diff --git a/README.md b/README.md index 9f4ff2b..6cc6e15 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,69 @@ -# pyQSARplus -Library of tools for the analysis of QSAR/QSPR datasets and models. +# qsarify -# What is included? ------------------ +qsarify is a library of tools for the analysis of QSAR/QSPR datasets and models. This library is intended to be used to produce models which relate a set of calculated chemical descriptors to a given numeric endpoint. Many great tools will take the geometry or string data of a given chemical and compute **descriptors**, which are numeric measures of the properties of these, but you can generate some of these with another one of my scripts, [Free Descriptors](https://github.com/StephenSzwiec/free_descriptors). -- Data preprocessing: `data_tools` +# Dependencies + +- Python 3 +- [numpy](https://numpy.org/) +- [pandas](https://pandas.pydata.org/) +- [scikit-learn](https://scikit-learn.org) +- [matplotlib](https://matplotlib.org) + + +# Installation + +`pip install qsarify` + +# What is included right now? + +- Data preprocessing tools: `data_tools` - Dimensionality reduction via clustering: `clustering` +- Feature selection: + - Single threaded: `feature_selection_single` + - Multi-threaded: `feature_selection_multi` +- Model Export and Visualization: `model_export` +- Cross Valiidation: `cross_validation` + +# How to use + +The best way to learn how to use this library is to look at the example notebook in the `examples` folder. This notebook will walk you through the workflow of using this library to build a QSAR model. + +# Future Plans + +- Massively parallel feature selection methods: + - CUDA acceleration + - MPI acceleration +- Include Shannon Entropy as a dimensionality reduction metric in clustering +- Embedded kernel methods +- More visualization tools +- More cross validation tools +- Feature selection tools for categorical data + +# Contributing + + +If you would like to contribute to this project, please feel free to fork this repository and submit a pull request. Otherwise, you may also submit an issue. I will try to respond to issues as quickly as possible. + +# License + + +This project is licensed under the GNU GPLv3 license. See the LICENSE file for more details. + +# Citation + +If you use this library in your work, please cite it as follows: + +Szwiec, Stephen. (2023). qsarify: A high performance library for QSAR model development. + +BibTex: +``` +@misc{szwiec2023qsarify, + author = {Szwiec, Stephen}, + title = {qsarify: A high performance library for QSAR model development}, + year = {2023}, + publisher = {GitHub}, + journal = {GitHub repository}, + howpublished = {\url{https://github.com/stephenszwiec/qsarify}}, + } +``` diff --git a/Untitled.ipynb b/Untitled.ipynb deleted file mode 100644 index 4ba45b3..0000000 --- a/Untitled.ipynb +++ /dev/null @@ -1,1780 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "2a56c28f-2cc5-4baa-b30b-4e85453affcb", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# basic toolkit for the workflow\n", - "import pandas as pd\n", - "import data_tools as dt\n", - "import clustering as cl\n", - "import feature_selection_single as fss\n", - "import feature_selection_multi as fsm\n", - "import cross_validation as cv\n", - "import export_model as em" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "70cd653c-efdc-405b-989a-a50d40f5b9a5", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# in this example, the last column is the response variable (log10 of LD50)\n", - "# we use pandas to manipulate the data\n", - "dfx = pd.DataFrame(pd.read_csv('28BenzeneDescriptors.csv')).iloc[:,:-1]\n", - "dfy = pd.DataFrame(pd.read_csv('28BenzeneDescriptors.csv')).iloc[:,-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "9992350f-1431-49d3-9f57-1cef849eb4cc", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - " | No. | \n", - "AMW | \n", - "Sp | \n", - "Mv | \n", - "Me | \n", - "Ms | \n", - "nBM | \n", - "ARR | \n", - "RBN | \n", - "RBF | \n", - "... | \n", - "PCWTe | \n", - "LDI | \n", - "Hy | \n", - "AMR | \n", - "MLOGP | \n", - "MLOGP2 | \n", - "ALOGP | \n", - "GVWAI-80 | \n", - "Infective-80 | \n", - "BLTD48 | \n", - "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", - "1 | \n", - "6.510 | \n", - "8.284 | \n", - "0.649 | \n", - "0.971 | \n", - "2.000 | \n", - "6 | \n", - "1.000 | \n", - "0 | \n", - "0.000 | \n", - "... | \n", - "10.100 | \n", - "0.062 | \n", - "-0.921 | \n", - "26.058 | \n", - "2.255 | \n", - "5.085 | \n", - "2.047 | \n", - "0 | \n", - "0 | \n", - "-3.46 | \n", - "
1 | \n", - "2 | \n", - "6.143 | \n", - "10.045 | \n", - "0.626 | \n", - "0.969 | \n", - "1.952 | \n", - "6 | \n", - "0.857 | \n", - "1 | \n", - "0.067 | \n", - "... | \n", - "11.371 | \n", - "0.057 | \n", - "-0.936 | \n", - "31.099 | \n", - "2.608 | \n", - "6.802 | \n", - "2.514 | \n", - "0 | \n", - "0 | \n", - "-3.80 | \n", - "
2 | \n", - "3 | \n", - "8.794 | \n", - "9.438 | \n", - "0.658 | \n", - "1.037 | \n", - "3.074 | \n", - "8 | \n", - "0.889 | \n", - "1 | \n", - "0.071 | \n", - "... | \n", - "2.209 | \n", - "0.144 | \n", - "-0.636 | \n", - "33.383 | \n", - "1.797 | \n", - "3.229 | \n", - "2.000 | \n", - "0 | \n", - "0 | \n", - "-3.03 | \n", - "
3 | \n", - "4 | \n", - "8.068 | \n", - "11.199 | \n", - "0.636 | \n", - "1.024 | \n", - "2.933 | \n", - "8 | \n", - "0.800 | \n", - "2 | \n", - "0.118 | \n", - "... | \n", - "2.441 | \n", - "0.130 | \n", - "-0.672 | \n", - "38.424 | \n", - "2.150 | \n", - "4.623 | \n", - "2.467 | \n", - "0 | \n", - "0 | \n", - "-3.36 | \n", - "
4 | \n", - "5 | \n", - "8.068 | \n", - "11.199 | \n", - "0.636 | \n", - "1.024 | \n", - "2.933 | \n", - "8 | \n", - "0.800 | \n", - "2 | \n", - "0.118 | \n", - "... | \n", - "2.313 | \n", - "0.123 | \n", - "-0.672 | \n", - "38.424 | \n", - "2.150 | \n", - "4.623 | \n", - "2.467 | \n", - "0 | \n", - "0 | \n", - "-3.36 | \n", - "
5 rows × 676 columns
\n", - "A high performance library for QSAR model development
+ + + +One function to perform data pre-processing
+Reduce the time it takes to develop a QSAR model using intelligent feature selection
+Built-in functions for model validation and visualzation
+
+#-*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: Classification Scoring Module
+#
+#Copyright (C) 2023 Stephen Szwiec
+#
+#This file is part of qsarify.
+#
+#This program is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#This program is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+"""
+Classification Scoring Module
+
+This module provides summary information about Classification
+"""
+
+import numpy as np
+from sklearn.metrics import accuracy_score
+
+
+[docs]
+class ClassifierScore :
+ """
+ Provides summary information about Classification
+
+ Parameters
+ ----------
+ y_data : pandas DataFrame , shape = (n_samples,)
+ pred_y : pandas DataFrame , shape = (n_samples,)
+ => predicted Y values as result of classification
+
+ Sub functions
+ -------
+ score (self)
+ tf_table(self)
+ """
+
+ def __init__ (self,y_data,pred_y) :
+ """
+ Initializes the classifer
+ """
+ # Initialize the variables
+ self.y_data = y_data
+ self.pred_y = pred_y
+ self.real_y = [] #hash y_data
+ # Hash the y_data
+ for i in np.array(self.y_data) :
+ self.real_y.append(i[0])
+
+
+[docs]
+ def score (self) :
+ """
+ Calculate accuracy score
+ Returns
+ -------
+ None
+ """
+ # Initialize the variables
+ n = 0
+ cnt = 0
+ # Count the number of wrong predictions
+ for i in np.array(self.real_y) :
+ if i != self.pred_y[n] :
+ cnt += 1
+ n += 1
+ print('Number of all :',n) #all data
+ print('Number of worng :', cnt)
+ print('AccuracyScore :',accuracy_score(self.real_y, self.pred_y))
+
+
+
+[docs]
+ def tf_table(self) :
+ """
+ Calculate Precision & Recall
+ Generates a confusion matrix
+
+ Returns
+ -------
+ None
+ """
+ # Initialize the variables
+ one = 0
+ zero = 0
+ n = 0
+ cnt = 0
+ realzero = 0
+ realone = 0
+ # Initialize the confusion matrix
+ for i in np.array(self.y_data) :
+ if i[0] == 0 :
+ zero += 1
+ if i[0] == 1 :
+ one += 1
+ # Count the number of wrong predictions
+ for i in np.array(self.y_data):
+ if i[0] != self.pred_y[n]:
+ #print ('real',i[0],'///','pred',y_pred[n])
+ if i[0] == 0 :
+ realzero += 1
+ if i[0] == 1 :
+ realone += 1
+ cnt +=1
+ n += 1
+ # Print the results
+ print(('Number of 1 :',one))
+ print('Number of 0 :',zero)
+ print('True Positive(real 1 but pred 1) :',one-realone) #TP
+ print('True Negative(real 0 but pred 0) :',zero-realzero) #TN
+ print('False Positive(real 0 but pred 1) :',realzero) #FP
+ print('False Negative(real 1 but pred 0) :',realone) #FN
+ print('Precision', (one-realone)/((one-realone)+realzero)) # TP / TP+FP
+ print('Recall',(one-realone)/((one-realone)+realone)) # TP / TP+FN
+
+
+
+#-*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: Clustering Module
+#
+#Copyright (C) 2023 Stephen Szwiec
+#
+#This file is part of qsarify.
+#
+#This program is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#This program is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+#
+
+"""
+Clustering Module
+
+This module contains functions for clustering features based on hierarchical clustering method
+and calculating the cophenetic correlation coefficient of linkages. The cophenetic correlation
+coefficient is a measure of the correlation between the distance of observations in feature space
+and the distance of observations in cluster space. The cophenetic correlation coefficient is
+calculated for each linkage method and the method with the highest cophenetic correlation
+coefficient is used to cluster the features. The cophenetic correlation coefficient is calculated
+using the scipy.cluster.hierarchy.cophenet function.
+
+"""
+
+import numpy as np
+import pandas as pd
+from pandas import DataFrame, Series
+import matplotlib.pyplot as plt
+from scipy.spatial.distance import pdist, squareform
+from scipy.cluster.hierarchy import linkage, dendrogram, fcluster, cophenet
+
+
+[docs]
+def cophenetic(X_data):
+ """
+ Calculate the cophenetic correlation coefficient of linkages
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame, shape = (n_samples, m_features)
+ method : str, method for linkage generation, default = 'corr' (Pearson correlation)
+
+ Returns
+ -------
+ None
+ """
+ distance = abs(np.corrcoef(X_data, rowvar=False))
+ # drop any columns and rows that produced NaNs
+ distance = distance[~np.isnan(distance).any(axis=1)]
+ distance = distance[:, ~np.isnan(distance).any(axis=0)]
+ # calculate the cophenetic correlation coefficient
+ Z1 = linkage(distance, method='average', metric='euclidean')
+ Z2 = linkage(distance, method='complete', metric='euclidean')
+ Z3 = linkage(distance, method='single', metric='euclidean')
+ c1, coph_dists1 = cophenet(Z1, pdist(distance))
+ c2, coph_dists2 = cophenet(Z2, pdist(distance))
+ c3, coph_dists3 = cophenet(Z3, pdist(distance))
+ print("cophenetic correlation average linkage: ", c1)
+ print("cophenetic correlation complete linkage: ", c2)
+ print("cophenetic correlation single linkage: ", c3)
+
+
+
+[docs]
+class featureCluster:
+ """
+ Make cluster of features based on hierarchical clustering method
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame, shape = (n_samples, n_features)
+ link : str, kind of linkage method, default = 'average', 'complete', 'single'
+ cut_d : int, depth in cluster(dendrogram), default = 3
+
+ Sub functions
+ -------------
+ set_cluster(self)
+ cluster_dist(self)
+ """
+
+ def __init__(self, X_data, method='corr', link='average', cut_d=3):
+ """
+ Initializes cluster object:
+ Makes a cluster of features based on hierarchical clustering method
+ and calculates the cophenetic correlation coefficient of linkages
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame, shape = (n_samples, n_features)
+ link : str, kind of linkage method, default = 'average', 'complete', 'single'
+ cut_d : int, depth in cluster(dendrogram), default = 3
+ This is a tunable parameter for clustering
+ """
+ self.method = method
+ self.cluster_info = []
+ self.assignments = np.array([])
+ self.cluster_output = DataFrame()
+ self.cludict = {}
+ self.X_data = X_data
+ self.link = link
+ self.cut_d = cut_d
+ self.xcorr = pd.DataFrame(abs(np.corrcoef(self.X_data, rowvar=False)), columns=X_data.columns, index=X_data.columns)
+
+
+[docs]
+ def set_cluster(self, verbose=False, graph=False):
+ """
+ Make cluster of features based on hierarchical clustering method
+
+ Parameters
+ ----------
+ verbose : bool, print cluster information, default = False
+ graph : bool, show dendrogram, default = False
+
+ Returns
+ -------
+ cludict : dict, cluster information of features as a dictionary
+ """
+ Z = linkage( self.xcorr, method=self.link, metric='euclidean')
+ self.assignments = fcluster(Z, self.cut_d, criterion='distance')
+ self.cluster_output = DataFrame({'Feature':list(self.X_data.columns.values), 'cluster':self.assignments})
+ nc = list(self.cluster_output.cluster.values)
+ name = list(self.cluster_output.Feature.values)
+ # zip cluster number and feature name
+ self.cludict = dict(zip(name, nc))
+ # make cluster information as an input for feature selection function
+ # print cluster information for key in cludict.items if range of cluster number is 1~nnc
+ for t in range(1, max(nc)+1):
+ self.cluster_info.append( [k for k, v in self.cludict.items() if v == t] )
+ if verbose:
+ print('\n','\x1b[1;46m'+'Cluster'+'\x1b[0m',t,self.cluster_info[t-1],)
+ if graph:
+ plt.figure(figsize=(25, 40))
+ plt.title('Hierarchical Clustering Dendrogram')
+ plt.xlabel('sample index')
+ plt.ylabel('distance')
+ dendrogram(Z, color_threshold=self.cut_d, above_threshold_color='k', no_labels=True, leaf_label_func=None, show_contracted=True, orientation='left')
+ plt.show()
+ return self.cludict
+
+
+
+[docs]
+ def cluster_dist(self):
+ """
+ Show dendrogram of hierarchical clustering
+
+ Returns
+ -------
+ None
+ """
+
+ # have we actually clustered? If not, please do so first:
+ if self.assignments.any() == False:
+ self.set_cluster()
+ nc = list(self.cluster_output.cluster.values)
+ cluster = [[k for k, value in self.cludict.items() if value == t] for t in range(1, max(nc)+1)]
+ # list comprehension which returns a list of average autocorrelation values for each cluster, unless the cluster length is 1
+ # in which case it returns nothing
+ dist_box = [ (np.array([self.xcorr.loc[i,i]]).sum() - len(i)/2)/(len(i)**2 - len(i)/2) for i in cluster if len(i) > 1]
+ plt.hist(dist_box)
+ plt.ylabel("Frequency")
+ if self.method == 'info':
+ plt.xlabel("Shannon mutual information of each cluster")
+ else:
+ plt.xlabel("Correlation coefficient of each cluster")
+ plt.show()
+
+
+
+#-*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: Data Preprocessing Module
+#
+#Copyright (C) 2023 Stephen Szwiec
+#
+#This file is part of qsarify.
+#
+#This program is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#This program is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+#
+
+"""
+Data Preprocessing Module
+
+This module contains functions for data preprocessing, including:
+ - removing features with 'NaN' as value
+ - removing features with constant values
+ - removing features with low variance
+ - removing features with 'NaN' as value when calculating correlation coefficients
+ - generating a sequential train-test split by sorting the data by response variable
+ - generating a random train-test split
+ - scaling data
+
+The main function of this module is `clean_data`, which performs all of the above functions.
+
+"""
+
+
+
+import numpy as np
+from numpy import ndarray
+import pandas as pd
+from pandas import DataFrame, Series
+import matplotlib.pyplot as plt
+from sklearn.preprocessing import MinMaxScaler
+
+
+[docs]
+def rm_nan(X_data):
+ """
+ Remove features with 'NaN' as value
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame , shape = (n_samples, n_features)
+
+ Returns
+ -------
+ Modified DataFrame
+ """
+ # get the indices of the features with 'NaN' as value
+ A = X_data.isnull().any()
+ # delete the features with 'NaN' as value
+ return X_data.drop(X_data.columns[A], axis=1)
+
+
+
+[docs]
+def rm_constant(X_data):
+ """
+ Remove features with constant values
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame , shape = (n_samples, n_features)
+
+ Returns
+ -------
+ Modified DataFrame
+ """
+ A = X_data.std() == 0
+ return X_data.drop(X_data.columns[A], axis=1)
+
+
+
+[docs]
+def rm_lowVar(X_data, cutoff=0.9):
+ """
+ Remove features with low variance
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame , shape = (n_samples, n_features)
+ cutoff : float, default = 0.1
+
+ Returns
+ -------
+ Modified DataFrame
+ """
+ A = X_data.var() >= cutoff
+ return X_data.drop(X_data.columns[A], axis=1)
+
+
+
+[docs]
+def rm_nanCorr(X_data):
+ """
+ Remove features with 'NaN' as value when calculating correlation coefficients
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame , shape = (n_samples, n_features)
+
+ Returns
+ -------
+ Modified DataFrame
+ """
+ corr_mtx = pd.DataFrame(np.corrcoef(X_data, rowvar=False), columns=X_data.columns, index=X_data.columns)
+ A = corr_mtx.isnull().any()
+ return X_data.drop(X_data.columns[A], axis=1)
+
+
+
+
+[docs]
+def sorted_split(X_data, y_data, test_size=0.2):
+ """
+ Generate a sequential train-test split by sorting the data by response variable
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame , shape = (n_samples, m_features)
+ y_data : pandas DataFrame , shape = (n_samples, 1)
+ test_size : float, default = 0.2
+
+ Returns
+ -------
+ X_train : pandas DataFrame , shape = (n_samples, m_features)
+ X_test : pandas DataFrame, shape = (n_samples, m_features)
+ y_train : pandas DataFrame , shape = (n_samples, 1)
+ y_test : pandas DataFrame , shape = (n_samples, 1)
+ """
+ # every n-th row is a test row, computed from test_size as a fraction
+ n = int(1 / test_size)
+ # sort by response variable
+ df = pd.concat([X_data, y_data], axis=1)
+ df.sort_values(by=y_data.name, inplace=True)
+ test_idx = df.index[::n]
+ train_idx = df.index.difference(test_idx)
+ # return train and test data
+ return X_data.loc[train_idx], X_data.loc[test_idx], y_data.loc[train_idx], y_data.loc[test_idx]
+
+
+
+[docs]
+def random_split(X_data, y_data, test_size=0.2):
+ """
+ Generate a random train-test split
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame , shape = (n_samples, m_features)
+ y_data : pandas DataFrame , shape = (n_samples, 1)
+ test_size : float, default = 0.2
+
+ Returns
+ -------give count of NaN in pandas dataframe
+ X_train : pandas DataFrame , shape = (n_samples, m_features)
+ X_test : pandas DataFrame , shape = (n_samples, m_features)
+ y_train : pandas DataFrame , shape = (n_samples, 1)
+ y_test : pandas DataFrame , shape = (n_samples, 1)
+ """
+ # every n-th row is a test row, computed from test_size as a fraction
+ n = int(1 / test_size)
+ # return indices of test rows
+ test_idx = np.random.choice(X_data.index, size=int(len(X_data) * test_size), replace=False)
+ # return indices of train rows
+ train_idx = X_data.index.difference(test_idx)
+ # return train and test data
+ return X_data.loc[train_idx], X_data.loc[test_idx], y_data.loc[train_idx], y_data.loc[test_idx]
+
+
+
+[docs]
+def scale_data(X_train, X_test):
+ """
+ Scale the data using the training data; apply the same transformation to the test data
+
+ Parameters
+ ----------
+ X_train : pandas DataFrame , shape = (n_samples, m_features)
+ X_test : pandas DataFrame , shape = (p_samples, m_features)
+
+ Returns
+ -------
+ X_train_scaled : pandas DataFrame , shape = (n_samples, m_features)
+ X_test_scaled : pandas DataFrame , shape = (p_samples, m_features)
+ """
+
+ # scale the data
+ scaler = MinMaxScaler()
+ X_train_scaled = pd.DataFrame(scaler.fit_transform(X_train), columns=list(X_train.columns.values))
+ X_test_scaled = pd.DataFrame(scaler.transform(X_test), columns=list(X_test.columns.values))
+ return X_train_scaled, X_test_scaled
+
+
+
+[docs]
+def clean_data(X_data, y_data, split='sorted', test_size=0.2, cutoff=None, plot=False):
+ """
+ Perform the entire data cleaning process as one function
+ Optionally, plot the correlation matrix
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame, shape = (n_samples, n_features)
+ split : string, optional, 'sorted' or 'random'
+ test_size : float, optional, default = 0.2
+ cutoff : float, optional, auto-correlaton coefficient below which we keep
+ plot : boolean, optional, default = False
+
+ Returns
+ -------
+ X_train : pandas DataFrame , shape = (n_samples, m_features)
+ X_test : pandas DataFrame , shape = (p_samples, m_features)
+ y_train : pandas DataFrame , shape = (n_samples, 1)
+ y_test : pandas DataFrame , shape = (p_samples, 1)
+
+
+ """
+ # Create a deep copy of the data
+ df = X_data.copy()
+ # Remove columns with constant data
+ df = rm_constant(df)
+ # Remove columns with NaN values
+ df = rm_nan(df)
+ # Remove columns with NaN values when calculating correlation coefficients
+ df = rm_nanCorr(df)
+ # Remove columns with low variance
+ if cutoff:
+ df = rm_lowVar(df, cutoff)
+ # Create split
+ if split == 'random':
+ X_train, X_test, y_train, y_test = random_split(df, y_data, test_size)
+ else:
+ X_train, X_test, y_train, y_test = sorted_split(df, y_data, test_size)
+ # Scale the data and return
+ X_train, X_test = scale_data(X_train, X_test)
+ if plot:
+ plt.matshow(df.corr())
+ plt.set_cmap('seismic')
+ # show legend for the matrix
+ plt.colorbar()
+ plt.show()
+ return X_train, X_test, y_train, y_test
+
+
+#-*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: Multi-Processing Feature Selection Module
+#
+#Copyright (C) 2023 Stephen Szwiec
+#
+#This file is part of qsarify.
+#
+#This program is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#This program is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+
+"""
+Multi-Processing Feature Selection Module
+
+This module contains the functions for performing feature selection using
+the clustering module's output as a guide for feature selection, and implements
+a genetic algorithm for feature selection using reflection.
+
+"""
+
+import datetime
+import random
+import numpy as np
+from sklearn import linear_model as lm
+from sklearn.svm import SVC
+import itertools
+import multiprocessing as mp
+
+"""
+Reflector class for the evolve function; allows for the use of a pool of workers.
+"""
+
+[docs]
+class Evolution:
+ """
+ Initializes the evolution class with the learning algorithm to be used
+ """
+ def __init__(self, evolve):
+ self.e_mlr = lm.LinearRegression()
+ self.evolve = evolve
+
+ """
+ Function call for the evolution function
+ """
+ def __call__(self, i, cluster_info, cluster, X_data, y_data):
+ return self.evolve(i, cluster_info, cluster, X_data, y_data, self.e_mlr)
+
+ """
+ Evolution of descriptors for learning algorithm, implemented as a function map
+
+ Parameters
+ ----------
+ i: list, descriptor set
+ cluster_info: dict, descriptor cluster information
+ cluster: list, descriptor cluster
+ X_data: DataFrame, descriptor data
+ y_data: DataFrame, target data
+ """
+
+[docs]
+ def evolve(i, cluster_info, cluster, X_data, y_data, e_mlr):
+ # Get the descriptors in the model
+ i = i[1]
+ # Get the groups of descriptors in model
+ group_n = [cluster_info[x]-1 for x in i]
+ # randomly select one descriptor to remove
+ sw_index = random.randrange(0, len(i))
+ # randomly select new group from cluster to swap with
+ sw_group = random.randrange(0, max(list(cluster_info.values())))
+ while sw_group in group_n:
+ # make sure the new group is not in the current group
+ sw_group = random.randrange(0, len(cluster))
+ # list comprehension which generates a new list of descriptors by
+ # swapping the indexed descriptor with a new one randomly chosen from the new cluster group
+ b_set = [random.choice(cluster[sw_group]) if x == sw_index else i[x] for x in range(0, len(i))]
+ b_set.sort()
+ x = X_data[b_set].values
+ y = y_data.values.ravel()
+ score = e_mlr.fit(x, y).score(x, y)
+ return [score, b_set]
+
+
+
+
+[docs]
+def selection(X_data, y_data, cluster_info, model="regression", learning=500000, bank=200, component=4, interval=1000, cores=(mp.cpu_count()*2)-1):
+ """
+ Forward feature selection using cophenetically correlated data on mutliple cores
+
+ Parameters
+ ----------
+ X_data : pandas DataFrame , shape = (n_samples, n_features)
+ y_data : pandas DataFrame , shape = (n_samples,)
+ cluster_info : dictionary returned by clustering.featureCluster.set_cluster()
+ model : default="regression", otherwise "classification"
+ learning : default=500000, number of overall models to be trained
+ bank : default=200, number of models to be trained in each iteration
+ component : default=4, number of features to be selected
+ interval : optional, default=1000, print current scoring and selected features
+ every interval
+ cores: optional, default=(mp.cpu_count()*2)-1, number of processes to be used
+ for multiprocessing; default is twice the number of cores minus 1, which
+ is assuming you have SMT, HT, or something similar) If you have a large
+ number of cores, you may want to set this to a lower number to avoid
+ memory issues.
+
+ Returns
+ -------
+ list, result of selected best feature set
+ """
+ now = datetime.datetime.now()
+ print("Start time: ", now.strftime('%H:%M:%S'))
+
+ if model == "regression":
+ print('\x1b[1;42m','Regression','\x1b[0m')
+ y_mlr = lm.LinearRegression()
+ e_mlr = lm.LinearRegression()
+ else:
+ print('\x1b[1;42m','Classification','\x1b[0m')
+ y_mlr = SVC(kernel='rbf', C=1, gamma=0.1, random_state=0)
+ e_mlr = SVC(kernel='rbf', C=1, gamma=0.1, random_state=0)
+
+ # a list of numbered clusters
+ nc = list(cluster_info.values())
+ num_clusters = list(range(max(nc)))
+
+ # extract information from dictionary by inversion
+ inv_cluster_info = dict()
+ for k, v in cluster_info.items():
+ inv_cluster_info.setdefault(v, list()).append(k)
+
+ # an ordered list of features in each cluster
+ cluster = list(dict(sorted(inv_cluster_info.items())).values())
+
+ # fill the interation bank with random models
+ # models contain (1 - component) number of features
+ # ensure the models are not duplicated and non redundant
+ index_sort_bank = set()
+ model_bank = [ ini_desc for _ in range(bank) for ini_desc in [sorted([random.choice(cluster[random.choice(num_clusters)]) for _ in range(random.randint(1,component))])] if ini_desc not in tuple(index_sort_bank) and not index_sort_bank.add(tuple(ini_desc))]
+
+ # score each set of features, saving each score and the corresponding feature set
+ scoring_bank = list(map(lambda x: [y_mlr.fit(np.array(X_data.loc[:,x]), y_data.values.ravel()).score(np.array(X_data.loc[:,x]), y_data), list(X_data.loc[:,x].columns.values)], model_bank))
+
+ # create a reflection of the evolution function
+ evolver = Evolution(Evolution.evolve)
+
+ with mp.Pool(processes = cores) as pool:
+ # perform main learning loop
+ for n in range(learning):
+ # initialize best score to the worst possible score
+ best_score = -float("inf")
+ # Evolve the bank of models and allow those surpassing the best score to replace the worst models up to the bank size
+ results = pool.starmap(evolver, [(i, cluster_info, cluster, X_data, y_data) for i in scoring_bank])
+ rank_filter = [x for x in results if (best_score := max(best_score, x[0])) == x[0]]
+ scoring_bank = sorted(itertools.chain(scoring_bank, rank_filter), reverse = True)[:bank]
+ if n % interval == 0 and n != 0:
+ tt = datetime.datetime.now()
+ print(n, '=>', tt.strftime('%H:%M:%S'), scoring_bank[0])
+
+
+ # print output and return best model found during training
+ print("Best score: ", scoring_bank[0])
+ clulog = [cluster_info[y] for _, y in scoring_bank[0][1]]
+ print("Model's cluster info", clulog)
+ fi = datetime.datetime.now()
+ fiTime = fi.strftime('%H:%M:%S')
+ print("Finish Time : ", fiTime)
+ return scoring_bank[0][1]
+
+
+#-*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: Single-Threaded Feature Selection Module
+#
+#Copyright (C) 2023 Stephen Szwiec
+#
+#This file is part of qsarify.
+#
+#This program is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#This program is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+"""
+Single-Threaded Feature Selection Module
+
+This module contains the single-threaded version of the feature selection algorithm,
+which is a genetic algorithm that uses a linear regression model to score each set of features,
+using the output of clustering to ensure that the features are not redundant.
+
+"""
+import datetime
+import random
+import numpy as np
+import pandas as pd
+import sklearn.linear_model as lm
+import itertools
+
+
+[docs]
+def mlr_selection(X_data, y_data, cluster_info, component, model="regression", learning=50000, bank=200, interval=1000):
+ """
+ Performs feature selection using a using a linear regression model and a genetic algorithm on a single thread.
+ This is the vanilla version of the algorithm, which is not parallelized.
+
+ Parameters
+ ----------
+ X_data: DataFrame, descriptor data
+ y_data: DataFrame, target data
+ cluster_info: dict, descriptor cluster information
+ component: int, number of features to select
+ model: str, learning algorithm to use, default = "regression"
+ learning: int, number of iterations to perform, default = 50000
+ bank: int, number of models to keep in the bank, default = 200
+ interval: int, number of iterations to perform before printing the current time, default = 1000
+
+ Returns
+ -------
+ best_model: list, best model found
+ best_score: float, best score found
+ """
+
+ now = datetime.datetime.now()
+ print("Start time: ", now.strftime('%H:%M:%S'))
+
+ if model == "regression":
+ print('\x1b[1;42m','Regression','\x1b[0m')
+ y_mlr = lm.LinearRegression()
+ e_mlr = lm.LinearRegression()
+ else:
+ print('\x1b[1;42m','Classification','\x1b[0m')
+ y_mlr = SVC(kernel='rbf', C=1, gamma=0.1, random_state=0)
+ e_mlr = SVC(kernel='rbf', C=1, gamma=0.1, random_state=0)
+
+ # a list of numbered clusters
+ nc = list(cluster_info.values())
+ num_clusters = list(range(max(nc)))
+
+ # extract information from dictionary by inversion
+ inv_cluster_info = dict()
+ for k, v in cluster_info.items():
+ inv_cluster_info.setdefault(v, list()).append(k)
+
+ # an ordered list of features in each cluster
+ cluster = list(dict(sorted(inv_cluster_info.items())).values())
+
+ # fill the interation bank with random models
+ # models contain 1-component number of features
+ # ensure the models are not duplicated and non redundant
+ index_sort_bank = set()
+ model_bank = [ ini_desc for _ in range(bank) for ini_desc in [sorted([random.choice(cluster[random.choice(num_clusters)]) for _ in range(random.randint(1,component))])] if ini_desc not in tuple(index_sort_bank) and not index_sort_bank.add(tuple(ini_desc))]
+
+ # score each set of features, saving each score and the corresponding feature set
+ scoring_bank = list(map(lambda x: [y_mlr.fit(np.array(X_data.loc[:,x]), y_data.values.ravel()).score(np.array(X_data.loc[:,x]), y_data), list(X_data.loc[:,x].columns.values)], model_bank))
+
+ def evolve(i):
+ """
+ Evolution of descriptors for learning algorithm, implemented as a function map
+
+ Parameters
+ ----------
+ i: list, descriptor set
+ """
+ i = i[1]
+ group_n = [cluster_info[x]-1 for x in i]
+ sw_index = random.randrange(0, len(i))
+ sw_group = random.randrange(0, max(nc))
+ while sw_group in group_n:
+ sw_group = random.randrange(0, max(nc))
+ b_set = [random.choice(cluster[sw_group]) if x == sw_index else i[x] for x in range(0, len(i))]
+ b_set.sort()
+ x = X_data[b_set].values
+ y = y_data.values.ravel()
+ score = e_mlr.fit(x, y).score(x, y)
+ return [score, b_set]
+
+ # perform main learning loop
+ for n in range(learning):
+ # initialize best score to the worst possible score
+ best_score = -float("inf")
+ # Evolve the bank of models and allow those surpassing the best score to replace the worst models up to the bank size
+ rank_filter = filter(lambda x, best_score=best_score: x[0] > best_score and (best_score := x[0]), map(evolve, scoring_bank))
+ scoring_bank = sorted(itertools.chain(scoring_bank, rank_filter), reverse = True)[:bank]
+ if n % interval == 0 and n != 0:
+ tt = datetime.datetime.now()
+ print(n, '=>', tt.strftime('%H:%M:%S'), scoring_bank[0])
+
+ # print output and return best model found during training
+ print("Best score: ", scoring_bank[0][0])
+ clulog = [cluster_info[y] for y in scoring_bank[0][1]]
+ print("Model's cluster info", clulog)
+ fi = datetime.datetime.now()
+ fiTime = fi.strftime('%H:%M:%S')
+ print("Finish Time : ", fiTime)
+ return scoring_bank[0][1]
+
+
+
+[docs]
+def rf_selection(X_data, y_data, cluster_info, component, model="regression", learning=50000, bank=200, interval=1000):
+ """
+ Performs feature selection using a using a random forest model and a genetic algorithm on a single thread.
+ This is the vanilla version of the algorithm, which is not parallelized.
+
+ Parameters
+ ----------
+ X_data: DataFrame, descriptor data
+ y_data: DataFrame, target data
+ cluster_info: dict, descriptor cluster information
+ component: int, number of features to select
+ model: str, learning algorithm to use, default = "regression"
+ learning: int, number of iterations to perform, default = 50000
+ bank: int, number of models to keep in the bank, default = 200
+ interval: int, number of iterations to perform before printing the current time, default = 1000
+
+ Returns
+ -------
+ best_model: list, best model found
+ best_score: float, best score found
+ """
+
+ now = datetime.datetime.now()
+ print("Start time: ", now.strftime('%H:%M:%S'))
+
+ if model == "regression":
+ print('\x1b[1;42m','Regression','\x1b[0m')
+ y_rf = RandomForestRegressor(n_estimators=100, max_depth=2, random_state=0)
+ e_rf = RandomForestRegressor(n_estimators=100, max_depth=2, random_state=0)
+ else:
+ print('\x1b[1;42m','Classification','\x1b[0m')
+ y_rf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0)
+ e_rf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0)
+
+ # a list of numbered clusters
+ nc = list(cluster_info.values())
+ num_clusters = list(range(max(nc)))
+
+ # extract information from dictionary by inversion
+ inv_cluster_info = dict()
+ for k, v in cluster_info.items():
+ inv_cluster_info.setdefault(v, list()).append(k)
+
+ # an ordered list of features in each cluster
+ cluster = list(dict(sorted(inv_cluster_info.items())).values())
+
+ # fill the interation bank with random models
+ # models contain 1-component number of features
+ # ensure the models are not duplicated and non redundant
+ index_sort_bank = set()
+ model_bank = [ ini_desc for _ in range(bank) for ini_desc in [sorted([random.choice(cluster[random.choice(num_clusters)]) for _ in range(random.randint(1,component))])] if ini_desc not in tuple(index_sort_bank) and not index_sort_bank.add(tuple(ini_desc))]
+
+ # score each set of features, saving each score and the corresponding feature set
+ scoring_bank = list(map(lambda x: [y_rf.fit(np.array(X_data.loc[:,x]), y_data.values.ravel()).score(np.array(X_data.loc[:,x]), y_data), list(X_data.loc[:,x].columns.values)], model_bank))
+
+ def evolve(i):
+ """
+ Evolution of descriptors for learning algorithm, implemented as a function map
+
+ Parameters
+ ----------
+ i: list, descriptor set
+ """
+ i = i[1]
+ group_n = [cluster_info[x]-1 for x in i]
+ sw_index = random.randrange(0, len(i))
+ sw_group = random.randrange(0, max(nc))
+ while sw_group in group_n:
+ sw_group = random.randrange(0, max(nc))
+ b_set = [random.choice(cluster[sw_group]) if x == sw_index else i[x] for x in range(0, len(i))]
+ b_set.sort()
+ x = X_data[b_set].values
+ y = y_data.values.ravel()
+ score = e_rf.fit(x, y).score(x, y)
+ return [score, b_set]
+
+ # perform main learning loop
+ for n in range(learning):
+ # initialize best score to the worst possible score
+ best_score = -float("inf")
+ # Evolve the bank of models and allow those surpassing the best score to replace the worst models up to the bank size
+ rank_filter = filter(lambda x, best_score=best_score: x[0] > best_score and (best_score := x[0]), map(evolve, scoring_bank))
+ scoring_bank = sorted(itertools.chain(scoring_bank, rank_filter), reverse = True)[:bank]
+ if n % interval == 0 and n != 0:
+ tt = datetime.datetime.now()
+ print(n, '=>', tt.strftime('%H:%M:%S'), scoring_bank[0])
+
+ # print output and return best model found during training
+ print("Best score: ", scoring_bank[0][0])
+ clulog = [cluster_info[y] for y in scoring_bank[0][1]]
+ print("Model's cluster info", clulog)
+ fi = datetime.datetime.now()
+ fiTime = fi.strftime('%H:%M:%S')
+ print("Finish Time : ", fiTime)
+ return scoring_bank[0][1]
+
+
+# -*- coding: utf-8 -*-
+# Author: Stephen Szwiec
+# Date: 2023-02-19
+# Description: QSAR Scoring Module
+"""
+Copyright (C) 2023 Stephen Szwiec
+
+This file is part of qsarify.
+
+This program is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+"""
+import numpy as np
+"""
+Commonly used scoring functions for QSAR models
+"""
+
+
+[docs]
+def rmse_score(y_true, y_pred):
+ """
+ Calculates the RMSE score
+
+ Parameters
+ ----------
+ y_true : numpy array , shape (n_samples,)
+ y_pred : numpy array, shape (n_samples,)
+
+ Returns
+ -------
+ float
+ """
+ return np.sqrt(np.mean(np.square(y_true - y_pred)))
+
+
+
+[docs]
+def q2_score(y_true, y_pred):
+ """
+ Calculates the Q2 score
+
+ Parameters
+ ----------
+ y_true : numpy array , shape (n_samples,)
+ y_pred : numpy array, shape (n_samples,)
+
+ Returns
+ -------
+ float
+ """
+ press = np.sum(np.square(y_true - y_pred))
+ tss = np.sum(np.square(y_true - np.mean(y_true)))
+ return 1 - press/tss
+
+
+
+[docs]
+def q2f_score(y_true, y_pred, y_mean):
+ """
+ Calculates the Q2_f1 or Q2_f2 score
+ depending on whether the mean is calculated from the training set or the external set
+
+ Parameters
+ ----------
+ y_true : numpy array, shape (n_samples,)
+ y_pred : numpy array, shape (n_samples,)
+ y_mean : float, mean of the training (for q2f1) or test (for q2f2) set
+
+ Returns
+ -------
+ float
+ """
+ press = np.sum(np.square(y_true - y_pred))
+ tss = np.sum(np.square(y_true - y_mean))
+ return 1 - press/tss
+
+
+
+[docs]
+def q2f3_score(y_true, y_pred, n_train, n_external):
+ """
+ Calculates the Q2_f3 score
+
+ Parameters
+ ----------
+ y_true : numpy array, shape (n_samples,)
+ y_pred : numpy array, shape (n_samples,)
+ n_external : int
+ number of external samples
+ n_train : int
+ number of training samples
+
+ Returns
+ -------
+ float
+ """
+ press = np.sum(np.square(y_true - y_pred))
+ tss = np.sum(np.square(y_true - np.mean(y_true)))
+ return 1 - (press / n_external) / (tss * n_train)
+
+
+
+[docs]
+def ccc_score(y_true, y_pred):
+ """
+ Calculates the CCC score
+
+ Parameters
+ ----------
+ y_true : numpy array, shape (n_samples,)
+ y_pred : numpy array, shape (n_samples,)
+
+ Returns
+ -------
+ float
+ """
+ mean_true = y_true.mean()
+ mean_pred = y_pred.mean()
+ var_true = y_true.var()
+ var_pred = y_pred.var()
+ covar_true_pred = np.cov(y_true, y_pred)[0,1]
+ return 2 * covar_true_pred / (var_true + var_pred + (mean_true - mean_pred)**2)
+
+
' + + '' + + _("Hide Search Matches") + + "
" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/docs/html/man/html/genindex.html b/docs/html/man/html/genindex.html new file mode 100644 index 0000000..8618097 --- /dev/null +++ b/docs/html/man/html/genindex.html @@ -0,0 +1,296 @@ + + + + + ++ | + |
+ | + |
+ |
|
+
|
+ + |
+ | + |
+ | + |
+ |
Evolution
+selection()
Classification Scoring Module
+This module provides summary information about Classification
+Bases: object
Provides summary information about Classification
+y_data (pandas DataFrame , shape = (n_samples,)) –
pred_y (pandas DataFrame , shape = (n_samples,)) –
classification (=> predicted Y values as result of) –
functions (Sub) –
------- –
(self) (score) –
tf_table(self) –
Clustering Module
+This module contains functions for clustering features based on hierarchical clustering method +and calculating the cophenetic correlation coefficient of linkages. The cophenetic correlation +coefficient is a measure of the correlation between the distance of observations in feature space +and the distance of observations in cluster space. The cophenetic correlation coefficient is +calculated for each linkage method and the method with the highest cophenetic correlation +coefficient is used to cluster the features. The cophenetic correlation coefficient is calculated +using the scipy.cluster.hierarchy.cophenet function.
+Calculate the cophenetic correlation coefficient of linkages
+X_data (pandas DataFrame, shape = (n_samples, m_features)) –
method (str, method for linkage generation, default = 'corr' (Pearson correlation)) –
None
+Bases: object
Make cluster of features based on hierarchical clustering method
+X_data (pandas DataFrame, shape = (n_samples, n_features)) –
link (str, kind of linkage method, default = 'average', 'complete', 'single') –
cut_d (int, depth in cluster(dendrogram), default = 3) –
functions (Sub) –
------------- –
set_cluster(self) –
cluster_dist(self) –
Make cluster of features based on hierarchical clustering method
+verbose (bool, print cluster information, default = False) –
graph (bool, show dendrogram, default = False) –
cludict
+dict, cluster information of features as a dictionary
+Data Preprocessing Module
+removing features with ‘NaN’ as value
removing features with constant values
removing features with low variance
removing features with ‘NaN’ as value when calculating correlation coefficients
generating a sequential train-test split by sorting the data by response variable
generating a random train-test split
scaling data
The main function of this module is clean_data, which performs all of the above functions.
+Perform the entire data cleaning process as one function +Optionally, plot the correlation matrix
+X_data (pandas DataFrame, shape = (n_samples, n_features)) –
split (string, optional, 'sorted' or 'random') –
test_size (float, optional, default = 0.2) –
cutoff (float, optional, auto-correlaton coefficient below which we keep) –
plot (boolean, optional, default = False) –
X_train (pandas DataFrame , shape = (n_samples, m_features))
X_test (pandas DataFrame , shape = (p_samples, m_features))
y_train (pandas DataFrame , shape = (n_samples, 1))
y_test (pandas DataFrame , shape = (p_samples, 1))
Generate a random train-test split
+X_data (pandas DataFrame , shape = (n_samples, m_features)) –
y_data (pandas DataFrame , shape = (n_samples, 1)) –
test_size (float, default = 0.2) –
Returns –
dataframe (-------give count of NaN in pandas) –
X_train (pandas DataFrame , shape = (n_samples, m_features)) –
X_test (pandas DataFrame , shape = (n_samples, m_features)) –
y_train (pandas DataFrame , shape = (n_samples, 1)) –
y_test (pandas DataFrame , shape = (n_samples, 1)) –
Remove features with constant values
+X_data (pandas DataFrame , shape = (n_samples, n_features)) –
+Modified DataFrame
+Remove features with low variance
+X_data (pandas DataFrame , shape = (n_samples, n_features)) –
cutoff (float, default = 0.1) –
Modified DataFrame
+Remove features with ‘NaN’ as value
+X_data (pandas DataFrame , shape = (n_samples, n_features)) –
+Modified DataFrame
+Remove features with ‘NaN’ as value when calculating correlation coefficients
+X_data (pandas DataFrame , shape = (n_samples, n_features)) –
+Modified DataFrame
+Scale the data using the training data; apply the same transformation to the test data
+X_train (pandas DataFrame , shape = (n_samples, m_features)) –
X_test (pandas DataFrame , shape = (p_samples, m_features)) –
X_train_scaled (pandas DataFrame , shape = (n_samples, m_features))
X_test_scaled (pandas DataFrame , shape = (p_samples, m_features))
Generate a sequential train-test split by sorting the data by response variable
+X_data (pandas DataFrame , shape = (n_samples, m_features)) –
y_data (pandas DataFrame , shape = (n_samples, 1)) –
test_size (float, default = 0.2) –
X_train (pandas DataFrame , shape = (n_samples, m_features))
X_test (pandas DataFrame, shape = (n_samples, m_features))
y_train (pandas DataFrame , shape = (n_samples, 1))
y_test (pandas DataFrame , shape = (n_samples, 1))
Multi-Processing Feature Selection Module
+This module contains the functions for performing feature selection using +the clustering module’s output as a guide for feature selection, and implements +a genetic algorithm for feature selection using reflection.
+Bases: object
Initializes the evolution class with the learning algorithm to be used
+ + +Forward feature selection using cophenetically correlated data on mutliple cores
+X_data (pandas DataFrame , shape = (n_samples, n_features)) –
y_data (pandas DataFrame , shape = (n_samples,)) –
cluster_info (dictionary returned by clustering.featureCluster.set_cluster()) –
model (default="regression", otherwise "classification") –
learning (default=500000, number of overall models to be trained) –
bank (default=200, number of models to be trained in each iteration) –
component (default=4, number of features to be selected) –
interval (optional, default=1000, print current scoring and selected features) – every interval
cores (optional, default=(mp.cpu_count()*2)-1, number of processes to be used) – for multiprocessing; default is twice the number of cores minus 1, which +is assuming you have SMT, HT, or something similar) If you have a large +number of cores, you may want to set this to a lower number to avoid +memory issues.
list, result of selected best feature set
+Single-Threaded Feature Selection Module
+This module contains the single-threaded version of the feature selection algorithm, +which is a genetic algorithm that uses a linear regression model to score each set of features, +using the output of clustering to ensure that the features are not redundant.
+Performs feature selection using a using a linear regression model and a genetic algorithm on a single thread. +This is the vanilla version of the algorithm, which is not parallelized.
+X_data (DataFrame, descriptor data) –
y_data (DataFrame, target data) –
cluster_info (dict, descriptor cluster information) –
component (int, number of features to select) –
model (str, learning algorithm to use, default = "regression") –
learning (int, number of iterations to perform, default = 50000) –
bank (int, number of models to keep in the bank, default = 200) –
interval (int, number of iterations to perform before printing the current time, default = 1000) –
best_model (list, best model found)
best_score (float, best score found)
Performs feature selection using a using a random forest model and a genetic algorithm on a single thread. +This is the vanilla version of the algorithm, which is not parallelized.
+X_data (DataFrame, descriptor data) –
y_data (DataFrame, target data) –
cluster_info (dict, descriptor cluster information) –
component (int, number of features to select) –
model (str, learning algorithm to use, default = "regression") –
learning (int, number of iterations to perform, default = 50000) –
bank (int, number of models to keep in the bank, default = 200) –
interval (int, number of iterations to perform before printing the current time, default = 1000) –
best_model (list, best model found)
best_score (float, best score found)
Copyright (C) 2023 Stephen Szwiec
+This file is part of qsarify.
+This program is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version.
+This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details.
+You should have received a copy of the GNU General Public License +along with this program. If not, see <http://www.gnu.org/licenses/>.
+Calculates the CCC score
+y_true (numpy array, shape (n_samples,)) –
y_pred (numpy array, shape (n_samples,)) –
float
+Calculates the Q2 score
+y_true (numpy array , shape (n_samples,)) –
y_pred (numpy array, shape (n_samples,)) –
float
+Calculates the Q2_f3 score
+y_true (numpy array, shape (n_samples,)) –
y_pred (numpy array, shape (n_samples,)) –
n_external (int) – number of external samples
n_train (int) – number of training samples
float
+Calculates the Q2_f1 or Q2_f2 score +depending on whether the mean is calculated from the training set or the external set
+y_true (numpy array, shape (n_samples,)) –
y_pred (numpy array, shape (n_samples,)) –
y_mean (float, mean of the training (for q2f1) or test (for q2f2) set) –
float
++ q | ||
+ |
+ qsarify | + |
+ |
+ qsarify.classification | + |
+ |
+ qsarify.clustering | + |
+ |
+ qsarify.data_tools | + |
+ |
+ qsarify.feature_selection_multi | + |
+ |
+ qsarify.feature_selection_single | + |
+ |
+ qsarify.qsar_scoring | + |
Classification Scoring Module
+This module provides summary information about Classification
+Bases: object
Provides summary information about Classification
+y_data (pandas DataFrame , shape = (n_samples,)) –
pred_y (pandas DataFrame , shape = (n_samples,)) –
classification (=> predicted Y values as result of) –
functions (Sub) –
------- –
(self) (score) –
tf_table(self) –
Clustering Module
+This module contains functions for clustering features based on hierarchical clustering method +and calculating the cophenetic correlation coefficient of linkages. The cophenetic correlation +coefficient is a measure of the correlation between the distance of observations in feature space +and the distance of observations in cluster space. The cophenetic correlation coefficient is +calculated for each linkage method and the method with the highest cophenetic correlation +coefficient is used to cluster the features. The cophenetic correlation coefficient is calculated +using the scipy.cluster.hierarchy.cophenet function.
+Calculate the cophenetic correlation coefficient of linkages
+X_data (pandas DataFrame, shape = (n_samples, m_features)) –
method (str, method for linkage generation, default = 'corr' (Pearson correlation)) –
None
+Bases: object
Make cluster of features based on hierarchical clustering method
+X_data (pandas DataFrame, shape = (n_samples, n_features)) –
link (str, kind of linkage method, default = 'average', 'complete', 'single') –
cut_d (int, depth in cluster(dendrogram), default = 3) –
functions (Sub) –
------------- –
set_cluster(self) –
cluster_dist(self) –
Make cluster of features based on hierarchical clustering method
+verbose (bool, print cluster information, default = False) –
graph (bool, show dendrogram, default = False) –
cludict
+dict, cluster information of features as a dictionary
+Data Preprocessing Module
+removing features with ‘NaN’ as value
removing features with constant values
removing features with low variance
removing features with ‘NaN’ as value when calculating correlation coefficients
generating a sequential train-test split by sorting the data by response variable
generating a random train-test split
scaling data
The main function of this module is clean_data, which performs all of the above functions.
+Perform the entire data cleaning process as one function +Optionally, plot the correlation matrix
+X_data (pandas DataFrame, shape = (n_samples, n_features)) –
split (string, optional, 'sorted' or 'random') –
test_size (float, optional, default = 0.2) –
cutoff (float, optional, auto-correlaton coefficient below which we keep) –
plot (boolean, optional, default = False) –
X_train (pandas DataFrame , shape = (n_samples, m_features))
X_test (pandas DataFrame , shape = (p_samples, m_features))
y_train (pandas DataFrame , shape = (n_samples, 1))
y_test (pandas DataFrame , shape = (p_samples, 1))
Generate a random train-test split
+X_data (pandas DataFrame , shape = (n_samples, m_features)) –
y_data (pandas DataFrame , shape = (n_samples, 1)) –
test_size (float, default = 0.2) –
Returns –
dataframe (-------give count of NaN in pandas) –
X_train (pandas DataFrame , shape = (n_samples, m_features)) –
X_test (pandas DataFrame , shape = (n_samples, m_features)) –
y_train (pandas DataFrame , shape = (n_samples, 1)) –
y_test (pandas DataFrame , shape = (n_samples, 1)) –
Remove features with constant values
+X_data (pandas DataFrame , shape = (n_samples, n_features)) –
+Modified DataFrame
+Remove features with low variance
+X_data (pandas DataFrame , shape = (n_samples, n_features)) –
cutoff (float, default = 0.1) –
Modified DataFrame
+Remove features with ‘NaN’ as value
+X_data (pandas DataFrame , shape = (n_samples, n_features)) –
+Modified DataFrame
+Remove features with ‘NaN’ as value when calculating correlation coefficients
+X_data (pandas DataFrame , shape = (n_samples, n_features)) –
+Modified DataFrame
+Scale the data using the training data; apply the same transformation to the test data
+X_train (pandas DataFrame , shape = (n_samples, m_features)) –
X_test (pandas DataFrame , shape = (p_samples, m_features)) –
X_train_scaled (pandas DataFrame , shape = (n_samples, m_features))
X_test_scaled (pandas DataFrame , shape = (p_samples, m_features))
Generate a sequential train-test split by sorting the data by response variable
+X_data (pandas DataFrame , shape = (n_samples, m_features)) –
y_data (pandas DataFrame , shape = (n_samples, 1)) –
test_size (float, default = 0.2) –
X_train (pandas DataFrame , shape = (n_samples, m_features))
X_test (pandas DataFrame, shape = (n_samples, m_features))
y_train (pandas DataFrame , shape = (n_samples, 1))
y_test (pandas DataFrame , shape = (n_samples, 1))
Multi-Processing Feature Selection Module
+This module contains the functions for performing feature selection using +the clustering module’s output as a guide for feature selection, and implements +a genetic algorithm for feature selection using reflection.
+Bases: object
Initializes the evolution class with the learning algorithm to be used
+ + +Forward feature selection using cophenetically correlated data on mutliple cores
+X_data (pandas DataFrame , shape = (n_samples, n_features)) –
y_data (pandas DataFrame , shape = (n_samples,)) –
cluster_info (dictionary returned by clustering.featureCluster.set_cluster()) –
model (default="regression", otherwise "classification") –
learning (default=500000, number of overall models to be trained) –
bank (default=200, number of models to be trained in each iteration) –
component (default=4, number of features to be selected) –
interval (optional, default=1000, print current scoring and selected features) – every interval
cores (optional, default=(mp.cpu_count()*2)-1, number of processes to be used) – for multiprocessing; default is twice the number of cores minus 1, which +is assuming you have SMT, HT, or something similar) If you have a large +number of cores, you may want to set this to a lower number to avoid +memory issues.
list, result of selected best feature set
+Single-Threaded Feature Selection Module
+This module contains the single-threaded version of the feature selection algorithm, +which is a genetic algorithm that uses a linear regression model to score each set of features, +using the output of clustering to ensure that the features are not redundant.
+Performs feature selection using a using a linear regression model and a genetic algorithm on a single thread. +This is the vanilla version of the algorithm, which is not parallelized.
+X_data (DataFrame, descriptor data) –
y_data (DataFrame, target data) –
cluster_info (dict, descriptor cluster information) –
component (int, number of features to select) –
model (str, learning algorithm to use, default = "regression") –
learning (int, number of iterations to perform, default = 50000) –
bank (int, number of models to keep in the bank, default = 200) –
interval (int, number of iterations to perform before printing the current time, default = 1000) –
best_model (list, best model found)
best_score (float, best score found)
Performs feature selection using a using a random forest model and a genetic algorithm on a single thread. +This is the vanilla version of the algorithm, which is not parallelized.
+X_data (DataFrame, descriptor data) –
y_data (DataFrame, target data) –
cluster_info (dict, descriptor cluster information) –
component (int, number of features to select) –
model (str, learning algorithm to use, default = "regression") –
learning (int, number of iterations to perform, default = 50000) –
bank (int, number of models to keep in the bank, default = 200) –
interval (int, number of iterations to perform before printing the current time, default = 1000) –
best_model (list, best model found)
best_score (float, best score found)
Copyright (C) 2023 Stephen Szwiec
+This file is part of qsarify.
+This program is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version.
+This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details.
+You should have received a copy of the GNU General Public License +along with this program. If not, see <http://www.gnu.org/licenses/>.
