqJ05Cr8lErsHDeeRgapkdlXRNuX5TKq+IkwoJARL2u3GzB9yfHKs+fGCNxGnJ1Oo0SS+aPQaSfF3KrGnDHkt1oaOKJ732NcxCIqNct/S0fzXYRKdG+GMmFeqgTgvUafPqnsfDzViKtsBYPr0hHN9cWpG7iHAQi6lXNdge+SM0HwL0H1DWxQVp8dNt5UMoF/JBegve2HJc6Ur/COQhE1Ks2HC5DhdmKIJ0al/DyZ+qiMQP98dwVwwEAr6zPwqYjZRIn6j84B4GIetUXu1r2Hlx/XiSUcp72RF1307ho3HJ+NEQR+PvyA8it5JUNfcFpyz2fmoOQZ2yAwUvJSx2JCLmV9fg1uxKCAMwdEy11HHJjz1w2DFmlZuzOrcZ9y/bhm7snQK3gLI3exDkIRNRrlp089+CChCBE+XtLnIbcmUohw1s3psDPW4mMIhNeWpspdSSPx/19RNQrrDY7vt5bCAC4eRwHI1HPhRm88Nr1IwEAS3bk4qeMEmkDeTgWBCLqFT9llMJY34QwgwbTEoOkjkMeYtrgYPxlSiwA4OEV6SiqaZQ4kediQfiDIyUmPPttBp79NgNHSkxSxyFyW0tPnpx4w5goKHhyIjnRQxcnYmSUL8wWGx5ZkQaHg/MRegOftadxOES8uzkbhdWNKKxuxLubszmYg6gbjpWZkXrCCLlM4MmJ5HRKuQyv3zASXko5tmdX4dOduVJH8kgsCKdpdjjQ2GRvvd3YZEeznQWBqKuWpRYAAKYPDkaogesukPPFBPrgidmDAQAv/ZiJ7PI6iRN5HhaE06gVclw0NKT19oyhIVAp+CMi6oommwOr9recnHjj2CiJ05Anu+X8AZgcHwirzYEHvzoAm90hdSSP4rQ5CJ7ixrHRmDgoEAAQHcDLsoi6atORMlQ3NCNYp8aUeJ6cSL1HEAQsuDYZM1/firTCWry35Tj+emG81LE8Bn89PoPoAG+WA6JuOnVp4zWjI3lyIvW6UIMGL1zZMor57Z+P4ViZWeJEnoPPXiJymnKTBVuyygEA142OlDgN9RdXJIfjwsHBaLaLePSbdF7V4CQsCETkNCv3F8EhAqMH+CE2SCt1HOonBEHAC1cOh49Kjn35Nfh8F1cTdgYWBCJyClEU8dWelqsXuPeA+lq4rxcevaTlqob//JiJYg5Q6jEWBCJyin35NcipqIeXUo5LR4RJHYf6oVvGDcCoaF/UN9nx9OoMzrHpIRYEInKKFXtb9h5ckhQKnUYpcRrqj2QyAf+5ZgSUcgGbMsuxJp1rNfQECwIR9Vhjkx3fp7W8GF83mrMPSDrxITrcMzUOAPDiD4dRZ7VJnMh9sSAQUY/9mFGCOqsNUf5eGBfjL3Uc6ufunjoIAwK8UWay4s2NR6WO47ZYEIiox77e0zL74LrRUZDJBInTUH+nUcrxzyuGAQAWbc9FVilnI3QHCwIR9UhhdQN25lRBEFqGIxG5gmmJwbh4WAjsDhFPf8sTFruDBYGIeuTbA8UAgPGxAYjw9ZI4DdHvnr5sKDRKGVJPGLH6QJHUcdyOUwvCxsNleHxlOhasy0RlndWZm/ZYdVYb3t50DI+vTMfKfYVSxyHqElEUW//dXpUSIXEaorYi/bxx//SWtRn+9UMmTJZmiRO5F6cVhAJjA5al5qPcZEVmiRmf7eQkq85Yua8QBwpqUG6y4of0EhwoqJE6ElGnZRSZcLyiHmqFDLOGh0odh6idP0+OQWygDyrrrHhtPU9Y7AqnFYQ/NjOzhZeWdIap8Y8/NzZcch+r9rfstp0xNISzD8glqRVyPDen5YTFz37L4wmLXeC0gpAQokNcSMvsdZlM4G8TnTRjaChUipa/hlCDBinRfhInIuocm92B79Jazj/g4QVyZZPjgzBrWCjsDhEvrDnMExY7SeGsDSnlMjw8MxF5xgYYvJQI1KqdtWmPlhiqw0tXJ6GyzopIP29olHKpIxF1yq/Zlaiss8LfR4UpCUFSxyE6qydmD8HPmeX4NbsSG4+UY8bQEKkjuTynnqSokMswKEjLctBFvt4qxAXrWA7Iraw+eXjh8hFhUMp5QRS5tugAb9wxOQYA8K8fDsNqs0ucyPXxWU1EXVZvtWHdoTIAwJU8vEBu4t5pcQjSqZFb1YBPduRKHcflsSAQUZetP1yKxmY7YgJ9MDLKV+o4RJ2iVSvw8MWJAIC3N2WjwszL8c/GqQXhlXVZuPDVLbjm/e04WsYzRd2JydKM1zccxeMr01tPPCPqyMp9LYcXrhwZAUHgaGVyH9eOikRShAFmqw2vrs+SOo5Lc1pB2JVTheWp+ahtaEZeZQOeXp3hrE1TH/hqdwEyimpRbrLi2/1FOFRcK3UkclHlJgu2Z1cCAK5MCZc4DVHXyGQCnr18KADgyz0tr3t0Zk4rCGVmS5vbdZyD4FZMf/j74hwL6sh3acVwiMCoaF8MCPCROg5Rl5030B+XJ4dDFIHnedljh5xWEC4aEoII/5Y57IJMwPVjuCa8O5k5NKT1TPRIPy8kR/pKG4hc1qnhSJx9QO7ssUsGt67T8GNGqdRxXJLT5iB4qxT48s7z8dsJI8J9vZAQonPWpqkPDI8w4N9XJ8FYb0W0v0/r8Cai0x0tM+NQsQkKmYDLRvDwArmvCF8v3DU5Fm/9nI2Xf8zERUNC+Lr3B079aWhUCkxNDGY5cFP+Pi3zGPgkoY6cmn0wNTEYfj4qidMQ9cxfLhiEIJ0a+cYGfPYb1w/6I74TEFGnOBxi69LOPLxAnsBHrcCDMxIAAG9tOoaahiaJE7kWFgQi6pTUXCOKahqhUytw4ZBgqeMQOcV150UhMUSH2sZmvPNzttRxXAoLAhF1isMhYmSUL2YnhXEsOHkMuUzA47MHAwA+2ZmL/KoGiRO5DhYEIuqUCXGBWH3vRLx41XCpoxA51dTEYEyOD0SzXcR/fsqUOo7LYEEgoi7hwkzkiZ6YPQSCAPxwsAR786qljuMS+EwnIqJ+b0iYHteNjgTQstojhyexIBAREQEAHpyZCC+lHPvyazg8CSwIREREAIAQvQZ3TYkFALz8YyasNrvEiaTFgkBERHTSXVNifx+etLN/D09iQSAiIjrJR63AQzNbhie9/XN2vx6e5NSCsPFwGR5fmY4F6zJRWWd15qaJiIj6xLWjfx+e9HY/Hp7ktIJQYGzAstR8lJusyCwx9/tdM0RE5J7kMgFPXDoEAPDpzlzkVdVLnEgaTisIJktzm9tmi81ZmyYiIupTFyQEYUpCEJrtIv77U5bUcSThtIKQEKJDXIi2ZaMyAbOGhzpr00RERH3uidmDIWsdnmSUOk6fUzhrQ0q5DA/PTESesQEGLyUCtWpnbZqIiKjPDQ7V47rRUfhyTwFe/OEIVt49AYIgSB2rzzj1JEWFXIZBQVqWAyIi8ggPzkyAt0qO/fk1WJNeInWcPsXLHImIiDoQrNfg/y4YBAD4z0+ZsDT3n+FJLAhERERncefkWITqNSisbsSSHblSx+kzLAhERERn4aWS46GLEwEA7/6cjap+MueHBYGIiOgcrk6JwLBwPcxWG97cdEzqOH2CBYGIiOgcZDIBT54cnrR0Vz6yy+skTtT7WBCIiIg6YcKgQFw0JAR2h4iX1h6ROk6vY0EgIiLqpMdnD4ZCJmBTZjl2ZFdKHadXsSAQERF10qAgLW4eFw0AePGHI7A7RIkT9R4WBCIioi7420UJ0GkUOFxiwsp9hVLH6TUsCERERF3g76PCfdPiAAAL1mWhockzFydkQSAiIuqi2ycMRJS/F8rNVnz0S47UcXoFCwIREVEXaZRyPDprMADgw605KDNZJE7kfCwIRERE3XBpUhhGRfuisdmOV9dnSR3H6VgQiIiIukEQBDx56VAAwNd7C3GouFbiRM7FgkBERNRNowf44bIRYRBF4N9rj0AUPeeyRxYEIiKiHnh01mCo5DJsz67C5qxyqeM4DQsCERFRD0T5e2P+xIEAgH/9cATNdoe0gZyEBYGIiKiH7pkWB38fFY5X1OOznXlSx3EKpxaEjYfL8PjKdCxYl4nKfrJeNhERkcFLiQdnJgAAXt94FFUe8B7otIJQYGzAstR8lJusyCwxe0yDIiIi6oy5Y6IxNEwPs8WGV9YflTpOjzmtIJgszW1umy2eOXqSiIjoTOQyAf+8YhgAYPnufGQUufdlj04rCAkhOsSFaFs2KhMwa3ioszZNRETkFsbG+Lde9vjc94fc+rJHhbM2pJTL8PDMROQZG2DwUiJQq3bWpomIiNzGE7OHYOORMuzOrcaa9BJcnhwudaRucepJigq5DIOCtCwHRETUb4X7euHuC1pWe3xp7RE0NtklTtQ9vMyRiIjIyf5yQSwifL1QXGvB+1uPSx2nW1gQiIiInEyjlOPJS4cAAD7cehyF1Q0SJ+o6pxeErFIznv02A89+m4EjJSZnb56IiMgtXDI8FOfH+sNqc+Dfa49IHafLnFoQRFHEu5uzUVjdiMLqRryzORt2h/uewUlERNRdgiDg2cuHQSYAaw+WYsfxSqkjdYlTC4LNIaKh6ff5B5Ymu8fMpCYiIuqqIWF63DxuAADgn98dcqv3RKcWBKVchplDf59/cOGQEGiUcmc+BBERkVt5cGYC/H1UOFpWh8XbT0gdp9OcNgfhlOvHRGH8oACIIhAd4O3szRMREbkVX28VHrtkMB5ZkY43Nh7D5cnhCDN4SR3rnHrlKoYof2+WAyIiopOuHRWJ0QP80NBkxwtrDksdp1N4mSMREVEvk8kEvHjlcMhlAtYeLMXWoxVSRzonFgQiIqI+MCRMj9vHDwQAPPttBizNrj1h0annIGw8XIZNmWXw91Fh/sQYjlzuoiabA5/uzEV2eR2Ghrec+SqXCVLH8ngr9hZiT64REb5e+NOkGPionX5qDhERAOCBGfFYk16M3KoGfLg1B3+7KF7qSB1y2h6EAmMDlqXmo9xkRWaJGZ/tzHPWpvuN9YdLsfN4FSrMVmzNqsAvbrALyt3tz6/GjwdLUGG24kBBDVbuL5I6EhF5MJ1GiacuGwoAeHdLNvKq6iVO1DGnFQSTpbnNbbPF1sE9qSOmxrY/s9rG5g7uSc7yx5+x2cKfORH1rstHhGFiXACabA788zvXXRLaaQUhIUSHuBBty0ZlAmYNDz3HV9AfTU0Mat29bfBWYlJ8oMSJPN95A/0RYtAAANRKGS4aEiJxIiLydIIg4Pk5w6GUC9icVYF1h8qkjnRGgtjN6mIymWAwGFBbWwu9Xg8AsNkdyDM2wOCl5PkH3VRntaG0thHhvl7wVvFYeF+wNNtRWN2AQK0avt4qqeO4hMLCQkRFRbV5fhORcy1Yl4l3Nx9HqF6DDf+YAp1G2SePe6b37zNx6lUMCrkMg4K0LAc9oFUrEBesYznoQxqlHHHBOpYDIupT90+Px8AAb5SaLPjvT1lSx2mHlzkSERFJQKOU499XJQEAPt+Vh715RokTtcWCQEREJJEJcYG4bnQkRBF47JuDsNpcZzaCUwvCxsNleHxlOhasy0RlndWZm3Z5Zksz3tx4DI+vTMdqXipHRESd9OSlQxCoVeFYeR0+2JIjdZxWnIPgJCv2FiK9sAblJiu+TytGRlGt1JGIiMgN+Hqr8MzlwwAA727ORna5WeJELTgHwUn+OMPgjz8PIiKijlw+IgzTEoPQZHfg8ZUH4XBIPxuBcxCcZMbQECjlLT/OcF8vjIzylTYQERG5DUEQ8OJVSfBWybE7txrLdudLHYlzEJypur4JVfVWRPl7Q62QSx2HqNs4B4FIGot+PYHn1xyGTq3Ahn9cgNCTg9yciXMQJODno0JcsI7lgIiIuuX2CQORHOULs9WGx1emSzqGmZc5EhERuQi5TMAr146ASi7D5qwKrNhbKFkWFgQiIiIXEh+iwwMzEgAAz685jNJaiyQ5WBCIiIhczJ2TY1oONVhseEyiQw0sCERERC5GIZfh1etGQKWQYUtWBb6W4FADCwIREZELigvW4cGThxpe+P4wimsa+/TxWRCIiIhc1J8nxyIluuWqhsdWHuzTQw0sCERERC5KLhOw4NpkqBQy/HK0Al/uLuizx2ZBICIicmFxwVo8NPPkoYY1h5FXVd8nj8uCQERE5OLumBSLsTH+qG+y44EvD8Bmd/T6Y7IgEBERuTi5TMBr1ydDp1ZgX34N3ttyvNcfkwXBDVltdny49Tge+yYdn/+WJ+koTiIi6huRft544crhAIA3Nx3D/vzqXn08FgQ39OPBUqSeMKLCbMXmzHL8ml0pdSQiIuoDV6ZE4IrkcNgdIh748gDqrbZeeywWBDdksjS3vd3Ye/9AiIjItbwwZzjCDRrkVjXgxR8O99rjsCC4oWmJwfBWKwC0rCA5flCAxImIiKivGLyVeOX6ZAgCsCy1AOsPlfbK4yh6ZavUq6L8vfGvq4aj3GRBuK8XvFX8ayQi6k8mDArEXZNj8eEvOXhs5UEkR/kiRK9x6mNwD4Kb0muUiAvWsRwQEfVT/5iZgKFhehjrm/C35fthdzj3hHUWBCIiIjekVsjxzk0p8FbJ8VuOEW//fMyp22dBICIiclOxQVr866rfL33ccdx5V7WxILgYS7Md723JxmPfpGN5aj5nHFCvOVhYi6dXZ+Cf3x1Cdnmd1HGIqJuuSonEdaMjIYrA35cfQGWd1SnbZUFwMd8dKMbe3GpUmK3YcLgMu04YpY5EHqjJ5sD7W7NRXNOIAmMD3tucLXUkIuqB5+YMQ1ywFuVmKx78Kg0OJ5yPwILgYtrPOGju4J5E3We12WFt/n2Wu9lq494qIjfmrVLg3ZtGQa2QYevRCny0LafH22RBcDHTBwdDo5IDAAK1aoyL4YwDcj6dRokpCUGtty8ZHgpBECRMREQ9lRiqw3NXDAMALFiXhT25PdsDLYjd/LXBZDLBYDCgtrYWer2+RyGordrGZlSYLYj084ZGKZc6DnmwvKp6yAQBUf7ebT5eWFiIqKgoPr+J3Iwoivjb8gP4Lq0YIXo1fvjrZARq1W3u09n3b+5BcEEGr5YZBywH1NsGBPi0KwdE5L4EQcBLVydhUJAPykzWHs1HYEEgIiLyID5qBT64ZTS8VXKkF9R2+yoljuEjIiLyMPEhOrxzUwpiA7UYGOjTrW2wIBD1UJPNgU925OJ4RR2Ghutx87gBkMt4wh8RSWv64JAefT0PMRD10LpDpfgtpwoVZiu2ZlXgl6MVUkciIuoxFgSiHmo3u8LC2RVE5P5YEIh6aGpiMHzULUfrDN5KTIwLlDgREVHP8RwEoh6K8PXCv64ajjKTBeG+XlyCm4g8Al/JiJxAp1FCp1FKHYOIyGm6XRBODWA0mUxOC0NEruHU85rPbyLPc+p5fa5Byt0uCGazGQAQFRXV3U0QkYvj85vIc5nNZhgMhg4/3+21GBwOB4qLi6HT6bjIC5GHsdvtyM7ORlxcHORyjvwm8iSiKMJsNiM8PBwyWcfXKnS7IBAREZHn4mWORERE1A4LAhEREbXDgkBERETtsCAQERFROywIRERE1A4LAhEREbXDgkBERETtsCAQERFROywIbmjevHkQBAGCIECpVCImJgaPPPIILBZL631OfV4QBPj4+CA+Ph7z5s3D3r1722xry5Ytbe576s9TTz3Vep/09HRMnjwZGo0GUVFR+O9//9tmG1OnTj3jNi699NLW+4iiiGeeeQZhYWHw8vLCRRddhGPHjvXST4iof7Hb7ZgwYQKuvvrqNh+vra1FVFQUnnzySQA44/N0+fLl7bbX2NgIf39/BAYGwmq19sn3QC5IJLdz++23i7NmzRJLSkrE/Px8cdWqVaJerxcfeeSR1vsAEBcvXiyWlJSIJ06cENetWydec801olwuFz/55JPW+23evFkEIGZlZYklJSWtf8xmsyiKolhbWyuGhISIN998s5iRkSEuW7ZM9PLyEj/88MPWbVRVVbX52oyMDFEul4uLFy9uvc/LL78sGgwGcfXq1WJaWpp4xRVXiDExMWJjY2Pv/8CI+oGsrCzRy8tL/Pzzz1s/duutt4ojRowQrVarKIptXxdO/TnTc/Czzz4TJ02aJE6cOFFcvnx5n30P5FpYENzQ7bffLs6ZM6fNx66++moxJSWl9TYAcdWqVe2+9rbbbhN1Op1oNBpFUfy9IFRXV5/xsd577z3Rz8+v9QVGFEXx0UcfFRMTEzvM9/rrr4s6nU6sq6sTRVEUHQ6HGBoaKi5YsKD1PjU1NaJarRaXLVsmiqIojh8/vk3BEUVRLC8vFxUKhbh169YOH4uIfvfmm2+Kfn5+YnFxsbh69WpRqVSKBw4caP18R68LfzR16lTxgw8+EN9//31xxowZrR//8MMPxbCwMNFut7e5/xVXXCHOnz/fad8HuQYeYvAAGRkZ2LFjB1Qq1Tnv+8ADD8BsNmPDhg2d2vbOnTsxZcqUNtu++OKLkZWVherq6jN+zcKFCzF37lz4+PgAAE6cOIHS0lJcdNFFrfcxGAwYN24cdu7cCQC4+eabsXz58jbLj3755ZcIDw/H5MmTO5WVqL+7//77kZycjFtvvRV33XUXnnnmGSQnJ7e5z7333ovAwECMHTsWixYtarfk7/Hjx7Fz505cf/31uP7667Ft2zbk5eUBAK677jpUVVVh8+bNrfc3Go346aefcPPNN/f+N0h9igXBTa1ZswZarRYajQZJSUkoLy/Hww8/fM6vGzx4MAAgNze3zccjIyOh1Wpb/1RVVQEASktLERIS0ua+p26Xlpa2235qaioyMjLw5z//ufVjp+53pu2c+tz111+P4uJi/Prrr62f/+KLL3DjjTdytVCiThIEAe+//z42bdqEkJAQPPbYY20+//zzz+Orr77Chg0bcM011+Cee+7B22+/3eY+ixYtwiWXXAI/Pz/4+/vj4osvxuLFiwEAfn5+uOSSS/DFF1+03n/FihUIDAzEtGnTev8bpD7FguCmpk2bhgMHDmDXrl24/fbbMX/+fFxzzTXn/LpTvy388U1327ZtOHDgQOsfPz+/buVauHAhkpKSMHbs2C59XVBQEGbOnImlS5cCaNnrsHPnTv5WQtRFixYtgre3N06cOIHCwsI2n3v66acxceJEpKSk4NFHH8UjjzyCBQsWtH7ebrfjk08+wS233NL6sVtuuQVLliyBw+EA0LK375tvvmk9eXHp0qWYO3fuWZcNJvfEv1E35ePjg7i4OCQnJ2PRokXYtWsXFi5ceM6vO3LkCAAgJiamzcdjYmIQFxfX+ufUkz00NBRlZWVt7nvqdmhoaJuP19fXY/ny5bjjjjvafPzU/c60ndO3cfPNN2PFihVobm7GF198gaSkJCQlJZ3zeyKiFjt27MDrr7+ONWvWYOzYsbjjjjvaHUI43bhx41BYWNj6Zr9u3ToUFRXhhhtugEKhgEKhwNy5c5GXl4dNmzYBAC6//HKIoogffvgBBQUF2LZtG4u8h2JB8AAymQxPPPEEnnrqKTQ2Np71vm+88Qb0en2b8wHOZvz48fjll1/Q3Nzc+rENGzYgMTGx3V6Gr7/+Glartc1vH0BL+QgNDW19gQEAk8mEXbt2Yfz48a0fmzNnDiwWC3766Sd88cUXfNEh6oKGhgbMmzcPd999N6ZNm4aFCxciNTUVH3zwQYdfc2pvoVqtBvD7+UOn7008cOAA5s6d2/oLiEajwdVXX42lS5di2bJlSExMxKhRo/rke6Q+JukpktQtZ7qKobm5WYyIiGi9UgCnXc6Um5srrl+/vvUyx6VLl7Z+3bmuYqipqRFDQkLEW2+9VczIyBCXL18uent7t7nM8ZRJkyaJN9xwwxm38/LLL4u+vr7it99+K6anp4tz5sw542WON998s5icnCwKgiDm5eV14adC1L/99a9/FePi4sT6+vrWj33wwQeiVqsVT5w4IX733Xfixx9/LB48eFA8duyY+N5774ne3t7iM888I4piy1VDSqVS/PHHH9tte+3ataJarRarqqpEURTFDRs2iGq1WkxMTBRfeOGFvvkGqc+xILihMxUEURTFl156SQwKChLr6upEAK1/NBqNOGjQIPH2228X9+7d2+ZrzlUQRFEU09LSxEmTJolqtVqMiIgQX3755Xb3yczMFAGI69evP+M2HA6H+PTTT4shISGiWq0WL7zwQjErK6vd/dauXSsCEKdMmXL2HwIRtdqyZYsol8vFbdu2tfvczJkzxenTp4tr164VR44cKWq1WtHHx0dMTk4WP/jgg9ZLFl955RXR19dXbGpqarcNq9Uq+vr6im+++aYoiqJot9vFsLAwEYB4/Pjx3v3mSDKCKJ7lABURERH1SzwHgYiIiNphQSAiIqJ2WBCIiIioHRYEIiIiaocFgYiIiNphQSAiIqJ2WBCIiIioHRYEIiIiaocFgYiIiNphQSAiIqJ2WBCIiIioHRYEIiIiauf/AdPYwjWp5p0bAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model1.model_corr()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "db30bcd2-24ca-4a44-a7ea-6b463da38e62", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACn5ElEQVR4nO2deXxU1dnHf5OBBBACJgQISVjcEFRsQaGoKCiKrVUwUhEVxQVcQAm0uGA0xv1VFKwWrYpgpQEDiUsrgoZ38paKtlbFqiAKRoEIyKJBWRJm8rx/3LmTWe5y7jp3Js/38zmfSe7c5dw7M/f87rMdHxERGIZhGIZh0oSMZHeAYRiGYRjGTljcMAzDMAyTVrC4YRiGYRgmrWBxwzAMwzBMWsHihmEYhmGYtILFDcMwDMMwaQWLG4ZhGIZh0goWNwzDMAzDpBUsbhiGYRiGSStY3DAMk9JMmjQJHTt2FFrX5/Ph3nvvjfy/aNEi+Hw+fPPNN850zgZSoY8M4zVY3DBMCvLrX/8aRx55JHbu3JnwXkNDA/Lz8zF06FA0NzcnvP/pp59i3Lhx6N27N9q1a4eCggKce+65eOqpp9zoOhPm3nvvhc/ni7QOHTpgwIABKC0txb59+2w5RkVFBebNm2fLvhgmlWBxwzApyPz589HU1IQZM2YkvDd79mzs3r0bzz33HDIyYn/ia9euxSmnnIJPPvkEkydPxtNPP43rr78eGRkZePLJJ93qvmeYOHEiDh48iN69eyetD8888wxefvllPPHEEzj++OPx4IMP4vzzz4cd0/6xuGFaK22S3QGGYYzTt29flJWV4fbbb8ekSZNw3nnnAQA++OADPPvss/jDH/6Ak08+OWG7Bx98EJ07d8YHH3yALl26xLz3/fffW+4XEeHQoUNo37695X25gd/vh9/vT2ofxo0bh65duwIAbrzxRlxyySWorq7G+++/j2HDhiW1bwyTqrDlhmFSlJkzZ2LgwIG4+eabcejQIYRCIdx4443o3bs3ysrKFLfZvHkzTjjhhARhAwDdunVLWLZ48WIMGTIEHTp0wJFHHokzzzwTb7/9duT9Pn364Le//S1WrVqFU045Be3bt8ef//xnAMDChQtx9tlno1u3bsjKysKAAQPwzDPPJBxD3kdtbW1kHyeddBJqa2sBANXV1TjppJPQrl07DB48GB9//LHiuX399dcYPXo0jjjiCPTs2RP33XefrvVDKZ5F7s8///lPDBkyBO3atcNRRx2Fv/zlLwnb//e//8VZZ52F9u3bo7CwEA888AAWLlxoKUbm7LPPBgDU1dVprjd//nyccMIJyMrKQs+ePTF16lT8+OOPkfdHjBiBN998E99++23E9dWnTx9TfWKYVIMtNwyTorRp0wbPPfccTjvtNNx///3o1q0bPvroI6xcuRIdOnRQ3KZ3795477338Nlnn+HEE0/U3H95eTnuvfdenHbaabjvvvuQmZmJf/3rX/jf//3fiKUIADZu3IgJEybghhtuwOTJk9GvXz8AkrvlhBNOwEUXXYQ2bdrgb3/7G26++WY0Nzdj6tSpMcfatGkTLr/8ctxwww248sorMWfOHFx44YV49tlnMXv2bNx8880AgIcffhiXXnopNm7cGONyC4VCOP/88/GrX/0Kjz76KFauXImysjIEg0Hcd999hq/tpk2bMG7cOFx33XW4+uqr8eKLL2LSpEkYPHgwTjjhBABAfX09Ro4cCZ/PhzvvvBNHHHEEXnjhBWRlZRk+XjSbN28GAOTm5qquc++996K8vByjRo3CTTfdhI0bN+KZZ57BBx98gHfffRdt27bFXXfdhYaGBmzbtg1z584FAOHAa4ZJeYhhmJRm2rRp1LZtW+rYsSNNmDBBc923336b/H4/+f1+GjZsGN122220atUqampqilnvq6++ooyMDLr44ospFArFvNfc3Bz5u3fv3gSAVq5cmXCsAwcOJCwbPXo0HXXUUTHL5H2sXbs2smzVqlUEgNq3b0/ffvttZPmf//xnAkCBQCCy7OqrryYAdMstt8T08YILLqDMzEzatWtXZDkAKisri/y/cOFCAkB1dXUJ/fnHP/4RWfb9999TVlYW/f73v48su+WWW8jn89HHH38cWbZnzx7KyclJ2KcSZWVlBIA2btxIu3btorq6Ovrzn/9MWVlZ1L17d9q/f79iH7///nvKzMyk8847L+azefrppwkAvfjii5FlF1xwAfXu3VuzHwyTjrBbimFSnAcffBC5ubnIyMiIPKGrce655+K9997DRRddhE8++QSPPvooRo8ejYKCArzxxhuR9V577TU0NzfjnnvuSQhK9vl8Mf/37dsXo0ePTjhWdNxNQ0MDdu/ejbPOOgtff/01GhoaYtYdMGBATHzJ0KFDAUguml69eiUs//rrrxOON23atJg+Tps2DU1NTaipqVG/ICoMGDAAw4cPj/yfl5eHfv36xRx35cqVGDZsGH7xi19EluXk5OCKK64wdKx+/fohLy8Pffv2xQ033IBjjjkGb775pqr1raamBk1NTSgpKYn5bCZPnozs7Gy8+eabho7PMOkIu6UYJsXJzs5Gv379sHv3bnTv3h2hUAi7du2KWScnJweZmZkAgFNPPRXV1dVoamrCJ598gldffRVz587FuHHjsG7dOgwYMACbN29GRkYGBgwYoHv8vn37Ki5/9913UVZWhvfeew8HDhyIea+hoQGdO3eO/B8tYABE3isqKlJc/sMPP8Qsz8jIwFFHHRWz7LjjjgMAU7Ev8f0BgCOPPDLmuN9++61iwO8xxxxj6FhVVVXIzs5G27ZtUVhYiKOPPlpz/W+//RYAIu4/mczMTBx11FGR9xmmNcPihmHSjK1btyYIjkAggBEjRsQsy8zMxKmnnopTTz0Vxx13HK655hosW7ZMNRhZDaXMqM2bN+Occ87B8ccfjyeeeAJFRUXIzMzEihUrMHfu3IT6O2oZS2rLyYY0aS3cPO6ZZ54ZyZZiGMYeWNwwTJrRo0cPvPPOOzHLlNLCoznllFMAANu3bwcAHH300Whubsb69etj3C6i/O1vf0NjYyPeeOONGCtIIBAwvC8Rmpub8fXXX0esNQDw5ZdfAoBjGUK9e/fGpk2bEpYrLbP7uIAUyB1trWpqakJdXR1GjRoVWRbvQmSY1gLH3DBMmtGuXTuMGjUqph155JEAJHGhZH1YsWIFgBZXx9ixY5GRkYH77rsvwcoiYr2QLR/R6zY0NGDhwoXmTkqAp59+OvI3EeHpp59G27Ztcc455zhyvNGjR+O9997DunXrIsv27t2Lv/71r44cT2bUqFHIzMzEH//4x5jru2DBAjQ0NOCCCy6ILDviiCMS4psYpjXAlhuGaUXccsstOHDgAC6++GIcf/zxaGpqwtq1a/HKK6+gT58+uOaaawBIcSN33XUX7r//fgwfPhzFxcXIysrCBx98gJ49e+Lhhx/WPM55552HzMxMXHjhhbjhhhvw888/4/nnn0e3bt0i1iE7adeuHVauXImrr74aQ4cOxVtvvYU333wTs2fPRl5enu3HA4DbbrsNixcvxrnnnotbbrklkgreq1cv7N271zGrSV5eHu68806Ul5fj/PPPx0UXXYSNGzdi/vz5OPXUU3HllVdG1h08eDBeeeUVzJw5E6eeeio6duyICy+80JF+MYyXYHHDMK2IOXPmYNmyZVixYgWee+45NDU1oVevXrj55ptRWloaU9zvvvvuQ9++ffHUU0/hrrvuQocOHTBw4EBMnDhR9zj9+vXD8uXLUVpaij/84Q/o0aMHbrrpJuTl5eHaa6+1/bz8fj9WrlyJm266CbNmzUKnTp1QVlaGe+65x/ZjyRQVFSEQCODWW2/FQw89hLy8PEydOhVHHHEEbr31VrRr186xY997773Iy8vD008/jRkzZiAnJwdTpkzBQw89hLZt20bWu/nmm7Fu3TosXLgQc+fORe/evVncMK0CHzkdmccwDNOKKCkpwZ///Gf8/PPPSZ/agWFaKxxzwzAMY5KDBw/G/L9nzx68/PLLOOOMM1jYMEwSYbcUwzCMSYYNG4YRI0agf//+2LlzJxYsWIB9+/bh7rvvTnbXGKZVw+KGYRjGJL/5zW+wfPlyPPfcc/D5fBg0aBAWLFiAM888M9ldY5hWTVLdUv/4xz9w4YUXomfPnvD5fHjttdd0t6mtrcWgQYOQlZWFY445BosWLXK8nwzDMEo89NBD+PLLL3HgwAHs378fa9asiakzwzBMckiquNm/fz9OPvlk/OlPfxJav66uDhdccAFGjhyJdevWoaSkBNdffz1WrVrlcE8ZhmEYhkkVPJMt5fP58Oqrr2Ls2LGq69x+++1488038dlnn0WWXXbZZfjxxx+xcuVKF3rJMAzDMIzXSamYm/feey/B5Dt69GiUlJSobtPY2IjGxsbI/83Nzdi7dy9yc3O5NDnDMAzDpAhEhJ9++gk9e/ZERoa24ymlxM2OHTvQvXv3mGXdu3fHvn37cPDgQcUJ/B5++GGUl5e71UWGYRiGYRxk69atKCws1FwnpcSNGe68807MnDkz8n9DQwN69eqFrVu3Ijs7O4k9YxiGYRhGlH379qGoqAidOnXSXTelxE2PHj2wc+fOmGU7d+5Edna2otUGALKyspCVlZWwPDs7m8UNwzAMw6QYIiElKVWheNiwYVi9enXMsnfeeQfDhg1LUo8YhmEYhvEaSRU3P//8M9atW4d169YBkFK9161bhy1btgCQXEpXXXVVZP0bb7wRX3/9NW677TZ88cUXmD9/PiorKzFjxoxkdJ9hGIZhGA+SVHHzn//8B7/85S/xy1/+EgAwc+ZM/PKXv4zM5Lt9+/aI0AGAvn374s0338Q777yDk08+GY8//jheeOEFjB49Oin9ZxiGYRjGe3imzo1b7Nu3D507d0ZDQwPH3DAMw7Qimpub0dTUlOxuMBpkZmaqpnkbGb9TKqCYYRiGYczQ1NSEuro6NDc3J7srjAYZGRno27cvMjMzLe2HxQ3DMAyT1hARtm/fDr/fj6KiIt0CcExyaG5uxnfffYft27ejV69elgrtsrhhGIZh0ppgMIgDBw6gZ8+e6NChQ7K7w2iQl5eH7777DsFgEG3btjW9H5avDMMwTFoTCoUAwLKrg3Ee+TOSPzOzsLhhGIZhWgU8n6D3seszYnHDMAzDMExaweKGYRiGYZi0gsUNwzAMw3iQXbt24aabbkKvXr2QlZWFHj16YPTo0Xj33XcdPa7P54u07OxsnHrqqXj99ddj1qmursa5556LvLw8ZGdnY9iwYVi1apWj/TICixuGYRiGESIEoBbAkvCrtaBXPS655BJ8/PHHeOmll/Dll1/ijTfewIgRI7Bnzx5T+wuFQsJ1fhYuXIjt27fjP//5D04//XSMGzcOn376aeT9f/zjHzj33HOxYsUKfPjhhxg5ciQuvPBCfPzxx6b6ZjvUymhoaCAA1NDQkOyuMAzDMC5w8OBBWr9+PR08eNDCXqqIqJCIENUKw8vt54cffiAAVFtbq7velClTqFu3bpSVlUUnnHAC/e1vfyMiooULF1Lnzp3p9ddfp/79+5Pf76e6ujrdYwOgV199NfL/vn37CAA9+eSTmtsNGDCAysvLdfevhdZnZWT85jo3DMMwDKNJNYBxAOJnK6oPL18OoNjWI3bs2BEdO3bEa6+9hl/96lfIyspKWKe5uRm//vWv8dNPP2Hx4sU4+uijsX79evj9/sg6Bw4cwP/8z//ghRdeQG5uLrp162aoH8FgEAsWLACgnUrf3NyMn376CTk5OYb27xQsbhiGYRhGlRCA6UgUNggv8wEoATAGgF9hHXO0adMGixYtwuTJk/Hss89i0KBBOOuss3DZZZdh4MCBAICamhr8+9//xoYNG3DccccBAI466qiY/Rw+fBjz58/HySefbOj4EyZMgN/vx8GDB9Hc3Iw+ffrg0ksvVV1/zpw5+PnnnzXXcROOuWEYhmEYVdYA2KbxPgHYGl7PXi655BJ89913eOONN3D++eejtrYWgwYNwqJFiwAA69atQ2FhYUTYKJGZmRkRQ0aYO3cu1q1bh7feegsDBgzACy+8oGqVqaioQHl5OSorKw1bhpyCxQ3DMAzDqLLd5vWM0a5dO5x77rm4++67sXbtWkyaNAllZWUAgPbt2+tu3759e1OF8Xr06IFjjjkG5513HhYuXIjx48fj+++/T1hv6dKluP7661FZWYlRo0YZPo5TsLhhGIZhGFXybV7PGgMGDMD+/fsBAAMHDsS2bdvw5ZdfOnrMIUOGYPDgwXjwwQdjli9ZsgTXXHMNlixZggsuuMDRPhiFxQ3DMAzDqDIcQCGk2BolfACKwuvZx549e3D22Wdj8eLF+O9//4u6ujosW7YMjz76KMaMGQMAOOuss3DmmWfikksuwTvvvIO6ujq89dZbWLlypep+77zzTlx11VWG+1NSUoI///nPqK+vByC5oq666io8/vjjGDp0KHbs2IEdO3agoaHB3AnbDIsbhmEYhlHFD+DJ8N/xAkf+fx7sDCYGpGypoUOHYu7cuTjzzDNx4okn4u6778bkyZPx9NNPR9arqqrCqaeeigkTJmDAgAG47bbbNCed3L59O7Zs2WK4P+effz769u0bsd4899xzCAaDmDp1KvLz8yNt+vTpxk/WAXxEpBQCnrbs27cPnTt3RkNDA7Kzs5PdHYZhGMZhDh06hLq6OvTt2xft2rUzuZdqSFlT0cHFRZCEjb1p4K0Zrc/KyPjNqeAMwzAMo0sxpHTvNZCCh/MhuaLstdgw9sDihmEYhmGE8AMYkexOMAJwzA3DMAzDMGkFixuGYRiGYdIKFjcMwzAMw6QVLG4YhmEYhkkrWNwwDMMwDJNWsLhhGIZhGCatYHHDMAzDMExaweKGYRiGYZi0gsUNwzAMw3iQXbt24aabbkKvXr2QlZWFHj16YPTo0Xj33XcdP/bf//53nHXWWejUqRM6dOiAU089FYsWLYpZ55NPPsGECRNQVFSE9u3bo3///njyySeVd+gyXKGYYRiGYUQIhYA1a4Dt24H8fGD4cMDv3PQLl1xyCZqamvDSSy/hqKOOws6dO7F69Wrs2bPH1P5CoRB8Ph8yMrTtGk899RRKSkpw++2345lnnkFmZiZef/113Hjjjfjss88wZ84cAMCHH36Ibt26YfHixSgqKsLatWsxZcoU+P1+TJs2zVQfbYNaGQ0NDQSAGhoakt0VhmEYxgUOHjxI69evp4MHD5rfSVUVUWEhEdDSCgul5Q7www8/EACqra3VXW/KlCnUrVs3ysrKohNOOIH+9re/ERHRwoULqXPnzvT6669T//79ye/3U11dneb+tmzZQm3btqWZM2cmvPfHP/6RAND777+vuv3NN99MI0eO1D9BFbQ+KyPjN7ulGIZhGEaL6mpg3Dhg27bY5fX10vLqatsP2bFjR3Ts2BGvvfYaGhsbFddpbm7Gr3/9a7z77rtYvHgx1q9fj0ceeQT+KGvSgQMH8D//8z944YUX8Pnnn6Nbt26ax12+fDkOHz6MP/zhDwnv3XDDDejYsSOWLFmiun1DQwNycnIEz9I52C3FMAzDMGqEQsD06ZKtJh4iwOcDSkqAMWNsdVG1adMGixYtwuTJk/Hss89i0KBBOOuss3DZZZdh4MCBAICamhr8+9//xoYNG3DccccBAI466qiY/Rw+fBjz58/HySefLHTcL7/8Ep07d0Z+fn7Ce5mZmTjqqKPw5ZdfKm67du1avPLKK3jzzTeNnKojsOWGYRiGYdRYsybRYhMNEbB1q7SezVxyySX47rvv8MYbb+D8889HbW0tBg0aFAnsXbduHQoLCyPCRonMzMyIGLKLzMzMhGWfffYZxowZg7KyMpx33nm2Hs8MLG4YhmEYRo3t2+1dzyDt2rXDueeei7vvvhtr167FpEmTUFZWBgBo37697vbt27eHz+cTPt6xxx6LhoYGfPfddwnvNTU1YfPmzQliav369TjnnHMwZcoUlJaWCh/LSVjcMAzDMIwaCu4ZS+tZZMCAAdi/fz8AYODAgdi2bZuqm8gM48aNQ5s2bfD4448nvPfss8/iwIEDuOqqqyLLPv/8c4wcORJXX301HnzwQdv6YRWOuWEYhmEYNYYPBwoLpeBhpbgbn096f/hwWw+7Z88e/O53v8O1116LgQMHolOnTvjPf/6DRx99FGPGjAEAnHXWWTjzzDNxySWX4IknnsAxxxyDL774Aj6fD+eff77ifu+8807U19fjL3/5i+L7vXr1wqOPPoo//OEPaNeuHSZOnIi2bdvi9ddfx+zZs/HAAw/gxBNPBCC5os4++2yMHj0aM2fOxI4dOwAAfr8feXl5tl4Po7C4YRiGYRg1/H7gySelrCifL1bgyO6eefNsr3fTsWNHDB06FHPnzsXmzZtx+PBhFBUVYfLkyZg9e3ZkvaqqKvzhD3/AhAkTsH//fhxzzDF45JFHVPe7fft2bNmyRfPYM2bMwFFHHYXHH38cTz75ZMRStGTJElx22WWR9ZYvX45du3Zh8eLFWLx4cWR579698c0335g8c3vwESlJ0fRl37596Ny5MxoaGpCdnZ3s7jAMwzAOc+jQIdTV1aFv375o166duZ1UV0tZU9HBxUVFkrApLraln15l7969OOecc5CdnY233noLHTp0cOxYWp+VkfGbY24YhmEYRo/iYuCbb4BAAKiokF7r6tJe2ABATk4OampqcM455+C9995LdneEYLcUwzAMw4jg9wMjRiS7F0khNzcX99xzT7K7IQxbbhiGYRiGSStY3DAMwzAMk1awuGEYhmEYJq1gccMwDMMwTFrB4oZhGIZhmLSCxQ3DMAzDMGkFixuGYRiGYdIKFjcMwzAM00qpra2Fz+fDjz/+mOyu2AqLG4ZhGIbxIJMmTYLP58ONN96Y8N7UqVPh8/kwadIk1/t17733wufzwefzwe/3o6ioCFOmTMHevXsj6+zduxe33HIL+vXrh/bt26NXr1649dZb0dDQ4EofWdwwDMMwjADNAL4B8Gn4tdmFYxYVFWHp0qU4ePBgZNmhQ4dQUVGBXr16udADZU444YTIJJwLFy7EypUrcdNNN0Xe/+677/Ddd99hzpw5+Oyzz7Bo0SKsXLkS1113nSv9Y3HDMAzDMDpsAPAIgHsA3B9+fSS83EkGDRqEoqIiVFdXR5ZVV1ejV69e+OUvfxmzbmNjI2699VZ069YN7dq1wxlnnIEPPvggZp0VK1bguOOOQ/v27TFy5EjTs3e3adMGPXr0QEFBAUaNGoXf/e53eOeddyLvn3jiiaiqqsKFF16Io48+GmeffTYefPBB/O1vf0MwGDR1TCOwuGEYhmEYDTYA+COAjwF0BdAv/PpxeLnTAufaa6/FwoULI/+/+OKLuOaaaxLWu+2221BVVYWXXnoJH330EY455hiMHj064i7aunUriouLceGFF2LdunW4/vrrcccdd1ju3zfffINVq1YhMzNTcz15Nu82bZyf1pLFDcMwDMOo0AzgVQC7AQwAkA3AH34dEF7+Gpx1UV155ZX45z//iW+//Rbffvst3n33XVx55ZUx6+zfvx/PPPMMHnvsMfz617/GgAED8Pzzz6N9+/ZYsGABAOCZZ57B0Ucfjccffxz9+vXDFVdcYTpm59NPP0XHjh3Rvn179O3bF59//jluv/121fV3796N+++/H1OmTDF1PKPwrOAMwzAMo8IWAF8AKALgi3vPB6AQkuVmC4A+DvUhLy8PF1xwARYtWgQiwgUXXICuXbvGrLN582YcPnwYp59+emRZ27ZtMWTIEGzYINmWNmzYgKFDh8ZsN2zYMFN96tevH9544w0cOnQIixcvxrp163DLLbcorrtv3z5ccMEFGDBgAO69915TxzMKW24YhmEYRoWfABwCcITK+0eE3//J4X5ce+21WLRoEV566SVce+21Dh9Nn8zMTBxzzDE48cQT8cgjj8Dv96O8vDxhvZ9++gnnn38+OnXqhFdffRVt27Z1pX8sbhiGYRhGhU4A2gHYr/L+/vD7nRzux/nnn4+mpiYcPnwYo0ePTnj/6KOPRmZmJt59993IssOHD+ODDz7AgAEDAAD9+/fHv//975jt3n//fVv6V1paijlz5uC7776LLNu3bx/OO+88ZGZm4o033kC7du1sOZYILG4YhmEYRoVeAI4HsBUAxb1HALYB6B9ez0n8fj82bNiA9evXw+/3J7x/xBFH4KabbsKsWbOwcuVKrF+/HpMnT8aBAwci6dc33ngjvvrqK8yaNQsbN25ERUUFFi1aFLOf+vp6HH/88QkiSI9hw4Zh4MCBeOihhwC0CJv9+/djwYIF2LdvH3bs2IEdO3YgFAqZuwgGYHHDMAzDMCpkALgYUnbUegANAILh1/Xh5WPhzmCanZ2N7Oxs1fcfeeQRXHLJJZg4cSIGDRqETZs2YdWqVTjyyCMBAL169UJVVRVee+01nHzyyXj22WcjYkTm8OHD2LhxIw4cOGC4fzNmzMALL7yArVu34qOPPsK//vUvfPrppzjmmGOQn58faVu3bjW8b6P4iChejKY1+/btQ+fOnSMpaQzDMEx6c+jQIdTV1aFv376mXSMbIGVNfQEpxqYdJIvN2PArYw9an5WR8ZuzpRiGYRhGh/6Q6ttsgRQ83AmSK4rdH96ExQ3DMAzDCJAB59K9GXth0ckwDMMwTFqRdHHzpz/9CX369EG7du0wdOhQ3QjtefPmRWYZLSoqwowZM3Do0CGXesswDMMwjNdJqrh55ZVXMHPmTJSVleGjjz7CySefjNGjR+P7779XXL+iogJ33HEHysrKsGHDBixYsACvvPIKZs+e7XLPGYZhGIbxKkkVN0888QQmT56Ma665BgMGDMCzzz6LDh064MUXX1Rcf+3atTj99NNx+eWXo0+fPjjvvPMwYcIEw/n4DJOKNAP4BsCn4Vcn57JhGIZJZZImbpqamvDhhx9i1KhRLZ3JyMCoUaPw3nvvKW5z2mmn4cMPP4yIma+//horVqzAb37zG9XjNDY2Yt++fTGNYVKNDQAeAXAPgPvDr4/A+dmIGYZhUpGkZUvt3r0boVAI3bt3j1nevXt3fPHFF4rbXH755di9ezfOOOMMEBGCwSBuvPFGTbfUww8/rDjfBcOkChsA/BHS7MNFkOay2Q/gY0hVU28F19lgGIaJJukBxUaora3FQw89hPnz5+Ojjz5CdXU13nzzTdx///2q29x5551oaGiINDcqIzKMXTRDKhy2G8AAANkA/OHXAeHlr4FdVAzDMNEkzXLTtWtX+P1+7Ny5M2b5zp070aNHD8Vt7r77bkycOBHXX389AOCkk07C/v37MWXKFNx1113IyEjUallZWcjKyrL/BBjGBbZAqohaBMAX954PQCEky84WcP0NhmGMU1tbi5EjR+KHH35Aly5dkt0d20ia5SYzMxODBw/G6tWrI8uam5uxevVqDBs2THGbAwcOJAgYeQKxVjaLBNNK+AlSqfcjVN4/Ivz+T671iGEYt5g0aRJ8Ph9uvPHGhPemTp0Kn8+HSZMmud8xAHv37kVJSQl69+6NzMxM9OzZE9deey22bNkSs97DDz+MU089FZ06dUK3bt0wduxYbNy40fH+JdUtNXPmTDz//PN46aWXsGHDBtx0003Yv38/rrnmGgDAVVddhTvvvDOy/oUXXohnnnkGS5cuRV1dHd555x3cfffduPDCCxVnSWWYVKcTpDls9qu8vz/8fifXesQwrZfmZuCbb4BPP5Vem13wBxcVFWHp0qU4ePBgZNmhQ4dQUVGBXr2cnotcmb179+JXv/oVampq8Oyzz2LTpk1YunQpNm3ahFNPPRVff/11ZN3/+7//w9SpU/H+++/jnXfeweHDhyOzhTtJUqdfGD9+PHbt2oV77rkHO3bswC9+8QusXLkyEmS8ZcuWGEtNaWkpfD4fSktLUV9fj7y8PFx44YV48MEHk3UKDOMovQAcDyl4eABiXVMEYBuAQeH1GIZxjg0bgFdfBb74Ajh0CGjXDjj+eODii4H+Dkb0Dxo0CJs3b0Z1dTWuuOIKAEB1dTV69eqFvn37xqzb2NiIWbNmYenSpdi3bx9OOeUUzJ07F6eeempknRUrVqCkpARbt27Fr371K1x99dWG+3TXXXfhu+++w6ZNmyJhJL169cKqVatw7LHHYurUqXjrrbcAACtXrozZdtGiRejWrRs+/PBDnHnmmYaPLUrSA4qnTZuGb7/9Fo2NjfjXv/6FoUOHRt6rra3FokWLIv+3adMGZWVl2LRpEw4ePIgtW7bgT3/6U1r5CRkmmgwAFwPoCmA9gAYAwfDr+vDysfDAD5lh0pgNG4A//hH4+GOga1egXz/p9eOPpeUbHK7JcO2112LhwoWR/1988cWIhyOa2267DVVVVXjppZfw0Ucf4ZhjjsHo0aOxd+9eAMDWrVtRXFyMCy+8EOvWrcP111+PO+64w1BfmpubsXTpUlxxxRUJ8bHt27fHzTffjFWrVkWOGU9DQwMAICcnx9BxjcL3RIbxOP0hpXv/EsAeAF+GXweB08AZxmmamyWLze7dwIABQHY24PdLrwMGSMtfe81ZF9WVV16Jf/7zn/j222/x7bff4t1338WVV14Zs87+/fvxzDPP4LHHHsOvf/1rDBgwAM8//zzat2+PBQsWAACeeeYZHH300Xj88cfRr18/XHHFFYZjdnbt2oUff/wR/VXMVf379wcRYdOmTQnvNTc3o6SkBKeffjpOPPFEQ8c1Cs8KzjApQH8A/SBlRf0EKcamF/jphGGcZssWyRVVVAT44lIWfT6gsFCy3GzZAvTp40wf8vLycMEFF2DRokUgIlxwwQXo2rVrzDqbN2/G4cOHcfrpp0eWtW3bFkOGDMGGsGlpw4YNMd4RAKoJPHroJfFkZmYmLJs6dSo+++wz/POf/zR1TCOwuGGYFCEDnO7NMG7z009SjM0RKimLRxwB1NdL6znJtddei2nTpgGQJpxOFnl5eejSpUtEMMWzYcMGtGnTJiEeaNq0afj73/+Of/zjHygsLHS8n/zgxzAMwzAqdOokBQ+rJffs3y+938nhlMXzzz8fTU1NOHz4MEaPHp3w/tFHH43MzEy8++67kWWHDx/GBx98gAEDBgCQXEbxczG+//77hvqRkZGBSy+9FBUVFdixY0fMewcPHsT8+fNx8cUXo3PnzgAkC8+0adPw6quv4n//938TRI9TsLhhGIZhGBV69ZKyorZuBeI9MUTAtm1StpTTWdl+vx8bNmzA+vXrFUufHHHEEbjpppswa9YsrFy5EuvXr8fkyZNx4MABXHfddQCAG2+8EV999RVmzZqFjRs3oqKiIiZpBwDq6+tx/PHHa05I/eCDD6JHjx4499xz8dZbb2Hr1q34xz/+gdGjRyMjIwNPPvlkZN2pU6di8eLFqKioQKdOnbBjxw7s2LEjJrXdCVjcMAzDMIwKGRlSunfXrsD69UBDAxAMSq/r10vLx46V1nOa7OxsZGdnq77/yCOP4JJLLsHEiRMxaNAgbNq0CatWrcKRRx4JQErXrqqqwmuvvYaTTz4Zzz77LB566KGYfRw+fBgbN27EgQMHVI/TtWtXvP/++xg5ciRuuOEG9O3bF2eddRZCoRDWrVuH/Pz8yLrPPPMMGhoaMGLECOTn50faK6+8YvFqaOOjVlbad9++fejcuTMaGho0vyQMwzBMenDo0CHU1dWhb9++aNeunal9KNW56d9fEjZO1rlJFRYsWICbb74Zr7zyCsaOHWt6P1qflZHxmwOKGYZhGEaH/v2l+jZbtkjBw506Sa4oNyw2qcB1112HnJwcbNiwAaNHj0b79u2T2h8WNwzDMAwjQEaGc+ne6cDFF1+c7C5EYM3JMAzDMExaweKGYRiGYZi0gsUNwzAM0ypoZfkzKYldnxGLG4ZhGCatkevCNDU1JbknjB7yZ6RUy8cIHFDMMAzDpDVt2rRBhw4dsGvXLrRt2xYZnOLkSZqbm7Fr1y506NABbdpYkycsbhiGYZi0xufzIT8/H3V1dfj222+T3R1Gg4yMDPTq1Qu++FlKDcLihmEYhkl7MjMzceyxx7JryuNkZmbaYlljccMwDMO0CjIyMkxXKGZSC3Y8MgzDMAyTVrC4YRiGYRgmrWBxwzAMwzBMWsHihmEYhmGYtIIDihmGYRgmxWhu5hnKtWBxwzAMwzApxIYNwKuvAl98ARw6BLRrBxx/PHDxxUD//snunTdgccMwDMMwKcKGDcAf/wjs3g0UFQFHHAHs3w98/DGwdStw660scACOuWEYhmGYlKC5WbLY7N4NDBgAZGcDfr/0OmCAtPy116T1WjssbhiGYRgmBdiyRXJFFRUB8bMT+HxAYaFk2dmyJTn98xLslmIYxhuEQsCaNcD27UB+PjB8uPRYyjAMACl4+NAhyRWlxBFHAPX10nqtHbbcMAyTfKqrgT59gJEjgcsvl1779JGWMwwDQMqKatdOirFRYv9+6f1OndztlxdhccMwXiUUAmprgSVLpNdQKNk9cobqamDcOGDbttjl9fXSchY4DANASvc+/ngpcJgo9j0i6SfUv7+0XmuHxQ3DeJHWYskIhYDp0xPv1EDLspKS9BV2DGOAjAwp3btrV2D9eqChAQgGpdf166XlY8dyvRuAxQ3DeI/WZMlYsybxPKMhkh5T16xxr08M42H695fSvX/5S2DPHuDLL6XXQYM4DTwaDihmGC+hZ8nw+SRLxpgx6RFsu327vesxTCugf3+gXz+uUKwFixuG8RJGLBkjRrjWLcfIz7d3PSZ94Ow5TTIyJE81owyLGyY9SJcbYWuzZAwfLhXnqK9XtlbJxTuGD3e/b0zyqK6WLJjRQr+wEHjySaC4OHn9YlIGNmIxNhACUAtgSfjV5eDPdAq+bW2WDL9fGrAA5apkADBvXmoKVcYcrSnmjHEMH5HS41L6sm/fPnTu3BkNDQ3Izs5OdnfSgGoA0wFE34gKATwJwM4nrBCANQC2A8gHMByAv+VGGP81lgfG5ctT60kvFJKEmZ4lo64uvQZ8pSf1oiJJ2KTS58dYQ/7+q7lm0/X7zwhhZPxmccNYoBrAOADxXyH5CXw57BE4KgIq9ATQZ2b63QhlwQbECpxUFWyipItrkTFPba1kedUjEEiPmDPGEEbGb3ZLMSYJQRIcStpYXlYC6y4qWUDFC5h6YM2l6ZlGXFwsCZiCgtjlhYXpK2wASciMGAFMmCC9srBpfbS2mDPGMTigmDHJGiQKjmgIwNbweiNMHkNHQIne39y6EdppeSgultK92ZLBtCZaW8wZ4xgsbhiTCCsLC8fQEVCi9zc3boROZHfIlgyGaS1w9hxjE+yWYkwirCwsHENHGA2HFLvsU3nf55OCUp2+EXJ2B8PYA2fPMTbB4oYxyWkAuuqskwPJtWQ27kZHGPkhJWUBiQLHrRuhF+ZGai0TbDKtg9Yac8bYCosbxgTVAI4GsFtnvb0ARgHoE97GKLJpRoNiSElZcfdB126EyZ4bKZ1q/DCMTHEx8M03UlZURYX0WlfHwoYRhmNuGIOopX9rUR/exmhquGyauUR7tWIAYwCsKQW2D3A3+DaZ2R1qNX5kdxg/5TKpDMecMRZgccMYQCt7SQt5/RsBHIRkZgkX4dOlGEA5gDLt1fwARpwD85lZJklWdkdrm2CTYRjGAOyWYgygl/6txy4AVwIYCclVtQxi0zbcBW33lA9AESTB5DJydkd88KOMU0HNyXaHMepwDBTDJB0WN4wB7HStbANwKSShc3n4tQuAawE0xa0ru6d8UIgcDr/Og5glyGaSld3Bxc68CcdAMYwnYHHDGMDpejE/A1gIoD2A2+LeU40chn3TPJgkGdkdXOzMe3BJAIbxDDy3FKND9ISVGwHcD6DZpWPPAvCoRn+iJtD0Ak1NwPz5wObNwNFHAzffDGRmOnOs1jrBplfhCR8ZxnF44kwNWNwYQWnCSjfxAzgAwCGBYCdOVCgWOWZrnGDTi/CEjwzjODxxJmMDahNWukkIwPwkHl+QZLkjuNiZd+AYKIbxFJwKzihgNuU7nhxI+nmPhX1tttgHh0l2SjZPsOkNOAaKYTwFixtGAasp33LW0PPh13HhZWYEztEW+uECRlKynXJHxBQ783BMUjrDEz4yjKdgtxSjgFXTeXQGk1qWkwh+ADdb7IvDeModUQ2pflB0en0fmJv6gjEET/jIMJ6CxQ2jgBnTeR6AxQACAOoQm5pdDOCb8HsV4ddlADrq7HMmPB9M7Bl3hFqMlDz1BQscx+EYKIbxDJwtxSgQgvTEXw99V5L8lGqm1kwIwBUAKuOO44ckbOLTwD2IJ1Ky5c9LzT3mg2RNqwO7qFwgFOIYKIZxACPjN8fcMArIFYFFYmUKIVUHNvNU6gewFMBfIGVFbYYUY3MzPG+xkZHdEePGSUJGKSXbcXeEXowUAdgaXm+Eg/2wiVQXBzzhI8MkHRY3jApyrEx8nZtCAJMBHAv7AlYzAZRY3EcSkd0RSnVu5s1zwR0hGs+TAmnIyagXxDBM2sFuKUYHzr4RJmkWh1pIwcN6BOBpy41cLyj+lsRFCRmGAVco1oTFDZN+6MVIGYm5SZKY5ekLGIbRgSsUM0yrQo6RAqzNmp7EVHIj9YIYhmF0YHHDMGmB1VnTk5xK7ql6QQzDpDocUMwwaUMxgDEw7lbSmm6DIFl/SsL7dsgl5Jl6QQzDpANJt9z86U9/Qp8+fdCuXTsMHToU//73vzXX//HHHzF16lTk5+cjKysLxx13HFasWOFSbxnG6/ghBQ1PCL+KiBEjqeQOIU9fEF/dV8bnA4qKePoChmGESKq4eeWVVzBz5kyUlZXho48+wsknn4zRo0fj+++/V1y/qakJ5557Lr755hssX74cGzduxPPPP4+C+IqgDJNsQiGgthZYskR6DYWS3SMNPJBKztMXMAxjI0nNlho6dChOPfVUPP300wCA5uZmFBUV4ZZbbsEdd9yRsP6zzz6Lxx57DF988QXatm1r6picLcU4TsrVaqmFZ1LJla5dUZFL9YIYhvEyKZEK3tTUhA4dOmD58uUYO3ZsZPnVV1+NH3/8Ea+//nrCNr/5zW+Qk5ODDh064PXXX0deXh4uv/xy3H777fCrPNE1NjaisbEx8v++fftQVFTE4kYTrm1jmpSs1WJnKrkd3UnxCsUMwzhCSqSC7969G6FQCN27d49Z3r17d+zYsUNxm6+//hrLly9HKBTCihUrcPfdd+Pxxx/HAw88oHqchx9+GJ07d460oqIiW88j/UjFmaVDkKwPS8KvSXIBhUKS1UHpeUFeVlLiQReVXankdnUnPH3BhAnSKwsbhmEMkvSAYiM0NzejW7dueO655zB48GCMHz8ed911F5599lnVbe688040NDRE2tatW13ssdfQEwGpOLO0h8RYStdqsZpKzjAM4x2SlgretWtX+P1+7Ny5M2b5zp070aNHD8Vt8vPz0bZt2xgXVP/+/bFjxw40NTUhMzNxssWsrCxkZWXZ2/mUpBrK80Q9CWng8kA6sGFkMRbfZ1mMuTwop3ytFrOp5AzDMN4iaZabzMxMDB48GKtXr44sa25uxurVqzFs2DDFbU4//XRs2rQJzc3NkWVffvkl8vPzFYUNIyNikfFAOrAh9MQYIIkxF11AaVGrxUwqOcMwjLdIqltq5syZeP755/HSSy9hw4YNuOmmm7B//35cc801AICrrroKd955Z2T9m266CXv37sX06dPx5Zdf4s0338RDDz2EqVOnJusUUgBREVAvuD+vWB08KMa4VgvDMIwnSGqF4vHjx2PXrl245557sGPHDvziF7/AypUrI0HGW7ZsQUZGi/4qKirCqlWrMGPGDAwcOBAFBQWYPn06br/99mSdQgogKgJ2Ce7PK1YHD9RmiUeu1TJunCRkogOLuVYLwzCMa/Cs4GnPEkiBtnosBnAHPJMOrEstPFObJR6u1cIwDGM7RsZvnlsq7RG1tPQAMBlAmcJ7SUgHBnTqnQyHJLb0xFgSXEDFxcCYMSZrtZioMcR1YRiGYWJgcZP2iIiAHABXQz3uphCSsHHR6qBb5VeuzTIO0jlEn1uSxFg0cq0WQ+hltCltkmrVkBkmBeAHhpQnpercMGbQK9BGAPZAXdiUQ3JFuSxsxo1LrBlTXy8tr5Zr2KRTbRYTNYaErxPDMMJUVwN9+gAjRwKXXy699unDv6cUg2Nu0pZ498ZuADOQaBU4CEncKOFUnI2G6yUUkm4kasXwfD7JMlFXF/UklerTRcjTH6gFfit8DqauEyMMP7m3TlJy+pTWQ0rMLZUsWoe4UXNvPAEgDy0iIARglMD+4oNyrYgJHddLba30pKTbpYAJt49XqYXh4OhWeZ1cgl19rRN+YPA8KTG3FOMUWu6N8QD2oqVA2/eC+4xOp7Yy3YGA6yXlq/yawURae6u8Ti7Arr7WS0pPn8LEw+ImrTBatVc0k0pez8rcU4J9y+8m2KWdcKz6cCgkWUaWLJFeHZ/o0ujngDSphuwxnJ741PXvFWMIfmBIK1jcpBVGq/bKmVQqFXXhA1AUXk9UODVBeXJOwb4Nh06VX7lLM+DIBJnV1UDv3rHBhL17O/zEbuRzkDfhasi24+STOwepeh9+YEgrWNykFUbdG3qZVEBLOrWocCqEsstKsG/+76XYBiBx4E7I8LZ5tvLqauCSSyQXRDT19dJyxwYiI5+DvIkfeHIuAFLYJNnVkPVmn/coTj25s6srNeAHhrSCxU1aIfpEEe36UUun7gTgHkizRAPiwil+GgdZgHwluH2+FLS5fDlQENenhAxvGyfIDIWAKVO015kyxUFXgtG09mqgeIbKJoVJzOqwEpOVZJx4cnfa1cXYhzx9CqDwYJXsBwbGKJwtlVbIKcVqBftkugK4EpJwkTOdlgG4HsC+uHVzATwHqdCfSEaPEj60jMAGpncIhYA1TwHbZwgkZVmcZmH1amCUQOZYTQ1wzjnq71tOIRbJRJNjn0hlk0rA/zsDx7SLuH5FkAcKj9cekrNl6uuVxYiZbJl0zGpL9zR5nj7Fs3C2VKsl2r2hxW5Ibg75qfo2AJciUdgAUg2cS8LbaMWFaEGQXFqTw/8bcL2M6N6S3KV5/7QY5Fdba309W+Iq/JBOVu2kFWKfYjbxAf7fw31XkNFgdg/ixJN7ugWptobYoeJi4JtvJMFZUSG91tWxsEkxWNykHWMgCRVREVIP4DGB9W6EVCfHCsfCeEVhE5lEycC1uAqjQeNu4dV+GUTVJWrS1ZdOQaqtKXZInj5lwgTpNZ0sU60ES+KmqakJGzduRDAYtKs/jCWWQ3IfvQJtt1Q0ouvtAbAhvG+zP/R8SALmG0hupIrwq9b0DiYyicwg6hJQWs/VuAoTNXFcwav9MoGdT+5eClK1korOsUNMimFK3Bw4cADXXXcdOnTogBNOOAFbtmwBANxyyy145JFHbO0gI8ptAH4HZdeSXTwJSTwZvYHFCxA910s0JjKJzDBiBJCbq71Obq6yuHG1+JcTliw7spvyBXeTAhYKwL4nd68EqVp1J3GBOybFMCVu7rzzTnzyySeora1Fu3btIstHjRqFV155xbbOMaIsg5hrySp7IY1aRrBDgLgwQabfDzz3nPY6zz2nPAi5GldhtyWrGgj1BmpHAksul15DvWE4u6l6N9DHr5EkZZOFzQmcLq5nt6vLKHa4k9ItdohJf8gEvXr1ovfee4+IiDp27EibN28mIqKvvvqKOnXqZGaXrtHQ0EAAqKGhIdldsYkgEXUlIrjUSg2uX0REVTaea4CIKsKvQZv2G0VVFVFhIZH0LCq1wkJpuRqBQOz6ai0QsKuTROQjCoIoAKKK8GsQ0nLh611FVAWiwrh+FkJarruf8OdRVULkUzhfX7hVGe2Xi5j5vM0SDErfgYoK6TXowPdX6Zjx5xfzGfmIior0++L6d5xhEjEyfpsSN+3bt48Immhxs27dOsrOzjazS9dIP3ETIPeEDYiohogKSRqs1NbJI6LFpC5AXBApVjA6CMkDiM8nPoBYHeiqZhEV+uMGZb+0XOwkiapydURJLql/NlVEVCgJqnhxFL+vIj9RsNLY+blBVZXyZ+bzSc0JgeM2dokSM99xhrEZI+O3KbfUKaecgjfffDPyvy/sO37hhRcwbNgw6+YkxgB2mYFnQNtLKbsVRkA73dwH4FkAV0A5niYFirwZjbcwGldhNf6huhoYNwfYFuc+qW+WlovsJ1QLTN+jk7m9R1ovsQOIzDEmlCQVAtbk6ffJTVpLgKxd7iSvxA4xjChm1NOaNWuoY8eOdOONN1K7du1o+vTpdO6559IRRxxB//nPf8zs0jXSz3JTQ/ZYZAJEtEzlPR8luhVmEZE/bj1/eLkaYXeK0P5txC13gJKLo6go1gKgZi2Qn371rAW2uRlKBZ/oS+M7QJLlLvzZVQjsA5CuvZdoLW4Wu89T5DvOMA7huOXmjDPOwCeffIJgMIiTTjoJb7/9Nrp164b33nsPgwcPtld9MRpUA5hk0762Q3oar4IUsBpNfOBuNYA5SEyHaQ4vV7IcOFzkTS0o1M2iY3opxFrWAkBarmctsCtrxXTmdpypRjh5y2NZUq0lQNbuVHQucMekCkaVU1NTE11zzTX09ddfm1JeySZ9LDdqVhArlhsZrZiYuCd3RStMESXGagRM9EP0UqgEhc6a5a2YCjueoisq7LGUBGoE+1IT3wGK+bzkmBul2B0vx2K0FssNUYu1MP63kE6xRUyrwFHLTdu2bVFVVWW/ymIMoGUFMYpSiq5WHRqzlWgdKvKmleb62GPeiqmIn23czHp2VbwdPgIo1Kjr4wNQlCutF7vj2H81yxB5OBZjV/wErwrYXVzP6ZRzNZKdis4wScCUW2rs2LF47bXXbO4KI46ewBDFTA0asyLFyIzltRAqKCcSFKqGqPvGTkQGVL317HIzvP46cFDlvcjXQqmuj0KdHdUyRB4dPEMhYOZM/fWeeMI+UZbsOZnYncS0MtqY2ejYY4/Ffffdh3fffReDBw/GEUccEfP+rbfeakvnGDWMxgHMAdAbUkZUtCgqhCRsjNzgvhJcL17MyIOi1ozlHSHFEMX38Uko9lEv/kQEN2Mq8gQzhrTWk7NWxo2ThEy0iBO1lMjWLjUBmJMrFSxUHPhkU804SAInvI9iSNOarQGwvQTIH+Pd2aJFvzddu9pzPLXrLRfRc0sAylmADNMKMCVuFixYgC5duuDDDz/Ehx9+GPOez+djceM4RoMze0IajC5GePQJ72M4Wiw2IY33ELXO8wLHK0RiJVp5ULxEY7ufwy2a+nDfFSoR2yFM3Ax0jXcLmF1PdjNMnx47SBcWSsJGa6DUC2oGgPbtgTFjtDoA6fOYjhgh6i8CRsyDLRWjncTNYGI966LPJ7lHx4zxphBkmBTFlLipq6uzux+MIYZD8gEIxnBgPSQXz3BIMTTxVCNhoFK0mIi6wyZD2c01BkAupEk4RSFIFoKS8PZR+7UiTHw+SQy4MWGhjOxS0rIaiMZ5FBdLA+KaNdIgnJ8PnHYasHatFNORn99iOQmFWtbbuVPfarFtm7S+5lN+jKkG6oLYg7g5U7eR7Da2qjCMbZgSN9FQ+InEpxYDwDjA6zA2QeYD4aYkWOSCbPFPlkoWE9En2WNVlq+BMWEjEx2kPKJlsSwW6uv1Y2yiSVaga7RLCTDnUorfnzwgVlcDRx+daMmZMEESO0bdd0JWCznwPMXQ+97YKXydthJFC9doQcswrRxTAcUA8Je//AUnnXQS2rdvj/bt22PgwIF4+eWX7ewbo4gsRn4ysa0sWOQgRqO1Z6zOSG3VzB+3vV7VVJ8PmDVLGqiiSWagqxOZK2oZY9u2SRljZuKSvFaXxk7crLbrpJUo2UHKDONlzOSaP/7449ShQwe67bbb6PXXX6fXX3+dZs2aRR06dKAnnnjCzC5dI7Xr3OjVmBFp0XVoAoLbBMLHV6tgHN2UatzIiB7PYA0cvaqptlUo1qj/Y2Y+quj1GxvN9VGvYrHR5tW6NE7gRrVdp+Zkag3zYjFMHEbGbx+REXu+RN++fVFeXo6rrroqZvlLL72Ee++919MxOfv27UPnzp3R0NCA7OzsZHfHILWQ5mKyg7kA3gbwlsC6FQAuhTQHlJ4VoBLA71TeC4X3oZUxpYQPkkutDqoxHY6b5zXikqqhHNz75JOx1YnV+lddrbz9E09ImVNa51RbKz2x24FstUiWVSsZLpboY3brJi37/nt7jy9b1gBlV6TR6x0KSRYaNYuc7Farq2MXFZNWGBq/zainrKws+uqrrxKWf/nll5SVlWVml66R2pabuOqwrrUA2VdhWK6sLFpd2eF5p4TQmBOrCioza0c9QatVUJbfU3uqj2/yNtGIViwWacmcI0jrGqXD8e20ErWm6soME4WR8dtUQPExxxyDyspKzJ49O2b5K6+8gmOPVQsmZazTLQnHzIOUBVMpuL5eXI1KGjGKAFwGqXif1Vo8dqIRlxQijZClcJrvlCnA3r3KNU4uuQTIzRUPhlaqi2I1NmbuXKB79+QGoya7Dowbx4/Obquvlwo15uUBOTmSJcbIdW8t82IxjAVMuaWqqqowfvx4jBo1CqeffjoA4N1338Xq1atRWVmJiy++2PaO2kXquqWqAUyBuWwjK5RAcmHVQswlFoBYBo1aXR2RejsW0HJ9yO9FDz4Fu4DhM5S7UAv7vISixLscZBeFmYwxJ1wXRl1LyXaxuH18NRdktAtTD1FXZCDA6eVMWuG4W4qI6D//+Q9dccUVNGjQIBo0aBBdccUV9NFHH5ndnWukpluqipLjjop2M8nBzGruJLUJMz2EnntILTC3EJL7Kf6cK2xyB5lp0S4HtYkRtYKGnQg6NePaSbaLxc3j2xUE7FSQMsN4HCPjt2lxk6qknrgRzZDKIKJLBdYz0uLFilq8jBfiYnTQGliEBIGCwKlJoriJn/VbLaZj1iznM4L0rq/WwG3XLOdmcev4elltRgUJz/Qtjm3ZkkyycVzcvPnmm7Ry5cqE5StXrqQVK1aY2aVrpJ64CZC4GOlqYF2RtkyhP1WUKLaKyNPCxo50aR+IikAUDJ9zFSSLTrLEjZIlQe0m7vTNPRgkys01N3C3FsuNE8dxI5U91Ul2oDpjK46Lm5NOOonefPPNhOVvvfUWDRw40MwuXSP1xE2yMqRA6plPGvVevIjowCI0+EA9Qyp+QAekQV/LfSC/b8Sl5DWXQ3m5WN9LSxPFlRsuFi1x55aLxykLEVsl1OFaQGmH4+KmXbt2VFdXl7C8rq6OOnToYGaXrpF64iZAyRM3DrkC3MbOdOnFELPYxKd6a7kPtOJ9vH5TDgaJcnKMXcP4J2cnXSwiT+5uuHiSbaFqbdjtBmQ8gePipnv37rR69eqE5e+88w7l5eWZ2aVrpJ64saMqsdkWcP703MBOy83cqWLr1dS0HF/EfRD/BL5smXddDtF9nTvX+DVUEg1OuFiMPLk77eLhIGB3YTGZljgubqZMmUInnXQSbdq0KbLsq6++ooEDB9J1111nZpeukXrihsj9bKkUyHwygt7AIjogFxURLV4stn68e8GM+8CLLgdRK5Po9Yx3Edl1viJxVnl50ucpH8vp681BwO4haq0tKUl2TxkDOC5ufvzxR/rVr35Fbdq0oT59+lCfPn3I7/fTyJEj6YcffjCzS9dgcSMibDye+WQGrYFFdDCuqkrOE6FXRI6RasqiLdmBwnJzK8iUg4Ddwcjnz9c+ZXB8bqlwfRy88847+OSTT9C+fXucfPLJGD58uJlduUrqFfGT52MyMbOzKYqQ3IrADqJUQK2oSJoBGkh8L36d4mL9onleLPpmB3rF7sxSUQFMmGDvPgFgyRJppmxR3JxXKxlzaLU2jBS3LCriebhSBCPjtyFx895772HPnj347W9/G1n20ksvoaysDAcOHMDYsWPx1FNPISsry3zvHSb1xE0tnC2DWwhgMoBj4UhFYK8hWqF4505gzx4gI0Oq8jpiROxEl3ZOhKiG2rQAyZjg0s4JOqNxqoruffcBZWXGtuEJJ9OL6mppihMRuJpzSuBYheLzzz+fHnnkkcj///3vf6lt27Z0/fXX0+OPP049evSgsrIyI7t0ndRzSxlJBc82sO40ci6NO8VSxeMRzbBxIwDVSMyK6H7NuLjMZJz5/fb3X/QcrcQFcZBp+lBSIvaZO1UkkrEVx2JuevToQR988EHk/9mzZ9Ppp58e+b+yspL69+9vZJeuk1riJkhEc0lMrJQTUYnguqDETCi7BIlSkb9CSokYnmBQvWaLUtCnk7EwbhV9E401Ee3P3LmxGV9OBdBqXXur2XE80KUPnDWVVjgmbrKysmjLli2R/08//XR64IEHIv/X1dVRx44djezSdVJH3CiJBLVWSC3iRGT9PEqcVsEOQSJPzxB/vBQIUq6qIioo0L4B+nxERYVEwRqi4GKiwFyiinC2TWOjvULH7qJvVguamU1ldirFW0ukWa1rxANd+sAp+GmFY+KmV69e9H//939ERNTY2Ejt27enmqh6Hv/973/pyCOPNNhdd0kNcaMmEtSaPFCI1sSJnlbBLkGid2wPp5cbzQIqR2Ihv3gXjNXsG9GqvyIDsV0uLrOpzHZauEREmlnLDQ906Qmn4KcNjombG2+8kYYNG0b/+Mc/aObMmZSbm0uNjY2R9xcvXkynnHKK8R67iPfFjZmifdE/Tj1hNMvAsYwIkoBgXwMiF8E97Jh3Sm2gNHvjrKqydyC20zSfzFRmUZHW2Gi8rhEPdOkNp+CnBY6Jm127dtHw4cPJ5/NRp06dqLq6Oub9s88+m2bPnm2sty7jfXETIGPCRkmAKLmZ8oio0uSxAgL9Fg189lg8g53Vi+2wBIiKLSMDsd0urmTV3TEi0vTqGsVP9MkDXfrjlXpRjGmMjN9tjKRhde3aFf/4xz/Q0NCAjh07wh+XLrls2TJ07NjRyC6ZBLYbXJ8AbIWUMo6o1wWQUrq/h3qKt+ixRNbLF9yX6HoOEp0Ovn69c8chArZulY4lmma6Zo1YLZl77xVPA88XvOai6/n9LefjZs2W7YLf1+3bpdo5y5cr1wiaNw8YM4ZrzbQ2or+3TNpjSNzIdO7cWXF5Tk6Opc4wAPCVye3GAvg5blkugOcgCZs1kERKtNCxU5AMh1Qzpx6S4IrHF34/yYUelYriOY3ooGxk3WOPFd/n8OHSoK5XeNBoEU63CwwaFWnFxdoihgc6Jh4usJg2mBI3jFOEAPzR5LbxwgYA9gC4BJLI2RO1vBDAkwDGwD5B4g/vc1x4u+j9hYvOYR6SWiBQrSie04gOykbWNbJPv18SHOPGSUIm+vzlgoDz5hm7iatdy/p6abkTBQbNiDR+WmdE8Uo1cMYWMpLdASaaWsSKELuI32c9JBHyOiRBArQIEMT9Pw/igqQYwHIABXHLuwKYDiAHkoBziFBIqqS7ZIn0GgrFvjd9unVhk4PES6WGzyeVdjdiEZEHcJ/KQczsE5BuzsuXAwVxn01hoXEhonUt5WUlJbHX3w78fuCJJ9SFDWBcpDEM0CLW4y26slivrk5OvxjTsLjxFLUuHUceHEogWW+UBElheLnRJ5ZiAN8ACIT33xXALkgiaSSkebLM3ihCkK7RkvBrU8v/1fdJc8mMHCnNKTRypPS/fFMSjWXRY3r4VU/gmB1sZStL9D6s7lO+bsWNwDeLgECNNKdTICBNNRAtbLQEoozetYyONbKT6mpg5kzl98yINIYBkifWGWdxIcDZU3g7W6qUjGVK2dEC4WPbPWWC3QX9lDLA/NJrFYh8KhlFclaR1cJuPh9RUS5RsEA6XkKdm7j/nShUZ2qfBgo0ilYwtjv7Sug0dGoRLVumvw+GUYKrGKcMjmVLMU6TDHO6HMDqBzDCpn2GIJk4lFxABMnsUQLJaiRyztWQ3Gjx+wvpHIoka0dJCbBwoVjXAZWQIQLmPQf4m4Hi30ldj47RPg3AWgDbS4D8MdYDEfWCYYVQu26yWzLKMmckhsaJuCAt9FyKPp9k0bn4YnZJMcYxkoXHpAwsbjxDNYD7knBcJ1Kz1wDQcgHJ6etroC+otNSLyKHCLhJAJxgVkifucQAz4/ZZCGBeCVA8BpJbDcpacIQPQBWAObBFqFoKhlW5biEAaygsym4Ehv8WgF/bLC8LxDFjpD45lX2lhhE3GAcPpw5eyUxyW6w7iVeuqQfgmBtPoDOAO4IPQBGcSc22s36OjnoRPdT332vEsoRf5wH4HVpChirCr3UICxsjoi3ZKPS1GpI2GwngcgAjdwF9CoEHHzQWQ+NIXJAG/GSdflRXa8fIuYlTQfxu46Vr6gFY3HgCvUFTj9GQ0r3jkQsq2pEJZQQ76+eoDFhybLFoDb7164GcHOCVVxQyhvyxsdOyVWYCJGuMXxaBGoNnTKzzag8EH8b1VfZQxX/N6ncBZWWCu4zap53ZV3ok48laJLCaMYfXMpPcFutO4LVr6gVciAHyFN4MKBadukCtnUpEi4loDhHNJikwuYakoGClgNIicnaGbnnOKrU5rizOWaUU0CvaCgul4NOYMuyV1BLorBX8rNAXAlEliLoqHCep5fyj+tqo0D8zTSmg0o2S9m7P7CwaWO01UmF6AbsmcXWCVJ1/ysvX1GYcm1sqHfCmuAmQNXET3ZQyYezOhBJBzpbSEwx6xAkltcwo0aY6QaKICFQQbbN0jpW0G2O4r1UgyrMoarxwc3RrZmeRWcfVSKa4SBVB5vXMpFQQiPF4/ZraCIsbDbwpbvQsHUaaqHhwQ/DYZTWqkrZttGGg1hysRa5JlGhbJnCsZIqCqlnGhaDT4sHS+Tj8ZG3lCTiZ4sKKIHObZJQRSHda0TVNOXHz9NNPU+/evSkrK4uGDBlC//rXv4S2W7JkCQGgMWPGCB/Lm+KGSN3SYVbgaLl9RGqf2CV+7NhPlWSBEHWtXCm4nuknmSqp3o2o0ErGE5Po7OLRrbzc+2Z5u5+so/c3d665z9MucWHm3FLNJdGKrAyu0YquaUqJm6VLl1JmZia9+OKL9Pnnn9PkyZOpS5cutHPnTs3t6urqqKCggIYPH54m4oZIWXRYaQGVY+gV1zNQ+C2CloixInCCRFW5xiwQ0wTXs/IkE6gR708ynphEb3jxA2AqmuXNomRtMfp5GhEXWtfWrOUn1QY2t+OnWgOt6JqmlLgZMmQITZ06NfJ/KBSinj170sMPP6y6TTAYpNNOO41eeOEFuvrqq9NI3BDFCoG5ZE3cVMTtr4a0xZOPiHI13lNzd2mJITNCKfpy1BgPHp4ruJ6VG76RisfyQCYqGuwQGEb65zXXhRvoVTwW/d6Iigslq5gsXqxYflLRJeFW/FRropVc05QRN42NjeT3++nVV1+NWX7VVVfRRRddpLrdPffcQ2PHjiUi0hU3hw4dooaGhkjbunWrx8VNNHIsjllxU25xeyWBE+/uUrME6e1HMKg4UGpgkAZREaTYnEKoW3siTzKNZNqiJDqo5eVJ2VmiT+VmnuCVxJCR/qXJjU8YMy67mO9N1PfEyrQe8sCTm6t/zMZGZcGbapYbmVTNTPIyreCapoy4qa+vJwC0du3amOWzZs2iIUOGKG6zZs0aKigooF27dhGRvrgpKysjAAnNW+JGzW1TReqWFL2WS/bE7yi1QFS/zYonwXTwCoPipiq8bzmrSvVJZlZL34MgCoCoIocoUG5PrIPcfv978adyM0/wamJIFlRa1om8PGnQbG0YcdnpfQZm9mWm5eUlfsZVVantkmhNLlC3SPNrmrbiZt++fdSnTx9asWJFZFnqW27U3DazyJo4ybGwrV6TTdwBG/YV0L48orEteQgLG1AkI0v1SSbq2irVzCnMFXva0XNt/P73xuIxjAaG6omhWbOcN1Wn4s3UjLVF7QlYT1w41aI/w1bikkjJ7xpjKykjboy6pT7++GMCQH6/P9J8Ph/5fD7y+/20adMm3WN6K+ZGK7jXTjFidwuE+2+1+CCoRSipEAxKYkMroDgvm6hxFSm6lxJuiI0UEZOqs4lDfFBQElCyK8qIy8Coe0FUDFVW2m+qlq9pSQlR166x+/ZibZV4RK/13LliA6mWuHBa4MiCN91dEqlSx4dxlJQRN0RSQPG0adMi/4dCISooKFAMKD548CB9+umnMW3MmDF09tln06effkqNAiZ274gbq/E0yWjxrqSADfsM6F+qqqqw4Ii/uYeboRtcuM9BaAcq+yBuzld7ojQS7FlSIrZuaamxmBqjwcx66GUYpYK1wAlXjpq4KC83JljMtGjBm46WjVSq48M4SkqJm6VLl1JWVhYtWrSI1q9fT1OmTKEuXbrQjh07iIho4sSJdMcdd6hun7rZUgGyLgxmk7Pup/gWHwRsZ8yNTrq44uBh5sktbG0KGBw4zGAkk8bIYFZYKC6G7MySEc0w8nKch4yetaWkxLhAUBIXIkJKDig2a+nxUiaU3aRaHR8R0lWEukBKiRsioqeeeop69epFmZmZNGTIEHr//fcj75111ll09dVXq26buuLGDpfO4zbsQ7TlkHoauNF9xWdLCaaL23JTCEj7r3Bh4BAZ2AoLiXJyjA1mRgZBu7JkzGQYeS1DJx4lwez3x/5vh+tDJCZGzb2ZDtfZCm5ngzktPNi9ZomUEzdu4h1xEyDrgmO2DfsQbas0zqWSiPwG9hUO+CUisaKCNhC5aS0mCnQlqhEcoEtLrd3k9Aa28eONCYb4gditLBkzWUGpYFGIjh9Su452uD5EYmLiB9bGxtTNhLILN+v4OC082L1mGRY3GnhH3MguHSvBw6UWtjXaFCwpMSxT2U4+v3JKdDnpubUE08VjUHBvKd60QJQL7UBlu25yagPbsmXGrTYizYmbpZkMo1SxKLjl+jBjFWgtmVBquGW5cVp4pKN7LQmwuNHAO+KGyPp8UjVk34Sbek3EkqLkXirS2CYgeOyAxjF1jq82dYNP5W8RwRA9SNXUSE1vwLJSaM9ocyJLxux0DqmA1wvheTkTymk3jht1fNwQHl7/jqUILG408Ja4ITI3n5Rs0WgkySKito5VQaN2XK0fuVJgsFqwsGjckYjJWcG9pZsR5SPKzSYqOFJ80M7NJSooUF/HiIXHSnVbrbZsmcLHYnEQMlLPxeyTbrICLVNhCgMvBqG6FT/itPXKDeGRCt+xFIDFjQbeEzdE0mBv1MU0nogKNN4vIslV5ES6ecDAuWkFCwdsOp6KeysgKAZqaqQbV2mpdWFh5IbrpOXGjkkZI5c3Li5FS+CYtSgkM9CSn6qN43b8iJPWKzeEh1vfMS+KYBthcaOBN8UNkT0BxnIrp9gpHKy4vpSa6I9cL1hYFl9qfRONuQkob280I8ouS4qoGdvJ6rbyTdLqICSSUZSXZy51OvoYon104uadylMYJINkxY84NXC7ITzc+I61gkwsFjcaeFfc6AXXijYlQWDG9aXVAjacj9zPSlIWX0aypRYrH0PUciPftOy2pIjcDNVM7nKbNcvcJI+LF1sfhPTq2lgRNDJG+ujkzbu1B+4aId0sXW6JWye/Y60kE4vFjQbeFDdyTMqt5JwAiY57keN0jFpzjGQvBQz002ggcjxzlfctx9zozg4ePh+7LSmiZmw9k3v0E+vUqWLHnjvX2iDk1tO5aB/LytT7YdfN28uBu14iGQUkncYtcevEd6wVZWKxuNHAe+LGbquK3PRuLGqCQp5U0oolhch4sLBa0LEIKpYbQsv8UQlTN6jctPQsKUaakSdXUZP74sVix168WNzNVlqaeFy3ns5F+6j1edh5807zmAUhtK5BMJg4n5hT3w23cUvc2v0dSzdLmgZGxu82YJJINYBxAMiBfefrvF8MYAyANQC2h9cfDsAP4FcApgPYFrV+IYB54e3sOH78en4AIwS3iadA/a1iAMuhcDqFwLx5QHHc+RQXA8uXA9OnA9uiNigoALZvB5qb9bvj80n7Hz48dnkoBKxZI+0nP1963++X3vP7gREj9PddoHGuZtYDgAceaPm7sBB48kmgsVFs2+3bxY+jRL7g94Q0fiNEwNat0rUVuYZaiH4OXkbre6ZHdXXid1/+ThQXS/vdvVt/P3l5id9/r1NcDIwZY/7aiWL3d0z0N2j1t5pisLhJGiEAt8J+YeODJEREbiyyoAhBEjmVkMTGGMQKn27h9b8HUIsWEaTF8HA/6qF8jkb6qYd8rG3KbxcDGFMIrFkEbP9e/6aldJMLhYBRo8S7NG9e7P71Bg3RAWn4cGm7bSrnCgBFRS0DS2EhUF+vLQ6iqa8Hxo0D7r1XbH1RcaKGfD5G+qhGK7t5K6L3PdPbdty4xM9B/k4sXy4ueq+4wn5R4AapKG5Ff4NWf6uphguWJE/hHbeUWn0aK82o64hIf14nvff19m2Hi0sEtcws+XgWjyXqPsnNVXd1KblTfD7loGGtQFmtQN94V5sZN5s851VBgTsZRHa5AmtqrPcllbESVCoat1FTk1wXCLsNE2lF2X4cc6OBN8RNFdkvbEDGgnDlfmilas/SeV9U4FgJFjaCg8cS9WvHD7BmJpwUGZCMxAcorSvSysvdyyBS6qPRqSncEjfJHGDVjm01qNTI91sv6N6pgbQVpDqbppVk+xkZv31ERMm1HbnLvn370LlzZzQ0NCA7OzsJPQgB6A5gjw37ygBwBYCfAHQEMBHAOdB3Gcn96ANVVw4Q3k9I5T3ZrVQncDzZ7RUf22N2PQPHahoKzP8zsHkzcPTRwM03A5mZBvcJyW3UpztQvwfqXrZcoG5nrDm+thYYOdL48YCW2J26OmUTv5HYiqYmYP586To0NAAvv6x//IoKICsr0c1RVCS53aJdd93CrsvvBdx+asSfj1FXYEUFMGGCsWMaxYrbx8lj5+SIfc8CAWW3y5IlwOWX628vfyfGjZP+jx4+fD7pdfly+6+FmsvMyWOmGkrfD/m3mibXxtD47bjU8hjJt9zY6Y7qqLAsl8QsFQGb+hAwcxEUsOL+UmHWrMSCc36/tNwwwZZ5qhIyr8KtKpcSsrzsKAxox6SAZiw38nGVrAV6+7Tjidqo1cvpbJBk1hLRO7bV9GyjGTdups23olRny6S5247dUhokV9wEiSiHnBE18U3vJiOaqq3X7KhloeceM3HDnDVL+yatKXCU0tIDUp+qkDhfVRcQvSL3ORC7KzsKA1qpF6JXiM/MYFFZKbYPOwZ8kf67Mbglc4AVOXZenthnqyYAzcRtuDWQtqJUZ0YbFjcaJFfcBMgeQZEhsE4hadeKsasv5aavhoRoJWMDN87GxkSLTXzz+6X1ElCzIJW0/P97EGXE7w9E40FUMU05FsJKsGxpqbXJLo0KGy1RsmyZ/rW1e8CvqpICtZ0UUXokc4AVPXZenrWgUq/GbfCkk0wYI+N3htM+MiYau1JVBWqtYBuk2BNAikOpBbAk/BpCS/q0T2MfIjETz0M9LkeENdCO+yEAW9FyLgLMny/Fa2gRCknrxSDXHYrvTz2kGj8AbgPwOBI/ghCAVwBc/rQU+9C7t+QD9/ulmAigJT7AKA88IO2zTx9pn6KsWaOdMq5EYaF6/EJ1NfC73+lfWxkiqf5Mba3UliyRXkW3lykuBnbuBMrLpdgS0f7ayeuvi63nRDq66D6vuEJ6jf+eyf/HlyeIR67xFF8jya1rrAanOjNmcEFseYrkWm6cSP/WahWkHcuil6o9XvA4AQvXRNQ9VqK+i2BQyuIoLZXamDFiT3rTpkXvROE6xV2TRp9koTFiCZGfdtViFGbNEk+D1nqCVnIRWKlQHL9POUvGjOUpPuvJSjxOMmIKqqrEzzWZlptAwJ5YmMZGafqOadOkV0ULp4u0olRnRht2S2mQPHGjVYfFqVaucszoWBat9GmjUyhEoxS3okTAwPmopDmruSz02ty5UYNlqTTRZlDj+HNNHCM3N9ZFpTQwGwn4VbqRq6XIlpebH5DNBiGLnkOqpKeKuvbciLkRHdytCECvplt71WXGuAqLGw2SI270rAJGm19gnZ46x4yOZVETIgHB/gTiztdI5pPKtQlCEhsViBIdcbE3Rp6o45vfT7R0qcKNHFLQsNJ5TjN5LJH6K/KAVFoqts/orBW1LBpZXBl94jUThGxG4KTC07aRgHA3sqWcHNy9PrM0T2za6mFxo0FyxE2AxESCaJslsE4nwX0FNPotCw81i5NSsK+ZzKe4ooZKGUkR0RHur9nieHIbM0blRh5uSgLHjOUGkASLKEaCJ0WyaGRxIzooWr2uRpvXM1xEP4+SEuf74uTgbjUbzC13YZqnOjPacECx57AzyLAcwKMAqgDkaqz3k+D+tPrmBxAOhk0IPJb/n4eWwOMQpBkqSWFf8rISJAYgF4eXQzumdxyA6nBgp5lgWUAKqPz974EPP5Ru28Ld9AE3Fzg/X46R4Em9a0AE7NkjzROlFiQ6ZkxssG9trbnrGk/HjmLreX0+KNHPY8wYZ/sBSAG933wjFeKrqJBe6+rsCfQV+S7Jk5PGU10tBbuPHCkVAjQT/C6KPPfThAnSayrOX8W4AosbV+imv4owx4ZfiwF8B6Crxf2JzB6+HIkzbxeGl0ffWK1kPo0R1EZ/lbJtjAyKV14JTJsGzJ0LHDgA/Pa3Ojfy+G6GhVzmH4GZM8WPK2NkIj55Ikm1zCqfr2ViTNFrcOyxyoMikDgoXXqpeF/jKSuT9l9eDvz8s9g2Xs9wMfJ5uIFTg7vZbDC5cnD870mebNMJgcMwAvCs4ClHPlqmGFgNYLfJ/RiZlbsYsbOEq02NICo4lNYbDqzpCmzTOB8CsHWX9PRoZFC87rpYgSEqCiKrFUKyUBUDj4bF3BNPiKU05+YaEzdy6vi4cdLAGW1dik/pFb0GX32VONuxWjn7vXvF+yoTXeI9FJIEkx7y1BJuiQKzGPk8UpVQCPjrX8XWjf7OhUJSuX9FCyhJ16ekRLJqpfL1YVIStty4wvc27MMHoAiSmOkDYCSAByzsjxDrUtLDD2AEgAnhV6XtRAWH0np+YPuVYptv397yRK1H/AAaCkk1U0TILwUQgDR/VpSF6tFHJQvQ3LnAr3+tvY/nnjN+YxetNzJ8eOI6Sjz/fKwQ0xqU9JBFSU2NsmtE1F1IlDqiwKv1X+xizRpg1y799fLyYn9LVlxZDOMwLG5cwS7T+2UALoW260eUcsS6lOzgNGi7yWSBpvK0ni8Yt7BzJ1BZCUyerL/uk0+2DKBybMCMGdrbRFwN90JVyGVmSk+lK1YAVVWJQquwUFpuduATia/w+4EpU/T3tW1b7ABjNl5JtlQ8+SRwzjnKrhFRq1hJSWqJAifjXZJNfb3YehMmmPusvR5XxaQl7JZyheEA8gAIPB2pciSAF6EckGKGw5DcW3Y9OVdDCphRcyspBSDHIVtj6uvVrQp+f6w4yc0FGhsTYzxycyWriTz4qLlhErop4GqIn716zJjYGbLNzoodT7wrSYljj9V+XyZ6gBEdbHJyYt1UhYX6Mwx7KQDXbkQ+j1RExGoDAH37xv7PlYMZD8PixhX8AIYC+LuFfZiIhdDkAQCLAEyGFKSsFkcjgpzipCUcouJW1NCKb5CJj3PZu1da7957gWBQWjZiRKxFwYgbRm8Ar66W9hVt+SgslPqt+RQvx0lpxSyZwMwAI7pNZaV0DY0INj2BajbWJl5Q2iEeUxGl6wBYuzZ5eebWc+qzZhg7cCE13VMkr4hfHiXWfvFaUyu0F00jEc0lomnh1wOkX6AwL7ydIEr1PLQma9SrwSFaqVeuWKzVL1NFzowUNTSI2dmcnSxnr1cEUHNGdpX9ebFqrtsoXYfc3MQK3UavjZVJQdOtcjDX0fE0XMRPg/Qo4udU0yq0RyQVD4yvjiwyQznI8PxT0TeZuXOt3XxFtgW0ZxUWKXJWWChVI465MZopamgQMwOME4NS9Gc2frz2tRLdv5ZQSsXB0yxGqkYb/QxFCjdqid10qRzMItrzsLjRIDni5reUfOFipMVXHSYSq4qs1dSEQ5CIaoioNNxqEo9tpGpvzK4NVtuVxZHS05uRMvwxN8ZcjWuiVOHZJGYGGDsHJavzYykh8vlFz92VrpipGm3U+mZV7HrZ4iHSN69PPcEQEYsbTdwXN1ZFgdUmOg1DfAtEnUMjic1nJbo/mSoiUhr8cynGomHWbG5EkMgDgdrTW0mJscElupVDe0JOS7OqR2FmgLFjUDI7F5Xe1Auin195ufE+pxJmhLXoNY4mXSww0YhYY6xOPcG4BosbDdwVN3aIgmS1kqjzmGthP2rWiSqBbcM3ILMxIqIWH0C62elNQmmlaU3IKVu11ISG15+Kzc5FFW1pUzpH0c8vJ8db18RujHyPta6xCF7+rhlF1BpjJeaIcRUj4zdnSznKfCTOo2QnHQGIlLnPAfADYCiNfBGAUyBNu/CV4Z5JqKV/y/Ms6DEdwBjzVWJFs4LKy6XU5D59Yvcto7TMKNsgJZTFz1gBAMhXzsIqKADOOAN4553ElGzd7CyXMFszB5AqJwPqGWgidYwA6dqsWZOeadqAtVRqo9umS7q7kerJXK8nPXFBbHkKdy0308i8xcPOVk4tAaxmtu9scr0iUg6YDRg4dqBlM6Nmcz2Lj2yiNhtTY7T5QFSEKBdV2KpVtcyYdchLcQBWrAqFhUSVldpP1x07iu3LqIVCFC9YMkS+x0rXrzW7UoxYY9hykzLwrOCe4WgXjpGDxBm7ZeT5o06HZAXRmkVciwaBdfyQargEAFRAcdqCCAJPQCEAtQCWVEkzVYdCkqVi82Zp2gN5IsxNm9QtGLLFB0ic+NDnk5pcwdiNpzJC1ISc4f6EHgemzzBmHZLXLSkRm98qFIqd+VtkG1GsWBW2bQNuvlnbWpYheIvS6ofZ83dztmsttL7HSqTLnFdWMGKN8drkqIw9uCC2PIX7MTeiqdJmm5pVRv4/PmC3MxENcaAfRmqXBLT3VQUpRiX+KX/WLHOpmiIWHzcsNxErA4goR/rsAjXW9qX3NOl0eqsZq4LRlp2t/p6ehcLs+Xsxe0a0zk2qBwHbgVFrTLrU6/GCpdFBOKBYA3fFTZCIOpJ5waDVogN1lYrEaaUgW2nxYi2DpFT3AImnNAcV+htuVZDcN6IDn12pqiJBy7m59gzigajzrcixtq9x41rOqbEx9hzVXD5yKy+35+anNjDY1dQy1fQ+e7MCxcvZM0rf43Qa0Ow6FzNJCEriMSfHvt+J07SCOj0sbjRwV9wEyB5BoWSViS8AFwwfr4KkWjEq4sFy+wtJ2VPnU2KMTSEpx9gooZAtFUSixUZU4Ngx2Ig8vVVVEXXtam6Qjo+5CYJorg2Dv9ziqzhrVXW2++Znpqp0Xp7YeQUC5uOtzHxnOAYjOdg9OJuxxgSDkpjJybGvH27gRUujA7C40cBdcVNB5gREdLuGEoWKWqCuTMCG46q1ANlXdTeuzk3A4uBux2CjN4hWVREVFJjrnw8t6eBKrrdkNbtufvFP3cuWaQ8uy5YZe7o28lRvRaCYLRrJmMepwdmoKE5FkeBlS6PNsLjRIPUsN4upxSqzmCSryWLSdgPZIaqUmjxHlJZVyGjV3SBFKhRXjLU2SNs12KgNomaL1QFEuYgVNkZcb26IG6dufiJi0YlYBysChS037uL04CwqilNVJLSi7yuLGw3cj7mxGvsSCO9LKa5GzQ0UsHhMtVZiYN9yvw1gNajXyR+vlWJ1AFFN+LqYdb250Zy6fnqDixOVca3c8J2eWJSJxSuDs1f6YZRWZGnkIn5pxS4A1ZAqwFHce/VoqQw3BlKO8XYA3SAV3/tOYRsrjIFQGjdgYL0o5JTM+nrp52iEnJyWVM1QSCrqtn27lCI8fLj1lFizxep8PqCwKzBiV3g/kAr6eRGn0uH1CsMVF0vF1EQ+M9HPVu+75PNJ7yul95otGsmYwytF9LzSD6OIlmOwUrYhBeE6N46yBsAei/uYCalGjdJgLy+bAqAPgJEALgcwCsAhlW3MUgRgOADRH4iJH5LReh7RTJ8uvd53H9Ctm/21Sczc0CID4XzAXwjAZ0rzuYbezc/JejmyAJowQXpVEg5G6s7o1TgCtAVKcTGwfLlUJTqawkJpuReqQ6cLXhmcvdIPo3CdHmVcsCR5itQLKPZCiw4SltO41aodG425UcDIDNOAVMW2rCwxwyHajWA1GNCMyyzGtRIOwg4Y3IcdTS9rSsTNYjaTxa7UXrOBnlZdXumUZu1VvOIG9Eo/zJAudXp04JgbDdwVNzWUfGGi1UQm9VSK65GzpURS1E0SPaiUl7f8UM0O8EZuTGq1RERTlydOJKqpUThWFVGwQIq5cSOgODorSb6GquKgnCQxHqAEYWqnsDCTUms10JMFivdxc3DW+j6kskiYNUu5HMQsIwVWydO/FxY3GrC4AUlBzjVEtIyURYrcykndAqMU4KyXom4Bo9YctWaloq9aMTmlpjqIByUh4Ya4ibdQKFoxcomq4oPeowStWWFhZ0ptqgZ6MsZwIrBc5Bjxv1U3+mE3WpmcRn5vHi8EyOJGA3fFzWKyR4yIWFiMtkC4j1ZESlQaN5WG/3ZQ5QeDkkVEzf0k0rQyBrQGZIBo0iTx44hYNYwWAywq0q8NAxB16kT09tvKT1wxT2XlUZN4RrcoC5wZYWF3Sm0rygZp9ThpNTAiuD1svUjArt9bCtT4YXGjgXvipoqIupL9osSuFj0QyHV0VNwSmucomp5uE06liweD5ovzmb2pNDbqu7q6dCH6y1+U6+3ozXaueTOSY6fUvh/h2KmKxcaFhd2WFrbcuDPYptKAbpRUrWEjgh2/jxS5PjwreNKpBnAJgN3J7ogG0RH/fgAjAEwIv4qkuMrp6fF5zXJ6ukMzJ1tJw9TKGHjwQSlt2E6IgK1bpdTlaOSso6oqaXZzeYbyaORlCxYAEyfGZhCpZfJEU18vpTKrZonp5aQTgK1A/i6tM2whOoPE7pRat7JBnMwGs4Ibs5N7ZQZ0p9Ar5aD2W00F7Pi9peH1YXFjOyFIqdleRk7rNksI+unpJeH1bMZKGub11wOVlYkDV3U1UFZmuWuqRN9U4geRsjKpRk9OTuw2einHxcXA5s1A167K71P4cygpURmkRYVFntQXPXZHCXm7U2qtpnWL4NXBvbpaEqnxA4+uePXYMZJNqtawEcGO31s6Xh8XLEmewnm3lFeDiKNbCRlzP8UTEDxOwOT+NQhWEhX6jQfkZmcru22sVh4WMgfXSH3Xi+kpLzc227Mlc3Sg5XNqhDSB57Twa2PcZ1hZqX+M+DmgnEipdSrQ06uxBm64ClLEHWGZdHZt2vF7S5HrwzE3GjgvbkpJbOBPRsuI+18vPkYtFke0fo/dAZ7hFPQqgR+hXpMHLrUUaTtaZBbwgrAoMzCIiGQtWAq0DcfczAKRP259P6Tlcr0iMzc+p1Jq7Y4L8fLg7saAkyKDmmX0BABAlJurUsIhBbD6e0uRGj8cc8PE0TH82hy3XCs+phqxVY9Hhv+vhqNVilXRcoWZgML7kd0dVklwl4Rf5wHwfwesuVTcpy3qJrBkjvYDtw0GHkOi9zAEafltg6T1zJisnarwK1LJ2AhejjVww1WQqu4Io/FRItXP9+wBRo3yhjvSKFZ/b264ft3GBbHlKVqPW2ocSZaTGiIq0FhPqaKwXKRPaV0fSfVxClXWUdunVQLSvr028WRRkeS2iX/6zwFROVpSrSsE97d4sbglobFRv/qw3y+tF09jI1FGhti2Vieh9HIGjpfTzNlyo4yVWiwi9bKS7Y60gtXfm8dr/LBbSgPnxU2QrM8EbkfLoxa3ksj6gaj+C6QIUyU5XqU4xi0WdvcFBG7ERltOjvnqx3L1z2CNJGZy4t4vhORGE+333Lnig42Vgemaa8T7o5ey7hGTtSm8PLi74SpIEXdEBDvio0TqZXntvN3Eww8k7JZKKn4AzyW7E5BmE5dnCRdBXk8wRRh5kGYjj09HzgFwL6QZxK0Q7xZ7ILabdiJPuqmWjj1G41zmzJFM2K//XTrtvXHvy56/XQDCc2cqIqcz5+WJ9Xn7duD118XXjSYUApYtE9t25Urg6KOBXSop4VZN1slOvxZJM8/Lk1yCbvfPDVdBKrkjQiHpt0qU+J68TDU7MAq/X2p743+scftLsdRn27Db9ZssXBBbnsK9In5lpG8tMdOKiOjXguvKgcAi6wbC/TYaLBwkaZqGnLj3rRTzU3OLwX7Ljex6UTPHKrmc4p/wCguJCjSqDcuBxcvCf2sF/YlaEmpqEjPARK0OVgshxl8jsyZrr5R6FymKmOz+JWNaAg+5I4jIXiubl92RjCrsltLAHXGjVLnXjjaXWqY8EFk/QMZn8Q4Y2Ld8rlrxOdE3R5FKyDpuMTnmxs65meSboZI51k4hEMggqnpFexARdROsWiV2zLy8RLOy6I1dZN9K8TwieC392ujcZeXl7prruUKxvYLEy+5IRhUWNxo4L240rA6WWwWJCad4wSL3SSQ+xogYEo3PCar0W8m6E9C/DlUIW0BsGKD1boZ2CQFACiqmgP4gIpLWWVoqdsxx4xLPyVbBFlC/dmp4Nf1a/lwWLxab98usFcfrIsKr2ClI9KZbac0xNx6GY26Shs3pygl8BeUpD6KJyUEO/10M5fiYwvDy6DRBPwA5PTo+DiF+36LxOQ+q9FspFV0gqKYYwPJxQEGO7qpCaKVUW6mIHM9OAH9dBjz1lBTDkZ8vxXzE+7TtTKM+/nhI38taAEuk1+GnaceZGGH1auPxMl5Nv5ZjDQoKYisuq7Ftm/EKvl6thJwK2DkNx+uvA4cOqe8H8E6sEWMOF8SWp3DWchMgXauD6VZAYq4urVgXEbeQjMhs4aLxOfHxONHNglssGBTPLtJ6OpPTnZWepEXcRHLMjZYlKb5QnsjTv9YTfk2N2DnWlCl8joVEVbPMZ4hZtWR4Pd7BiLXOyBO+11xxqYgdxSHVPge55eQY+yzYEuca7JbSwFlxIzrYm2mTBNersfF89MRQwMbzC0QdU9AtJpLSqTUo+XxSKrdeUKvIDbVqmTVXmdEYjmAjUa5OnZpcX0udnYRr6JMEjplrp3dN9QYGr8c7mHHb6fXVq664VMRK8LPIdCt+P9GyZeb7koyg81ZCyombp59+mnr37k1ZWVk0ZMgQ+te//qW67nPPPUdnnHEGdenShbp06ULnnHOO5vrxpK7lZprgem4+7YoIEdGaP/HZVxqDMlVJNw8tn7leKyqShI3ok7TSTSw3m6i8LGrKhFmJBQbVLDZKzdBNMaA/DUWV1vUOi8Sat81fQ7ODtNdrq4iU6o9velYmrwu6VMOstcSIcNX7LbIlznVSStwsXbqUMjMz6cUXX6TPP/+cJk+eTF26dKGdO3cqrn/55ZfTn/70J/r4449pw4YNNGnSJOrcuTNt27ZN6HjOiptGci6YeKrgegGVvhlxSRlBL1hZTago9VsvWDrsFquqMj/4lpZKN7jGRuNP0sFKovJshUJ9uVHZTpVEga5S8PBck+JA6KYYthJWgaggvj/QETZRLVjjzMSheoO0U3NP2YWe68Lo+XrdFddaMOJy1BLYbIlLCiklboYMGUJTp06N/B8Khahnz5708MMPC20fDAapU6dO9NJLLwmtn7qWGxCRX+O9+NiVaEQzlcyiFZ8TJG3rjdzvZaQtDMsp4orKzTU34EanRRt+kq5qydJKuJGFW2RADgvJimnG+yh8Uwy0XJsgpPo/FeFXRVeUWqvQH8gvuECKbVq8WDxLS2SQ9nptlaoqogIBt53I5+WG5YZjP/Qx6nJU+zzYEpcUUiZbqqmpCR9++CFGjRoVWZaRkYFRo0bhvffeE9rHgQMHcPjwYeTkKGfONDY2Yt++fTHNOZyeXE4tG0UpQ0qmGuKZSmYpBvANgACAivBrXXj56wD2aGxLAB4HMCP8txI+AC9If9bWShPcmeHyy1uyHwxNGBgCQreqJ8LJy0qmhzOG/ABGAPmXGO8jkWCm0HBESh6HD4cJ4VdDCR75LdlZhYWxb2WEbw9vvgnMmAHccQfQtq3gbgWyzIqLgW++AQIBoKJCeq2rMz+ppt0UA/h2LzBeZ73LLtPPqrEz00cJzsISQ/4cRFG7T6TqhKOtiKSKm927dyMUCqF79+4xy7t3744dO3YI7eP2229Hz549YwRSNA8//DA6d+4caUVFRZb7rY6ds2BrEf+xKaV0A9qp6ZERGeqiyQhKI6x8fC1yIU3ZIJJSvkYSN2bp06flb0Mzaq8B1tQLdHFbrCgxeiONRvemqJey74N0bVXnewBQBEkkIVZolJRIy5rjZpGvrwfuvRfIzbVvkPb7pXXz86VzXrPG/SkYFIn67r6rs+rSpdZmpbaaeiw6izwT+zmIoHafMHT/YJJBSte5eeSRR7B06VK8+uqraNeuneI6d955JxoaGiJt69atDvZIoDaGLTQDyAZwK4C5AB6GJBDib7CidWicqieid3xAsurUCu7P4lNQ9LxNhp6ktxuYoitqRb9fmp/FDEI3Rb36RfIcZ3r1isLIQmP5cuXDEcX+bccg7VmLQ/i7K/IVFq3JY2f9Ihm75ltqTRQXA5WV2t9RPZHutCWOsY4LbjJVGhsbye/306uvvhqz/KqrrqKLLrpIc9vHHnuMOnfuTB988IGhYzoXcxMkqRaNkXgHu1t8HI1oanop2RdgHI2R44usFxCv7yLi/xYOag2Iz2kVfQyRtFPTMTfRaAWLi9QrikI0lqC83Hq8jKezTcLf3QrBz81IILCdsTFuxX6kYzzPsmXqv0GR75/Xg+LTkJQLKJ42bVrk/1AoRAUFBZoBxf/zP/9D2dnZ9N577xk+nnPiJkD2CBQrLX46BSN9sjPAWEb0+DVkqLaNmYBiNcEgFNQaJAoWaM9p5QNRUWHsMcxOc2D2pqg6ABnIlDOS1WNlwPNqtknknEolQVsj+JklK3DUjSysdK7lYjWo3etB8WlGSombpUuXUlZWFi1atIjWr19PU6ZMoS5dutCOHTuIiGjixIl0xx13RNZ/5JFHKDMzk5YvX07bt2+PtJ9++knoeM6JGycL+BltOSQJhkbSFg3xAiJ+nimrGCjIZ2T+KyOp4CJPUUKDtEa2lCxu4o9hdl6qKsECYjHds2kAEhVkc+dae4r3YraJ0jUsAFGu1uee5JTf8nJnr6OodS2VLTtW+57K555ipJS4ISJ66qmnqFevXpSZmUlDhgyh999/P/LeWWedRVdffXXk/969exOAhFZWViZ0LOfETQ0lX9TEt0IimkXKokFPbNiFkUk7BV0oRsRNzIzbjUSBuVKKdmCu9L/Rc5nVMbEwnz9DKggYjxnLjQ9ERX6pXo4W0TfU8nLtAWjZspZ1a2qkJt+I46eekOv/GKnxYkZEea3ui+ogrvK3/H8y3Q8itXisiC9R69qyZelr2WE8RcqJGzdJLXGTYXF7WUDMIrF5qeQW0DhPM8UAjcR96Oxf5IablyfVZIl+iqqaRVToj7sB+6XlohiNETFT6TbypA2V60PKFgat5veLv1dYqF65WeuaGx3kvWS50f1OQbLexFefTqb7wUg8l9k+Wpk9nuNOGAdgcaNB6rilfES0lIi62rCfIpJcVKKBu2pPy1aKAdpUIdnMoFg1S3vOp5Lf6puTzcaIVFWZm3OqAqRoRTNaOdfsoPT732uLItHz17ueXpiCQfQ7VTM7bPlbnHz3g5HAb7OYdasm4zNUg11GaUXKFPFLL+yuZ/AHSNXD5lvcD0FK914L4BzBbZTOxWoxQEuV5lowWjwr1ARMfwKq9QEBYN7f9VOQ16xJrCMSDVFsSnAoJNXkaTwI3JsN9BTrdoR8ICFNXyvt1y7kff/lL8bSh+PPXw8n674YRfQ79f2JwIgSYMIVwIgR