+Calculates the CCC score
+y_true (numpy array, shape (n_samples,)) –
y_pred (numpy array, shape (n_samples,)) –
float
+Calculates the Q2 score
+y_true (numpy array , shape (n_samples,)) –
y_pred (numpy array, shape (n_samples,)) –
float
+Calculates the Q2_f3 score
+y_true (numpy array, shape (n_samples,)) –
y_pred (numpy array, shape (n_samples,)) –
n_external (int) – number of external samples
n_train (int) – number of training samples
float
+Calculates the Q2_f1 or Q2_f2 score +depending on whether the mean is calculated from the training set or the external set
+y_true (numpy array, shape (n_samples,)) –
y_pred (numpy array, shape (n_samples,)) –
y_mean (float, mean of the training (for q2f1) or test (for q2f2) set) –
float
+\n", + " | No. | \n", + "AMW | \n", + "Sp | \n", + "Mv | \n", + "Me | \n", + "Ms | \n", + "nBM | \n", + "ARR | \n", + "RBN | \n", + "RBF | \n", + "... | \n", + "PCWTe | \n", + "LDI | \n", + "Hy | \n", + "AMR | \n", + "MLOGP | \n", + "MLOGP2 | \n", + "ALOGP | \n", + "GVWAI-80 | \n", + "Infective-80 | \n", + "BLTD48 | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "1 | \n", + "6.510 | \n", + "8.284 | \n", + "0.649 | \n", + "0.971 | \n", + "2.000 | \n", + "6 | \n", + "1.000 | \n", + "0 | \n", + "0.000 | \n", + "... | \n", + "10.100 | \n", + "0.062 | \n", + "-0.921 | \n", + "26.058 | \n", + "2.255 | \n", + "5.085 | \n", + "2.047 | \n", + "0 | \n", + "0 | \n", + "-3.46 | \n", + "
1 | \n", + "2 | \n", + "6.143 | \n", + "10.045 | \n", + "0.626 | \n", + "0.969 | \n", + "1.952 | \n", + "6 | \n", + "0.857 | \n", + "1 | \n", + "0.067 | \n", + "... | \n", + "11.371 | \n", + "0.057 | \n", + "-0.936 | \n", + "31.099 | \n", + "2.608 | \n", + "6.802 | \n", + "2.514 | \n", + "0 | \n", + "0 | \n", + "-3.80 | \n", + "
2 | \n", + "3 | \n", + "8.794 | \n", + "9.438 | \n", + "0.658 | \n", + "1.037 | \n", + "3.074 | \n", + "8 | \n", + "0.889 | \n", + "1 | \n", + "0.071 | \n", + "... | \n", + "2.209 | \n", + "0.144 | \n", + "-0.636 | \n", + "33.383 | \n", + "1.797 | \n", + "3.229 | \n", + "2.000 | \n", + "0 | \n", + "0 | \n", + "-3.03 | \n", + "
3 | \n", + "4 | \n", + "8.068 | \n", + "11.199 | \n", + "0.636 | \n", + "1.024 | \n", + "2.933 | \n", + "8 | \n", + "0.800 | \n", + "2 | \n", + "0.118 | \n", + "... | \n", + "2.441 | \n", + "0.130 | \n", + "-0.672 | \n", + "38.424 | \n", + "2.150 | \n", + "4.623 | \n", + "2.467 | \n", + "0 | \n", + "0 | \n", + "-3.36 | \n", + "
4 | \n", + "5 | \n", + "8.068 | \n", + "11.199 | \n", + "0.636 | \n", + "1.024 | \n", + "2.933 | \n", + "8 | \n", + "0.800 | \n", + "2 | \n", + "0.118 | \n", + "... | \n", + "2.313 | \n", + "0.123 | \n", + "-0.672 | \n", + "38.424 | \n", + "2.150 | \n", + "4.623 | \n", + "2.467 | \n", + "0 | \n", + "0 | \n", + "-3.36 | \n", + "
5 rows × 676 columns
\n", + "" + ], + "text/plain": [ + " No. AMW Sp Mv Me Ms nBM ARR RBN RBF ... \\\n", + "0 1 6.510 8.284 0.649 0.971 2.000 6 1.000 0 0.000 ... \n", + "1 2 6.143 10.045 0.626 0.969 1.952 6 0.857 1 0.067 ... \n", + "2 3 8.794 9.438 0.658 1.037 3.074 8 0.889 1 0.071 ... \n", + "3 4 8.068 11.199 0.636 1.024 2.933 8 0.800 2 0.118 ... \n", + "4 5 8.068 11.199 0.636 1.024 2.933 8 0.800 2 0.118 ... \n", + "\n", + " PCWTe LDI Hy AMR MLOGP MLOGP2 ALOGP GVWAI-80 Infective-80 \\\n", + "0 10.100 0.062 -0.921 26.058 2.255 5.085 2.047 0 0 \n", + "1 11.371 0.057 -0.936 31.099 2.608 6.802 2.514 0 0 \n", + "2 2.209 0.144 -0.636 33.383 1.797 3.229 2.000 0 0 \n", + "3 2.441 0.130 -0.672 38.424 2.150 4.623 2.467 0 0 \n", + "4 2.313 0.123 -0.672 38.424 2.150 4.623 2.467 0 0 \n", + "\n", + " BLTD48 \n", + "0 -3.46 \n", + "1 -3.80 \n", + "2 -3.03 \n", + "3 -3.36 \n", + "4 -3.36 \n", + "\n", + "[5 rows x 676 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dfx.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "daf17e1a-182a-43c3-9b92-68f76eec6b74", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(28, 676)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dfx.shape " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "bd7cbef0-6a23-4430-a582-d7c6f9970097", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(22, 549) \n", + " (6, 549)\n" + ] + } + ], + "source": [ + "# this is the basic workflow for the data_tools module\n", + "dfx = dt.rm_nan(dfx)\n", + "dfx = dt.rm_constant(dfx)\n", + "dfx = dt.rm_lowVar(dfx)\n", + "dfx = dt.rm_nanCorr(dfx)\n", + "xtrain, xtest, ytrain, ytest = dt.sorted_split(dfx,dfy,0.2)\n", + "xtrain, xtest = dt.scale_data(xtrain, xtest)\n", + "print( xtrain.shape, '\\n', xtest.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "09a250cf-a5c9-465c-ae07-d96f210c413f", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAGNCAYAAACISt+uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9f1ic5ZU+fidCnGqIJIJO0qDEBjvaYIkNlrTShja40JVd6cpaPi3fSiu7YSuttNKVrlTZJWuw0kqXtGLLKpXUUMWIEiMamhCDARMMJBllmpCAhAQMkzAJJEzC5P7+cT/vO9ptt12T1lLnXNdcIfPjfd/n53nOOfe5zzSSREhCEpKQhCQkf8Uy/f1+gJCEJCQhCUlI/tQSUnYhCUlIQhKSv3oJKbuQhCQkIQnJX72ElF1IQhKSkITkr15Cyi4kIQlJSELyVy8hZReSkIQkJCH5q5eQsgtJSEISkpD81UtI2YUkJCEJSUj+6iWk7EISkpCEJCR/9RJSdiEJSUhCEpK/egkpu5CEJCQhCcnvlC1btiAjIwPz5s3DtGnT8Oyzz/7B37S2tuITn/gEHA4HrrrqKjzyyCP/4zsNDQ249tprceGFF+Laa6/FunXr/gRP/24JKbuQhCQkIQnJ75Tx8XF8/OMfR1VV1R/1/QMHDuALX/gCkpOTsXPnTnzve9/DN7/5TTQ0NNjf2bZtG2677Tbk5OSgu7sbOTk5+Md//Ed0dHT8qZoBAJgWIoIOSUhCEpKQ/CGZNm0a1q1bh1tuueX3fudf//Vf8dxzz+HNN9+031uxYgW6u7uxbds2AMBtt92G48ePY8OGDfZ30tLSMHv2bDz55JN/sucP+5NdOSQhCUlIQnLeZGJiAqdPnz7n65DEtGnT3vXehRdeiAsvvPCcr71t2zbcdNNN73rvb/7mb1BTU4MzZ84gPDwc27ZtQ2Fh4f/4zsMPP3zO9//fJKTsQhKSkITkL1wmJiYQ/aEPYew8XGvmzJkYG3v3le677z7cf//953ztoaEhXH755e967/LLL8fk5CRGRkYwd+7c3/udoaGhc77//yYhZReSkIQkJH/hcvr0aYwB+A6Ac7G//AAqxsYwMDCAWbNm2e+fD6vOkt+2Gq1I2Tvf/13f+e33zreElF1IQhKSkEwRuRCA4zxcZ9asWe9SdudLnE7n/7DQ3n77bYSFheHSSy/9X7/z29be+ZYQGjMkIQlJSKaITD8Prz+lLF26FC+//PK73nvppZewZMkShIeH/6/f+dSnPvUnfbaQZReSkIQkJFNEzlVh/V9/OzY2hn379tn/P3DgALq6ujBnzhxcccUVKC4uxuDgIH7xi18AEPKyqqoK3/72t5GXl4dt27ahpqbmXSjLb33rW/jMZz6D8vJy/P3f/z0aGxuxceNGbN269Rxa9oclZNmFJCQhCUlIfqfs2LEDixcvxuLFiwEA3/72t7F48WJ8//vfBwAcPnwYb731lv39BQsW4IUXXsDmzZuRkJCA//iP/8CPf/xj/MM//IP9nU996lNYu3YtHnvsMVx33XV4/PHHUV9fj09+8pN/0raE8uxCEpKQhOQvXI4fP45LLrkE9+PcYnYTAO4H4PP5/iQxu79kCbkxQxKSkIRkisif24351yQf5LaHJCQhCUlIPiASsuxCEpKQhGSKSMiye+8SUnYhCUlIQjJFJKTs3rt8kNsekpCEJCQh+YBIyLILSUhCEpIpIiHL7r1LSNmFJCQhCckUkWk4N4X1p2Wf/MuWD7KiD0lIQhKSkHxAZEoqu5/85CdYsGABHA4HPvGJT+CVV155vx/pf5U/VNqeJO6//37MmzcPH/rQh7Bs2TK43e53fcfv96OgoABRUVG4+OKL8Xd/93c4ePDgn7EV/1MeeOABJCYmIiIiApdddhluueUWeDyed31nKrbtpz/9Ka677jqbLHfp0qXvKjQ5Fdv0u+SBBx7AtGnTcNddd9nvTcW23X///Zg2bdq7Xk6n0/58Krbp98m08/D6oMqUU3b19fW466678G//9m/YuXMnkpOTkZ6e/i7Kmr80+UOl7R988EH88Ic/RFVVFbZv3w6n04nU1FScOHHC/s5dd92FdevWYe3atdi6dSvGxsZw8803IxAI/Lma8T+ktbUV3/jGN9De3o6XX34Zk5OTuOmmmzA+Pm5/Zyq2bf78+Vi1ahV27NiBHTt24HOf+xz+/u//3t4gp2Kbflu2b9+ORx99FNddd9273p+qbfvYxz6Gw4cP26/du3fbn03VNv0uueA8vD6wwikmN9xwA1esWPGu91wuF++555736Yn+bwKA69ats/9/9uxZOp1Orlq1yn5vYmKCl1xyCR955BGS5OjoKMPDw7l27Vr7O4ODg5w+fTpffPHFP9uz/yF5++23CYCtra0k/7raNnv2bP785z//q2jTiRMnGBcXx5dffpmf/exn+a1vfYvk1B2v++67jx//+Md/52dTtU2/LT6fjwD4I4CPnMPrRwAB0Ofzvd9N+rPLlLLsTp8+jc7Ozv9R9v2mm27Cq6+++j491bnJgQMHMDQ09K42XXjhhfjsZz9rt6mzsxNnzpx513fmzZuHRYsW/UW12+fzAQDmzJkD4K+jbYFAAGvXrsX4+DiWLl36V9Gmb3zjG/jbv/1bLF++/F3vT+W27d27F/PmzcOCBQvwpS99Cfv37wcwtdsUkvMrUwqNOTIygkAg8L6UdP9TifXcv6tN/f399ndmzJiB2bNn/4/v/KW0myS+/e1v48Ybb8SiRYsATO227d69G0uXLsXExARmzpyJdevW4dprr7U3v6nYJgBYu3YtXn/9dWzfvv1/fDZVx+uTn/wkfvGLX+Dqq6/G8PAwysrK8KlPfQput3vKtun3SSj14L3LlFJ2lrwfJd3/1PJe2vSX1O4777wTu3bt+p01qaZi2z760Y+iq6sLo6OjaGhowFe/+lW0trban0/FNg0MDOBb3/oWXnrpJTgcv587f6q1LT093f47Pj4eS5cuxUc+8hHU1tYiKSkJwNRr0++TkLJ77zKl2h4VFYULLrjgfSnp/qcSCzX2v7XJ6XTi9OnTOHbs2O/9zvspBQUFeO6557Bp0ybMnz/ffn8qt23GjBlYuHAhlixZggceeAAf//jHUVlZOaXb1NnZibfffhuf+MQnEBYWhrCwMLS2tuLHP/4xwsLC7Gebim17p1x88cWIj4/H3r17p/R4heT8ypRSdjNmzMAnPvGJ/1HS/eWXX/6Tl3T/U8mCBQvgdDrf1abTp0+jtbXVbtMnPvEJhIeHv+s7hw8fxp49e97XdpPEnXfeiWeeeQa//vWvsWDBgnd9PpXb9ttCEn6/f0q36fOf/zx2796Nrq4u+7VkyRJ8+ctfRldXF6666qop27Z3it/vx5tvvom5c+dO6fH6XTL9PLw+sPJ+oGLORdauXcvw8HDW1NTwjTfe4F133cWLL76YfX197/ej/V45ceIEd+7cyZ07dxIAf/jDH3Lnzp3s7+8nSa5atYqXXHIJn3nmGe7evZvZ2dmcO3cujx8/bl9jxYoVnD9/Pjdu3MjXX3+dn/vc5/jxj3+ck5OT71ezmJ+fz0suuYSbN2/m4cOH7dfJkyft70zFthUXF3PLli08cOAAd+3axe9973ucPn06X3rppSnbpt8n70RjklOzbd/5zne4efNm7t+/n+3t7bz55psZERFh7wlTsU2/LRYa86cAHz+H108/wGjMKafsSHL16tW88sorOWPGDF5//fU21P0vVTZt2kSYSfbO11e/+lWSgkffd999dDqdvPDCC/mZz3yGu3fvftc1Tp06xTvvvJNz5szhhz70Id58881866233ofWBOV3tQkAH3vsMfs7U7FtX/va1+z5FR0dzc9//vO2oiOnZpt+n/y2spuKbbvttts4d+5choeHc968efziF79It9ttfz4V2/TbElJ25y7TSPJPYTGGJCQhCUlIzo8cP34cl1xyCaoBfOgcrnMKwD9DaUKzZs06Pw83RWRKojFDEpKQhOSDKOdK+fWXhS3988oHOl4ZkpCEJCQh+WBIyLILSUhCEpIpItNxbvyWH2TrJqTsQhKSkIRkikgoqfy9ywe57SEJSUhCEpIPiIQsu5CEJCQhmSISsuzeu0zZtvv9ftx///3w+/3v96OcVwm1a2pJqF1TT6Zy20IMKu9d3tc8u5/85Cf4wQ9+gMOHD+NjH/sYHn74YSQnJ/9Rv7XyTv7a8kVC7ZpaEmrX1JOp2DbrmesAXHQO1zkJ4Cv4YObZvW+KfipWHA9JSEISkpBMTXnflN0Pf/hDfP3rX8cdd9yBa665Bg8//DBiYmLw05/+9P16pJCEJCQh+YuWkBvzvcv7AlCxKo7fc88973r/91Uc9/v97/Kvnz171i68ePz48T/tw/6ZxWpPqF1TQ0Ltmnry52obSZw4cQLz5s3D9OnnR82EACrvXd4XZfd/rTj+wAMPoLS09HdeKyYm5k/yjO+3hNo1tSTUrqknf662DQwMvKvOY0jeH3lfFf0fWz24uLgYPp/PfllxvUIAnQCAKrwAQLbeG3gYwEsAdgF4w3zHd+GFaAFQBeBJAMBPAZTD9/Wvw7d8OYByAPfBZz73JSdjAADwALYD2AgA8MA3cyZ8V1wBX0oKngLwHIB9ALYD8KWloR+A77bb4EtJQUmJD1/9qg++Awdw3XU+xMX54Hv4YRwGAHSgqsoH3549SEnx4cMf9sFXXAzgGbQB8P3zP+u3114LX3k5fKWluPZaH/YB8D3xBHylpfA98wy6unx4BEAtgKfNv8cAHD7sA/AGdgF4xjz/8uU+lJT4ALyKpUt98H33u/CtXImHHvLBFx+PFwH8xPRZD4BWANsAlJf70NXlg+8HP4Dvqqvgu/56+D78YfiuuAJN5ju++Hj1zc03o9/0ySYAvpUr4UtJge/JJ/W7227DIIAmAM8CeAXAsWM+bATwoBkf3yWX4AAA369+hT1We6+4Ar60NPgefRR79/rwL//iA3AUhw/7dO3SUjNyO+Dr6ADQhCNHfLjqKh+OmbavMf3ue+EFdAEAHsILgPltGXxf/jJ8M2fiy1/2wXfsGLwAgA2IjPTBd8UV+NnPfGrPN78J4A34li+Hr60Nycn6PtCK66/3AXgAvptvRi0AYBgvAvA9+ih6enxobfXBN3MmgG67n667zqf23nsvXnrJh5UrffClpABohe/LX8bKlT6kpem9IwA6O3247jr9f2DAhwMHfBqXJUvgu/BC9PT49KzPPAPft78N34UXwjcwAF9VFXxf/Sqee84H3wsvwHf4MI4c8aELwH4AcXHm+fbtUzuTk/V3SorGYM8eXaOjA75jx/Av/6L77APgO3IEA4DGaflyteeKK3AEgG/pUvheegkDA5pzR4740AmgHsAAgC4Azzzjg+/ee+EbGEBPj8Z0zx4fqqpM2196SeOwcqXdB759+9Bv5s/TAHw336z5kJysOZGcrPU9MADf8uVaV2lp8D33nNrS1QVfZyd8K1dq/V5/PXwtLfB9+9toAgAcgu/JJ7HfrIE9e3w4csQH36OPwldcDN8TT6ANwBNm3e3Z40M9oPnzz/+MgX/8RwBAREQEzpdMOw+vD6y8H6UW/H4/L7jgAj7zzDPvev+b3/wmP/OZz/zB31vlLjoB3gcQOMQBgGxsZHQ09bfTSebmki4XGRdHJiayH+B6gAcAAq8R6CIHB8nubgI1BFaTZWVkYSGZn88zAIGt9PvJXoCrVpFMSND1qqr0b3Q0twH8GUAmJLAeIPPyyMpKJieTaWkks7MJPMHERPIwwA6AlZVkcTHJsjICv2Renu4BbCQbGkifj8zNZQtADg+T4eEE9pL9/WR9PRkXx8FBkoOD7AV4DKAH4GHzd38/GR1NMjaWZwCOA6yoINeuJadNI7OySIaHk04nKytJdnTQD+j56+rI1FQyPp50OEiHgwcANgN8BWCL6fudAN0AnzSvn5r7rAO4GuA209+vANwO8BRARkaSMTHcDXAYIAFyfJzD5rl3ArpnZKR9n4YGkpmZGteGBsbEmGcvKWFnp/pX/bONQCmZn8/aWhLoY38/db3qajI/n+vXq3vZ2MicHPIEwNpaDTnNswNbeQTgywCbm0m3W98DBnS9hgYCL2hcamvpcJC7zZgC+wnsYjNAL0C2tnIYYESE5qXXS9LlItCkm1ZUEDjEfoCMiWFLC+n36zsFBWQgoOcCmvgmQB9Aer2k16v+a23l+LjmAZubybg4+v1kTQ25YgXJggL2A7pOSgqZkKD+S00l/X69n5rKNQCBHt3c7+eAmUMFBSQTE8mqKvYCZE4OAwCXLtUcmjaNbDVznx0dZEqK5nxjI+nx6LP4eCYnk8AY29pIFhWRHR18DCArK8mSEgKH9HdSEufO1Z8ZGdScDwTYARA4xd0AnwKYnU0mJ5OMj2dzM8nmZv3b1MTSUv12aIjMzCQjIjRmLQDZ3c3Zs7UuXS7NK0ZGqm39/WxuNms2I4MLFpAMBNgCMCODXLBAS76mRp8zO5tnAD4PcNCM/5tmP2JsrNlnzk85HWvPexrgC+fwevoDXOLnfatnd8MNNzA/P/9d711zzTW85557/uBvrYEHqggcMgpvhMCDZFMTge8TKDb/5hHoYkwMCawl0EzgIVYC/BFA4BkCT5Dp6aTTSeBBAo0ENhFo4l772lvN52MEBuhwkMDtBG4j8F0Cj5jfbuLKldp3WFBA1tRowWZlsRvgypVm8aWkkPX1BDrJujp2ACwtJfcCXLxY+wHj4rhyJQm4db2MDBYXS2ExK4vAgFHUxQS+SWA1gUeZmUmyupqnAAJlBO6VEiguJnNyeAYgS0pYXKw9kjExpl++RuABAj821/sGgRX0+6Vj29utPtxrvt9p7r2JwCQzMvTc6qPTBJ5gXp42j6VLtb8WFNCMy1ECdxH4hnnvO+ZZ72JBgTbRVatI4Jdkbi6zskjgNba0kKWl1IHC5eKCBWRFBclAgM1GOTI2lkxKIjs7SY+HwFEyP1+beXo6WVYmRWAUJFtapDw9HjY0GAVTXMz2djNOKSlsayN7e6X/gQEyNpbAa1y9mlI2vb3c8A7l7vHop9rIx6SUvV76AAI1dAMEHqfDQXoBPUdpKVlezrY289ukJB16SkpIr5fTppGAT4NWWkpgkkVFpMcjJdvdTc2njg4yI4NZWdLxwCkGAtb4jXD1as3P+Hi1VWPxlA4jVVVkdTVratTfWjeHmJioa7W3q+t7e6ln8/kIHGV/Pwk0cuVKmrHyEXiCwAssLpaC0Hi+Zn6zyRwMtnDpUpoDxCF6vVLSQB/b2sxYFBVxaEiHBfX/Kd3f45Fi8fsJ/JJAF+l2MytLc2727HfOuRpzGFpLt1ttyM3VvNFaXs1Vq6TrdVDaYq7/mv4eHiY9HhYVScn29mrcATeBYU6bpj6NiFBb8/JIX1VVSNn9Bcn7puzOpeK4NfAvABwwyug+gOzoIPAE18FYdhkZWtHFxbb1MWhOmsAp2pZSRweBrZrUDQ3cBpC5udwEEPgah+0T/xZuA9hvTth+yzpxOKRAysrohyxMxsYyPl776OCgFl9FBcnCQraZ09/4uBZXRoY5QWdnE3DrGjk5HBqiTtX9/WRiIoFm3S8ykqyokKIqK2MjZEUxNVUbVnExly7VomV5uX6TkECgi3PnGmXr8ejmgYA2m9RU7gTYa/rIb150OLThVFaqXcbCOmCsrFbI4gtYSqaujiws5Bmrb/LzZYlmZNDnozaNqioyOdm2Dtnby1aAZwBZAlYb6+roBkifT/err5cCGB4mfT42NBgrLT+fjI9nfLxO3yws5IoV6vfCQpJJSbIooqP1/4YG059deu7OToaHqw/OALK4a2pIh4Ph4WRrK8mcHJaUUDtcS4uUUXc3vV5NMebns7RUY7x0KcmMDA4DzMsjGR6usWxt1SZdUiLrIT+fjInRvEhJIRMT6fOZNuXmMjtbbWFbG1esoPpgeJiMi5OXITmZbG0l4JZiTkqS5ehwcM0akgUFDABmHk+yu1uKdWiIWh9+PwE3jaYiMELm5PAEoGtnZJAdHVoz4eGyKOvq1AeVlZoXbrfGJD1d41NQoLmSm6vJn5OjQ1Z+vp7N7SaTk+kF+CZAVlTogBIISJsmJNiHKzY36/2WFjI+nr291PzOzZWirajgbrPu7HlqFpPXqz5kaSnZ3a1/4+L0fC0t6sfubs1Zl4udMJ6HggKyrIx7Aa5fT7KtTWuwqYmsqpLVbcaESUmyCMPD9aqp4QDA1FR1kS8l5bwruwaAL57DqyGk7N4fea8Vx62B7zeKBXiQ7OiQwist5RGj2H4G8DFLwY2Py90VEWGUzRMEfskagLVmA2htJX8A8MQ7Jn5lJbX5Fhdz9Wpqwy8vJysqWAO5/fYCZEQENwE61hoXjs+ndXUMcpEAXdpoAgFWV5Pr11PPVllJYCt7e41FZ1uETWxokJuovZ26WFsb29p0cm4FWF1NDkPuxO0Au82z6tQ5zDWQ2/F5gBwc5OCgNue8PKodPh8LCshu81uvUUCtkLvoKYCFhfL2NDSYvmhstEw4jsNYAx6PLJzGRvVBfT0ZEaFNq7ExuBGVlcl95XLRa/VdQwNPAdxg/d/jIdPT2d1NMilJyicQ4CnIYpLi1on7TaMACgtJoIsul07lMTEk6+ul5FJTGRcnZZGYSI1jfj7j4+We5OAgw8O1p1VWkszLI9DD1avVT4mJsmiYmMgBgLshK7wB0JzKzDSW7HfMc22VUq2slFJLTyfT05maaqx0gMBp/T41lbNnk4yOJjCm+3d2krW1zMjQng50yrrr76cXYHKysUrKyjSGMTF8AnJVvgxw7lwzVllZ2pzdbj1nf7/GKidHCtzhIFNT1YcJCWxrk+sbOM2GBnInwCOAFH9rK4eGjKVVV0d6PBpbs64KC8knAZ2wHA4eAVhjzY/6es2X8HCuA4KKu6hIrsW6OtLv5xlzOPADbLTmVV0dgUkuXizrdXCQUjYej+ZHcTFbWshGs96LijRnDlsHsMhI0uFQXzud3GDWGyMiSKdTh8zGRv3frFmWlOjwGgjwFci9PDQktyjDw8mEBPp8Zq4kJ+ugkpys/i0t1RrJzzfW7flVdusAvnQOr3UhZTe1JOjGfENxqaYmAk+QpaXGpdmnXaK+nhweNm6eQwQ6GRcnncHKSn0eGUkmJnKD2WyZk0PgKFtapFB2AmYD6GMA4LRpOrlnZGgPWbtWLo2KCpL5+ayulq5yuSitUl2te7hcbG7WYRWQ5ceWFtLp5AmALS3aUwag+E5iouXOOUrGxHDlSm1kciEOaAN0OtnernUWHW0bXgwEjGstECCrqqQg3G5tLE6nHnh4WBtQa6sUQlUVV67UtRobtbmPj5McHmYgIAWxciVJr5crV+rAzt5e0zcjXLqUXLxYxuLatbJkU1LkulqzhkH3oM9H1tba7qC8PI3f4sX6bkaGuszt1r5ZXEyz0R01BwYfWVTE1atluQ0CHB83/d3URFZXy1WWna3xzctjS4vunZtLMiODOTnqJ8bEMCdHhw4mJxPoIbCL4/aY98gaaG0lsF+WbnGxHtKyWAoL2QnFsBoa1FZt0HJ3s6pK92pp4apVGleWlcnV6HazuFj9LBdfsxpVXKwxcbmYlqa9fdwoAnq96vu6OlmatbVSKOnpcuNVVHDxYur6/f2cO9fcMzubra2mrZbVmJWlTT4Q0HPHx5szzAjj4qjNOzubS5fq+QIB857Xa/fp0JDmRU0NyfJylpToHuPjlA8xENDa8PkU18vOtuOJCxbQHPR8UniBgBRIXJzaZMaztjY4tyyPRW+vhmDpUhloDQ2043d5eZTScbvVj3l5ZGmpbe2uWUM9cFMTKyo0jPHxZk6Mj7OiQnPTbw4B3d0aP8vCZ1sbs7N1JomI0G9jYrRGAJ+8LMPDBJ78q1F2q1evZmxsLC+88EJef/313LJly+/97le/+lWzP7/7de2119rfeeyxx37nd06dOvWe++gPyZRWdg/DcmN+n+vMKRTo432QW+9NyIVDyO1WA8VTOmHFsh7STHU6CXQRaKYPsgaPmdMl8ABfgWX+b+FuY30cMe/VmOvthtxwXhi3SmIi4+KMK7GqitnZOkizooLdAMPDjdItKTEbzCkTh3lG13A6tanl5Ghzrawk4JbFGROjjaewkBwf52MAHzDP8RRAVlezsVF7zWHIstsNARDCw7XJVFeT9PvZ1qa94IRp9zrILWm9WgFtGMPDZEeHDXZ5EyATE/lfpk8ZHq4doqyMjItjwDo8lJZqNzEbDquqbDfpE+ae7O/nY1C8qwZQe51OsqGBuwGd5h0OG2jEpiauWqUNkK2t2rhqa6mYzAAHBxXzGxzUbc9AJ36POUgEAjRjvlWWZH8/gV3S8hkZlmFu3MpHpRiKiuh2U+3LzNQhKzGR7O1VDNHnI7DXxNW2kOXlHIQsyUGAbGujT3raxFKP8oiZLykpxvrv6GB7u3GbpqQQmCTr67lmjRkvQCeIjg5ZjjExZEODFE1mpj4zscrUVKrx6ek8ArCxkVKAJjZpjcXKlSRdLjsc4POZPi0qktVbVMTDkOufHo+0TFMTWVdnA6QYGUk2N8saKi/Xdw24yQ+5KllcLNdffDzZ2ck2Myct8JPHQ42vdSI0rsJAQMPC+nop7fh4nWw8HrKpSd6djg7NwZQUKWOHQ/fLzNShsrqaJ8y89VvPaM3LpiYyPl6eD6dTizI7m92A7So+Yw5U7Oy0D1CsqyObmtho9gMPZM11w7g/a2vp+9WvzruyawS48Rxeje9B2Vkhp5/97Gd84403+K1vfYsXX3wx+/v7f+f3R0dHefjwYfs1MDDAOXPm8L777rO/89hjj3HWrFnv+t7hw4fPtZv+V5nSyu4lM0GBYtLplBvFp5PVfQD/A+AaCP3I5GT6IVffYwAFKFnBdZDLs6BAxkCNmbyMjjaxPbc2mYgIWQZFRYq1VFbyAbM5P2+uu85SAuXlZGMje3t14jwDcM0aakOtrSUrKrhggawnP+RiBbaQdXVyeyUkkG1tBBRX8ABkXp7cRiUlbG/XoXwYchHVQ8jBNUZh0OHg+vVCsq0GWA7wB+Y+snLdsoTMRjR7tlyljaYt1r8/Mr9radHpmR0d3GmU+hnoANFt/mZGhjaopCT9PzJSfVFVJVO3qEibSVISnze/a7PGpqGBOyE050+heGiz2cS2QW4vuqXoW1pI5ucbUMEhuaoSEow19QSB/bZO5OCgFEd0NFNT5ZZbscKAh0wMczsUMwR61MbeXrK5Wcqis5MLFhjXstdru+i2QYeVNhg3Zne3AXTcRWAjgdWKGcXFMS2Nesa6OjY2ytVaCxB4QchXc9AahmKFq1bpviwqkoutt1eoQ6+XjI3lEbOZJierH5ieTtbW6lnGx9kNoUtXr6ZOO01NGme3m/T5pMAqK7VZx8XZfb8dcle3t+u3Ho9xNVqKo6VF7c/JIWtqODioy6xdSymUjg6ugbF8S0roMfOxFebAU1REZmfbiFovdGB8yvzG7abmUHMz6XQqVpuTQ3Z2Ehjj2rVyY7KxkYyJ4fr1xpuSkcHWVrmU20w/s7GRTE/XISMvj0xO5iYz1zYAMhFzctR/NTVkRYXWUnOzGu7x2LHNN81cZUuLXMLp6WR4uABHnZ1keDiPGCXq81GK2Bwyvva18+/GfB7gr8/h9fx7UHY33HADV6xY8a73XC7XHwUmJMl169Zx2rRp78JjPPbYY7zkkkv+6Gc4HzKlE+qdAJCeDiAcSEzEGAC8+CIioWz5SQCnAUQCgNOJGU4nrgYQBZh3Z2EIwFEAX/qSXscBzASAEyeAqChMm3atbhYbi7AwAA4HEBYGnDhhJynOBDAPwIT5FzfeCDidcDqBD39Y5KtpaQBwBli4EFi+HIsWAXPn6n54+mkAY8A112DZMgBxcebKb+CNsOtwEABcLlyBt4CFC+H1As8+C7wNABdfjEjzDJdZbVu6FKOjADAX0yHi2BkAYCfsz0Vioq6JG2/EqVPACJR0eYXps9Pv6OeeHmDHDuC46wb1bWwswpxORAGYBSAsKUltvuUWID4eYSkpQEYGLgOA1FTgb/4G+PjHgcRE4JprcBbAQvPM0wHg8GE4AMwxzz8rOhpzoPvNAeD1avwc4eGYmACwdSsmJt4GMII+QB2ZmgrgSjgcC7B379tYuBBAe7vdhoEBXT86GhgZMb/BXM2hsTEAc1FXB3QcuQqoq8PLL0/gNzOvR1SUhvulHXOAtWsxNjGB4wA+/3kzdiMjwNq1ePFFmBngADAfdXWaBz4fMN3pBDo7sXEjABzCWQDAlXqw6GgA83FZRASamsx/HQ5gclJtmD9fzairAxYsQFR4OBwOIDLSjN/EBDA5iZMAjk5cBIdp74kTZuBiYjSfHA4cGpslFomtW4EFC9QpYWGYY+ZtbCzg9wOjoxrvEQAHJybUAaOjQFISEBUFxMZiHg5h0SJovi5dCsyfj5MA8LGPAT09mAGtqygAWLRIF3z6ac3lqCicBhAVG4sJAIiMxLVRb+sesbE4NDSkce3qAjZsADADbW2at1i4EFi2DAkJ+hMzZ8LK1x4y10JfH7Btm55n+3ZMvPIKjpq5/bZ13fZ29cP8+UBUlNb8mTPAwYPA3r24CMDl/a/hIMw+8+abmNH3G2DTJoycOaMp43QCTieinE7McLkwa/IosHgx8PzzQGws1q/HX6wcP378Xa/fVwHCYru66aab3vX+72O7+l1SU1OD5cuX48orr3zX+2NjY7jyyisxf/583Hzzzdi5c+d7a8wfKVNa2YUBwLZtAA4DfX36/7JlGAJwFYBYAH0Aro6PB2bOxNDQEMLMZ0A7gAswy/x/3z6tgTAAZwHsmZjA25s2ITYWQGQkJnfv1ib51FPAI48AdXWIhDa8IWgRnYbp0GPHgEcewc03AxERwEGY/RTHtHE88ghWrNA+NQRoE8EFgMOBNWsALFmizQGfhtNp2pmWhkdfvAK48UZ8YeQXmDlT9zub/reYBd0jClLw+Pzn9XM4cBmkBOcB+HHTVVi7Fpg7dza+8Q0AhYU47roBgYC+M2Z+PwfatmdCivIrX9Fr5kxtgBgcxEGjOH8DaONYt04d+NnPAocPAz09GAWAl18G2tqAxkYpxKQk7AdwUUoKzkIJ7Fi8GG+bZ5wDAGVlWOJyYdaLv0IUtCfhySfxxpkz+ELYS0BkJDIyLoPLFa/N8ktfwm9GLwMQwMTEAYSHXwanEziU9EVERQG44AIUFABXGGW5bx+A22/H0qWXwQFgF65DWtosjIwAn1zwNvA3f4PkZAfmz9cByOmUIsDy5ZgOHZMCAXMompyEGR4AnwbgAfBRLF8OYP583HEH9OMvfQlf/jIAzIK45sfFXp+QACAcEydOYMkSzQlMTgKTkzh4EHhraIauvWyZ5o75+I47ADzwgDbnmTNxNYA5YyJbGBmR0sKyZToVGW0wL/IkHE6n5tfOnTg6MQHceCOucLkwCX312WfVP//P+WtMWvP5kUeA++8HDh7EybIfAg89BAwN4XNJJ3G5/y1gxw6cjJyHJEATHkBsZCSuNWsJp05J4SUl4SSA4wmf0dxwOPAp88C/Gb0MPa+8guPOqzEvMhJXADo8JSSgsjIc//ZvAHAKuPdeoKcH83BIY6ITBK6A1vHJlL/V2gkEsDAyEggE4IiPxxCktKYD6uSJCSAyEqeX3QTcey/aYQY1IQEYHNS8OnIEx80aQGYmTsdeLeUWG4vPJJ3GUcc8jA4MSMHOnavOm5jQoe7DH8bixTjvcr64MWNiYnDJJZfYrwceeOB33u//ynb123L48GFs2LABd9xxx7ved7lcePzxx/Hcc8/hySefhMPhwKc//Wns3bv3j+qH9yR/VjvyPMk7k8oZF6fAfHExB2F8/8Zl4YFiDfcBikPk5vJNgP8FoeGA/WR8PA9AcOG5c/Vb23VTUyNIukkgbWigXBeNjWRvLzsh5KbfuGQYEaH4Rnq6YiF5eXZiLzCpoH9yMlldzfBwXZZ5eczNNekAViJrSgpZWqrfxsfLPVhVZcOpU1Lk1WJlJXt7ldBM4zLywCDgWloIDLPDuFbdMAH/3l5GRMgl5IPQgGvW6LoMD1efGqTaXigVob/fINHy8hTzyc4my8sFu46L06u01EaleY0b047hJCaSbW1KM4iNJePi7Dii1beMjOQGy62Zmalns2IyVppEejrXrg2CC10u6rO6OhOz20SHQy7exET10dAQSZeLs2eTbgjkUV1NMjqa0dEmVub1EjikD7q72dJiAA81NZw7V6Ex5ucrRtXURKamapyio0mvlzU1Fnp/rXGv/khuv+Rk5ubKjc2WFg4NyaN7GAI6HQYMCvM0fVCMKDubim0VFjIrS7iOmhrjes3N5V7zvZwckvX1NjpxEKDfr7jkqlXm+/X1crdlZgrNWVCgv91uvT8+TiYncz0U+169Wp7KlSuN29ogQOnxKG5WVKT4nM/H6mp9bCNajcuZmZlkSwtPGDe3z4yxwbWQhYWKf+Xl8cQ73Nh5edQYDw7qlZJCn4/G/b/VuDFF8OAD2Npq0nVqalhbK2DXKePipdcrd3RGhubH+DhZXs6XAbKggG1tZl709uqeHR1kSYmFnVLfREZqP2huZqdxn1dXmzY0NJC9vdprzL5zxvQ709NJr5cBgAcOnH835gaAW87htcG4MQcGBujz+ezXxMTE77zv4OAgAfDVV1991/tlZWX86Ec/+gef+z//8z956aWX0u/3/6/fCwQC/PjHP86CgoI/vlP+jzKllZ3vwgvJxETGxBjY8/g4gUOKNSQna9fLzSVbW3kfDJAiP58sLzdIxzFtSnV1zMxUiINtbdqEsrO5HSBQygAExwfciueFh2uji4vT4k9Kop1RHRsr3351NVetMmCDQIAlJSaBu7KS4xAbBH0+sr+fjY0mCJ+XpxytmBiypkbAkIoKO+gOjGnjTE7WIvX5yMREdkLMKayoUJsDAW2Gfr/aFx1NFhQwPFx6fOVKkt3d9Pm0gHNzScbFqd8SEtgLkyMXF0e6XGpPba1AKiUlHDRKkP39wZy72Fjtyi0t2syKi3WzhgZtHunpao/Xq/ZUVrLXUsKFhRqbrCx7gzxllNBumFhIdLQ2JwNHN+lu7O42MbHUVDY3m1iVlZ/V0aF+zc2VQi8qUgqBx0MWFwsAkpVFejzabCsrbdCPtUEuXWo2uN5e9vYacEtTk67X3c3+fnPP8nKuX88gQ0tnJ5mZqbSJ7GyNld8vJVRZqY2xooLMz9f36+vt3EmPh2RJieKTDQ1kRwfHx8lOiKVjN8Qgwupqk3rziJ6nooIlJYol5uZSY5KQYMBVa5maSgG2DNOK8uxqND4JCYyI0IHgZQhQw5wcsqrKhvGPj5MsLAzG12prdQAaHLTjkhwc1DwoKNCzm/QWZmRokg8O6mAYGakFV1qqw1VTE9nZGUx1sJRVaan6pqyMbG21Y9ysqyOzsnTfzEwyPZ2BgMnDKy/XnHU69XxFRbpOaanGu6ZG7Wts1MEsNVXrx8rDKynRfHO7NSfKyoLpBcr7UZtycjTHS0rsXEImJdmhP98zz5x3Zfei2cfe6+tF/N9idufCdnX27FkuXLiQd9111x91rzvuuINpaWl/1Hffi0xpZdcC5doBa6XssrMJdLIGBnXldGoS5+byFQi0YlFUWSwpLC8ni4qonJj9ZGYmN5kNXBbggxyEFdjt4QYI4dltNvzmd/zN6GidZEtKTJ6NWCBYXc0FCwzUuqqKDYAsDTftBPDoaBrE5TNSpnFx+tzl0mIztGJnoFM4fT4t+JYWvgzlCo7DWJgeD9euNTD4jAw9U3g4gS0ExlhcLCVswftLSnSfJ4xS7zQbnoUWZFubNoHGRgZMey1atAoIVekxm4adZ+d0CpxgbWgGsWcj8pKT+SQEYmBuLlcbJfey+T+zssiiIhvddgSy0hkdbYMFLJ1mUYGJ6UYHiBUrBJ7o7iaZmKhDR0yMzTjCoiKGh8uys/KGWVZGJicL/u52kzk5XLrUHERycqTUurvJ6mohQUtL6fUaa6ysjBkZ2i9nz6b6Kz5eSMmYGD1HU5OunZIiq8HlIp1OpqWZTdpYKfT5yIICQeHdbtLj0WHJUgRZWVy/njbjictlnis+XoohK0vzKTeXjIykB8rNYyBgzw8mJJD19fa8GzbriJ2dUvgul01e8JQ15xoaNCet5PHqah0+kpJo899Z3GtlZZpYFiS5pERjVVBAVlXZiGZWVXHYjDGdTq3H3l49R3OzDljNzWR6OgsLpYyZmqqDQmmpQClVVVJ6TU1SsCbZnpWVGpyODhtwxvh49WFVle5lULNPAmrz4CBZUMADZl7YLoTOTq23tjYpz7Y2srlZ3oqICB1Q09PpBzTmbvefhEHlz63syPfOdrVp0yYC4O7du//gPc6ePcslS5YwNzf3j36u/6tMaWVXBaEPgWZtBBERjIujzcXowztg8vn5HDYKTzyAjxJ4XBM+L4/Ajwg8QEZHy7VlePqAJjI7m6cgbkkbttzdbTOOWEhMxsXxFShtgXl5LCoy/ITl5bRzl3JyDGeeXEHiRlSemnKlntEm5nYzEDA8n62tZGmp3GkWDVZ+PtnQwPZ22hyStUYptwImz2cbPRBK7RWIY9LrJYEXCAzQD1lQlZV6jsMwqM3kZDIiImi1NTerzQ4H3Qgm3XdDrshXoEPHdsgCeBJyl2w3fWFReA2bMRqGUJe95jptbVJmTxglesraXB0OMboMkiwo4CnIuiguto1DuaPKykzfPagxNKwiaWlG2eXlsbeX3A7RTdHnM+7vTiFDuw2NVUSEGZtDZFER+xFM4N4L2IcVHY6e0EbY2qqUkqIiKrduL4Efc9C0u7FRrCU1NRr7hgYhcIG1midOJ4HXBH23SAyMqxw4pbb19hIYIBMS+ArAkhKdBbyAGlhXJ+VVU8O9UMK732/aXlmpjbiiQkqipERWX12dlEBlJTuhA1xysqzU9etpK8716xlkS0lIkIJLSjK5j5METsl9adhITsHwfxo/fZuZE5beYVubHi47m6stBWO5hUtKyO5uuSd9PublyfuSlkaT/7rN5otdvNggUhMTWVxsXKk1NfR6Zfi53SRraqwsCrKgQAc0QxXX0GDQnL29ZHGxxqK5mR6PDjfHrHng8XCTmTcLFggt6/GYOVRWxjNmvneY/WEvoENKQgJ9N9983pXdywBfPYfXy+9B2f0htqt77rmHOTk5/+N3X/nKV/jJT37yd17z/vvv54svvsje3l7u3LmTubm5DAsLY0dHx3vroD9CpjRA5VIAwkruxrz4eLx64gQeeUQB5T0AtkAAlY0AEBuLywBcDQOqwAUA3sbYv/4r9vzsZwC+ASAbXUeOCIn45JPA7NkAFgAHDsARGSl8QGSkEAIjI9hjrj8KgUh69u7FJIDI2FigqgoPlp0WUODnPwcwC3v3vg2MjCA2JQXTps3Cnj0A/uu/kJFxKbZtO2gACIlwxMQAO3fiG98A5judwL/+KzAxgbIyAPHx+GXP9Tha9hPg5z9HTIxAMmehfydhEKETEwDG8RoEXukD8MVlRzFn5mkA8wEcwwgAh8slwMbDD+NtCHQx8sor2H/iBLogRnokJQmhsnQpTkL964iMxAiE8rwCwBXR0UgAMN3hwDwIbQkAkYmJuBoAUlLQB+D0iRMYMtfog0Axn+r5b4xC4JcxAI6ICBwFgOxsHIIBkd5+O05C2IM77xRG4uc/By5f/9+Az2dggacAXItvPv0ZOBzXIi/PoBafegrf+IYAPR/+MPCLZ2cZuOJliASg2PsMoKwMsUVFqKyci11feRBX5OTg4EHdc2F6Oh5/HIDHAzz8MICP4/iTTwJDQ6iogAAc+G+o9oYH80pKcB2E3TkN4Gu3HgfuvRcPPSRoFDBD4ByvF8A45gD49S0/FhhnZAR48UXExzuA/Hw803UVSkrmAxMTmDBDGxYGzElJEfKppQVvdHUBt9yCfRA+aN064LqRXwthA3PN+fOB55/XdExNFVpz40bsgwBJTqeu/eKLEPrz8cfxhZlbgAsuEMBq9mwhh9PTkZYGZGVdgAULHALcTE5ic18fHAkJmNP3Og6dOYOu55/HSQDT4+Nx880aM/UTgDffxHUAtvb0AMuXC1kZGQk4HPjxPYeAz34W998PlJRcjBdfPIDTP/8FAA/w+c8jUtMBF18MYOFCXHKJ1vTJr38do6PARRNHce3IFuBnP8Nn5u/Hg6vOAk89JXRmVRWSk4Evpp3Et+84LuSrw7QhKQn79qmbzgKIi5sLrFqFUQB33SW8zL8WncXV29eoowoKEBYTAycEDnM4NO+fefosTnZ14ewTa3C+5f0o3nrbbbfh4Ycfxr//+78jISEBW7ZswQsvvGCjKw8fPmxXorHE5/OhoaEBX//613/nNUdHR/FP//RPuOaaa3DTTTdhcHAQW7ZswQ033PAenvCPlD+ZGv0TSpBB5acEXmMlFAMDnjCuwDIqj24tlft02sToGo1FV8P7jCUkMtq9pMNhk/TK3beLwBZ6IZcjsIvMyDDMGmPmZFtKkSXfZe75BIGtTE42nIxOpzmhHyLT09kPixm/Tyf2pib9nZfHIxD113bAyiEny8tt1vbubpKRkVy7lvbJHBix+UBFRv1jAg/pxFtXZ9rzKEUQ/YhiG/n5cvnk57OkxCS2JyQYq+QBijT6NfO7Bwk8yPXr5fnRsz9CMbi8YPrp+xQpdA8dDot01+q/Jzh3rlglHA6xXeTmWvlohwg8TuAh+v18x3M+aPNLivTXTSYkGHLhZ7h6temLhgayuJgpKTqJ9/eT62BopowVyrw8MhCQy3F4WH2dlETW1NiMIcAWfd/l4vi4qQZRXk4ODytZvKKCrKpSDLSxkSkpclMq7jqg67S1sbdXp/p1xqLNyzNJ7x6P3IytrXKHRkcTaDYs/k2Mj5d7EnhcLrSqKq5ZY+KqkZGKPbW2kiUlpj86ZV02NBDYxsREmhy/SUP63CxTprKSjY2yphIT1UcWQ87QkIwoYNKQQ/toE0GnpJBZWVy6VHmMVmWDjAzDTNLbS+C0rEITbAZ2GULpU8zNlXWo9TFA4AlmZqpporA7ZAiW+whsY3S0YS7JziawlfT5gm5ly1VfUyPskL0Wu2QhVlZy2jQa1pxOWdgdHRbfOUtLNWdlua+liMu7yPFxFhUZN//goNk7fmQn3uv7fTY5NbDNXgA1NYbmb9Ai0d5q5vopNjTIoB0cNPSdPT3n3bJrAdh+Dq+W92DZ/bXIlLbsZMvMMHlLBwFcoOMpHJBN8jqADwE4iEceGYeywmYA8OIqqIaXKrf1A5GRBhI+AZ1/ogBcgd/AQpdfAIyNwekEXK6LsWQJ9DuEm3vMMM+zDwkJxlrIzRUcGRcLtw8dsBcsuBKoqlI+EGYDn/0sjgLYuVOWZ1+fUPpYtw6LFgEnTrytA3FuLjo7gXvuAeD3IyLiUrwx8wbIVnBAlewuwPbt6p0RALI7dwN4A1ixAvjYx5TDNDqKujplCygprwvAOGQd7YOSKYYB7MXy5TDthdqCw6bNVj8BQBRmz5axIFtvBoBwLFoEJCbOwty56seDBwHlmO02zzuOdesAwGtG5A185ztnsG3besH38RKQng6HAwCuwr+sOKtn3roV2LABIyNAWRmwebOs0jmmbUhMFD5/61bs3DlhzIrjwDXXAAsX4okngLd279YY3nMPRvXgsgRvvx14+WUZx48/DrS14ZZbgJPL/w779gHHju1WTifeRlMTgIQEzJ8PvAWlJYxCVsDOnQHgkUfQ09OP4Y9+BsuXA8ePHAHQL8sVh4LpHLhWz93bi6Qkk3mSkiLrv6cHuPFG7N59EMACIC8P+MEPMHduEj7xCd0L8CqDBVfKDBkZwZ49SsXbvn03/i7pbXz968Arr+wDICskI+MCfHLxaTNvvXDExmq+rlolLwJmYXJSmRMf/rCW1vcfvwpZWeF684IL9MI8TXNssjIxsHPndgDdAE4hKgrYs0fpZ8BleGbP1ZDtFMCRI8/JobF8OWJiPo1fPDsLL76o9r+wdZYs0BdfxPLlmmmxsWZ+RUYC8+drWd14I4D9mJg4jlcnb8CiRZqv9913ECMjJlUPM6G0kEOAhgwzZwK/2DgPLpcDwGycOqXcTi3Vg2bNntbfX/oSsGwZLr5Y3etwmLWDOABnAIzji7ecxZkzAfT1mSX1W9bO+ZBpODerLlTPboqJjcb8+tfNyewZsr9fVFORkWR8PNeZuNAaGGBDS4sdkD5hW3Qv8D6IKYTl5WRNjWJWljlVXi6kXF4e2dQki8IKVNfX83kT69hr7vEYoCC1n6TXq39NLS5WVelUHgiwpSWIpt9m4lnARqEOAwEF1rq7CTQyNVWsLlaMoLubBob9lNgghofph2KT4xD4hk1NrK7W6Xg9FLN7GULL+XxqXmsrycJC9vcrpGOTMCcmcjtgM6o8Cdhw9NpaWTQ2hD02Vj82KQ3t7dSF6+sVNElPt0/A9vv19bK+KirI6GjFWsvKyIgIemGg6nV1ZEyMAAIxMZw92xAxQ0w04yaeAvj4BEAWF7OmRqkjshyfUMymulrmRE6OLLbUVPb2Gqu7tVVIycRE0u83pZT6mJlp1a7bwowMPfaaNSaVAUKPPgHFP+uhuOKgbXH8iMBWxsToWQIBExeqrCTz8019tge5BmJgWQ+Q9fXviPl1iZHEzK9AwOJSPaq+rqggMzPZ2Giu29CgOFpBAVsQJAUvLTU0dfHx6vvycrK7W/E3l0u/8fsFEKmrsym4hoZkwGRkyPLrhKmmUVtLVlfbSFQ2NMiy8npl4bW00OcTGTMDAZnH4eFcDYOq9fvJ5GS+CTGmBAKUCdTWJqYcn08NjYyk1ys06WqzLpiayuTkoKXP8XENyuCgkK11dcqOgKGe8/tVnQCwEZZ7YepNZmbquupUeXN8DPaBzyczsKXFpl/7KSBvgAHODEMgt9WrTVywtNQmaGdrK+nziZWnro7A0+fdstsMcMc5vDaHLLspKv39hg5jHDAJ44iLA44cwQR0dpwDoG/3bgUyRkaAfftk2SAAYIZ9EkdkJOByiW1l506bTWHHDgC7dwNut2JbBw8Cw8PAkSM4CcXIJgHgyBH5w/ftw4yRQ6h/eQ5mPLUGpyenKyk1Lw/AQmDzZrhcOrkODZmk26wsAHMxq28XXm2fLjPFWH23326S4EdGgLg4XLfwJAYHAWCG7X8/ap7hJGSXYngYgA6mxxG0VRERgclJhXl27NCzRkUBR47o8wkA6OvDqLmelWQeFWUfpBXP7OuTmdbXp9hFby8wNib2j4EB9dHQEHDwIKKigOljx/X9rVv1HgB0deHQkSNqQGcnxk6cwHEYK2d4GBgYgMMBjA0M4PLLTZJ0dDQmJ4GLnE7T8gAWmb65+GIzFQAAxxXnczj0jCMjOoX39WF01MQABwYUh3I48Ma+GRgYAGJirsToKDAzIgLAxThzRgnWIyOyBOZERsIFjUdkpGHmKSzEvLg4Y3Fo1g0MTCA2Npi7jMlJICzMWKeXwgFZKA4AePpp5WG3twM4hvFxKC545AiGhsRPEB4+W23p6QFGR21WF1x4oShXLr8cYdB3p0PMIn19wMndu2VJ9/QAM2di0SJgoqcHE11dOD4xQ/PS78fZ3buB3l54PHbYTHntMMw7J04ATiemDx0COjp0g5kz9YqNBQ4fxqyR/WKUGR0FwsJw9swZTFhr4+BBIDISl8Gw5owelUV44IDm3MSErrN4MebgaJBZJyICiIpCV9c7vAJhYWpcWJjGzzB/WOsdYWFAeHjw2SMjcRFEmoCdO+W9iYzUNJmYwKyZ8gvh4ot1E6dT1xgbA5YsEXtKT4/2g7AwzDDXnZgwU21sTA82MgJrcc0AtCZsPpuQ/EXI+61t34sEY3blBGoMEm8rh4Zokia7WFCgw1ZtrUBomZlWbOJHijk4HEGoc3U17wO4EkrMXbBAlldmpuIEqtrhI3Ny7DSclhYZfHl5VrHKQ2R/P8PDgwh5ZmQoybSqSmivxkZjeXQKkl1eThYWinvP7WZKirj4YmJox22AbWR5OXNzhRCzqgMAT9llW9Su01QRzr0ETisW53SypsYOw+iE2tIiq9Ukvicnm/y/lhbm5Cgu5vHo8FtZqXu53VaM5yhXrFCzsrKClapFwDxGK5dLMYxGAj67KkJhoe6Vk2MVFN3I+HiTHG3SL2Rtq1CoBeNPTJS1FhenZygtJQkEmfSTk9nZqTjaGXOaB/YrHzEri0xJYU4OTVzwFBkTw8pKkw+OYNxNf+8i8H2+Api+LJYlVFxMoEmWkEmy7gbI3l72978DqdnURNbXm2v9ksD3jUXfRVZV2RUM2tqEyFy7NljHULHNJl2/sJAlJUotyMxUm5uh3LqYGGrAqquF4K2ttZG70dFCqnJ8XNZTZqZdGaC/X+tgaEgxwooKKrY3Ps7ERENSnpFB+v12NXs2NpIOB2tqaKNgGxpMXmFxsQYnIYFAD1ta9J2ICD3fqlWaU4sXm5Qbg6ZlYSE9HmsO/4jt7ebeppafnWYSE0PGx+vv7m6RO2RmmnW8V8/e2am6gm1t6sfyco6Pm/mcm6s/mppkRXZ0KA5XV6dGpKaSLhcbGjQfIyIML2l/Pzk8zNmzTU5idrba5HAIAe1wkEVFXLrUWp9jBB5SzLWqisCj3AAYcvcfnXfLbgvA18/htSVk2U1VMbbMzp0AzsLjsd4fxsiIDlt9fYoXiK7Lq+/jEI5PTOiIHxUFLFqEGZDVMjICHDhwBu3t8smfhqGXwkGgrw89PXp/zx6939NjjDCM4LTzCpw5cwwTE2JHspGb11yjGM3kJA4f1ndx4oTNN3gSACYmMDKiuM9B3cpYAm8DYWGYP19W2ugodPrHlTYPYTC+Ng59a7oOrxMT6OlRm06cgJB/+/bZR/cLLtAjOp0A5s838bZjdrv27QMGB/Vb9d+HMDio61nPSL4NK/YGmBAOxk1ves0J+DRGR2VBTk5aFJ2nsXv3uCyuJUsMvZlsO6dTjzg2ZhslmJjQPcfG1K8zZ8I2nRwOxaZOmhkREbFAp/yJCWD+fIyOAjMmjgM4BQwNweXSc1jn7iVLLJTaGQBR5u9ZAC4L3hinZaWMjQETE7KKZs7EFTOP4jSMpeX1Anv2yFpBOIAo4EMf0k3MvzNnmniO+XpPj57z8OEJAAvVubGxGBuTx2HhQl17ppmbo6OwacMOHoRNV3bkCHDppbLu4HBget9+YNEiREbqvbAw9bvHA8wLD9eYGxNxaAiYmDgOa7JERwPkhDo1NhZ79sB8x6aFlSUUFWUm6XEAtsGFs855ci4sXGh1FzA5qX79yEcQGwvjnQjA6xVLF06cQF+f+icM0L2tjjJzFQcOGOt9HLjySsDh0NozbUBsLC46+Bu9FxsbpPGynhWj+v/MmfosLg4ul+b5iRPjeo7RUSAqCseOjWsORUbixInxoJkeEQFccgkmJy0WtgCE7HaYMZ6BmbAefQ7Ot7wfaMy/Gnm/te17ETtmZ+I9wINkQ4PibTk59EHVCH4EJYYTJjE6M5OMjjZsKDUEVvMHxp9vMRXdZ50qzUmuuJg6BRYVKX5nFW+tqeFjJqb1inmWJ6w4Q3c32dbG7m792Q0YBNoWu8p2W5usx267DZtIn0+xlqYmE7PbwupqUyR0cNAuE9PZKUtyA5TTNADlEm5HkJGktVWnzicghOAac0IeHJQVVFpKWT6Dg0xMVNWDDijRtwOK8T1h+sY6/fb3Gyb8nBzlEcEknRcW0ubMKi8PMl9YlpCJ1TE/nywq0pgkJgZzINvaeML0426YHMfISJljERGMiZERNwjYFbmFoBtR3LKigg0Nqj8nuq4uIQc7O3XKT0lhYaEspZUrTbyrtpZLl5oYpN/PxERZRuvX0yADx9jYqPhoZaVB7iUk8E0ot3PFChOzi4ggXS4mJpJCpj5FYK+shJqaYD9XVJjT/lM2CrgesAkNGBPDiAhzf1PHrbpaw27n21VW0g9VJygtpdwKCQlkSgobAfb2Kt6VkmKuk5cXLLZYVaX4lEnW5/CwYlomx+wMRImVlaXp396uKhH9ULzZZtAxFRno97O93cRj8/LY2UnlCjY02Mwmj1nj29BgwXT5PKACDGYevQzQMgtPAezslJW9DiY2XFfH+HirVrBPiyYvj0NDhvatpERcBWaO9/eTLCuTFRkeTuNqUKwuMlLx7+5ure/kZOXMVVXp+729ikO2tWkd19drTTsc5PAw+/sN9ZshfOjvp50nKDdQN1laqu8UFRnvwPm17LYC7DqH19YPsGU3pZXdk2ajBRq5DTDAgqN8DAJbHIapUu5w8DAEJjkGGLaILQS22kCLBQtUoZkxMbwPAnvInfVL/gBWMuYTdBuFcBhiT1lvFhETEzXpTQkUFhbadGGBAO2SJH4/DZtJjxaaSWRNS7OgzNvkPomPVxJ6TY1WdUsLZ882gBZDScSsLNKtytdWMvZOgOzsZE2NYUaBkr+VyNzH8HA9olU2rLpaie/HTHsGzLW2Q+CEQQhGbyqh6KKFhfIr1tSI5ssoHHo8QQBPZSX7Yai+hoe1iViBfJeLdLm4HoJCW0CFDuv/hYVkYqLt7qPXqx24tlZu4aQko9T6lMDc1mbcuZPMy6MppdNnKxgLSt8GUb7R4zH0a9uUhtHRIXdxXR0tTrDCQpprbpELuKxMdFkdHWRDg5RfSgqLi2nD7YFhFhfLbRsI0Oa9ZGoqmZfHkhLDxpKVpecKD6cbcmcyPNx243k8NJXq3WRVlVx1/f3a8SsqSLdbrsGyMrKuTtfKzQ2y7TQ1sbDQJJ1nZJAJCVy71mzOcXF6npoasqxMvzXUerNnm6KrDQ2kz6eDWEyMxsDwktocl6mpQTqtwkIODRlGl9pasQlZB4HiYht8wpISm1uzEdDzxsdLoXZ2kqmpWh9Wdd2cHLKoiJWVWkfFxdShqa5OCjg7W4eV1lYdCOPiyN5eAa2cTtLhsEFXjI6WG99SXrGxGvv+fjI/X89gaiiOm/nf0MAgm09VleZeaqraMDgol6nVDivVxeFQB7W2/km4MV8FuOscXq9+gJXdlLZqv5CcbHwks5CUm4swAC0ts3ELgIXR0XA6HHIfFhbCmZ2NWACRlZW4LCkJghdcJdb0oSG8+CJQWxsOHDmC7wJ4EHJzZWdn4+7YWCwPD0dGxlcwBwLmHwWwBErgfmt0FGe3b8fbL78sf8/ChcDdd6OzE2hqAqZf/CGrwglmPLUGuPVW0L8A994L4OabbXfr9A3rsWBBEpY1NABpabj7biiH4bHHgK4u3HYbkOTzAddcoxIyu3cDIyO4yeHAEgCOhAQkJCXhDcf1cDiEc4HTietiYzHD5UJq6pW4/XbgFz8/jZsWHUJUVBAbEBkbi/kA5sfE4DOm7S7IEfPo8l/ha2G/ENP+ww8DTz6JQ3v3Alu3Yj4MaOXxx4G9ezH84evtOjHzAMxa+6jcYytWyMcVGSmY/8qVuBrGZXX77YgEcENCAj4XHo79d/4QePhhfKrnvzEJ4Gt3zwFuvx2HvvpV+eQWL0ZzM9DSciXm3PNPsHxKKSkXYHQUWLsWYCAGryZ9Gw/eexwYGsKddwKfqq3FmjXX4jN3XA10dGBoKAnT8/Pxy303oL8/Cc986Mtyce3YAZcLOB55BRobk5W1kJ+Pi8beBvbuBdaulWt7bAz/eech/Pfdb+Bf7jiN1NTLsGoVkJV1qVyM7e3o7w8Hbr4Zp6sexf33mwyIri5B9T/8YVzb0qJk9eXL8fTT+vzqyTeAPXtQUXEtvjf4DVRVQc/11FOaW5s2Yf/Tr8sP2tysvHGHA1i5Un0/ezZ+9KN9mJOXJ/ddeDh8PuCKsEN6/oUL5Yvv7FS6wt/8DfDKKzh27AC6uoAXHF8EduwQMOrMGewA8NaGDbjtQ89h2zZgTtm3gRMncPJjH7OrDlzufQOOnBzg1ltxVVaW8kGWLBHu3+UCSkqARYswOToKjIzgBgCor1fVhfp6/HDz9Rh5+WXMGDJw/bAwGyjyzWW78JmE43jxRWD0ttvkAy0sBD72MVxk/PBfjI8HXC6cdF6FhYmJ8s0XFWFhbCxw4404eOQIkJgoF3NGBhARgenx8YDDgdd++lMRTbjd+N6OL+Ki9HQsCQ/HFxfuwvHHHrPiCYpNOBxAcjKwbh2WLQPm5eZq0Do65Nfs7NRa2L0bv/zl/2U3++Nk2nl4fVBlSiu746+8gsmf/hTAODY/9hgcBQX4/OePYwugyb50qVBYCxdix5NPogl4BzPKKIDTKhmSl4d77oGdy/Y6gJsBNAF48skNONjXh1+cOYPnn1+P5yBltx/qPAuROQbgsogIYPt2bSbt7XjqqQkpiIICbN5s6m8ND2PLk08i/1szsGoVgGXL8Pjjpo6Z240DB9YBq1YBe/Yoz2z1aiA7G4iMxCOP1AN/8zfoe+wx3HortGhnzsSuiQmxccTEAH19NgvGs89CeUpeLzB3Ll5++SX87Gcv4dUdM4CREbS3CwTY2Qmgrw9vADg5MGDX+AMMog0ANm/GLMdp4IILsH9oCK8DwEc+gs0AXgMwsns30NaGy32/kfLZsQM9gGCfJ05I85o6f5FKCEMXxKICl0vXcziw78wZXLXvJQWkDh7ECLRfj/zHf2BecjJOtrcDUVH4TOxbcLmg8jMjI8DWrRgZ0e3KyoBfrp2OiQng6KTYUtLSALS3Y8cOQyoyOYnKSgBjY+jrU399Mew54Gc/w5aJG/BPtx7FrB2/RlOTOU9t2IBfbrwMh1K+DNxzj2Ky99yDnzw7D9+ruxZ4+GEsWxYEKl6x8b+BDRsUo923D/v2AdO3bsFddwFIS9PzZGYCX/4ysrMB7NmDr938tpRhVBQwNITNm4FbbwWuHXsNbwzNwdG+PsFC6+txfOH1opCZORPLlgEnH/qJFM8dd5hEzLnq823bMLR9O1atAo465uEt08/o6QFiY/EP/3AcKCgwTC7P4FOO1/GFHf8O3H+/DiLx8bCiwoiM1Dx1uYAPfQgX5eQo9jUxIcqWZctgF9tbulT/v+Yadci+fcCSJQhLTwc2b9YB6StfAW69Fadvuw233GJKJq1dC9x2mxq+bBnwt38rNpdbb8XddyumjdFR/ba/H7tGR9UPF1wA3HknLtqxRZ/n5OgUFx0NuFyYHxEBOBxiJ3K5xAo0fz7w7LOYY9YvPv1p/OetrwMOB04b9OWslJQg9NLhgBL+ooC5c/Fa1Wvoe+wxla+qq9Oh9Mtfxm9u/jaQnY070/bhfMsF5+H1gZX327R8LxJEYz5AYCv3AgS+xspKmnjcAwTcnDZNSLDwcIvt5EECTQTc9Bo3nSHiYLdxXcgN9UtmZ4tD8j7j/gMe4QBEBg1M0uUSn6JYGQYI7DJ5VFvtaiosKiKrquQaMiguITebbQRmfz/lZsnM5NKlZC9AYK9cNp2dDA9XKCA8nIb0ehfz8uQ2CwRomGG+Q7GRDBDoVOkg414Sk8VGAiNyK1munIoKm12CGRnme0/RYoFRO90E9pOBAFevVnOEGtxEYJtBxj1BMbcMMzxcXp8ge8YmpqUpvpSYKA9cRYWF7OyhGFM2GrfjanPdYuNi3mQYW1ZzcFDdt2qVmhUIUO6nsjKysZELFgg96IdiT7W1tKsZsLxcLj/DQWqVeHE45BIG3OzuljvKmissKeH69fp7GLCRlCwpCcaKoJw/er1kdLTGOzGRzMmhF2BaWpB1BzhEjo8rt9GwsDA8nImJBvWYnGy7l9nSQrrd4pHMzGRRkRmj3FwCzayuFrqW6enMyJAHlw4HPR6Bcy0vMYuKuGIFDcr1R3ozECCwhfT5xFASCJCxsQYh/Bp9ULzP4dCYZWfTVLY/zZwcxS8zMhQ/dbsp32Jvr5WmZ3lr2dAQLCAwe7a80tXVtMviaA6dJvCMPVfY0cG2Nn0/EBBqtLGRClq2tKh/y8o4e7ZhV+ntpdst17Hi08Ps7KTNKMP+fiYm6r69vVYIeS9zcw2faiBgFRMx63Yb4+MVm21pMcw9duz7KFtaDNuQ12v3i+Z/j3kdMrH0XWRuLpubyS9/+fy7MV8D+MY5vF77ALsxp7Sy2w4YSPmIXc0gOprBOJIVT8vIYMDEn5idTSYlcfZsA5POyyOTklhaajab1FQBXWJjjXLr432AUahSeAwP52GI6d9tNkN2dmqVeb0KzJWV2Zy3VjmYtjazEAsLtcAtiHhjIwsKFJKaO9dAnmNjCQxIGdbUWET4imllZAgAkZtLer0csGJ1OTkMQACANWvMJpmerlhKaiqBETocuo/fbyPzWVmpmJ3HXPt5E7sbNnEMwGdjdnw+KrBTU8PeXgM0KC21cRC9vQI3uN20ab5WrdJm099vYOHFxWR1NXthqkW0tLAfiqceAwTQMPRYzM/XrpeYqN9mZpr4YyeBRvp8wTzjFSvULsXPDpEREVIMppyPG0pLYX09z5iDA7OyyJISAq+R4+OKn1VWcvZsxc+AJim64WENXkeHGtfbS+bkMDdXSsDawH0+KZjSUpo+f40sLOQpQM/gpl2iiCkpmj8eD1layuZm2jXVRCU3QJaWqi0FBerA8XGyo0NVE7xe0uMRfVx+vjSOx0PW1opTGdDJoqKC1dXmugYowuFhsq5Ovy0uJoeHmZdHuzxVQwPZAZMUHhtL5uRwwQKF34qKDPGylYw9OMiaGgPe6O1VPC46mnQ6bWKFvdZ7UM3JpwD1Z2qqPe9YWBisfpCYaFdeqK7Wsh0aUhd0dpLMyFAs0WjmdVaM0O/neiiuHoAAMV4rbtfSQkZGcicEKHMDUnwdHWRMjNqUn89tZr1bBOTs7SVzczlurmmVn+rvN+WlKioU90xN1WGyqYlDQ+RTT51/ZbcDYM85vHaElN3UEmvgN5rNEtiqyV5cTKBPweqICDI+XgswO5s7zcQ/ZRSgcqrc2ljLy6lcNTdZVCSEWHi4Qc09wr2AsfC+y59CzCKbzIJym2uOAzrqORwCj5jcuNWrSfb2MiXFADyystgLMDHRLNrGRmZnG0WbnEzgGS3i4mItfCs3Lj1dG3VEhBbu8LCC9Z2dbIGp1ZeYKOXT2GiDUJiQINRdZKSxUPu0eQ8Osr9fiikj490AlV5zMDgCWUoMBIJVLZOTOW4dHEpK2Gwp/MhIBfAzM7UbxsSo/Ep5uY76eXlqh2EBYXY2N8AAUmpquM70YQcQBALU1vKAUd6nIIQbo6NtxpbaWtqs/GxoYEyMyekaHBSoZHiYmZmyztraSDqdnDbNsMcYQAbz80mfT8ojL4/MyAhWHsjJIXBah5XqalZW0i7B09hI0u9nZaWxNKqrmZWlcQwPp13oNifHbIhWUdLeXrKoSJZKbS09ZvNncrJdu27VKhrl6NPhwusV0MmMLYuKdJAxlS9cLkoJlpZq487LUz5ecjKZnc1hmPp3gYBdSohFRWRzs0BQTU0GsLM2WMKmsFBKrqyM2yHwF/v7g0UE8/P1f6tkU1mZfuPxSEFUVkrRZmaqzXl50uTl5arbZxQKCwqklAcH1XlWSYvOziBLS3MzmZgoJK5VB6+hgSwp0W/T06X0WlvVtuRkDVRZmQ4zVtmp+Hid7qqqaFefzcmxWYOOAbQG0WeNS3W1+qGhQf1rlVFITSVTU23FeQJCnXZCSF1WVtL39a+fd2X3OsDfnMPr9ZCym1oSdGN6ZOE4nQS2yLUHIS1zc7W+MjNpYOluAj2sqDAkyxkZZEoKu7tNsc2cHDI52Xz3CePaaDLW3SMEvmsU3r20CKVjYnSab2wMWjO9vSTj46XkrKJx5eW0sl17e02pk4QEodq6u3X6rarSJhwZSWC/oPPx8TYSurGRRhnu1Ube28vmZp125TIcYVubSR7v7ibz8ujxqK0ul9anF4ZCqapKRMMZGXqVlVHJ6LuMG7fLQtRLCScmqg25uWR/P9evN5ZLczMBlWIZHyfp8diuuvFxkwBdWqoNrKlJjQgE2NpqPfd+Aj2GyNhtkyzX1AQt4Oxs7XXh4SQ7OxkdbYrsVlfrBoYCjd3d9vU5Pk6mptqVyIFTtmUyCNjgToaH0+OhXU28vV2WTWenru/1KsmfpaWqTG/eZ3e3xre/Xz8uL5eVYyDxzM8nBwcZF6f7xcUZJZyaytWrta+73cFyS5Ye8HoN2bJRyuMwUPr8fFZUmD5pbpY11tSkHwUCDEAejoICki0tIgKPjyfQx+pqQ7RsCLCtKu5W9fkARN81OCg3cHOz6V+/n8AkU1KEbJ02jWRKiuZsQQGB/aytlf7o7laXFxTQpNjsZ3W1IbPu7SVbWgjsZ2amviP3Y7NdQB14lNHR8kaYswBra/XdjAyNv9stD0FbG8nhYSYn0xzedpn5f5SrV1tMYJ2WR5lADxcs0LP09lqux6O2C7mmRuMto/MJioauk8BpDg4GScYV1jjKzEy56YNEFX3MydG8VaL8Lm0ofj+feOL8W3YhZffeZUorO9/MmTZj/zZz6p02TZWcWVSklWQKL+6FaqxZjClWLUerdlhBgVnkjY10G6VQDcXoBiCeTeBe3gewAoZPMz5ep8GkJK2G4mKytFTxtsZGm1uR/f1ctcpYBRUVPAEE62I1NLC21tS9Ky0l0KeTal6erJaqKq24sjJ9ZmrNtbfTtgSGLUurpYXMz2dbm2nL4KA24eRk46rrIrDNroqel6cNwcpB6zDW6aB1yo2J0Yr2+8n6esUsqqrI6Gh6odpyO995IjapBYEAg6wxHo/aWVGh9oyP6xp+P7ute6amynVbWCit1tmp1/AwaTZgr7FIBgE7f8yiI2RbG9nby4qKYCxz/XqNQUkJyYgIuQ9LSpicbBS1VS28uzvIYdnaSjY00OsN8nkuXWpcrz4fu7u1afp86tvBQQ15RQXJlha7YG5lJWVhFRcL2p+dTXZ3SxEaehq3W9cYN33E+nr929Gh+JbTycWLTaxrfFw7dWysxiA2Vv1TXU3W1xMYtmvXtbbSHP7G1JcKEnPatCC/qJ1r19hIYL8OaMXFBFbrua2SASZPrdZY4N3desTxcTMeCQkKzlVWSmu0tko5p6ToeZuayI4OjX9kZNDCr62VVZeernxUKGWBCQnBnL7OTllmRUXBtJ7OTnk9WlulncLD+YplVZnP2dgo70dRkfo0JkaHj8xMzU+r4rjF7Spty26YGooZGTR5Lfp9cbH+zcjQPYuK1D95eWRxse5dWirNnJdHRkZqfXm99D355HlXdjsB7juH184PsLKb0mhMzJlj6ESOqYZbTw+SkgwzxtiYzSKPgwexMDxc7xtGjCNHxnHmDIA33wT27bM5AdHTg8sglOBFAICFmB8erusjEbMQ5JuE4f+zKVW6uoCDB4XUm5w0TCEAnn0W4+OGJX3HDkyHgGZDQwA2b8boqGGU2LcPwAVCih08iEsvhaDkPT0GrjlLFPcXXyzwXF8f4HLhIhhYrehZ8JGP6LZvTc4zHH0wN7sU4eFJYiEJC8NHPhIkqnCEh+t7IyOYZV3vxAmhItvbgZ4eoUk7OnDa8IJeNLTfRqRavKM4dgzTd7wG9PYKcbdnD66OPQ3s2yfGib4+wbQNh+BZADhyRKjPiQkNwqJFQspt347TugTmhIcDdXViMXE6gdFRzJ8vcCLCwgCHA0NDQVabRYvUyR/7mJo1cyaA2FgsXGij5VUCb3ISXV3Apz8NQSknJzE2BkzHWWBy0gYYAsCpU3qsWUO/wSHMw7yo00hKMhUhRkfh8+nao6Nm/jmdIuQPCwMWLcLl097G0airge3bVbdu3z5cFB2NQzOvDqasxMYKZQrda/Nm07dRUYDXqzGIjhbUds8eYGICixdfhutijwMf+YieZfFiACOwG+9wYOFC4JPXHAfCw9V/hsomOnoBrnKeNFQuAbzlvEGIzq4unD1zBpicxEkIu7xokTI/Ljr4GyEnBweFvGxvt5lc5s9H8Pp+P9DVhavnnwwymvT1GViy+h4TE7pWUhLgdhvS0Uj1X1ycmFKOHAEGBnA24Xpxp3Z1iavS5cIYgJnh4Rqkw4d1nchIDUJsrJ4lKkrr/M03NZ+t54uMBBYtwn4IfTwHAD75SSA62l7f2LdP/bxkiV5hYUHI7cc+hpkOh5Cgl1+uZ3W5xJPa0wNccQXOt4QYVN67TO22f+QjwLe+BYdjvkh5w8JEWgxoF7/8cn1n0SIgMlKT+ZZbgGXLsHjxxUhOhhb/hRdi2TKhihEVhUmILCoSgMt1AYbOnDHlf4YxHVKmEwAwd67ez80F7r5bO+bdd2uDuvBCLFwIfPSjAG6+Gbffbtb4rbfioqQk+P3ms09+Erffbrhpb7sNMTHztSCPHcP69dDGMzEBLFsGl2u2Fl54uPamyUmcnTkLM6OjRa6cmgokJWH9eq39KyZFGYVFi4CPfxxAAGfOBKQgenpQX689MzYWOG218bbbMGnaiLg4ICEBr8/8DHDXXXjgAQB33YUZOTmY73TihZ6r4AQwLy4O+M53MPz3/wSkpmLLxA3APffgMqcTr8d+ET+smgHcfTeefRY4FHktsGQJXu2ZgyjTzxgd1di4XMCNN+KNfTNwaPIyvDr7bzEjNVUbuMOh0jsA8PLL2B95vcrrADi75AbsGpmHtDQNw9CQUTgPPaS0iksv1ZhAXfuxj+mP8XHgbML1uH7+2/B6gf0T83Dy5n/EFX1b8Mu103E04XPo6dFvXt0zC5+M3o8LLwQQG4t5e17C2bAZGBqSwn1ryRcBCBGflAT8Zv7nAKdT6R9OJ1BVhV+8eBnmOE4CS5eqKbGxykfs+TXwla/gN/umA3v26FBkyIqdTuDX+64QvP7WW9XmEyc0t2++GXC5dI6ZmAC8XrXTHHpOd3XpHikpGB0FdvXN0sO+8orSQKKicORIAIdGL1LdGiwUE9nQEHDLLSJI37MHDigfctUq0Y1tGboauwCMHTmCke3bNS7Ll9v0dJNPPimlMDmJk1/5J7zRdxFGuroEzx8aAhYtUmrLrbcCYWG6T1WV6gilpOjE0NcnJVpbqzWam4vpT/8K81wunF7xTRwcHcXB3bsxHcDBM2d03b4+ICoKBwcGgJdfBo4cwej27ZrkkZGGjB2YeOopHTK7uoBFi3BVeDjmQ0XC0NaG/QMD2hgt/sEVK4CuLkxs2KBn27MnmGIRHa11N3euiOnnzsV1i87iZMKncPbaRQjJX5C836blexHLpH8KYk0Abqcfoghzu0Wv9QDAcuOK7DTf6zVm/BMAlYrwNT4PMYbk5cnD8RgE1PAa9xzwGj0QWCMmhnY5FKak8D5zj+eNG+R5y51YUUE2NLC52cQDHQ6uWWP8+c3NZG4uIyLkjRkHDCR8I9nSotiUcbcCe20XLGtrhRRMTSW9XqakKBWBg4N8DCpE2wBTvDQ52ZQBGuHPjMv1pwDXr7cKsA7bBTPpdnPuXPJliBrseYjm6THTtgoIyt/cLNfeXgj8c8L0UbPlRsrKstMd6HSSCQlCiDY1yR1VUaEOzsvjOuMyesoaw8pKPg9ROv0XxEjhgRCD2yEibqtsC/1+A9YZI+CWa6mgwBRn/SWBQ5w9WzEUdnfLpeRw0OUSg4oFyqPLRaBT5ViGhwl0ys3n85FNTQJ9eL2cNs24hPv75aqLiOBegPHxuh4rK8n+fgNt/w6VPvGoXIMuF+PjDbCktNT0/X42QqhQi/UGGOEgBGxYtYo2yCMxUX8vWEAFrRISeAqKLSYmMlhRtaND7ejooMe4fYuLqXGoq5Nbb3iYHB/XfMvPVyfExZEeD/dCSNzUVHkBa2vVDdtggFeJiXLVud360JRwam83bCqxseT4uCjpSkrI+Hi+CdF3uYEgUMQAOuj12qCX9UAwFuh06sbR0XJt5ueTTU12PA8YsN2dgYAJA0RHc3BQZbA2mbFkZiYZEyO3pNNJxsZyg2mjTWlmSKzZ20vm5+s5y8vVxooKuqF4qRsQRV5np/zZiYk8A4PiHB/nMdMOP6DgpeU2zc/n1752/mN2uwH2ncNrd8iNOTXlQsAc4U9hFEpK3b1bLpfLoGKPJ6GCqDhyBPsgS0IuybcBzAoW/ESQHHgSSl59AwBwASbNtwcGzmB0924M9fTg5KZNuAhB8uFJyCXnAGx3zc9/rsPq5MSEyUsd14lwwwZ8+tPyrkwAGD4yHUAAcDhw5szbOs739ACYD0xMyNU3fz4aGqDPHn4Yk5PGBThzJhxQm+dY97/5ZgwPA3PnXgqneX8OZBxs2ADMnn2ZXHhf+hJ+E3atyCrMNRymHcchN+5FgF0Mc2LClBI6cQL7Icv3LdM3ppKlrLPoaCA8XO5Nr1cEuT09usiiRZgEMD8yEhPWbycmMALAacYQKSm4Ojwc6OtTGd4uAB0dSvz92c+AyUnEx18M4KNyNS1caCyhiwGcxuWXG95fl0tvBwJITDTXnymvGJYuBbBAbZi4DMBHRV48NARERyMuDkBYGBISjEs0LMyudRQJ/TnL9D9geebiID6Zq0S0HBMDlwuYHhERdG/BYbwEsxAJU+I2/FIAMg7mzjUTcXRU7lOnUx6AyEjA64XD6UR8vIw6dHXJmlm0yHbjz4GMuZ07obnW3Q1MTODQ5GVBfywg91xfH/aHXY2roPF/+eUzGBlRk2bteRUT0Px8e/t2WWWArLGhIaC9HZ+MO4o5Pa/axOJXwdz8xAm4oHXmsBo2NgY4HHJDh4WZsstmbe7bhzNngBHL73/xxbanBuPjWLEC+PznAeByJZ07HJje/iqujjqKkSNHMM9xFHNgygjPnAmLuXq+5c50OHAcwHyYNdPXp/no9er7GzaokPO+fbrnnj2YDuCKqJM4bl3XYjAfGkKY04nLo4Mloy8CMMO42TExocnhcmkOnmcJuTHPQd5vbftexDrl7ANMYvB3bR683l4VnbQKqz5pnbqSkuzEcfFc3kWgmHshsloLpfYKBKPvh5XWMGATxTY2UmAUQxJtWYUWaOWnMGTQiYk2uKG2VuVZFPPeRqak8AjAmhqTwAoYVJfbWCz7dbzu7haIIT5ez5+bywULDHDCEAyfMifOTRD4Zr1pH10uk2t2ii+bz543z2+VM8nJoUAD5eVKTzJW4RPG6lpv/r/GXM+y1sohC/IJc80G891myPplcjK3IUgm7TbXs/qVSUl8Csrhs56NVVVcD1ngT5mT/ikIJPQ8VKiVlZVKL+nvt/PNfD7KqkhKMgCcRwh8305sjomhrIqkJJkgSUl2qRv6/SwqkqWamGhSRIxVUFNj/i4r4+Cg4ZQsLVUKQlaWKSPUI5BGUZGdjyVU4AoCrwmlWVkpkzgjQwjcjAwCbmPZ/VhjVVpKoIbNUHpERgb1gOXlXLPGoHBbWlhcrAKlA4CN5vQAQZJzl4s+n9CjVi4cW1vJggIhcMfH7VQOer1kSooszuFhMjqaq00/NzYa6zI1VWOel6f0k9RUAY5aWngYweKlpaUiImdhoZ6ltNTO7xyGKZqalxfMsYyI0CRMTdWzOBxkRwejo01pH6sYakICOTzM2lragCqgkXsh78zatca6tZDPMTF6o6NDVnVHB1lUpPXi83EbVMR4L2AX75VJWMNeM39N5SSNf0wM/X55TzaYz4qKKAuvqkr36O8nw8O1Po2XxE6xSUric8+df8vODfCtc3i5Q5bd1JRjAPYAAK7C5MQEFkZE4NlndWJ0QqdGF0wBkuhozIROYiL/iQIwGwvj4+FyOvHUU4exfftuXAcAcXGYb74BHAOWLsVZKEyCBQsUy0pKwhUAFgI2aGUREAygnzhh81NeBWBiYjOAK3F20yYchQ6cO3YA1wFYt64f4eHX4uyGDQD6dYqMisK1Q7/Gvt27MSMvD9i5U/yZOAvExuL7X9kPR2EhEBmJMMhym4DsiqM9PYrLod8+8UZCB/CFC4ETJybQ1QWMjI4Cjz2GpCRgRl4eYs3zz09IQAL03FcAONvTg6NDQ9jX1YUw6HRstXkOZBG+DWArAGzfjt8A2AVZgfsgC/kkgEOjo0BnJ+YD+I25xhUAkJiIKHPd6QCwbx9OA+gx7yUmzgVOnBB9VVgYfvysYlizel5TkA4Q3xdOAXgL994rTMfAwAGN1fi4VYcJIyMGwGNo1U5DRtPICID778ehdet0yXvvxel778XYmAmBVVWJ3i0tDc6YGADbMScxEbjkEjz8MIBHHkF09HzIpzCCo489JjLUI0eA9nZs3gxMPP88Fi++Vm3G2/r30ksBTGACwKcmfi3QVEICMDSEfftkKOHxx/HAA8cxYcbHGCuyUjIzZTUtXYpZYSdVhHdCv9uCzwBhYXZRXjz7LC4D8MPH5cuYnp8P9PRg8sgRU6RHRkl0NBTXKy3F2UceRZjLBXz2s7J+tm7FScjAev55UaX+BlBgMyUFaG/H008DmDkTl1lclO3teOABExZ84AE9YFoa9gEan7AwHDnSjai4OKCvD78c+hxQXo5fbrwM994rYBCeegrACCbMfNq82Vj8UVHYvRuKQX7rW8DMmdi4Efj12A3AjTfikUeA7z80C0kREegDsDApCU1NwAtjn8GPn54HjI5iBmSdWeXANm7UYrn7buCKrCwMQV6Rp58G/rvreiA/H1dNvKFJ43DIA7RpE16fuBbYvBnPjH4O6OzEZ73P4HxLiBvzHOT91rbvRezUg7Q0k3rwIFlWJp99fj7PQCVCnoRiWTYUOTqajIvjm1AFA2C1He9ifz/9fsoyS00Ve0hEhE7aNTVkZqYsreJiQabLymQtGYvuFWPh7YQg8oZkhL295M+guBewTb8vLrbL/1SbkzawhayoUA6VycnLzCTZ36/YUHU1m5sN1H58nEAPW6E4TS8Uj3jTsq4M5D0+nlwHwcbXm/s0Nyt0tno19QW3m4CPnZAlfACKPzZCVmuNuR7Ly8mmJj5hToc7ISvSA1h8bMGKCJGRZHy8LIqEBDIzU8nuGRlkbq5K26Sk0ANZ5szP527z7J2WlWBg84JKbyX9frZBMVlmZrK6Wswl3TCWtM9nUiv08vsNbD8/n8zKUnynoMDOf+vvNxZDZCTT0oKVawYHNd55eSYpf3ycQ0Mmv6u+noyO5ibIGu+wTvQFBYbJZ4vxGEzS4zEWoakC0dpKU7bpx4as4DWNX00NgU08DFn/K1ZQlnRdHQMBdWlbG8mWFlkQERF2cQk6nerXmhoeg8oX9Rqrp6iIMt/b2jTvDdVML6D3Kyr0d2cnmZTEVihmt369sfo9HptYwE6tSUqSyRwdLestENBzmETtNwFN+PFxMjnZtvhtri0rgbyx0SYgGIDyHisrTTpDbS0ZHa15UVJCdnfL0gwEFMOOjydjYuh2q1IIi4rsceyF4mY+nxlrl0sx48xMroFi8E+Z/mFOjr7T2mpXRXG7tSabm83n+fl8yprjjY16Pz2ddLlYUWG8LFaaRne32jg4KEs4J4fAyHm37DwAD53Dy/MBtuymtLLrNxsysEkbQVYWq6u1aN5EkNngMEDGxtJnlNIms4ECj2vyxsWZ/fqoTY1klfIAtsrt43DIdVFaKleF2Qy8kEvvR0YB3AfIpeLxsLhYeVkqKbSRERHBxO7sbGE2BFA4ygULrAToPrueHevrtdDKy8nISFU/7+3VjuzxaNOor2cbBIx5BXK9DkMuy/BwbX5uKDA9NGQl9J4SsxQUwI+PJ1lYyMOmLZYbsd8onwCCbDHV0OGg1fS9FfRvNP8Swfp528172yCFO2g263HIpdRtNiCrnQcgpew199punicnh/Zm2t9v6NdKS9V+s1kxIoLi9iy1uwg4JI3ncmkMCwtJt1t5cN3dXLFCbqqsLKP8k5J4AnJrMj+fjIhga6vZ/FJSVBm8rc2AojZKAVRVccUK0abFx5Oqk7hVG15engAiMTGMiRHFVlwcDfXco/pOTQ2Bx+Xm7e6Wi7WwkMzNDZbTSUykwyEQ0WHI9bh+vaFqKyzUl8rL2d9vSiIFAqypMQCOykpugym1VFRENwx3aEqKnm1wkIyL4wMQ1R47O/Xd5GSyo0NAjJwcsqlJCsiUxnG5LM/lmJR+RITWTG6uDmkJCWRSktzgycksKDCEB/39WnOdnVL2cXEGIKRwAWNipIxaWtjSIt1WUUEyJobAJg5CrnNxj54ic3MFxrEANFVVVmUgsqAgWN0+O1sHy5wcTpum89uKFSTT03nGzO+WFindBQvU/pUrSVZU8EcQuGvxYrWZjY0igqipIdPT5cZNT5fSzcxUjmdkJH2/+lVI2f0FyZRWdr7bbiPz8jQpGxvt5HCWlUlBtLVJcaSna3KWlGhzjY1lcrIOdn4/ycFBxsdr3bG7206Q5eCgkpL9fm148fEsLtZmm5dH2rQWiYnSLDU1dj08trSwqMgg/8rLOXu22TQDATI8PEiOW1PDadOClJpxcQwm1Rr6r9paHZZTUqj21NaSJSUMBIz1UFkZjK0kJGijqqjQterq7BpgbW3qJyHbjmqzTk0l+/t1Sna7eQpi1GBTk07xdXV6qJQUtTMyUvGozMxgvbLoaN3b4SD7+4OxmOJinZgBWRcxMWp0WZks58pKsq1NiNX6eptGjG1tZG2tNu6iIllzXi+ZnEy3W18bH9cztrbSroWmA8sI2dRkin3uZ8AcLKz4FX0+0icartZWHT7mzjWWkpkEgC9YU627m93digMDPo2xKazLggIODooLk5mZ7O3VhrhiBRXvamsjs7Ot0A7PAHZRV+A0mZTE9nZZhB2AIQ7YxWHzTM3NZvyKinQIMn1SWGjQluHhukdFhSZaYyMZH685W15uU5KxqUm7dGqqTaFmV+MtLla7o6Ptg0RDA8mMDHZ3q8u8XjXbbw5RdDgYHq5LREdT88KqfpyUZCsJBgL6QkKCGZsxu+ipZWn391vMI8/YHLBWrNtiJiks1BgDG/WfiAj7Mx3e9pLd3fR4aCOOi4v1OCtWmGf0+0mHg62t6obCQinftWtJi8tPjEivSSnX1RE4JYRuQoI5yEzaxOZLl8pREQiYtg4P0+/XMFhMO77W1vOu7PYCHDqH196QsptaYis7w2Lc3ExZZB6PIOOJiVr4HR1kbq4WX3W1TuuG7baw0ATivV6uXasFkZJCbR6FhVopDQ3vUp6rV1PXbWgIKoOKCu2aTU02ZRZbWgy12DZyeFibR0EBW1oMnVhhoTbwzk49Q3MzOzvtn+raxcX2hqwS1G1ycdbWSskUFmrDqK0NFjVtbpaic7tZW2uuZdGDNDdz9myxaKxZo3vU1ooyymY2aWwMumQsBozGRra0mEU9PBzkd2xqUlsKCrQTWugXU7jS5mUzrCAWvZlFjWZbDUVFBMa0Q1RW6rOGBpsVZXyc2h0rKnSd5GSyuZl+v2EE8Xr17IWFbGgwG7WhffN6tbEFAqR1bK+tpeZBWZkUfHY2mZ9vs6kwMVHzqaODTEmRFWjSEVpbKaVcXi5rs7WVzMtTP/h8Nhzd/l5MjMagtlbuUbdb7W9u1mGpspKDg0ap9feTMTH0em1+bz2rsfBKS01be3vp8xnXZkUF2dSkzTUQkIL1emWZ1dRIMYWHkx0d9Hpt3mht5gkJ5OCgXQ2dvb0MBIwl2dRk827aXoSaGra3G/BGYyM5PGxXAWBDA30+Mx4WKKe1Vc/Y1iaFbeUzjI/rvbw8sqhIh7WMDN2nspL0+ej3m3Hs7LSJ0llVpd83NJDd3ZqzRtF7PCTLy9Xv1dX6biCgz801WVcXpJRrarKLr7KhQXMjM1MH5JoajZ05yNDjIXt7NbZud5BPrrNT7czL0+9KStQXOTksKNC68v3zP593ZdcL8O1zePWGlN3UEmvgS0p84gEsKGB8vKFxMhW+rdBBSgrJvDxzeuyTe8Pv18ZQXKzNp65OCy4nh93dUoJiWTpFFhWxrU0bEFtbmZEhXWpxNmZl6ZSXkqJ1UlxMY1VsE0qzwsSGhoe183o8BHrIQICVlUYh1ddLwba1kYmJ9Hppu0AbGsxm6HZzADBlRB6140n9/XYYhZWVho+ws1MLOxAg/X663dqIjgCiAxs0G5xFqWSqc6elqZ3t7fqorU33LixUG632ipdwwFQFGDFI0zFZND6f3QcpKbJ0cnJUFYCDg+9i16+uNi6jpiZLR7OyMsizuXhxcANNS1P3xcQEq1aXlJjDw/CwlFVeHpmQoDEeHiZjY22qr4wM2lUmurtNH/X3a1wrK9nbq350uXQdi/2pv1/fLykhmZ/P9evNeKSmsrvbWAaGzNuO6Q4PMztbh4hVq0xfp6TIPWopzcxMKTO3mywutnlc2dKijbW3V1Xom829k5K4alWQblUWzX5ZeG1tZFsbY2L0vs+n+7C6msCk7tPRYcekWFjIuXPNs5tK4kVFlALs7DScnW62tGgsLJ7UykraNGY+n67V2fkORVxRoUoAAdoV3SsrzRgGAmR9PXt7NfarVhnr1DpolJcrx9TrDXovDPF0crLJm2xspFUN3pr7Lpfmyvi4rmFz3Zrgm9ut3xUVqW+am4NeFPp8pN9vrE6fxrW3l/39wXm4dq1Zvx0dwYOe10u/P3iYMuBp5uWZg6SpJr9y5flHYx4AOHIOrwMfYGU3pdGYb70FXHwxgIQEPPyw0I24807ce6+QWrt3i5gh/4JHsXQp0NZ2JU6cAL62YgZQXQ0MDWFG2FmczvpyMI8GSsGKjQU8Hgdw5ZU2UxCionD33SpM/KMfCQT3ne+IYCE2VvRTM2cCaWkAh6/CrAri+HemKd/m1luBF1/EdbdejYaGjwL79mHGt6YJNVlXB9x/P6Z9+qPAokUICwP+M20Lbr1VqLebXG9h2sdmYX5HB65fdBqsJtrbAYyN4YqJ36C9Xc+0b5/64N+brsd3664DXC7s6pmB3buVUjTdSxz9+TOYt/EXmLdpDeo/8SDKD/wj/r3uKqCvD+XlAsotXgz8wz+oS8LCBHS7914VRU1LU23Q9vb52LwZaG6+FAUFQHHxxejrA7521yy7VmdkJGzmmMcfB7545zx86pbLcOutNjOX0Hxxf4s77lAbRkZ0zxf2XY1bb1Vd0ediv4mSEiEQ778f+MzT38Ty5cC/338WV725Hv/ddBnS0yEWj9RUFWdtbwfa2jBv3xZ8t2wWnrv3NfzwkYsw/aercV3Pr/DDzdcDmzcjMlLXv+rn38OZMwIHYuZMJCXpWa7oeQnX9fxKyL+EBHxhydu4adlpYP58q4Yp0NODv/974NrRV0WfcvvtWLhQxB3/mr4Ld94J4PHH8dBDwK6YvxWlFjSnTsZeC/T1ITZW5D7YuBGXD+9C+VNXAevW4SbnLhXqzczEhz4EbNumuXbt0K/B/gvwn65fYPgjn0L9wKfw1ub92LoVmGVhK4eGQN84RkeBowtvsFjVgLAwHNpxCLdN+xU6/v4/8blVNykP9O67cdJ1PWbOBNg5gc8dXoOLyr6HtWs1fpdfDvxnwWHccQcwa1Llfa8f/TUOHgQefXoOXl/2bdx9NzC95w2Ub7oBJ9O+iI0bgeZmaNL09OCqsV3o6VHd4ago4Meun6CoSH04Ogr8uG6OqgnHxqoDu7qwZe0hrF0LYOtWrFp1GYaGgF8+exGucLyNN1vfxsn5V4tp7847cd3uNfhiwn6grw+7nDfh2qFfAz09ePDe47jrLq2lOV2/xoyqHwKPPIL6dTNw773AqlWzcNPYM8DDD+OKrucQGQlctOwG3Bb/hlhptm8XXLOuDujqwqJFwJwNa9DUpLeamoBH8U/aQrq6MH3Rtdi169z3uJCcR3m/te17EduNeeAAmZ1NYC8HBwXwYGQkWVXFMwjWrGJBgU6W1dVyOcTFUezmPnZA4A1WVZEtLey2Ylam2Or4uDmt9fbqt9axr7eXdDh4BkKc7YVyioYhQElDg058bW3kfYBh9j9Ku3BdVRXXrCHLIeDItGkki4pYUSFLyM7v8ngESnC76XbLstHJu49uiJyX2dkyo5xOHTVrarh+vdBqhyHAzCkICBIIBEOSTEkhW1pk9SQk6Pem1MEJ038HYMoiuVxkWRnrARtk0wko3qMSETIBi4p0nZQUMjZWsbzYWDGvmJhcK4QutUitLdYNFhbqPb9f4wGYKhbPsLGRXA9Tqqe52YZTvgmBDoJFQfcSkImYnGwYalpa7LariOt+xfEqKoL14kpKbPehVb1h/XrTL6bvLQaNvYANSmFqqtra1GQKpX7TjvPm5pKMieHQkMmfy80l8AzbICDSCTN+wBYGAIaHayiPALI6mptlEbe1qb1mjGxLw+nUfM/OJhMSGB0tMFRhobHahodl5VlVJ9ra5O43Lv5j1rwvL6cHQnOuWmXixvX1dskjFhWRBQWaB7297LVijx5PsFBuTQ2ZlESfj7Zr3iqQzN5ePU93t65h0MZsaCBTU5mbqy70WmNVXk4fRDTe3m6KrTY3C8TidJJOJz0es2Y8HhtwxLg4treb+xtS6OZm/d0NgWEGoAK1lqU2OGjmSFwcc3IU47NJ1HNz7RI+Q0Pm/aYmsqWFK1cai9XjIQcH1b7eXsXhDYF2WNj5t+z6AB49h1ffB9iym9LK7rrrfASeILOyFH8xfo3sbCkor1dvAZMsKZHLTHDg04pxZWXZDPzHjD+bHo9dwiYlhVJ63d36e3ycq1YF3Wdr1miNy423yaQXbJTLxVBYMTmZNTVSeGxuNi6THinM1FQ2NlIVFHp7CZziAQgEMD6uxQzcTpaUMC2NdmHWQMAkTJeUkH6/jRKbO1f72oIFJkielcXKSumVykoGN82CAntzjIujNtaaGlPex23lH9vUUToYuA3a0UerWjtwiImJKoUEvEDgcVMbdCOBZ4zyaaQg+QMEBpiXR+OKHSAwZruzYmI0HHPn6vGE9NtEYD+9XrlnU1O18Q0DNviPKSlcs8aARIxyrqyk3FFQ8rMFaHG7zcZZV6d/29rkBjdxQJWL2WtSUw4J7GIAS0Cf5kdBAVldLSXe3EzW1po4yAt24rqQoVtYUqK+X7qUZHQ0gR47Nsv4+CCy1OUisF9u4IwM1tQYAFRbGzk4+I5nGrGAvmxtfUeM2eu1UZSFhca1W1FBlpdzaEjz0+/XuSItjcEiqeXldgwP2Ggr3/Fx43YuKyNjY7liheYc0GyT/jMpya69BPQwI0P3yM4mGRNjJ11Pm6bnPAZDeJCba8eMgUMaB69X6TWDg8zLM8o+J4eMixOCt6ODwCR9pg+AF+yUgspKjaflDqbfr4nhcklhR0QIMFVbq0NQSYnGLiKCjI3lmjU6Z6WlmT4zhWNra81zFBRovWZlkTExOuDk57OkRH2ycqX2lIwMkvX1ar9RqFor51fZvQVw9Bxeb4WU3dQSa+Dj4nxMTFSuVUWF6rA1N1vKZxdVl2qj6ooNSgnExYkbsh+C1us7Pht4AmxhRYU2qJwc2jG7igqSg4OsrdWGIoaSXQS2mdchAtsYEaE9oKWFNjoCOEo2N/M+o6ysumSCXE8yECB/AFMZuaqK4+PBuJA2mVIpzuFhWSemtkxhIcnubjvmALgZE2Ng116vzf8oxWIAJVYhzfJyO0zIoiJzjS4CPtNHI8ZK2kYGAvT5rMrdhyzwnq244+LUV6tWqd1WZSCr+ktenj7LzLQU3RZTH+w0gdPMzaVRniMERtjYKJ2ydq1ifqys5Pr1Jm4TCGizNAFSwE16PBwaIrfDcDmmpEjLNDSQnZ2yAEpLWVholJ0B3YiVY0zxm+xssqTELmjLsjJZc1VVAmu0tRlFPkBgo1FeYwSOypJra+N2CMI+YDbuykoaRTmmaw4Pm/qIL5g0k04bRJKaSm3WBoiRlialZqP93G4TCx4ja2s5NET74CBlNWxq0G0NFkE1CMlVq9QdFm7IymmoqdH/XS7NH4vTkamp7Oy09TpXrNDyKCxU37S2Ugckg66JiaHJ1xyw80fFA+omMMa2Nj2n1sxpsrWVOTnWfUcUY2tq0nozxWunTTNK2yrq6vfzFGAjQH0+krW1TE3V3zrIHiXb2uyashbOqaVF/SNE5Wmys5NDQya25/Fw9epgkXeruF9ODk1/nta8Gxwkm5rY3k4baGWx8SxebCx3v9/Ga61ZQ/qqqkLK7i9IprSy8z38MA8b9wsLCzk0ZJRERYVMkra2IILPQvrl5JDp6XYhZQYCZEsLc3PN6c5AiFlXR1ZU2B4aZmUFT8zZ2UHkiDliB6Dkay+U59TbS9LjUQ5bQQHDw3X4vA8mudqQDLOiggsWaKGVAzbwhR6PTars9dKuNr1mjQE81Nbabk5mZtquUeblkfn5bG01VkNVlU7oJn9haEhN6O6mkDbFxUKZjo+rzUlJQRi5VXg1Pt6m72JkpFy1WVlyiVVUyJUWHS1i6thYAUOgZORTlvIxCFKmpmpMTII5a2uDvFN1dRqf+nprt6QP0KbU2qprV1drY4mIILOyZMFmZJDp6WxoYDAXrrZWinJ8XFZ8S4vGtaFBQJDubrWx0yic7m49Q1yc5kFiorS1hWooLWVmZrB2XVaW2YwbG1lToxw6kx2hw0ZkpNpWXk4WFMiCjIlRv+flBT0RVlX1sjK13++XgktOJvv7Ze05HMzIoCyUlpZgddOiIhtybxWTt05TllXJlhaeMBYuq6tJp1PrpbSUgYBR/k1NPGLmFzs6dA2DHq6uptpQW0u6XJrfpmbj2rUG2Rkfz03G7cjKSvWvhURxOsmcHJaWatnU1JB0uTR3Leqwzk4bDOSB3LBWCkFamp5pHCYZ3JyyVq40oLG2NgukqnHs7WVJSTDLJC8vuM7HzSEkLU0WmWWFMTVVSn54mF6vUVzNzWxr0zVOQDl4paWawq2tDJ7iamv1g9pa3b+4WM+VkUHfbbedd2V3EODxc3gdDCm7qSXWwB+GOBgjIgwDfSBAoFH+eWtHz88nq6s5DiWjHjCbL9DHBQts0gNjATVrdpvgSSug9woL2Ws2gxOW9ZCUpNXmdPIIDMuCyStjeDhZWEigRxt1bS2titzMyOB9UFJsSwtNDGnTOyqRlwZzvBIS2AEltApZ9//I5GS5gwoLOT6uzcoPE5uMi5OLprHRTiBna6s2xYoK28pds4Y25NxCUvv9il14zLUZG6sdo6Ag6AqKiZGrC4bTMj6eLVByeSNM0nhhIf0IxvS6jcLqNv3D8nK9EhLEngHFcN4EyOxsuYkqK8nGRvZDSecNDdQm53SSMTFSOKmpZEGB3H3V1WRKCiMiDEtNQYGx9Mek7Ds77cK669ebE7yVQxkTw7g4bZTHbGu/Szl+gL1n7zWWWGurfh8REcw/A9xS9H4/Y2K0B+62+tHA2YFJDkIVxe2qCvX1ZG4uFy82TDBJSVJYRUWkz6dNc3DQuAoPqbpEYaF90NkJ2BZRbS31WXMzWVnJlStN/NFUSli9mtqtExM1D02B1cxMkm1tHDTts/IcdkJx4rVrDfdlQgIZE6ON3vxrp62Y3Eu3W/O5tVXK1+3Wd1lcbFtk/f20U3Z6YfL20tPtRG4WFHDx4mDS9+LFJIuL6YbIBaxKDJYFyYgIKdmOjiAqtL/fApkG+UZbW+2At8W+09BAsrGRA9a+UF3N9evNuszOtnMMGR3Nigp5J1asML8zceUzZt3Z8erkZLmA6+rou+yy867sDgEcO4fXoZCym1piDTzQIVdRSgqBQzqFxsYyPFxujYwMLUa5205x9my5a6ZNo07SJtC9Zg01YZ1OtrWZmJrfzxUrtAkBA4KNJyRw1aqgK8eKgVjuoO5unRYNUQftOiRVVcH8I6+XaWmy8OzK1S0tZGGhTvSxsQTW2iwhhYW2Z8UkHX+THo9xtRkoP7CLc+dqLScnG+vGYPsLCtQXixczmDcVG0umpHD9egNkaGiw2dRmz1a7LNxJWhpp76aDg+zs1J+rVwfdjGlp6g8rH3/1apv/mAwE7Grt1dV63+eTWwk4aifpSlENE9hrpzKwpcUeR5eLcuWWlGhjT0iwQURuN+3q3iwuJgMBnoFAQayttSmtgC7S5TLuwL2GRPwQa2s1zrNnM5gb1tzMxkYplDMQIMWiorKYSWyrJyFBFpGV8xIRYaXN2ZRzxcVUJ/n96vPqaqamCmjEigomJ5sxbmgI5qPFx2velZWRHo9N0uz1ymVbWUlNPBODsziUq6tJ+nxculS3tC22wUEWFJg2WvmXtbXMyDAx3eZmm07O79cz+3xmfZj8uNZWkjU1Ulrl5UEl09nJBQs0VYRX2sbsbCm3lSuDBCetrSS9XrpcclXm5MiF3dZG20Vvucx9PvOcOTmaXE1NZG+vnsfjYUuLnVZKYD8rKtQ3RUUaQ+AQV6wwCjkQYEyM/rYAPlYuJoeH7blcVERTHmuvTXBgJY8PDtImeGd9PVet0ny3UmzY0mKDX7xesqXl/MfsQsruvUvY+cN1/vmlqsqlCt8rVmC8aa4gwjU1eBFKSZg71+acxXN1p/HGQQe2bp2FPXsgst1770VsrIFj33EHMDqKqCjA4/ko/vErKlZ5VYEbjJ2D13uAo7E7kTmiDIWPflRw46gou0A5AMHJZ84Erp14HT+uuh4zvvVRzFpD/L/HbwK+9CVMj5qDjRuBjz1O/NQ5DX/XSVz/8/uBhx7CBReMg8XZ4K1xeCsK2DL/+xh9HJg+ehSLFs3B0Y3pYOok0P4L1F/4/+GTcQ5gdBRr1sRj5swgke1XvgL8+6oZ+P7Wp3H3z/8Jd9yh5zyEL8LpBKZ3dgLbttkVX8p3fxEPfnY97rnnb/HQQ8B/3n8a+w/OwJEjqpv5462/wOUXAvV3qi8XLbLrkeLhh9X+ri6h/VesEDz+6afVFz98eDr6+oCwL12BrVtt7lykpV2G7Gxda2JC6Q179lyG+fMvwxf3/Dtw++343iOfw7JlQq3v2wekf/UyXHPNv+OHQw/i1xU7MX8+cPXkG3C5dA089BAwPIzTk9Mxo7sbX9v3DHDLV7C1Crj+oYewdu/HgcT1ePCR7+IOz4NYuJBYuUoZC/M6O9E+U6ken8JG/PrG72PfPuDvhoeBvj54HwKwezdmzZyJyairgNFRLFoO/Hriu/jcwoV4afQG3FRXp9yPW27Btm2C6x9fchzLfg58e9FLeGHsJnwh7KzSG57uw913Ay895ANW7UBamgie5/3HfwC33IJfrp2O//fzn+O17avRseTf8MmmHwILvw2/H5gzcQhz+vuxJOoksOdGbJm4ARMjwPfvOo4f/nwWvr3sdaBrDK+mbcbZG7+PsDCggzcgfEipG3OeXA0syQOWLcMzfdcHibDPnMFN4S/hplWRQI8D/7lsCFjbh6jYf8KufRdhY/un4HIBPx77Gr7peBu/nP9d/L+xX6OvD/jx1uuxcaPmwy/ueQM/SUvCHXeIm3nuXOD7Y98F1jqAFStwFPOwebMKnY+MAL+42w3ccQeGn38Nm1+Zh9tGVuMLycnAiz0q4XT//fjN5FW4uvpe/HDZc9izBxgbuxr/tOw3+Ny9fcBEFLxetWP67f8fHly1Ctg3id7eubhq9HWxRi+/EwkJM/AF137ddO9efDHQg1d7/j888shlWL4ceP3GbwLPvggsKQPW/iNQPwHMn4+FC4HpT67BvAULgB078GrVTNx0zz/ipbAvAI8/jsnJy1Qb2XNQlZDWbUfSV27AP//z+d/zzrVMz5TONTtXeb+17XsRO2a3Z4+xdjoVZgJ0ui8poR8CC+wGgtnBxcU6zcbGEugjECz9wcJCsr5e7iSDMmNqajBJ1socbWiQa6+ujuPGDddi7lUNA9OvqbHBGl6vYnGNjTrBsqJCL4+HnZ0mhmcC4ayuZm6ubuX3mxNpfz8PA+akSDthGmjiJiBY0NXl0iszk2xsZHW1mnsAouqyygF1d8sya2+nLub1MjFRSE+7UKcpdDsIpVQwNlanXI+HG8z3hq3PnE4FbuLi1G/l5TrqlpTItDEm4jEYJGNRkaixGhrIyMhg4dfwcBslOj5Oxa+Sk+3Ug+5uWTPt7bRppjg4KLdxSQlXr7ZSD44SeIZsbWVhoUlH6egIxuiamwkcEjNOXR1ZWUlgF1lTw8LCILvMqlUmJpSbSwYCum93t2IxkGt5HLBdkRweNoCL77K0VNZfSgrJlBS2t5tk/8pKAk3cDdGBWWMCHDJIQzcLCzVmgYDGPi6Omgw1NbQYDZqbqYkVHS0Xoomrzp4tN/uqVSa2WFamuGJZmfqgv1/fT08nfT65J5uayIoKHjHWq5UFwpYWjXtkpE24QJeLfn8whmXNJxvp5HSyt9e4F2truddyD1rsMjU1Kp3Vqz62qPwsMoRBQNZ7bq7c6ePj9PtpJ9kDp2TKJSfT7zfWVGOjrMXaWgbMeujsVF+zslJu44oKuf6Tk/kmoDVkPm9upuJ28fE2sGTlSqo9KSncDqW/cHxcc6akhKysDMZsu7uDpONNTaysVHyd+fkEdp93y+5tgBPn8Hr7A2zZ/Z+VXWtrK2+++WbOnTuXALju/2fv/+Oyru/9D/yugV0zcJcKddnAXTqwyyYOmzRs0qRJw022aLHJWWyxxYZb7MQWO3FOrDjDki1abHgWWyxZWHCSioUVUzJSEqYkpCikGAgoJCiXggICz+8fz9f7fdU5O5/vmad9d/qe3rfbdVPe1/t6v1/v16/nr8fz8Xzuufd8PzU1Jffff7/MmzdPHA6HfO5zn5ODBw++55rR0VG56667ZO7cuTJz5kxJSEiQ7u7u/3YbrIGPjfUKPCVSVqYus8JCOWdNZgs/395uCxDNgzIwYYuk1+0WycqSFkxOUF6etLf7GI0s6rHkZN1zSkt9DEQyOSl9fWLq0XWa6gWn1U1aU6MbYUKC9PVpesHkpIUa26mbibnp/WbzcDh89cgUhblb43Qul2Rna+yko8NyszTrJlRfL7m5uhda5NIREQbkYvIEBwfNhlFQoBt+fr5IcrIkJ78rTSEqyvA0erVfJid14xkbE0Vl7hYol4gIlUvh4SpcFFX5mkCNwCaTMvCaQLVJSygXTUsYsDEqVlqFab54vSrnNm3SmEh5uZj8s2ckKko3lYwMfVZVldYctNydkyg5dGysvkOvESRSXS1NYLOpWa9uc2aZXC97jNvbzTs8JVtAYLPATjvvDp7SyhGJiSKxsT6i54IC057f+uJtSUkCeZKaqpekpyuMHar1eRaEsqlJXYo2Q/64SEGBVFYaoVtYKCMjmhbwHEo0bdFQlpcbN6mhvpLsbKmt1d/ZtHWRkTYTVleX9nldnYg4naok5eTYLF1wWiegQd5Cq0hsrPSileK1qkOzNDUZN3l4uE46f3+BI+qmzctTVKnTqb7FlBRZtkznYzumNqIJHWgMWsmfvV7R3EuvVwoLRV4ySqRVB1HdlLsNGXS/wA4bbGYDb4qKVPi3tGjfBgaKxMTIGUx8OS1N12V4uEwapfQUGvtbtsy4eg3Fm8TESG2trkUJDZXAQJ1nF1GC+QtgFdCQnBztOysHLzZWXd/qnq36UNj9Lzr+amH34osvyr/8y79IZWXlXxR2GzdulMDAQKmsrJQDBw7I17/+dZk3b56cPXvWviY9PV0+9rGPyfbt2+WNN96Q2NhY+dSnPiUTExP/rTZYA/+xj3klLU1LrSgsfLeBGV8wG+6LAjUSGKibZHCwJfC6bVCJ5oS16uJsahLYKfHxaiTFxIhIYqJkZIjNvJ+e7lN09bc1Aq0mLviaLFhgpz3pzu41McKODvkF2MUKLP5NGJfaWrXwentFpKBA6uvNNVj5d9k29VdVlWhbY2LU8ujqEoXDnxDolNDQdyXVxsaafmgWeFYFXl2dHYMrLDRCMDlZNI3iRbHy5/TvnQI1KpgNL+C0adqH4eFWGkebrFihwqSpSS9NSVHtODTUR0e4bZsKLE09eNOkGxwT6Db36TbWdpttxIyN+Wii7Fy6yUkdl+RkkagogRO6u09OKkgnNFQ37eJim+cRJkTi4hSMYbgcs7PFAIIuaHw1KsoOLG3YYP62+KBMKkNsrJX7uMMItAFZsMDE4/LzpcZshF1osnZJidW34wqGKSszAJgaIyR2a/qI262bbXS0KiK9vRIXZyitxsZEEhNtytYFC8zYdnTY3AYKxjlmlK1jtuZTXKzzzur3kRGVA7W1et6ihfR4tMskKcnHouzVFBQrbmuFnLdt0ybV1RmFz+vVjb6jQ2CHHaPTdIgqCQ3VNlpAXGgVaWmRBQvE5KI12cI0JUXnttLRvWmnS0hSko3Gra3VNtXWiki/phNYtHXwZxtUU1pqV18ya7XbKF9HZHBQlay4OJ0PpaUqkC0+2Y4OHX4VsqdtirqREZWrKSn63q2t+oykJOMFmJyUnByfwub9znfed2E3ADL+P/gMXKKw27Rpk7jdbrn88svluuuuk9dee+2/vHbnzp2Cec67P4cPH37PdVu3bpXFixfLjBkzZPHixfLss89eUt/8d4//kRvzPwq7qakpcblcsnHjRvvc6OiofPSjH5XHHntMRESGhobE399fysvL7Wt6e3tl+vTp8vLLL/+3nmu7MbOzpcNonpKcLB0dBtpswdibmnTGJiSoil1YqC6chAQ7f8jrFTtpPCJCRLxeH+t/fr7NwC4xMbrwcnPtkidSW6urZs0adXUUFMgZFHHX3i4mSD5gyI4vqFFl3ClquQ2LFBeLw6Fa4v0gMTEqIMbGRK0Eh0O6urRUT0KCbjhWCkRHh6gQjInxoWRSUuz6bZs2iZ63TL/JSent1Q2gtVVs9FtNjdiJ5RIRofe0dtGcHJHISBmzNvHQUHUdJiSotMvPV6HscKj7DWykpc2gkpSku6lVY6ylRZ+dnKxjYqDuUlSk983L03f395delA9UGhu1bSUlClZxOERSU9XVGxpqp1ssWyY2SbddHcFUsJbJSZGmJgWb1NTo2FvW1diY/cyYGNF3swbGuMAtMJK0t0t8vLGeDVDBGvfYWIORQd2rUlEhEhenEH23WwVwXp5aogbAlJws2o+FhSJdXdouj8dOWhZ/f0lIEBXmjY3ab9XVtpuutlabn5MjdspIVpaP6LwXVCCbenzp6dpHdl28yko5hdbok8JCXTvGNWwToZvqHh0gkp8vGzaoFWklmO80ngspKlJQU2+vvp8x5y3uzw0bxE49mDSeFKmrs7krW0w7yst1yXo8IlJXJ2dA119goIjTKSUlxqVvFkR7u1mnprRWSooqcklJvjSEMTRksGKFCqeYGDOPLGllGBss9OaWLboMLLBTVpbY6T+SnW2zFUl0tEhBga635GSbqMC7YsX7LuxOg0z8Dz6nL0HYlZeXi7+/v/zud7+TQ4cOyT/+4z/KFVdcIV1dXX/xekvYtbe3y8mTJ+3Pu42Z119/XS677DJ58MEH5fDhw/Lggw+Kn5+fNDQ0/I/76r863ldh19HRIYC88cYb77nuy1/+snzzm98UEZHa2lodtNOn33PN0qVL5ac//elffM7o6Kh4vV77093dbbSFZwV2GFi4Jt12m/Px8brYIyJUG1aL7lnz6Za9KCReJielvt64D/EVWVV347PSASYW9Kypb9cp0C2hoRbKs99YKDuNtdIp4eFG84yKEklNlYICEzsrKjJuv1x1n5qcnMNGUMbEqMAzmQsmCbdKpKlJWluVLssyXMrLTUwvNdVYbi8a7fZN3TxHRkRSUmwrNT5eYy3i8ejCNlUVamtFpLHRWMRHBJ6RhAR9RmioL7l+2TIx73daNBlcE4a1P8tFE+v7DRLvmLHUys31neJw+BCey5ZZSfDPCjQbl+WL5lqF91dWWhb6CZGODgkO1phnXJyIVFX5kHSpqXacqBdl6ejtFTXjTUmgDRtskKS+WE2NbkypqWo5xsaKJCaa/puQLrPhLlsmdnIVvKaxmLo6FTjR0Ro3TE2VDkwNvKIiLZEEAsckPl73/LQ0EcnMFI9H21FcLCLh4YaxZsJY4Jt1sy4psVGrbxsBmpsrIi6Xza4mvb2mBE2zLbC7unS+xMeLSr6CAunr85Wj8Xp1o05PF5GODptQWpqazJh1awy2tNSk8AyoYG9qEtCyQElJYqMu7ThoUZHAm3aeW1qa2GTqtbVqmSclad9YJY0s4m94Tbq6jJIZESELFhglLzZWGxcZqfHjDmN5BgaaOWfM1PZ2gQs28bYl8S0CiLExo+xkZZmyVt2+2KtF7Fxfb+Zis/6uutq4bCfsVAU4oUpyZqYK59paKS9XhdYqKxUern87HNr++HiRmJj3H4359xB2119/vaSnp7/nnMfjkXvvvfcvXm8JuzNnzvyX9/za174m8fHx7zn3hS98QdatW/ffbtdfe7yvwq6+vl4A6e3tfc91aWlpcvPNN4uIyJYtW2TGjBn/6V5xcXHy3e9+9y8+5/777/+LZnE9CnRYtsxobRkZdoFUiYzUVWYBJox0umCsk4QEs8iMWys01HDtVSvwQyorjZvsiOwEGTMbmKxZ4yvgigFoWGV/RkZ8jO3V1TI4qJtMSorYFGBWFWQotxOarXyglhZdPPejwIWUFBHJzbVDTBs3ijwDdk01qaqS9nYDdHA69Z2NFdvba6yQNWu0jTExkpWlWmlcnNmAjWVRWSlW4FGFMBqwt5JtIyJ8hvHYmOiqrq7Wl/N4tJ+9Xt1Ympr0u/Z2kZQUu8xQaan2rXR16TVOp7bb5bJ8m3KKd4FkIiPVCsjK0g0mNtbuQ6mrM6kK3Taf5diYaupW2Rmo8SX45ueLw2Hlyp2wq9nDDtXK6+p0POLiRDo6pKnJ5FJ1dQk8ozHAjAwVDmNjUlnpg9CHh+u8Mal+IiMjuuGZnQ86tWFRUWqJVFfbsV4pKdE5bFFxtLSIeA37fk2NegWioiQx0Qj2ri61zkw+n3R0+Bh5Cgu1r+rqROrrNSZnCqNKQYG0thpvQ1WVSGGhNDTo8FuFaaWuTgWhiXXbnKv19TrfJydVQZic1OsM/6q0t4uUlen4hoerNyAw0EciYFUxyMhQAdPers+25lpGhl3At6PjXeWOTFko6e21ORxs9paWFh/pQmioSFmZWpxGUEt4uPan5YKuqPB5D2prVWvLyhIpKvLloxoviomHyBmU8qu3V/T3FrducbFIbq4vXzA2ViQ8XMYsy9bfXxoadD56jWL/fgq7IZCp/8FnyOyd3d3d7zEgRkdH/+Jzx8bG5LLLLvtPLsYf/vCHcuONN/7F31jCzu12i8vlkptuukleeeWV91wTGhoqjzzyyHvOPfLIIzJ//vz/QS/9v4+/SerBtGnT3vO3iPync//x+H9dk52dzY9+9CP777NnzxIaGsqS730PVq9mdQPMWJICkZF4PDCn2wWbNunF+/ZpOYLbNZfA8fzzsH8/qwcV7k5PD/j5sXGjQvcJDWVVRITi6IOCyM4OY9XTbkhOJm1gARCi3505A/n50NamDO1BQYodDw1VrPXWrTxc/yUejH+NjRtvxOmE3bvhZvdbMDzMli1f53gQxC9Rlv/qaoXq33UXPHB7Ew98+tPEbxFYdx+LDr7JH7YupaoKXk9IgI0bOd3wFhevWspwLzjy8jQPoKQE8vL49sRv+f3QIb4dDeO3v8iMnmPgdvOLy94mJ2cBf3rgdQgLY2HYlQwMLOLsq28oTt7t1tyCxx+HkBBNz3A4uCdaUw3cbq1UMCMoCI4c0RyCwEBYu5ZxxyyGBmDf8HW4I/S6hQEBXHEFHO+ZzpIlgHMxbw7NZ2kQnO06w6w7v6b3GB2FtDSC4uOhp4df8UOWLIHlEwCrtb8feIAvu4/D3Gvg4YfZvPlGBgZC+MpXYPt2ZdF/4AG4KfI0rzTPYXLyZmgLYW0bMOEmORnCPl1Ew/J5EPEwfn5+bPJ8Hj7aB0NDlJd/HRITOdYzg+t4g+ah6zgfNJ9Nm+ZrWsm9eVx78HXoC+FWv2YIWw6by3lr350QEMCfdkznC1+Acb+ZVFRA45lFfKaxkeKGj4NDr1kbBK/7fYkbnn+Wq9auhaNHuaG0lHHXfGZs3szrnVcztFtTV8BBR8dccDzP7Q0wZ+Idnc+rV0NbG9XVS6Gzk+a+hZpCsnwV3H235mk0N2tKzj/+o3bO6tUALOItvfmSJXwm4jwvvjxT3628HIDfFI5zengmc5xOlvb9SefAwIB+HngAd/S/8sqr01m1Cqh8mS96OmGfH6xaxdolgKuI08tvZs7mzfDYYzA6yrGhOSyMi9NKBn190NfHoN8ipkdFaVWD0VGcnZ0QHc3Co6/QF3CTXjc6quvp4EGeevw2TgzNBODqgTe1ZMYdd+g1q1ZBYCAL09LA7ebfHpvO9zs7dUG1temCGh3VEiW3367/Hj2q/9+3j/p6uHXgt7p+s7I4ffe/MmdiAufQEEX3wdWjx7R8x8SE3ue22+Dhh5nf8O88NfE1/iFgM1RXM+PIEfAsgvJygoNhxtA7jM6d+//c8y7lmMZ/3l//qt+LABAaGvqe8/fffz8PPPDAf7p+YGCAyclJrrrqqvecv+qqq+gzVWL+4zFv3jx++9vf8ulPf5qxsTGefPJJPv/5z/Pqq69y4403AtDX1/dX3fN9Of4nkpL/H7kx/+NhaTnf+pZXtbTwcOnrE4FqSU+3AtL9ogCLcUlPVwXVIlFOTxe1+KKjxSIq3rDBCvS/JuHhqsB1dIhx42jtNomIkG3bVMNUFNYRsQEOtbUa86io0ArjXnWftbf7kHB2ieTISJHcXJtZH3arNZWVJZs2afu3bFELT62RGpGqKgkONlWbc3IMum/cpj9KShKbpNr261VXG0DFuEybZpKJW1tF8vJ8iL3MTOOKKpd588T04x7xcVWOywsoQ4rtxsvPt5nzS0pEO87fX62ypiY1A+PipLdXmUQuWhabcQGuWKHjkJGhirFllAQHqzHR0qLN2oMCetrbRS2ElhZjhTXJFpBNINCv1ktEhEhtraIuwbh3y0VQtpoW0IrVCQnS2qrutUmUaxG84kVTLfpB4EkpBpHAQI05RkfLIAg8ZFyr46Y+YrcxBE5LKZqCYhXw3GNc4rVgwBq58oTxOFjuOgvs09QkIqWlMohJJUlO1hhbdbUSolhWaGWlWg/t7dpRWVkiIyMGRbvTnnPS0iJSUSFwRMdpcFB/l5Jirr0gsn69FSJUD0JNjVqzjY0itbUmFWK3wE7p6zPMZpjUj+BgCQwUnwuypMT092aTFlNuLO8ndWzq6oyb+m6dyyUlAs3GctaQA/zZ5mmFTQIPi8X3KuHh0oSibq1Jkp7umzs6BiUCue8CbClwTMnLHxLoNm3bYb5XAJbU1IgkJ0tDgzop1F3eLTExYtzMbXZcVSuZvyhWqpMFSLHQwlatWBgQaWw0IZX317Lz+vmp++cSP14/v7/Ksuvt7RVAXn/99fecz8vLk2uuuea/3f61a9dKQkKC/be/v7889dRT77mmrKxMLr/88r+iV/66428CUMnPz7fPjY2N/UWASkVFhX3NiRMnLg2gcu21Ugs2ek7jPKdtxoXWVuP+iYiwGW+7jessMVEFQ1ycGH/+HgHNT5OSEjsHyN/fUBxFR+u9ior0Xl6v7lL19SIRERrv6OqSdjQWaMWdkpLExBbu0A3H5ZJGlP/Ph6b8B7tkEFTZbqMjIPeDxkhSUnSDKC3VytDgA9gkJurK9Hh01TmdIk1NKhhra+2Phd7LyTHVDmJiRJxOmZw0bSkrk24U6m1L6fZ26UbzFXeBLhgjCM6BkgYbl/ILKDR/j3VtcLC8BLITpQ87gwG2eL0qkNxuVQ7a29XdmpGhLsyMDJGCAnUn+/vrhmkg/dLSInBEXaBut453dbVIaKhhXmkSiYsz6Rk7tS8rKrTf6uqkt9e4rbxe3bjj4my0XRVKcQY/l0Y0R8yqMLDdnI+K8hX29aEOH5YaI+iTk3UYnsPkbq5fL5KTI9CtLsu8POnr0673ekWkuFiRf+Z9kpNF21xTo7G6kRHD4vOkzUFqp4UEB0tHhyoomzaJTxEZHJSmJrGBKBIZqWPp7y+Sm2un6WzaJPZO/TYIDOuC6e+35xdMiOTmitdr6MmqqkQiI2X2bIvxv1/j0WlpNvn57NkiMjio93e5RCIijGL4c42D1tTIli0aX6+pERMjfFIVsOxsgRfNWI4L7FDOaaPcjZi5Zpi5REpLJTtbp3hEhCoR8fHqRdX2TQg8KxkZ+jxFhF6wFUCprtYfpqZKcbGuC4vKDZrVE4zGZC2C+RUrxGYUkuJiXQfJyar4paSogIyJkUP/i4Xdf7dNl+LG/EtHXl6eeDwe+++/hxvzrxZ2586dk/3798v+/fsFkEceeUT2799vI3M2btwoH/3oR+XZZ5+VAwcOSHJy8l9MPQgJCZEdO3bIG2+8ITfddNMlpR548/ONttYq0tWluTqhoSIJCdJuNO06a9Pp6rKRXxIdbdNTlZjNWPLzNccJ1KyLjhYpLNTYRUmJSG2tap5VVXptbq4cQdMXxsxirzf3KS0VkY4OO/5gJT5DrgwOqjU3OSkig4P6ncslkK1CtalJLZmWFoEaWbBALbyuLhHJyZGGBgu80WTX/JLISBUcERG6+/b22rnvR4ygaQGFvncZwMPkpEh1tc0dWGcsG8nKspn7W83mv2GDytLCQlFhZMiNJSNDn1tXJ5OT76rIbjETZ2VJTY2xXMbGVMqMjOim2dVlJ41LcrK23e32kS9nZmo/pqVJcrIRDGvWaFF1FDQUGCjypLGmCgt9ISPYY+cVWmjN+HjRF7CqEdTXq5KUmipSXW02xiZJShJTkeBNm2pKrb9xaTH9WAk2qKnbWN9qETwp06YpsGX2bH3ntDTRDjaVyuEpqUPjQe1gk5DreHdLV5dRrkygyrbETL6nZGdLU5OPWssyi1uNJXkRTSrPyhKRzEyNcVVV+WrKZWaKZGbqmMTE6HrIzBRJS5PWVhWalpfgAoa7ND/fFtJSV6djkZ+vil5ZmUhdnTQ1adJ/S4vp08xMVX5iYvScxyOHzXpsbxcd68ZGnQu1tbo2ExKkqUn79TnzW0lIsJpnMcHphCop0f8bUuwxNJ/OVkg9Hl3DsbEyCLLdzP+XQAVcTIyIy6Xv1NqqL23imVJZqRphTIxUgS6YvDwf2YRF6N3f72OGtopXNjVpn7W3C7S//8LO4RD5yEcu+eN1OP7qNl1//fWyfv3695xbvHjxfwlQ+UvHV7/6VYmNjbX//trXviZr1qx5zzXx8fH/uwAq/1UOxbe+9S0R8SWVu1wuufzyy+XGG2+UAwcOvOceFy5ckLvuukvmzJkjH/nIR2Tt2rVy/Pjx/3Yb7IHPzRXx91ehYpKiLaYKK+FXWlt18jscOmENk39LixpE4vWKdHRIauq7oNu1tfrbkhLx9/dttFVVovcoLhYb62wFvCMj9bzTqQLI+E2hW6S11a6o0G+EaW+vboiDgyZPa3JSOoxVZeXDS1WVSEqKdHWpwCstVUW8qUns0kMtxrqS0lJ9gfXrRQoK7DIrUldnA3WsBPMtW8w94uLs8jlSV6cbV0KCCvf6en1Xi0LepB9IUpJaVQkJ+l1Jic0rKoGBPonj76+bTVSUbh7h4T56jslJ7S9rY/F6dVyMa3nQ2mSTknypB1ZqQGWlQr8NKUBTk7pK2811GzeKXZumrs4wxaSmqgQxLjVLAFgleKSqSq/LyRHxeNSdl5oqEhxslwKSsjLJzTXjUlkpERFGKJnz4nJZ4D4VNGlpeo+xMZHMTD2XlaW/KSiwuT4HB808NJ4Ey01utbm1VccpJ0eF4+SkaB+OjNjAivR005axMf13zRobgSqpqXLYEq7tYleRGAEf6KSqSiZByWKMdW4J3a4u0Zc2c+MMCt7q6hKRkRFdEyUlyorj9YoUF9ulekZGROdERYWMjKgg3bRJVKGcnLRLTU1O6vBv26aIY7uMU1qaLoaxMZH163UeGBKIhgZdHib9VMTrlfJyFZQpKYZBxuRntrZqX4vHI9LUJJs22fJSXctmrCyQmBUK6O0VWymzKot0dZl1mZfnq3xiyjlUVopIfr6ma0RFifd733v/hV1AgA8AdAkfb0DAX90mK/WgpKREDh06JHfffbdcccUV0tnZKSIi9957r6SkpNjX//KXv5TnnntO3nrrLTl48KDce++9AkhlZaV9TX19vVx22WWyceNGOXz4sGzcuPF/d+rB3+uwBv7aa70al0hIECv5Wd1NrTopDfmwVvYeFnhKQkPNhuV0+qDEFRU2473U18vs2WJcOOXShZWw3mySkDsFTovH4ytxsmCBxl9qatTLFBure1U3mhfV2mo2EQORhn/Q5zY1SW2tuW5sTImrjWa+YoUVP2i2yY/vBwOa3KSbZ2urjI2JsRg6ZePGdxEm19er9jk4KLW1ug89B+pyGRvTE1b+lIHqeTy6Jqx0vS1bfMn4cETi4620gW6BnSamsVu0eGu1wLiUG1CjunyOCRwzaRxtNpquqcmylibE31+MUtAv27bp/VtaxIa/L1ggIjU1EhxsuQw7RUpLZcECkxRsCuAmJ4sKetNHUlsr4u9vl0RKTDQxy9pauzag1NaqohERIeL1mjnSb+KhmlRtCRXoV8Sf1WcWxHb9euNia/Nt0LW1Am/Kli0q+NrbRQRFglrvJjk5vrSCggIBr45dU5MUFxvUaUaGmbsXZBLE4dB3sErVwTG11jwekYQEFTKDg+q+LCgQGRmR0FAdP8nM9KUm1NTIsmVGkLlcIi0tMm+eugot3Qh26/fV1QLdNiG3lJWpK3JwUK2o3l5JTDQCOy/PB+2vqREpKpKMDF91AQkNFWlslOJi7cLAQB2z5GQdx/h4406PjtZG5OWJpKaa5PM9xrVYo2keprajFf+VyUnb8q+tFe3YoiK7Hl5fn1EqBwftuKTU15tUo06BAZ8r2CTsW6jn1FTxQaazs23kaHm5rvvMTH1HKz1HAgOltVUkIOD9Tz34ewg7EU0q//jHPy4zZsyQ6667Turq6uzvvvWtb8nnPvc5++/8/Hz5xCc+IQ6HQ2bPni0rV66Ubdu2/ad7PvPMM3LNNdeIv7+/eDye9wjDv8XxgRZ2R407LDvb8NHV1/viOTk5YptCqalyEWywgaSlSXm5XQ5MZGREli1ToeX1KjBCvF4DYHlTgQeBgSpYY2J0I0lN1d02JcVebHV1os8z6QeWRRIa6gPHbNkiRmj+UKSxUbKyfLW4amp0P3jGWE6ZmSJSWioNDXpNYqJJS0hNtd2qXV2iksVi/E9L08U8MqKfxkZ90eJiu5hqQYH++27+TptnzIr5WcXbyspk9my7tqluXJOTIo2Nvpp4OTk2K4X09tpVwSUtTTZt8pWKszao+nrxUTolJOhN3W7dtF0usXi2UlJErT1TVdq6h2RnGwE6LBERZgwNU4jXK4bNo18kKek9uWEKMtG8NmUyeVHnQ06OwA7t/LEx6e0149TVJfCkCmTjxrMYYSYndd5ERGjzLGeCRV03MiImVtWtQjgyUjfbsjIVfiaN4ADYoCFpbbXLBsnIiAqp0FDth5ERfWZ/v6ncfcJ+55gY0UGMjFS3XFaWr/ROba1IaalUVpp+qqqyCQmyskybTcHg8nLRSRgernNi/XqV1AaFkZLyLs7PtDRbGEprqwoKU4twBI3X2ikJra3az+ba+np1t1osCR0m1DA4aFzhViJ/U5NIVZWUlpqUhI4O5SQdMe/h8dj5qoPGHTo5ae7d0SG29lZYqPPRirNFRNj7Ql+f8XJUV/tiyqaUVXq6GQurntD69frwhASfxbt+vUq7qCi9UWSklJfr7b1PPPH+CzunU11Cl/jxOp3vW5s+aMcHWth5n3xSpKJCF6nTacrzdIuEhkpDg0m6Li3VxRkToxZUU5Ns2aL7aXu7LnCrVlVOjpn4plbd2+CLuURF6cYZGGjXVZPBQZ8rr7bW5luU0lIjHH9r01ZZMZbeXo1ttLdr26zyItLa6kuetVyDRrqYgtsCm0RSU1Xg9ffr8y3J4nLpRl9SIlFRYrvfCgvFpiiDXIFxm1FFQQPjPrLd9etVs7VYpK0NtqREJC1N3WKNjdouf3/bYpHYWN1xTbKy5VaSpCSfKzk52Rau0tVlcz+Kx6OgoNhYmynFKpRpxdgqK82YlJVpXLGqSrX2/HwpL/cRBXu9ZrM0eVCZmXq/8nJRl2iv2fBNqRoLkZqSIr73Nuwgdk0aK5EtK8ueM1u2+MChGzYYlpHsbK271irq8jNJ+5Kfb7P1WNLYqnQ9OCg+ctCcHJteTurrZcsWI3zq6kTy8rSPKiq0L3JyfHUXc3Nl2TJjWYWGqkWSlaVuvJYWu75heroZF4POlMhIMwfG9f17e9VyMzVyLoCOXV2dnSivrD+n7fqIkp+vY2wAMxYHp5SW2lPIyoGUmhq7WrsMDqqUbW1V685YXlYJctsFb+47Br4ySpYL1JTFkjVrVLJMTupa7epSwdPfr32Vm6vPr6jwFUXOydH5U1Oj89sC/qxfL7ZPtapKrMz7jg7Rl6iqsuPRXV1i55lasrkdRFpapKREp8zfolK5d+5cbeslfrxz534o7D5Ix3tiduHh9qaqUOUmmZz0EelbcTHbdbd+vf5dVmYW+zOi6QfPCPxZ4ITU1Pi8VJs2mThQf79IR4ctRAsKfHt8bq4Ya6LNt5gyM60C12JxVkp2tgq4zExpaLAInattF6kUFOgG19Iig4NKHqwQ8CaRrCx1XRo33P0g8JhIe7ttbdhVrrOyRLKypK5O3Tw5OfpoKzbX3m5YPGpqbBAA7NENs6rKdi9aRQukpkYkK0sGTdzQlDaTri4TXzIb3xlMesH69TZDvs0TZSVEt7SoGyolRUpLdZysempjYybOVFKifyQnS2urSZovKrIrlsOz6hZOShLYI+3thlRgclLruaFVJiyWOBkZ0XuOjPgqmxcX+yyZnBw73qNu8GdlJ8gzYHNBKoz8TYmL033DqsembsZmtWYiI0Xi4qSlRaQJTZIXU48tNVVs1K5ljVr0b1ZCfolxMcfGis3xKMnJBqW7SWwoqddru2JjYnQMli0TkfBw/Y0ZYGjS9+7o0OtTUox7/reGgeWYT+pabsmqKrsIqRY0/qWUlxsXYFGRWJVZk5JselK9vrZW0Y0JCXYdSSttQVJTjVu7XGCzSE2NKghxcSpga2tlxQpfFQN4TCDbuM87tf1Opy8LPjNTMjON9eT1FSKBHSJNTSYt6JisWGFVwnhK3aCVlQLPmu9bBXaKFBVJe7t2raWnFhZaROzPiJVOYWrQmvXqVYvSymcKDRXxeHT9hIcLpIl0dEg+fwM05ofC7pKPD7awe/ZZU2W8W3p7DXO6yyWSmSn9KFy+CXxlCsrKdGWsWSMWC/9LKE2YJCeL5OUpWispSXezrCwVHqmpPs3QVFmW/HzpQuHpF4wbps5o0VbNVhkZEenvV1h5To4NCh0ZEV1Zg4OKBE1IkNRUXbzbtoldadzKEfSCnSNXXy+GIeQxud86n5rq4+KKixPp75eSEhVoVvsuGJdvXZ3ufxbis7ZWf3IYgyrNzZVBsMuzdKOIz9paY50EB6vQshhwLc26vd0uACrt7RrcT0kRr9dYtZWV+tCSEi230t4ukpioz6yrU80hLk4kIcEu8dPbKyK5uQIvqjB3OrXdwcF2bLTLjG9srNh8kFCj7idrFxwZ0U03IcGOh9ruMIOGtHIhV6wQQ99l4omGGbi42PSz263md0eHWpmtrSJRURIVZZFEt0pJifZVQYGIeL0qpA36ExSktGGDcbdlZakFumaNuslHRkSCg6WlRX9vFd+V4GAVWLm5snGjmSe5ueq+N3mXmZki4nLZeaXidPqsbBOfkpwcGQHxeo273AgPycuTbdt8hXIrKxX8ZCGMJVvRwjU1ohqEIaO2OFfr63WednWJKjtWtfPwcB3HtDQZQ5HPNTWiisHYmLKPGMuv38QMT5rrJDPT5m7NyjIWdH+/Ley3bdPx6erSd91vrYf8fH12aqpIcrJ4QSrMu24z820viDid6mGwOFl7e/WdKitV6oWHax+VltoUSHtRAI+peCVSUSGDg0ZJM8w0+8HEOt//qgfeq65SCX6JH+9VV30o7D5IhzXwzc1esX1TxtXT0CC6YVRUiFRX25zGlm+vocFQABngiA1WMCt5cFB8JZUt0mBTxqCvT39nk0X39vry7To69LuKCtuV09UltuUlY2M2zVFfn9iWYnm5+Mwkk/BmE/Saqs0jI7rxjI2JjYKT9naprzcxvJYW2+U4OalN37BBfG2uqBDp7/flmNXV6fMrK21D1A7eWagJA3KxcwlLSmxBJuvXixQVab/29+v50lIbMNPUJD73XF2dvQH19urtKyvlPe21hH9vr6hrCVRbNuWILOHc3m7GxqJ/qqvTDnE4dIPp6PChSJOT34PUk44ObYcpn93S4su3k8pK/cPa7MrK7Hu1t6tQsipp19aKjyrL6xXp6tI5U1xs96l4vdo3BknY0WFAUZZL1uoTr1eKi30hIcnL87llBwd1szYE3SMjIhIdrV6GmBiR/n7ZtEnbFhdnLPWCAh1LC+5fUWGnpFhVuCU4WKSxUdGTFRWSmmoEWGmp1NaKnTtZUiK+lAAzVy2C6L4+seNptgXq76+E5R3aFqsrpbpa+zkjQ6S/XxoaNF3EcgPLyIhs26bDaOXeyZo1Orxgk2dbsVhLoFhk6TU1YtNz1dSI/AYlhh8c1HeSwUFtd3u7/r+mxqf4trSoEKyttYFBRm/zVS0xa6cebLexREdbnlOR/n47lis1Nfq7/n4ZGxM5cuRvAFD52Md0bVzix/uxj30o7D5IhzXwj4F0gEC2zfARE6Nw4gpjse15l4W3Hc29ew5N0oUfyBiah6Yu0COa6AoiDodJ5v2xdJvfQbf0YxCNwcHyBMjTRgvdZdpSb1mSBhSQlSUiycmybJmuFcuasdB6EhdnXJ3dxnXUrFZYXp4i5xITbfdYVJSoVdHa6stnammR+9FaYXssjdjhMHXlxmUvyO9AtoENSIDdaoWtWSNSWiqBgZqP94S5zwvm+ifN+1lCWyoqpAut6dWOAn6qrGdaAsoAT06a9tgB/IQE+//95h6/QV2FkpkpT5jnPWT6d6/ZjEsxqQcul27cpoBudraxeCoqbF+yMua86SsHNDYmmzapxZGQoBp3TIwRmv7+AjvU8m9vV1eysVhbWoxQS0kR6FfUZ2GhbvI5OSJOp8aa/P3tBGkFs+wQRfZViZSVySmQZcu0YoXU14vXq009jCKGW43FDRfUBTw56UNiRkWpC7muzg4fHQG9gYWINLl3dkmiqir9t7RUz8XGimRkSJ2xJMfGNE1DmprsyiAbN4pIYKDUYxh5Ghtt4oILZvwuGAEotbU6ZwxGv6HBlAYEkexsjVklJIhkZMgRFN3cBT50U1WVTfDQaubHfjPe7e3a35KZ6ctzNV4SSxkLDzfv6XDYoLAuo+zVmjUplZXqb6yuVqs3NVUkN1dGzPNOWkpRba0+JytLJCpKBWtsrArBigrZjrrsJTLSp0hZKKzQUH3x/HzpN+u+H41pWoWWJTdXvG+//aGw+190fKCrtH8EmAPACFcCAygdXp85PwvoAZYAVwMnACcQAsABYC4TwEz7bg6GgSHg2OgoxwGIYACYYa6ZAIaBiVOnmA68A4ya7ycAN8DBg1BeTno6ygnZ18eqVXDx4lm45RaOAvPmRSgHYnc3ISEAlynfHydwOJ1QVERgIODxKEfg7bezd2+X8vR9/vPK47lvH4SFsQh4Cxg378jWrdxyC6xY4c8cIAy4EvjFL06ydSvExX2WoSG9ruLyb7JuHQSZ3weYvh0w/ReAxdUIhIUxHXABpwE/f3+Omf4bBoiOhs99DubOxRUYyGlQ4s/hYX2HgAAICeE4sMjcewBg3Tom0Da4gID161nudsOpUyw13UlwMMOdnZCXB4cPA0rdyMGDsHat8niaY2JC6RXfODgDtxtmRUQQH6/P6+vT74mPB8LwA04HLdJeijYkoCgNIpGRLFhwJZ/4BDA0xOQkyqvocOBwwNmLF8HPj6AgmAqZb3p5RGfYRz5CkNPJqlWwMDAQwsKYFTDFqVPgMO0cBxxOJ9OmORgCxiemMzwMM4ffgbVrlbfS4WBgQNsT5u8Pp05BbCwhITC+dy80NBAdbRq8ebNylq5dy65dKJnpwYNch1JIzug5xiLQ8Rgehm3bCA4G5s7lSgAmORZ0vXJp7tun43f0KENgiGNRzsmtW6Gvj6goWOQ4zkyPB9auxQU6Fg0NhLndzMKsm1Wr4PLLYWKC0QMHID6eYWAhEOnvT4DDQU8PDD35pHJPDg/D5CRMTDB96DSf/CTgdNLdresFj4fpR9+Czk6CgKklS7VPL7tM2/7441Bfz5XR0fDSSwB0AkvRtcpLL+l7NDQoR+aBA/quISGQmAgHD+JG6TInmptZBEy5F2of79uni3piAtLTOWrmrROYvu5rOIE5zimYO5cp5xze98PP73/++b96/L2l7aUclpazFasA6yaRuDjZiwITmoyFst1ojnUosmwEpBTk1yDwKwHV+DSv6rRYpX8ugF1BALpV44yK8uVplZUp2stYNdtQVo3DxsK7iMYHLN4+cblMoLxV4wPh4RIaahBnHo/Jves0IJsBfXZTk2rdHo9qwzk5+reF8hsbE0lIkMlJTZWoQ6nFnrEsz4ICsSpc15r3ttyGGlsqV408IUHdWDExcsBYWxdNvzaaPpT2drvKp/V+XpSxYj8a2xvExPwcDtluztWjcZGTIBIRIXtM23aBlKBsJKfQuNfb5tlbzP1bQCQ6WlpRkIh0dUkHGu/p7VU3bWKiqNqfkiKSlibwU4HHDP3bhGRlGfeXqV94AOWpbGgQY0V3SxWYuO8Ru96hAaKKxMTYvKMSGalxw+hoY5k/pXD3zEy7SKoCGl4UuE8kJUXnW6m6Bjs6RKSqSsLDdbzg50qpFhcn8KRW1hgTH79qRYVa8iYJPj5en70NRQjHxorYSaOxsWqx1dRIFdh148bGRC3hqCg16ZOTRRITdbwbGzUoGBMjT5uxTE5WQFZqqmiagBVkLilR6z40VH8THS1JSTbhv/ZDf7+OmSnRcNFYdc+hMfBt24yrLzFRByUhQRqNVSQ1NWq1paSI7etOSpKuLssTMSAyNibwmEhenrSi8ckVK0QkN1dSUkwJLYtKzfL3r18vMjiofe/vr2wobrcUF/vwatLfL5KXJxdA+vp0Cmzbpms2NFTbWweSkyM+Jh/j056cFJHgYNlp3nXbNhFxOPQaEK8pRfa+WnYLF/oqJ1/Cx7tw4YeW3QfxGEGtD/BndPt2ZqDK7TFU05oFnEetBRoaOI9afGrZjQOzmIllzQwC7zATaANl49+7F3iHqSef5OzevTz6KKrV1tfDyy/jZ+5ypXlGEGpB+kVGQl4ew8NaVIGICO64A0JDr4WWFiaOHLGUbli8mOXLITT049DcDJzQygl5eYyMAHFxat0NDLB5MzAwwKytv2fKb4YxP1RbtSzYg0DAmjWG6f6zLEQtzkWo4fjAA6rwz5v3dWbm5MADD3DmDDA6ip/ps9OotTZkdXRYmGq9cXH6fm43s/z9udb07xxgjr8/M/z9YXQUD6rR9wFEReFyOMDtZqm53QzgWtTCGQKear6W6WbMZgB+a9aoBbJ4MTNRY5Z9+/ADbu78LVcHnOWyy9QA0C8xFtn1QBghIeDvfxmrVsGrr+o1brdany+/DF4vpu8uYyFwteM0MFvfcWICh8NYfxcvEhgIn/404O+vz1m8GF00n1JrwuUiKMh6/jwzA5aAw8E4ep8Ap5MrrgBCQoiMBNWt5+m8GxoCPkUQMGPgBMuXo5aQnx97946Ax8PJk7B4MRAYyCLgE58wP3M49D/p6XgAjhzBgxq5n/88zOg7rgvi4kW1WpcvBz8/beru3Wrm3nMPy9E14fHoa9x+OzAyotc0N8PJk8xv/iN873tw1VUwOcntt+tz1q411ltbG/NBLYeyMvwcDoLQNYGfH19cdV69HD09MDDA+AsvEGB9v3kzt9yCWlpHj+o1AQHMD5li1SpISJir51kFI+rFWbIEvvIVHcdPftJ4FpxOzo9Oh1/8Qi3RoSEoK2Mhxzh/8SJXAlOdndxxB8xoe5NZQ8f1WU1NvANc1fE6K1fCF+OnmOrr06oow8M4Td/cdhvMGj6hv2luZvrwWd46dYpZwHTgi87XOTs6Smen7gscP86Hx/+i4+8tbS/lsLScM+aTmCh2ntPkpKgv3uFQ1TMvz6ZGkvZ2qUORhjExJqetutrON4IJ1WZNsdSmJg1BtLaKxhtaWqS+XgEEJSWi8ZP8fBGPR7Xb7GyNE8TEiHWD3FwRKSmRBQtM/G79epGqKlmxQmzaqogIk96QlKRsEmlpql1bkOveXtWoTUKxDffu79d7OBwi1dVq0a1ZI/eDSWt4US4Ya+qUsSIkOFjgIYmPF3kBpBAFOEhTk0hhocZd+vtVDV+zRq1KC53mcmmcas0aRaGhqDPxeEQSExVc4HRKvbFyJTNTabRM34jTqVZGXJzG+XJzbXJmqayUXmPVjZkYiMX52dcnqk0nJ0t4uGHyGBuThgYDRCgpEcnLE2jT2FtHh10xfGxMbHCMuN12nTpJTZVly3xWV3i4aJzI4dBkbsWny6ZNJmYUHm7D5LVKxIBtgVl1B2NjxWaLEadTK633ii8lwKK8io0VOK39WFAgcEG9CWVlaj02NYnU1GjcraREpLFR45O5udJrLLuSEhFJTfVVtF+/XjlXUcYfWb9eY05WeYnMTO2QJuX/tBL8JSFBxoyl3trqIxuwkug3bvThkyQuTqxyALpeBgR2a9zTVHsYRGPDk2Z8vWjFi4wMtZD7+sT2TOwBnQ81NRIfb8ayv19SU9Wy1moIp9WqzcnRmHd7u+xHyQHggkheno5PRoZIXZ2MjIgPsFNYaFcll64ujeu1t8u0adqWFSvEx4lWXKztmpzU/cTjkQULdBkfMPsFXJDERB8uygIQdRurEnaKxMba8XBvfv77b9ktWiSyePElf7yLFv2fteymiZgCRx+g4+zZs3z0ox/l5Ekv4+OzmP/yb7lh83fZsUO/37FDFcyhIXWxP7L2Fb65+Sa+9CX4euw7qtXv2gXAb0e+Aajx4nT6yl05HGoF/GH5r3gq6If6f8d3ubnzt4B+/41vQH+/PisyUstzrVwJXz76CH8I+hHfjHyTn5QtZdUq1Zivc5/mtYNzuOYauGr2OP+6cYZdJ+7moDd4K+A6FoWc58TQTK4eOqRmwcQEz3ZeR1gYLB1+HSIjeaVhJje9/BN+7/k5fX1abuyWW+DGfY/A6tVUHF7K4XXT+OGgsH071NSotn5T5++1gQ88wLSnM+nri2JsDF78+DR+HyWsXq0l0DIyVGO3+vHhh9UIuHbnJiqCfkBtrRoK3177Dq+1XcnAgP7tcMCczY/AunX86eDV3Ox+i7OuRcxq+zN/Grqem7/yEYiN5Y/pL/LlfT/l9+5/ZfduLX32y1/CP60/S8VLs1i8WJ/r8Wj45bvlN7H45CscbhnnzbYZlJdr2TZQw+W229D+MhYwR4/yOjcQHQ3TJ8b51WMzWLkSruMN/thzHVddBZ/p/yNTa7/M9J7j0NzMKwFf5qaeP8Att/D7rbP49vI3dSIsX86z++Zz675/5tidD7LQPUXj3um0tqoBtnDoDQ45rsPphKuDxuHll3kj5MtcxxswMcF45PXMGHpH45XDw/DoozR+5UECA/UdJybg3DmIiICZPW/x7MFF3Lp2nEeKZhAZqXGjkBAtOdfQAH9w/YR/6Pk5d9yhY/Lww/Dm6CId4Pvug4cf5mv7fkJ6OvzgBzB7tt7jj22L4LbbWPzcg0RE6KsFBMBrez8C4eG8VvQmNzb/iuO3/JA9e9T6/cd/1D7OyIAXXoDDm17heNhNOJ3anuXLNUYeEKDGzvdvP8uxgVl2OTqHQ6/ZvVvbkpyswxMUpP9aY/joo/qOVjhp9251TOzYoesmIEDXZ0CAekPuuQdmDp3greGrSU/XPhgY0N8//7x6MF59VcOXixdreM7l0nm2apVe//TTGha04tFDQ9quffvgzjt17ZeX69y66y71iMTHq8F45Ai8lPkn/vnVm7nzTli4Zwv4+3Noyde4NuQsjzw+ix/tvpWzy5fz0X/5F7xeL7NmzXpf9jzvtdcy67LLLv0+k5N89NCh96VNH7jj7y1tL+WwtBw4JMHBmnSsHHf9IpOTpozHEVGuwwk9Pzb2rlI+O8Rr4gVRUSb+4XKJOJ0CwxbhuWqamZk21V97u4j09qpW19EhMGBicRcE2iQiQg2f8HCxK3RLeLhqpiZ3zyamLS4WiYvTZN2sLJHYWJtyqaRE9KLqaivVSAoLfVBtSUuzCT+03t64rFghBg14QeBFGRwUk3h+RJSjco/NaH/SxFa05l+rSG2tzfMJO6WgQGMl06bpp7XVV/cMxt9V+08rA1hlb2bPtsolvSlw2g4TwbBs2iTvKgvTKlAjiYmG09JUv9a8pH7Jzta0IFOqUKSrS0ZGtO6c5OWplWlYTSzKt23bNOeuF5OKkZiondbUZNN0wQXta4s/MjZWbA5Il0s6Okxic1aWjIyYZ5eUiGRnKyVXXZ0EB2vbNMl8XBGT/f0yMqLzcMzEK9UwnBCpqdHYT2+vWnXr1wuclgOgVujkpHSjvJft7SISHW2lxYmkpNi5ZBIXZ+b4bp2w+fmSk6PjkpCgz9JE6D0ikZFqUZaUyOCgdkNiolpplkViEQPoWmnTvu3v18lm6rs1NJh5aFCIqaka00tM1LZZZaVgwGZDiYrSOWpVf7AS8S00ZnGxiNTXS2GhmMojXl0nJpYmra0ijY2KcC0r0wkSHCwyOKjx9zrD4lJaKpKQoP2TlCQLFpjYqkmH8HoNg44pO6/zsEmt5eJiXdAm16C42LS7uFgnfn29WveBgVJSYmKGVk5pdbXI2Jiu77Iy054BHWO3W+dVV5ckJYm0tf0NUg+WLtWOvcSPd+nS/7OW3Qda2L1pAs6QJ5KfL1tApKhITqKFPX+DAkcaMbk0pvTPkyDwW4GfyzYUXm/2Ti0Zg0lOT0nRzW/NGpHISHVPlJWp+62yUn6HwvS3o6kNz1kB97IyO1De0qLCRYs6NtksFBkZuvG8DWYjf02kpEQF45o1dnFPqa1VyHldnU1iW1ioLpi3TVB9r3nucwbYccF2Yx7RagkgvwR1R46NCfRLeLhC8hXYcUEaTT/tMm7e/eZ3vzNuvo4O8SXjhobakGyv5YqyXGUxMSpMnU6F0xcUaP/l5alrKyZGnjEB/VYjGKSqSk6i6SIvgYjHo/1YWSndYAvEEdBE7eJiWbZMvbcXwebm1HSSNoHTEhWl3l8rTy4pSSHy2dmm9tv69bJggboxW1pUSbFy6aSxURIT9f9xcT5MhVRUiISHSxeIx2NywgoKRFpajJDPFWXr2KTuxdRUdV07HCJlZaZcT6dsQ1lxGsHQynnlpFG8ampErLpLmZmq2yQlic1mfdi4BIuLxVcvLzJSdqLgrBq0WG1Ojr5je7v46h0WFGj6Rq6WmpLQUJGYGC3NA7ZiFRysj7sAPje2KdkkqakieXlWvVZ1ETocWqkAbNfuOTN/GsF2xUpOjvSiCe3i8cg5M2etIrVWbqQkJtqlfyzSCC1rtVukq0vGjHs5Pl77oLxc7JqKIyPi4+J0uez0Aqs8U5MZb8nOtutGSnW1vnRHhy7KsTERt1va25Vzdz/4OEvXr7eZfaSlRSQmRsMkLpcK3oQEu6RTfPyHwu5/0/GBBqgcBSY6O4FR3vmnf8IFvBX3Aw5h0gPMZxbAunWcfeGFd6URXASO4UQBJmVl6roIAN4E9cE8/zz799cy+tJL9DU385vfAMXF6l/ZsYNhFMwxAUyZ54yCghkefZRDR2dw+DC4QkNxONAnDQ1BdTXV1fpfd3CwwZnMgp4eRXjv38+MnmOIXAQMgKaoiFea58DWrcTHq5vHBVxV9+80A8fN8/tMe2pqwAJgHEPBIKdX3cpTW2cAzdx+O8zy99f35Azn0bSF0yhAZxhfWkVPj7nM6SQAGO7uZqq5mYUopHto7171ixn/bxBwfmhI4dyg7kWvl+mJiRASwhw0gH/atBuXi+PAWdPW021t9vlOTIpBUREzHQ7uvBP13wGjoyP4ud3Q0MCcl7YAVwCXkZQ0m9FRuJoTtmt7YkLv3dOjLlf27OHttxsUku54i4sXD/CJT8D055+FoCDCwmB62R9obobPfAZm9b2lfq7RUc6j7usJUL9WWJhJH/kImugxixnDp5l64gkaGmB4dBT8/RVwxGz9HRc4a8/kSRyoW290FG2gnx8DAzCz7Q0cDhgPuhpeeolFqFutoQGdQD09UFWFB/jyytMsBTZsMJkVbW0sqn6EoeeeYyrvQbj7boY6O8HtZs5vNsDcufD88zaIqadHXYRbt8LVzvMKMDp1Sv2ARUU66YaGIDycdesUJHLLLTAxOgrV1Zq+UF4ObW30oVAdQH2Kjz8Ow8MEALO2/p4ec80MgLw8Ba9MTDD96S0KiAGorubq0WN4PCE6ZlwPL7zAjMBAQkIgJQV4+mlWrFCA1pXAzLLfqm913jz6+vp0TjY3M2rm8llgqWdc/Z7m2dTXc/TUKX3xfftg3z7e6uzkox/VfpkOzGl+hW/fPq7v/9JLCvLZt4/zu3ZxGhjq6yMyEqZeeEF9n2FhCrp5v48PUw8u+fhAC7tZGNQT/lwZGcl5YNHEIa5EX2zqXf+ybh2z/P2Zsn9zGTCD8+ZeQUHwsY8putADvoADkTji4nA5nSQkoE5/jwc++UkcqBCZAHsxTYGi35Ys4dw5CAyE0e5uI9BaFGnpcuF0mr3z1CkuXgQ4BiEhuN1AeDi43UybpgjAdwCWL9fmhIXR1mbQgmh7rkYFYg8+gXv77QD9nEaFYh8w5+if+YfV7wBXsHkzDF+8CAMDzJs3Dz8sJQDmm/e4GkUOOp1G2LW1MWzOTZjnTcfkKQ4P60VtbZw2/TIFuqm0ten3O3bA4cOcRYXpLEyeZGcnVvQgwNx/OsDbb+NEY1qsXMnw6KgiUt1uA8J0MNXZqQ2cN8+0qIe+Pn3ceNDVuFzajquu0ns7nWafCwwErvINPgEqjPz8ICBA94TLLiMkBNrb0aDPhQswNMQ4cOaMImFpa4OeHjMelorQD0NDTA8MxOUySMErrtDHMGLm3zv6jg4H8A5T2CBErMQ6p9NqG4qY9XjoRLvRzn10u+Gxx+gBjg/P4Rgat3r+eZ0b3HknztBQplf/Efbtw+ly6fxNTtY+ePxxjpvxdDr13lu3wpRjpuaMRkXpM1au1GCa0wk9Pezbp6++b5/mW7JypaJ34+NhyRKCTG+MAnzhC5p/6XTqnFi1ihCHg/OYtRgVpejSiQlYsQLCw3VdrlrFCcdCOjrMu3IC3G5Gz51jaMiAl91u/Px0Ho2CrlmPB0JCFAXs8cDy5facmgkcOjpDrwsJ0feKjFRBHRSk479kCQuBwUGdi1PA1KqbeGX3DA3Ox8Roe0+eZGZgoL3uGxpgusOh49fTo6jf9/u47LL/maD7H8T7PvDH39u0vJTDMulXr/aqWys7W+Mfvb2G6aRN/T9WXarqavH3V1dhZaWIXTGzpkZdjlVV6vYIDzcVoztNLKPGuJkGBDpNiZhm0XpunbJtm97GKs8jg4PS16deqNmzlch5cFDUtVNfb1NIwQ5FH/aKxhQKChRxODkp5wyaDY5Jfb3YrtOREa1HFx6u7jIr96y3V8z1JyzOYfW9lZSou66yUtvQ2Cj3o+jVmhr14nRgcvJMWR4LxZaYaFcR0oKfXl/pFVOfU927jY22y9CiS5TqapHeXmlpUVerVVW7tFTUD2S1p7ZWYmN9iNjZs9WDtGGDqHuorExaW/W5XV2+AubwrDQ0aB/39urYS3+/9m1vr00EbAdZDXeiVUtP1q+32KFEios1LmWo3goLjfuvuFgqKw2tWXGxyOSkomqzsnQsLabgpiZ1a61ZI1u2aH+NjenUKyw0VQt6e/V9DZK3pkbbNjamcyErS9/Fqozg9eq1vb0ikpgo27aZdldX63hWV9sVDFJStE8uokwhMCxSVKRuz7w82bRJ+zc3V0SSkmwUcUuLDxlpVSLv6BARj8fyzEl4uM4BJXQ+rfHH+nqR2FhpadG5YhHj2EVei4pERkb0+RaCt7dXZHJS12lHh7S0aHeHhpp8towMmT1buzM21rjLu7pESkulvV0fuWKFXSRBUamTk5KVpR5Wj0d8FSJM+SQYVldlY6MsWyb2mpSWFrsWq1WVobfXR+odG6tbQ1ycIb42sVjp6pL2dnXxtrfr/YqLrbV8wU5DhSMaJ0xJEamtla9//W/gxoyK0g65xI83KupDN+YH8VixQq0xenqYN+9TnOBqbnK58Pe/hrd6ZvLWxELVwBYvNgrNdaxaharFLhccOcLZhG9weuWX1fdzzz2cCFqKv//H1cICteAccwHLIryAv38IEMLRo6rs9/Wp0vSnfXMYHIQbBv7ISy9BUGIiAFO3fQ1CQljIMfrPzSQ8/PMQHY3LBW/6XQfr1nFV+2uc6JtOgMdDZCTk5CzgBuch1q6F4zHfYHQUVqMuLMjmiwGv8VrnfIaG1LMye/Y8QJVwmpth5UrNMVu7lpdf1i/uBh5FFfTly2FhdLRq2kFB3HefvkdYmHrmBgbUI9XXB7P8zut9d+5kYEAV8KuuAiYm8PefzerVqvCGhQEf+Qj09FgKMkuWwPR9f7bT4bj8cvVCDg/T1qaIuGOLv8SZM5O+gXU4YPFirg0bp6cH5o++hctl3JlEUFGh73m18zykp3PWcaVaYk4nhIRw9936vmddi8B0x+LFSuJBWBg3TfyJ69ynYdUqPhM1Zc+H22+Hu++Gs+u+y63x57l17Tg4HBzvma79npenL7puHYfapuv/PR645x6io30sJaOjiuiLiAA6Oxkdhf6rlnKD+wSf+hScjb5ZLTWHg4AA7evVqyE723hoR0c1B/PTn+aLzteJjIT+5V9Si3RkhLExmDFxnvh4ta78oqPhq18lK+sKCA1Vq29khAMHICvLTsfkqpFj7N6tBCKrV0NLC8wxcODhYZhoa2PHDn2tn/1M5/S+fQABREUZi+LHP8bj0f53u3Wo5g8fUndxWhrs3KlzJSyM/i98U9fZ7t2MjsLrfQs5fFjHw54v997LbbfpuWuu0bn54sH5HFv5TRoaFH35la9guwSXL9cBdbn0/3fcofPR3x9ISjLG4RUcPgynw64nLExd+vv2ab/u2KG/6+lRa7mtDZKS1HO8ZInO/SVLdCxfP3olW7cCfn4895y+/o4dVogAzjMThxnDK64AmKvz/J57YGiIH/6Q9//40I156cffW9peyuFDY74u06apZhsYaMrRdHSYXKdWgdMyb56ivjZssEp0vCjwpkwaUEdioql4HRgoEhwss2cb62hsTLVBFOkZHy8iRUVSVSU2ohL6ZfZsC1V2wVRUviBbtohdIVtKSzWwnZEhkpYmBQWmMKjbLTI4qBZPfr5ISormR6WmansMoXFOjmrmW7ZomwoKRCQ31yogYEre7Ja4ONVO9d0fEklONpyf/QI1ArutajZKHl1ba8AcfxYJDpaoKKscSpMkJloIv9MCnTZJ8qZNqvHHxmp/RkT4KrUXFup3ahEPC3jt+q+WEV1QoL/T/mqTZcsMEnZw0ORU7RQtKzMhcEyqqgxIp71dMjON1ZWbqxZVSYnImjVSV6fP7uhQK8Wq7mCz6RcVaQXwvDy1fLKzpaVF266W+mlpadH/19SYcTblgBISRME10dFq5ZnKDlZ5mtRUk5Nm8rvGQFn+waBOTxuLa8AmLpbCQpk3T0RCQ2XePFNZPjbWric6MiIi/f06BzMz9f7V1SKVlZKebiyb6mqR3FzJzrY5rhUt2tSk96urk+Ji7abeXlXqLZBRQYGI1NSI1ys2t6WFIpaaGrs6hUUx2d6uw2+RHdt5p0VFdoV0OCZer46rw6FtgmMSHq7nFizw4T6seazI3mqB07puDdNJb6+IeL3q0aiqUvPRgFAkJcVYbhNq6uXmyrx5VtX2C5KSYvqvo8NnBRqi7tRUEfizjm9+vjaytlZaWrRthkZU0ZRer8AxkYICu5K5FBRoWwYH1csxOCjh4RZC+ZhAv0H3Dou0tEhpqUh9/d/AsouJ0cZe4scbE/N/1rL7QAu7FSu86jLJyRFpb9faZf39Ulys6zAlRQwC7phIS4uBCXcLvGmjqurqzAawZo1NylxTI75qCgUFukn19qqLLS1Nfxsba6PbU1J0w9i0SZ8Lp0Wqq3XhGniyREaK5OdLS4vYxUqlulrdaMnJIqWluolkZ9vvYcPfJyfV7WZtAiUlUlxsoOr9/VJYaNXNK5d586xk3D+LJCZKeLh+t2CBbl6VlSJSW2vSEsYlKcls3u3tpsDruO2mKS3V31ob3rx5KszKy60Ug9NSUKDXpKToa6ib9YQkJdkVe8Th0L5RtOSwSVvYbNNyeb2Wu+yCrFih4M7Zs3Vvycoym2tOjiIb4+J0vKur7UT/jRtVoF60kKKTk9rfVsVuk4y/YIGOhwwOqpsqMVHggr5gZKRERRmkZlKS1NcbEoDiYpG8PJk9W8fGqmc4iKYXDA7q9U1Npm1paXIKfEjFwUEVWLW1eu+mJh1ff3+rrJ6cQ8mg+/p0fmVni75bXp7N6C8xMWajb1KXe3S03q+/X2BCpk1TYQbd+n19vQokUypp3jx1PY+MiE74+nrz2zaBTTrPenvVZ5qWpoNiUYYVFcmkcaGXlOicP4ePNm7TJp2jy5aZtVRSItnZ+tPgYNOnERF6X6sInSF2Tk/X621y5clJkfx87Yv8fJHwcEXs1tXZaSVRUeKrQl5UJOJyycaNxtXe1aXpKWVliuzMy1ONbGREBZGVq5GXpxO3t1d/6PXqgCck6F4wOaku3sZG7Zs1a7SNeXl6vfHxq9I7rm3KydG13dgoEREitbUfCrv/TccHWth5f/ITEX9/3RzGxnRxZGVZqp4uiOJi8Rq4c2urat+9ZqNasEDswMOGDT4Wk5oa1Yo3bdKFnZRkYhIJCZKWptctWya6u1dViTidylASEaEMJMnJarFlZalGGhsrwcEm7ycqSnp7dcOsrdVrkpNNbC4mxmZxWLBAdPHHxOimExcnkpdn6rUdUYlsKgDImjUiIyMKgc7JkRdMSgL0a2qAv78yhaB8k7rBjdtcmikpYpfyuYBhm7Fy1cLD7bSCQQwTS2io8iXiY86QuDhNOQgPlxYMg0pFhUyiDBoWp6RlDrZYkPTJSV9RUqdTJDxcBq3fh4aKOJ1SWGjiVgkJAidUO7fyv8rKVLBFRpoCoadtayc+Xuyq5vYmX12tArC9Xa2M8HCpqzMxn5ISkYQEnU8lJSIxMb6ySoWFdsxM+Sy7xSoj0d4uImlptmCHCZ0bho1HkpNVcKamSkaGsotAp24+XsO4EhUl0tWlc7CwUMe3o0PbXVxsc2NeMMKlvl50o6+stLWKzEwRQUvcSHGxFBSYGJhhapG8PJGsLFVurPnjcskYmm5i0VJmZ4tIV5fU16tSs2GDyoBzGGabjAzRQsdejWs7HCrZExJEoqLUSoyKUkvMrMOYGF/MS7KzpaDAKCcOh2zYoMK4qkr7sapKRFpapKpKzzscYjwYAyJNTYbL9pjAi9LaahTC+nrti5ISgVZVTIuKBCbsivV7jdCEJl8OZ2amvnRrqyQmirHkTovU1urv2tvlMFbq0LCt4NTViUhZmQplf3+TwtMpUlGhyklCgnhPnXr/hZ1V9/ESP97Y2P+zwu4DHbPjox+FuXM1nuLnB+npsHYtr++bAQUFUFrK2XXfZVZcHOXl6refAq72eFi1SuNfx+9+hPPlf+Tll5XykkcfpbNTYwe7d6vvfmAATp7UR46OapzJzw+47z7e8nwZsrMJ8nigvJxFLhcMDPCFLwDLl2sqwX334XQqIpnVqwkKUoTh6Chw7700NMDXvw5ERmps4ehRjc889hgcOMDrs7+klCbz5hEVBfBxyMvjlYGlvLXkVli3jooXZjIzIQFuuYVjwNgYwACz0tIgPZ2A5GSuBM42NABnSUryt7k0V66EiiPX8WbADTjCw/nn+6bz24alGqN67DEb+jkLCIqLg7vuYuqObzM/MFDTIcLCfFUH5s7FD4OyXLmS6YGBitJbu5YZoaEa6LntNuUtXfdtKp6ZzqGhq3l96FqIjYU772ROZCQej0c76Z57uPNOky7wmc/g7z9Px8kEdF5f8A0d69hY3G6YNm02s57/A7t3mz4wnJ4zj76pMb3YWL4YfRoGBjS+YtB8IyPAr38N27fz0EOT+t67djHDb0rH4pe/5Ne/BmJi4LHHmDYtRPsnPp6HHwb6+rjnHli/HpYtu8yuDMDAAISF6T327+dXeWeZXlpKePjH4e67mZiA0NBrNPi1ebOCSpcsgeho3ppYyMx9r8HRo7z88iTk5uKHIvmtmHL/Z2/Vyfi97+HxAFFRtLUBv/kN5eUG7HnvvTqZ+/s5ftfPKS/XufbGxFLw92dGVBRhERFcHXCWsjLDOfr88zz5JGzcqK/hcEBAaChXJiSYxedAEc0jnBgdVVqShx9mdO9e/drths2bWeR2M9HWRnOzZi88/jiMP/CglT0CxcWsXOkrjMHGjaSnw69eXco998DJk4dISwOqq1mwYK7GFwFlUl3ItW6NJ5+PvIE33Lcyfvu3gSs0NSMpCThKURE823M9VwIVJ28E/Nm6FY4cOQn33MOU3wzGw64lLEzjutOmzYaeHrZuhZ+WLSIEbTe8Q1GRDvs11wCTk1RW6pzXQGktoGwrOBzw0EP/ccf6nx8fojEv+Zgm8sGlC3v4YS/+/rP44cPzuSHkOMuXw7p1SiG1dauCRyYn9e8dO3TfCwrS1Jtf7VoGQ0PMn3ybU6ego0Nj6dHRSvzrdkNTE/z76Jf51eo/smMH/PEzG/jR4L9ofpxb90OLliw6GrZvP0tExCzerD7Oiwfn80XPMf61bCH79sEfy85CXh7/5v450dFwXeez5B+5lcpKvc91D/8Df7rjKW52/plne67nVvcbsGcPU+t/wC23qBz/ovsQp13XEhAAM277MjeP/pHoaKVbWrdOhemZM1BSArdun0Z6bS3TPn8DcIZ58+ZxYt8Jm3/qh+veYWhIBd2J700jlwHmzZvL6tU+Kqg9e04CI/T2htHXB9e5TrBw5dUMDSnAISxMN6mLFxWhfsUV8PVEpedqbtb2DA2pHCwrgwc/uQVCQ7n+nhvZulXb3NenY3P77doWi3Ktp0dBEmlp8OapeXwt5iS33AL/sORN/rl8KQ/epnRca+6/nsREBSrMuPv7OiAOh+44R4/Sf9VSsrN1s2pu1vaGhWkOHg0N/H7oVr59YZNC8ffsgdhYnnp+Jv/geNbmjzu25Mss3PFb3lr1XTo79V7//ugJfrjxan716BTHOqfjdMKce77t45u65RadUKOjvHF0FteFndV2ffSjXB9xgT/f+Vtuffm7rF4N3w/4Az9q/iaPLPk9x1d/m54ezflct07l/WfCT/PH3XO4+259h+pq/e7OO3VuTz3+e07Ef5urHad5s2cOR49qn69apePY0AAn7vhnWL2aaZ9fQnz8lQwO6r3G798Ayclcv24hf179z0o5BlS8MJN1604CV7Bx4yx6e1VmPv+89t/q1Qo8wu3m2/deyTXXKFT/059WYM7GjQouWb5c18qrr+oaKS/Xrunp0fM9PdrW+HidIx/9KFRVqX7ldquO9821p2k8MofPjLxC/t6bmJyEf5YNsHgxa353Ky8VvsWt9y7iwgXNQCkqUtn7/POq0JaV6dAmJ8MTT/QgY1ey/h9nMDamwi0wUPvojjv035/9TCv9gAJYPB7VP+69VwXdvn3w5u0/5ycDP2HlSs3DvCp4CiYmODEwg3vugae+sY2zmzfz0a1b31+6sNWrNT/2Uu9z8SIf3bHjQ7qwD8phm/QREQb+XiMSF6eusaIiOYeWvKlEGUFsn4XHo+6c0FADotgtL2GKtRoffJ2B54vbLYIW3zxjzsERdfP5+8sYypyyE1PaJi1NCXEzM9XlNDIidpn0yEiRkhJ174yMyNiYiQdVVyurSFSUxhG9XnVtGsoOKJfUVFOxua5OfUAmTQH2qKvPMKycwRBQR0WJNDVJVJS65hrxFZcdGVGvTVSU2OWYlWllQO5HSxVJQoJU4CtdtB3suF5MjKiryqrvUlqqLsrCQpGxMXXdFhXZsHoJD7djPDIyYpdH6TftPokyWkhysnQYd2c3pkyMScEQh0MBO5WVIkVF6qLEIgI+om7arCyr0o1xQx3T2JHbLbm56rqOiRGRqCjJyTEx05wcdUUXFYnU19vo7JQUMSV8jkhqqnpdt2zR2NOYaasXJRQWp1PdgQkJJlZbZU+zqCixUyokMdEGP8GEdIG6K/39xQsat62qUjBOZaXG/zweKS9X7xwM67MzMtT1WF+vLtjJSZE1azS9A2XNkcxMkZYWWbZMWUXGxkQkLk42bdKfjxg3voyNifj7633y80XS0tSdPTkpfX2GV9nMA+uFSkvFl65hylBJRoZd2HSn1QanUyQiQtlRDP1dKz6GHqmrU/dmdrYyrHg82sGJiSKtrVKHFgUeARsgVlBg3MkjI/qxgsoul0h0tDSZNS9FRSIxMdJt3vOMeYdaNMXiCTOGJy23fmmp7c613P3i8dhtqjVr2uJCa0WZWBoaRCeL2+3LY6ioEElL0z2io0PgxPvvxoyP97G0XMLHGx//f9aN+YEWdi8bQQPflv1mEm7YoJXKq1Aqr6eNcHobpQk7aa6DhwTukyNoJXNTsk4ajfBrReNZ8Iy0m3Pwpk2rdRil0vqFeVaLWVQnQawEsfh4w2fpchkkaLPmzIFF9ycjZuHAiybecETjjZmZitorK9PNqaxMkXYRESLr10tiotl8BwflCZBi8x6HjfDJzlaZ1IhSMm1DqxtERLwrPlJfLy0t+vc2tB7eLrRi+S/R2nJbMJXKTS5eF1rrbrtRCH6NqUgeGCg2UiYxUSQmRjcKK660Zo1uCsXFKuDCw2UTSAGIREbKL8xm9QSIxMWpEtDYKDtRln8JD9fYSFGRSFycpKebmEtiolgkkfCaQL8kJJh4XX+/1NZqrCktTZWWpCQj7JKTBbwyiNKhTZtmkICNjSKtrSpoOzokNNTEWi3CytRUEX9/SUkRu40mpVMU9dqs42wSF23gTGWlNDRoN7WigJQjaAzU41FqrpISE4vr7xeJipLERL3Nhg3a/+eM8JCKClUg3G5fdQOXSwVvRIRITY3GucCulLBhgwqLI9Y9iotFYmI0vhcVZRSIJo1BjYyIVFbKfpBJMyfOoeAQu8p3RoY2trRUBV99vQqwujpdSC6XtGDo5OrqtF3JyRrnbWqSnebd+61r+vt1PtfV+Si4srNFyspU+Dc2qtLjcvkSQqurVVjm5cku6z4tLdqe6GgVui6XSGSk1Jl32WnWh0RF6QSqqRFxOlUwu1wqVZOStD5ge7scAbsihVRUiJ0cOjYmUlKi683fXwfWosQz1/7ud38DgMratTrnL/HjXbv2Q2H3QTqsgf83lE8RHpIOtIBoTIwmX7+AjwuvyWyo+41w+g0I3CfwY530wcECzwqUyCmMdREaKiMg8KRIQoJ0g43gk5gYkaIimxfzSSMcLIF6wWwyqamG6NjjEU2F8IpER0s7yOzZBggQFWUC/RMiERECz+gmVlMjfX2Gf9GgxAIDxS5lIlVVKljGxmSLEbhW8dN2LIDKTtllvqsCKS62kl+VPPqCETopKSKSkCC7jMCzAAt1RshLfr7yFpr7NKF8gduNEH0G5SXchQIOnjbnXjB9sh/VsLvN93tR3sQa853098suVHn4tXl+u9lgt4FaH6mp0mquLS9XRaG0VFQ4JSWZYqw6pmNjiuaMijJoyfBwaWjQjT4pyQgUA3Z5AQwSdEAkLk76QZWMkhI5A5KQoMLuAqYUUm6uGacSHafSUj2fliZKuv2MwEMyZt63oUG5UQsKRCQ5WZKTLWH3kG6UUVECz+hmW1qq86WmRiQrS8mF6+sN0cG4nEIVi5oabVM/2FyrEh4uUlYmB8BOiB8ZEZHMTFXA6utVyAUHK9DGItisrZVWtJjutGk6P2prRed4ZqaPILSqSjf13FwRl8sm+V6wQFSAFBfrRh8cLF6vUQScTlU2nU6prDTJ7Xl5+oDISNmCzysybZqoQlRSogCiykqpqvKRjGv/los4HLIN5fGMjxeR0FDJzRW7kK5Vusjr1XcfHDTgo9BQKUGBUjk5qo/W1upzJDhYFbaODikv1+7vteZBTo5UoF6GxESxwU3S2ipSVyeDqDJ5GCWptsc6OFi8GzZ8KOz+Fx0faGF3yGhR8CvpNRunRYZbZTbcWtTq6LCEXkyMQXP9WeAp2Ws27fZ2nciNRoCeNPeD3fICGM23WXrNJnwGtUJKrE08MlLdqLGxCnluafHBxlNSfGkEY2MimZkquMbG7E0KTohMTmpuF4gkJQnskdZWZWKRkhJdRE6nSHGxwIQu8NxcecEIlosYtFx/vyQlqZJ6BJ/gT0xUFGliotiMLdnZuodVmPcZMwKvxAik50DS01UZttCk4vGooDQatVUxu7VVfAld9fV2jbS6OlGh1N8v0tGhGnhmpryAupolMVGeQ63pl0BkzRq5YIRzB8bll5GhQr+y0ozfCXX9Rkbqd2NjMnu2GnmBgYpyl9RUTbWIjJR583RDTE01iMA1awQ6janVKjAumzYZqy8mRsArJSVq8ZWUmE3OJCBeBGlqMoqIsfi0YsQztgGaliYi+fk6zgatqpUptP5ZSooKPYsxR4mDfUw8kpOjylBHh94jMdG22qS4WCsPlJaKrFmjvw8NVYsiK0ukqEji4owQysyUi2YMN2zQZ54CG9afliYqtSIitL5bS4tIXZ3U1Ihs4V1WnculfdnSoghPt1s7xkqibGmxBcYpMxd3ola69PdLu3luoxGM21C3bIcRhpKXp67D2lppMWvvpLnPhg06rhs3ij6zq0tPZGer1VxcLBXW+s7Pl4umzUeMENpvtSUpSeebyYVstZSFtDRtR1SUtsPlUgs0L08RnImJOk/cbuk279DQoOPkxVigKSlqTaam6pzs7ZWlS/8Glt0tt6j0v8SP95Zb/s8Kuw80GnM6QGkpcJQglOT1qqt8303HVMu+4goCUOJhmpsNAW8zcIzz5rrOTgWunAUWAgPmfhBEJIo9Cwz8FDNRROdM04ZhlDj6RHMzncDozp1Mf2kbBARQWQn798Pwk08a9NegovOeew63G471zODYkSMaOWcAOjvZvh2N8IeEAFFc6/eWcv55PMoFGBsLnZ34+1+m75OeznTzbscwLC99faxdaygpUdzaEDbBCBMTCgLg4EHcbgURXGmuOY5yYx43vxsFcnIUIHPXXdCzdy9n29rYB1BYSCfQ190N99/PtY5jcPiwFgvbuZPjwLVvb+NGx58VsfD887Bvn1aCP3iQs9b47N9vE1iPm3d1OJ18N/44ZzGMFaOjWoE6LIwgt5uoqHmEhkbYpNCnh2dw5szbbNyolwYEAPfey62rdRTj43XMgoIU4MGXvsTs2R9n4Nw5Xhu4logIfwICTPXr224jImIWYWEKprAYP4iPh6EhJoDt2w3nZXMzAF/9KsBsjhxp4OLFs8r44XKRno5dTfyeewDOMIQCNc6iCMfHHoPxnTv5yEcM08fTT8PllzM6CqedC/Vea9dCd7f+0OPRyffQQ+Dnp0Xpu7thwQLt45gYOjthOdiwzWXLFGThAIIiI5V6aGhI3+vttzl94AB79lzkrHsprFzJzZHv4AbcKEE4Q0PcGnmMcc9SFu7+gyI4Lr9cb7p3LwQEaOV2ICgiAr/AQKYD57dvh9FRFsXGEuTxaJX2VatwmTkwCzOnMzIYaGuDkBCWou10JSbil5WFx6OAnIoKFM1VXq4DHB+vpNphYbjxEb77RUcTEB7O1SjPbaTDoWv5wAHlf01P5+rgYK51OCAhAV5+mR7TLhITISlJ13dkpK69PXsUBVZYSEhoKIuA4GAYD5ij73P0qL54RIT+O28e7N/PlVfy/h8fMqhc8vGBFnb9YDY7pZp6B998O4pu2OeBo319XBkeTiTQc+4chwDd2nXj6UMFw9GjvqoBIcBSACaZgZIkf+xj4AwNZZbTyYyoKN5BO3ACFTajpg2MjcHhw9xyi/53Cgxd1hmF8iUk4HYrobwDDDPxIDz/PMHBKIovMlLbaC3UnTuVyX7lSrjvPlwu7IV2Gp9AOwRw773s2KGPehNoQCmSb79db/3CC2cUkv7AA3x35SH27DnJeVTgnUDvex3whvm7r08/QUH6DOv70VOnWIRJM1ixQmFv9fX64KIi3TAGBxXi5nbbDPTvAFPbt+M0/Ux+PovMmJ0G2L2b40NDMDzMeavvPvUpJQcOCIDQUHp6oLt7lCnTuDkDbwFdXLx4BntaBATQeHgWdHYyMKBtt6izqK3lzJmLTKD7dVubPueq4Cmt7hAAN66coqfHjLsThZ0eOUIbsG2bIR5uaIDRUZPq8YaOI2+ojHn5ZW3HgQMGzw8wSBtw8eIhTckYGuLcOa2k4HAY3ucVK6C31yb7HhpCBdzICOzYwdnIG1XeRUTA0BA3hx2jE5iKvoGBI0c45LeU9HQIcDrhsssYR5GxX159XudMeLje69w5vn/nOOMNDZwAYmP9OXwYKp6ZDkFBTJl5vygqSksMDAwwI++n2qi77uLQsm/Q/4N/1UogBw+q4lJWBmFhnDh3jndQBYzHH9eXmzdPN5wjR3Ru7NzJGwB+fpxlFkEulw6Ev7/2rZ8ffOpTPPqo9sH+/aOqjWzdyuk7f8IrEzficLs54bmJPlRBpa9P00MuXlRlJCoKHA5VaNva9L4rV+qgejyqXRjiaj7+cR2nlSt1roWHMwM4ZuVJREYqxZsZkxk9x5Ru79VXVen5ylcUXurnB/X1fxu58mHqwSUfH2hhNwO0bDCTzNAaOswcfseuRGBZCtMBLrvMFkwT9h3Och4VRhcu6JlR1LJxYDRFPsKVLhdOdN2wfLluFpGR+KEb/zC6kQ5jFpzJeRgeVivqNGbDYsDebS9eVD6/82B2Ui0fEhKCYrsdpgWjo7pAx8bUWrnqKqYcM3E6jbBzOGxG97PWuxpuSsz7O8x3ISFWNYSzmv938KCRCiN2xYNR897nzb9nwealnNX2Z30X9J36zP3PY+7V06OLvq8PhoZUSB89quctbaK5mWHzmxlWe0+dskdkyvx9HqCtjXGr7yYnOQ30X7EQIiPxeCA42OHb4AAYAY5z2WUKYT8bcLVq4ENDfOxj+jyPx1h9LhcwnVEzFiY9Uk18p1OFzsAAYWG2XNABGxlh2FxmC7uTJ/V2TKIq2FnztzGsenvV+nDrHFCx16W//8QngCNMoe1yONANt6cHt1unhssFBAUxevGi3Vdnzmj/gHaQVviY4jzvqogRFQUjWmXBz08rGUwAfOpT1oS0LdUhfQRjY5quw8AATrCrUTA6qmttaEif63IxNKQVzenrg4kJnY8mZ2DK/Ow05n3cbggIsDccB7peptAXHxgwz5iYgLlz9TqXCxYswOk03cQF6OrSEkJ9Ph7R4WGfp4WJCZ2sltYbEgIuF+PoXB63BiU8XK+ZmIAzZ/S8VT7e49HnT0zYpaiIjOR80Hww1qlVnWI6MHXqlE6QBQv0X4cDOjtNWa8Pj/81x9/bj3oph+W/zs/3ijgcMjamcXQrnl5fr8HnTZs0pGLx8tm0816vbNum50pLNR7T2qrUYpWVJt5iilDK5KTY1ZSjovRHdXXS1KS/tWDik8Z3P2liArW12p7KSgU3WDE5iYhQ/39Kio2ogyN20N6iHistFXnBxAM3bBCRjAwJDlbghZSUiNTUKAChvl66ugwQw6JbMpUFWls1fFZXp6EYr1cUtdDaqnGrjAyR9eult/ddLDH5+ZKebhcQkN5e5dL8hYmBdJu44AUUbCJ1dSKhoVKHFmQ1JRhsNN0TJjbyJAYFaNHX19ZqgyYntfEdHTbtlExOSm+vSDEYYMKw8kaiCDmPR6QWBePU1YmdF6FpFMMKpoiIENgk9SjKsR2UhzMiwqQAdMsFrMK5JRrrXLPGVKs/ofHXlBSN5YSGioSHC+yU7Gztp/h4TUlob9dxftrEfBwOEWlqsovOPoEiQSFdNmGQre3tkpCg882q8C7BwSLFxVpFAAPKKSmRBQtESlH0poSHa0zJ61VUoMulkPKREYmPN7Rv9fXi9eo0tdIfLCCTrF8vkpenMb6YGJ3fpur2GAaAMzIiLS3a10lJZi0UF4uUlUkFykS0CwVYSVeXpm8Yph2rSjmUSFKSoQIzc0Sr19fos62YdWWlxMToq8OTGkeMiRGHQ0N98fFiA1dazPjtNXNPuUdPSEuLmP49oW1qahL4s/j76zqCHQJtGmdcv95UHq+RZcsMH2hxsdKRFRWJpiMNCOy09xKrenx5uV4fGqpx79pajXvX1IhdbaSvT+dCaan2ifexx97/mN03vuGrmnsJH+83vvFhzO6DeHzhC9A5OkpfH0wv+hWdnerSvyHsHYKCVMFyODS0MKP8D+rrb2iAgQH6+uxSZHR26lcVFardR0ejWubLL/Nvj00nNHSWumduu01jIq++ynVhqr273cDQkLqknE7VAkNCWLVKH+VwgMPjAc5wdng6owcO0HnuHKxerfHFFSuAftU+m5s5eFCfb9VhG8J4wHbt4tSpo+rKbGiAHTuUJaKtjfmjb6kbr6dHrafhYfr6fDXPwsJUwX31VXjz6ExwOlX7NwnYfX36vPl+J6C5mcWLVcsPCtLzAfisV9CCrT2gmvCOHfR1d9OHib91djJu/X/fPtuCGwa92cSEmitHj+p7KK0+vPqquuZ279ainZxQrb+hgXnzrmAhx9RyOHiQkRHV0v30T2hr4/yuXcaVeEYZBVwuYBIPas1NmX4gJIQlSyA8PARHbCwzB44D13ClwwF79qj7lB6NU5WXsxBUW+/sBE6qRYVWDOju1j7et8+4ry+7jNmz9T170KTvqzGFVFF3YkiIzq3OTt/YADpRystZsgTmO51azNTtJjLSih0fYeDIEbVItm4Fp5NRQ23yxx0z6ezUsB6Rkcx69Y8cPGjGv6YGysr448sz9Bn19bS1wdSuXRAWxp9eVZv+tA4B7NjBUr9DHDdN6uszY9Laykxg1vAJjIOBqZD5+ozhYU4fOaLGYl8fMBuHQw1aJieNyRwCXNSvX3pJqxds3coVV2g8GK4EPz9Gd+1i1FR9mD0bRC7C229zDHU3n0A9MwMDEBg4j6VBJ/jEJ2DatHmcOaNuXgjh4sV3jGU1GzAOlb4+cy7Irt3K1q1q1dXXk5R0BRERc4Er+cxn1IgeGACGhpg9W61La115PHBV6yuaXL/7NTPGOuZbt5qBfv553vfjw5jdpR9/b2l7KYet5fziF1KDLym3stLkJDU2ijQ22oaDpKUpErCqSjXN2FgpLFSEYWmpBcc/LXBBuroUxej1isjYmGRlia2tS2qq1NaqZp+ervceGRGRyEjNX6quVoRXVJRIf7/U1JhE7Lw8gWdk2zaFJktoqEhvryLq2tsVUj02Jl0GLVhYqBplv0HDFRaq5h0fryA0i+E/PV1Utayo0PZ5PKreu1wiRUWaUmCZdRUVaqaVlcmmTWKjEy+CSG+vxMSYPHgU1m3x9UpjoxwB2WtQml7LqouJ0XcuKZExg1DbYlB7ezB5eHFx8hyawtCOpiFIaKhIY6Mi/Ix12tAgvkoGWVlqYaWlKRw/IkK6uoyG7XQaLskX5YBpS0mJiCQlyRnTP9Cq/V9TI/CsDnBpqUhSkubRFRTYbP9jY/rbwkKxqPplFwi8JnvMO1tJx5qG0qyoTK9XYI+2OzdXQkNFUaStrTYNYa1l5Zq8SHhNEYFer0hpqaY69PcbS2NArbbgYLsqgZSWirS3y8iIWjNQoqaFw6HWYVWV2INmar/JyIhNbi5jY4pWNTXopLJSUY8VFQLNIuvXKyQ/N1ckI0MOWB6E1la9f2CgsYBPSG+vNqfGzG3l9twpy5aplTSGIp4rK8WgiLXmYHGxQaxGRYmm9jypcP6kJPF41HocGdE5DSXan6GhAs2yYIFVheMZaW0VU8FjQsTfXxrRNAlosqd9erqxZCsrRVNr/mwqHewQeEqKi3U9pafrPTUVqFot45wckYoK2+kCT5nc1wnJytLfhYaKsU7/rO+wfr3O2dZWXQ9ZWZoKkZ2tnprgYGmD99+y+9a3dD+7xI/3W9/6P2vZfbCF3cKFZnMqt1k3ZHBQLhq48dvWhuXvL5KTI5PGpaabx2MCT8oImkaQnq7z/m3w4dedTpk3z2z6MTEq5YqK1GfR1GRDm/PR5Ogn0eRucTpFenslKUn3b80F9Kor0+mUcyh0vbhYN8mICOOuCQ0VOG0XAJW6Om27STZatsxULWhsVFdJcLBIe7t0GffiLgwrhL+/cemNy17Txr3GBdXR4SvFc8oIpAULRCQhQbrQlA2JipJuNEm9zty72wiX+9GUjiqwXZT1aApBC5pnZeUfNpnrdqHpHOfMpliLwsotlgupq5MuMw57TZsEH/MFtIq0tsrTYJeakZIS3YFjYlSApqYKlAvcLTk5YvIMjygMPDtbxy0vT6S1VZYt065tahLxmrGxCsparmQpLtYNrbparBoxKSkikp1tqhQ06RzJztaUi9BQU14pRaBfO7mpSd+lsFDggvldp+wEgYf13RsbBX6u6SEtptyUv79Iba20txv2mZQUiYtTV2w7SH298UaDzvmiIpGkJNmyReQwmrJRXm6S5AsLtd8bG0WysmQQTbORuDhtf1WViMcjv0TLZG3bZtyhHo+vusSaNSJ5eVJvlJs9aCK8VaygA3TxxMaK5OdrrmB2tkhgoBSCSGqqZGWZ1IHkZNUmrSoGMTHS0qKsN5PmWq9XRDIypKFBfOkYUVECT8kRfKw+0CaSm6tKY36+trepSdLTTaWMqirZsEFfsd/MJTGCsqPD3LekRN4266agQGXCggWifTWoY/EMmotplptIV5cv3y4pyU4HGhkRn+LpdEpd3d8g9eA739F5eYkf73e+839W2H2g3Zg4naag6qfpee45qKriwcfmMA6oF8jNcn9/uO02TvzsZxxEwSfXAfAl4BpmZmTgTEigt1ddFu6UFPUbXnEFx4aGOHnyVWb5nef8rl28eHA+5OYy/uST8OijhAUGMh8Ie9d9HaDwZeNedbm06CqcJCJiHu8MDXEMdb8tWQI3ou7U6GgD4SeAGZ1vMXP0NDQ0cPbiRbjtNkafeYb9+3u49ZYpqK5WUumiInj0Uc6jrsZoYKHbDatXU1sLGzb4szw0lBDTH+XlyrkYEgLf+Q4EhYbC6tXqfnI4GMWgI8+dYxaaghGGuiFPmH+XoOTRfUA86lJ6i3cBgebO5XrTDzNQ4MDKwEBGgYD162HVKm6KiMDldDJsfs/zz9MHOKOi8ANGt29XYAzqLg0MvBY2b+ZG4KqWP2l7q6vVf5iXR093N1NPPMG0aV8HVvOv941zVesr+jYxMQqaCQ3VFI/qaj7zGe3vzk6Y5fGwYMEs5jintHNaW9XVtWOH3j82Vn/vdis25O67CUhIAOYqMeVnP8vLL8PR7m6TWvAtVqy4Un1gR48qoKm5mWnTHEwBoaEf5wYAPsvViYkGKPJ5rgeW9v1J3WG33QbV1SyaOITbDRNPPgnAn4BFD4/xTQABAABJREFU+fnc8INlzOw8xHyAyEh+2v8DKCpiyRLwFBfz3R1fo7gYrp44Dvv28Txw/V3Xwy238KpZOhPbt8Pdd/OT3UpkHgCcO9fAF1/9Cb9a+e+KyrnmGli8mL6XXoKiIq42YxUdGsqGDQp2uvdeWOjvz6EXXtBJ5Xari3z5cvinf9K15nazbp0Bvtx3H2d//GMbVMPKlSzt+xMREQuYnpFB2xNPqOvwnnv4zOKzrFkDN/u9wjt79xITk8xBMwe/+lVIS7vGJrxm+XLG7/tX+MEPCA5WDzkBATid6o6/Mjpa+ys21iaenpiA8e98h7Ooi/5H605w773GHTw0xJzRE3DLLbiBL4a8ya9/7QMGWWhmBgbUp+l0MrPvGHR2cshxHaxfT6TDAIjez+NDN+YlHx9sYdffjxOAY7pp7t5NW5umHAAwOkrPxYt2vkwbGueZ7nQCB4ARjXOBDzl14ABUV3Oir8+kKGgsZQjd+06fOqXxme3bGT53jqP4kIXjaF4SQ0Nw+DC7dvUwd65V4VzJlK9MSuIEuthcLo1lud26ZlwJCcARRb3t2QMeD7MCA6GnB0dCAnBUG7Fxo6Z3Pf88fPKTTDfvdh40UHLHHURHm3eaO5eZ6EA/9hi88IKS+E5OAg88wNQ9P9E8rYEBjpvrRtvaeNN0xxSKyJsDOGJimIHGoU6gguwgKrDOozlNxMRwpcPBIjQOFIS2YQYo3NvtZvzAAYiIYAgVlAwMaAzQIFUdcXHMiopilnnWuXMjcPSoxgybm7kx8qwyDl9zDXR2EuJ0Mj0mBpERYJLTwzNg1SqCgx06Fp/9rI9x+s47GRszaMpRoLOT4WE4OzxdUYof+5jGoT71KYWaj47qBtHXR2AgqqX4+WnLduyA4GBcLlUKtPmjGpcLD1dmbIcDIiMJCoJZTqepaA3wEU3CHB0F/O20ip4e4O23IT5eK0EAfnFxhISY/h0ehmXLOBtyLZ1o+4eG9OFLJ96wy80PDaFaVEMDYZgQ5pIlzAcWhU2poNm9W1PEAgJUkHFSJ8cVVzDV3a35Fa++ShvwTl+fCoutWxnv7uaWW2DG9m18/47zEBnJteHh+lput1YhcbkUQQwQGcmSJabKeFkZs2JjoaxM58by5dDZSVAQnP31r/GEh7PQdV4HaGDArkzuNK8+DLj8/fl60hTr1sFoXx8zGIfmZmZ0vgUxMdx7r4mTBgRw552qVA43NBDm7w/793PnnbDU8RZfXHmWGcnJDKBxaPr66OyEb3xD+5WhIXj1VRaZsVm8GD6z+CwMDSlad906XY+zZyukd/NmGB3Vvv7Yx/jbJNp9eFzy8fc2LS/lsE36+fMNy0mT+vdQBgeJipK3jdvsnOXa6+oSSUuTFts19prAbpvwOSlJvYVe46qR1FSRvDxJTDQ1wXJyfAjIjg67gOckylCyxbjgKoyrrqNDXUJZWUrICycU/eV2i0RESHm5IreOoLRE4eFiEH/DYsPprNhWRobNqNHSot6Tri4RSUqSjg7DvejvLy+hiMhBMIU535T9xv3Yarmy6usNSu20oicDA5Wpo7RUxO3WWFtenkhwsFwwrmBxOESCg+WIcV2efJdLU8z/m1C0prhcUmlcoP0ovdUL5rvtpp2tqJt5DGWekdZWEZdLTlrPS04WcTqlybzPihX6zhaysrhYdLzr69VdlpFh4mDPCOTZRWrhhN4rK0v9lklJMjnpI+EoL1dX7rJlpoJ2QYFITIwyiRhmDenoUHeXx+MrFBwebrukJS9P27NmjYlxPSSwx8dVuX69SE6OusYcDpk9W8ccqhUB2toqsFleMO7J+Hh9llRXS02NiSvm5SnqMTxcqlAKs9JS5fq0GTuioqS+Xt3iy5ZpfxUXi8aqExPVFWkYYMrLRduWnCwSFSVelEM2N1dj3itWiL57e7sy7XR1SUuLKENKZqYcNu5YjdmpO19KS3USW27MjAwRp1NRuGlpEhxsqPNKSkQGB2VkxNCdRUaawr579F1qa+1YogJ7JzQWl58vkGfHgTWGViPS36/ryrip29v1NqWlIlJbK+npBhUaFycvmLUEF6SgwND1DQ6qCzYmxiapgdMiJSWKRM3OlqfBREmO2RyjMjmp7lYTs5bsbJvhZWxM+Vj/JvXsvv99u3r7pXy83//+/1k35gda2FWbTRyypQ5sguVfo/GjtzHcjuHh0o3G1Q6YuAf8VOBXGnQIDjYB734ZRGNMb5uNHZ4ULxYRtNcmnO43536Hxqt2mvtabO66qAZ0o4yIkKgoE2MoKJBasyHV1YmIyyXJyea7/HyBZ22W+ZIS0diKoWaC3WJupMH8NWtE+vulCuXm3I/Gz6S6WurqdJF7TXsPgMBp8fcXm0pMBgdtTt8RlJdym3n/J3kvS73k5IiUlNis71uMoLvfvL8NzMnNFQkOlklzXiIjfcTOGRkihYW6OQYHSykmxpmTY49ZhdlQJSZGJDlZmkBjSA6HKiJxcSKVlb7N3EIZFRYKVAvslLo6H1dwV5f2cX29poCkpxuuxOJi8ffXeFNV1bsKgCYlSWmpATZlZ/uIo7OzlUsxL08kOlpBCuHhIo2NOk5VVSYu+6aOZU6OSFSUxlgdDo0z1tQoexYIdCtYKThYAgNN3GtwUJ/V2iqSkqKCb2xMRkZ0vEZQwI4Vsz0FPiJok0Yi4eEira1KGp6dLRIXJ4OYagSDgwqmMPeXlBTJyRGRxESjNO5Uxa6r6z1jtstSTHJyVPitX6+BsPZ2/VixP7fbx9makSESHKxxuYoKn4bhdovU18vblnIUFyfi7y+lpSog7CrgGRk2yfbYmD5z3jwD8LJSXjo6tN/q67UvkpM1UJmcrHMiN1eFdm2tdJl3sMmiCwrsYr5nrHmXlGQDiPrRGKo4HNqukREVjFVV2q9NTSI1NVIHttIrSUlyDhMTLSoSb1PT+y/sfvhDVd4u8eP94Q//zwq7D7Qbcy4Yd9vNjAIzi4o4dWqQSOBawB0dzc3m2gl8lFjqsfwsoD5/7rsPkQagiTmZmaxE3WeKCj/DrNxcQoC0tFm4UdfcleHh3ADcZO53Aljk769uuccfh8hIHI65ioR2u9m7dxvh4dfAz37GAArdbm4GYmJ4+uldrFhxDfzTPwHjmux61118e+gR3ti+XSnRNm7U1sfHQ2wsn6l/RGN2zc3MAm5AWVSWANxzDwMDWo9vVlSUuq6AqKjZ3HOPel6Gh4G77+am3f/KxYsws7CQ5ag7cmVoKKuBSOt+t99O389+xvh3vsMQyhNyHoXELzVjsA9o2LsXmps5duoUO0w//bm5mfPbt/M6qMv44EHCwsM5ceoULgyl1cQE89F44SxQ7PaBA/Q8/TTHMS44f391vS1ZQv6RW1lU9lO+6/4Tx2/5obqP7rsPjZz2cGPnH7j9dqU3m9/zOrjd3OA5jSMhgcxMzZggKIiVK9Wt/dJLSgvGD37AoWee4Y47YHr09Qw89BBr16pnb/yhh/jSl1AmkdRUTp58VYubOZ3k5cHAV75Cbu4sNHoaQt/PfgZ9fdwaeQzQWml85St8/vNwpccD9OCKioK77uLcuXZ1Y955J/v3owEnp5M1a4DhYWZ+dhk//vEZXgHNVXjsMdauNekcYWE6j+6+W7+77TYoKyMqSouk0t1NA+qRZN8++oBHXr5W45N33qnzICBA5y39LOx8BV59leHt25leVsZbd/2KAGCG08nUz37GVTu2QFubFi12u3nx6CJNpbnrLsjPh6IiXlv1Uw0MP/GEuvwffpjXwr7NrXfPh8ZGePhh3AkJmp6ydi2sWsVdd0FASgr84z+Sv/cm3rjjV7w+cT133QUz2t7knd/8hokJZQNqGx2l/5obeb1voaajREcTlJbG6aKn4OWXOV30FC8GfRPWraPxO78lf+9NzE9J4S1gVm4uj+xYyhurfsSz7h9BaSnHMAQN69bxx1dncWj5Nwkwy5jHH6cHeL15Js++Ooenhr+ssTqHA3p67DUzPTQUHn6YAIdDp2JvrxbG+/+T49/+7d9YsGABDoeDT3/60+zateu/vPbZZ58lLi6O4OBgZs2axYoVK6ipqXnPNZs3b2batGn/6TNqUxy9/8cHWthda7EkEKMgkLg4VqyYy0p/f/wSEhQoEh0Nt9+O2+3menQ7nB8cDHwc+DQsXqyceETo30uWQEEBMyIiNEbC1zl2+0+51unk0UfBmZTE1bGx8MtfEpCUxMLwcPwwTBAXLzIFTJw6pYwXoyMa3nnhBWC65u/5++MAsrNN05ubgQsKOHE4tF2PP874um/CvfcyCkytvNFQeMDpu/9VI+vWp6+PVahwnwVa2HHxYqKjTQ5gdDTONWuYERNDZKTuQXffbej8+vpgeFiZYdLTiQ4M1NhNXh4ut5sZyck4IyJ4rbub11A20T5UuE9H6b08KJDlGIZpoqeHIVS5cKJCsNn8y759yqN42WXMQcE51wGsW8f1wJyEBK4HDfjHxLADVTg2bwbuvlvjKtHRNDXB+M9+Bl//upLPvP0258+dM2PaA3193H47XLy4VREUGzZo3O5732OR3zGam+Gp0Vt57DGY7+/PY49d5Of3vGOzvoi0cGLvXqaAbzr+nYWv/l7p4EbrGXfNxw68BQXB6CiXX67vqACVHhISrtC23nOPxhYff5z9+7eyY3RUBW1wMHAGIiM5fddPgS4VdkNDmn/361/DPffg8aDFWJubgXabT5Lbb8fpNLmMzzzDLbfAm8PKLENPD9x+O6tXG/3IzI077tDfzkfT5oZPnYJ9+3wUdKCj6XTCypX0AWcTvkFDg3JLkpDAawDLltGwcyd33QVvHJzBY4+pEsnQEP2f+xqsXs0dd8DUPT9has2XdE4sX85dd8Fzz53hxMSVGgszOYzj6T9kvPpPnDv3J42Xj4xQW6vyftcuk7N29Ch9wKlTZ2z2nYICzc+bn5nJj+6ZztmHf6tAlaEh7r1XqSxf6VlETg4UFgJhYUprt2oVDzygabNlZfrWU2YePzV6Kw8/rIrPzJISXT/z5tn5nA8/rO35Q/kMm9JvZkICIYGBOtZBQZCVpQCd5uZ3Udm8j8ffAaBSUVHB3Xffzb/8y7+wf/9+YmJiWLNmDcePH/+L17/22mvExcXx4osv0tTURGxsLAkJCezfv/89182aNYuTJ0++5+P4G9LOfKCFHW+/zRCQkHAZ091uzocs0nh/dLRqudHRisB79VXIyWFRXBzvoMLI4biGefPm0nhqIccClgLVwE5V49euhYceIig7G3//KzU3dMUKZva8pSts3Tr6l39JN4m77uI6VJ8nJ4fpgJ/Jxk1Pv0I19cxM4B0++Uk4fuoUy9E9paEBtc44yqpVmiAPCznvN4uBATh/8SKnMcTFIyPAzcoQtXkzQ//0T/zq5UUa4A8NJSApSdsA9Dz3HA6Hya+1JrghJb79dn3kxAT0bd9O3y9+wRVXmAWcl8cUcGj5N6G2VoVOdLRNCHwUFT5LgG+iwvXaqCgWAdcDfwY4coRDqLXnMf1yArU8p7q7lStzxQo6AceaNZCfz7NHl+JKSYHubt2QRkdhdBQ/FJG5eTMwMaFI0bAwnnmmXROtnU7tm9hYk/A+CVwBTzxhuHkvKirn5ZeVCRkgJITISPiH1e9ogrPTSU6OP4cGrmSos1NJqmniOOjmvno1rFtnKL7O6nguXgwc4ezym+DAAdrbDQ3dBEA027cbTsj77lOi4fx84ONMB76fPmUyyafgc58zwKgQ3MDwzp3ExKCWfHk5Z87opUq99SeuBkaP6HOnH31Lre7CQm50vaVCPygIBgZ4y+9avrn2NA88oPP2auAm1yG4916mZ2Tw3HPtBHg8HL/tR9zseA0aGggAIiI+xVTkdfRfsZDp6OZ+992mPQ8/rCCjvDwWAtu3d3HXXfDCC7vUanc66e8HHnqIt98+y/RXX6GhQefI+G9+w4EDPUCtGjtLlvDavpkcRfklZwyfBgaVY9PlYvv2Q2zerELq3LnnGF97q1KrMcoNKBjr17+GAwfegchImptVfjY3A9HR7NgB27ePMjEB27ef5eTJes7e/VPeAl7jRs6da+eXvxzluecOgMPB8sBArnU6GRrSLjxyZAQGBvjxjy/yVN9NnNDXZs+eHp577qjOud/8RknPXS4OnTsHRUWs//FMePJJnnvuKBw9ysnqat734+8g7B555BG+853vcOedd7J48WIeffRRQkND+c1vfvMXr3/00Uf5yU9+QlRUFOHh4Tz44IOEh4fzwgsvvOe6adOm4XK53vP5Wx5//Zv/bzpWreKb1dUc8wBfz2Pmjj/S0PBl+MUXVEIMD8PnPmfz9XHXXVy3fTvTHQ7S0hSs9pmx12BPN3Fx31CO1PKfw+rV9C//EleFh3N7n3Fx7XbwWt8ibnQMwMc+xlWzxxWx5fEQFBPDLXv3wvAwawHa2yEggN+sO8u3754Ffn5kZHyLqCiY73ZDYiIv7zPMEQ3NZGb+hKEhdRsmJFzJzLY32Dd8HTc2NbE2Lw+i3wGXi/Lf+XOD+wSvHV3IjXV1/HD0T4yH3cyM6Gj43OeY8cILMDpKiNMJmx+hqOhH8Ng+tRibm7nu5DYY+ghu903s2weu8HCYO5evJ47D734HQ0OsdDjAql4wOgo9PczPymJ+ZyfX79qlMM65cyEmhrAXXoC1a4kOCYGeHr545AgPDA3xgMMBgYH8+dQpvul2qxY8OcnxvXvZ2t3Nj4KC1BpYvRqWLGHtKmBolWr2ERGM79rFFHB7RAR0d3NoAp5d/iC3hpbxBtdRWAhBjmKFhR+F4See4OqMDFbsm82ePd+H1h/QtxtaWpLBfV7N2Vtugeef56eNX+LVV+GLKx+l0/MgN5aVcZtLjc5vRkdzR2goFee+TfSCfbB7N+cdc5jpmCIsO5vkzjW0tsJnLj9MREQanZ2wdMUKHn4Y4g+m8tOHISLCn54e+AenC9asUffe449TcEcUN+1Y4yuvwQ0QdYqZa2/C43mFK53RUFrKP/OWkm4GBbFtmxKg/L6wkI0XfsjVrUehuZmWwzBv3iLmV1XpvH75Zeb3Pc93j/6E305M0NcHR4/O4eWX4cSS33O1w6EIz1/+EoaGqKy8BiK3MT/oPGx+FV56iXigMx2mD59lcHAW17a0ED9sCiyEhEBnJzdER8Pbb3NlUhIbIj9uHAMxrO52wp13snTHI1BaSnbDLBga4obhP3AamFFTQ+VwCJ2dt3HnncDzy7lx+XlFTT/8MKxaRWVlMgQdg9Wr2ZR+Lenpap3t3p0IwPUREWxKn8dCv2Kc3/se2dnQ3HwljI7yysNvQOcwv304Enb0sW4dhIU5WL0a0tNnsWrVZ5nV+SZhQMjAs8TF3cratdDXFwFXXKP+ylOn+P6S1/j+x8/x3aAvwS23UBPpz82rxjnxDdWZDhwIITgYPvlJYEGaeoHS03UuW9Z+YCAFBWE8/+Mj3LRhA/zLv7y/e55FBH2ph7E2z549+57Tl19+OZdffvl/unx8fJympibuvffe95y/+eabef311/9bj5yamuLcuXPMmTPnPeeHh4f5+Mc/zuTkJJGRkfzsZz9jmaWU/i2Ov3fQ8FIOK1jbhdZbg2EFNSQlaSA+PFwRirGxIh6PDKJMDZKUJE+jidKKxuzU4HlBgQEW7FFkVlmZWLC/ZcsMw0dWlkhVlQIXGhttcIlERMgetPabVfH4bQPqyM42jC4ul8AOLcbpdssYyKZNJsk2NlbgNU1YjowUOCZSXa3AirQ0RcC1t4sUFEhcnLwnYC/t7crNaWptbUcTtetRVhR4064J1m/OaRLzsFj8j60YhpYxEUlMVI7Hjg4FYrjdCgYwwX0LWdlvQAKVBmBh1Qp80py/H62HdwZNKi807WpE0ZhnzH3E7RZJS1MQz5o10oVJMo+NFXG75SUUdLRpk4jU12uSe51J+jVVrGVkRMcwKkrglwI/FGltNewZ1XpNXp7+m5Iira0GoNLUJIWFykMZG6t4EgkMNEjJPSLBwXISZHBQkZ3dIDCgiNbcXIHHFOBQVSXh4YqIVcRetcCLWlvNAuzExAhMyNvWu4DAZgUilZYKVClbTGGhzoOcHJG6Op07Y2MicXECVSJRUVKBolNHRgxYw0LXZGTIyIgiVsPDRcTrVYCLVV3d7Vb0bWmpIjuLi/U7g4KtRLk8U1KU+3EM5fHMyBCRri6pqTH18UpLpQtEq7JfEPitEhHU1NjgpPBw0R8WFMg2M/8UvNOpLD2TilV5CUX+KgHAk9qfLS0yb55OQWVQqdI+CQ0V+LlIVJT82owFVIlUVSkhQ0WFiNcrLS2KbUpPV6yJ8m6eFqmosOc2tEpsrGLTbDRmVJTk5OjUgwsiWVkCF2Ry0iKFmBB4UUJDdSuQkREFumRm6li7XNrOuDhJTdUxfj95KG2ASna29vMlfrzZ2QL8p8/999//F5/b29srgNTX17/n/IYNG2TRokX/rbb//Oc/lzlz5kh/f799bs+ePfLkk09Kc3OzvPbaa/LVr35VPvKRj8hbb711yX30/+34QLsxL2JqbTGDiV/+Em67jc2bYerIEfys4m2BgcxxOpmZ98+waxdOMDlFTmBUtTMt6gX0qFtwcFBjH9XV7N/fo3GW8nLOr/4y03+zCcrLudGj1pZVPmQcIDSU84Db4YB9+5iYMNSPixcDZ1m+HE50dnIadU91dGDiJWfxeKCnuRnwh/BwVcA6O+16Xdx7L7t2qWEwY/Qs7NzJiYBFXDf6On3nzsHgIGGoX3oO8KeDVwMhuEzifRDw5sDVHAq4HpgkKWkeM8z55maYMXEeBgbU1LeqCJhg8XntGYbReN1bwDujoyxCGd+PovGjHgCTaH/c9Mk46vo8gbo6+djHcAYHa/yptxcOHFBX3v79OM2zOHwY+vqYwrgD0f6fBdwYdEjjWs89By0t9J+bCZs3c3rvXjQKOBeKitQax6lJ4fX1OqYhITidxiNsjjloyDYsDHA4TG4lDJ06xSHUPbZ6tXFTc5ap5deb2OoFdZN3d+NwqGtN+RHnA9dyFpjYu1et4L17gbNMmKHUmN24ulYjI4G56pJ8+GGNE61dC1u3EhAA/WdmMLV9O3CBtr17WY16ZWcOv6NM/wMDGki6805mDhznBpdL41wBAfj7A5s3c+KJJ6CujvkuF/zmNxw+jFp5LhdUVuKKimLYdGlRkcayrOoJFy9q39/selNzWsvKTCWEzxIT4wCiFfD1rW9pu0fVfchVV1kdwgQwb94s4DL27YPpd36b+UHndW5PTnJV7xvAPPUh3nYbfn76jhpKXMAPfgDHu7uBm+ncu5cgIDh4LhAD+/ZpErjLRePhWSzt3mbzcjoc2v3Tps0Gh0P7SxunYzyEklm+8AKn9+4lOlqX/4IFDujsZN48B9OZIgCIj78MiMXPz8TCn3tOF/eePfoeQ0N6vqGBl19GQWYvv8z7frxPbszu7m68Xq/9ybZBBH/5mDZt2nv+FpH/dO4vHU8//TQPPPAAFRUVXPmuvMPo6Ghuv/12PvWpTxETE8O///u/s2jRIn79619fQqf8N4+/RjI++OCDsnz5cgkICJDg4GD5yle+8v9h7//j6iyvrGF8RUN6qkGJDS1xgiWOWHSCEkda4ogNrViYSkd8SiszpZWO9AkdcaQVR2akSl/SIa3U0pIqVao0REMjUSqoaGhEgwEjCknQYEIMJifhNJDkJDmGk3Cyvn+sfV9Hn+k7b5vab8enPZ/P+YTAOfd93devfe29116L27Zte89nTp48ybvuuovz5s2jz+fjpz/9aW7duvU9n5mamuLNN9/Mj3zkIzzjjDOYl5fH3bt3/87t8E45683bAFbK24iNZVaWToxvGCR41E6W9PnYA9XCbbLvAKsF309NtZPnTtI8xhPw4PrrybQ09kK1PQc9zyYhwUH9n4MUtvfZtVlZSdbXMytLpU1MSorW0mVkcACqlaquJpmYyPR0Oq8PWK3jtakRMD5eR8mMDLWvpIQsKHAK6AwGuREqGfBou1heTo6MsKRE7R2FYN6LF+vr+flGS2V8mZ2dlFKDeVxBe/ZRqJzBg7AzO5sDiNKIBex+PVDZgMeR6fXRXfY7xsfzoI3HRuunMaisoR+CpnfbNTo9jygmhoyL43qIxonLl4uOrLRU3o7fL682EHCcoMB6Au3s65Nj0dRkJQSpqaJ+ApiZac9eVqZ6Mp+Pq1ZZfVtJCZmernqwjg4yI4N1daZSnp2teq1w2Pgfj2oA/X4puFdUMCZG9WLABpUIpKerFisxUeUJJSVsavJKD56iFYsR2M0tkOfd1ERB70tKOGeOlDvY38+KCkHzIwAZDKqkITaWbGjQsxUXy9OIiWEkYrVy/f3y+CCqOLa26vuRiDqooUGlBDExFu3YxcnJd0UOiorI7m552z6fXKaeHk3kQIAMh9nTY/yXdXUat/p6lTaUlJAZGYpM1NWRk5OKkBQXy1WOiZFHlJVFpqWpD+PiyLo6RWFaWhgMynFlKESmp3POHM3nN6A6Uk+dwaPn4vLl6oP2dnlsLS3yXiMRMjZW94uPV9RkbEyRjqYmx0HL5cvVT5EIGRenPi4sZL95uX6/jX9Xl+7R3Mztth7CANndzSNQmccQwOBDD73/nl11tZ7zFN/B6urfq03hcJinn346165d+57f33LLLbzqqqv+2++uXr2aH/7wh9nR0fE73eumm25iTk7O7/TZU3n9Xsbuc5/7HB966CFu3bqVg4OD/PznP8/zzjuPR48edZ+pra1lbGws29rauGXLFn75y1/mvHnzePjwYfeZpUuX8q/+6q/43HPP8dVXX2VWVhYvvfRSTk9P/07tcAO/bBk7IQkVlpZybMxCg9XVKjIdGdG/y5drgWVnqxA3PZ3z5mnT8/s1f+PjtXdwbEwTvrGRLClhTo7Kb7h8ua47MkK2tWmj7eggm5s5DOOUTEvjk7aZc2SEixZp7SuM0876etV6DdmGU1dHM7SrOTTkfe4Au7sVOt1iRjTKDbhTm5+R+AWD1OZTWuqKeJmdTSYkMBi0Il6vnqiykgMDeta6OkVuInZAWLVKhoENDXwLEK+gPRurqvgQwBVQyLjdjPtrZriYlsZ++3szFJpsh/gzw2bwmqEavrD9ncXF+rmkhKyrU21XcbHGKiNDP1dUcBlECpCcTLK/X7V8k5P0+VSYvR3iGGVWlnFcThO4R+M0NETgdh10wmEe8zb8ujpXY8ueHgsjD5KNjc5YA2u50TvUFBSQNTV8yw5IHmk1sN7F4+bNo0K4Ji+zdKnkmTgy4jZm4E7+BNAGWlxM4GWytZU9PSqO7gfI3FwZ3ZgYTk46tSY+DfG/7jNjNz5Osrtb187PJ0dG2Nlp5Ae5uTICIZ0BWF4eJXVMSyNzc9WfcXG6+PAw2dLCJ6HDXCQie/GGHTLy8mwODQzwAdvQVXM6bATOwzJ2nnGorCSwjn6/5vCL9lxKE6zRnC8qYkWFDFdPjy4PfF/h25QUAkdZVOSVlG4g+/vtULudL9qBSAX8L5Cjo1ywQOmC/HxaveNeAsdNBmgzgQHS7+cowNFRhUYVIj1AlpXJmKemMjPTI4JeT4bDrKwUx+prAIuKVAsLHI8STfT3a52kp5PDw0ptDA2pz1JSGMzJ+cAbO5L85Cc/ydLS0vf87qKLLuIdd9zx//qdRx55hD6fj48//vjvdI+TJ0/y8ssvZ3Fx8e/crt/39XuFMZ955hnceOON+Ju/+RtceumleOihh/D2229jYGDA8xLxox/9CP/xH/+B66+/HgsXLkRzczPeeecdPPLIIwCAYDCIpqYm1NXV4eqrr8aiRYvQ0tKCLVu2YN26db+fW7puHc6CpFawZAnOG/wVEhOh8NvIiGi3/H7gscfwatL1wJVXYieAo5s2Yd++wzh0SJGcWVOHsX//JI4c2Qf09eGsqd8oM/8P/4DFi4UexwUXAFNTeBMXAtdeKzmUwUFgYgJnwWr3FizAXBgE/9AhLFyoUMnMpCQAc7B1K+DLykISgBc2nKZwXFISgLOwaxcws6AAwGF8ZslJzJsnNKMPpl59xx1YsGCBQjs5OcDEBGbPBl6aeZXiNVNTGD90CHjxRewdH8dZ217Go4+a5ImJqqalAbMGX8aGDcBzzwkHsffIEaSlWd3dvHk4BJM1iY9X46em8EkA10Ahv3MAXB0bi7SkJAmnxsdjIQSuOQMAEhKwy36eFR/vyhKuhkJ98PmA9esFzY+LA5KSsGEDFM5raREA5rOfBT7+cSQAmJ2VhRtu0HDPBPDqrnPw4Q8DFyQl4YL0dFF7PfYYzsrMBNAJ4BCQloafbrgEwHzMzM8Hjh6FLzMTZ63+GQ7f9C2kpCh0efLKq3By/XrMmHEp9l77DSnKAwBCOB8mDnzDDThQ+h8aU8yTJujUlEbm6acBqO+WAHhp6jIAs3D//ScU6tuwASkGDgKW4EIoaq742enAunW4KuM4gLPUl2lpksW58kpMTQkUcfnlHrdqCAk1NXjCpsw7GZ/RnPtf/wv42tfw92l7MX8+sO3pp/GpTwFnrPuV0JFLlogU9ROfwOHBQWD1ao31bbcpzH/jjUBTE86Ffvz851XueQ4kZXPoEHDy1m/hV3suwzkATi6x++J1g+6/iB0AMDCA6689bnH7dJy77df4VOo76ocdOzQuOB1pacDOu3+Bj3xEv1m40KPqO6oQ49AQgINISwM2bToMYAda3/qk6jHxLK5MTsZeAAcPHgawFyeTzsdbb+3DF78IfPnLwNrpL2DOnHlITIxRX+NjAA4Cs2fjN/C0b89yUk2Ha36Mc9PTgauvxvg4cOTIFICzgFdeQW2ttpGjAFauPAxVmE5gYgI4f+5hHE75pMZ/0yagpUVRy74+hX5HR2GaU+/v60+AxvzWt76FBx98ED//+c/xxhtvoLy8HG+//TaWSpsJlZWV+OpXv+o+/+ijj+KrX/0q6urqkJGRgfHxcYyPjyMYDLrPVFdXo6urCzt37sTg4CD++Z//GYODg+6af5TXH2Ipt2/fTgDcsmULSXJ0dJQA+Oqrr77nc1/4whf41a9+lSTZ3d1NADxw4MB7PnPJJZfwO9/5zm+9z9TUFIPBoHvv3r1bp5NHH+UmKDzHvDx3EmZJiUJ/LS06mff2OmFOz7Pw+Qzo0NNDdnezvFwOBVtbFQIpKCDj4x3GgCUlOsXV1cmTGh11HtaLEJtKEMasHh9Pjo5y3jxFPLZbqKq2lmRsrDy7sTH29up0C0woVObz0eeLisKGPC8xHDaKqm1qS2GhwjBtbTqxGd0RU1P1c2Ulu7osBFZTo74wpo32dkb/lpFB1ohei6EQmZsrz7e/X8fk8nIyN5crAd4HscO0mqf2qHlWEQsB3WtekaeY4IUzf2Jhp7s8Lyk9XaGr3Fy1OSNDz5KQoOdJSdHzFRezCTCPahs5NKSQ6sAAy8tF1eY37ylo7cjMlDyL5y4Aj4jdIqIQ4OgoycpKZmebx9LebvI7GzW+RUXcbx7ipOeFpqfLW05OJrDdeYfALvXTwACrq6nw69AQgQ52dko9IxiUUoEAGPfwcfMQ5KUPkHV1Rmu2TuCR6moWF2tO+P0k/X5WVdG8muMCHpWUaIL09vINe25Pk7ivT21jby/b200xIS+PfkAsK42NPAjRgh00r7Cri+TYGJ+EQCSSCAhwn7W7r4/yCAsLBSjp7eVzEAPQ6Kh5U2lp3G/tkHe710URXgTIpiampioSOjlJMj5ebDSJiRwbo8kcvUympjIISUx1dorCLTWVZHU1hyBavVW2JsQ6dIzs6HAh6/p6rdPEREe0w3nzTGbLRIUlcbSX1dUWscnK4iaLIFRU0GSiglH9rvp67rcIwqJFukxbG6OUa01NZHW1xmt0lAyHtZaLixn85S/ff89u+XI6fbJTeAeXLz+lNq1YsYIf//jHOWvWLF522WXs6elxf/va177GT3/60+7/n/70pwn8VxDM1772NfeZW2+9leeddx5nzZrF+Ph4XnPNNXzppZf+0G76b1+nbOxOnjzJvLw8Xnnlle53vb29BEC/3/+ez5aUlPCaa64hSa5atYqzZs36L9fLzs7mN77xjd96r7vuuuu3dl7wsst4DFJYDgbpDB6rq6MqzsuXK7fWS7KriwHbiBcvNv2r1layrIyZmRb2KS1VzqSnx4Uax8ao37W3s7NTYZ7qamrTrqgg4+K08drGwsREbSKeZl1+PoHd+rm8nKysZGOjUiIsK2NsrKHeysq0uDs6nMT4QRi9U1WVNp5AQEaztZUcGdEiKy0lKyq4EaYQHhfneBgjXqgrNlYLs6nJwkYrFUpMTHT5ETY2KiQVCCiMW1Gh7xYVkRUVjm/UU7x+DlDD8/PJxERGoFxcP0BCObowLGxbUMC7INQm8/K0CRYUyGAMDZH19Wp7YqLGzfJZTEsjw2EdROLjuWqVqWcPDUkDcIw61FRV0UPYtrer+c6gmfH3tN6qqzUXVqwgmZrK5mYbi5QUsqJC86KxkSwsZF+fhTyTkxUWNnJN4JjGYGxM9zH+S4XB1mpyNTa6g0NdnebL8DAtdD2hm9bUEJjgKBQ+XrSI2pja2hxg0tNaY1sb10BSPF6o2e83mq2UFHZ20nhfp9nTo6FZtkx9ddDr25ERd93RUaFRPQ7S7m4ZGE9xvKlJz97Xp/OHy5kWFHDGDJrB2aCDQTis/mtp0TxvaSELC0Wf19REYJrJyYqm+v1mLGJiyLw8Vlcr3Dg2psssXUpydJRlZR4YOEiOjRFYSY6M8EUz2EDAMZ+xu5scGHAySfX1Mqw5OZYrj0S40Qx4TIymrMcO5hHOpqe/K50RDhM4wOFh6QkWFdHxezY1af709mp+jdk8LS7WPGhuJh8H/jhK5X8iY/d/w+uU0Zg333wzNm/ejEcfffS//O1UkDv/3WcqKyvfgxzavXu3/pCcDF9cHFJSoNDjpz6F044eFgQrKUnxv7g4pBldFGbPxkdjY5EGp8qhV1ISkpKs7nj2bMVV5s61cJN5/oODwLXX4u+XvINLZr6ueiFPAjwlBefGxABz5+Lc2FjgzjtFyjJzpoCNPh9KSuaLRmjrViAuDklJVsPk8+Gmm4zh4rnnFNVMTRUjhs+HuLw8PcsTTyAcBk7O/agYT1JSgA0bFOL0+YCEBCyEFSAnJwNZWbjtNuC0zEz9/a//Wg/8sY8ZyDIfs1JTFT5MTMRZW1UzM9/nU1wuLk4PPjWl709MICkxEbNNhQGBAK6OiVEfzJ0LfOQjOC0xEY8B+GRMDJCUhDcBzEpKwiUpKcCuXfgCgF9BfZwEwGmtpKRInSE5Wc/qMc4nJQHj4+h/bRY+8QmxfixcaEryFmI9ehR45ytfAY4exeLFmZgx4+NIS1N47NZboee47jpcM/dVYPZsPPaYFalv2iQg5G23ISnJ+j85Ocpaf+gQMDGBTyUfEBNJWhqmpoC1T5wGTE9jzhyfYJoQQ5f37+zZwJw5+YIxjo/rnZOj0KHPh4vnH1atFCZU+xcKAfDh/MREXJz0Dn70IzilhNWrjXHqxAkx8ff14Ytxcbj/fgPMHjqEc6fflnRSejp27AA+k5SExsbTMT2tEOi/33YcWLcOccuX6yGffx7z5wNX+F7F+bN/g/OysnA+hCEdH1cEeelSXfvKK/WIn4p5FY/csRmXpKdrTgwOoqZG0fTMzL/DOfHxUuAoLta8uBpCv159tVCsR4+itvZ0fOUrwIVzD+DcHS/gy5l79ZwXXIDv3HoYJSWpOO+VtZi1+hdYvBiu+L+oCBgZOQu45x7k5X0FeOYZLLSll5f3UVx89GWtq2PHgJkzccnM13HttZo658w+jsxMsXvh+eeRAOBjvWvxz/+sscrIAM565dcK8z7xhPeP+nrHDqxYMQcXz/0N5kPPeuutwD/8g9XZpaTgiolfAUeOqM5uwQI3b+bONeX6/6Ou7H15eXV2p/o+/fT3v00flNepWMibb76Z8+fP586dO9/z+z9WGPP/fHmnHM+LAr5DNjTwIagOyA+hCj2CZCYnyz1LTRXBK0DgVgL3sh1CMTY26sT/EzslHwTIjAzVX1VWkvn5SkB74q319XwcAmKsgcAarZ5nVVNDNjSwpESRjh4LgwAv6KRvqK+eHrIfqgEENpNDQzrZDwyQY2MKzwZFPs1IhAMDdtIfG2N6uk6cbW1C923Cu9CN2dlsbxd4YA0UWn0cqhkbHtbJta6OOtq2tkpY3U74m6BwbL/14aOeZ2k1et1QMj8M1eht9/o3JcUBSw4Crk7Nq/FiVpZcrcJChTQTEyViC4UZPaTmMKCOyc/Xd+PiCEy78FkkQrKpiZWVGobXALKjw9TmVeM2Z46+3tSk/mNenjzg2FiWl1ud1NgYKysVzvM8mKVLKQ8hHJb3NzbGyUlTRBgbI3t7OQmh7xITVdPG5GSyspKdnVJQF8H4dn2+pkaeQ2GhwnfhMIFhqw3tEEl5YyOBYfqh8F1TE50wrQewLCsTUILV1dwOKbJ3dqoWjikpZFoa37B59DREht7XRwc+YUODPLKurqjUvYeyLCvjCfPsKitpwI9jZFOTxjEpSd+trHQ1cSHzAru69D4BAU38MORlUxOZksIBm3seapX19dwEqD9tDuyHQC91dfIcOztJlpVp7gSDHB42TzwcJrCBLC3lMYvUlJSob5ct0/x9w7t2S0sU6NTYSNbVcaVFJbrNu2NREdnUJA8zLY3DNrcGBmzOJCSQwaBDHTc3m0pCaSnZ2MhIxIRcfT5FUrKy1K/FxXrn5/Of/umPIN76ox/pmU7xHfzRj/5sPbvfy9idPHmS//Iv/8Jzzz33txb/nTx5kgkJCVy+fLn7XTgc5tlnn83777+fJHno0CHGxMSwtbXVfWbv3r087bTT+Mwzz/xO7Xi36oHH5u/FISsq6EJnIQja3A3Ijc/M5H1QzkmIrS4tzqIiAusIPKUYTkqKAvNtbcoXWUhrfJyKs0xOsreXDoXmoMtZWey1xcH+fobDVlLQ2Ehgt8JgeXlWPB4Q8q6tjTNmWL4wM1Mhm7g4Bi1t4Ifye0xLEyO+KVKzqEirLRRyuZsmMxjrAQvrdXHMDNJrtqkIrbaNwMNOGcKFaZOThagsL3es90e87zU28ggshxgXR2Zm6prGbH8M0XKPJ81oekzzIxAi70WouJyJibzLvsOCAj1ocrIzzPvsOZiUpO+OjWkXio1lXZ2a19sr5O3AAF0+FnhEIcThYQLTLCuzHFF1NVetkrJ3YaGFrmJjCex0BhQY5glrkycZsx9gerq6ejcsN9zVZWUOTWp7d7cUEGpqCBw19Yx7SKh0o61NCNy2NpJlZYLSAwQe0fwsKCDQrkNKXR2zsuhCcqmpdKFS4CiZmclegFVVdOryDIdlvWNjyaEhjgJctkzGsauLMngpKe7AxspKzbXeXkH8s7LYZv29bJk+3tlJhdJDIaeO0dRExfFyc8niYsbHeyHG7SJR0OmKJyD0cAA6dPVDiN+lS3X7SET3ZmurcoB2WImJocLnbW0yKsEg6+q8sPAxsrubwDqypYUDNi4LFmj9FBSQLtkdDLK52Q4oZWVsarJDTEcHmwCyq8tLa+v3ts6Zne2U4Ssq9KzAIEMhhYYLChRiXrrUnsGDrZaX82kb60WL1A6vTOT9VBj4i7H7w1+/l7ErLS3l2Wefzeeff5779u1z73feecd9pra2lmeffTbXrl3LLVu2sLCw8LeWHsyfP5/r1q3jq6++ys985jOnVHrwhBkW4FYO2EabmSkYeK8ZvNcQrRl71P5VXuNhAve6zVo6VkcZgqDN2yGPDVjBUcDg3zs5ZJv6fvv7SgiK32+b+pAZ1vFxza8VK2hG7CiB42RxsbFxHBBoIC6OeXnSymJhIYG1zgiUlVEn68xMk7CZ1uqvr9d38/MZiZD3WTuGPMNSXc2mJm0uw2aIhyCmkHnztGgrK0k2NTEUUk3WPqh8oAtRfb5OezYGg+4Yv9uef6MZsmb7zjEzaKyrU5tjYnQA8MBCmZkyDvX1PGKfv8u+T5+Py6F6vQdgOcaYGLKxkW22eTI+XqftxkaytdU7f2jjrKkhe3sJbCCwi2VlsgPDwzpsT0Le0EHbtFatIpmXR+A49wMG/5/WptfUxJGR6Ibv9NQaG3UoaG8ni4t1UElN5eiolbsMD1Mw953y4Ds6HJvGEQi8Eokon3TEDOpBm0cLFsiYdtnZi0NDZHKygBXhMIeG9CxveX3c0KDxS0qK5h6zs6MeTVMT58yhvM6GBm4BXBtfgw5CbG8nm5r03fh4qz1dp7EeHiabmtTuoiJ9JyXFsQp5xkqdO6mxamjQwayhQQMTG8t9sAPn8uXR/GViItnfz+12qDloxrC9XeuEzc16p6XJww8GHYNObKzWC+PjXdnEW1AkYNgOUQyHNfj19Wqz9ZfnvR5D9PDG4mLdw2pwvbpV1tdzC0wWKT1dObmxMb3b29VOS3oGvGv6fOr/mBhdo66Ou3f/ETy7hgaXez+Vd7Ch4c/W2P1eObv77rsPwWAQS5Yswbx589y7tbXVfeb222/Hrbfeim9+85u4/PLL4ff78eyzzyI2NtZ95t5778V1112HL33pS/i7v/s7nHHGGXjyySdx+u8ZT/4IjHEdJ3AaBPlPSRFjw0yIvWMzgIV5eVIPgNhTLgEATAA4jL3CIiMtDUhNPRNvIyrZ8w4A4BMADIaO45iCINO/sTYchu432+5/HgBcfjk+Vnc7amuV0sPgIGprjTtvyRKcASAnZ44UlI2lHYixZNT58Bkzy9atAJYvx8kXXwTmz0dMzOmCkt93Hzo6gOOPPw5ALChH7dlOs3ts2KCUyBn23KdB4ucTE0pj3XkngBtvxJNPKlezFypF+Kj12yF7rilAiai4OLxz5TU4DbrmUQCzTAF+rvUZlixRsiw7G/jbv1WfGZk0TpwQ3H3hQrwJwFdQ4MoSUFiI0+w6c73BSEsDEhIwHyKrgM+Hd8bHBW1vacHBg0aG0dAAADiZcQWAZABzMDEBp/owPg6cExOD9HQgLj4eM2daKnbhQsTHx6hcAsDixadjZ9r1wNy5uBBvCkGfmoqsrNNV7vHFL+K86Z1K6jz9tHKr27bh/PGX8G/lx3H8gout9QcBXCHmlvnzMX8+MDsxEZiawv79StkeBXDixAkcBTA3IQFxcRq7qSkrM0lIAFJSEBcHHJ6aha1bgYvn/kYk2RkZQCQiJhZTXz90CMrHxMYCiYnAzJnKRx85AvT34xyoAuft2RerFGBqSjykjz2mEpqbbjJWoY9qrAFg3z6Vh6xciUMA3t62DbjyShy/8RtiMH/+eb0bGjTuyclq30UXqdQgLk6k6N54Pv+8mG527wZmz8Y4gITYWMTFxAAnTiAnB/jNiy/q2Z95RsS1W7YA69bhmzcdB44exZIlWi+49lp1ZF+fCLp37dK8P3FCOeDBQY2T3y+Jh7Y29AE4LzFRkmCvvKI8nbXz0NSU5uGuXfqblUB9edGb2LVpE86LjYURjqo8ZnDQJfzfAeBLTwcWL5Z80V/9leQaLr9cRO/v9+tPUHrwf8trBkn+qRvx+74OHz6Ms88+GwcPBhE3ayZuueMM/PjWnZqEH/qQqHpeeQXYt0+ok4YGLaJDh/DSTT/HFdt+juNf+Toefxz48o5lEn5LSVFG32PevvFGICUFv7rpV/jC7F8Du3bh5/g6vr76GhXrHDokNYOpKZHApqcL+bBkCdbO/BL+1/8KgR3P483kz+PClu/g36e/i/Fx4Oe3vQ4kJeG795yBq68GrvjRl3D4wV/i8suBN594HZunL8Yl068CU1P48StX4JacN5Vhv/9+AUO2bcPPJq5HRwfwq9tewDuXX4Uz7vwWcMMNwOzZeGTwYixZok1z1syTIsROSNBCPvNM7Lzo8zg/7gAOzzwHZx3di9cPnQufDzj/zn8UTVdXlxAKr70mtv79+6UcAaB/+zkizn7iCVnNO+7QpjE9DdxwA9buuATXXqt9zecDrhr/JXZe/iVs2AB8dcnb6rOUFJycOQun4aT6rbAQdz/0EO5OSNC9X3wRKC0FXnkFL0x9Elf922Ic7tqIs57/FXDBBeg/cjE+1XY7Xrj2+5g5E7giYScQF4fXx8/BxARw1eXv4PyFZ2Dnt1cABpRBSwsu2/oLvLruADAxgc8svVDkwVY7+fbURzF/vqbPAw8A98Xcgq8f/THmzpXt3rZN/fmtY8uwt/g/cO7WZ91cfH3+Nbj4rU68mfx5b/gBiMErI0OP+OXQz4Fjx9A6918QiQD/yFWSn1q3DpiaQv/HvwQPK3TDDcB3r35BF7jxRnz1R5fhzjuBC2u/DsyejVdv/DEuu/PvgSeewDvTs7Bhg4bq3y76FZ6a+QUsWQKc8ZXrcc7za3Hggk/i2ZqXcc0T38SXJn6KjAzgW/dfCCQk4IWaFzBzpp7t62mvArt24cI7rsebDc8Cs2ejdfcV+PLECske3XknzsrKkhF65RV855kr8N2Hz8M7u3fjjLw8zU0AuPNObL7157hk8BeaExs24OSDP8e2bcDFj33XkRCfvPu7OK3mu9h703dw7j3fElDHwGSYPVsSA3v2qANfeQWorcXmiXMxfz5wzsM/xMlbv4UDp8/A3IICq2GE9Iyefx5v3/ZjaRjOnSuCZyMpx6c/rdrRDRscqAw1NTje8kvMuuNb+v8FF2gAW1p03yVL9N2UFI1HXBycdtLDD+OlPecBiG4ZnqLPhfd/C7jxRvxLYxJ++tOzEQwGcdZZZ70ve17w/vtx1oc/fOrXOXYMZy9d+r606QP3+lO7lqfy8lz6dS6M+W32WDhh0SLyIQtfvmGhMcbF8UUL0+23ECXwMwL/ScbG8giUj4mJUYipy8KS91kYM0o4Pcz1FiJ9w8J9D1m4rx9RFXS2tpIDAy4qw9RUQ9JPk9XVfAOCj3d3k4yJYVkZCey2XNBTymOUlCh3YHRmIh8OOLBHfT2VFPf7+ZCF/96yUA3b2lhbq/zCPmvbG/BYJ6YdwIHDw+ztVRhzFOAPLOT5uD17t705OqowyMCAKy1oA8iEBP4EAgLt88JATU1qc0KCvltcrJBSQoL+bWkRVD05mcvtnkxI4F3Wfyuh0gTGxTkQUH091ScxMQqJ1tSws9NyKy0tQnD09BDYTmAvly1TmNYLY4agGirGxrKsjE7Z2+dTKLGz0+DpAwNkXR3Hx01FvqODCxYYEKKjQzlbiw/n5VH53UhE4a7eXopyTm1gdzeZn69wIyCARjDIzEzl8IBpR/+VkqJ2DA9b2NvYTvLzSUYiHBvTc7wB6MFKStQnFtIuLtbzeKw/LC9XyDw5mSwp4SaIpDoUUs0ea2oUyqyu1nMUFhpoa61CjW1tZHW1xikri09CKQK2tirE2tISJeJuadH8rKsTW017u8KYKSk85oUxW1v1+bY2zYPWVg7B8sGxsWRMjAA1HnKqrk6hwpYWcmDAlcVkZhr5tdWHsrVVpSyNjZr3WVkaw6ws/T0lRZ+tqqIfCrvve3d7iorIlhbuhwGxsrPV9+XlHAYcldoRC5Wyu1tz2BTqOTSkMGpsrH5XVaWfjT38rbf+CGHMBx5QHP4U38EHHvizDWN+oI3d9y3mD9TwBJRXq61Vge99EDryRfs9CwoYtM30XjNiwLc5Ca9weSeBwSiiMS3N+CjX86At2qwsCh1RWkrW13OFbfoeinG/XYv5+WR9PYeHDXhSXs6CAhKYcPVHQEAbVlkZV6wggV1kQwOBA0KotbUxPl5/Z1ISuXy5DFRKiivYZXY2/X7lKJ+2Z34UhlINBgm0s9UM4QOASzuIQ/KYDEp+PisqZBC8nNkwlONrs/eKFWaYPYReejqZmsp99rlJz0ClpZFpaRyDEJ1DQJQCrK1NG19yMjdC+c4euxeHhrgFyuGtMAOwyTaYNyAkKuvrydhYIeBGR+3wsC1KhdTWRuDHBF62/txMhkICIUB5MeVgjzIc1qYJrFQxeEsLgRUOfOKldAQe2Umfj2RpqYAJ6emM2HwJmOFob6ehMWso4NMtZGsrXwPo8xlitL7egUwHIDRmN2CGbzfHILRsba1RURUVEThKNjYyJ8dQmgUFLv+WmMgoSKm+Xpt+czM3QUCT9nbKqhvwyEN4Mj9fwBS/X3Nx+XI+CR2Gli6Npnc4OancWFOTDEcgoP6pqCA7OjgwoLldWSkwyuQkhS410oYBRPPlzMhQjqu3l0xO5uSk+t/jlWVqqg4MFRVqW0eHDFUgYCjbCQ4NkcAg2dsr8oZuRjldu8lHAdcOZ8y9w0F7O4/hXbnlyUk9S3e38mutrRrLhgaXnx6wQwizszkE5e+6u6lnKCuTsRsb4xFbe+vtM9thCitpaQzu2/f+G7uHHpKxPsX3+8nX+UF7faBVD84AlFfABF6C2PV7e03BGXBqBOcA2LVmDV6Gcm9y3kMAJqMq46a/HQflVDA8jB19fQAUstoKi5h4tPDPPIOTUM5uJ8Ty/zYg1nyfDzj9dKxbZzm7V14RJRYAdHXh8KOPAjisv734IrZsAYAphfHwlvJIe/aoXqmvT+G4xx9Xnu3QIVw2/TL27NF9zt36LPZAz3wWlCP5KIDWp88CkCHxTHvuqDrzWVi82KewTkYGnnhC+cadagXetn49DOXuvrn0JD4z8wVg2zbsADC4aRMGt2zBFEQB9jKAA08+qQ6KRDATymnuAaIUYP/xHzgjMRFISMBZNiZv2hsvvohBa7f3vUMA8MwzeBnAU8+cBmzYgONHjuDCuN8AExO48UYgNfUTihM+9JBCq/AB+A3i4oDk5FS8uu0M5OXp+ZcskaJ6fv6Z2LULSIiLA/AR5RULCgCki15u1y5MTVn6dGoKwDzk5yOaQ01Ls/li1GLJydi1C/j7+Zuh/O6YZuL27ZgPabfGAcANN+CqC/ZicNAUMnAcZ8BTTz6IwwDOiTuJUAg437cXOHQIixefCSQlobJSTdm5Zg0uBPBvhW8rZ/jii0BHBzYvuQWX+Xyq4wPw7zfu1XzbsEF9uH07Xkr5OpCWhjcffxxnTLwtsTi/H29edzsus3FsbAS+fvXb+PrVbwPr1uHk/v3KU91zjz7//PMKh+/ahaQklUmmpGjOndPwXeXPL7oIyMjAR6H1eQgA5s1TzmvuXODMM3HOfcsAKN81F5rTwaDm/Bl3365wd1wcsGkTkpKAnJyP4JKjLwGYB9x6K6ahYff5gHe2b1d6F8BH4+JwzhM/h9e4aUDXmZqSioO15/DMc/TlY8cUMr33Xs3DQMDVd54G1fjBVEq+nPeO6utmzpSKRUoKsG4dDtgzJAH4coEUEqanASxY8H+NUvn/Na8/tbU9lZc75Zx9NunzCbUIOHYI5uUxCMHi2dhI5ufr/8XFOtkZhB04rtNtXR3T041xo76eLC/X6bqrK4qsy83VidfcquFh6vRZWkonjlVeLi+nt1eeTMg8sHCYZWV22m5tJevr5S1UVzMUEptEUxPJmhqFz9LTWV+viBHLysjhYU4C+n9xsfOyQiFGywNKSxVGys1V6cWQIS5Nzy9oHhRHRhzCcNI82OJiOimEsF2D5eXy4JKS5Fm1t+v32dnqw+xshavKy+n4mTIz9f2sLIWr0tN1/Ddvlnl5Cnn19CiclJ+vIqpIROw3UBj2LvO+3Yk7EtF4DA2xqEiez/i4IjN+P513mZNjY9jW5hGsqM+tDo5lZY79X5Rd2zSG7e3yotPTyYIClTN0dZGpqUxPpyPc7uqibl5ZKaj82BjZ06P5V1np2DXi4ynPIiZGDCYpKbpGd7fak5en8a+pIUtLhewsL5eHGomoJtBDf1ZUkD09rK83iq/GRrK+XvWffj/Z1iZ0aXu7+rGri6ypcYxB7O3ldphyRDjMIzCi7+JiB7xkXh6PQPWGYVsnoZCeLxwmGYloXpaXMwAwHJYHmppqlFsNDVFatcZGRSyKivRMsbEKX/r99Pu1NLxymv2Ao4kbG1P0Mmx/YyBA1tVxaMju0dOjvuvqIktLuWiRaRA2Nqpvi4vJQIAbzUNta1Mburr03BwY0LxtbPS6lJ2dQsGOjVE3NzhsczPJ5mbdb3TUqUswEpHnWFWl/rCwukdwvmwZydRUfa+ujsFHH33/PbuVK6PlEqfwDq5c+RfP7oP4OhAMAj6fAHlxccCttwo5t2kT+gC8sn8/cO+9OPz44zrBHz2KCQCbjxyR5heeBSorgW9/25OmA+66C9iwAeePv2SwvYhQVu8+pR06hLg44M1t24AHH8TU+vU4vHs30NAgr3LHDiAhAWfseVPArgcewMyZBvIaHweSkjA1FQJuvBFnPL4KF11kjkkwKBLmEyewcKExfSQlKdEO4JKFJ4GZM3Vq/8pXcMbjq3BaYqIIlp9+Gq8DmHr6aRyCDnAPPwzs3LYNmwEMAkK3HT0K4G3s2GGI0qkpeYmPP46Tzz2HXXYNPPQQ3t60Cdt27cLe8dME3pk/H3juOXkmhw6JCPmVV4T6M8/iJCBV7EOH5Ol5TDQeIfKuXcCPfiSPvKND71deAV58Ea9Cnl4czCOYO1de857TdCB94gns3w+cj51obARWrgTOfa0TJyHEZVeXQHpvLrweO3YAsyb2aky3bVP/rlkj8u0lS4TMwAQObNtmSMmDosm49FJclvIO3ky6BkhLw/i4HBrMnStP+4kngHvvxYkTh0Wp0dcn7bwvfhGPProHDz8M7N//umNX2bYNwK5dOGv8TSAjAw0NwMSTT2Jq6nVBYg8dwjPPHBZU9qab0LrmNJw7V+jDPXsApKRg5/yr8KlPWQTimWeAtDS16ehRx3SCu+7SOD34IJCermHetAnw+TANAW1OzpyFAwAuTnpHHvb4m7h4/mG88+ST2GtLaFZ6OvDZzwpJuHIlZj3XCUxMCIQxc6aiBEcPID5eU9Png8ib587FnueeA3btQk4OcHjlSrxz773Yc+SIQB47duDcic24Ai/JA3zsMZwEMDg+DnzoQ5iaUpfNSkgQGOTuu4EdO7BwIfDkk0DgE1cpKuHzAbt2YeFCc7ynpjA+Dhx/6CHgjjtwAYRJy8kBjq5ciWuuNpDW/ffLe7v3XiQlaTpfeaWiCefNPqA5OH8+cMEFetbHHtOzPfgg3j5yRNEJAOcc2hkl0/7iF4HpaSGWDx1Se848E1/I+A2wYQN+c/nf431//cWzO/XXn9ransrLnXJ++Ut2Ww6DLS0cGjLwQVsb2d8fPcV3dChOX1GhepjiYqamRouTBwaU1pg3j2Q4rFOxEbzW1xsZbXOzvhAIkB0d+kwgQPb3c5/F7FlQwE0wKZvRUS5aZNyEkC7e6tV0enns7pbnlZlJYI1O0DExBI5x2TIdMr0C8eZmWv5oQjyA9fVkYaEjC2Zr63vlcdLSGIlYvrCtTQ/Z0qJTfDjM9nbje0xMJOPi2NdnYI/+fh6B2GQ4NqZjf1sbG6F84OPWnjegvOAAQBYWcjcE1Flp+ZenYbp0cXFcBhW7N8EKiC2nw6QkeSnt7Tol19fruF1Zqefp7hbTSkqKcidDQ45AGzjOjZbX6+ujvhMXZ7ItK/Qwvb0EbiVjYhgOiwNyaEjjWFRk+nU1NQbmGJQHHRNjpMsPs9tyQExNJSsrLa/bJI9hcpLANgEYxsaYkiKCYuX+hllbS0k+maehovVbea/nRdTUENhODgwYCfJmAZuys1U7mJjIyUlN2bo6GknzI2RsLE9YvopNTfpOUZEKppuMwzU3V55eMKjIRXm5PtPaqj6vr1cNXmKivMGODrKnh/0QuKu3Vx7zaxCjS2YmHVDkIct3tQIEBllb+y6Jn+xszeeaGgJd7OnREtpi60J54iat1YYGzWPAFXED1Y6MG9jJrCyvoLyLbG7mestt9tvc0lhvIEMhxsfL+8vM1HoAAvRkgqQv2EWGQpy0vgM6rCB+N9nUJE8zK4vJySpgB9ZxfPxdICcIwAYMEJgQmCkQcOvfA4q1t5McGRH5QGIig5df/v57dmvWyCU9xXdwzZo/W8/uA23sttqGCzwioENGBisrtcA2QsjISTMuWyDAxCgEWgGGCdzraKvS040ANjaWYQiQMgYBWVhayrcg9g16xiw7m5vsuh412Wvehm+J9r4+A+xBgIZFi8ggBKpZsEB7fsTuPWeOwjvAXq3+ri6BMWJiyJIS+u07XL6c9PtluEzbqtnuPQwDyCQlsbFRBny3Pe8WgO3tQvvNmGHGLS6OrKmRMff5uN42klG7Xq9nxEtKtOmnprIbKgR/zvpnwIzgFgigw7g4huz/62Eh1qwstSstTWGruDiOQOCXfhu3x82INpuR2WiG7i7vMFNVpdCnMct7VFJemE7kynsJbOTq1Qpz1tXR8aOtXk0H6KmoIFlY6FCQbW1GJlxV5ajWODJC5uWxvNyYSJYv16Gju9so6gLaYTs6dDjIzjbx1g0EdtKrbPcopVatIllZyXnzaIazSyTdZgi88ODSpdQhIDeXnZ0WZmxsZGOjaeYVF5N5eQp7Z2SQ9fU6UJWVydgVF5NFRWLzqKoia2r4EITGZH+/ruHJFXhtT0w0VqFAVPXWq9pvbY2CkpKT6bGWeyKnbW0KPQYBHSTLy3UI8/neSywwOanf19QozpuRwVFbn6ys1HNXVkbD7XZgGR42ZGxJCePj6cBPwaCRA3jox4QEWafSUo6PW78lJtJx5CUlCUATE8NVq4xZx2jB9ts8Zk8Px8c1xMcAx87zHJSaMECtwvlGCM6sLK1R7/CZn6/PpKUx6Kmz/MXY/Y94faCNXXDlSieGyWCQlZViB/H7tWkUFJi3NjLCYFDj7fcbxVRaGllZyTlzorSOZWWGcpuc9GgeNYHb2zk8HOUCrKujY8/PzyeBvU5osqjIFtrYGFlfbyxKa7W46utd+DwvT/spsFb5qPZ2tWt0VBtCdbU2ykCAhYWM5pFiYx0FFfCUVxHA5mY9X2+v8ShmZZFjYyws1HMsXWon/5ERcmSEw8NypkIhkgkJzM7WnrRqlfIxnsp6VpaYZebN85Ccw3biPsrFi6PM+snJundPjwzqihXqJw+RDWwjw2H29VkJxtgYu7rULiOtICMR5dYMbp+SorbcBeVjZ8yICpq2t9NKNo6zqIhO3ZpZWWRJibyfwkLnQfl8GpPaWj3vKOA8ge0w5F1BATk56bwqsdYECRzTuAwPc9Uqk7Xx+1lcrO6srraIwuQk3wI4MmJzIC2NwAHlsmJiRDUF8WqyulptGRggCwqknr58uXmBA2R3tzb5tDQ2NTlmKj2X38/mZpq3UcmhIcvvFhbqmh0dpN/P7m61a/Vqm48tLSwqUp9mZ5PAt+WdDA2pL7wykdJSdnZG109VlexeZibJ/n4Cu8iODs1PG6uqKptfTU36T2urjfs02dPDUEh9snixMc5Y/isUoutA4JgrmfGqWDwJoLo6fc4jcvH4NxmJaNxHRx3glMuXK4/q95NdXbYGB42f9ihZVcXUVHX9qlV6xoICu+bQkFvgwASBDayvp2NxWbTInjM1lcPDjLLqFBWpjeXlnDNHvw+effb7b+zWro1uRKfwDq5d+xdj90F6uYE/7zwyP58FBUalFIloc/H5tLImJxXeMyny/YB2yIEBFhRoQfX1aYNOTpahCwapH6qquB+CjjM93XEmTtrp0CWtjRSaNTW6T0ODiz/l5MgAtLfLIHR2UjeLj2dKCp1cUFmZnVL7+wVuyMrS5yz0GgySDIf1t6QknegbGtjebmS0CQnyvDyNu95epqTYRuLB9gcGmJysDau8nC7JHg7bQm9rUyd4Vr+kRM9SXy9jPDqqew0PO+kfR4QbG6sNrrJShw8Pnr18ucI8VpNUXGwbnRc7jo+PhtMgeD4LCiQ9M0Z1TlUVOTIigzc2pnsHg07eyOM25sgIKyrs2crLmZWl21RVkSwtVZi4vFxeXXs72dOjsFtxMTk5qY2qpSUajuvuJquqmJ1toejly9nUpGsadSUZCjmjy+5uBoPvkq+pryfz8mTECwpUtjA5KTLpSRs3L2wbDmujzctzSvKsqIh6eZOTIkOuqZERLStzwJdwWENQVUUyPl5eqVde0N2tKERhoYcdIZuadI2CAgaDCtutXq3PmgxjNCZYVUUGAtIEhKD1zc2aiywtlVGtryfT0hgOG0l5Vpa+n5fHvr53eUKVlTo4Dg3R76cDQg0PS/PPm+teRKS9XYe2SIRaY5mZ+kxqqpNAYna2QpDNzWRpqQPAMD1d411ZSUeQ2tOjz/X0aJJ4gzA6SqalCbwSH+/0IbeYZxeJkGxtdfyxQ0PqQzY0aPKlpOh6+flqU1ISly7VnAn+8z+//8buV7/SBDzFd/BXv/qLsfsgvdzA5+QYz+TLZGurJuzYGJmcrJ9jYhTezM3VpE5N5TELnQBrlauxSV5VpX3PWzx+gMzMZG2teXcVFdrhvNBFczPDdq3HLZTpFZszM5Ps73cioZ2Q5t6cOZSxSkggAyKC3mTh0cWLaaG4aW1YY2N0ULTcXLKiggUFxgDf0iKjEhenTTMpSeKkFlpkYaGxxAdV2+bzORReMKg9rKKCalxNjQxtQ0O0v0zoMgQRN4dgodu4OFfHN2zP64VlX/PCmImJ3GLtGLLPjdjfGR/PIxYCZWwsmZCg9g0PuwNE2AtjmWDnPoAzZqg/7rIQ3NgYtXG1tamvi4vNM9hF4GcyBOGwTvElJdENrr6evb3GgRqiNrzYWHFfjo05AVtHEFxW5owtCwrUZ5WVDAPyGH2+6NwqKjKO0zuV08nOlpHPyCB7ehQi9/mYmOjV2d3jhGWBFRyx8cnJoZ4pHOayZboMGxp0IElK4n7AGZwtMFRsWRmZm+v06bxIZFsbNRc8N8mMUHe3jX16uixrSgp7bY46Dy4uztXUMT2dzMzkCUhUthMq0g+H1T37AN2svp7Mz9d9KyrIggLlblNTo95vWposSE2NDlfV1SZuO6FQYn+/1lt9PVevtrDuyIjltjdw1NZYV5cRAVRWqm/q68nKSvb0aPp4h6XubhnAfbAQv6G3IxHzviMRbrJr1tcrMlRcTLKoSN59TAy3QIoQ3nkyHNZ86ezU/ZmeTra16fddXaTfzyMAt237IxSV/8XYnfLrg23sfvYzsq1Nizcjw8KCQTI9PVp02tWlk2tDAxkfz1AoGmpjJMJVq7QIq6u1Pvv6qA0sI4MhWwDMzyfj4xkfL2M45hkVz5MbG3N5NA/XwcxMJibSeQPj47ofGxud5+gJY7a30+UAsrPNI/P56K3c0VFa0fQuMhCQIe7piXpaZhS7ukg2NjI52cJaNTWsq4uGCWXgt+ths7MJ7BWEfmhIJ/CGBsc8z6EhcnRU7R4ZEWw5aM/R1eU8HWZny5AYa8zAgOVYhod1+p+clBc0MMBVq3TZSMS8F2P86OsjWVHhwrYOQGLUIZGI/s7R0aiHZ1Dx5mbb2CYnnTSSV9IRDNoGa3UcwWB0LCIRuqJlBgL6vo1Pdzfl5bW3a+NtayM7OtjeLq/NA4A0Nmr8GhupQfQYRjzQkAeSGhrSnAgEouUHw8NqmyfDE4lo4xwa0tysqmJnp3mAXV3Oo6itpYxXQYGetb+fZWVm2DIzNV+rq92G7nkcS5daHxkhNauryeFhZmebJxoOMzHR5l5Pjzyc9nZyeNgxoRjBjDo2OVnvjAzHsGNDRNbUsKhIhnBy0g6LTU0aJ28BmgTCsmUks7JkKGpqyLY2jo8zGuJtb9cB0dPLSk9X+43AgKWlupERRodCdEX0FRXU30MhcmgoWoaQna351NQULbo3INLkJJ2aBUMhMhDQ/Ozu1vdaWzUWWVkupxcOW98mJZHNzWLcCYUY/NrX3n9j99RT6r9TfAefeuovxu6D9PIGfvv2IBMTzdsJBDT5vdNoaakmcGamNpqWFoeA9PvpkJshWK2PeS7MyNDbFlEkYiGXjg6dsktKtLgyMlzdGcfGnFF0OZ0uIdJYVuYU0let0oG6ri6aW2BZGV+0/FFKCl2ITWwqAwS2M2LfdaJa7e0E1irs0tqqna6mRptKMOgkTNjcTCfU19wcVd0eGCCrqpiTIwerslKIM2Znc/VqykPz1BbKypiS4gmHP8WhITNmttl71GRiiNnG+npJr8yYQTIcps8nj7a8XF3n5VvKy6m25+U5CjCOjpL9/S5sChwnw2Ft5MGgNkvz8ICdukdWFkMhPUMkQkNX7iQnJ3kQQmBOTtpzWx5sZIROA4/hMNnW5vJJwAZDZDYReJnl5TT2jqDQma2t6pfERDIhQZtjUhKBYS5ebKf+QIDAI6yokJewYgVNUkh0YU51wJh22N9vygvbHTuOdygYHpYixnrAKbB7Wny9vbpWdzdduC4YJNnfz1WrTG/P+rO93RTIa2r0+0CALCx09Zx1dbpvKKQ+ycmh02hkTQ1ZXMzERA1VY6MpOeTmMgSwuNjWoHlw+yGUaMQOi+Xl5HMQ+GmLeYeE1L+5fDnZ0iJgSl4eV6wQ081r9n4aAu7ExGg+r1hh6OjcXK331la1LyFBbTIpqBMWlej1niEmhk1NmudBCATVZm2JRKhJUVmpqI2FM7db1KK7W6HWgEUqOiGl9IEB2f3sbHv+sjLW1gogt2oVCTz9/hu7Z5+NstGcwjv47LN/MXYfpJc38N/8ZtChFQW1FlVUba2ntRXw9EJdgffYmOVY2tpsY9xLYC/r6rSIgWPOqfL4tYABbcSNjfp3YICjowqHpaZSF6+v10ZkXkU4rLXT3a3rxMZSO31srFZHWhq7uz3Qx3Y10udjW1u0DncVRG80bx7JkhIuWGAaXg0NjEAinRweZmWl7rVsmZ2Iw2Ftek1NXLRIoRkvh+WdstnR4aRcODBAYJpLl8oweICbefP0PU/8dQvguCG9U/jICMmqKoa9MGZjoxqTkuLAH0xKUq7TLKW3UTc2qr1ega85vBwf1+axESCDwSg6srmZrKsjsJN3AfyJhd44NCSj2dXF6mqBd5iQQOAFsrpaxgOme5iVxVWrrPA7JoZVVXrGIIT+FI3YZqEWvXdqqkHiN3LGDA2f6MF2c3xc/3/IwrVe0fEQJDC6BTBQzkqVI2RnOzHWGTPkwYZCmkMRC9N6QrGsq+OyZeQKM+4sKYnycwLOo1HK82WOjprn1d5u4dFdsnLt7c4wMhzWIaGoyIGa0tNJ1tXpQGBebMBCtcBeeqrBkxBQiElJHv5JIcS6OkOodlgecLWBOzZqcEdH7VqrCWwzDtiARSv2srZWy3hkhAbqWUegy7hcAzziGSy/X23IzuayZVG2NB0IHibQZLJMAXqoWF1rrQ6SgQCBaQK77T2gvaO4mAyFWF2tNQTsZmamU1py8yozU0AXYEI3r6vTwczAVt3dtH1omOzo4FbgL8buf9DrA11U/tOfRsS8/+KLWLvuLABTuO46oLUVmJraByCA7dvFCu+pkjzxhBUJv/IKsH49gDMB+PCtmw7jG9f9BkAIU1NjmJ4G9s48T5XL2INfbDgfqKnBS+Pn4+25l+GZZwBgDFu2RHB4+gwgIwNnnw0gLQ1nrO/Ea6+pfvMzS04Cg4Oin9qxQ9WuKSnAtm2YPx84b+Ze+HwX6G+FhViyBDhyZA8mJlRY7UtKUgHrpz+NCy4A3norBIRCOK2gAAsXApiYwOrVYoZ65RWguxvof02CRNi2DW+8Abz2Wgjr10eQlAScG/eOinYjEdG1X3CBFcy/he5u1d8CExgfB/btm8LWraIiOw6TL5o5U8W3cXFAQoL68sorMSsuDnOTksRg/zd/A+Tl4dVxCccgPl6FtykpQFoa9uwR09Xzz0twYuZM/bx79wieeELPsHGjaKhe33MW1q0D9s6+UIz4CxdixowFmAuJNP31X1ub5s4FBgexcCHgS03FofFxABM4etdduO020aEBW3F0/XpMTAD79/dh8MQJbNsGrF+/By8DwKJFSEhNBZCswueyMrwKYGrLFtPeORPz56uuOSkJmDFjPkZHVaA8G5JJOnECwMMP43wAN98MvAqgpAQAdqoPcnIwMQF87MOHMXMm8MwzKorG0aM4LSsLr0+dD9x2G1p3XwF0dGD3btFcxcQsAFJSMDoK9X1MjPr2+efVNIQwOCjOAsTF4bRtrwM4S43NyJByz/z5ODlzFi6/HMDUFK68UpfaskXz9sorIdWQBQsk14MYxMTMU0X6/PmYAvAmLgR27cKhQ5q7CQmQ5M5HPgJgAm+8AWjmHgRwQh2VlGQz6MMA5lgl+gg2X3A9gNexfDlw4sSkrpWYCODjAOYiJQWYM0ciXhdAz3UGtBYA8ROsXg1bizsAnC6ZIwSgETkGEeDNwYc/DLw+8VGoNP8EgI8B+Chw6aXA+Dhe3XYGGhp0PWASL754ApfM3aumZ2TgE1L6AjAfQIyUHm66CfffD/zwsfNw000qUv/STWchO/tiYNEiJGZl4X1/nX76H1ZQ/nvKqP1f9fpTW9tTeXmnnH37ghwYkLfT1kZX7MyeHkYgwMawnUa9sJB3Ms7K0oF9pYVLmJlJpqfzae90XlLiaLK8sgW2tHh6kvKc4uMV+kxKIhsaVPTc0yOvcHJSp76ODoFWsrIIDHPADpOsqCCHh7kPsDq8vbpHcTGLi2lJ+wCBA1xp+RJmZzM1VTkWYGNUVLK1Vaf2qiqyro6Tk1HF5RPmWUWgeiaOjal9xl7f2yvvIgjIY+vvd/VwEQvdeDnOpiaqnzxkW2UlWV8vmHVQuazeXpKhkPo5EODAgJ3YR0ZcPvM173l6e+XRjo46UmI2NMj77OhQrqS3l8Bx5VsyMxX+zcpidrbAC3eZN1RdrWdW3+yKSh4EAmRjY7Sso7GRbW0WDvRg65abAe6Vkrl5gXl5VB5zZITAcW6HwDWPQ+UFGyEQzpOAFSQHOWOGTvjz5smpCgbpxkhFzj/maxAoaTfgNEQ9jysUojyp/n6x7w9bOYwHhDFwUjhMfcYQtGEYcCU52StrU44rEtFF+/sVam9t1cMHAo5wnP39es7WVtbVKZzb2Kj5fRBwNGTBoOY1W1reI2Zq4FjS55N3Y+Ch7Tbvh4ZIlpdzn621d1NuhS08y64uMi3NoTNf9NZkYSHr6uRBVlWpKR4F3+rVjKJACwu1jiMR9V9qqjq2qoonbIwYDEoFZWjI1Rt5CFHW1Gi+hUJ6xtFR0ueTh2/0fwyFtJ7y8rhqlUV/2ts5MmJ548ZG9vRIMNnvV0E83m/PrqdHz3eK72BPz5+tZ/eBNnbBRx91i4GlpWQgoM2iqUkbdm6uFl5Lizb7xkaF3yoqojkMk0wZGDBgSV1dtGCsrY0LFtgGVF+vxd7bS/b3K85fVqYd1svzpacrfjow4DbQpiaSRUXKuVmhMhsbOTxsuYKqqmjiPjHRiT+vXk3H1sLJSVcUPjQkQzgyojbR59OmsHy5QiuGvPPykl6hNAsKyEDAgVVqa6k+6u7WxlZRoc8WFOi5ysqiEPSysug1EhPFmBEXR6eXk5XlmFGOwPJaubnaULKylEsCyJYW5UiNa5Q1NXpPTkZLFVJSnMI8Kyu53XI7VVUki4sdaNLJd3ugldhYMhLR5yYnyeXLHaqPwSBdnYbls9jdrVxgd7f6MhjUmNfURFF11dXa9EpKSL9fnw+FyOJioWdNsTscpisgz8+PFoK7/KvfL7DE8uXKU+XmqqSlo4OhkIaQzc1kb6/mRGmpM1K9vRqbcFgozuFhkgkJasvQEJmRIZCHgXVGRzWu9fXWvuZmDkC1fX6/rsFIRGPvIXFrahiG8mtBgCwtlUHyErRtbTJw5eUav4oKVz0yNKSue83Gl+Gw8lfd3WRTk0LK4XDUSoXDMmSTk26++f3WZyMjkoXyJrqHcLHSjMlJap0NDHDZMisJCYU0zgMD5OQk3wBYVWUGsKFBh5yeHl0rN5csKFAOdXKSY2NWslRRQZaUuHzrsmW2Nj2qofx8umR/fz+5fLmrqaPfrxKPsPV9KKR5VlrKwcE/AhrzL8bulF8fbGNXXa1gfyRCpqayvNxAHmbgGAhoI2tu1mZdWqoJv3w5x8b066YmGZY5c3SibWujjmmRCNnTwxkz7AT3LoQi/X4ZkkAgir/2GIO9nFx5OWtrHfcyFy82rzI3l8zKYmOj5t+KFbIHjETI0lJHYBwKUafTxETW1+u0W1hI3X90lGFIcug1QJtye3sUPFNTQw4Ps7PTTvgGzvHSQR6BBtPSyPJyhsMGmBkbc7D3yUm6AnRmZjIEJetZXKyDgyfWZ9I7Ic+rLisj09OVWykr0+aZmanvVFWR5eU6/cfFuc19eJjRTbWoKFrLGBdHpqaqL7yc3eSkwDd5eWRxsTbW2FjHtFJYaITJ3d0ySGNjLq/oabWNjpLs7dVY5+e7Q0DYPNmUFHnEW8yDY3Y2mZzMmBgDm7S2EhjUePb2Mjvb4PfDwxwfNw/Y59PAtrYaofi0+sDcbp+P5MAA29qM+KChgX5vjAMBzS+/n8Gg2gLs1Pe7u8m6Oh2QWlrImhouW2aeWGWl2lRdHUW8mle/YgV1yMjL46JFyiV2dxs7TFcXGRenfvUOiVVVbGqy/LaRMrj8eH09ly7VusnJIdnYyEnPQ6uv1/NMTupAlZvryBXi4+mAL+3tJNPTOT6uZZOYqCnwlo1jcrLWXHOzrYXMTD2jeWQeCHhy0gBWo5oS252XfdzVkOblGeI5NZVdXRryvDwLZHgRj8ZGNje/az1a7WVzs801I143EKn6ub1dVjU/n2xq0rxua3P0gsGLL37/jV1vLx2LwCm8g729fzF2H6SXN/DAowQ2sgtgaqrpXXV0UHx4Kwm8QHHyrWdXFy1p/n0C1XzcQlLz5mkNnwAsfLWNwLQLc4YhFvXERJLt7ayr00FQHHuPEGgncD+Bey15vYYxMWY0S0rI1lYtfojL0QOgMCGBbGnR39LTOWzhQj+EzOzuJtndTZ9PC39ggGRpKcvK6KiaKipoyf/19v4OgQ6BACIRoztbSZUc/FinUOMIPAEVzKek6LpiSnmBwJ0GDNhp1+xwxcQ5OQIfzJghcA6wxu63mWIaOWCIxnspJOl6AwS0W3L/Bft7h/XdBgIBh0SUHt3PmJMj8Ib4D/eSLS1W+reLHBjQqdvKHzzmFY9pZQ1Ak7Qg8/MZiZgH39Kiaxn3Zm0tDSG5kmxs5DGIC7KwkGRRkefAaaPLzNQG2NjI6mqFzf2QAG9XF8mKCvb1aeN8DeIBLS622sn+fgFCenpkmPPyCGzkJogvNT6eJiZ8rwx6Sgo7O81QFRU5/k2PCg+o1GRsbKTPp3mWn685pdKbGv19YMBVY1RVaZzz880b8vvZ2xstvfPmLTMz9c7KckjSdztYwDSDQavDKy11qgbAw2bQdwowFAoZdVqAgKGYBwbI1lYZx64uFheTwBonmce4OIWNOzrIQEB939urSEVSEru6yMfNawNW6JCVnq5xWb6cQFDjbJ50KGQIXCv3WLBA38vMpP4wPCwr6vezqMjQw4GA032bMYOOLg5YoTBvXh7Z26twZyTC8XHaWmnX3OrpEfApEGBsLLl9+x/Bs+vvV9tP8R3s7/+zNXYfaIAKkAzgWcyFCOBTUi4F/H4oifx38PkyAXwcPt8S7NgBADEAIgDScBqkfpaTA3zlKwI7TADw+T6BkpLTMXeurnkagPp6Iwu/9lr4fMJzpKQAwBIAl0LQhCFr0+s4cWJSP27aBLzyCvbt