7vRNDdE+H3us+WNYrdFi9DthN2plBpYtk36bS5ZIr5wmn5awuLGN4QC62rQvH4ClkGqVzLRpn9sRU9VW9bhRhd0i6BUDpPD7LtwkjBbPWjMf2CbYL62iZ0ZEVcxN9UqgbJ90acsBLIb21yThI4g6rp7AsgsiYNcuc9saqcjqRN0XM6RiQTY3+qxXy0WUZFTpVStsuG0bcOmlHqyrxNgNixvb8AM4y6Z9ydaW30G/gpgo+dCuaisf93qF5SKVzLYBeNB074Q57TT9J2a/X1oPALZvFt+3bLVQKnomOkh89ZVKtVgA9wL4BOpWJMXaelHHTYVS7kYHUy9MwSBaSXq3W0U6BXCjiJyIdU0EO0WhbBHVsroYtXByJef0xAU3madwduLMYhKLabGzZRNRO433lTKg9GbfNlsMECQWf2MBo6mvgbnm4gXiA1lFgoNzcoi6djUfo5CLqNm842r7BALik1ba1fLyxON7vBBfYYXKSv1z9Nr5uVVETq2WS2Wlu3FTVVVEBQWxxygoSDxPU1mKKf79bSVwQLEGzombKhIXAG41rdo1QZJm2hbZLmDgmHankkdhJAVcTiEONkpZUYYDehWCqo0c30wrRHhG76jrbzQzKv6GbbYvfj/R0qXKg6fScVI9M8ZL2VtGcKuInFpgrt5vwk6BJXocK4HQXvt8mRg4oNh1QgCmJLsTCqhNqAlIfX5KZTsKv5aE15NjdURwaK4q2dQsimwK92cCT4bjloyEDiiZ0seMkSaNdIptCF+68OdWDWUXlxKym2D8eCAnR/qbSH19PUIhoHt35ZiYeLeg2zEyTuDmLM8irhVRRNx6dhzP75eCqCdMcD+YOhQCrr5ae50pU1rOy4obzA3Xr52fP6OOC2LLUzhjubGzxo1IsT2tbfOIaDFpp1tXhdcT2WcgahvRfthVeC0qfdyIe0kxJVuhzo2aFULNPG2l7odoqyiliCvKiMWmqMh4fRrdvsjWr7in9vjCf+lgyhdOB6+xdhwnpzJQsq44fTw3ptAoKzP22ViqLxWwelW0SeepLFyA3VIaOCNuROvHiLQiIqok8WkTlFpAo69yxWDRfUULFTU3lpHjixIXFyQ6gSGgfqOQKxSX/Lrl5ht/M9Zyr1it+2Hk5io62JaWxlYW1lo3N5do1SqiOXO8caP3EqIDolKMhyhOThSqNGiqzcFmlxvRDVdeMEjUqZP4byH6eoi4VONbpU5lcCt4eqLY1IDFjQbOiJvZJDboq7VsIiqhWGuL2rQFIk3NciLP9WRkXwED29s1fYOCAAsI3pxEi5aZiVVw0nIT/5RrdHoCIwONlwroeQmRAdHsQOSklcNMYUc7PmM3ptAw8puLFjfydTEar+bU996rE8WmGBxz4zpHWtx+H6QU7b1oyQEuhhQvU6C2kQZqPudaGEstz0VszRs5ldyHxAAWxTxmE6jU1NEr0QNIsR933SV2GDMpyHbV/VCCKLZondE6Jq+/Lrb+6tXSq1aKLxFwySVSXZ3WFA+gVncnGgp/L5XKBWhhtAikKGYLO5o9XjTdutm7nhJGYmBGjIj9P/43Pneu/j6cKjro1OfPqMLixhZ+sGk/JYgthFcMYDOAuQDOF9herQgfIEWnXmqwP3sAxA+aaqJLK3jZCCo1dbRK9Ph8UnvySfVAR6UgPjlI8tLwdamslN5ralIO+NOq+2GVkpJYYWWkjkl1tSSMRHjgAaloGaA8kGeEbwnz5rXOAmfFxcCiRdrrmBmInApYtlrYUfR4yQqCFRX52dmJ4gaIDYTu3l1sX04EFbsZsM4AANokuwPpgR0akSBlGtWiZZqEakhWDCM3r3lItJzIUycYfLqDD5LgGhO3z+LwsjWQKujmQxJUdmRQaPy4ZV0Vf0kKC6XBWM3qUl0tPd1GDwKFhS1CJf49vz/25i2vW1zc8nQfv41VevduEVxyH558UsqWUkMWNFMMZurV10uWmZKSloH873+X9hc/aG3bJvUh1bOhjPD992LrGRmInKoobHUwFDme2u9H67sZjej1VEIW+Xq/tQUL9DO4klmJOhWrYKc6LrjJPIX3s6U6khRzYjTwF0Q0XqFvZuJs4lvA0tUxhsC1DIIoMEcsW0criM9IfEJ8nEUwKAXn2hVzA0hF85Yti+3/rFmJE1j6/dJyIvGihlqtoEA9+NTpWAQv4kSgrFNxTmbjwESPZ8fvx2pgul5Mkfxb0CMZsWZyBtvixdoFPjnmRggOKNbAGXETJEmU6AzKhlquyW3ifxwBG/piV2q3CKJCUSAl12g6tdHBoKbGnn2r3az1siuWLZOqIjvRBycGqVTBqUHQiYrCZtKeRY8n8vvx+90RC0rBwXl5xrOb3KrqrNZnK58Hw+JGC2fEjZeqEwfi+mZk6gTRfTqJaH8FBJcT2U3RA7yT0yEsXaqfXZGX59zxldrixfZ+1F7GqUHQiYrCRrOlROuqGPn9uCEW1KokG8WNqs5GPhMnKkqnKUbGb465sUwIwK3J7kQU8T74ryzurxDKAcpOoeFzDiEqzGcnMDyk7WdPZmCgVaZMAfbtU3+fyPzM3WZx+3jJRC22Si++S2S/Y8ZIgcDbt0sxFsOHW6v4K/f1hhvEJvdctAg45xzd1YS/6yUl0vHtvE5KyMHBVnHiM4hGL4PN5wO6dpWytwoK7D02E4HFjWXWQJry2StEi4MQgOcs7u8gpIwpt4JJ5ZzveiA6ADohtnoGUPh4S6CvEk4HBo4YIWUfOYGWsEkWeXnJ7kEioZBzg5TaIAhIGUMix1Trnx2DdHxfDx4ErrxSf12tAN/o/u7cKXbsMWOAOXOc+xycwInPQEYk7XvXLknYONUHBnDBkuQp7HdL2eH2satlENEqaom7CQhuN5LUY4a0Jt90irgChlVQnvhSz/RtpQy70rHi4weCQf1AXKdb1672Trmg1bwWc5OMUvZGjul2/6wGQiv1Nz6YXek3kY7TcVjBjeKGrRSOudHAfnETIDEBYbTJAcVmKhQXkiQQ7BJedlUeNkJ4+oUgpNmyjYiOmN1oxE4o/a14DKiLKKdnCtc778pKd8SN1zI5klHK3sgxk9E/K4HQRuN25POYNYvnSoonVWeYTwFY3Ghgv7gJElFPskdERDc5HdxMGrds9RCdC0q0Bey5ZMIExSfM1LpRaAUQKj6txg/skCbeVNt3MoRN9AApmpXRsaP1Y3mBZJSyN3JMJ/onGkxrJhBaNCsq/vejN1Grl74zbsLTmzgGixsNnMmWslNE5FKsCyhIkqgwOjmnjyRhZGUCzvgWbUaV+1VB2jOQW8QuE6/W4BBsJAp0lSbnDICoMfwq/x8EKVqu7Ew112rx6d5K2RXBoHrNm+iBraTE2LG9mMlhx5Ox0cwbI8e088ld/lzjvwNa1hGj2UCi/Z07N3ZmeJGJWlvrAO5mynkrgsWNBs6IG7vcP12JqFHlGHIxPqNCpZzMT8AZ3wLhvihZlGRXmM24YuINkOZ5BxEWO6WxA6GTE2lGt5oa5YFYaYDWG9iMzjbuxcHJquA1Ewtj5Jh2CfKqKvMzexsRb2b6K/o9Ep3INh1xI+W8lcHiRgNnxE2ArImG6BbQOI6ZmcIryLx7S27RMTdqlZMdCjwWCQrOyZEEgJmBOBgkCpSqW20qkRjzIw+EooOC2aYXI6E2QGtaqdLAZG5F8JqNhXHbciPi7rTrszLTX9Hvfmu23hDZV5uHISIWN5o4I24qybxwiG96EfRGhUogvF20G2muge2jRYtsPdJa14HAYzUTb3wzGsioJBCUsrLUBkI7pj7QO4ZaELOVYNVUN5mLZKkpDapWYmGMiEKrAtKou9NqYKqZ/hqxWnLgLGMTLG40cCagWC2N2kwLUIsQWUySEFkctZyIaBlJLiw9UaImNIy4uIqoxRoTMHAONiMSNGtkcDaaHaJ0rMJC+1LNMzJi/4+ePyoakYGvsFBsziC7TeZuPaWaFTd2pEqLikIrAtKou9OOlGKj/Q0Gxaf+4JRnxiZY3Ghgv7hZRWIDvkjLJaIyUreOFBLRLNIXJSIuIj0XVwm1CCpZbE0TPA87b2ZRFqdgDVHNKv2bqp6p3s5A4PJybauSmQyl6IElflCxM9bBTjFi1k1mBrMixY5YGCOi0KyANOrutMsyYrS/opZLttwwNsHiRgP7xc2VJDbgu9lEg3uVXFzRlhq1dfRaIO44ZjOrFI4d0JhZV/SGamcgcEWF8qCQkyPd/K1MrqnkDjAy8LniXgoSVZWrF1kEEq0sVuugmBUpdgWnGxFrZoSdke+nU7NYi56blgUtFeK3GOu4GFfE4kYD+8XNRWRehDjVagz0X0t4qAUPqzUlV5jZzCqVYy8WvOlrTfJoZyCwPBCq/cDtqJIcPdgaGfgcD+asIgoWaBdZVBv0rMT2iArGmrjfQaoEU4t+Z7wQH5WMYoWMd3C5CreR8TvDzake0hNKdgcU0Jg7JgE/gBEAJoRf5flgQpAmczJ6fvOi9lENYByiJoQKUx9eXq2yjxAQuhWoJWAJgNpwdwBAdO7GmEkeQ+GdhHeW301wJxr4fEBRUctcQ/JcNRMmSK/yvDp+vzT/lbyNGaInMBw+XJqUUIQ9e4AHH0xcHgpJcyMtWSK9hkKJ6+gS/mzX1Cd+vHpQ+DtVUmLy2CaJ/izUmDcv+XMiiXxncnOlySrtnJjSDPKknfHfycJCb/SPcY7qamDcuMR5tOrrpeXVavd3l3BEXnmY1mG5CVg8pyAZy6iSW3ncPkxmVlWVK6RfQ5pjyrDlRsFyFCwgKrRhTiirmVl5eWLHiXeTGKmKHG+9seVJK+qzrbB4Dc3EY1iNnZk1K7HirloAdzLRcncm27oUjxnXRCqkSadCH5NBMqqEE7ulNLFf3FxO1sWIXc2OVGwrNXGiB5OA4DaBuMNXqcRvhFu5kUEzyrUVKcQXfl1mcVA24/KJv1E2NprL+qmqIsrONi4gbHMhRH22AYvX0UwmTTLq3BAlZ6BL18FVRGQn+9yTMTFrqpCk+bNY3Ghgv7iZQuaEgBPNahE9ozE28S0QtS/Rqs1Rg5tIFlNXEOXo/KCKiqQpFWSRVgVlS9CsjtZm9bajvohRcWMmhb2iwuYnrajPVp7YVKQ+kB3XMBiUYmm0MubUzsXKNWgtA50bgkJEYCb7enMskTZJmvmcxY0G9oubU8m4CHCqxc9LZQQ9N5JWU7IYBQS3DURtEjA3QMbffKqqWo5fpTPwVpYpz93jxg/X6FQIIvP5qAkIW5+04j5b+RobEThmzNZWax2ZvQZGB7pkWxy00Oqbmut02TJ7j68nMHNzkysskuRySSnYcuM97BU3QSJqT2RKEDjRROrbqFFj8zFlsaRmCVIQRFazmPLypIkhAwGi4OIWq4LWNrkdW6rKyjf9uXPd+eEaPd+ugmnw8dckGLT5SUvhs1WyjslWKTsqIYtarLTqspi5BkYHumRbHLTQ6pve9f397+0RbFYfYOwQFnri0+6B28ti1yxJyjxkcaOBveImQGRKEIi0Dia3MxN3U0VEOSaPF18XJ36/SoUCVQSRlRtfp05xN+088fic+IJ3Ij/cwkLJPWLlhmVnvR21VlIiHUs0fVpYsCl8tjFxTeGgVzsqIYu4K3Nz9ecXMzNoGdnGy64Mvb4Zdc+aFWx2lWEw+2AhIj7tfBDwstgVQc/S5/I0LixuNLBX3Ng1G7gTLaDR7yC11LYpN7jfOSRZeUQL8i0jory4fagIooiosOHmZ2QfakG7aj9ceRurNyw7auCIDroFBTrXy8yTVhURFcR9toWJn63VJ1c7i+8ZfdoUHegWL/auK8POitxWBzC7BP20aca/S6Li067vm5fFrggiwszlmc9Z3Ghgr7gx68pxo6k9VZjNhjJrEYo/VleSJhpV26TKePyGXSJAqS/xP1y1J1yzNyzRSUHNDD5FRUSVleL7NhxbYbZAo0HsfpI28rQpOtC55co0g1MWQjOCzW5BL/pQYcS9WFmpf1yrU7x4PW7HiDDjCsXeoPWIm4BCf61kQxmN5VE7lkBcUNUyosK4OiRON7Unwegfbk2NPTes+JvBsmXOPFkb3a8h65OFz1eP+Otjt0vNyNOmqLVn8WKxPro1iWT0NSwtdfa3Y1SwiVhFRcWP6EOFqMDT+43LTe9BIEkBt7bgYWHG4kaD9HdLqVlY5CBQM/s0moWld6z4Pka7yQLS/8FKKX5jtoM3ZaMDvB03LDVTb2WltJ0dA1FennQco0/swtYnA5+v0ac6petTUKA94GmlfqtNiVFTI13r0lL9WB0Ra4+XBjORrDI7mxnBpiUwjVozRQZbUeuf6O9P73NMUqq0LXjpuxwHixsNUiegOLrFx6yoBf9qPTVb6WtNeB8KIsTSdQmQtmujSqomnGvx5pttYF2tAd7qDWvZMv1jWo2P6NyZ6C9/kW48otYEowOF6OdbVW4smFLLFK70t9bnpVbdd/z4xPgjEYuVnrXHK/NWmamDZLWZHeSMpqVb6YeRsgtWfuNGj+dFy42HhRmLGw3sTwXPJaEbvSVh8xeSpkNYTFIAsNpTs1bmkhkrU7SFxUh8heixSkjftRGUBkkzN10fiIogVSO2owaLlRtWZWViyX+1YxqZXkGriU7vYPimK/D5qtUX0qoNoxX07PMRdexIlJERu1xp2gSjA7yoxUrPCpWE7JGE/hkVBGazpbR+J3aeTyBAdP75Yv3RGmxFxaddLlCviF0zeFiYsbjRwH5x05F0b/S2NT0hpeUHDhg8VrTA0IuvKKdYa47oseItUvH7jnJdlRsUOHJQclV4f0p1WIz+eEUHj8q4gGkjYkUu2Dd9urG+qt1AzW6r+VSm8/nq1RdSurEb/Xzj9xdvQTGzDzsGG5ezR2IwEzgc7woycr2cFGyysFm8WHyqEZHsJa3toy2ndoiSZItds3hYmLG40SB9A4r1spkaiSjDwP5kK5DRWJ1CkkRWIWkHL3cS3F8pEQWIgo366cwxN220CJvoQTcAomkWngTVXEvxA0Z0fIeZwVa0YN8VVyTW+LGjqQ0UwSBRoIaoIke6lkGFzyxg8BhWLVXRN1urmUF2PI0mq2ibkbgSIxWK//AHdwWbGZeUXKxSb79a+5DPx05RkkyxawWPCjMWNxrYK25mU8KNPektoNJXUSE2m2LjaQIGjy9bc2ZF/W3HeRUSVc3S/sGVl0fdtCspUZSFBZuR9N7GRmuZO04W6tNyc8U3UbGk9VSmGAyNOBHpE58pXGTOKyNNDhK2sg8vBnhGoyWc7HAnaAVhuyHYzMYMycUqtc5L73umV2narChJ1QrFHhRmLG40sFfcXEFky8BtZ1O7OZcKbl8at52VWB0lgWG2hUVS1W+JCuMG6iK1gFCVAGiRCSvVBIToHFTyIGlXRVarbfHilhus7AIy8lSmGuyLWPcfFUnViUUHWTvFn5n5wZT65FX0iqp52J0ghBWhq/e5mRF+qSpK7MTMNXDwurG40SD9xU1Apa9mxU3AYl8aiehxsjU2KabMP6SMKiOp6sGgFJzqpJiQb5Kilh6nW/zN30ytF7V9+0BUlEsUrKFI+rfoIOsV8ef1gV+0qJpH3QlCmBW6Ip+baObg4sWunGra4vB0E0bG7wwwFuid7A7EkQtguMp7IwT30QVAKOr/4QAKAfhM9Od1AEcD+D2An01sr4If0ulMCL/6vwMwDkC12PYPPgj8bGN/ovH5gKIiYPhwoLoauPpqZ45jpj+hEFBbCyxZAuTkAJs3A4EAUFEhvdbVAcXFiftYswbYtk39GARg6x5gjR+AH/D7gSefbDl+fH8AYN48ab38fLHzyM5O3JddxPfJa4RCwPTp0lARj7yspERar7gYWL4cKCiIXa+wUFqu9Pl6he3bja3v80lN5HPbtUtsn6LrMYlUVwPjxiXeK+rrpeXVgvdnu7BFTqUQ3goo7khEZUTUzuJ+olt85pJMkMTT1uNTvNWypbzU4gKqtWIH7HBfqD39y0/Hyag3otcfs09UZuteiFiHRMrxy0UOnZimQqlPXsMLLhU3XDRGLTdGPje23DiLS1WN2S2lgf2p4G2JTA3G7YnoADmbcaUkUkS2i04Dl5ll4Lg+IvKb6O+VNpxzQLsK8KRJxm6gWi1eJMk3WycmKjTTZPGiVxwvJhBb4eZjZHCNHwTjA7LVApVFXClqhfnMXJtJk1InliLZRdXcmtlaxJ2Zl9cSP2bkc/Nw7Za0wKXry+JGA3vFzQEiSwNxJyI60+I+tJqSSFEqxqe2rWwJMZIObtbCU0RSfI5eCrlOqyoxNshZaTU1ygO3kxlSRlpurj3zS4nG0FRWmh8ERWOAzM47Fd8nrwuaaJI5MLs9s7VTMUMiSQS5uan1vfASLglwFjca2CtubiIyOwi71pTq3wRJqngssn2AjAUVF5FUedhoP+Uqs7ILTEHgJAQSK7yfK1jwy0rTM7E6GSQrWtDMyrmpTWegNejMmmV9EDTj+mhsFK/EnApBtUoYzYKyy4WUrAkUnUhBZnHjLGy5ST72iptTSHmg9mKbS7ECRzTFu8LAuqVkrEJxdIsWYArWJaUKwzE1VnxE5S4IG/mmrnWjddJys2qV8y4vtUFr1qzE1Hi/X7nIW7IGQa3m9dgaLay47sy6kJJpMbI7xofdUs7iUhkCFjca2CtuziUyPIgns0XH4AQEtwkYXJdIqlBspn/y9kQtIqlEY54itNRYCYIox+H0btGBQiRINr6Vlbk/95SRG70dAdJ2Dhwi/Sks1I8nSiX0LBp2u5CSHetjJ+l0Ll7FhTIELG40sFfcrCT9AdtLLToGR46j0YpvySEp4FkkFiYvvJ6R+Jz4pnBjCQaJCjXMyfLkmDUWBl3RNm6c+ACp9kNXan6/5F7Rm9rht79tGaStzMUk2uQbvV0B0nYNHCL9ycuTrqno/lKlWJtWFqDd1jMvWjvMflZun0sqfafsxOGqxixuNPBOtpSVlkvWZiOXhYhGfEtMKySx6RQKSUpFN9uvQOIlDggGjJZaGHRFm9EbX1WVeDyIvO9Zs/TXlTO/nHZP2T2FhNL1CwZbpk0oLZX+1hsI7ByoqqoS5ywrKEg995UTg7eXKh7Lgj4+O07U5ebmubiVXeZVuEJxcrBf3FgRGUbbcSRZUuQMpgBJ1g4zgqIrUWTGbz1LiyxqZumsazbLSSnomaS+VQim+jopbpRufKI/YNH6GmbmWRIRQnacr9UAabWBo6pKOcgzN1d7ILDLxSA6kWIq4JTbxQsVj9W+J0b74ca5uJ1d1spgcaOBveImQOSasJFbDkliJnqgEK1fE9+iXVSrSHumblmAHCDJ8mPX+Silq8vn5CPhGaZrIAUYK8Xm2DHYR9+U1OqtlJcnDuBGnqiNWkhyc4l+8xv7zzX+fI30S3TgEIkbUhsI7JogMp2yZ5x0uyRzAkWR74kRq4uT55Ks7LJWBIsbDewVN2YmlbSr5VJs7IyZfciCZRlJlhyRbebafB5FlChsos4pCKJcnZtbbng9OfBYTeCITpYZ3fLyEoWNVhxNvNXB6XmW2rc3vo1WU6stY7bOjdb+9PqiVo/GDheDaH2cmhr1fXgJp90uyYghMWrJFBVuTp2LF2OU0gwWNxqkvuUmuvmIaJLLx5xmsH/x//tIfYoIhesaBFFHnZtFexAdgGTlKQFRXtz70ZWD5ZtaaanYjSi6HLuRm62SINKzaiS7+N/cueo3etFzEBk4jJyn2kBg1cUg+vmXlmrvx0t4wYUUjxUhYfT3kOxMJ87IchwWNxrYH3Nj1mqSqm2u4HrlCtdGyUqjRJRFTDQLKiPu/65diUpK7JlSwOg2QGK2jl3zLDnRRJ/q7TLpG7FQac31Y6U/6ShuiJLrQhLpi1pgrZIIMmrJTLZFhC03jsPiRgN7xQ2R+XiXVGuyC0svLTw6ODg66DlAylYaJQIt+zMbKKz3tGrGjG/0Zhvv0hJ5inV7ws1IrSDBwc8Ok75RkajVN7P9EXVLvf228fPTw2kXjxfSkI0E1qqJICPlDrwQy+Kl7LI0JeXEzdNPP029e/emrKwsGjJkCP3rX//SXL+yspL69etHWVlZdOKJJ9Kbb74pfCz7xU2Q7J3V26stOuhXLYVcLTjYKLJFzGctC0rvZmLUjG/GbWTGHWC08q6VVoRwlWcXn+yNuPeccqmIBBQD9qeFt4Y0YSOBtXoiKDdXX+x7KQvJi67BNCKlxM3SpUspMzOTXnzxRfr8889p8uTJ1KVLF9q5c6fi+u+++y75/X569NFHaf369VRaWkpt27alTz/9VOh49oubMrJfSJSRt9xdeaSczWTW7RSPkoUnLKDsKM6nZQY2YsYPBokKBevWRLfcXLHZseOPVVND1LGj9fOPucmGX0sQNT+XWiq+gxipsuzk9A1Oiqt4C0plpfZAvWyZveeXLEQfAmpq9EWQLEDVrpte2YBk4CXXYJqRUuJmyJAhNHXq1Mj/oVCIevbsSQ8//LDi+pdeeildcMEFMcuGDh1KN9xwg9Dx7I+50UqfNtMKqWVwt3O/Zptc8E/p3GtImk+qlFrq7xhFSSQVUqQGT2PPxHgao00vgM+IGb+qxFy6eYcOsf+LPq3bXYk4YqlRagH9/tiJVv0SpebUrNfxRfzsEFdKA5zW9Bry+5WVxs/BC26oaETdt6JxT+Xl4qUXvEKyPhOvfRdsJmXETWNjI/n9fnr11Vdjll911VV00UUXKW5TVFREc+fOjVl2zz330MCBA4WO6f1sqTJqEQxlJNW1sfsYIk3LxaQlSIzE2cjuLYVjB0EUmERUOsb6gG7roBiQxIFeerpIE7EIiBYBvOWWxGrIRXlEy14hCpSqz6Qe05KQxREMEs2eLXaOTmWZiMbfiH6PrMZNGXnC96KbS9RyIypu5AKXaTxo24IXvws2Y2T8boMksnv3boRCIXTv3j1meffu3fHFF18obrNjxw7F9Xfs2KG4fmNjIxobGyP/NzQ0AAD27dtnpethNtuwD5ksAG0AlMctPxJAMYAAgB9sPJ4ePQE8AmAUgOhr9QaAiQrrbwNwCaT+RvezJ4D/AXBR3PohALcAoMRdvUHA7QC+W2Sq5zEUFAAnnwzY8nkDwMnAqJ7AV98BjwF4CsDPJndFBNx6KzByJOD3K6+zdavYvnr2BDY+BqydCezYC/QAcNouwD8DwNUt6+2P2y4EYC2AHQB6fAuc9oN6X5zitNPE1svOtvFzjOKbb8TW27wZGDRIe51QCLjlFumzNYved0LmjTeAiQq/xW3bgEsuAV5+Gbgo/nfnAiefLH0fv/tOfZ2CAuDUU8X2l50N7N8fe+33x3+RWzl2fRdCIWDtWmDHDqBHD2DoUOBf/2r5/7TT3L8/RCGP2yTy+3Jea6lTX19PAGjt2rUxy2fNmkVDhgxR3KZt27ZUEfcE96c//Ym6deumuH5ZWRlBGkG5cePGjRs3binetm7dqqsvkmq56dq1K/x+P3bu3BmzfOfOnejRo4fiNj169DC0/p133omZM2dG/m9ubsbevXuRm5sLn89n8QyssW/fPhQVFWHr1q3Izs5Oal9SEb5+1uDrZw2+ftbg62ed1nYNiQg//fQTevbsqbtuUsVNZmYmBg8ejNWrV2Ps2LEAJPGxevVqTJs2TXGbYcOGYfXq1SgpKYkse+eddzBs2DDF9bOyspCVlRWzrEuXLnZ03zays7NbxRfTKfj6WYOvnzX4+lmDr591WtM17Ny5s9B6SRU3ADBz5kxcffXVOOWUUzBkyBDMmzcP+/fvxzXXXAMAuOqqq1BQUICHH34YADB9+nScddZZePzxx3HBBRdg6dKl+M9//oPnnnsumafBMAzDMIxHSLq4GT9+PHbt2oV77rkHO3bswC9+8QusXLkyEjS8ZcsWZGRkRNY/7bTTUFFRgdLSUsyePRvHHnssXnvtNZx44onJOgWGYRiGYTxE0sUNAEybNk3VDVVbW5uw7He/+x1+97vfOdwr58nKykJZWVmC24wRg6+fNfj6WYOvnzX4+lmHr6E6PiIrOYsMwzAMwzDeIkN/FYZhGIZhmNSBxQ3DMAzDMGkFixuGYRiGYdIKFjcMwzAMw6QVLG4c5k9/+hP69OmDdu3aYejQofj3v/+tum51dTVOOeUUdOnSBUcccQR+8Ytf4OWXX3axt97DyPWLZunSpfD5fJHikK0VI9dv0aJF8Pl8Ma1du3Yu9tZ7GP3+/fjjj5g6dSry8/ORlZWF4447DitWrHCpt97DyPUbMWJEwvfP5/PhggsucLHH3sLo92/evHno168f2rdvj6KiIsyYMQOHDh1yqbceQ2QOKMYcS5cupczMTHrxxRfp888/p8mTJ1OXLl1o586diusHAgGqrq6m9evX06ZNm2jevHnk9/tp5cqVLvfcGxi9fjJ1dXVUUFBAw4cPpzFjxrjTWQ9i9PotXLiQsrOzafv27ZG2Y8cOl3vtHYxev8bGRjrllFPoN7/5Df3zn/+kuro6qq2tpXXr1rncc29g9Prt2bMn5rv32Wefkd/vp4ULF7rbcY9g9Pr99a9/paysLPrrX/9KdXV1tGrVKsrPz6cZM2a43HNvwOLGQYYMGUJTp06N/B8Khahnz5708MMPC+/jl7/8JZWWljrRPc9j5voFg0E67bTT6IUXXqCrr766VYsbo9dv4cKF1LlzZ5d6532MXr9nnnmGjjrqKGpqanKri57G6v1v7ty51KlTJ/r555+d6qKnMXr9pk6dSmeffXbMspkzZ9Lpp5/uaD+9CrulHKKpqQkffvghRo0aFVmWkZGBUaNG4b333tPdnoiwevVqbNy4EWeeeaaTXfUkZq/ffffdh27duuG6665zo5uexez1+/nnn9G7d28UFRVhzJgx+Pzzz93orucwc/3eeOMNDBs2DFOnTkX37t1x4okn4qGHHkIoFHKr257B6v0PABYsWIDLLrsMRxxxhFPd9Cxmrt9pp52GDz/8MOK6+vrrr7FixQr85je/caXPXsMTFYrTkd27dyMUCkWmkZDp3r07vvjiC9XtGhoaUFBQgMbGRvj9fsyfPx/nnnuu0931HGau3z//+U8sWLAA69atc6GH3sbM9evXrx9efPFFDBw4EA0NDZgzZw5OO+00fP755ygsLHSj257BzPX7+uuv8b//+7+44oorsGLFCmzatAk333wzDh8+jLKyMje67RnM3v9k/v3vf+Ozzz7DggULnOqipzFz/S6//HLs3r0bZ5xxBogIwWAQN954I2bPnu1Glz0HixuP0alTJ6xbtw4///wzVq9ejZkzZ+Koo47CiBEjkt01T/PTTz9h4sSJeP7559G1a9dkdyclGTZsGIYNGxb5/7TTTkP//v3x5z//Gffff38Se5YaNDc3o1u3bnjuuefg9/sxePBg1NfX47HHHmt14sYqCxYswEknnYQhQ4YkuyspQ21tLR566CHMnz8fQ4cOxaZNmzB9+nTcf//9uPvuu5PdPddhceMQXbt2hd/vx86dO2OW79y5Ez169FDdLiMjA8cccwwA4Be/+AU2bNiAhx9+uNWJG6PXb/Pmzfjmm29w4YUXRpY1NzcDANq0aYONGzfi6KOPdrbTHsLs9y+atm3b4pe//CU2bdrkRBc9jZnrl5+fj7Zt28Lv90eW9e/fHzt27EBTUxMyMzMd7bOXsPL9279/P5YuXYr77rvPyS56GjPX7+6778bEiRNx/fXXAwBOOukk7N+/H1OmTMFdd90VMwF1a6B1na2LZGZmYvDgwVi9enVkWXNzM1avXh3zdKxHc3MzGhsbneiipzF6/Y4//nh8+umnWLduXaRddNFFGDlyJNatW4eioiI3u5907Pj+hUIhfPrpp8jPz3eqm57FzPU7/fTTsWnTpoioBoAvv/wS+fn5rUrYANa+f8uWLUNjYyOuvPJKp7vpWcxcvwMHDiQIGFloU2ucQjLJAc1pzdKlSykrK4sWLVpE69evpylTplCXLl0i6bUTJ06kO+64I7L+Qw89RG+//TZt3ryZ1q9fT3PmzKE2bdrQ888/n6xTSCpGr188rT1byuj1Ky8vp1WrVtHmzZvpww8/pMsuu4zatWtHn3/+ebJOIakYvX5btmyhTp060bRp02jjxo3097//nbp160YPPPBAsk4hqZj9/Z5xxhk0fvx4t7vrOYxev7KyMurUqRMtWbKEvv76a3r77bfp6KOPpksvvTRZp5BU2C3lIOPHj8euXbtwzz33YMeOHfjFL36BlStXRoLEtmzZEqO09+/fj5tvvhnbtm1D+/btcfzxx2Px4sUYP358sk4hqRi9fkwsRq/fDz/8gMmTJ2PHjh048sgjMXjwYKxduxYDBgxI1ikkFaPXr6ioCKtWrcKMGTMwcOBAFBQUYPr06bj99tuTdQpJxczvd+PGjfjnP/+Jt99+Oxld9hRGr19paSl8Ph9KS0tRX1+PvLw8XHjhhXjwwQeTdQpJxUfUGu1VDMMwDMOkK/zYyzAMwzBMWsHihmEYhmGYtILFDcMwDMMwaQWLG4ZhGIZh0goWNwzDMAzDpBUsbhiGYRiGSStY3DAMwzAMk1awuGEYhmEYJq1gccMwjOeZNGkSxo4dG7Ns+fLlaNeuHR5//PHkdIphGM/C0y8wDJNyvPDCC5g6dSqeffZZXHPNNcnuDsMwHoMtNwzDpBSPPvoobrnlFixduhTXXHMNdu3ahR49euChhx6KrLN27VpkZmZi9erV+Oabb5CRkYH//Oc/MfuZN28eevfuHTOLN8Mw6QFbbhiGSRluv/12zJ8/H3//+99xzjnnAADy8vLw4osvYuzYsTjvvPPQr18/TJw4EdOmTYusM2rUKCxcuBCnnHJKZF8LFy7EpEmTePJVhklDeOJMhmE8z6RJk7BkyRI0NTVh9erVOPvssxPWmTp1KmpqanDKKafg008/xQcffICsrCwAQGVlJW688UZs374dWVlZ+Oijj3DKKafg66+/Rp8+fVw+G4ZhnIYfWRiGSQkGDhyIPn36oKysDD///HPC+3PmzEEwGMSyZcvw17/+NSJsAGDs2LHw+/149dVXAQCLFi3CyJEjWdgwTJrC4oZhmJSgoKAAtbW1qK+vx/nnn4+ffvop5v3Nmzfju+++Q3NzM7755puY9zIzM3HVVVdh4cKFaGpqQkVFBa699loXe88wjJuwuGEYJmXo3bs3/u///g87duyIEThNTU248sorMX78eNx///24/vrr8f3338dse/3116Ompgbz589HMBhEcXFxMk6BYRgXYHHDMExKUVRUhNraWnz//fcYPXo09u3bh7vuugsNDQ344x//iNtvvx3HHXdcgmWmf//++NWvfoXbb78dEyZMQPv27ZN0BgzDOA2LG4ZhUo7CwkLU1tZi9+7dGD16NObMmYOXX34Z2dnZyMjIwMsvv4w1a9bgmWeeidnuuuuuQ1NTE7ukGCbN4WwphmFaDffffz+WLVuG//73v8nuCsMwDsKWG4Zh0p6ff/4Zn332GZ5++mnccsstye4OwzAOw+KGYZi0Z9q0aRg8eDBGjBjBLimGaQWwW4phGIZhmLSCLTcMwzAMw6QVLG4YhmEYhkkrWNwwDMMwDJNWsLhhGIZhGCatYHHDMAzDMExaweKGYRiGYZi0gsUNwzAMwzBpBYsbhmEYhmHSChY3DMMwDMOkFf8Pl0uWi+JZO+oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# for some n number of points: default to 1000\n", + "model1.y_scrambling(n=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2f0a391d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE : 0.2508516645820539\n", + "RMSE External : 0.3291162069672103\n", + "R2 : 0.7932755997633875\n", + "Q2 : 0.7099699197171891\n", + "Q2F1 : 0.7138880300214392\n", + "Q2F2 : 0.7106827057393145\n", + "Q2F3 : 0.9978028024221\n", + "CCC : 0.9007449089766993\n" + ] + }, + { + "data": { + "text/plain": [ + "{'RMSE': 0.2508516645820539,\n", + " 'RMSE External': 0.3291162069672103,\n", + " 'R2': 0.7932755997633875,\n", + " 'Q2': 0.7099699197171891,\n", + " 'Q2F1': 0.7138880300214392,\n", + " 'Q2F2': 0.7106827057393145,\n", + " 'Q2F3': 0.9978028024221,\n", + " 'CCC': 0.9007449089766993}" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model1.scores(verbose=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "972d748f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model features: ['RDF070v', 'X5Av']\n", + "Coefficients: [ -1.45342979 -96.40117135]\n", + "Intercept: -0.07684397375001017\n", + "RMSE: 0.250852\n", + "R^2: 0.793276\n" + ] + } + ], + "source": [ + "model1.mlr()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "b29d4de4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmkklEQVR4nO3df1TUdb7H8deAMhMoP1wUkKWgtavtlfAHyWK5ZYtimeXph5iWyDG7ldta3E3RFHL7gaurYfkD1/zR3qNpWWteJcq42Zpy9IS5m3eTLRUlFdRMUEzA4Xv/6DrbLPiDcWTw4/NxzpzTfPh+v/MeOuLT73xnsFmWZQkAAMAQfr4eAAAAwJuIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYpY2vB2hpDQ0NOnjwoNq3by+bzebrcQAAwEWwLEsnTpxQ586d5ed3/nMzV13cHDx4UDExMb4eAwAAeKC8vFw//elPz7vNVRc37du3l/TDNyc4ONjH0wAAgItRXV2tmJgY19/j53PVxc3Zl6KCg4OJGwAArjAXc0kJFxQDAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADBKG18PYJrYrPW+HgFotcqmD/b1CACuApy5AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARvF53MybN0+xsbFyOBxKSkrStm3bzrt9Xl6eunbtqmuuuUYxMTF65plndPr06RaaFgAAtHY+jZtVq1YpMzNTOTk52r59uxISEpSamqrDhw83uf2KFSuUlZWlnJwcffnll1q8eLFWrVqlyZMnt/DkAACgtfJp3MyePVtjx45VRkaGfv7znys/P1+BgYFasmRJk9tv2bJFt9xyi0aMGKHY2FgNHDhQDz300AXP9gAAgKuHz+Kmrq5OJSUlSklJ+ecwfn5KSUlRcXFxk/v07dtXJSUlrpjZs2ePCgoKdNddd53zcWpra1VdXe12AwAA5mrjqwc+evSonE6nIiIi3NYjIiK0a9euJvcZMWKEjh49qltvvVWWZenMmTN6/PHHz/uyVG5urqZNm+bV2QEAQOvl8wuKm2Pjxo16+eWXNX/+fG3fvl3vvvuu1q9frxdeeOGc+0yaNElVVVWuW3l5eQtODAAAWprPztyEh4fL399flZWVbuuVlZWKjIxscp+pU6fqkUce0aOPPipJio+PV01NjR577DE999xz8vNr3Gp2u112u937TwAAALRKPjtzExAQoN69e6uoqMi11tDQoKKiIiUnJze5z6lTpxoFjL+/vyTJsqzLNywAALhi+OzMjSRlZmYqPT1diYmJ6tOnj/Ly8lRTU6OMjAxJ0qhRoxQdHa3c3FxJ0pAhQzR79mz17NlTSUlJ+vrrrzV16lQNGTLEFTkAAODq5tO4SUtL05EjR5Sdna2Kigr16NFDhYWFrouM9+/f73amZsqUKbLZbJoyZYoOHDigjh07asiQIXrppZd89RQAAEArY7OustdzqqurFRISoqqqKgUHB3v9+LFZ671+TMAUZdMH+3oEAFeo5vz9fUW9WwoAAOBCiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGMXncTNv3jzFxsbK4XAoKSlJ27ZtO+/2x48f17hx4xQVFSW73a5/+7d/U0FBQQtNCwAAWrs2vnzwVatWKTMzU/n5+UpKSlJeXp5SU1NVWlqqTp06Ndq+rq5OAwYMUKdOnbR69WpFR0dr3759Cg0NbfnhAQBAq+TTuJk9e7bGjh2rjIwMSVJ+fr7Wr1+vJUuWKCsrq9H2S5Ys0bFjx7Rlyxa1bdtWkhQbG3vex6itrVVtba3rfnV1tfeeAAAAaHV89rJUXV2dSkpKlJKS8s9h/PyUkpKi4uLiJvdZu3atkpOTNW7cOEVERKh79+56+eWX5XQ6z/k4ubm5CgkJcd1iYmK8/lwAAEDr4bO4OXr0qJxOpyIiItzWIyIiVFFR0eQ+e/bs0erVq+V0OlVQUKCpU6dq1qxZevHFF8/5OJMmTVJVVZXrVl5e7tXnAQAAWhefvizVXA0NDerUqZP++Mc/yt/fX71799aBAwc0c+ZM5eTkNLmP3W6X3W5v4UkBAICv+CxuwsPD5e/vr8rKSrf1yspKRUZGNrlPVFSU2rZtK39/f9fajTfeqIqKCtXV1SkgIOCyzgwAAFo/n70sFRAQoN69e6uoqMi11tDQoKKiIiUnJze5zy233KKvv/5aDQ0NrrV//OMfioqKImwAAIAkH3/OTWZmphYtWqQ33nhDX375pZ544gnV1NS43j01atQoTZo0ybX9E088oWPHjmn8+PH6xz/+ofXr1+vll1/WuHHjfPUUAABAK+PTa27S0tJ05MgRZWdnq6KiQj169FBhYaHrIuP9+/fLz++f/RUTE6MPPvhAzzzzjG666SZFR0dr/Pjxmjhxoq+eAgAAaGVslmVZvh6iJVVXVyskJERVVVUKDg72+vFjs9Z7/ZiAKcqmD/b1CACuUM35+9vnv34BAADAm4gbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABjF47j5r//6L91yyy3q3Lmz9u3bJ0nKy8vTe++957XhAAAAmsujuFmwYIEyMzN111136fjx43I6nZKk0NBQ5eXleXM+AACAZvEobl577TUtWrRIzz33nPz9/V3riYmJ+uKLL7w2HAAAQHN5FDd79+5Vz549G63b7XbV1NRc8lAAAACe8ihu4uLitGPHjkbrhYWFuvHGGy91JgAAAI+18WSnzMxMjRs3TqdPn5ZlWdq2bZvefPNN5ebm6vXXX/f2jAAAABfNo7h59NFHdc0112jKlCk6deqURowYoc6dO2vOnDkaPny4t2cEAAC4aB7FjSSNHDlSI0eO1KlTp3Ty5El16tTJm3MBAAB4xOO4OSswMFCBgYHemAUAAOCSeRQ3cXFxstls5/z6nj17PB4IAADgUngUN08//bTb/fr6en3++ecqLCzUs88+6425AAAAPOJR3IwfP77J9Xnz5umzzz67pIEAAAAuhVd/ceadd96pd955x5uHBAAAaBavxs3q1avVoUMHbx4SAACgWTx6Wapnz55uFxRblqWKigodOXJE8+fP99pwAAAAzeVR3AwdOtTtvp+fnzp27Kjbb79d3bp188ZcAAAAHvEobnJycrw9BwAAgFdcdNxUV1df9EGDg4M9GgYAAOBSXXTchIaGnveD+6Qfrr2x2WxyOp2XPBgAAIAnLjpuPv7448s5BwAAgFdcdNzcdtttl3MOAAAAr7ikX5x56tQp7d+/X3V1dW7rN9100yUNBQAA4CmP4ubIkSPKyMjQ+++/3+TXueYGAAD4ikefUPz000/r+PHj2rp1q6655hoVFhbqjTfe0A033KC1a9d6e0YAAICL5tGZm//5n//Re++9p8TERPn5+em6667TgAEDFBwcrNzcXA0ePNjbcwIAAFwUj87c1NTUqFOnTpKksLAwHTlyRJIUHx+v7du3e286AACAZvIobrp27arS0lJJUkJCghYuXKgDBw4oPz9fUVFRXh0QAACgOTx6WWr8+PE6dOiQpB9+FcOgQYO0fPlyBQQEaNmyZd6cDwAAoFk8ipuHH37Y9d+9e/fWvn37tGvXLl177bUKDw/32nAAAADN5dHLUp9++qnb/cDAQPXq1YuwAQAAPudR3Nxxxx2Ki4vT5MmT9fe//93bMwEAAHjMo7g5ePCg/vM//1OffPKJunfvrh49emjmzJn65ptvvD0fAABAs3gUN+Hh4fr1r3+tzZs3a/fu3XrwwQf1xhtvKDY2VnfccYe3ZwQAALhoHsXNj8XFxSkrK0vTp09XfHy8PvnkE2/MBQAA4JFLipvNmzfrySefVFRUlEaMGKHu3btr/fr13poNAACg2Tx6K/ikSZO0cuVKHTx4UAMGDNCcOXN07733KjAw0NvzAQAANItHcfOXv/xFzz77rIYNG8bbvwEAQKviUdxs3rzZ9d9vvvmm7rnnHgUFBXltKAAAAE9d8gXF//Ef/6HKykpvzAIAAHDJLjluLMvyxhwAAABecclxAwAA0Jo065qbhoYGzZw5U2vXrlVdXZ1+9atfqaCgQNHR0ZdrPgAAgGZp1pmbl156SZMnT1a7du0UHR2tOXPmaOnSpbLb7ZdrPgAAgGZpVtz86U9/0vz58/XBBx9ozZo1+u///m8tX75cDQ0Nl2s+AACAZmlW3Ozfv1933XWX635KSopsNpsOHjzo9cEAAAA80ay4OXPmjBwOh9ta27ZtVV9f79WhAAAAPNWsC4oty9Lo0aPdrrE5ffq0Hn/8cbcP8Xv33Xe9NyEAAEAzNOvMTXp6ujp16qSQkBDX7eGHH1bnzp3d1ppr3rx5io2NlcPhUFJSkrZt23ZR+61cuVI2m01Dhw5t9mMCAAAzNevMzdKlS70+wKpVq5SZman8/HwlJSUpLy9PqampKi0tVadOnc65X1lZmX7729+qX79+Xp8JAABcuXz+IX6zZ8/W2LFjlZGRoZ///OfKz89XYGCglixZcs59nE6nRo4cqWnTpun6669vwWkBAEBr59O4qaurU0lJiVJSUlxrfn5+SklJUXFx8Tn3+93vfqdOnTppzJgxF3yM2tpaVVdXu90AAIC5fBo3R48eldPpVEREhNt6RESEKioqmtzn008/1eLFi7Vo0aKLeozc3Fy364FiYmIueW4AANB6+fxlqeY4ceKEHnnkES1atEjh4eEXtc+kSZNUVVXlupWXl1/mKQEAgC8164JibwsPD5e/v78qKyvd1isrKxUZGdlo+927d6usrExDhgxxrZ39dOQ2bdqotLRUP/vZz9z2sdvt/HoIAACuIj49cxMQEKDevXurqKjItdbQ0KCioiIlJyc32r5bt2764osvtGPHDtftnnvuUf/+/bVjxw5ecgIAAL49cyNJmZmZSk9PV2Jiovr06aO8vDzV1NQoIyNDkjRq1ChFR0crNzdXDodD3bt3d9s/NDRUkhqtAwCAq5PP4yYtLU1HjhxRdna2Kioq1KNHDxUWFrouMt6/f7/8/K6oS4MAAIAP2SzLsnw9REuqrq5WSEiIqqqqFBwc7PXjx2at9/oxAVOUTR/s6xEAXKGa8/c3p0QAAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGKVVxM28efMUGxsrh8OhpKQkbdu27ZzbLlq0SP369VNYWJjCwsKUkpJy3u0BAMDVxedxs2rVKmVmZionJ0fbt29XQkKCUlNTdfjw4Sa337hxox566CF9/PHHKi4uVkxMjAYOHKgDBw608OQAAKA1slmWZflygKSkJN18882aO3euJKmhoUExMTF66qmnlJWVdcH9nU6nwsLCNHfuXI0aNarR12tra1VbW+u6X11drZiYGFVVVSk4ONh7T+T/xWat9/oxAVOUTR/s6xEAXKGqq6sVEhJyUX9/+/TMTV1dnUpKSpSSkuJa8/PzU0pKioqLiy/qGKdOnVJ9fb06dOjQ5Ndzc3MVEhLiusXExHhldgAA0Dr5NG6OHj0qp9OpiIgIt/WIiAhVVFRc1DEmTpyozp07uwXSj02aNElVVVWuW3l5+SXPDQAAWq82vh7gUkyfPl0rV67Uxo0b5XA4mtzGbrfLbre38GQAAMBXfBo34eHh8vf3V2Vlpdt6ZWWlIiMjz7vvH/7wB02fPl0fffSRbrrppss5JgAAuIL49GWpgIAA9e7dW0VFRa61hoYGFRUVKTk5+Zz7zZgxQy+88IIKCwuVmJjYEqMCAIArhM9flsrMzFR6eroSExPVp08f5eXlqaamRhkZGZKkUaNGKTo6Wrm5uZKk3//+98rOztaKFSsUGxvrujanXbt2ateunc+eBwAAaB18HjdpaWk6cuSIsrOzVVFRoR49eqiwsNB1kfH+/fvl5/fPE0wLFixQXV2dHnjgAbfj5OTk6Pnnn2/J0QEAQCvk88+5aWnNeZ+8J/icG+Dc+JwbAJ66Yj7nBgAAwNuIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABglFYRN/PmzVNsbKwcDoeSkpK0bdu2827/9ttvq1u3bnI4HIqPj1dBQUELTQoAAFo7n8fNqlWrlJmZqZycHG3fvl0JCQlKTU3V4cOHm9x+y5YteuihhzRmzBh9/vnnGjp0qIYOHaqdO3e28OQAAKA1slmWZflygKSkJN18882aO3euJKmhoUExMTF66qmnlJWV1Wj7tLQ01dTUaN26da61X/ziF+rRo4fy8/Mv+HjV1dUKCQlRVVWVgoODvfdE/l9s1nqvHxMwRdn0wb4eAcAVqjl/f7dpoZmaVFdXp5KSEk2aNMm15ufnp5SUFBUXFze5T3FxsTIzM93WUlNTtWbNmia3r62tVW1tret+VVWVpB++SZdDQ+2py3JcwASX688dAPOd/flxMedkfBo3R48eldPpVEREhNt6RESEdu3a1eQ+FRUVTW5fUVHR5Pa5ubmaNm1ao/WYmBgPpwbgqZA8X08A4Ep34sQJhYSEnHcbn8ZNS5g0aZLbmZ6GhgYdO3ZMP/nJT2Sz2Xw4GS636upqxcTEqLy8/LK8BAmgdeDP+tXBsiydOHFCnTt3vuC2Po2b8PBw+fv7q7Ky0m29srJSkZGRTe4TGRnZrO3tdrvsdrvbWmhoqOdD44oTHBzMDzzgKsCfdfNd6IzNWT59t1RAQIB69+6toqIi11pDQ4OKioqUnJzc5D7Jyclu20vShg0bzrk9AAC4uvj8ZanMzEylp6crMTFRffr0UV5enmpqapSRkSFJGjVqlKKjo5WbmytJGj9+vG677TbNmjVLgwcP1sqVK/XZZ5/pj3/8oy+fBgAAaCV8HjdpaWk6cuSIsrOzVVFRoR49eqiwsNB10fD+/fvl5/fPE0x9+/bVihUrNGXKFE2ePFk33HCD1qxZo+7du/vqKaCVstvtysnJafSyJACz8Gcd/8rnn3MDAADgTT7/hGIAAABvIm4AAIBRiBsAAGAU4gYAABiFuEGLGD16tGw2m2w2m9q2bau4uDhNmDBBp0+fdm1z9us2m01BQUG64YYbNHr0aJWUlLgda+PGjW7bnr1NmTLFtc3f/vY39evXTw6HQzExMZoxY4bbMW6//fYmjzF48D9/saNlWcrOzlZUVJSuueYapaSk6KuvvrpM3yHg6uR0OtW3b1/dd999butVVVWKiYnRc889J0lN/nlduXJlo+N9//336tChg8LDw91+ryCuLsQNWsygQYN06NAh7dmzR6+88ooWLlyonJwct22WLl2qQ4cO6X//9381b948nTx5UklJSfrTn/7U6HilpaU6dOiQ63b2t8hXV1dr4MCBuu6661RSUqKZM2fq+eefd/sspHfffddt3507d8rf318PPviga5sZM2bo1VdfVX5+vrZu3aqgoCClpqa6BRmAS+Pv769ly5apsLBQy5cvd60/9dRT6tChg9vPiLM/H87ehg4d2uh477zzjv793/9d3bp1O+cvVMZVwAJaQHp6unXvvfe6rd13331Wz549XfclWX/+858b7Ttq1Cirffv21rFjxyzLsqyPP/7YkmR99913TT7W/PnzrbCwMKu2tta1NnHiRKtr167nnO+VV16x2rdvb508edKyLMtqaGiwIiMjrZkzZ7q2OX78uGW3260333zTsizLSk5OtiZMmOB2nMOHD1tt2rSxPvnkk3M+FoDG5syZY4WFhVkHDx601qxZY7Vt29basWOH6+vn+vnwr26//XYrPz/fWrBggTVgwADX+sKFC62oqCjL6XS6bX/PPfdYGRkZXnseaB04cwOf2Llzp7Zs2aKAgIALbvvMM8/oxIkT2rBhw0Udu7i4WL/85S/djp2amqrS0lJ99913Te6zePFiDR8+XEFBQZKkvXv3qqKiQikpKa5tQkJClJSUpOLiYknSyJEjtXLlSlk/+qioVatWqXPnzurXr99FzQrgB0899ZQSEhL0yCOP6LHHHlN2drYSEhLcthk3bpzCw8PVp08fLVmyxO3PniTt3r1bxcXFGjZsmIYNG6ZNmzZp3759kqQHH3xQ3377rT7++GPX9seOHVNhYaFGjhx5+Z8gWhRxgxazbt06tWvXTg6HQ/Hx8Tp8+LCeffbZC+7XrVs3SVJZWZnb+k9/+lO1a9fOdfv2228lSRUVFa5PuD7r7P2KiopGx9+2bZt27typRx991LV2drumjnP2a8OGDdPBgwf16aefur6+YsUKPfTQQ/zGeaCZbDabFixYoKKiIkVERLheZj7rd7/7nd566y1t2LBB999/v5588km99tprbtssWbJEd955p8LCwtShQwelpqZq6dKlkqSwsDDdeeedWrFihWv71atXKzw8XP3797/8TxAtirhBi+nfv7927NihrVu3Kj09XRkZGbr//vsvuN/Zf539azBs2rRJO3bscN3CwsI8mmvx4sWKj49Xnz59mrVfx44dNXDgQNd1Anv37lVxcTH/CgQ8tGTJEgUGBmrv3r365ptv3L42depU3XLLLerZs6cmTpyoCRMmaObMma6vO51OvfHGG3r44Yddaw8//LCWLVumhoYGST+cbX3nnXdcFxovX75cw4cPd/sVPzAD/0fRYoKCgtSlSxclJCRoyZIl2rp1qxYvXnzB/b788ktJUlxcnNt6XFycunTp4rqd/QEVGRmpyspKt23P3o+MjHRbr6mp0cqVKzVmzBi39bPbNXWcHx9j5MiRWr16terr67VixQrFx8crPj7+gs8JgLstW7bolVde0bp169SnTx+NGTOm0ctOP5aUlKRvvvnGFSoffPCBDhw4oLS0NLVp00Zt2rTR8OHDtW/fPhUVFUmShgwZIsuytH79epWXl2vTpk38Y8RQxA18ws/PT5MnT9aUKVP0/fffn3fbvLw8BQcHu13/cj7Jycn6y1/+ovr6etfahg0b1LVr10Znd95++23V1ta6/WtP+iGcIiMjXT8UpR/ehbV161YlJye71u69916dPn1ahYWFWrFiBT8oAQ+cOnVKo0eP1hNPPKH+/ftr8eLF2rZtm/Lz88+5z9mztWd/WebZ6+Z+fDZ3x44dGj58uOsfUQ6HQ/fdd5+WL1+uN998U127dlWvXr1a5Dmihfn0cmZcNZp6t1R9fb0VHR3tekeSJGvp0qXWoUOHrLKyMuvDDz+07r//fsvf399avny5a78LvVvq+PHjVkREhPXII49YO3futFauXGkFBgZaCxcubLTtrbfeaqWlpTV5nOnTp1uhoaHWe++9Z/3tb3+z7r33XisuLs76/vvv3bYbOXKklZCQYNlsNmvfvn3N+K4AsCzL+s1vfmN16dLFqqmpca3l5+db7dq1s/bu3WutXbvWWrRokfXFF19YX331lTV//nwrMDDQys7Otizrh3cptm3b1nr//fcbHbugoMCy2+3Wt99+a1mWZW3YsMGy2+1W165drRdeeKFlniBaHHGDFtFU3FiWZeXm5lodO3a0Tp48aUly3RwOh/Wzn/3MSk9Pt0pKStz2uVDcWJZl/fWvf7VuvfVWy263W9HR0db06dMbbbNr1y5LkvXhhx82eYyGhgZr6tSpVkREhGW3261f/epXVmlpaaPtCgoKLEnWL3/5y/N/EwA0snHjRsvf39/atGlTo68NHDjQuuOOO6yCggKrR48eVrt27aygoCArISHBys/Pd72t+w9/+IMVGhpq1dXVNTpGbW2tFRoaas2ZM8eyLMtyOp1WVFSUJcnavXv35X1y8BmbZZ3nRU0AAIArDNfcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAuq9GjR8tmszW6ff3115d87GXLlik0NPTShwRglDa+HgCA+QYNGqSlS5e6rXXs2NFH0zStvr5ebdu29fUYALyAMzcALju73a7IyEi3m7+/v9577z316tVLDodD119/vaZNm6YzZ8649ps9e7bi4+MVFBSkmJgYPfnkkzp58qQkaePGjcrIyFBVVZXrbNDzzz8vSbLZbFqzZo3bDKGhoVq2bJkkqaysTDabTatWrdJtt90mh8Oh5cuXS5Jef/113XjjjXI4HOrWrZvmz5/vOkZdXZ1+/etfKyoqSg6HQ9ddd51yc3Mv3zcOgEc4cwPAJzZt2qRRo0bp1VdfVb9+/bR792499thjkqScnBxJkp+fn1599VXFxcVpz549evLJJzVhwgTNnz9fffv2VV5enrKzs1VaWipJateuXbNmyMrK0qxZs9SzZ09X4GRnZ2vu3Lnq2bOnPv/8c40dO1ZBQUFKT0/Xq6++qrVr1+qtt97Stddeq/LycpWXl3v3GwPgkhE3AC67devWuYXHnXfeqe+++05ZWVlKT0+XJF1//fV64YUXNGHCBFfcPP300659YmNj9eKLL+rxxx/X/PnzFRAQoJCQENlsNkVGRno019NPP6377rvPdT8nJ0ezZs1yrcXFxenvf/+7Fi5cqPT0dO3fv1833HCDbr31VtlsNl133XUePS6Ay4u4AXDZ9e/fXwsWLHDdDwoK0k033aTNmzfrpZdecq07nU6dPn1ap06dUmBgoD766CPl5uZq165dqq6u1pkzZ9y+fqkSExNd/11TU6Pdu3drzJgxGjt2rGv9zJkzCgkJkfTDxdEDBgxQ165dNWjQIN19990aOHDgJc8BwLuIGwCXXVBQkLp06eK2dvLkSU2bNs3tzMlZDodDZWVluvvuu/XEE0/opZdeUocOHfTpp59qzJgxqqurO2/c2Gw2WZbltlZfX9/kXD+eR5IWLVqkpKQkt+38/f0lSb169dLevXv1/vvv66OPPtKwYcOUkpKi1atXX+A7AKAlETcAfKJXr14qLS1tFD1nlZSUqKGhQbNmzZKf3w/vfXjrrbfctgkICJDT6Wy0b8eOHXXo0CHX/a+++kqnTp067zwRERHq3Lmz9uzZo5EjR55zu+DgYKWlpSktLU0PPPCABg0apGPHjqlDhw7nPT6AlkPcAPCJ7Oxs3X333br22mv1wAMPyM/PT3/961+1c+dOvfjii+rSpYvq6+v12muvaciQIdq8ebPy8/PdjhEbG6uTJ0+qqKhICQkJCgwMVGBgoO644w7NnTtXycnJcjqdmjhx4kW9zXvatGn6zW9+o5CQEA0aNEi1tbX67LPP9N133ykzM1OzZ89WVFSUevbsKT8/P7399tuKjIzks3aAVoa3ggPwidTUVK1bt04ffvihbr75Zv3iF7/QK6+84rpINyEhQbNnz9bvf/97de/eXcuXL2/0tuu+ffvq8ccfV1pamjp27KgZM2ZIkmbNmqWYmBj169dPI0aM0G9/+9uLukbn0Ucf1euvv66lS5cqPj5et912m5YtW6a4uDhJUvv27TVjxgwlJibq5ptvVllZmQoKClxnlgC0DjbrX1+YBgAAuILxzw0AAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABG+T8747GSo3CEyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model1.p_value_plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "5ecdce6c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5Q0lEQVR4nO3de1hU9d7//9eAMCg6g3gA2ZLSTans1DyUTh7KJKmNnaSdliWZ1qWhppanb21SO+ht2zxUSmVF7lszO5d4iDAPKWmx09SU2xJTU6A7hBEPiLB+f3ixfk64zVFg0PV8XNe6Lubz+cxnvRdewMs1n7WWzTAMQwAAABbm5+sCAAAAfI1ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALK+Orwu4FJSXl+vgwYNq0KCBbDabr8sBAADnwTAMHTlyRBEREfLzO/c5IALReTh48KAiIyN9XQYAALgA+/fvV/Pmzc85hkB0Hho0aCDp9DfU4XD4uBoAAHA+3G63IiMjzb/j50IgOg8VH5M5HA4CEQAAl5jzWe7ComoAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5dXxdAABYQcuJab4uAajV9k6P9+n+OUMEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsz+eB6Ndff9UDDzygRo0aqW7dumrbtq2+++47s98wDCUnJ6tZs2aqW7euYmNjtXv3bo85CgoKNHDgQDkcDoWEhGjIkCEqLi72GPPDDz+oR48eCgoKUmRkpGbMmFEjxwcAAGo/nwaiw4cPq1u3bgoICNCKFSv0448/aubMmWrYsKE5ZsaMGZo7d65SUlK0adMmBQcHKy4uTidOnDDHDBw4UDt27FB6erqWLVumdevW6dFHHzX73W63+vTpoxYtWigrK0svvviiJk+erNdff71GjxcAANRONsMwDF/tfOLEidqwYYPWr19/1n7DMBQREaEnnnhCTz75pCSpqKhIYWFhSk1N1YABA7Rz507FxMTo22+/VefOnSVJK1eu1N/+9jcdOHBAERERmj9/vp566inl5uYqMDDQ3Pcnn3yiXbt2VdpvSUmJSkpKzNdut1uRkZEqKiqSw+Go6m8DAAtoOTHN1yUAtdre6fFVPqfb7ZbT6Tyvv98+PUP02WefqXPnzvr73/+upk2bqkOHDnrjjTfM/pycHOXm5io2NtZsczqd6tKlizIzMyVJmZmZCgkJMcOQJMXGxsrPz0+bNm0yx/Ts2dMMQ5IUFxen7OxsHT58uFJd06ZNk9PpNLfIyMgqP3YAAFB7+DQQ7dmzR/Pnz9dVV12lVatWafjw4Ro1apTeeecdSVJubq4kKSwszON9YWFhZl9ubq6aNm3q0V+nTh2FhoZ6jDnbHGfu40yTJk1SUVGRue3fv78KjhYAANRWdXy58/LycnXu3FkvvPCCJKlDhw7avn27UlJSlJiY6LO67Ha77Ha7z/YPAABqlk/PEDVr1kwxMTEebW3atNG+ffskSeHh4ZKkvLw8jzF5eXlmX3h4uPLz8z36T506pYKCAo8xZ5vjzH0AAADr8mkg6tatm7Kzsz3a/vd//1ctWrSQJEVFRSk8PFwZGRlmv9vt1qZNm+RyuSRJLpdLhYWFysrKMsesXr1a5eXl6tKlizlm3bp1Ki0tNcekp6erVatWHle0AQAAa/JpIBozZoy++eYbvfDCC/rpp5+0ePFivf7660pKSpIk2Ww2jR49Ws8995w+++wzbdu2TYMGDVJERITuuusuSafPKN1666165JFHtHnzZm3YsEEjRozQgAEDFBERIUm6//77FRgYqCFDhmjHjh167733NGfOHI0dO9ZXhw4AAGoRn64huu666/Txxx9r0qRJmjp1qqKiojR79mwNHDjQHDN+/HgdPXpUjz76qAoLC9W9e3etXLlSQUFB5phFixZpxIgR6t27t/z8/JSQkKC5c+ea/U6nU1988YWSkpLUqVMnNW7cWMnJyR73KgIAANbl0/sQXSq8uY8BAJwN9yECzs3S9yECAACoDQhEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8nwaiCZPniybzeaxtW7d2uw/ceKEkpKS1KhRI9WvX18JCQnKy8vzmGPfvn2Kj49XvXr11LRpU40bN06nTp3yGLNmzRp17NhRdrtd0dHRSk1NrYnDAwAAlwifnyH661//qkOHDpnb119/bfaNGTNGn3/+ud5//32tXbtWBw8eVL9+/cz+srIyxcfH6+TJk9q4caPeeecdpaamKjk52RyTk5Oj+Ph49erVS1u2bNHo0aM1dOhQrVq1qkaPEwAA1F51fF5AnToKDw+v1F5UVKQ333xTixcv1s033yxJevvtt9WmTRt988036tq1q7744gv9+OOP+vLLLxUWFqZrr71Wzz77rCZMmKDJkycrMDBQKSkpioqK0syZMyVJbdq00ddff61Zs2YpLi7urDWVlJSopKTEfO12u6vhyAEAQG3h8zNEu3fvVkREhK688koNHDhQ+/btkyRlZWWptLRUsbGx5tjWrVvriiuuUGZmpiQpMzNTbdu2VVhYmDkmLi5ObrdbO3bsMMecOUfFmIo5zmbatGlyOp3mFhkZWWXHCwAAah+fBqIuXbooNTVVK1eu1Pz585WTk6MePXroyJEjys3NVWBgoEJCQjzeExYWptzcXElSbm6uRxiq6K/oO9cYt9ut48ePn7WuSZMmqaioyNz2799fFYcLAABqKZ9+ZHbbbbeZX7dr105dunRRixYttHTpUtWtW9dnddntdtntdp/tHwAA1Cyff2R2ppCQEF199dX66aefFB4erpMnT6qwsNBjTF5enrnmKDw8vNJVZxWv/2yMw+HwaegCAAC1R60KRMXFxfr555/VrFkzderUSQEBAcrIyDD7s7OztW/fPrlcLkmSy+XStm3blJ+fb45JT0+Xw+FQTEyMOebMOSrGVMwBAADg00D05JNPau3atdq7d682btyou+++W/7+/rrvvvvkdDo1ZMgQjR07Vl999ZWysrI0ePBguVwude3aVZLUp08fxcTE6MEHH9TWrVu1atUqPf3000pKSjI/8ho2bJj27Nmj8ePHa9euXZo3b56WLl2qMWPG+PLQAQBALeLTNUQHDhzQfffdp99//11NmjRR9+7d9c0336hJkyaSpFmzZsnPz08JCQkqKSlRXFyc5s2bZ77f399fy5Yt0/Dhw+VyuRQcHKzExERNnTrVHBMVFaW0tDSNGTNGc+bMUfPmzbVgwYL/eMk9AACwHpthGIavi6jt3G63nE6nioqK5HA4fF0OgEtQy4lpvi4BqNX2To+v8jm9+ftdq9YQAQAA+AKBCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWN4FBaL169frgQcekMvl0q+//ipJ+te//qWvv/66SosDAACoCV4Hog8//FBxcXGqW7euvv/+e5WUlEiSioqK9MILL1R5gQAAANXN60D03HPPKSUlRW+88YYCAgLM9m7duunf//53lRYHAABQE7wORNnZ2erZs2eldqfTqcLCwqqoCQAAoEZ5HYjCw8P1008/VWr/+uuvdeWVV1ZJUQAAADXJ60D0yCOP6PHHH9emTZtks9l08OBBLVq0SE8++aSGDx9eHTUCAABUqzrevmHixIkqLy9X7969dezYMfXs2VN2u11PPvmkRo4cWR01AgAAVCuvA5HNZtNTTz2lcePG6aefflJxcbFiYmJUv3796qgPAACg2nkdiIqKilRWVqbQ0FDFxMSY7QUFBapTp44cDkeVFggAAFDdvF5DNGDAAC1ZsqRS+9KlSzVgwIAqKQoAAKAmeR2INm3apF69elVqv+mmm7Rp06YqKQoAAKAmeR2ISkpKdOrUqUrtpaWlOn78eJUUBQAAUJO8DkTXX3+9Xn/99UrtKSkp6tSpU5UUBQAAUJO8XlT93HPPKTY2Vlu3blXv3r0lSRkZGfr222/1xRdfVHmBAAAA1c3rM0TdunVTZmamIiMjtXTpUn3++eeKjo7WDz/8oB49elRHjQAAANXK6zNEknTttddq0aJFVV0LAACAT1xQICovL9dPP/2k/Px8lZeXe/Sd7cGvAAAAtZnXgeibb77R/fffr19++UWGYXj02Ww2lZWVVVlxAAAANcHrQDRs2DB17txZaWlpatasmWw2W3XUBQAAUGO8DkS7d+/WBx98oOjo6OqoBwAAoMZ5fZVZly5d9NNPP1VHLQAAAD7h9RmikSNH6oknnlBubq7atm2rgIAAj/527dpVWXEAAAA1wetAlJCQIEl6+OGHzTabzSbDMFhUDQAALkleB6KcnJzqqAMAAMBnvA5ELVq0qI46AAAAfOaCbswoST/++KP27dunkydPerTfcccdF10UAABATfI6EO3Zs0d33323tm3bZq4dkmTej4g1RAAA4FLj9WX3jz/+uKKiopSfn6969eppx44dWrdunTp37qw1a9ZUQ4kAAADVy+szRJmZmVq9erUaN24sPz8/+fn5qXv37po2bZpGjRql77//vjrqBAAAqDZenyEqKytTgwYNJEmNGzfWwYMHJZ1ebJ2dnV211QEAANQAr88QXXPNNdq6dauioqLUpUsXzZgxQ4GBgXr99dd15ZVXVkeNAAAA1crrQPT000/r6NGjkqSpU6eqb9++6tGjhxo1aqQlS5ZUeYEAAADVzetAFBcXZ34dHR2tXbt2qaCgQA0bNjSvNAMAALiUeL2G6OGHH9aRI0c82kJDQ3Xs2DGPx3kAAABcKrwORO+8846OHz9eqf348eNauHBhlRQFAABQk847ELndbhUVFckwDB05ckRut9vcDh8+rOXLl6tp06YXXMj06dNls9k0evRos+3EiRNKSkpSo0aNVL9+fSUkJCgvL8/jffv27VN8fLzq1aunpk2baty4cTp16pTHmDVr1qhjx46y2+2Kjo5WamrqBdcJAAAuP+e9higkJEQ2m002m01XX311pX6bzaYpU6ZcUBHffvutXnvtNbVr186jfcyYMUpLS9P7778vp9OpESNGqF+/ftqwYYOk07cAiI+PV3h4uDZu3KhDhw5p0KBBCggI0AsvvCDp9MNo4+PjNWzYMC1atEgZGRkaOnSomjVr5rEeCgAAWJfNqHj2xp9Yu3atDMPQzTffrA8//FChoaFmX2BgoFq0aKGIiAivCyguLlbHjh01b948Pffcc7r22ms1e/ZsFRUVqUmTJlq8eLHuueceSdKuXbvUpk0bZWZmqmvXrlqxYoX69u2rgwcPKiwsTJKUkpKiCRMm6LffflNgYKAmTJigtLQ0bd++3dzngAEDVFhYqJUrV561ppKSEpWUlJiv3W63IiMjVVRUJIfD4fUxAkDLiWm+LgGo1fZOj6/yOd1ut5xO53n9/T7vj8xuvPFGde/eXYmJiercubNuvPFGc3O5XBcUhiQpKSlJ8fHxio2N9WjPyspSaWmpR3vr1q11xRVXKDMzU9Lpu2a3bdvWDEPS6avg3G63duzYYY7549xxcXHmHGczbdo0OZ1Oc4uMjLygYwMAAJcGrxZV16lTRx988EGVPcB1yZIl+ve//61p06ZV6svNzVVgYKBCQkI82sPCwpSbm2uOOTMMVfRX9J1rjNvtPuvicEmaNGmSioqKzG3//v0XdHwAAODS4PV9iG6++WatXbtWLVu2vKgd79+/X48//rjS09MVFBR0UXNVNbvdLrvd7usyAABADfE6EN12222aOHGitm3bpk6dOik4ONij/4477jivebKyspSfn6+OHTuabWVlZVq3bp1eeeUVrVq1SidPnlRhYaHHWaK8vDyFh4dLksLDw7V582aPeSuuQjtzzB+vTMvLy5PD4VDdunXP76ABAMBlzetA9Nhjj0mSXnrppUp9NpvtvD9O6927t7Zt2+bRNnjwYLVu3VoTJkxQZGSkAgIClJGRoYSEBElSdna29u3bJ5fLJUlyuVx6/vnnlZ+fb17yn56eLofDoZiYGHPM8uXLPfaTnp5uzgEAAOB1ICovL6+SHTdo0EDXXHONR1twcLAaNWpktg8ZMkRjx45VaGioHA6HRo4cKZfLpa5du0qS+vTpo5iYGD344IOaMWOGcnNz9fTTTyspKcn8yGvYsGF65ZVXNH78eD388MNavXq1li5dqrQ0rvgAAACneR2IatKsWbPk5+enhIQElZSUKC4uTvPmzTP7/f39tWzZMg0fPlwul0vBwcFKTEzU1KlTzTFRUVFKS0vTmDFjNGfOHDVv3lwLFizgHkQAAMB03vchOtPatWv1z3/+Uzt37pQkxcTEaNy4cerRo0eVF1gbeHMfAwA4G+5DBJzbJXMfogr/8z//o9jYWNWrV0+jRo3SqFGjVLduXfXu3VuLFy++4KIBAAB8xeszRG3atNGjjz6qMWPGeLS/9NJLeuONN8yzRpcTzhABuFicIQLO7ZI7Q7Rnzx7dfvvtldrvuOMO5eTkeDsdAACAz3kdiCIjI5WRkVGp/csvv+QRFwAA4JLk9VVmTzzxhEaNGqUtW7bohhtukCRt2LBBqampmjNnTpUXCAAAUN28DkTDhw9XeHi4Zs6cqaVLl0o6va7ovffe05133lnlBQIAAFS3C7oP0d1336277767qmsBAADwiQu+MeN3333ncR+iTp06VVlRAAAANcnrQHTgwAHdd9992rBhg/nQ1cLCQt1www1asmSJmjdvXtU1AgAAVCuvrzIbOnSoSktLtXPnThUUFKigoEA7d+5UeXm5hg4dWh01AgAAVCuvzxCtXbtWGzduVKtWrcy2Vq1a6eWXX75sH90BAAAubxd0H6LS0tJK7WVlZYqIiKiSogAAAGqS14HoxRdf1MiRI/Xdd9+Zbd99950ef/xx/fOf/6zS4gAAAGqC188ya9iwoY4dO6ZTp06pTp3Tn7hVfB0cHOwxtqCgoOoq9SGeZQbgYvEsM+DcfP0sM6/XEM2ePftC6wIAAKiVvA5EiYmJ1VEHAACAz1zwjRnz8/OVn5+v8vJyj/Z27dpddFEAAAA1yetAlJWVpcTERO3cuVN/XH5ks9lUVlZWZcUBAADUBK8D0cMPP6yrr75ab775psLCwmSz2aqjLgAAgBrjdSDas2ePPvzwQ0VHR1dHPQAAADXO6/sQ9e7dW1u3bq2OWgAAAHzC6zNECxYsUGJiorZv365rrrlGAQEBHv133HFHlRUHAABQE7wORJmZmdqwYYNWrFhRqY9F1QAA4FLk9UdmI0eO1AMPPKBDhw6pvLzcYyMMAQCAS5HXgej333/XmDFjFBYWVh31AAAA1DivA1G/fv301VdfVUctAAAAPuH1GqKrr75akyZN0tdff622bdtWWlQ9atSoKisOAACgJnj9tPuoqKj/PJnNpj179lx0UbUNT7sHcLF42j1wbpfc0+5zcnIuuDAAAIDayOs1RAAAAJeb8zpDNHbsWD377LMKDg7W2LFjzzn2pZdeqpLCAAAAasp5BaLvv/9epaWl5tf/CQ96BQAAl6LzCkRnXmbPJfcAAOBywxoiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeRcUiP71r3+pW7duioiI0C+//CJJmj17tj799NMqLQ4AAKAmeB2I5s+fr7Fjx+pvf/ubCgsLVVZWJkkKCQnR7Nmzq7o+AACAaud1IHr55Zf1xhtv6KmnnpK/v7/Z3rlzZ23btq1KiwMAAKgJXgeinJwcdejQoVK73W7X0aNHq6QoAACAmuR1IIqKitKWLVsqta9cuVJt2rTxaq758+erXbt2cjgccjgccrlcWrFihdl/4sQJJSUlqVGjRqpfv74SEhKUl5fnMce+ffsUHx+vevXqqWnTpho3bpxOnTrlMWbNmjXq2LGj7Ha7oqOjlZqa6lWdAADg8nZej+4409ixY5WUlKQTJ07IMAxt3rxZ7777rqZNm6YFCxZ4NVfz5s01ffp0XXXVVTIMQ++8847uvPNOff/99/rrX/+qMWPGKC0tTe+//76cTqdGjBihfv36acOGDZKksrIyxcfHKzw8XBs3btShQ4c0aNAgBQQE6IUXXpB0+oxWfHy8hg0bpkWLFikjI0NDhw5Vs2bNFBcX5+3hAwCAy5DNMAzD2zctWrRIkydP1s8//yxJioiI0JQpUzRkyJCLLig0NFQvvvii7rnnHjVp0kSLFy/WPffcI0natWuX2rRpo8zMTHXt2lUrVqxQ3759dfDgQYWFhUmSUlJSNGHCBP32228KDAzUhAkTlJaWpu3bt5v7GDBggAoLC7Vy5crzqsntdsvpdKqoqEgOh+OijxGA9bScmObrEoBabe/0+Cqf05u/3159ZHbq1CktXLhQsbGx2r17t4qLi5Wbm6sDBw5cdBgqKyvTkiVLdPToUblcLmVlZam0tFSxsbHmmNatW+uKK65QZmamJCkzM1Nt27Y1w5AkxcXFye12a8eOHeaYM+eoGFMxx9mUlJTI7XZ7bAAA4PLlVSCqU6eOhg0bphMnTkiSuW7nYmzbtk3169eX3W7XsGHD9PHHHysmJka5ubkKDAxUSEiIx/iwsDDl5uZKknJzcz3CUEV/Rd+5xrjdbh0/fvysNU2bNk1Op9PcIiMjL+oYAQBA7eb1ourrr79e33//fZUV0KpVK23ZskWbNm3S8OHDlZiYqB9//LHK5r8QkyZNUlFRkbnt37/fp/UAAIDq5fWi6scee0xPPPGEDhw4oE6dOik4ONijv127dl7NFxgYqOjoaElSp06d9O2332rOnDnq37+/Tp48qcLCQo+zRHl5eQoPD5ckhYeHa/PmzR7zVVyFduaYP16ZlpeXJ4fDobp16561JrvdLrvd7tVxAACAS5fXgWjAgAGSpFGjRpltNptNhmHIZrOZd66+UOXl5SopKVGnTp0UEBCgjIwMJSQkSJKys7O1b98+uVwuSZLL5dLzzz+v/Px886O79PR0ORwOxcTEmGOWL1/usY/09HRzDgAAAK8DUU5OTpXtfNKkSbrtttt0xRVX6MiRI1q8eLHWrFmjVatWyel0asiQIRo7dqxCQ0PlcDg0cuRIuVwude3aVZLUp08fxcTE6MEHH9SMGTOUm5urp59+WklJSeYZnmHDhumVV17R+PHj9fDDD2v16tVaunSp0tK44gMAAJzmdSBq0aJFle08Pz9fgwYN0qFDh+R0OtWuXTutWrVKt9xyiyRp1qxZ8vPzU0JCgkpKShQXF6d58+aZ7/f399eyZcs0fPhwuVwuBQcHKzExUVOnTjXHREVFKS0tTWPGjNGcOXPUvHlzLViwgHsQAQAAk9f3IVq4cOE5+wcNGnRRBdVG3IcIwMXiPkTAufn6PkRenyF6/PHHPV6Xlpbq2LFjCgwMVL169S7LQAQAAC5vXl92f/jwYY+tuLhY2dnZ6t69u959993qqBEAAKBaeR2Izuaqq67S9OnTK509AgAAuBRUSSCSTt/F+uDBg1U1HQAAQI3xeg3RZ5995vHaMAwdOnRIr7zyirp161ZlhQEAANQUrwPRXXfd5fHaZrOpSZMmuvnmmzVz5syqqgsAAKDGeB2IysvLq6MOAAAAn/F6DdHUqVN17NixSu3Hjx/3uCEiAADApcLrQDRlyhQVFxdXaj927JimTJlSJUUBAADUJK8DUcVDXP9o69atCg0NrZKiAAAAatJ5ryFq2LChbDabbDabrr76ao9QVFZWpuLiYg0bNqxaigQAAKhO5x2IZs+eLcMw9PDDD2vKlClyOp1mX2BgoFq2bCmXy1UtRQIAAFSn8w5EiYmJkk4/Pf6GG25QQEBAtRUFAABQk7y+7P7GG280vz5x4oROnjzp0c/T4AEAwKXG60XVx44d04gRI9S0aVMFBwerYcOGHhsAAMClxutANG7cOK1evVrz58+X3W7XggULNGXKFEVERGjhwoXVUSMAAEC18vojs88//1wLFy7UTTfdpMGDB6tHjx6Kjo5WixYttGjRIg0cOLA66gQAAKg2Xp8hKigo0JVXXinp9HqhgoICSVL37t21bt26qq0OAACgBngdiK688krl5ORIklq3bq2lS5dKOn3mKCQkpEqLAwAAqAleB6LBgwdr69atkqSJEyfq1VdfVVBQkMaMGaNx48ZVeYEAAADVzes1RGPGjDG/jo2N1a5du5SVlaXo6Gi1a9euSosDAACoCV4HojOdOHFCLVq0UIsWLaqqHgAAgBrn9UdmZWVlevbZZ/WXv/xF9evX1549eyRJ//jHP/Tmm29WeYEAAADVzetA9Pzzzys1NVUzZsxQYGCg2X7NNddowYIFVVocAABATfA6EC1cuFCvv/66Bg4cKH9/f7O9ffv22rVrV5UWBwAAUBO8DkS//vqroqOjK7WXl5ertLS0SooCAACoSV4HopiYGK1fv75S+wcffKAOHTpUSVEAAAA1yeurzJKTk5WYmKhff/1V5eXl+uijj5Sdna2FCxdq2bJl1VEjAABAtfL6DNGdd96pzz//XF9++aWCg4OVnJysnTt36vPPP9ctt9xSHTUCAABUq/M+Q7Rnzx5FRUXJZrOpR48eSk9Pr866AAAAasx5nyG66qqr9Ntvv5mv+/fvr7y8vGopCgAAoCaddyAyDMPj9fLly3X06NEqLwgAAKCmeb2GCAAA4HJz3oHIZrPJZrNVagMAALjUnfeiasMw9NBDD8lut0s6/WDXYcOGKTg42GPcRx99VLUVAgAAVLPzDkSJiYkerx944IEqLwYAAMAXzjsQvf3229VZBwAAgM+wqBoAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFieTwPRtGnTdN1116lBgwZq2rSp7rrrLmVnZ3uMOXHihJKSktSoUSPVr19fCQkJlZ6htm/fPsXHx6tevXpq2rSpxo0bp1OnTnmMWbNmjTp27Ci73a7o6GilpqZW9+EBAIBLhE8D0dq1a5WUlKRvvvlG6enpKi0tVZ8+fTyekTZmzBh9/vnnev/997V27VodPHhQ/fr1M/vLysoUHx+vkydPauPGjXrnnXeUmpqq5ORkc0xOTo7i4+PVq1cvbdmyRaNHj9bQoUO1atWqGj1eAABQO9mMPz611Yd+++03NW3aVGvXrlXPnj1VVFSkJk2aaPHixbrnnnskSbt27VKbNm2UmZmprl27asWKFerbt68OHjyosLAwSVJKSoomTJig3377TYGBgZowYYLS0tK0fft2c18DBgxQYWGhVq5c+ad1ud1uOZ1OFRUVyeFwVM/BA7istZyY5usSgFpt7/T4Kp/Tm7/ftWoNUVFRkSQpNDRUkpSVlaXS0lLFxsaaY1q3bq0rrrhCmZmZkqTMzEy1bdvWDEOSFBcXJ7fbrR07dphjzpyjYkzFHH9UUlIit9vtsQEAgMtXrQlE5eXlGj16tLp166ZrrrlGkpSbm6vAwECFhIR4jA0LC1Nubq455swwVNFf0XeuMW63W8ePH69Uy7Rp0+R0Os0tMjKySo4RAADUTrUmECUlJWn79u1asmSJr0vRpEmTVFRUZG779+/3dUkAAKAanfezzKrTiBEjtGzZMq1bt07Nmzc328PDw3Xy5EkVFhZ6nCXKy8tTeHi4OWbz5s0e81VchXbmmD9emZaXlyeHw6G6detWqsdut8tut1fJsQEAgNrPp2eIDMPQiBEj9PHHH2v16tWKiory6O/UqZMCAgKUkZFhtmVnZ2vfvn1yuVySJJfLpW3btik/P98ck56eLofDoZiYGHPMmXNUjKmYAwAAWJtPzxAlJSVp8eLF+vTTT9WgQQNzzY/T6VTdunXldDo1ZMgQjR07VqGhoXI4HBo5cqRcLpe6du0qSerTp49iYmL04IMPasaMGcrNzdXTTz+tpKQk8yzPsGHD9Morr2j8+PF6+OGHtXr1ai1dulRpaVz1AQAAfHyGaP78+SoqKtJNN92kZs2amdt7771njpk1a5b69u2rhIQE9ezZU+Hh4froo4/Mfn9/fy1btkz+/v5yuVx64IEHNGjQIE2dOtUcExUVpbS0NKWnp6t9+/aaOXOmFixYoLi4uBo9XgAAUDvVqvsQ1VbchwjAxeI+RMC5cR8iAAAAHyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAy/NpIFq3bp1uv/12RUREyGaz6ZNPPvHoNwxDycnJatasmerWravY2Fjt3r3bY0xBQYEGDhwoh8OhkJAQDRkyRMXFxR5jfvjhB/Xo0UNBQUGKjIzUjBkzqvvQAADAJcSngejo0aNq3769Xn311bP2z5gxQ3PnzlVKSoo2bdqk4OBgxcXF6cSJE+aYgQMHaseOHUpPT9eyZcu0bt06Pfroo2a/2+1Wnz591KJFC2VlZenFF1/U5MmT9frrr1f78QEAgEuDzTAMw9dFSJLNZtPHH3+su+66S9Lps0MRERF64okn9OSTT0qSioqKFBYWptTUVA0YMEA7d+5UTEyMvv32W3Xu3FmStHLlSv3tb3/TgQMHFBERofnz5+upp55Sbm6uAgMDJUkTJ07UJ598ol27dp1XbW63W06nU0VFRXI4HFV/8AAuey0npvm6BKBW2zs9vsrn9Obvd61dQ5STk6Pc3FzFxsaabU6nU126dFFmZqYkKTMzUyEhIWYYkqTY2Fj5+flp06ZN5piePXuaYUiS4uLilJ2drcOHD5913yUlJXK73R4bAAC4fNXaQJSbmytJCgsL82gPCwsz+3Jzc9W0aVOP/jp16ig0NNRjzNnmOHMffzRt2jQ5nU5zi4yMvPgDAgAAtVatDUS+NGnSJBUVFZnb/v37fV0SAACoRrU2EIWHh0uS8vLyPNrz8vLMvvDwcOXn53v0nzp1SgUFBR5jzjbHmfv4I7vdLofD4bEBAIDLV60NRFFRUQoPD1dGRobZ5na7tWnTJrlcLkmSy+VSYWGhsrKyzDGrV69WeXm5unTpYo5Zt26dSktLzTHp6elq1aqVGjZsWENHAwAAajOfBqLi4mJt2bJFW7ZskXR6IfWWLVu0b98+2Ww2jR49Ws8995w+++wzbdu2TYMGDVJERIR5JVqbNm1066236pFHHtHmzZu1YcMGjRgxQgMGDFBERIQk6f7771dgYKCGDBmiHTt26L333tOcOXM0duxYHx01AACober4cuffffedevXqZb6uCCmJiYlKTU3V+PHjdfToUT366KMqLCxU9+7dtXLlSgUFBZnvWbRokUaMGKHevXvLz89PCQkJmjt3rtnvdDr1xRdfKCkpSZ06dVLjxo2VnJzsca8iAABgbbXmPkS1GfchAnCxuA8RcG7chwgAAMDHCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDy6vi6AEgtJ6b5ugSg1to7Pd7XJQCwAM4QAQAAy7NUIHr11VfVsmVLBQUFqUuXLtq8ebOvSwIAALWAZQLRe++9p7Fjx+qZZ57Rv//9b7Vv315xcXHKz8/3dWkAAMDHLBOIXnrpJT3yyCMaPHiwYmJilJKSonr16umtt97ydWkAAMDHLLGo+uTJk8rKytKkSZPMNj8/P8XGxiozM7PS+JKSEpWUlJivi4qKJElut7ta6isvOVYt8wKXg+r6uatp/JwD51YdP+sVcxqG8adjLRGI/u///k9lZWUKCwvzaA8LC9OuXbsqjZ82bZqmTJlSqT0yMrLaagRwds7Zvq4AQE2ozp/1I0eOyOl0nnOMJQKRtyZNmqSxY8ear8vLy1VQUKBGjRrJZrP5sDJUN7fbrcjISO3fv18Oh8PX5QCoJvysW4NhGDpy5IgiIiL+dKwlAlHjxo3l7++vvLw8j/a8vDyFh4dXGm+322W32z3aQkJCqrNE1DIOh4NfkoAF8LN++fuzM0MVLLGoOjAwUJ06dVJGRobZVl5eroyMDLlcLh9WBgAAagNLnCGSpLFjxyoxMVGdO3fW9ddfr9mzZ+vo0aMaPHiwr0sDAAA+ZplA1L9/f/32229KTk5Wbm6urr32Wq1cubLSQmtYm91u1zPPPFPpI1MAlxd+1vFHNuN8rkUDAAC4jFliDREAAMC5EIgAAIDlEYgAAIDlEYgAAIDlEYhQaz300EOy2Wyy2WwKCAhQVFSUxo8frxMnTphjKvptNpuCg4N11VVX6aGHHlJWVpbHXGvWrPEYW7E9/fTT5pgffvhBPXr0UFBQkCIjIzVjxgyPOW666aazzhEfH2+OMQxDycnJatasmerWravY2Fjt3r27mr5DgDWVlZXphhtuUL9+/Tzai4qKFBkZqaeeekqSzvrzumTJkkrzHT9+XKGhoWrcuLHHcyxhLQQi1Gq33nqrDh06pD179mjWrFl67bXX9Mwzz3iMefvtt3Xo0CHt2LFDr776qoqLi9WlSxctXLiw0nzZ2dk6dOiQuU2cOFHS6dv49+nTRy1atFBWVpZefPFFTZ48Wa+//rr53o8++sjjvdu3b5e/v7/+/ve/m2NmzJihuXPnKiUlRZs2bVJwcLDi4uI8QhyAi+Pv76/U1FStXLlSixYtMttHjhyp0NBQj98RFb8fKra77rqr0nwffvih/vrXv6p169b65JNPauAIUCsZQC2VmJho3HnnnR5t/fr1Mzp06GC+lmR8/PHHld47aNAgo0GDBkZBQYFhGIbx1VdfGZKMw4cPn3Vf8+bNMxo2bGiUlJSYbRMmTDBatWr1H+ubNWuW0aBBA6O4uNgwDMMoLy83wsPDjRdffNEcU1hYaNjtduPdd981DMMwXC6XMX78eI958vPzjTp16hhr1679j/sCUNmcOXOMhg0bGgcPHjQ++eQTIyAgwNiyZYvZ/59+P/zRTTfdZKSkpBjz5883brnlFrP9tddeM5o1a2aUlZV5jL/jjjuMwYMHV9lxoHbgDBEuGdu3b9fGjRsVGBj4p2PHjBmjI0eOKD09/bzmzszMVM+ePT3mjouLU3Z2tg4fPnzW97z55psaMGCAgoODJUk5OTnKzc1VbGysOcbpdKpLly7KzMyUJA0cOFBLliyRccbtv9577z1FRESoR48e51UrgNNGjhyp9u3b68EHH9Sjjz6q5ORktW/f3mNMUlKSGjdurOuvv15vvfWWx8+eJP3888/KzMzUvffeq3vvvVfr16/XL7/8Ikn6+9//rt9//11fffWVOb6goEArV67UwIEDq/8AUaMIRKjVli1bpvr16ysoKEht27ZVfn6+xo0b96fva926tSRp7969Hu3NmzdX/fr1ze3333+XJOXm5la6a3nF69zc3Erzb968Wdu3b9fQoUPNtopxZ5unou/ee+/VwYMH9fXXX5v9ixcv1n333SebzfanxwXg/2ez2TR//nxlZGQoLCzM/Ai8wtSpU7V06VKlp6crISFBjz32mF5++WWPMW+99ZZuu+02NWzYUKGhoYqLi9Pbb78tSWrYsKFuu+02LV682Bz/wQcfqHHjxurVq1f1HyBqFIEItVqvXr20ZcsWbdq0SYmJiRo8eLASEhL+9H0V/wv8Y8hYv369tmzZYm4NGza8oLrefPNNtW3bVtdff71X72vSpIn69OljrnvIyclRZmYm/9sELtBbb72levXqKScnRwcOHPDo+8c//qFu3bqpQ4cOmjBhgsaPH68XX3zR7C8rK9M777yjBx54wGx74IEHlJqaqvLyckmnz+p++OGH5mLrRYsWacCAAfLz48/n5YZ/UdRqwcHBio6OVvv27fXWW29p06ZNevPNN//0fTt37pQkRUVFebRHRUUpOjra3Cp+qYWHhysvL89jbMXr8PBwj/ajR49qyZIlGjJkiEd7xbizzXPmHAMHDtQHH3yg0tJSLV68WG3btlXbtm3/9JgAeNq4caNmzZqlZcuW6frrr9eQIUMqfSR2pi5duujAgQNmuFm1apV+/fVX9e/fX3Xq1FGdOnU0YMAA/fLLL8rIyJAk3X777TIMQ2lpadq/f7/Wr1/Pf2AuUwQiXDL8/Pz0//7f/9PTTz+t48ePn3Ps7Nmz5XA4PNbznIvL5dK6detUWlpqtqWnp6tVq1aVziK9//77Kikp8fhfpXQ6bIWHh5u/SKXTV69t2rRJLpfLbLvzzjt14sQJrVy5UosXL+aXK3ABjh07poceekjDhw9Xr1699Oabb2rz5s1KSUn5j++pOCtc8UDXinWAZ5413rJliwYMGGD+xysoKEj9+vXTokWL9O6776pVq1bq2LFjjRwjaphPl3QD53C2q8xKS0uNv/zlL+aVXJKMt99+2zh06JCxd+9e44svvjASEhIMf39/Y9GiReb7/uwqs8LCQiMsLMx48MEHje3btxtLliwx6tWrZ7z22muVxnbv3t3o37//WeeZPn26ERISYnz66afGDz/8YNx5551GVFSUcfz4cY9xAwcONNq3b2/YbDbjl19+8eK7AsAwDGPUqFFGdHS0cfToUbMtJSXFqF+/vpGTk2N89tlnxhtvvGFs27bN2L17tzFv3jyjXr16RnJysmEYp6/uDAgIMFasWFFp7uXLlxt2u934/fffDcMwjPT0dMNutxutWrUynn322Zo5QNQ4AhFqrbMFIsMwjGnTphlNmjQxiouLDUnmFhQUZPzXf/2XkZiYaGRlZXm8588CkWEYxtatW43u3bsbdrvd+Mtf/mJMnz690phdu3YZkowvvvjirHOUl5cb//jHP4ywsDDDbrcbvXv3NrKzsyuNW758uSHJ6Nmz57m/CQAqWbNmjeHv72+sX7++Ul+fPn2Mm2++2Vi+fLlx7bXXGvXr1zeCg4ON9u3bGykpKeYl9P/85z+NkJAQ4+TJk5XmKCkpMUJCQow5c+YYhmEYZWVlRrNmzQxJxs8//1y9BwefsRnGOT5wBQAAsADWEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAGodR566CHZbLZK208//XTRc6empiokJOTiiwRwWanj6wIA4GxuvfVWvf322x5tTZo08VE1Z1daWqqAgABflwGgCnCGCECtZLfbFR4e7rH5+/vr008/VceOHRUUFKQrr7xSU6ZM0alTp8z3vfTSS2rbtq2Cg4MVGRmpxx57TMXFxZKkNWvWaPDgwSoqKjLPOk2ePFmSZLPZ9Mknn3jUEBISotTUVEnS3r17ZbPZ9N577+nGG29UUFCQFi1aJElasGCB2rRpo6CgILVu3Vrz5s0z5zh58qRGjBihZs2aKSgoSC1atNC0adOq7xsH4IJwhgjAJWP9+vUaNGiQ5s6dqx49eujnn3/Wo48+Kkl65plnJEl+fn6aO3euoqKitGfPHj322GMaP3685s2bpxtuuEGzZ89WcnKysrOzJUn169f3qoaJEydq5syZ6tChgxmKkpOT9corr6hDhw76/vvv9cgjjyg4OFiJiYmaO3euPvvsMy1dulRXXHGF9u/fr/3791ftNwbARSMQAaiVli1b5hFWbrvtNh0+fFgTJ05UYmKiJOnKK6/Us88+q/Hjx5uBaPTo0eZ7WrZsqeeee07Dhg3TvHnzFBgYKKfTKZvNpvDw8Auqa/To0erXr5/5+plnntHMmTPNtqioKP3444967bXXlJiYqH379umqq65S9+7dZbPZ1KJFiwvaL4DqRSACUCv16tVL8+fPN18HBwerXbt22rBhg55//nmzvaysTCdOnNCxY8dUr149ffnll5o2bZp27dolt9utU6dOefRfrM6dO5tfHz16VD///LOGDBmiRx55xGw/deqUnE6npNMLxG+55Ra1atVKt956q/r27as+ffpcdB0AqhaBCECtFBwcrOjoaI+24uJiTZkyxeMMTYWgoCDt3btXffv21fDhw/X8888rNDRUX3/9tYYMGaKTJ0+eMxDZbDYZhuHRVlpaeta6zqxHkt544w116dLFY5y/v78kqWPHjsrJydGKFSv05Zdf6t5771VsbKw++OCDP/kOAKhJBCIAl4yOHTsqOzu7UlCqkJWVpfLycs2cOVN+fqevGVm6dKnHmMDAQJWVlVV6b5MmTXTo0CHz9e7du3Xs2LFz1hMWFqaIiAjt2bNHAwcO/I/jHA6H+vfvr/79++uee+7RrbfeqoKCAoWGhp5zfgA1h0AE4JKRnJysvn376oorrtA999wjPz8/bd26Vdu3b9dzzz2n6OholZaW6uWXX9btt9+uDRs2KCUlxWOOli1bqri4WBkZGWrfvr3q1aunevXq6eabb9Yrr7wil8ulsrIyTZgw4bwuqZ8yZYpGjRolp9OpW2+9VSUlJfruu+90+PBhjR07Vi+99JKaNWumDh06yM/PT++//77Cw8O5FxJQy3DZPYBLRlxcnJYtW6YvvvhC1113nbp27apZs2aZC5Xbt2+vl156Sf/93/+ta665RosWLap0ifsNN9ygYcOGqX///mrSpIlmzJghSZo5c6YiIyPVo0cP3X///XryySfPa83R0KFDtWDBAr399ttq27atbrzxRqWmpioqKkqS1KBBA82YMUOdO3fWddddp71792r58uXmGSwAtYPN+OOH5gAAABbDf1EAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDlEYgAAIDl/X+mfdKlTcdinAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model1.feature_importance_plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "7f1dd508", + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "zero-dimensional arrays cannot be concatenated", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[23], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m cv\u001b[39m.\u001b[39;49mcross_validation(dfx, dfy, [\u001b[39m'\u001b[39;49m\u001b[39mRDF070v\u001b[39;49m\u001b[39m'\u001b[39;49m, \u001b[39m'\u001b[39;49m\u001b[39mX5Av\u001b[39;49m\u001b[39m'\u001b[39;49m])\n", + "File \u001b[0;32m~/projects/pyQSARplus/cross_validation.py:63\u001b[0m, in \u001b[0;36mcross_validation.__init__\u001b[0;34m(self, X_data, y_data, feature_set)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39moriginal_q2 \u001b[39m=\u001b[39m q2_score(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39my, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmlr\u001b[39m.\u001b[39mpredict(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mx))\n\u001b[1;32m 62\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mxx \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mconcatenate((\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mx))\n\u001b[0;32m---> 63\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39myy \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39;49mconcatenate((\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49my))\n", + "File \u001b[0;32m<__array_function__ internals>:180\u001b[0m, in \u001b[0;36mconcatenate\u001b[0;34m(*args, **kwargs)\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: zero-dimensional arrays cannot be concatenated" + ] + } + ], + "source": [ + "cv.cross_validation(dfx, dfy, ['RDF070v', 'X5Av'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ad197714", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.0" + }, + "vscode": { + "interpreter": { + "hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/src/__init__.py b/src/__init__.py new file mode 100644 index 0000000..d8a1090 --- /dev/null +++ b/src/__init__.py @@ -0,0 +1 @@ +name = "qsarify" diff --git a/classification.py b/src/classification.py similarity index 68% rename from classification.py rename to src/classification.py index 5ea9c72..4ee1594 100644 --- a/classification.py +++ b/src/classification.py @@ -1,40 +1,44 @@ #-*- coding: utf-8 -*- -# Author: Stephen Szwiec +# Author: Stephen Szwiec # Date: 2023-02-19 # Description: Classification Scoring Module -""" -Copyright (C) 2023 Stephen Szwiec - -This file is part of pyqsarplus. - -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program. If not, see . +# +#Copyright (C) 2023 Stephen Szwiec +# +#This file is part of qsarify. +# +#This program is free software: you can redistribute it and/or modify +#it under the terms of the GNU General Public License as published by +#the Free Software Foundation, either version 3 of the License, or +#(at your option) any later version. +# +#This program is distributed in the hope that it will be useful, +#but WITHOUT ANY WARRANTY; without even the implied warranty of +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +#GNU General Public License for more details. +# +#You should have received a copy of the GNU General Public License +#along with this program. If not, see . """ +Classification Scoring Module +This module provides summary information about Classification +""" import numpy as np from sklearn.metrics import accuracy_score + class ClassifierScore : """ Provides summary information about Classification - + Parameters ---------- y_data : pandas DataFrame , shape = (n_samples,) pred_y : pandas DataFrame , shape = (n_samples,) => predicted Y values as result of classification - + Sub functions ------- score (self) @@ -45,10 +49,11 @@ def __init__ (self,y_data,pred_y) : """ Initializes the classifer """ + # Initialize the variables self.y_data = y_data self.pred_y = pred_y self.real_y = [] #hash y_data - + # Hash the y_data for i in np.array(self.y_data) : self.real_y.append(i[0]) @@ -59,8 +64,10 @@ def score (self) : ------- None """ + # Initialize the variables n = 0 cnt = 0 + # Count the number of wrong predictions for i in np.array(self.real_y) : if i != self.pred_y[n] : cnt += 1 @@ -73,23 +80,25 @@ def tf_table(self) : """ Calculate Precision & Recall Generates a confusion matrix - + Returns ------- None """ + # Initialize the variables one = 0 zero = 0 n = 0 cnt = 0 realzero = 0 realone = 0 + # Initialize the confusion matrix for i in np.array(self.y_data) : if i[0] == 0 : zero += 1 if i[0] == 1 : one += 1 - + # Count the number of wrong predictions for i in np.array(self.y_data): if i[0] != self.pred_y[n]: #print ('real',i[0],'///','pred',y_pred[n]) @@ -99,8 +108,7 @@ def tf_table(self) : realone += 1 cnt +=1 n += 1 - - + # Print the results print(('Number of 1 :',one)) print('Number of 0 :',zero) print('True Positive(real 1 but pred 1) :',one-realone) #TP @@ -109,4 +117,3 @@ def tf_table(self) : print('False Negative(real 1 but pred 0) :',realone) #FN print('Precision', (one-realone)/((one-realone)+realzero)) # TP / TP+FP print('Recall',(one-realone)/((one-realone)+realone)) # TP / TP+FN - diff --git a/clustering.py b/src/clustering.py similarity index 72% rename from clustering.py rename to src/clustering.py index 694f412..4db562c 100644 --- a/clustering.py +++ b/src/clustering.py @@ -2,32 +2,45 @@ # Author: Stephen Szwiec # Date: 2023-02-19 # Description: Clustering Module -""" -Copyright (C) 2023 Stephen Szwiec - -This file is part of pyqsarplus. - -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. +# +#Copyright (C) 2023 Stephen Szwiec +# +#This file is part of qsarify. +# +#This program is free software: you can redistribute it and/or modify +#it under the terms of the GNU General Public License as published by +#the Free Software Foundation, either version 3 of the License, or +#(at your option) any later version. +# +#This program is distributed in the hope that it will be useful, +#but WITHOUT ANY WARRANTY; without even the implied warranty of +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +#GNU General Public License for more details. +# +#You should have received a copy of the GNU General Public License +#along with this program. If not, see . +# +# -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. +""" +Clustering Module -You should have received a copy of the GNU General Public License -along with this program. If not, see . +This module contains functions for clustering features based on hierarchical clustering method +and calculating the cophenetic correlation coefficient of linkages. The cophenetic correlation +coefficient is a measure of the correlation between the distance of observations in feature space +and the distance of observations in cluster space. The cophenetic correlation coefficient is +calculated for each linkage method and the method with the highest cophenetic correlation +coefficient is used to cluster the features. The cophenetic correlation coefficient is calculated +using the scipy.cluster.hierarchy.cophenet function. """ + import numpy as np import pandas as pd from pandas import DataFrame, Series import matplotlib.pyplot as plt from scipy.spatial.distance import pdist, squareform from scipy.cluster.hierarchy import linkage, dendrogram, fcluster, cophenet -from sklearn.decomposition import PCA def cophenetic(X_data): """ @@ -35,7 +48,8 @@ def cophenetic(X_data): Parameters ---------- - X_data : pandas DataFrame, shape = (n_samples, n_features) + X_data : pandas DataFrame, shape = (n_samples, m_features) + method : str, method for linkage generation, default = 'corr' (Pearson correlation) Returns ------- @@ -63,7 +77,7 @@ class featureCluster: Parameters ---------- X_data : pandas DataFrame, shape = (n_samples, n_features) - link : str, kind of linkage method, default = 'average' + link : str, kind of linkage method, default = 'average', 'complete', 'single' cut_d : int, depth in cluster(dendrogram), default = 3 Sub functions @@ -71,8 +85,8 @@ class featureCluster: set_cluster(self) cluster_dist(self) """ - - def __init__(self, X_data, link='average', cut_d=3): + + def __init__(self, X_data, method='corr', link='average', cut_d=3): """ Initializes cluster object: Makes a cluster of features based on hierarchical clustering method @@ -85,14 +99,15 @@ def __init__(self, X_data, link='average', cut_d=3): cut_d : int, depth in cluster(dendrogram), default = 3 This is a tunable parameter for clustering """ + self.method = method self.cluster_info = [] self.assignments = np.array([]) self.cluster_output = DataFrame() self.cludict = {} self.X_data = X_data - self.xcorr = pd.DataFrame(abs(np.corrcoef(self.X_data, rowvar=False)), columns=X_data.columns, index=X_data.columns) self.link = link self.cut_d = cut_d + self.xcorr = pd.DataFrame(abs(np.corrcoef(self.X_data, rowvar=False)), columns=X_data.columns, index=X_data.columns) def set_cluster(self, verbose=False, graph=False): """ @@ -120,7 +135,7 @@ def set_cluster(self, verbose=False, graph=False): self.cluster_info.append( [k for k, v in self.cludict.items() if v == t] ) if verbose: print('\n','\x1b[1;46m'+'Cluster'+'\x1b[0m',t,self.cluster_info[t-1],) - if graph: + if graph: plt.figure(figsize=(25, 40)) plt.title('Hierarchical Clustering Dendrogram') plt.xlabel('sample index') @@ -137,7 +152,7 @@ def cluster_dist(self): ------- None """ - + # have we actually clustered? If not, please do so first: if self.assignments.any() == False: self.set_cluster() @@ -148,7 +163,8 @@ def cluster_dist(self): dist_box = [ (np.array([self.xcorr.loc[i,i]]).sum() - len(i)/2)/(len(i)**2 - len(i)/2) for i in cluster if len(i) > 1] plt.hist(dist_box) plt.ylabel("Frequency") - plt.xlabel("Correlation coefficient of each cluster") + if self.method == 'info': + plt.xlabel("Shannon mutual information of each cluster") + else: + plt.xlabel("Correlation coefficient of each cluster") plt.show() - - \ No newline at end of file diff --git a/src/cross_validation.py b/src/cross_validation.py new file mode 100644 index 0000000..d9c95d5 --- /dev/null +++ b/src/cross_validation.py @@ -0,0 +1,185 @@ +#-*- coding: utf-8 -*- +# Author: Stephen Szwiec +# Date: 2023-02-19 +# Description: Cross Validation Module +# +#Copyright (C) 2023 Stephen Szwiec +# +#This file is part of qsarify. +# +#This program is free software: you can redistribute it and/or modify +#it under the terms of the GNU General Public License as published by +#the Free Software Foundation, either version 3 of the License, or +#(at your option) any later version. +# +#This program is distributed in the hope that it will be useful, +#but WITHOUT ANY WARRANTY; without even the implied warranty of +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +#GNU General Public License for more details. +# +#You should have received a copy of the GNU General Public License +#along with this program. If not, see . +# + +""" +Cross Validation Module + +This module contains the cross_validation class which is used to perform cross validation on a data set using a linear regression model + +""" +from sklearn.model_selection import KFold, LeaveOneOut +from matplotlib import pyplot as plt +import numpy as np +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error , r2_score +from sklearn.model_selection import LeaveOneOut +from sklearn.metrics import mean_squared_error +from sklearn.preprocessing import MinMaxScaler +import numpy as np +from qsar_scoring import q2_score, q2f_score, q2f3_score, ccc_score + +class cross_validation: + + """ + Class for performing cross validation on a data set using a linear regression model + + + initializes a cross_validation object, performs the regression and stores the results + + Parameters + ---------- + X_data : pandas dataframe, shape = [n_samples, n_features] + y_data : pandas dataframe, shape = [n_samples, ] + feature_set : list, set of features to be used for the model + verbose : boolean, if true, performs all scoring functions + """ + def __init__ (self, X_data, y_data, feature_set): + """ + Does the preliminary work of regenerating the original model locally for later use and comparison + """ + self.mlr = LinearRegression() + self.feature_set = feature_set + self.x = X_data.loc[:, feature_set].values + self.y = y_data.values + self.mlr.fit(self.x, self.y) + self.original_coef = self.mlr.coef_ + self.original_intercept = self.mlr.intercept_ + self.original_r2 = self.mlr.score(self.x, self.y) + self.original_q2 = q2_score(self.y, self.mlr.predict(self.x)) + + + + def kfoldcv(self, k=5, verbose=False, show_plots=False): + """ + Performs k-fold cross validation + + Parameters + ---------- + k : int, number of folds + verbose : boolean, if true, performs all scoring functions + show_plots : boolean, if true, shows plots of validation results + + Returns + ------- + None + """ + # create a k-fold object iterator for data + kf = KFold(n_splits=k, shuffle=True) + kf.get_n_splits(self.x) + # initialize lists to store results + best_model = [] + predY = np.zeros_like(self.y) + r2kf = [] + q2kf = [] + interceptkf = [] + coefkf = [] + trainset = [] + testset = [] + if verbose: + q2f1kf = [] + q2f2kf = [] + q2f3kf = [] + ccckf = [] + # iterate over folds + for train, test in kf.split(self.x): + scaler = MinMaxScaler() + scaler.fit(self.x[train]) + x_train = scaler.transform(self.x[train]) + x_test = scaler.transform(self.x[test]) + # fit model to training data + clf = LinearRegression() + clf.fit(x_train, self.y[train]) + predY[train] = clf.predict(x_train) + predY[test] = clf.predict(x_test) + rs = clf.score(x_train, self.y[train]) + qs = clf.score(x_test, self.y[test]) + intercept = clf.intercept_ + coef = clf.coef_ + trainset_index = train + testset_index = test + if verbose: + q2f1 = q2f_score(self.y[test], predY[test], np.mean(self.y[train])) + q2f2 = q2f_score(self.y[test], predY[test], np.mean(self.y[test])) + q2f3 = q2f3_score(self.y[test], predY[test], len(train), len(test)) + ccc = ccc_score(self.y, predY) + # store results + r2kf.append(rs) + q2kf.append(qs) + interceptkf.append(intercept) + coefkf.append(coef) + trainset.append(trainset_index) + testset.append(testset_index) + if verbose: + q2f1kf.append(q2f1) + q2f2kf.append(q2f2) + q2f3kf.append(q2f3) + ccckf.append(ccc) + # calculate average results + rmse = np.sqrt(mean_squared_error(predY, self.y)) + maxq2 = np.max(np.array(q2kf)) + index = q2kf.index(maxq2) + # store results + mid = [] + mid.append(np.mean(np.array(q2kf))) + mid.append(np.mean(np.array(r2kf))) + mid.append(rmse) + mid.append(coefkf[index]) + mid.append(interceptkf[index]) + mid.append(trainset_index[index]) + mid.append(testset_index[index]) + if verbose: + mid.append(np.mean(np.array(q2f1kf))) + mid.append(np.mean(np.array(q2f2kf))) + mid.append(np.mean(np.array(q2f3kf))) + mid.append(np.mean(np.array(ccckf))) + best_model.append(mid) + + best_model.sort() + best = best_model[-1] + + + print('R^2CV mean: {:.6}'.format(best[1])) + print('Q^2CV mean: {:.6}'.format(best[0])) + print('RMSE CV : {:.6}'.format(best[2])) + print('Features set =', self.feature_set) + print('Model coeff = ',best[3]) + print('Model intercept = ',best[4]) + if verbose: + print('Q^2F1CV mean: {:.6}'.format(best[7])) + print('Q^2F2CV mean: {:.6}'.format(best[8])) + print('Q^2F3CV mean: {:.6}'.format(best[9])) + print('CCC CV : {:.6}'.format(best[10])) + + + if show_plots: + pred_plotY = np.zeros_like(self.y) + g_mlr = LinearRegression() + g_mlr.fit(self.x[trainset_index], self.y[trainset_index]) + pred_plotY[trainset_index] = g_mlr.predict(self.x[trainset_index]) + pred_plotY[testset_index] = g_mlr.predict(self.x[testset_index]) + plt.ylabel('Predicted Y') + plt.xlabel('Actual Y') + plt.scatter(self.y[trainset_index], pred_plotY[trainset_index], label='Training set', color='grey') + plt.scatter(self.y[testset_index], pred_plotY[testset_index], label='Test set', color='red') + plt.plot([self.y.min() , self.y.max()] , [[self.y.min()],[self.y.max()]],"black" ) + plt.show() diff --git a/data_tools.py b/src/data_tools.py similarity index 77% rename from data_tools.py rename to src/data_tools.py index b047bf1..c430486 100644 --- a/data_tools.py +++ b/src/data_tools.py @@ -2,25 +2,44 @@ # Author: Stephen Szwiec # Date: 2023-02-19 # Description: Data Preprocessing Module +# +#Copyright (C) 2023 Stephen Szwiec +# +#This file is part of qsarify. +# +#This program is free software: you can redistribute it and/or modify +#it under the terms of the GNU General Public License as published by +#the Free Software Foundation, either version 3 of the License, or +#(at your option) any later version. +# +#This program is distributed in the hope that it will be useful, +#but WITHOUT ANY WARRANTY; without even the implied warranty of +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +#GNU General Public License for more details. +# +#You should have received a copy of the GNU General Public License +#along with this program. If not, see . +# +# + """ -Copyright (C) 2023 Stephen Szwiec +Data Preprocessing Module -This file is part of pyqsarplus. +This module contains functions for data preprocessing, including: + - removing features with 'NaN' as value + - removing features with constant values + - removing features with low variance + - removing features with 'NaN' as value when calculating correlation coefficients + - generating a sequential train-test split by sorting the data by response variable + - generating a random train-test split + - scaling data -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. +The main function of this module is `clean_data`, which performs all of the above functions. + +""" -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. -You should have received a copy of the GNU General Public License -along with this program. If not, see . -""" import numpy as np from numpy import ndarray import pandas as pd @@ -45,8 +64,6 @@ def rm_nan(X_data): # delete the features with 'NaN' as value return X_data.drop(X_data.columns[A], axis=1) - - def rm_constant(X_data): """ Remove features with constant values @@ -169,7 +186,7 @@ def scale_data(X_train, X_test): X_test_scaled = pd.DataFrame(scaler.transform(X_test), columns=list(X_test.columns.values)) return X_train_scaled, X_test_scaled -def clean_data(X_data, y_data, split=sorted, cutoff=None, plot=False): +def clean_data(X_data, y_data, split='sorted', test_size=0.2, cutoff=None, plot=False): """ Perform the entire data cleaning process as one function Optionally, plot the correlation matrix @@ -178,11 +195,17 @@ def clean_data(X_data, y_data, split=sorted, cutoff=None, plot=False): ---------- X_data : pandas DataFrame, shape = (n_samples, n_features) split : string, optional, 'sorted' or 'random' + test_size : float, optional, default = 0.2 cutoff : float, optional, auto-correlaton coefficient below which we keep plot : boolean, optional, default = False Returns ------- + X_train : pandas DataFrame , shape = (n_samples, m_features) + X_test : pandas DataFrame , shape = (p_samples, m_features) + y_train : pandas DataFrame , shape = (n_samples, 1) + y_test : pandas DataFrame , shape = (p_samples, 1) + """ # Create a deep copy of the data @@ -198,9 +221,9 @@ def clean_data(X_data, y_data, split=sorted, cutoff=None, plot=False): df = rm_lowVar(df, cutoff) # Create split if split == 'random': - X_train, X_test, y_train, y_test = random_split(df, y_data) + X_train, X_test, y_train, y_test = random_split(df, y_data, test_size) else: - X_train, X_test, y_train, y_test = random_split(df, y_data) + X_train, X_test, y_train, y_test = sorted_split(df, y_data, test_size) # Scale the data and return X_train, X_test = scale_data(X_train, X_test) if plot: diff --git a/export_model.py b/src/export_model.py similarity index 71% rename from export_model.py rename to src/export_model.py index d8ca276..af76ba1 100644 --- a/export_model.py +++ b/src/export_model.py @@ -2,25 +2,34 @@ # Author: Stephen Szwiec # Date: 2023-02-19 # Description: Model Export Module -""" -Copyright (C) 2023 Stephen Szwiec - -This file is part of pyqsarplus. - -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. +# +# Copyright (C) 2023 Stephen Szwiec +# +#This file is part of qsarify. +# +#This program is free software: you can redistribute it and/or modify +#it under the terms of the GNU General Public License as published by +#the Free Software Foundation, either version 3 of the License, or +#(at your option) any later version. +# +#This program is distributed in the hope that it will be useful, +#but WITHOUT ANY WARRANTY; without even the implied warranty of +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +#GNU General Public License for more details. +# +#You should have received a copy of the GNU General Public License +#along with this program. If not, see . -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. +""" +Model Export Module -You should have received a copy of the GNU General Public License -along with this program. If not, see . +This module contains the ModelExport class which is used to +summarize and export the results of a model. It contains +functions to plot the training data, print scoring metrics, +and show useful plots such as the Williams Plot. """ + import numpy as np import pandas as pd from pandas import DataFrame @@ -100,7 +109,7 @@ def train_plot(self, interval=False): def scores(self, verbose=False): """ - Return scoring metrics for the model + Print scoring metrics for the model Parameters ---------- @@ -108,7 +117,7 @@ def scores(self, verbose=False): Returns ------- - dict of scoring metrics + None """ scores = {} scores["RMSE"] = np.sqrt(mean_squared_error(self.y, self.y_pred)) @@ -117,12 +126,11 @@ def scores(self, verbose=False): scores["Q2"] = q2_score(self.ey, self.ey_pred) if verbose: scores["Q2F1"] = q2f_score(self.ey, self.ey_pred, np.mean(self.y)) - scores["Q2F2"] = q2f_score(self.ey, self.ey_pred, np.median(self.ey)) + scores["Q2F2"] = q2f_score(self.ey, self.ey_pred, np.mean(self.ey)) scores["Q2F3"] = q2f3_score(self.ey, self.ey_pred, len(self.y), len(self.ey)) scores["CCC"] = ccc_score(np.append(self.y, self.ey), np.append(self.y_pred, self.ey_pred)) for key, value in scores.items(): print(key, ":", value) - return scores def williams_plot(self): @@ -159,10 +167,10 @@ def williams_plot(self): plt.ylabel("Std. Residuals") plt.xlabel(F"Hat Values (h*={hii:.2f})") plt.ylim([-3.5,3.5]) - plt.scatter(leverage_in,res,color=['lightblue']) - plt.scatter(leverage_ex,residuals_ex,color=['orange']) + plt.scatter(leverage_in,res,color=['lightblue'], label="Training