24FdAC6GpMGOHOkDiouBQAD79h3E3k2bcHFiIm69VVe6+27gM2kH8MPBz2Bq6lUsXQo89xyA++5DTY3AHL9+/jRhAsbHAXzE3ufaU00BExMQv3k6gFS9x8eBo0dxBoCZiYmYmjqIkREAM2fixhsB6bEdw803GyAClwKYjxtuCOFrX9uDZ555HUAfyE4A3QBGIIDPEICfAmjBxo0RAG8B6IAU8X4EYBNefPFRAOeJTd/1/nwAPlx1+Tt2nQwA5yImRpiGfft+CmAMaGoy0Ylngblzcdpt38J3+67B2gtux8c+Bnzn7tMwNAQshHQHT976LaC4GDsefxw/+IHwE98Z+Sekp88TmmT7dpSVAfi3fwOwALjnHvjq67FjB/Doo69i78qVWLIEeOihSRx/7FdAbS3Wr58E/vf/9ojxsQNi6d+xA8DEBDIzgU9mZWEbgKsAPPTQJsyeDdz+2Cfxuc8Bxz/9adx11w4DuszBTgDAZbjnHl0LCOGRVy4EFi9GS4uaCQAfm/Eb/OMd52FPXx/uucfG6CtfAf7qrzA19Rg2bBAw4o471C4gQw+ckIBzHvw+nnlGkoKFhRr+rVsB3HYbVq9W26++GoiNvVRjuH27FCGuvBI/+MEe3HwzcMnErzE+DtNjfB67dgEvvvgYcN99wLZtOHDkCIAI1h69BhUVC9To227DjTcCxcUfBTAgJY+lS4E770RhIXA44xrccAMATOKmm/SsOw4dwjPPAL/+8OeB225DTQ2AO+/E+MqVQHMzPve5KZwF4P/5f8YA7AEeeggHTO8OfX2orj4LtbUQeKqlBWfc813ceivUMTU1Ar8ASEsDcO+9Uoe49VbsxblYuTIE8nV1yOAgUFMj0QqfT9fHMSmaPPkkcM89+NREJwCJocyfDwBzkJw8Dzh0SP9fvRozZwJr1+L9f/1F9eDUX39qa3sqr/ecckpLlS8qLzfP5GX6/bRQRoAxMQaP7up6r/5YdbV9ZyWlWr7TOB8H2d4exU14oQ3PK/LCbt3ddLyaJSVeCcGgA6UwM9ORrgDD8kA8/L9V/IbDKvSeN48Ke3V0KP8wOcnubmNzyc4msJEsK1PocXSUrK5mI0Qm7OVdmpsZTZqPjuo+Q0MEDryH/Wlyki5MGwxSX6yoILCTeXkKocbGytuNibF8knH/MT1dOTELc1ZW2v2am12+zXVQaalOwF6I1fTIxsaMSWZ4mGVl6ucFC+RxrFhhBdteSUNFhXKXJSVkebm8kupqAjuVC0pNlbdnNXWsq2MkIg9vaEhfq6szcFFqKkdGzCvOyCDDYRdC8yjlIvBIwgf4nAeSiETIsjIXSszLU//IMzlg4x7kES+Ma17XiJfXHBoiBwbk5WVmcp951B5bf3U1XcH6Mqi0w1KE6r+iIrt3Fzk8rLloZOAcG2Nfn/oQ2EvGxak0xQqmHS9nb6/m39CQQes7yKws5uRoTni1dsPD1C+MV06RkBc4MmL5X88bCgbZ1BQFBDEUsnF5gWxuZnGx1z8r1PcdHSwp0ToA1pJFRXruujoC02RrK+vrjS2ltJTAywRuYUWFeeUGwPEAWAwEnNc2Pq62ievzYbK0lKtWyVNLTvaiETsJBKxEYZDd3SrHAfaqVjBkoJfRUU5Oqt+Hhrza0kGuWqX5qXKjaUVmKivVltFRdUR9vZ61tJTA97Um8UcoPfAQX6f4Dg4M/Nl6dh9oYwd0KKaekRENNRYWcsYMLRJPWzQ9nWQkwqVLteB8Pjpgh2e4TkCUWFqUuxy7iljp98pgZmezszPK5DVnjhaUh+4Lh+lY9dvaqLBIe7sWg1en19zMujpDSXoAgI4O/a2tjYyPJ9ClUF1xsWPwZ2Mj2d1NIOCB4BT+KSzk4sW0MM00Y2KiNpX5+UxPVzh2wQLK4I+MqNFpac6YMxRiXZ02hjlznG1hYaFtQKmp2k26utSW7m7HeJ+drWtEIrp0T482OscZ6TGC1NWxsTGa4gCmmZdnYbWGBgvRbXbsLx7HpsdCn5VFMhyO0nwlJMjADQ9r81dcmSwu5tCQDF53N8mSEl2rsZHAz/gapACQk0MGDLjR1ka+CETZUcrKyNFRof0AMiNDOaT+fvW5sWg3NlIP71GWWeOPWI4MCJA+H3Ny6KjGHBCqq8tCZLtJv98hijs76SiztsCULhITHVp1wQLqUOHzaewiEYegzMmJFlx7xDqTk+rHggIzWNXVmqRNTW4T94w2u7tlyY3ntbr6XX3uTbj2dhf+Y0YG2d6uOZKczMWLNW/i4zUvKiv1PIa9YThs452ezvh4Haaqq2WYTIdWi3V0VGH71lZ9OT1da8To25Yto0OB1tdrPIDNWqOFhVywIEqCUlFBJ5DsibZ6B6ueHuqw3NLi0vqrV2veuwOo8Z+ysJAcHtYBZHjYgT4Vlp8msN1Qu8cc886jj/4RwpiDgy5vfyrv4ODgX4zdB+nlDfz+/UGXx/H76eLtTuetrY1+vy34/n6XUHf5tP5+Z4BcJts4kTzCX46MaAMIBBSP9/DkVVX00CQ6Ae60ovS9BHY6Zg36/czMFGch29rsRHlUm2ZbG8vLhZCbnDTQSGamE9JSEe56sq4uqoxcUMDy8qgidyRCMhzmwIAWc2fnu9hE6utdX4TDdECDcJhkRQVzcsyIDA2prYGAO0lzZMQBJOT5/pge3RhwjPHxetbGRlp+Zg2BR4xtpIPABqt9vt2++wjz8hxIzxNg10Zq6FSGQo5BRLpktyp3VVjoOC2DQQFQ5MWvJUdH6fdbfiw/n9vtwNLdLYM3YwatfGEvWVWlnM3AAJmSwqVLjfoSUjnX2Gw27sp2xsbSeV/AXpWWGLXYfqjIeWSE5gXdL4MWG2tF+muNkKBdagkAgcoomXBCggxMQYF5bhPKbZnWIru7ndcEPMxOAyQtWqTnkZF6OQpOqanh2FiUOWdsTEwmhr1gc7PGqa9PyguZmVG1DOXjAnpQk/UAntKETEzUAWd0VLmrsTECHQJGmXK5z2flNLm5rKoS9J7NzWRZGWNiNKV7AUnsFBfrIJaaqvxoQQGZnc1VgMM77YYK/ImoZiEwzCPwCt1fZgQq4ufAgDzq1FQ3h72DK9PSuN3z0IeHNberqlQKFBtLvwGQYmMNnRwTQz+M37anRw/V1qZ1HxensgkPPGVw5/FxM7ie/s/YGJmfz85O8tpr/wjGbuvWaNnHKbyDW7f+xdh9kF7ewJ9/ftDJ1nhCrCwpcdy/PT3aUMfHo2hmRxJraEunPZKVRRYVRfXOgkEZrOXLndzNQUuQe6dED1nOmhoZ2tJSsrGREYjZw++n5E08NJxXktDQ4Nyhg7bIPRj68LBsTVsb5alUV7OzU5vUqlUWku3v1+ZSVsZwWKfUzs4owt6rQ+LAAEdG9HcPZs/ubrKhQR5Eezs5MOAYS7q7tfF59Fx9fRYR9RZ5c7PQemVlCmsWFqove3u1o3nWq6WF9PsZiZgHm5+v73sdZn3rRVvZ1cXRUXmRnZ36WFcXtakMDxPYrvBpSQmbm6MeyhHP+NTXk2NjjES0adXV6bMzZtCoxQ6QsbEyBMnJFvJ6mUELdwLV2jBN2cHj01y2TMwrzM4mly9ndrbmUihk3vbQEGtr7TCVlUWWlmpDLS01Srd1bAcoIM5GHjGwEwMBB1N3QJa0NNbVWRUJ4IxzQQHJ+Pio5zUwoIOBBz9MTib7+9nZaaTRVlPqhYI91L/bjG3M2dEhz8zzVkzdYmSEjppuYIDvKRk4AdUFhsw7Znd3FC3Z2srGRo1NbGw0wuchQ9PTDfATiZB+vxMvEEBmu6Ithpjt7XUlrm5tOA/SxGpXr9b0KC+nA5MZB7MDvXjSUx4oh4EAJycVvTBdYq3f9HQLUQYo8dbjUXLp/n6yp4eTk+rf4WGPaWkbq6s1djokDVjkZZ07NOfk/MXY/U96faCN3UGA9Pm0mWVkkNnZLiTJ+Hi9ExKignXp6TqtxcXZBD2mxZOby6Ii85Y8iZLMTDItTWGjykqjTzqmlRwbq1OkCVQyI0OrraCATElhYaFtMMGgDGd3N/PzDfGVm+sIk+vrSfb3s7lZoRCmpzs5GYdca21VGMsrgB0YiOZJLH8S9E62eXl6HkMpVlaqL7yTrhf+9KiTvILp4mKF644ALsTJtDQyLo5hwJFZu0Jyr0auokL9m5ERjRl5cke5uQZnDZOTk+qPykptHnl5ZHV19JRcVKT6Le9EXllJ5ufLaJunxNJS7Uz19a70qqyM2nmCQY6MaHirq2UwvTAocMAM3nGyqSkqO1NcLC+vtdUJg/b1UR3U3y9j29JC4Djj4+nyhd5u19Vlfbh8uSsVAY4ZEHTQkSUDx6VinpcXzR8WF8sge7JKFgMeGaGVNRzjMkAG1e9nZ6fNp5QUPW9TE9na6g50oRBNCTjikIaxsZorPT0kk5IclRWzs99zkPH7KSOTlCSv0QxCby8dmbVn7Dk0RMbEROdoIKB7xser32Jj1RijdWNKitMIZEuLnre7O6runZAgLy41lRwdVRvb26Nzqb8/Kr80NOSiIW6g29u1Br0614oKupqi5cv1GSMMZ1VV9KDmyU552pFeEbpXuV5TQ6ana6yMCs0hNfv7yZoarbmaGp6wdbPPDk6jgL5XVcXgL3/5/hu7bds0aKf4Dm7b9hdj90F6eQN/9dVBLf7SUvb2RveNigqtz5QUeTVz5kTBG6OjVhsUCDjZnORk84aCQZaX67Tm1Iwtid7bS7KoyCkbNDfr+kVFdIz7IyOMamd1d8t49veTra1Rkcru7ijhrFXl1tXRScIYcYNg3+ZNeQoA+fmWeysoIJuaXHgpL0/P2dgYPd0ODJBsaWFBgbzSpUsZ3ehrasj+flecHYnItpeU6DPz5jlBbC5dqjDfG4Du29BAx0jc06N+mZxUZxQWapdsaXFG6RhUZ3cEkmXxQs6rVtEBJBYt0ph56u2dnQb6sTyaz0enR8ehIf0DKaEPDFDtqaoiW1rkAaamWo5ur0Hjj/MuGPFwW5uFRHfxCMC6Os2PtzzPNT2dwHEndfQarMA9N5fATi5bpo8NDMgAehKCk5CETGcnHSlxba3kcAT0uFfcou3tnpgAly5Vt3V1Uf2WmqpnycjgggWay83N2kDT0+mAQSMjGlsmJEgmKWQHqVCIbW32dxM6ZXa2jLi57F1dVl6RmEgWFXFszNbD5CSHhjQ9/X6FQCsq9IyeF8u8PC5dqhILExZgVZUZ2+ZmemAW4JiFtoPkwADDYa2pmBjLM3d0yLCGwwRe9uQRtSZaWpierjFZulTfOwJTGfHyhF1dDhxWXe0JDO8WWbTVPSqHfZyxsa4Sg11dWieLF+u5CgqotWo6esuWebSj02qfMSZ5ArLZ2ZqfsbGW4jCl98ZGtSEcVnuqq9VnwcrK99/Y7dihvesU38EdO/5i7D5IL2/gVwGGftpGxsfzLai+ydNPGzPPwWm0JSZyE8SELu2zza5gWOGLAzxmf/cEIYEJfT8hQYamqkozv6mJvRAlmTtZlpVpQ/aYVQz44QEUy8tt066uJjAoD83vp99viz0SUX0OQDY0KFdg3gwDAfb2alP1+6kdJi+Pvb0qLN8OFUFvBOR1DgwQOMaQ/f4tqI5P+Y+jepa6OrKpSQYjPZ0H7TqTEAH1PvvZxL91X0+doLGRLCiQMcvLU6ipo0P9XFREQ5zIuDY2KqRVWKgLxcZy2PPM4+OdrtwaQAwfZWVkQoLCcaYq4enRBYO0cNEBAi/Qxd76++kRWGvD/RlZVaXQZVMTi4q8kOYjHqyOwAsycuXlBB7WwaS5me3tFgpdvjyaS7MCaE++obDQFDNCITY3e4jIl009/WUdXAB57MnJZGWlU1Cgz8f0dBnziBcSTEx06MqocsIasr7ei+ZqzE3xHHghWig/MqK25OeTPp/zhFhTo8OJeVUjI9Szh8NR3af+fs230lKuXq2uN6Cn2tTc7EApbW1U55pujykSkXl5bGoy9HB+PiMwZGpMjMbP85ZaW8m0NLa1aY4fsfcJQO3x0Lft7fLkTd7Jk8pavNju58lBTU6ShYUcGpJSwjHvQJWcrHmWmBjV7MvIUFF+WprmZnW1KP6GqHtnZGje9vaSJSUc9g4YdXVkVlbUM25q0rMEAhoPIw/fbuvrCIwOrbqawbfe+oux+x/0+kAbO0C5CubmRlGXeXmMjaUDHxgTEPv69HNqqp1kMzLI4mJPxEALw0I0wDBXrbKi1LIyAoNCjAEOeJedrft57O8DA6TjPQoGHUKRDQ1kXR3Hx+2E3NamNqekaOPp6tKi9SqAfT4Ce3Uaz8uLgm3MWwSmPTS7kuqFhczM1PouKIgqJrS3k6yoYGWl1nBZGbWB1NVpsbe0yDiFQo5NqaBA7+Ji9VVZmZVdpKYqLFlXF0U/Wmhy6VK+ZxOtqtJH/H4rPq6rk4EyYU3vPFBYqHsVFpIcGTEjcZT5+dpThoYoEV2/nrOiIkre3tNDMitLYdfGRseMwspKp7v3mo0Vk5PVl21tBB4RtVggIE/IaLVKSnSIMJF31zerVwvMwaws5Yu8gl7TdunuZhS7X1Cgjp6cJHNz7VAxQcbGRgFFpaWOTZ/d3SYDs5tjY/J0nbZhdTX9fvI/IXkbT4fRGe+yMjI5WW3t7nYSRsXFFm5tbCRDoSjisKeHK1bYODU2Oomj8XHNXY9pxhVOj40xHJbt9GhQu7upAW1sZDhMR0c2NGTeWnIyy8q8fNYu5uXpe5Y6Zl2drlFURPOedzI/36v/38vmZjvwZWQwErE+8ggEPF6yoSHHRdndrW7Iz6d56jt1bZN4suAH583T1Fi92pREVsnrs8ojekSi5eX6bF1dNDvB3FwyEnG0c319ijqMj9OlKrKzPfKDgJX6BMimJtbVkQ0Nf4Sc3VtvRfeLU3i/nwb4g/aaQZJ//Gq+9/d1+PBhnH322Qg+9RTWHcvF9W8sAy66CD8dvx59fcDDDwPr1gETE6oTTUgAvrHkTbyJC3FhwmH84omz8NXpnwMXXIBvPXEVxseBjAwVim/dCnzr2jdx1U0X4oYbVIR6xZ5f4oWEL2HhQqChQdf+m78BCgqA/fuBpiax73d3i+n+lhsPA3fcgc1Lf4pLtv0SM76cDra8BMTG4vqHv4DaWtW0fh+3Y8YPysGRI8DWrSh97nrcl/+spBnuuQev7zoDgO6XlgZclfIb4IYbgJoaoLYWV0z8Ci+tfhtvTp2H6WngyBEgGASuSXkb/fvOw6eSD+Cnq89BRob6YuZM4DPTz2JzwjW4ZP4BPNV3Dv4+4wD2Tp1jagciuJ87F+7/s2erLnfhQuAHPwBKS4FPfQoIh1XMfOaZIpofHFQba2uBf/kXIBQSg/zCherXxx7T5x9+GPjiF4E779Q9Dh3S3268UY+2axdw4eAvgSVL8NXbPoqEBOD7K+cBjY2Y8Q+fxfj4mQgGpfAwMaGi3qkpjd/5r/xShdEdHbh+3kasvfNVXHPHZXjsMY3rFQk7gdmzcffHPoa7Gxtx1m3fwOEHfwnccw+u8r2MF+55GZiexjtpV+CMqQPArl346o8uww03AH+f8KokAh57DN+duh3fuWkvXj90Li5OOIDba8/BlVcCX0h4Gfjc54ChIU26W29F7ls/xdNVLwHr1+PfQ/+B7920E5dcdz42L7kFry/9MWbOBC588HY8e/X3cU3DF4C0NHxp23fx8MPAGTs2o/bSS3HeKiIpSX0zPQ189cqd+NId5+Puu9XvcXEa26s+NwPfrya+c+WvgY4ObL7xh7hk/FnsvOAaHD2qovIdO3SNpUs1Fikp+v6DDwI/3vH3Gohdu3B46e3YuhVWaC+RDJ8P+NVjx/GPN85CbS1w000aw8cf13inpABXHH0W2LYN+OIX8dMnzkVfH/CL2zZrIs2fj9vvnIU77gDOmX0c70zPwuAgcMVbq4DJSXxh3S247Ta15+mngX8r12d+8hNgzhzgG0d/iC88/y1cfbWe5XuXr8WbC6/Htm3q+0d2fBL/mPBrYNcu7FzydZw/821gyxYcWPx51NRofm7bBnxv7g+x87pvYWpKhfjz52uOf2vuL/SQZ54JXHQRbr//fIyPi+AgJwe4Iu51vI6LccEFwKzpd4Bdu3Ag4WL4fMAZfb/G2xd8Budtexbf2XANfvADIHDLv+Hs738fwWAQZ5111vuz5+3e/Qdd6/Dhwzg7MfF9adMH7vWntran8vJOOYOWA1m6lHKzSkt1OkxIiHL8tbYqVFZZKfcgOZlMSHA5I/b0kC0tjI+3YufmZh3tzH3y+QzwUlCgOj4rIGVFRRT4Eg47Vn+n+m2J77o6nQK9ejFPyRrYzpER87hCIZ3Yu7q4YoXdr6xM7QkGdXRtbycDAY5ZuISNjezstBNwTIyjtXKwN69fSkvVF5mZ8j4nJz1RZh31PZG7qio1NC9P/dbQoGNzaSmB3UxOjtbR2eM6pne2tQnBFwjowh7xbFkZy8vV9Lw8PR9ravTF2Fg6lVn77D5YIXZ6Ohkbq/EpLFSouKeHoZB5yx0dVvqwUbD77m6yt5e1te8VH2VKikKKxcUEdpGwUoTGRgtpriYTE/mW97NH/Dwyov6pqKBIB47q921t7t+qKjqwRVcXrWZumhwY4IwZ6p9Ndt3dFrLNzqZTJq+qovclRz/lERfMmKH5s2iR2pCSYvPgXYS+hYWeqOy0PI+kJI2hqXvX1VF9a4kkv59yWzo6yHCY7e1Wlzo2JrCFx39p3/fyft7887wYVlUpgtLQ4BTb2dqqz8fHaw7GxUnotrRU41Faqrll9ZBjYzbHrbxgt81343JWH3nJ59FRLl0arQddseJdfVFQoKjD8uXKKRcV0amYj46qT9LTNeciEc1nY4wIhWyNWhiazc0CR+XlkdnZnLTxGhhgND/e0iJP24uQNDfrGva8lZV0NZbs6GDwBz94/z273bujsiun8A7u3v1n69l9oI0dcI9CFzExBAZVn5SYSEG9BwkEuHgxbWOctqT5AIHdZGoqx2yClpUpjBUCrEh0I8fHtVdItXqzDE9MDGtrFW5SDfMAgQMu5NferrBeTw8dqMQh0ywXQL+fVVW6biRCB9NnZqZDCQLruGKFQmh9fQpN1dfTwphPuSJZr1RBApW7KEHKvVy0yIxCVpYl6jcS2CnDNDIiFKSpqnd28l31f0GqTnCXcf4dJzCtvFxWlgtJeeEgD/6dlRU1hF6tVH29hcd6ehyD/IoV6gal83bSQzoyGDSx3ZUEnqL4STeQNTVMSYmWHnJykgwEdGiIiXGSLm1thr60gujxcRWML10qFv/MTFqN1gtkWpox5aw2g9fOGTPIeoj1v6nJDGZdHcvKpLDNuDiuXq2+Kiw01pP8fBYWGoOI5YBGDUQxYuFHYI3lh1/WcxYUkF1dOoQY+QFwnGxoYFmZHYYmJ8m8PN2joED56ORkcniYjY2yj6GQ0LOO5Lyri+np6m8r0ST9fi5dKpuRmUkHvVy2jI69x1OCAI4rpDc6ylWrLDw+Osr8fM11J49UXy8jXVGhe5iSRm0trf5uN1NTZV+A3VywQNfy9FHr6jRvNGeP2lybIGDqICMjrvSlrk7/jo9TByAvd9jbq1Dv0BBXrdIzi6VoJXNy9LHiYj33jBlqYm2t5mNKitZnU5Pmq5s3zc2OyccL4QO7yKwsDgzoO+GwxsfTCe7rU19rDIcJeH25wRnHP0oYc9++KBL7FN7BfftOqU0rVqxgUlISP/ShD/Gyyy7jCy+88N9+/vnnn+dll13GD33oQ1ywYAHvu+++//KZxx57jBdddBFnzZrFiy66iGvXrv292vT7vj7Qxu4pS3ADGxmxn4uKlPzeZCfG/R4QoqCAByFdqxfhFSWv1MrMzKSnXhwy0ABLS02delgrprRUm4t5fJGITu7b7T1sm+KYgTpYWMjiYssLVFcbEfJRrczERAJ7tfHU1xtryzFyYEBGNSODbGmR1+JBwJqatOFnZGiletLIwSAHIF21dgOjHAFs89nAI/Y7TzGbkQgF7jimTTQ7WxtNQwMnrX8YG8v9BlB5C9Dmb7LUnqI3fT7uhwA6HhCI8fFkVxfHvDYY87/rz9RUsrmZByES7v12wGAgwIMAO+33TElRH5aXa+z8fgeD6+6myw0WFNApOjA/34zlBsei79X9ezptb5lB88o5gHbl8EZGCGx26hWeQ8O0NC5aZF5pfLwOBklJZFwcgRcE7MjPlxfl9xPYZpvfUwLTAI5w2qu5TE/3iuKf4uOA5RLXqkC6u1tzZGiIoZDJGmVksLvb8tGFhRyDSkFmzGC0zrC3V9GMzEzuhxCsTgupoCDKQNLRQZaXqw887rjubo7ZGDY1aRMfG6Ob//T7Jc0UYpSmrKyMFRVRvNEJL7cYEyPAz9CQU6jfb+PsaRmyokKWIzNTHp1pQWZn09HoeUQDXv1nSgoNuTnggE9eqpSlpczOtkL0vDx9NxjUuCcnk2Njep7MTKGb8/NddcPkJKPlIxCYystz7oax1yxfzn02jiUldjhsaHCMQczK4ihEIt/dTTIlxamkBJ966v03dvv3u7rHU3kH9+//vdu0evVqxsTE8IEHHuDrr7/Of/3Xf+WZZ57JsbGx3/r5nTt38owzzuC//uu/8vXXX+cDDzzAmJgYPvbYY+4zL730Ek8//XR+73vf4xtvvMHvfe97nDlzJvv6+v7gvvp/e32gjV2wulohCCu29WqSnI7N0JAmveG1PXUMTwbFmwDDwzpxjoxQvzPNs2XL3qUJFwy6UqaBATp009iY9pLsbHlzBQVGNVRa6qRNgL1kZibDYR1Ok5N1ApXA42apHgwbOCIrS6utvZ1AUKEmK6plaipZVSVvtqpKRbqGNTeAXFQ0tr3d0Zo5BJ2JmXq/6+mJ6n6xt5ejo7aYh4fZ06OvSES2icAG1tfL+1uwQHZt0aKoNwscd8YlK0vdKwDGoBmAjWxu1qM1NUVr+j1otyeO6zrJZHQ85B4nJ7XhBwJkW5uDmzMU0riZSCuTk8mGBnULQKCaLCnRIaK8XMX46el8ywtpjoyYh3eMTU1WCJ2Xp3B4VxeB3c5z9/hLHe2a36+Hra/njBl65iO26XkkBMDPHCIY2Og2cfb2yqIGAi5UzJYWsqqKwI8da4xUEg6QjY1csSJam1lVJYO3aJHNx/p6MitLhs6LNQeDUr8Yi8pJeeUp3d2aTn4/o2UyJSWamFVVLnQaiUS/A2yz0O42MjvboXM96T5X8R8f7xCLhYVmVFJSonJNgQBZUqIDRX4+mZ7OExAq1StEZzAoY5ufz9pa807z8pxMEJubHbMRy8ujvHUdHfp5aEgHpKQk15edndTEi4mJhqXb5dl3djKKOktLI+vr2damfqus1HpyOkRlZVGZiZERjVtqqtOI9AzmHyWM+Scwdp/85Ce5dOnS9/wuJSWFd9xxx2/9/O23386UlJT3/O5//+//zYyMDPf/L33pS8zJyXnPZz73uc/xhhtu+J3b9fu+PtDGDqiR5xQT44iL5aVttlBY0Ihg97KkxAuvvExgkExJ4UGAy5Zps540D1Cf2cixMS1yv4Wh5s3TCbaujg6VpTDmUa5YofXpbSgeUnJ0lFopVVV0BU5DQ2JzAfRBL6aSnk4PAges5urVCsF5XH59fSSDQQLryJ4erl5tJ/DhYSpke5SiUppgcrKFxBISLHS7WWHM/n5ybExeU1oaV682JN3kJBcv9kIyEwSOMzVV/ZmYqJAgfb4oq4yRSK9aJdtSUUEyIKJd2yudJBAbG7UplpSwqEjtUqpqmMA0Fy/W/iPi7hUu5AccIMvKWFSkfbKujnrgyUkBXj0vMBBQLiJoNX319U4gNCdH4xcfT8vLPcxJC2sCq1lvIWrgGO8yz8bzHFlZyWXLBGn329/a2jRX2tpIlpc7pRiWlZG5uQqrhkLsgULUwGpjUHmKwIQexLxSVlfbMw+S/f0eHac8pPR0oVR9PgLH5f2OjjIcNrowb6P3+8nKSqukOM6iIvt7dzc5PKzIwdiYiwD6/Tq8OJRwe7vJK21WnsnyyR5BeFmZ63Jt6HV1jr5tZIRO2b6sjGRNDYGNzMvz0IkTjI3V/Kqr0/rwaMs8VLEYS7YTOKA+NVRtX58+74kaBwDHi8mKCkU8jLOyoID2DE3OQOfk6PvJyWriqlUaM4+1xcsqtLXRsRPU1dHlsqUoH2DEvL3ycrqDc1+f1rZHWq5n3UigyUgIupy23R8ljHnwoAbwFN/BgwcJgLt372YwGHTvqamp33rfcDjM008//b+EGG+55RZeddVVv/U7mZmZvOWWW97zu7Vr13LmzJk8fvw4STIxMZE//OEP3/OZH/7whzzvvPNOsYf+v18faGMX/Kd/EqXWyAiZnW2GahvZ3s6hITpNLjY2Rpk9YmPJ+noXxgZ2GbflZgIDyq20tGghtLcrlBEKkSUlMjimlzU6+i6ouJ3OKyoYZVMZGnKQZzHAW5isupoHAc6Zo2Zr4+/S6qyo0KaYnU2Gw/RbaBIYsBP/Uceq/4bnmfj9CsuNjekZ29rUhuZmR8c1Ph4lZ5+clN1NT2dU0b2jg4sX2yk/O5srVkRTJE1NFGAlLk597bFb2ObH3l5dIylJIceMDDpSyZIShqH6J2e1rDD5hIXwXOmHV/Xb0KDGVVXJ2nrxypYWegiVxYvpitiBe8meHoYBB/GPWChv0SKSo6Mat+Zmsr8/uqlWV7twnpVN8i4LuQGPcNjCuJ4Ar3K3KwgEOG+eDPmCBbT837flfRqrSHW1HWaKihwjS2qq8aNCeeJVq6yso6pK3lhSEk94YU+rtyspIdnVxUlvDjQ2OtXynh6S1dWsrX0XAMgLNxolmwPvGJ0a09IcYw5bWhQ1iEQ0fwxM5CrFk5PNe54gJyddGz0+tcWLPaqvYxqvtjYZ15ISjc/IiHhXTZlEhn01gQDZ0cFlyzQHSko09vHx1h8tLVQOert9Z8JbqDKUdXVkXBwLC83LHRhge7umPRAge3psve1iZ6eHgVH+nklJBI7ZPrFdz++xokQinJykM6A6RO7W4TIzk9UKEBDY4PKbknYPOitZVkanvsKSEpsz76+xO3gw+IfYOh486DkK733fddddv/W+fr+fANjb2/ue3y9btowXXnjhb/1OcnIyly1b9p7f9Zpo7N69e0mSMTExXLVq1Xs+s2rVKs6aNesUe+j/+/XBNnazZ/NxqD7qhOVjgM1a+d4mFwhotyovJzMzlVMw5pSSEp38tKi/Q+DHCmdYuI81NYyJMRBCXp5O3W1tUUaUYFCLPz+ffqjY21Fupad7e7sR7W7XSTU5mWMAe3vfHep7RC5CTAyBaXJ0VE2AiqwLCmjIwoBOosuX8zkITMPR0ai8Q26uDKV5YQ6oYuEaL02Tk2MbS16eY3YvKiLZ388AxH84Pk59eXTU5SJfNI+QMTHa+DIzyYICDkPF7A9BudHtZqSZns5+iLB3v/W7h8Q4BjgW/aVLqU2srExtKigga2pUIJ+dTUdMmJtrzCgbhNz0yIRrahgArLB7gC8C1q+b5YG0t2tDbm5WaLC3lxwdlSE3XsTubrGG3GWhzzaAdYCj8uo3I+iFwoF2oRFbWwlMcD1U87dsmYaiEcp3eiKjwHYxqFjeCzhAhsOOOIWZmXwU4PAwXR1cRQXJpiYT4b1VB4jiYnJ4WPPPxq6720AzHrn56Kht1jv13ImJijLYd4H7yeRkF6ZjVxdDgAzm8DDZ1MQR5wFvk0EQqkSHjthYV9c5Z44pw+fmyohmZDA1lY6Vh7Gx9vzHCKxRiL+yUrJBXp6ruZnALhnk7GyKSHzAQEtdZGsr15th9PLIixebIodxmPb2GouM9RtwlMuWeeC0Lq1hgGVlNKHnYzJKxcVqaGIiQyENV2EhjTlpl9ZeYiJjYjxWls06ABcXayyLi3WIiY939HzA/WR9Pdf8EYzd/v3BPySKaeT5v7tn5xm7l1566T2/r6mp4Sc+8Ynf+p3k5GR+73vfe8/vNmzYQADct28fSRm7Rx555D2faWlp4Yc+9KFT7aL/z9cH2tj90z8FCWxgJGJx9ZIShgB5W11dOlm3tGhBhUJmDPfqRGin8CMQIONFGHOKVy3a36/Ts2XC6+vpoNFjY4xK85jsy5w5JJua7NQYFJODp5UzMsI3IICIwqqDdNauo4OrLJzqqSN4no4AF9/nQTPo+82gqvB9raNX8uptPWIIp/7s8Qt6xruxUSEqk6hWrn+aq1aZlM3wsDajzEytenPvhJp7mcALLCqKPtbixfqIwp+DBJrs+TYS2GjGZ609xzTT080DCYcZE2ObutVfeKUZnZ22ARvbf3s7nXbe0qX6jIeQBY4xCIEjUlIoIm/PCyor44DnDfT3EziueeF5PyMjngwbPSE/qadXm8H7NoGfufIO4Nush7GUZGbKWBcWko2NXG+GsKDA+raxkUCRo6wbGKApKTRJKshzH9rbNddKSijk61Nkb6825oEBgR9GxZbygHmrqam6h5ydaZc3ZlGRU4liuwyx3zzFnh4dbubNI9nWxmHAcXP29Og7mZnUBt7aan3/Ahkby0025wTimTBmF+NjNX0+YMJpBublkU7CPSaGBQWapkMA7zPP1kPfALvIzEwJCEAglr4+sskOT/2Q8ry8trVkfr55ey+/R6aKBQVkRYXC85YuCEKAsX0wpqWsLPW9tWE/BNqyoI3WS1eXI9f2+8k3IKBVVpbWZcDatcXGoqvLPaY81IoKFhaS3YB5lz/7H2vsftc2/SWM+Sd+vTt+vR/QTtjURGAb4+NdVJPAMWZm2gbg4fQrKgTQCAQsZPICvRIC5RGO6mTeSHJykp2dZsgGFEaKROi07jzPzUu4l5QwimKzXIbHyQnsdQSzYVuU3d2K/wMP6wSenMz8fLW3qUneQb9t7CpJCMqbqK62DXbaEeh2djpeaAdDDIW0N1dUOHIRB0Hu7aVuYiEoYLvzJIAgU1NlzPLytBE9bQvdownzqKgiEZLp6fR7fy8tJePjddrv6OBG2yQmve8uXy4DY8oL1dXaY3t66Fjz2dUllgzAgW/Y3a0HaGkh0MSVkGQMcIDs6uIJ27jS061cYHSUQDtZX8+uLkY3+I4OcnJShyNjd8nPJ1lZyWGAbWbo7oK4N736xdcAAnc6bUCFxwJWgvIyG6HcXiikufIT81wPQnkfYAVbATIhweFAUlI0/p2dJGtqJIHj95O9vRwbM+86HGaTeZuORmZkRD/n5ZHBoM2v3VECa6sDATZqnJqb1a7cXKNSe4HMz2djow5uXV0ky8qUS7SazhE7NACPOKHb/RDKV5qLKleYMYP0LBqwwTzd9dY/T7k6FJUD/QuBdWRVlYiqMzIIHLDDxHZFYnJzqShLNRVGXENmZ7PNvF7a4dQrSRkf99bQbgIryI4OW8frqbzwGgLfUT6/sZHKEe6lcvqPqB8rKpynr1DlUcdjDewmm5QPlJfYQaBLHm51tdZTRUVUWLe1lcDPyNZWPvZH8Oz27Qv+IZUH3Lfv988jfvKTn2Rpael7fnfRRRf9twCViy666D2/W7p06X8BqOTm5r7nMzk5OX8BqPyfL2/gJyGQQl8fSZ/PBDO36cRtxMyhELWpL18u4lvAKSVXVmq/kDdSSeBenf7HxhwHY0yMbUZFRdp0jbZrcpJyOYJBsqaGYRgvX2ysi416YVKBWSa0WHU0dfyLOgGu17V8PuWZxsbU7thYvgWThYmP18nUMNxrAEd8y6IiOn2YjAxtCG1tjhibzc3RPGQ4zLw8A5UoTkV2dysENTrKgxAYo6eH+nIgoOvHxHCTZ8w89YiSErKykvvNoK2BQov7ABmqjAwGYKUfhorzuC73mzHk2Jja0tER1RRMTSWLigRMyMvThllV5YoZgZfV7rIyHTaqq7nFnaYnnBBrbKzRZ7W06IGXL496TRUVyrGkpZFdXVy2TCGyOghBuR4KaXo0cEJTvuylwwiskddYU8MZM+QFeCoDBQUCtvSY0WVMDOfNE6iGpaVGKzXh1BoyM0lWVXENwNHRaJvLyki2tlpo7Dtqa3Gxo/NiQYGr/Vq9mu6Q5aGRgd2u8DoUovo+ECBwP5mdzcJCA8RYLruykk4C6ghgtZcv65AYiWhcysvJoiJmZkYj5mEofF1bSzI9XWUEk5Mam9RUR2wNvKCceFmZyMrtIMDqasbEWMQkN9cOoJtdvo0jIxyx6AcTElzBd20tXXH7+LiRpDc1sapKB5H6em+5DXDZMuVyi4vpQGvAZi1QT6VjcjIqOlxXR2BQue3UVCYnayoCA1qjWVmOB/Y124sKCmie7vfJsrI/ilL57t3BP6SmnLt3//7Gzis9aGpq4uuvv85bb72VZ555Jnft2kWSvOOOO1hUVOQ+75UelJeX8/XXX2dTU9N/KT3o7e3l6aefztraWr7xxhusra39S+nBb3tF0ZhPy8BkZUVDCcnJBA5wwYIoB+y8efJSFi/WxuJIkFNTHRSeKSlkUhJXr9aibG/X9STt00HgON8AXOGuJ9mzaJEO4yMjdDyTHBpymAB2dWmTGhoS+GJ4mKOj4m5kIEAWF8twegJ41dUE1jgmlZERGUsvFAusJIeHZYC7u+2kHuCCBdHShxUr6Kjas7OjZQIODme5r3CYTjgsNVXYl7w8PZchwllYKNZ9AlFodyjkShkKCgxh19pKTk6++0/ypAoKnCyLx74/OekhY6eZlaXvazPcSQ9AkJhIMjXVADxBx97h9xs6DkYa3dDgdOhcXjUSYRhCYQ5B8j6vWbgtAhjabiWfcxv6bq6BgUMiEfVtXh4HBgRaeQMqffCQq55ahFNcMJLGEBQ29QN2wt9mG95GGQ2fz0nrcGzMeCEl9zQ6aqjHUIghSEGdaWnKy8bGcmAgSngzPExN5IYGB4IpKND4O9BUVZVCnqGQPGlT125utvHq6pLhHR7mokU2f2tqHKKYlZVu6FzdnkkTOWCJqXS0t9M8qgOmGnCUQFAAFdPXS0nRuHnwf+Aos7O9EPhuGZimJuchrVihdVZfT9UQFhc7pp9QiK6gPCvLK71b54mJc948L9R/nMABlpXJqHvixqmpOsw5hpSaGqeusXgxLVcY0DoZGXHF5zk5WocLFuiePT3qfm/uKkIScGtkzZr3H435pzB2pIrKP/7xj3PWrFm87LLL2NPT4/72ta99jZ/+9Kff8/nnn3+eixYt4qxZs5iUlPRbi8rXrFnDT3ziE4yJiWFKSgrb2tpOqW9+19fM95V77P/Pr7i4KzB/vn5etw647TYADz6IwvvnYP588QV6744OYMMG0U4eOgTgQx8CFi7Enj3A0aMA8vOBPXsQCAAFBZlISxPX30cvbUBOx+dRVASk7KjGYzeJPs/73sKF4ho8eBAInH0GpqaAzbgEt9x4GJt3nYXzDh0CVq0C+vqA4WEgORnzl1yM0wCRHT74IM7Z8aYuMj0NHDqEefO+iD17gJkZGRgf172+8co38HrCzxAT8xWg7+e4+isXA3uScP5fz0B2NvHXfw1MTgJ/+7fiDVz7ynm4fscOzJ4NfPvbwMgIgJtuwtt7TsN5990H7N+P8XFgYuI0xC38Au64Q3yTUBdicFAcmKEQcH5ioog309JEJNjXB8yciWenrsLVV4vzEs8fBXw+nOE7iWeeOQ1XX63+w7FLcWDJ9Tjn/vvR2gosqj0Hzzxmf8Ppjq/w6quBlSsXID8fuP9+4PnnAfRdi5wlwL33zsKSJQC++BWc27cWN954PbAuFRdv2QJkZwO1tbhw1y5gagqzXnkJWL0aszIycHMucMmGbMQPxgD7gezsj+C06SzccAOwcmU+ro6Lw/z5wNVXz8cVPwAuzAWwYwfmz78QOHQIlyXsxRkAVgO4e2ICR4+eg5e2iWsUSUnY+gRw2Q05epg77sAZAL665G28AwAnTqC4+BPIeQgAPgbgTKCgAIsWaTwxNYVDh4A5cy7DZQuP49nnZ+Gavu8CaWk4o7wcSa8ASMtEzlwAEwkAgAuPvoo7f3QZfnntL0RgmpuLt2++GR0Zv8Arr2jMvvxl4OniXwLXXouHrwNw3XX4TkcHlt97MVJ3iVfz+PzzcehDn0NcWhp+lvZT+HxaI6iowGWrf4HLllwOvPY3uPsrwMVzf4PDvo8Czw8C116LjARgZkEBbr4ZwBRw/tTruPuxi/GFLXcC2IjpaWDx4jOxceNh7NsHICEBO9YBbwyfxNonTsPs2cD06aejpISYP19tvuGG+Vi6FMB4EnDddfjmhg0oveujuC/+O0Da1VFizoYGYGoKq1drDd98s6biwoXAvHmfxfQ0cPHffhhL8o/hs58FHnssBmlpc3DHHcCsowdw6NA5WLJE/K1XTf8aP/rRZ3Dxko8CNTXIzgaWL9e1nn8eePDBjzoC1sHBC/HdV/4e15ffCmAm7rzzM9i/H7hq7uvY9/mLsX8/MDW1AJh4DtnZHwUyM/HS4BnIyDj8B+5w//XlbRN/yPdP5fXNb34T3/zmN3/r3x5++OH/8rtPf/rTePXVV//ba37xi1/EF7/4xVNr0Km8/qim9I/0cjm7887jEcBpzYlpfqeOcJOTrvbXkwthUZEg4ibW6ulAKk7fQWCtcmI1NU5w0mnfNTbqGnZE6u2lTrvmjTE+3hWFD1iIrqpKnpKAbLscKGW7hSYLCjzJnUd0/cpK5VPKylTTZmFa4LjlqgJONHU3hJrs7aWOv9XV8iAt98fKSmZmWg5vZIQMBlldHVUinzPHvpeURDY2OtquY5Amm9E0Km+UnEzGxKjeq7hY9yot1XG9spJhwMmcsLLScUEyO5tveR5YcnJUmmFsTIwXjY1Rcc6ODl2zvNxJzL8FQy+OjurfggLzIII6UpeXq2/8/vdA5U8AFr7aSy5frvBXbi6Znq6QsLlSq1eTjI9nWZmcCg8UAXybr8FYcYyQ4C6orrOtzaOTCjjvFVgpoFNbG1esMBV7C+OytNTqI3c7DsixMXkkHBoig0EmJ8t73ud5TKWlXLpUHgabmsiEBJePYkIC6+vluRzx2hcIuAgH6+rkPdXXy5vPzZUX19hI5uU5Pk2WlcnD9EAZWVmsqpIXFw4r5FpdbaUFnvp5aiq7uxUOjI/XEMTGkh7aaNkykvY9jowIsJObayjjowQedkXmfr+u48H4gRf0fIEAgS5GVcNfVig+Pl4Am+xsBqEaysJCrcH4eAUosrLkZXZ2ahlUVtLo/zY4JpucHLV78WK1PRikE21dtSqqJakwZpfTBASmjULvqMZldFReYW+vQielpfL8q6uVSikp4et/hDDmjh3BP0Thhzt2vH/e5gft9YE2dg88oE1kdNSolQz8MTzMaLiurs7jk+WKFQo59PSQbG9XyA1CbXn0WExLcywPq1bR6dd5aEyvsJSjow46v2qVoeRaW21xCTTA0lKrTPdzFHCSJIBdqKWFHBpiJ4T4yslR2HR4mKay/Z8Evs8h20BGIfVqV7dXXMxIRAbJ79dC92quRkepB21tVezF05rzWJwrK7lihezVyIjlXUz4kvn5andDgyX111NIxUEWFUXDpQUFurTCPhsIPGUIzAkCO41ZZSW9uqnCQgOD9PZy8WIL85patFfsPDSk/VdF2U0KuQ0Ps6nJjEi7F1reSGAzt0NoPQ+AQIBeAf2Q5Xa0Ae2U4fbQqSa11NlJ0uczxN8KAo9YsfmdBF5mUxMNxVvDu2DaawkJjmqN6el8GiBwrzbj1lYrLbjdyh8OkD099pn/1ObpycibTqEYVI5rXjQ0qI/q6hz3JNDE52wOVFSQ9Ps5OakQYG+v+ofJyVy1KlpP1dZGMinJhZlHR+kK+BkbqzzhyAgZiXB83EieMzIcOQCwUXyteDfN3F5XfxYByKoqRuxgUVlJp7UXhkoUjpkxKygQ/dYDABkToz4vK1M6wecjx8b4muVHly0jn7ZDRwiiwVMOrsMON9M67KSlkRkZWqtZWWR+PkdhWnJZWULLJidHyQeysvSMsbFOw8dju0lPV1iU9fXqg8RErROfjycsF8e0NFeCcwRwe4qBabVmGxrY0yPGH4Xfe/5i7P4HvT7Qxi64bBnHxuhyE7vNs2BNDenz8YgtGHZ0aJF7ebOyMmZlaU4Pw7gwDfjxBqANsaXFMU6wv1+brtVRNTdbHsOTQfbEs+Ljtfs0NZGtrVrUgYBWU1kZgd2sq3M1v1oteXlkfj5nzLDcoUf1NDbm8ldDlgtiTQ2HhqJoUyYlRTXVCgudRp+O3xF5a8nJamNsrDbikRHW15vB7uggg1YmUVgY9do8BYWEBAdcWLrUDENlpZ6pu5tOlNMAE3199gz9/ervcJh9fe9CiRpps4OIt7eTxcWCtnvI0JISl/Bra6PTfevt1b1XrybZ2soZM/RYzwGODb+6WpfJy7N2BAIaP49NxKM8MW+xsFB9yI4OM8wSyGV+vsvrcHLSsW2cgEArm8wD22Je6wnAareUgzQn3alYsLGRrK62Iux2hswz2W7jmpWlca+qsvnmKWi0t5PZ2fKevLoXyy9VVzMqXFhWJk86HCaTk2UQh4cZDtOp2bOnR3MlEHC5PxYW6hplZU6s2BvWnh7rL8vjeSQKDARIvz+q4jE25tDJjImJ1sCUl8vg5Oc7cV0mJ5Px8Y6BhsGgYynxDj2rVzNqrHp6yKEhl28vKdHlw2G62khOTmptJCVFozzNzVER5YYGsrhYYCcxRusiRnlUX299ZMLAo6PWloYGMhAQkGp4mN3d1idWp1BXR5c3d7W81uceO9Ell7z/Obtt24L0+3nK723b/nyN3Wm/T8jzvvvuwyWXXIKzzjoLZ511FhYvXoynn3763SFR3H333Tj33HPx4Q9/GEuWLMHw8PB7rhEOh1FWVoa5c+fizDPPxBe+8AXs2bPn1GKwgQDOe2UttmzZA/T14RAg4bKBAfRNTeElAFsBoL4epz3dqQD/2Bhw//0YHAR2796CVwH0ARJFm57GTkBJlfZ2nDv+KtrbAcyeja9edxjIyMDNNwNfzXgTX84/jh1HjmBi926Mr1kD3H03nt+/X3pgl18O7NqlPEhcHHZs2qRkAEbwrbRfIyFBebUDcefj8JNPAocOgezG1698E/D5sLZjlpIZOB1JScAOAF+dvRaYNw+7dsHlZzA+js/s+jnwk58A69fjeF8fph96CHjjDfRvOg0zZwJvb9+Obbt3Y/ORI7ppXBx27FB+D/X1wMQEHnwQOPzoo0BLC/DYY5h+8klMvfgiBsfHseHIESxdClRWAn9/5WEc/c//lJBZQ4ME6zo6gGeewaw1q/CpmFfx9Q+tAp55Bqfd833gK1/Bp2JexRmDL+GsB38IPPwwrp/4GfYC+t4TTwBPP41ztz4LdHTg5KZNmH7gASUN/+M/cP2SA8CNN+KxxzQ8x//zPxGJAGhowNVXK4V4FABuvhnfnPtLPPywmvT888DXM14HZs5EbCyADRuU2z16FJiawnenbgcGB5U3PHQIiIlBdjYwb95HMXs2gIkJHD2q67/jU46urw+YmZCAawF0QP3/NoB3AIwDuO46AOjG+vVvoaVF7cXMmfjbv9U44brrcOONALAHDwN45plXsQ2aFuvXbwF278amTRoSTE/jvOmdwOmn46W7n8XVV9ucvOMOoL8fSUlK2WHfPj1wUhLeAfBC3ywc374dKSnA3riLMeu5Tnxs5AUlqebPR0ICgH/4B1w4cyeu2PozPfvs2br2v/4rcPPNSEmRftvs2ZDQYGMjLvO9jvO3/gqfCv1aCdXHH0dsrDQd9848D2hpwT8m/BpvnzihL+bkAI8/jq0ADj/+uBJFJl64Z/9+XI+1ylc/9hi2wu41fz7Q04Mvx/8a76xfr3V4993AunVISQG+8hUt7UuOvoRZLT/H0aPApk0Atm3Tc/n92APgioOdEkz87Gcx/ZOfSHjRu94//zOeB/DOBZfoITdswC1/3YmPPbYC6OjAoUPA+fOP4/Wp85Vfr63FNgD4/OfxmT2/wOWXQ7nDf/kXxMVBeeQ9e4DnntPcSknBrKMHgNFRfDn4M+zc+XvsZb/jy8vZ/SHvP9vX72MZf/WrX7Gzs5MjIyMcGRnhv//7vzMmJoZbt24lSdbW1jI2NpZtbW3csmULv/zlL3PevHk8fPiwu8bSpUv5V3/1V3zuuef46quvMisri5deeimnp6d/53ZE0ZivE3iKTEpy5MMsKmJ8vA6ZOTnygBYsUJhCyLuVBDYzBMHl29pMusNyTkuX6rPV1RYKguDj7e2GUvP75Yl0dTE11WNf2UZgpYUo19ErvvYUCxw9Vny8UxP38mydnVG9PE9BvadH91H90LEoy4bpdU1OWhH16Cg7O6PsXAo1DhOYYFOTQkcpKbRcwzEyElG4xfS6gN1RyrGREUMpNjluTyOWYE7OuzkAByg5oeME9trv19v7Z+bh3E/gXsvTrLfv7SJwjHPm0OjZVIC+dKn6UrDunQR2Gp9n0PpVnoQO5dvpSRp0dtKxjSh0PEg/BPcvLlb/7rewb1eXDvWFhdT3TWZJPKQvON42QdLbecz6DVjj8mpAgExOdhyrd1l4LTWVZGWlI5o+YflKtX03BwY0NkxNVai1ooIxMeQDgMKeo6N8EnB9yezsqOdvRd/FxTSljiCBCXlT/f2cM0feVn09neabz0eX+2JSEsvLtRZ6elwql/u88G44bHm5XfRqziIRkr29gtz39JB5efKWJicJ7GVVleV7rcTmhLW9pIQu58XiYlZUePno1XrutDR6RbCVlbRi+ZdZVibPf8TWYnEx5Zq3tJDLl2ttVFUxP1+esOjZNiqKER8vJGhKivK+4bDWrCfJEAopQWchXkD1m0xLk8eZnMxly+h4YdnYqElvlHbHbP4Aw1rLiYn6t6GBjEQYich5dDSDy5er3CI/n5mZ5LXXvv+e3datQY6N8ZTfW7f++Xp2f3AYc86cOXzwwQd58uRJJiQksLa21v1tamqKZ599Nu+//36S5KFDhxgTE8PVq1e7z/j9fp522ml85plnfud7ujDm1VdbTuNlcVF6Ycz0dPZChdAvmpFxoQtjV1AR6gBboeJkj2Wk1eL7XrH1qlXUgrHQot9PMhxmJEL2QmwKk4CjxmJhoVZAT48LuQQtbAccdRBzD1wSAoxBY4JdXZbHmpy0BPluLlumGi4X1gqFODSkxekHtCvGxDBo7QhBsHePHHg3RK/0lhfGiURYXEynS8ZwWLDvuDiFc5OSuBuC278GFYp7Gmd9fdQm19amfGRcnHZQywsGg1YU7nFmVlcrqWFMM155Qq8Zd8c2bWSdAUD5nrExMj9f4aWCAm2AoRDp86nYPyHBGeqNlmscH4+WOAIH9Dm/Xw0KBLhsmfraOJLJ7m4WFpqigt/P8vLooUicmwE2N6vLvJwXs7O5BZIiqqqSwaPP52oggXYCu7lokeUmh4e1Gff3k11dBpF/hE9DvKZ1bjPdTubmMjVV3cmKCifk4enNsaFBv0hJYUWFbc5ZWcpLV1aKiqy9nfsRLQtwlDpdXdGwuuWg2dqqtjc1aRPPzSWHh1lWJsM5PKy+mYQK+zk66spKWVXFYPBdc9WM8gig++Xmch+MkSguznHCMj6evZab8wSS90GF+KOjAqx0dmq99HtzpKbmXUX8R9UAK7lpa1P/ZGZqjTznhTFrasiCAuXg09PJuDiFu7OzVfvY0eGo9bq6qD7IyGBXl42/Fc6zt1fPkJvr+HCZkcEIVIuan0+Xt2dXlxO5Ddmc0h7z/hq7wcEgR0d5yu/BwT9fYzeDJE/FI4xEIlizZg2+9rWv4bXXXoPP58Nf//Vf49VXX8WiRYvc5/7hH/4BcXFxaG5uxq9//Wt89rOfxYEDBzBnzhz3mUsvvRTXXXcdqqurf+u9wuEwwuGw+//hw4eRmJiIYG8vztqxAz89+lXccANwzs3/CCQkCJN8553AxIT89scew9tHz8Hs2cA5W18AxsfxyPSX0NEBPPL4h4Hycry99Hs4b/YBICkJ/37zYXzv5r346RPn4ps3HMDXbzsHaWnALYNfx78n/BwZGYpMfWPqx4rBbNsGnH22Qh9/93fYm/8vOPfub6D1sz/Dhz8MfKHhGuArX8GMr+WB7S/i5xNfwNcnvo9fX347PjPxS2DPHpzf8C3srP0l8MwzuHDDz/HmK4dxy51nYXwc+OGaGZjf0gL09uKSDT/FDTcAS5cC54y/Hr2/V1+RkKAQzQUX4JIbL8PmG3+okNG2bcAFFwApKVh+7BaUlADn3PENhZyuu061G3Fx+tx11ylO19cH9PXhzdq1mD0bOPfB7yo+93d/B8THK3yTna3vTU0BW7YAixcr3rR7t8o5vLjJxITF3qA6g/vvx86kz+D88ZfwetwVuDjlJPCf/wkkJ+sZ+vqAG24AtmzBm8mfx7ZtwBfu/3v03/UUkpOBEyeA0VFg9t/NwCWtrcD8+Xj26BXYsQO49lrgvOd/gTczvorHHwf+bcb38fYNt+O8ue8opHfrrcCOHWh965P4cuv1wKFDeL3h18jIAA4/+Evg0CH8+oJv4DMblwGpqUBODn7YMAvfWv1JvLppE94B8M3/H3v/HxZ3eaWP4zca7GhDRA1KbLDEDS71I1lipRJXVGxwk26w4koVFStWUmjFihWbcYMRl1hwgxUL25CKFQWFKtFJIToa1IkZAzGjIXE0mBAzIgk0IWZipmQSxvvzxznPM/Gzu993m02/7/Wqc11zhcDM6/W8nl/nOefc577TiM3bTsYDhw7hJwA+6iVqa6XrL7pIwpOz2u/Dh7c+hPNKrgSefx4f7j0df//3hxDEyZgaSxx2TMG5Uw9g0iTg0UeB7809jH0HT0JrK3DnGW1Adzdw111Y+cl3MHMmMGvTU8CJJ2Lf/JsQHw+c8N5mGdMHHgBefhmHN27GSbffgqfmPoVbrvgYV956Dl5r3SV9edFF+Bjn4Jz4Azg3fQp2dL0v4/HqqwLt37oVOHQIny97BF1dwNULPseBgyfA4ZCvX3opcMInHwPLlgHXXYdXDl2GiQl53vP3vyXjvGkTMH06Ns+8FrN2rpIvrlsH3HUXRv/xWpzV9oiEK5OT5d/t24Ef/hAfuj/C9OnAKTvfl4W1f7/87eab8fHE2XjvPbn/Sy8B139rM7B/P145dBk++UTCmxs3ApccfEXi1yUleG37Ofj614GLh1diR/q1OPfQ+8CPfgSUlgJdXVh96+9tBc3C1LVy8SefxDvptyE5WaK3C6/4MBqSvecerIq/Bfv3y/1O2Pq+tO+KK6TfNm0CJk3Cqqm34eoTu2XOTJoE/6eTccEFpyIYDGLKlCnHss1+Yc879dRT4fMFMXnysV/r4MED+Pa3j0+bvnSvv9Q6bt68mV//+td54okn8tRTT2V3dzfJKKv18PDwFz5fXFzMq666iuR/z2qdk5PDhQsX/rf3XLJkiYYtv/jOygoaLlwJJ+Xl0QeFPptEudPJ5mYJQRYUyIGysZHqVoXEO0pJiQqwpqaKJ+H3C8ggIYHt7aoSUFv7RYCJxgaGhxUlV1bGkhIJixhNOdbWWoFHc6gG/BJK0bjNmxAm/JoaQVzGxPAokdVl3KbPNKxhHAmdbCIzMjg2JqdRgy7