Data") + plt.scatter(leverage_ex,residuals_ex,color=['orange'], label="Test Data") plt.plot() - plt.legend(["Applicability Domain", "Training Data", "Test Data"], loc="upper right") + plt.legend(loc="upper right") plt.show() def mlr(self): @@ -245,7 +253,7 @@ def external_set(self, verbose=False, interval=False): plt.errorbar(self.y, self.y_pred, yerr=self.y_pred_std, fmt='o', color='lightblue', ecolor='lightgray', elinewidth=3, capsize=0) plt.errorbar(self.ey, self.ey_pred, yerr=self.ey_pred_std, fmt='o', color='orange', ecolor='lightgray', elinewidth=3, capsize=0) plt.plot([self.y.min() , self.y.max()] , [[self.y.min()],[self.y.max()]],"black" ) - plt.legend(["Ideal", "Training Data", "Test Data"], loc="upper left") + plt.legend(["Training Data", "Test Data", "Predicted"], loc="upper left") plt.show() @@ -390,102 +398,3 @@ def feature_importance_table(self): """ feature_importance = self.feature_importance() return DataFrame(feature_importance, index=self.feature_set, columns=['feature importance']) - - def __radar_factory__(num_vars, frame='polygon'): - """ - Create a radar chart with `num_vars` axes. - - Credit: https://matplotlib.org/stable/gallery/specialty_plots/radar_chart.html - - Parameters - ---------- - num_vars : int, number of variables for radar chart - frame : str, shape of frame for radar chart, defaults to 'circle' - - """ - - theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False) - # close the plot - class RadarTransform(PolarAxes.PolarTransform): - - def transform_path_non_affine(self, path): - if path._interpolation_steps > 1: - path = path.interpolated(num_vars) - return Path(self.transform(path.vertices), path.codes) - - class RadarAxes(PolarAxes): - name = 'radar' - PolarTransform = RadarTransform - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - # rotate plot such that the first axis is at the top - self.set_theta_zero_location('N') - - def fill(self, *args, closed=True, **kwargs): - """Override fill so that line is closed by default""" - return super().fill(closed=closed, *args, **kwargs) - - def plot(self, *args, **kwargs): - """Override plot so that line is closed by default""" - lines = super().plot(*args, **kwargs) - for line in lines: - self._close_line(line) - - def _close_line(self, line): - x, y = line.get_data() - if x[0] != x[-1]: - x = np.concatenate((x, [x[0]])) - y = np.concatenate((y, [y[0]])) - line.set_data(x, y) - - def set_varlabels(self, labels): - self.set_thetagrids(np.degrees(theta), labels) - - def _gen_axes_patch(self): - # The Axes patch must be centered at (0.5, 0.5) and of radius - # 0.5 in axes coordinates. - if frame == 'circle': - return Circle((0.5, 0.5), 0.5) - elif frame == 'polygon': - return RegularPolygon((0.5, 0.5), num_vars, - radius=.5, edgecolor="k") - else: - raise ValueError("unknown value for 'frame': %s" % frame) - - def _gen_axes_spines(self): - if frame == 'circle': - return super()._gen_axes_spines() - elif frame == 'polygon': - # spine_type must be 'left'/'right'/'top'/'bottom'/'circle'. - spine = Spine(axes=self, - spine_type='circle', - path=Circle((0.5, 0.5), 0.5)) - spine.set_transform(self.transAxes) - return {'polar': spine} - else: - raise ValueError("unknown value for 'frame': %s" % frame) - - register_projection(RadarAxes) - return theta - - def radar_plot(self): - """ - Creates a radar plot of the scoring metrics: r2, q2, rmse, rmse_ext, q2f1, q2f2, q2f3, and ccc -7 - Returns - ------- - None - """ - n = 8 - theta = self.__radar_factory__(n) - scores = self.scores(verbose=True).values.tolist() - spoke_labels = ['r2', 'q2', 'rmse', 'rmse_ext', 'q2f1', 'q2f2', 'q2f3', 'ccc'] - fig, ax = plt.subplots(figsize=(9, 9), subplot_kw=dict(projection='radar')) - fig.subplots_adjust(top=0.85, bottom=0.05) - ax.set_rgrids([0.2, 0.4, 0.6, 0.8, 1.0]) - ax.set_title('Scoring Metrics', weight='bold', size='medium', position=(0.5, 1.1), horizontalalignment='center', verticalalignment='center') - ax.plot(theta, scores) - ax.fill(theta, scores, alpha=0.25) - ax.set_varlabels(spoke_labels) - plt.show() diff --git a/feature_selection_multi.py b/src/feature_selection_multi.py similarity index 86% rename from feature_selection_multi.py rename to src/feature_selection_multi.py index 8c1783b..ab06de1 100644 --- a/feature_selection_multi.py +++ b/src/feature_selection_multi.py @@ -2,25 +2,34 @@ # Author: Stephen Szwiec # Date: 2023-02-19 # Description: Multi-Processing Feature Selection Module -""" -Copyright (C) 2023 Stephen Szwiec - -This file is part of pyqsarplus. +# +#Copyright (C) 2023 Stephen Szwiec +# +#This file is part of qsarify. +# +#This program is free software: you can redistribute it and/or modify +#it under the terms of the GNU General Public License as published by +#the Free Software Foundation, either version 3 of the License, or +#(at your option) any later version. +# +#This program is distributed in the hope that it will be useful, +#but WITHOUT ANY WARRANTY; without even the implied warranty of +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +#GNU General Public License for more details. +# +#You should have received a copy of the GNU General Public License +#along with this program. If not, see . -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. +""" +Multi-Processing Feature Selection Module -You should have received a copy of the GNU General Public License -along with this program. If not, see . +This module contains the functions for performing feature selection using +the clustering module's output as a guide for feature selection, and implements +a genetic algorithm for feature selection using reflection. """ + import datetime import random import numpy as np @@ -91,9 +100,9 @@ def selection(X_data, y_data, cluster_info, model="regression", learning=500000, learning : default=500000, number of overall models to be trained bank : default=200, number of models to be trained in each iteration component : default=4, number of features to be selected - interval : optional, default=1000, print current scoring and selected features + interval : optional, default=1000, print current scoring and selected features every interval - cores: optional, default=(mp.cpu_count()*2)-1, number of processes to be used + cores: optional, default=(mp.cpu_count()*2)-1, number of processes to be used for multiprocessing; default is twice the number of cores minus 1, which is assuming you have SMT, HT, or something similar) If you have a large number of cores, you may want to set this to a lower number to avoid @@ -160,4 +169,4 @@ def selection(X_data, y_data, cluster_info, model="regression", learning=500000, fi = datetime.datetime.now() fiTime = fi.strftime('%H:%M:%S') print("Finish Time : ", fiTime) - return scoring_bank[0][1] \ No newline at end of file + return scoring_bank[0][1] diff --git a/src/feature_selection_single.py b/src/feature_selection_single.py new file mode 100644 index 0000000..5299c58 --- /dev/null +++ b/src/feature_selection_single.py @@ -0,0 +1,228 @@ +#-*- coding: utf-8 -*- +# Author: Stephen Szwiec +# Date: 2023-02-19 +# Description: Single-Threaded Feature Selection Module +# +#Copyright (C) 2023 Stephen Szwiec +# +#This file is part of qsarify. +# +#This program is free software: you can redistribute it and/or modify +#it under the terms of the GNU General Public License as published by +#the Free Software Foundation, either version 3 of the License, or +#(at your option) any later version. +# +#This program is distributed in the hope that it will be useful, +#but WITHOUT ANY WARRANTY; without even the implied warranty of +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +#GNU General Public License for more details. +# +#You should have received a copy of the GNU General Public License +#along with this program. If not, see . + +""" +Single-Threaded Feature Selection Module + +This module contains the single-threaded version of the feature selection algorithm, +which is a genetic algorithm that uses a linear regression model to score each set of features, +using the output of clustering to ensure that the features are not redundant. + +""" +import datetime +import random +import numpy as np +import pandas as pd +import sklearn.linear_model as lm +import itertools + +def mlr_selection(X_data, y_data, cluster_info, component, model="regression", learning=50000, bank=200, interval=1000): + """ + Performs feature selection using a using a linear regression model and a genetic algorithm on a single thread. + This is the vanilla version of the algorithm, which is not parallelized. + + Parameters + ---------- + X_data: DataFrame, descriptor data + y_data: DataFrame, target data + cluster_info: dict, descriptor cluster information + component: int, number of features to select + model: str, learning algorithm to use, default = "regression" + learning: int, number of iterations to perform, default = 50000 + bank: int, number of models to keep in the bank, default = 200 + interval: int, number of iterations to perform before printing the current time, default = 1000 + + Returns + ------- + best_model: list, best model found + best_score: float, best score found + """ + + now = datetime.datetime.now() + print("Start time: ", now.strftime('%H:%M:%S')) + + if model == "regression": + print('\x1b[1;42m','Regression','\x1b[0m') + y_mlr = lm.LinearRegression() + e_mlr = lm.LinearRegression() + else: + print('\x1b[1;42m','Classification','\x1b[0m') + y_mlr = SVC(kernel='rbf', C=1, gamma=0.1, random_state=0) + e_mlr = SVC(kernel='rbf', C=1, gamma=0.1, random_state=0) + + # a list of numbered clusters + nc = list(cluster_info.values()) + num_clusters = list(range(max(nc))) + + # extract information from dictionary by inversion + inv_cluster_info = dict() + for k, v in cluster_info.items(): + inv_cluster_info.setdefault(v, list()).append(k) + + # an ordered list of features in each cluster + cluster = list(dict(sorted(inv_cluster_info.items())).values()) + + # fill the interation bank with random models + # models contain 1-component number of features + # ensure the models are not duplicated and non redundant + index_sort_bank = set() + model_bank = [ ini_desc for _ in range(bank) for ini_desc in [sorted([random.choice(cluster[random.choice(num_clusters)]) for _ in range(random.randint(1,component))])] if ini_desc not in tuple(index_sort_bank) and not index_sort_bank.add(tuple(ini_desc))] + + # score each set of features, saving each score and the corresponding feature set + scoring_bank = list(map(lambda x: [y_mlr.fit(np.array(X_data.loc[:,x]), y_data.values.ravel()).score(np.array(X_data.loc[:,x]), y_data), list(X_data.loc[:,x].columns.values)], model_bank)) + + def evolve(i): + """ + Evolution of descriptors for learning algorithm, implemented as a function map + + Parameters + ---------- + i: list, descriptor set + """ + i = i[1] + group_n = [cluster_info[x]-1 for x in i] + sw_index = random.randrange(0, len(i)) + sw_group = random.randrange(0, max(nc)) + while sw_group in group_n: + sw_group = random.randrange(0, max(nc)) + b_set = [random.choice(cluster[sw_group]) if x == sw_index else i[x] for x in range(0, len(i))] + b_set.sort() + x = X_data[b_set].values + y = y_data.values.ravel() + score = e_mlr.fit(x, y).score(x, y) + return [score, b_set] + + # perform main learning loop + for n in range(learning): + # initialize best score to the worst possible score + best_score = -float("inf") + # Evolve the bank of models and allow those surpassing the best score to replace the worst models up to the bank size + rank_filter = filter(lambda x, best_score=best_score: x[0] > best_score and (best_score := x[0]), map(evolve, scoring_bank)) + scoring_bank = sorted(itertools.chain(scoring_bank, rank_filter), reverse = True)[:bank] + if n % interval == 0 and n != 0: + tt = datetime.datetime.now() + print(n, '=>', tt.strftime('%H:%M:%S'), scoring_bank[0]) + + # print output and return best model found during training + print("Best score: ", scoring_bank[0][0]) + clulog = [cluster_info[y] for y in scoring_bank[0][1]] + print("Model's cluster info", clulog) + fi = datetime.datetime.now() + fiTime = fi.strftime('%H:%M:%S') + print("Finish Time : ", fiTime) + return scoring_bank[0][1] + +def rf_selection(X_data, y_data, cluster_info, component, model="regression", learning=50000, bank=200, interval=1000): + """ + Performs feature selection using a using a random forest model and a genetic algorithm on a single thread. + This is the vanilla version of the algorithm, which is not parallelized. + + Parameters + ---------- + X_data: DataFrame, descriptor data + y_data: DataFrame, target data + cluster_info: dict, descriptor cluster information + component: int, number of features to select + model: str, learning algorithm to use, default = "regression" + learning: int, number of iterations to perform, default = 50000 + bank: int, number of models to keep in the bank, default = 200 + interval: int, number of iterations to perform before printing the current time, default = 1000 + + Returns + ------- + best_model: list, best model found + best_score: float, best score found + """ + + now = datetime.datetime.now() + print("Start time: ", now.strftime('%H:%M:%S')) + + if model == "regression": + print('\x1b[1;42m','Regression','\x1b[0m') + y_rf = RandomForestRegressor(n_estimators=100, max_depth=2, random_state=0) + e_rf = RandomForestRegressor(n_estimators=100, max_depth=2, random_state=0) + else: + print('\x1b[1;42m','Classification','\x1b[0m') + y_rf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0) + e_rf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0) + + # a list of numbered clusters + nc = list(cluster_info.values()) + num_clusters = list(range(max(nc))) + + # extract information from dictionary by inversion + inv_cluster_info = dict() + for k, v in cluster_info.items(): + inv_cluster_info.setdefault(v, list()).append(k) + + # an ordered list of features in each cluster + cluster = list(dict(sorted(inv_cluster_info.items())).values()) + + # fill the interation bank with random models + # models contain 1-component number of features + # ensure the models are not duplicated and non redundant + index_sort_bank = set() + model_bank = [ ini_desc for _ in range(bank) for ini_desc in [sorted([random.choice(cluster[random.choice(num_clusters)]) for _ in range(random.randint(1,component))])] if ini_desc not in tuple(index_sort_bank) and not index_sort_bank.add(tuple(ini_desc))] + + # score each set of features, saving each score and the corresponding feature set + scoring_bank = list(map(lambda x: [y_rf.fit(np.array(X_data.loc[:,x]), y_data.values.ravel()).score(np.array(X_data.loc[:,x]), y_data), list(X_data.loc[:,x].columns.values)], model_bank)) + + def evolve(i): + """ + Evolution of descriptors for learning algorithm, implemented as a function map + + Parameters + ---------- + i: list, descriptor set + """ + i = i[1] + group_n = [cluster_info[x]-1 for x in i] + sw_index = random.randrange(0, len(i)) + sw_group = random.randrange(0, max(nc)) + while sw_group in group_n: + sw_group = random.randrange(0, max(nc)) + b_set = [random.choice(cluster[sw_group]) if x == sw_index else i[x] for x in range(0, len(i))] + b_set.sort() + x = X_data[b_set].values + y = y_data.values.ravel() + score = e_rf.fit(x, y).score(x, y) + return [score, b_set] + + # perform main learning loop + for n in range(learning): + # initialize best score to the worst possible score + best_score = -float("inf") + # Evolve the bank of models and allow those surpassing the best score to replace the worst models up to the bank size + rank_filter = filter(lambda x, best_score=best_score: x[0] > best_score and (best_score := x[0]), map(evolve, scoring_bank)) + scoring_bank = sorted(itertools.chain(scoring_bank, rank_filter), reverse = True)[:bank] + if n % interval == 0 and n != 0: + tt = datetime.datetime.now() + print(n, '=>', tt.strftime('%H:%M:%S'), scoring_bank[0]) + + # print output and return best model found during training + print("Best score: ", scoring_bank[0][0]) + clulog = [cluster_info[y] for y in scoring_bank[0][1]] + print("Model's cluster info", clulog) + fi = datetime.datetime.now() + fiTime = fi.strftime('%H:%M:%S') + print("Finish Time : ", fiTime) + return scoring_bank[0][1] diff --git a/qsar_scoring.py b/src/qsar_scoring.py similarity index 92% rename from qsar_scoring.py rename to src/qsar_scoring.py index 17ea6b3..d6f3612 100644 --- a/qsar_scoring.py +++ b/src/qsar_scoring.py @@ -5,7 +5,7 @@ """ Copyright (C) 2023 Stephen Szwiec -This file is part of pyqsarplus. +This file is part of qsarify. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -60,15 +60,14 @@ def q2_score(y_true, y_pred): def q2f_score(y_true, y_pred, y_mean): """ - Calculates the Q2_f1 or Q2_f2 score + Calculates the Q2_f1 or Q2_f2 score depending on whether the mean is calculated from the training set or the external set Parameters ---------- y_true : numpy array, shape (n_samples,) y_pred : numpy array, shape (n_samples,) - y_mean : float - mean of the training set + y_mean : float, mean of the training (for q2f1) or test (for q2f2) set Returns ------- @@ -96,7 +95,6 @@ def q2f3_score(y_true, y_pred, n_train, n_external): float """ press = np.sum(np.square(y_true - y_pred)) - # create a sum of the squared differences between the true values and mean value, using a map function tss = np.sum(np.square(y_true - np.mean(y_true))) return 1 - (press / n_external) / (tss * n_train)