v7BRH1O9nNHEeCsnpfP582kx7fj4HBqJ4ECN8mZOjfeP1ymdbWw2HtgB6/FHF6aYmeR5z8o6Jkb+lpETJNqZNE4/L4F5aWkg6nZw2TRkwwmGyq4vt7dJd9fWWK5qpqRbbId7n4KB4bMnJzMmR4f0DhBszJ4dW5gIISoOzsjg2Jrfo7NR719ezokIpspxOCX/pTYUPc69SsW2QcSgrU+/qab6kYBQLhEpI4CgMebR4jz4fFTXoZmHhUUCK3Fw6HOqRmZoQp1PCXsGgFleLazw8rMwm8+ezuFic3wCEFcb2md8vbTce81EesM9HqwtoqOfGxmT+B4Myj03huVE0qKoimZHBgQEZ2+xseQ5T0M6uLubliaNueV9VkDcnh9ajKimhXGx01Cp9l5eTzM5mHwQM1ttL0u2WkGdBQVRRQaVxtkGR0VlZEm0IhSw7SmOjer9OJ9nVJfd1ucj+foaB6LrLzZXnU75UOhzMz6dFkTInxwq59vfLOIVClPBpUxN9PunzjwBZ20qPx7g4cv58i+T1eGRvKCkh2dEhKl4Q4JGUMx1fz87nC1oZvWN5+3x/u57dX2zswuEwt23bxrfffpuLFi3i1KlT6ff7/5OEg3ndfvvt/Kd/+ieS/72xmzt3Ln/84x//t/c8dOjQFxi6h4Y0PPDppxK+GRy08O05c0gGg4brmM3NGm6prbU1agyFrHbYaadJLm/GDCtWIMZQ1QXKypRAt6kpqord2clAIKpawLIyMjY2GrLMyyODQRYUKGqzq4uG5PczqLK34TEcHSWwgqyttXp6RiyzRUOsCQnU0N1WYZRwOhnSzxqCw0iE0RVbVWXr5Aw3Z0+P/Gw+4vNRNqzcXJsDHByU3+XnS7tbWqQdzwKs17Awk5Ik9GfCOxo6e9X8vaiIRzS8y4oKPq3GodtsMpWVlgvSoNcGBkh6vfJ7c0jx+YTANycnKtCrbCGAn7+D0JOlpJDMzeVu3URjY7X+rKiIwHIyO9uWmBQUkMzPp8sVVZDn8LAYoPnzuQ2wpM5NGsplXh6Zl8fPIOUFqp/L006T+SJ5qVEJacbGCupzbExC6oEAB2G07aotX2Zvrxieigo5HBQUkMzL4x7gC0aIHg/dbnIpQKA9iig02lWpqaTHo7V+4xwbU6NTWclAQHPDVVVkfLwcElTqIyZG5lN3t8yJ7m7JT6WkUAxYbS0HAM2djtqYu0fbf0QPXW635iOzs5WA+7CG659mUdFRoda6Ogpx98MEhsiEBGGIycjgnDlG+WOt5d+UOrv1Ub2/nBw+qwZkPWAVGlJSZP1Ixck+Al16aNlB4HX9vptAu+1jyduv189skD6MiyNra+l0GtmibWxvl2HIyiKZmcmlSw1TynrZD/r7ZU8ZGyNra010VQ9GO8j6en6I419n19cXpN/PY3739X1l7I759d3vfpcLFy7k4OAgAfCdd975wt+vvvpq3nLLLSTJnp4eAuC+ffu+8JlZs2bx/vvv/7PvGQWoeFhfL3U5kmj/udZLbSNwF4ESCiClnd3dhtvuIIHHuA3C3yhAil9KHL+lhUJCO8qcHOUozMggcFhqbYqL2d4ua18W2M8pYIwhBYisZVqaGI2REdp6uTlzSI6N8W1oHZBCxNnXx9RUNSrqobChgdnZcoLv0c0NeJrDw7IpFBdTjEF6umwmo6MUUMxmCuntOjmVh8MchxAIyyZzv6lIkLxYTg5zcxVOXVSk+Sa39t1zes2HpW8yMgQQ4Pdzxgw5DNTVGeBL0PLhBoOyQZgyvdhYkj6fbMD9/ZwxwxRkr9Zx2Exgl+ayggSqCTyntXqi3B0bK30XDCrpttYyDljDJCdd+v2S59GN10LwS0sJjKt46wbLHwlMcBACJKmqUvq22lqyqYn5+ZoP9fkk/wIpGBcwzgQBt3pvLubl6TyJjeUS9VxeAMjSUs6bR80P7xIvJi1N/79CC60bCUyQqakyRxwO8R76+uRZa2sl1wIhsRa18CExSCqgOjxsNuhfqXLDSqvGkJEh/W6ot0ZGopSmdLtZX29qNtfIBu73R8tYKisJbKPDIfcNhfgF6jG/n7Jm+vvFILS2ErjNel6ikvFTOhwybw2PJrDWKsBLHs7JkhKx4XV1VJq1wwSaWVKiXA6Q+tcjkLxkQUG0pKKw0MjdVRG43+YdpQ3brC0TYNUogdWm4kWiQVosN29e9HAnazuo5T9DBA7S55O+NhRnhhBe7qO1f2NjnD1b7Ht+PhnMyjruxs7rDVqVk2N5e71fGbtjfl155ZX84Q9/aAEqtbW19m/hcPi/BKh0dHTYz+zateuYASoXXhgksIPduhkAG9jWZvj21lAKnZvpcMjp1SwAYA1fsJvlOlmAHR26wJ+j0ynXSEkhWVjIYFD2yJERWbimlE2Qhm41qvergW0W5opQSHYYl4vAnWRmJvcANhzIwUFd2PeSFRUchxSWj2vYJhwmOTbGgoKjioeLi8nWVouoBPzKx7eTgsJcTWCThHxcLobVS5GNp0uuOTgoD1ZcTIdDPRwluhWZnuf05/WUMIz037RpRkmiUPu2i1L0LiroQt57WNGYXfr79TTK8EAX4+IMqvN+HaMdBHy6iRs2+vVsbjYc1X4C6/gRpIgXWCzhqrAcqEdGojyeIyNisJ5V75P9/WRcnOVH7e7WUOjYmIAmdPeKiVFPMBSyQBYjoePxaOgzELCM9oK+3aEoxCGWl9MWQ0c0pGmYQUzo0NSOZWRQDexyZcZZJzIxOk4sL1ew0oSMsdK1eDzSJukznxjEgQECazljhkwLoxMHrJZfuFwMBmXezJ4dVZCPi5N2SZjtIOvrjceyTHZpJfo2JAdVVVHlDGBUUbGraeU58vII7LJlpi0tMvcE2buDwP1y6FCyWGCCDId1vU7IWrBKCpvp8UTxIezslGfp6WFFhZF2Uh26qiqGIKkBlpayqEjXa08P2dPDQECVS7xePQSs0fW61Ya3zZiLQfNL+LO6miwsZHGx0aHcIWNTW0s6HDYjYKSiCgtlrip2jB6P1b5l8N57j7ux83iCIhl1jG+P5ytj92e9nE4n165dy48++oibN2/mfffdxxNOOIGvvPIKSSk9OPXUU7ly5Upu2bKFBQUF/2XpwfTp07lmzRq+8847vPLKK/8HpQey2b4JWFqgqGxPI8Vb2UrgV5YiC3iMwE/5tobeBAY/zjFAQzHbCOxlfr4YtTG9dmwsydJSy8wlG/QKXUQb1NBMEFjHkhL1mEZHyfnzZUHGxXFI4//FxfJ/o77A/HwGIHm7CECHQ8l1CwuZmiqbVUUFyZ4eq0jd36+F08GgPqePwvrRTmArfT6qN9NI8W6XWZLmYRhF7gkxzPX1Ryk6//Io6P/rBFzWMIixGz1KpXq99u9BqwMrfbxaDfA6LdY+rMoPK/Xv2wgs03Ga0L7cReBOAo+pl+zX0osdHBgQg5GSQjlej47KjpKUZNGVzc2ig7YNQkP2mQn5lZYS2KRh4A0Seg0EGBNDlbFZLWlMjQ6Ul1N2SZ/PenghHTcOD1t0+qcQEum2NtJYthfU0C2xh68hMi2NQDs7O9UbUDYXMXo7CIwyAtXgGxyUa5l8Vk6OhMbq68nycs3VrrAoxaYmGX+jkSgh1RVfYA5iMGhZbywKd3iYDAqhsBByLxcDoh6dKXFxOuWj7e209F9FRYrKbW6Wz6ekEHAr+tDFOXOioV05rGyQkhqFbzqdcn85NDxH4HU5hBQX2zxzOKyhXS2iH4Kgjt8GFGW8WhZgZaVEXLxe2vDi4CBHRmT9zZsXzV0b7zcvj/LdYNAArNnbe1QYPxDQMouDpMOhOfYnbS7P5Djr6qyghc7lZ3RsN6u80l6uXn38Sw++MnbH/vqLjN1tt91mma8TEhL43e9+1xo6kvz888+5ZMkSJiYm8mtf+xovu+wybtmy5QvXGB8f5x133MHTTz+dJ598MhcsWMCPP/74L2q0LT1YsIBuwDLeC0XPQbK2lmNjskcYmDl9PpEW0dxRcbGc9o0ignhAz7GmRjalQIBkc7M93bK4WFZ+X5+FPtukdlERx7Qdlk5Kk9WVldST5Vr5fnw8t0BKCdrbqaoFqg2nGyAHBtjbKyfZFwCpayouJrBZ7ud00gepCRwcpCxEg0wpLraeS2UlrYfIwUHW10t7ly7VeqaCAhptlYwMikcJ2L7x++WrQ5AShB4NDzI+XnbJxESyspK79e9t+uw+9ZqZlsY/QGrfPoLCwNPTpXMByw5fXKxj1NEhJ2ul8HABZFmZjGF9vbiWHR0EnmE/hLbJ5lMdDg3JbeAAoHJPK+XUEAyK8evrk406HBaKtLBc1wAv+gE2AQQK+WuoZFFHB9naShdA4F5DDkJgK/PyjLCrW3J0paUsL5eNcIk+P1NTVSPQJXnLwkIOD8uvXS5pS16eHHLWA2LItU6uuJjk4CC9UKXynBwJ0w6T9PkkHK2UXyUllDnQ1SVzV0NwdDqtugETEnQurieLiqKbe2cnjwBWeIPBIH32ILie7OtjOKyhXa9XQ7GjekDaIXnqwkIJnxcXExhnW5seThISyNxcPYyprpzLxZoaYS8qL6dSkG2QtpSWqvFYp4evX5EtLXRB1CrGIRRisbHq/fX0sKSESikm4rJi/A/qwWorgUYxsnFxutYP6sF0jbiieXmWK7SigpYnFtgl9axJSRQKvFF9js1RlpbaWplbeXlW4gh4miws5Coc/5xdT0+QfX085ndPz1fG7kv1MgPfAqkDys4WvkQRiRyyORt7lM3KkgmdlmbpnSRRPSF1MSEJrQGPRWm/lDII2CybTGxsFAVWXy+bYGqq/K2+nszKkk2muFhCJ1r4XFwcbUZ9Pe0iSUqS/T07W/7e3EyyslJOwVqD1NJCWVDhMFlUJF5EWhqDQUnk19WRDIWE0ig+niEoAXNsrM1LsahIEGhxcWxvN6TU+8TYlZfTipp1dZE5OXKKrq2VdhYUkAUFor7cQ9kJfD559q4uWx/HpCR5uLg4eZiMDDH6GRmyGTc3CwrQQCurqyUPo0X3zc0k8/L4rnqcjI2V9+ioJOrS0+VfXbFGw3T2bDUYLheZnc05cxSVGR9PYFQ3/DVkSopFugJ7ydJSvg0QeI5BmCLwdrKwkB/pps/mZnogOb2iIpKZmdL/bjfZ0yOGxO8nnU4hEAgEOG+eCX2JR7dEQ51uCLDD75frsq5OwCNOJ1lYKCFSBfqIV7BPw9TielkB4epqmirs4mKSXV2sq9ODWWWlzNuGBnJszHKlsqqKzMmRQ5LytCYkkPR45BAn6BmrdM7R0ah6cDAoRsLrNQBQsrjY5gpnz9ZQYUaGld9hSopYezP2hhB2bIw9PRoC7O8nU1LEuKenMwDYqAO9XtbUyPTr6ZEpV1Mj68bU1bGgwCrQMyNDZJeM4fd6yepq6ZOWli/QpDEhQf71eqM1dQ0NYuBTU6Ntr69Xg75VvqvEECMj8ryhEOWzpaU8AvAPAJ/WQ2Kbjjndbu74Kxi7V14JWrD0sbxfeeUrY/elekXDmKM2SF5cLGELNjQwI0N+njNH1mxRkRUzp8ulvIXKmlFXpwCDhgayuVmBLodteENOpRtYWCgnW0NGbBLc+fmUDbC1VQxBaytZUGBVyNnfTyYlyaZgRGRra8m4ODEAKvLKggKyo0NzUzvZ1KQAldJS+Xs4rHmTIfl+JCKhoXCYs2eL3WppkVtY6LrbzYoKsfX5+bQq2BKfHZP2akjntNNkT+rtFZulupSsrCR/By28T0ujxfyr8kFnJ+VgEB8vX/D55G8NDQwGVdTU4ZCC474+m0sybBmGad/pFBufny/jUVgonq14vvvkoJCZyWBQvrdFDzvBIKOE12oI2d9POhwEXOqRHWa3hm0N8z3QTi+godIV4kVq7UNqqoQpOTjIFgjTjngc+9jYKH3k88nHjYc/CDAIRXyqRwcMqcHbQOBe/gGSezRzS/Jm4xLGU3X5+np5ttNOI1lWxjlzhD0lL4/Sf+r1s7CQVq7b62VKSvRc5HbTPgddLin093hsnqm+ntHBNeoELS0Mh6XrOjtJxsVZ8M3gIMnRUQ5pf61Xz4rhsBwEBgY0371LD1NuJiWphmJd3VF5sb2y1vr6COykyyVzXcLaQzJvWluZkSHzIC9Pr5GSwgiE3MBEEwTENMqCApNzXM24OHl+YMjSwQI+xsRIf0citKFxo0PHSIRMSdHw6BAFHLNODiPNzRYp3Nws56/cXPmeEecoKjKqKbs0jzoua8/lYnDPnq+M3f+i15fa2L2sGxFwUGbi/PnMyxOjFDHhxMxM8TIKCsikJI5BangkBLNTVr6qEgObZJUZb62sTCZxeblld2dBgWwUFRXWY2JurpwaW1vJpCR7qhwejoInTPjE6Mnk5so+0NtLm9diTo4YtqwssqVFNiGjE1RebuWKmppIFhayszO60TIuTsIphtVkdFSS/0qIvRuw0irAXjHEGmf1+Wipn3brKZ+5uVL7FBvL4mLdAEtLaSF8Rj3c4ZB3a6ts8qWl0n6HQzy+0VHS7Rb0nIFpFhRwXMOQTEoyxYd814Q7U1NJh0NyXA6HjEd+viUGNgYnLY1RmSW3mzExeuDx+eRfvwBc2oxHl5IiYTOvl0NqhBgXp8jI1dZT8Pm0Hi02lgamzmBQ7q/eaUIC5fPZ2RblCuxS8d92srlZgScbJKSZk2MVtZmXJ3OprIxMS5NN3KgIDw4S2MmXADFK1dVsadEDmjm1qGhqKERbp8f0dBkD9aKMkKnfTzIxUe7rcpF1dSwpEa+pqIjSd7GxZGKizD3tz0hErtvZSTFCpp+hoJCBAba0MEp3pwcMe+rKzJS2zJ8vHqnmCRmJyJzIzOQHAAcAjkPKM9rapE/7+2UM+/ujUUYTlmdfn8zL/n7pM0ioO2IiEpGIHHwMNNjtFo+xp0fCvi6X9TI9HpKdnWKczMFBEblhSO6cwSCZkMD6ejGkPT3ShiMAWV7OoB4En9N+eQECQmN1NYNz5hx3Y7d6tSiqHOv7eOYRv2yvL7WxC65Ywbg4OWWPjDBaNO31ysIvL7c5NgaDXwB10OOR75SWRtnRNcTE4uJo2CYUEoTk8LCcBPv7ZUEZpIrm5qZNk8mUlCR7x/AwJUYZCMiGlJDA3l6DMpywrPhLl0pIsrJSva/ycktVJnDqITI7WzwWDfuUlOhG5fVKOMfrJUdHbclDe7u0m8PD0g8m7Njfz5ERpfRShFtREe2CZmenhEZzcqJV2F4vBW36UwqgZJwxMfLxGTPkWhISfo7ABouyi6pWL6aAeJaxro5f0NRjf7+MT0ODtFUlb4JB6in5LsumH4mIXfL7ScbFUUA30v/i8U6QHg/DEEBRRYUJKa1X7/xX0SLu6mp+CqlfHB6W3BGwV5Gk2+iDAHsEObqBkqsZkjrCqippd1qauFBjY3r9atkcs7O1/MWlubp7yZwc9fCKrUNuE36pqWR8PGfMUE9DPSQWFMhmXFdH4H5+oN5dfb2Ml8Djd33BO2EwKHN6dJTt7ZIHNErwWsMuqN7kZAJ75VqqVD9jhvSLiScCPqtzNzhocsvtWgqzPKpckZDA4mJ5jBCk1vFNQCZzUhJTUqRUJQDN4+blyZxLSGBjoxZ5Z2ZagFB2tqBjj0DqOIMaVga6yMJCAhvEq0xIsIrwhi4vCKlT3A2lOUtK4hZovaTXK2tO9SSZlsZPYUqWgrJmHA6G9dDFykoaGfaCAvneEcAeDOhyyYGgr0/G0+mUTq6vt6Hp668//gCVVauCBnB6TO9Vq74ydl+q19FyF0OALcDNyZEwRTBolU/Y26uG0OSlCgvJgQELFc7NlXU5b568KypknkciJD0ePTxO2CIbs5m0tMi8drlI5uaKQezvjy5Uv58ZGUfXsW2VE21SkixSj8eKbAJdYpSSk5maKm3weCR86IUWj1dU0NSkGY9g6VKSw8NWPocul0UgclRg4r29SnTdrxvd8DDDYS2cLyoSjyActqTCLCjgnDlijDo75XKNAH+lm9VnuqkwPp62CMvh4KtQAMv8+fwIioosLuav9eT7AhDlcgyH5TQeOco4B4OWAJs9PWQoxF8BpFPqsDg2JvcbHSUQpAtgBwS0wNpaRuzGtU1OFE4nASc/g+Q2t0DBEKWldDo1t6feIrCeTE1lAFIMDzSzwzynw0EWFqon+Evm54s3Exsr+9vAgHzk17qBZmTIUHRDdAn/oOE3oFg8vL4+MhKxEkKmHCACyTMXFZFMTBTvfWCAdXXkb6A5xcxMsrBQPJWqKmlfaysZDHL2bB1fc4jz+yWSUFcnRswYVrfbEjOPjdFyPhpgkkEpRgEqE5Zf9AVIbk1KAPxqcIdk88/IkNBrSwuBFayqUs87KUlrElcTEJ5L1tZatGlSEi0BOd1uLWVwU4rED4rHXVTEbjV6A+r9S9u2MRAwB0ghDmd/v0Zp1mr0pp1As62ZFe5UQSwDG8jmZun71lamphpCdRebmqTrjGGW0LefwFqjVUv29UlfNzdbwqHBQS0Dyc9n8MwzvzJ2/4teX2pj5/EEhZwWBpIsBkZO+pt0ga1jWZmso/p62cDnzCGZkKBJ6IcJNLO83CC6nqPLJQuos5OkyyXexOCgGIiBAVujI9DxXQT86t08xpQUMbjhMMmuLkXrraTPJ6hGQw7NcFgpwbpYXCwnXwVNRmmQ0tPJ6moCzzAQUI9MN7dtkJxlZ6e01eTX8/OVHUVReJITEWSZ2x3V7qLPJ7miYFDzWxOMi6PmQoL6PR8Bt5EsU4TaTiYl0aopmANGYyPlQ9pPbrc4yp2dsjFYCrNgkIDfSLVx2jQJXxkM0YwZVsaNgYD8PaIn86Qkkj09EibKyVGv5zExeOphsaiIu6Fkw4rU6+6mzV1lZclY0u8n3e4oC40ke8jaWgkxJiaSpaXs7dXxKivTzdNFoFEPH89YT5fNzTIPjfdXWEg2N1tNROMFiIfXpQi/LtLj4R5ork+NuxFZzcrS+VBby6qqKLvPyAhtPva000zubx/Z2SkGRp+tqkr6PjdXn9nnIzBuFT1MQb4xuKGQ9qNqvRkKM8PAY3Qc6+pIDg8zFJLvmNIPYNQK8Mo8chMY5+CgdLHk1rZZejIBhgXFO1OAj4SBdxHoYna25tM1bcC0NLa3ayhR0dUjIySrq9XgbbXjZbAy0TrC5zRdsJIcG2NhYZTw2ogk0OWyyS2jMwisYE6Ozu/RUWZkqDFLTCQ9HhkfzdU3NlI983VkMKiq98fX2K1cKfqTx/peufIrY/eletkw5uTJCgRoJisrBURRXc1xCHjhdwA7oXmo+noyO5thQFF2bgIr2Kaf8XplU2wxIZiUFCvyytZWsqLCSvuwuprs6aFLvR2Xhj5ajEfTLKdUj0f2GC8M0EILfpUL0ucTj0M2IXe0dkqlpmfMkI3NA8gOE4lwYECakJamCFSPhx/oaXc9RFiU2dla67SP3dq+5zTsFAzKYi0uViPS0sKMDDG2fn0PqYfznPYhBwZoEiivQ5QJwvqso0A031FUZI7ZljeSRUVixTIypNHp6eLlqZe4W0/V4xAh1PUAmZsryMTqanuKHxsTb8PQaZWVyQb1rnqT4iFL3Z/DIZtYfz/Fmy4qku85HDYCydZWlpQIEGVkRDZHUwNGl0u8nP5+yxYfCJCsr2cIYCMEoPGS8f6ysmyNm9Ss7ZC5Ulcn38vLs9430KUG72kpgO/qIuAik5JYUKB1foqkMlJLS5dSdnANvRmuV2ZmSr9WVnIbQLdb+sOGK1tbZQPPyJBJMzoqHrmhutJ8aUTnr8slxsbUFBpvk/X1Yq1KS6WBubns6YkeaJiaSra20gdYgWA6HHQbb7+hwSplfKTPbEpXvEBUHSIhQdqbliaAJs31mbw3MCQDlZjI9nY14lVVbGuTVMAWSHQlEtFnj4+30Ry3zteXIMoXVvnB5SLz8zmuXqtJzTI9nXS76dU1wYEBOTTpqcMK12ZlSR9pbSJra+UglpnJ7OzjH8Z87rmg5eU8lvdzz31l7L5Urygas59AF/2AhhkOK9Jrn3p1Ur8TEyObhuRg2gmsZJ9O/NhYmatmAwd2sKLC2joyNpahkPxsEv5RR2CTenePUXJTG3TDOyybpfIqAjvtRjVvnmrRqZy1CXkwNlYMa0qKDbuGw7KWsrP1O5WVVhW8v182Qa/XhFf86qU+TWAf/X5qSM5HqVlaGVWu1sQisFO8mKYmq50H/JKFhaZYVlhZcnOp+ay9lBqo9TSsKIJgW6/93aV9/6T2w2rtE5++91LCR10EntF7HFYveUJ/v1JppfwUlJ6brKrSw8IyGQCXS55D+UcNRuZtSGiToZDsxImJRvScfr+Seff0kGVlAnYoKKDhLDWbJrCPzM9Xb0m14wYGZGycTp1nPv4WQtgdGxttB2Nj+ap6d4amqrdX681U/Vw8uqfV4K1jOGzClJslkpCaypYW9YI1/OhyUfOUowQ2WWoXIMilS2X/nTbNGIRNYly8XrKuTpGCUtRvVJWYm2swUBr63Urgl3ICGhggm5qYm6sh+qDcw3iCMk+2yoZeVaVF5X5b4ZOSQrK5mTNmGFCWUzxyJVI2JThLl0o/xsVJu0OA1duzz+zziUVraBBKMRgGlTXS1sREKZ+YP5/Z2fLdnh6KoWtpEQ+0q4vs7NQ5tULWUV6ePHxDg4ZiJwj4xPiVlZFFRTZ1IOP9tDxrZqYFnoVCciYVCkKfJarOy6OGUoPHlZrrK2P3P399qY1dANB8wJMCg9dT4h7d9DogNTC7jWeUmspPAS3S7SKwgt16+mxvl9NyBzQJnZxMlpfLpNcsv8lxGE4jo4X3tno4Hmi+LjOTrK+3m9ZngNZR+2Tz7OhgTo7sx+PWs1tHRiKy2JubSaeTMTFy0hwALLMEOzpsxO4IQAaD9OvJ/E39l/Pnq3HYxD4gmk/TFTptmp6Ks7NJl/A7MjaW2yDJfL96WC9Bcm29vZrPGx2VfGNeHpmczFHTtxkZlsqMAwNimRX9yo4O+VtdnYSjOjvpBmxN4BAEIfeZtnG9OdFrv0QgcHd6PByDkAEzL88amiHjKfh8FMaXIBMSxAEJBCjP3NnJkhLxXtva1JCUlzMmRtBzDAYtkMKoBaSmkgwGWVenxAD9/WR9PbfpnJo2TfToGBdHOp0aOm/Ug8UO2aydTmlvWRnZ36/53y4+q4ZuiXoiQJfNmcXEkGxoiOYyvV6B34fDZFWVBVU4HJR7l5eT9fUCwmhtpR9RthfW1loKMlPWwtxc+yycP5/s6OBn6mUPD8uhsK6OouYBRMewr88y6bC8nP39Ua4GU+jug+Zly8ro1/UwrJ4vW1rIwkJ+oPcJqwc/AAlRd3aSjI+XsGBamniAtbVkfz+nTTMphs1igfPyLHiV1dXMz5foSR9U9aClhaytlbmpkQUvpIazD5rjb2ggnU6ZI+XlDOsadblkzoxC0goD2je2pKO21orGNjYyGrXIy5MJ19wsB4HW1r+KZ/fss0G6XDzm97PPfmXsvlQvM/Db1Yg5HLQqwk6nUHwxMVGOsYWFEh4pLZXfJSaSsbFMS9PcncqjlJVFZWL8gKzkxETGxAhaz1BLhSAhOsbGCmQasHVlwlklrPbDwyT9foZCsre0telCGh5WwMpO+YMSJZeXUxGIExLaaWmR9jU1kT09NpWyRTcHt1va2tSkBjM+Xh5AySD9ftJCGFXKvKJCrmGkc4JBWfeNjZL33KOGy5YExMWR6enMz4/WKRohUrpcUVaOqiqOjWnOx8D/JFkpISGjIF1dLRdqaiLz8+V+yjYTgUDQw4AlOm5uZjQJ6XRKmMjvJ+vr9cQ9bot8Ozuj3IzirQxFZW9SUpiaSmWoGRJwAZSlv7NTQS+byMpKCf9FIqypMQhEnwAvgkELTPL5aGmpZsygLSOJUp+NinEqLCQwbuvuKispB6Uu5Snt7xeD19ND5uYKOrKqSuZJTg6Bg4xEFKWr7WRlJfv7NQ8ZiUTnWmmpeLuVlQyHpU1BPcRZVeCuLun7xERpy+hodMyUYLuzM5qHY0qKxDTz8siuLplzRuW9ttaOLcvL2dam8zAQiBagJiZahhdmZckaKS21CNsjAJmTI4atvJwcGLB5chYUfIH5JxikDeGzocHWDUYgCOVRPeT5/ZTDZmamtD03V/5taRHDV1Ymhr64mMzONo47WV9vpYBMEtzr1flmwjrKn2tRq+np9mBsQGkhNYysq/ur1Nk9/XTQgseO5f30018Zuy/Vywz8rFkCvBgDLAt/KGQSy5s0bBYkcJidndQNcgOB1zkMoR1SoWlZXHl5NDBkw4LOrCxyYMBqv3FgQDaXnh4CezUU16yn+tc1hLfW6qVJqGytWJjYWObnH1VsW1BAYJcY5ORkCYVpuUI4LJtqRkY07WXjccEgGQyyvNzYlHEFEzxNIWAeZ28vFUEY1NDiVnq9anCzs1WyZquEmFpaLD8g8BwrKkxB7jiBzTztNMN5uZcSKvXpfZ7Uz22l5ED9R4E41lFCnCLXIuUHeykIOz8BgbvPns2j7j1EYLOOU1Dv8bpsnOEwgUbxHvv6rLp1UREtUbXJybCrixwe5hFIGQIjEQP0k5N8RYV4qg0NBFaKce3rY3u7hvmKi9ndLUNvtOGM/I3Mrc38A4RHNSWF0TBmairdegDKy5NDRFmZ1o/FxzMuzkjYuDR02UX29GhI081QSGDzMTGMInsGBsSDSE/X8dgqO35ZGYGtLCmRaWZKEIBtUicWlnEtK5P53d0tnzNK6Ab8IR7pTulbo4ZeV8eCApkrpv5N5tlODWeuk8hHU5OWMRyk0yn9awipp00z6duHpUC7uNjK6GhFC+Pi9IDpcjEAcMYMpeYbHIwerPLzydpaNjZK7lrm+SYyP5+fadSBEKSt4fJkWRnpdIpRrq8nW1sVvfm0AJSOykOKty16grZeNj5exrOhQcOUz4lHFx9PNjSIcWxoILu66PcfxeTT0GBBZqedRgY3bfrK2P0ven2pjd1HkFAmsF6MREICa2oEdDCqIaZxKIigo4PjGoKSMOaTBDbQUIxIPm88Wig3fz6ZlCQ5maoqMitLQAYdHbJQxsY4rGEaNwQEshsSSuzTE25xcZQNH9ghC7u6mv2QwtOlS40EzF5ZXLW1BJ6kJSlsaREvs79fgQxByx0ZCpGcP5/9/fK8H0HAMlvUQwqFxAjshoQLxwCRSxk0+bdxsaRZWeJVulwcR7REIHzU95iQIP2SksI/aN9+pH05qPfsM32emckXIGAA8/tuHadB9RiH9fdDahhCIXkGA/1neTmZmckBvaah7xoAyEhEPAplrGc4bPMvItdUTZfLIPD2yunb0EglJVmhW0Yiosuq3l5ZGWUDz8oSj0/7eXBQPj9oPEH1KIBdVsQzJoZkXt5RHKsSfqXLZXk+Z8yQeVBQQM3bbbahPMDNJeoRTJsmYW+/Xw84Wn84bZqMtwdgfr6EG63enmGwHh3lFr1HMEjpm4aGKM1HXh5ZWChzxwApVD3gdUie0dDbMT09WhTpdJKBAIcAS2JgWERiYyXywdFRuX5mpnhn+fm2vUxNZXGxImFra8UD7eiQEHRrqxppn/R/KCQgrZ4eVlXJODqdVPRrI5mayle1D4Bxsr5eDHh+PtnaaksAxsZI+nxsaVHAjWmL02lRrtYrlhMrm5ok2lNURDI3VzxqpY0rLxcD1t0t08nStEndhNwkHCabm+XeCQkMfvTRcTd2v/tdkB0dPOb37373lbH7Ur0sGnPxYtmEFSElXoOb7Ouj0ymbelGR0nbV1UkcrqxMktjDw1qLtEk9si4CWxkXJxtFczPJ0VEWFurm2Nkpk1jDMgMDAl2uqlLkW0+PhFP7+2WjTEqyefDYWFUydjplcWdmmturl3P4C3k+9vfT69VwbHIygSFy/nzJI/n9ZHk5m9WzYHU1GYkwHFaIvCkkV29U69NZXy9tCASientWgVblY5qbSba0cN482bcKCtSbbWqyh4n+fkqHeL3y3GNj8mH1FjkwIDdLSpK2zJ9v6cVMkX55uYyHiYampERJpxmJREUxc3LkmWprydxc+b7TSWCbGJPsbDE0Xq+EoAYG2NYmYqednbY6QU7iaWlkIGAp4Dg8LPNA1dgHByUHKvm01ZYVw9S07YaAfSorxeufNk29wHCYQFBCsoZBZHCQ66FhYWUymDGDRmOKBQVR9RpDzh0OK3m0Fj/bWsiCAj0sPU02NUn/19eLwWppYTAo+21cHElANurqajXIeyWUWF0tIVIVDAaeIRMTWVFxVKG53y8hz7o6MXSJiVpztsmCpQxBNV0uCzJpapK1IbnzXaTTyfJyU4rgtuKmYhM2W6/M4yE5f77kxBVI095OMj9f12Q1y8vVYy0vl7Xg9cpcUyRtJCLzvbvbAF5eJ0tLLZeomcPATqtdZ0LNcjDZZenWDIrU79f89PCw2sBxBoPiLHq9spZnzGCUiMKw1hQWineXkUHgYQEv4/iXHvz2t0G2tfGY37/97d+usYshSXzJXgcOHMCpp56KV14J4sQTp+DKjQ/jQMm9ePJJ4M7rdqFv6Gy88QaQkAAcOgSsWwcsWwasWQPs3y////3ljcDgIDoufgShEHDb3I+BvXuxeuRCAPL5ZcuAC/e/hgMXXYkpWzdg4ePfwYrbNwDJycB776H27SsxbRrw/PPAkSPy68FB4NVXt2BsLA2nb3oNWLMGN+58CM8cvBr4p38CiovxVPtJuGXySuDf/g13Z7+LR6Y/AkxMADfcII287jqsXjcFn30GuFxATQ3w3nvA9xLfwb7kC3H6pAOAwwFMTKDjD6cgGAQOHpTnuugi4IIL5HLX/vscvFK1HocOAZMny99GRoDp04FT7lqI2r9bgWnTgCuuAM7ZuBJvJV6Lhgbg1luBjRuBqVPlNs8/L9ecOhV4+WVg3jzgk0+ADz4A8vKAd98Fdu4EsrKA+677ELdUn4fkZOmP554Dhofl3ps2AY8+CmzfDrS2AgsWyDW3bwcSE4HPPgNCIeDBBz5Hx3MnwOUCTj0VaGyU5/n+94GXajfjnYlZuDB+B94/dC6Sk6WNN98MPPPut4A5c4BLL8XqxNvwvedvw2Xbn8DaO34POBzoO+tqjI4CV2+8H1i0CDh0CDFnfA2srMXhxQ/iV78CcnOB8/e/BSQnY8ehs3Fu4p+ANWuwsOtqrPiHRoxe91PU1wMPbbwK5+18Bb29wOmfbMaqnbNw9VAj0N8vnb1oEbB1Kx7bdBnuXLADePJJ3PbJg3gi8T7cfeghPPLSt3DCwAf4/IEHMbJkCS6cRux6/i088I//iNeyiLXpd+LDOx7DeTtfwWuTrsKVO5/Aqqm34YEHgHcW/R44dAiP7b8Ft98u/XrokPT3XXcBq+54BX2nXoWLU/ah49XTkZAg45WZKXPktusO4KGGKbhv7gasGvkONm4E3n5b+hYXXABs346PHedhYkLGZft2YFbqYXzrH07CB8u6cVvnP+OJa1bhofeuxn3fbEPpuptQXw90dcn7ie+24eqOm3D77TJ3AOCpv18KnHwyNs+9G2edBZx18gHg0CF8fOhMnHPzZRh5801scBFXzzsMTExgx8gpmJgAzks8ADz+OHDRRdh1+eVYVk4cPChz9JLtTwHp6cCPf4wPW9YDAM6btAN49lkgPh73j/4UD17zDrBzJz684FrcfLMsrynLH5YFc889wKFDOO/SM3HPPcD3fhyDgwBSq6qwIvF+LDz0GD6+5k7ceqtc8qy+VcD27Xgm8W7cmPwWPvnHf8R0jwfvT70M5+N9WVg1NXht7kNobQUezfsDTr36agSDQUyZMuW47HnLlwdx8snHfq3x8QMoKTn1uLTpS/f6v21tj+VlTjlLlwrbg9erBeAKZPB49GdTbOX1yuk+GLTkx21tR8njVFZaVBu7uqzyNUdHSb+fLS3qHSqzhcejtE0DA/K5nBwJY6SmkuXlHNUT9sgIyf5+7gEsTVkkQvms8gR+pF6IYUJpahLHyeOhHEurqixxcFOTel9er0DhExIEth2itLWjQ/71+chwWEJZXm+Uj9DQc42OSmiovp7s6aHXq7kp5bG0aDURwBLUa3y8/C02VtqVmSnPayqK09OjcsiVlVGatthYMjtbiJVNvVZzc5TWZXRUHnZgQMZjeFhCS+GweIdNTQR8ghDMymJjo3qwgUAUvKKMMd3dR3mjfX1MSyNrIXB1ZmbK96qqmJ/PaI6mv5/AY+ICBwJWO49eL5cuFUg8y8vJ0lIJK+qYezwyjvX1GgrTZwYmpJ+6pAxDyj92iheRmCg5xOZm8eAbGuhy0QrIOp3iaCzRsDf9AulncbGMpctFNjSwuztK+8XY2C9KAunf2dEhDRsbk77y+2lZoLW+LAJI3/v9ZHExfT4J09XX6/cN5NJg7ZOSRAwBSkwdDMp8VAYjo95tlcS9Xlkbg4MsLlZPVREwJv1sdCaTkiifHRiQ+ex2R9e1JmjnzKF4VFpWAEywuVk87PZ2WjaY/Hx5ZJ9P5oLHw+hzGyKB0VEGAgr0ycwkR0eZkCBtmTFDr9fRIVGF+nqrUs6xMRWwXcu6OmlOebnOp54eGWelkjv//OOPxly+PMiWFh7ze/nyrzy7L9XLnHKC2dmYsns3rpz2AV5Lvg244gq8NfMWXLL4SnElJibkPWmSnLb37wfmzgVefhkPTf8PbNwIrLzh98CePbh/9Kc4eBB4JHWFfP6994CREdyIZ/DMTd04tGABTokhPj9rmjQiPh7IyZFrXnCBuEzf/jbQ04OzX34C770HnL5/B2qfOxe/KD2AhfdMwdAQ8FLoMjn+TpqEZ148BTfcALS3A08+Cbwy9C28Uv8BrsIrgMOB+16+DA9d8Yr80eHAnxqewCn4E5558RTcmP4+Nk+cj1nT94mrtWABkJpqn/WR965CZiZwSc3V8rtDh7Dr8dV47z3xqp66bpW4RJmZuH/ZFDz43LeAuDhx8xwO4GtfE5fsk0/wzA2rcMEFwKxNT8nptatL7nnkCNDRIX1xzz3yIFOnAjNnypH+0CHsq1mBQ4eky87uXSkn8XXrpM9uuEHanJwMvPkmkJYm/blgAXDwIPbdejdOv/l7cu2XXwaqq4Hqamy+7kHMOvgWOoYuwfUzNgAXXYTN752ANWtk2GfO1PttfQ0x3/0WluJsPD6D2NH7R+yaOBPx8cApv1qKByP/invuAU65/UbciGfws58BF+/tBqZNw8dTL8Q5b7bhHOdNSE4G/p//B/hNyiP4+Lq7cc7EDhyYei42bgSu3N2Gw/k34aSD+3D1raejpkamwXjgj8DNN+P0ja/gmU9jMK+gACuueAa33w6c0LUK78+8GmecAZxVeBVQUoL3U6/FzJnASffciZhfl2MJzsUDoRDgcODjT07AOYmHZe62tgLLlwOHDuE/Zj6CM84AZs8Gztv0exyY9wNM2bQW2L8fU26+Ggd27sPq3tPxvZrL8NTta3HLDYeBu+7C5w3/gd5e8QanTgVmHXwLePxxXLnzCbz26GZg5kys3XgKLpu5S9ZNSYmM2803A9/4BkpLiN+cdp+4V/HxMo433wz09uLjxStwzs61cuH2dmD6dIx+f6F4RfHxwKWXinu1Zo24pGbcly0TL3jyEzIHt2+XeTF1Kt7ZeTou3LkSB+Zeiym9r8h1ExPl78uWyZxZtEjamJgIfPSR/G7aNGDvXplre/fKvM3MlM9Mny7/Ll4s82vRIlnDiYkyJ/fuxTs3PIwLJzZIOKKmRubg3LnAe+/hk+9/H9PLyoAXXwSOHMHEyAh8vcQ3M2Pw+3rizhMbcSAUwqm/+MVx9ewaGv7nnt0dd/xtenZfamMHeFBWdhkee3sObpyxHgcPAqu2fQsxW99DWdmJmDlTwjc7d8p6bWgAXnjhENLSHNg8dBqQnY3Pn1+JkRHg9G/EYD+AVU3Ej3/8PurqzscbbwCrJl2LmBceAzAFIZyKS2cT06dLO0ZGxC6UlMjaXLxY7rd1q/ztloveB154AcjIACZPxodTL8F5jo9x2wPn4ImNsyQ8k5gIvPgiDpfciUmTgI9PjMEM7MXg4Bk494NuPOj7Z9x/wUrZxZctw5ntj+HXv5b7Dw8Dd793G2ZtfAKffCKb/Ntvh7B06deRmQlc+eQtuHvqU9i7V/aZxz65VnbisTHgjDOAggJ8OHEuJiaALVvEbm3cKPvWoUNyTkhOBu6Of0J+mD4dH+I8nDfxPt7afz4OHgR+9Stg/nzZHz79FOjulp8nTwYeeED2mOXLgZ9cswsrus5Ge7tcauNGaVN8PLDqgXdwbfWFeOGFEObM+Tra26UfU1OB3l651rPPAklJsp/Nmwec8Ogjsnmlp4sRNBsegL6fPoWvZ8bA305c778foz99EAkJwIknPo9fIh+L+vtx4a2z8M7MH+D+1N9j3jzgku+ejIWF44iPBx7eeCVGn30NS5cCj705G8jKwsm/fQzjuT+QzjnxRCAcxjvJ1+LCZTdG793bK4OwfDkWJr+C3/72AFi2GI/NfAzp6cBliR/istvPw6OPAhe+tBQdM/8VN9wQAgeGce2i8zB3ruyl5028DyQn44Gvf10MXk0NcPHFwMkn4wfLr8Tvp98NvP66hMAfOIB9E1PQ2ip9On068NDMJ4Bbb8XadSdg0ybgzlsPYEX7FJx6KnB9wmtiTA4dQt+WU5CQAFx3ndjQ86v1WR59FM9sPA+9vTKGy5eLvbh67xPA+DhWxP4Ul14KnL99FXDFFSj9xRT8JnQLnrjiKXzyiUzruXOBH/8YCAZlDmRmAudiBx5sPRf3v/cDxDz3FFJSHGhoAP7pnyJgOIJZF52EzZkLJV6dnS2N+sY3gIwMfLj/TJz3xgr86eaFWL4cuP124I035By4sv0wYr52IhobT8RPRu7HSTUP4t/+Tc6ijz4qn+nqkjPWggVyWXNWu953L9YueBjV1TKstbWyjl99FRhP/hbg8WDlujNx7Rt3AjU1GP3sFJwV2oG7G87FIzWHcfV1J+Hll4EjRw6BfZsRc/EssOJ+3HnoYcTEHMBjjx0fw2L2vEcf/Z8bu7vu+ts0dl/qMGbwppssZyPLyxkMqsRLR4fEKMNhBgKKTOvslLhJdTU5Nmah/W63hCzy8iS6ODxMsqGBTqf8vaKCQroblNCIKtTYujgGpcjTRO/Gxiih0aIiAbZoUayRTSkpkZ8zMuQ+KSkahgyHuXSphuhUDNPtJhkKsbf3KABHUpLEZQoKotyWHo+EDT0eCQs2N9tarFCI8iCBgIRsVByzt1f/5vGwt1ciTqGQ/J2Dgxwbk/tFIhLWycuLRsFMgarl+BwbY3+//L2oSH43MiJhq85O6bfKSrn0vHlK49XRYUOthYWUG5kYbkUF2dxsQ11MTyebmkyUi36/ABIMt6HXK91gSLpZWCggglDI6vi1tJCsr2c4TP5S0XPAVglh5eYKSEj5rwYH9bm09qyqihJ6HR0lc3Lo9WpobGCA7OtjcbEiNgdJVlQI8GVwkMzIkNBbdTVZV8e6Ovm11Tn0emX+GjXUggLS7ZbQpaoKL1GUYHOz9GM4TFsEz+Fhy/3NSISfKVqSAwOWdcYMgAFE9fYq/VgkYvX46PfLmJSXy4OoTEIwaLEnzM3Vfhge5tKl8vwmih0MapmOEXCtqyObmiz/ginqNGUMIyOM1mseFTI3c8Tvt1zg9PmiylAMBq0YQUmJPmc4LCHuykpBR/p8ZFOT/OxykV1dHBmRtRCJ0IZ4DQNeMGgjrTInfT5pREMDs7Nlvg8MyPMZ5iKbjjBor56eaH/X1nLpUilHCC5efNzDmI8+KooXx/p+9NG/3TDml9rYLV0aFNivrhLAx/LyKLGwEVu0NTuqtNnZSatNBuxjbKwsZEF0jTM7WzdZ1dYCdsmiLC2VFRgIsKdHjMC8eZTJXlgoeRRlojYbfH8/tW3bZBNwOKRh1dWC+gqHCayRFR0by6oq+bGzk6yH1AIC41pkPC6GobqadDgsRZHLJc/o8Wiuoa/Panjl54sxKSyUvweDjBY1NzWJYRkbI3BQNsH+fsbFRSXtiosFVfZrKO9mYaEtBmZ1tRjI9HRugxTes76ezMmRfFBfH1+CsMqsh/ImtraKkQ4EbLH9wIDsG/Pm6eaoBLt/AMimpmheqKGBdLsJ7GAjwHoIbyYrKqRNgQALCpRZJilJyjgSEtjdLXB5Iw3T1qb0aykp7OkRirCQlllIKctaNmu7GRcnKMrERALNjIuT8SkqEhquzk4ZzqVaWmHyQ16A3d0idyPUY/fzN4DdDF0u2RDz8zWXVV/PCJS3sbjYqo83NZkc3npRow/J8zIjQwapr4/19YJ07O2l3fjDYaUyU8X55mbK/G1qksNXRgY7O2W+lJSQzMmRsgjVLBSdyF0y9/UA9Da0AD4+ntOmRctYWF3NMUWrCtH3Y1aVgHV1msvyUajmNinF2JCuv4Pal5vp80lhutRkrtHay11kcjL/AOGX3QYpIjfiyUa2yzAiCRGzcM2KEOtzBNrlcNDaqnV6Gyg0fxsEZaxI3bw8qpzQJqtuYaSPWlqMlJVP+nVsjOzokPEeG2N9fVRZBBgnu7q0pvL4Grtly4JsbOQxv5ct+8rYfaleZuDnzQsS6CLHxmTBVlYypCdhjo3RzEC3W2yUUA4NyclZhR2ZnGyLgb1QqqpAgBwbE4OnrAsej24kg4NiMYzbMTxMp1PZ27X8ANgpp+DMTElwBwJSE+X3a5HqrmixTnMzX4AQUefmkkxMFEM1OqqL/mkyI0NkhwBbhwQ0kgkJDIXEQLjdYiwMXLuxkbZez3Ji6inXSCVI8faEeGkAOTwsHk5enuwgXq9VXxbYeDNzcuSyRUWy+AUosI9SOF6l3IkuAu1asCwSK8BhpqWJVyMcjgelf5WoeXCQluC4vp5KrPwMm5pkE6mqEsPQ30++rgCO2FiS8+crT+kOMjNTC+ndZGur1PcF5ESfkRHFaHi9lDFUGSZTgCib5F38LUDREryfPh8VkNDIVwErUf4mQDY0sL+faiDbZX40NysM/y4Lf3c6pSYOaJd5EQ7Tymp3dpLp6Vrn+bSoJwRpJalkI1/PJQDLyhTI4XZzcFApw0ZH5UBVWWk1dQ3biQ9gSYn8zihts7+f3QZgUlvL7m75W1wcZTCHh7XubT1p1oQSkwN+Dg8LiGMYwrYjzz4q803LY8Z1rjM5mWlpUqbRDyEVD5kDQUWFGDynkwyFhM5OGWoMsfoYpEZT1BF8ZFKSlkOsE8BUUpKsleRksraWQSh7ic4D828bQBYXCxNOQgLHITWer0PIr8vL1dutqpJSjbg4Dg4qyXhCAtPSpAxojx7a9gC2zq6xURhzTA3hvHnkq4AeQH5z3I1dbW2Q9fU85ndt7VfG7kv1smHM7Gx+AGFV+AjRQm5C6tOYnW13Zh+Upy89nUxN1cLqISvWWlCgaKv6ejk5JyfradVNBgKMGERlcrLsDEYLLimJA+qBhSE8lGxpIcfGWFOjm096OoG9rKiQdn6mi8xo4aWlyYLzQ1WOAwF5d3bKona5OABhe4lEGEXaqeLzNkB2ssxMWyhcWEjLI0mHg0xPZ2OjrOeSEg1fZWaSbretG/pMFzLT0uS+SonGlBT5fWwsB9TLe1V/H4IUl79t+rewkMzI4Ac4StWgulo2zc5OWs6yrCx+BC34LyuTw0B+PgdxVDF7XByfhurQVVdL36sna/k2BwfpgxSnO526ofv9ZG2tIFZ7esSNC4ftiaetjaTPJ4eigoIowrOpiUxIEO+4ooJMT5d+8vnIri4xVGNjZHGxHG58PrKlhe3tokDhdgsqr6yM1vNlXx+ZlSXGJTNTjGtaGoFR6YfRUfEE5s8nm5rk2YzGVE+PeHjx8Swroy08H9CDCXNyyLIyy51pai2DUA1ERaz+ElqTGQ7ztxD5IyObNGeO9JEwwgzJ7+fPFw9Pq7NDOtZMTJTxqq4WI6PoVebm0gXYEGhNDa0X/xGkkHtkRB4rGFQOTWNhNYxRXCz9/AdjsFQW3OfT/o+PFydR56elDktPtyjikRFZ++3tylrT0kKfT8P/Or9ZVGSp4Hp6xOMfhkYl/GLM29sp6zscJp1OmfudnUbBKsoEb8IwBQXR1El1tSWjDq5a9ZWx+1/0+lIbuz26WQJBcnRUNsixMTI7227OhuC4vp5kczPf1I1aTvH7bEG0oYIMA7KJulxkICAbYigk/3e72dMTPdGNA2RiIof0JMq4OO5Wo8fBQXo80ZIFCesclBVWXs6aGs2BZGQwI0PDJX19csLu6CDHxsSwJSRYXkivl+SoaNjR7yerxJMyXH7dEOaSYZic1Dp+oIZgEEqj1dGh7CI+jkNCdcEgxWUqLJRwo9stiz0pSQxldbW0yeGQTaG2lqyslA0uLU36MCVF+iMtjR1qrCL67tST9XOQEoZtxmOYP5+sqrL6e1tM3zU1kXl5EkYsKmJPjzzuHggpdFOTeIdGxsbvp4bKnASeZGMjLRWZyeGMjZGMjbV0VfRJyDugc2P2bNJIt6elUS5eVESvV7kptQib1dWa49trpW1qaqhE1EM6r1ZYQmQODJD5+TL/VMH6U4DAJinHqKwksJUewKq+s6GBDAQMS5pB/dvCc+AZ2ZC1XOIDgIQQLP87tADd52NVlXjIgYB4w9R71NdrmN7t5gd6UBtWIyhe/E7LEtTTI5GDkhKVlBI3i8BOpYpbzX4IOTUdDrKoSJ61oIBMTGS/juGMGdqPTU0sLpZn2a1zQELJ28iqKpaX65ppaDiKNk7UJ4B7pcQE0KLwTYxExNM0LDElJeKlGf7SigpNNVRVydzu6uJpp0XTFkuXyrpjUxPz86XYPC1N2hkTI+PaByhdnp8VFWpIBwclDVFZKf0fFyeHnMJC+nzybEGP57gbu6VLhZz8WN9Ll35l7L5ULzPwPl9QjNvwMJmSwqwsBTv09bG7m1Zzq6ZGCZTz81lZqaCThgYyHLZ6jcZTKi+n7AQNDWRWlngHfX1kRYWAL5KTZZNJTbUgD5P8HxigvYZGyaydHBggLXfRUQoKbrd6FT6fbBDDw9FMuLK1+Hwk09KkNq6vT0KwwWDU0LW2ksPDLC6WZy0upuXZNPttY6NsWEVFFKOXmcnGRtmA2tpoWSTcbtIUEyoFp6WUCQQYFZUtKpKwa1+fXLSnh8GgbK5z5kS/NzKi4baWFsbFyb3mzVMlgYaGKPt+cbE8TyAgv/N45ISsbCcsKxMjVVgYZZfv7BTDn5goKzkpScJitbViiLxe2dSbmy3jDcvKrJBpKHRUPrelRcbB1A1qItHvl7bX18t4tbcrw0YgYNKdMl4VFeINNTSQ+fkCdFJwEfv6yKAIDY+M6D09HlZV0TLS5OfT1oJ1d1Oew0ykigrS7VZqs2es4vnAADXk2CgbutdLwMVaQIxmdTVZVqZ53+sFiKEeDPPy2N0tvK7Z2bS6cW9C86vhsK0zPQKhoGtulv630ZOkJI4DrKyUXNrSpWpEfT76/dEz4/Awacg2W1o0CtPUxN5enSeqk9fdrevU7bZsKpw/X6IM1dVyEEpIkDWemyteqPJZ+v06pwDh2gzommpoIKuroyoSgYD0qwK6gnoQM8TQrKiIAnXKyqKHy5SUaF2i/t6gVxobaXUWGYnQ75clEezrO+7GrqoqyNpaHvO7qupv19jFkF/e0oNZs4Lof30CaGhA7dfux8CAsDfc7bvJQtsNi8PEhKDGn3xSys6euW4l8O//jkfy12PSJOBOxwoAwIMjC/Hkk8CO59/BgZkXYsoN38PZm1bj5ZeBWUNSg4UXXwTOOgvfafkpFiwQ6LbDIajtkZEoxDk+Hjh/5DVg8mSsPfQd/P3fA2e5n8LHV9yCP34zBhcFAsDkyeh49XRcn7FDKEn278c5zpvQ1QXMqrkRePRRfD71TJxw6E84POkUfO1ru8Hg14FDh7B645n43kV/xIXzzsT06UIKsX8/cMcdAkG/atPDWBF/r4XvL1sGnDTxJ/nhpZfwVt16JCdL9UN7u0DEd+6UNxAtJ/jNwJXyMLfeij/NvRqn7HwfB6afjxdflM+ZZz1h+4f42HEepk4FTjn4R4Fsx7+GP2VeiVM2vYX34y/ByIiUNdxxh5RnzZwJ3HbzYTy2/CQsWyZlCVdcIbDytbc+gSdwGyZNklKE++45DNx8M+6b+Xs89MsYIDYWhw8eRleXVGac8/IKgarPng383d/hocpx3HfDDsHkHzmCmJvPAVN+hB+kf4hJk4Ann42BI4ZYvBh48NEpWNt1ABddJM90ygP34nD1wzhp7mXA1Kl46KKVtnxl6lTgJxdtwAmZ38HEBHDC1velTw8dEqz+c88B8+dj4fILseLQLdjxwFNYswZYOPIgkJmJ/9h+FX4y+Smc/ONb0NkJfO/lO1H7jcdQVgac8vxTUiv6vJQXnBd6Fx/Gfwc72jfgXMcudLx5Nq6fsQEPXHwxzmkmbr4ZOGnTBtzf9R3s3ClzPDMz2s5Dh6Rq4eLZh4GSErxzxxNITwf27AHCYeAcfIyF1efg3/5NSk/mzZM18tDMJ1C75zZccQVwcVhq97BxI3bc+iCmTgWmTOyTko9Fi+RGL72Eq+r/Gd/9rlzn3Xe9KCr6R9xzj5TlADKvJk8Gbrv0Q8z/2Xm49Vagp0faO326/O2SSRuw8pPvYOtWaYvDAZx/11Vyj1tvBbZtAwoKgBdfxOg/3yZMLL/+NWIW34Xi4q9jxQO7cNvis/FEw58Q8/VtyMn5B1x6qdzj5ZeBs84CIhFhmtm6Fbhw8ofAzp3YdcFV2LpVbmMYWj4skbrKN96QMqLPU8/HxISUYXy4+Cng0ksx+vVz0dMja+fOeR9i9fbzkJgIXHjBYRzo7cWpl19+XEsPqqqCcDiO/VqHDh3AkiV/ndKDTz/9FHfeeSdWrVoFALj66qvx61//GvHx8f/l548cOYLFixdj9erV2LFjB0499VTMnTsXNTU1OPvss+3nrrjiCng8ni989/rrr0d7e/tf1sD/29b2WF5H5+wENTYhHk51tZzukpIsqsxIyLCpieMmF5SdTWC9oNI6O8muLs6Zo8n/4mI5EZeXk3Fx4r0YJKahOCkrk5Nfbq7N2X2gIc2gCZ/W1QloIhAgExOZna3MHhUVfNeEVUMhMiGBSUma26uvJ7ApCmeuqJAw5vCw8mjukL/FxsrJsqpKgAEZGXLqVbJmFhWxpUVPuuXlcswsKmJhoXhWTqcCWBoayIYG8fYiEatRx5YW8YyM2mdiooQos7Loh+TitkBya3sQVUn/TE/VuzW8zLg4q6L+gQmjtrZaAmQmJ5MOhyAMDQQ0OVlcgYEBCZlmZkpeKTVVTv2BgHiXlZVRppb+frK1VcFBz5GBgCIgN5C5uQKISEy0Ej6GWGdgQJhLYmIo91ShOGBC2pefL300OBj9XGcn2dAgobPsbLK/X4ApqakqCbRWUjrmeVNTNfK3i0Go1lxmpoTe4+LUM9sq/WM8yORkNjZqecvwMFlYKN6xSjgNDIh3uASaI9UyBRYVkQUF4l15PPR4JPTL4mL5e10dWVUl90hIIPPzLUQ/qKHBkhJxXjohuTYGg+LJFxSQ+fl0OkUkNzdXQoB1dZr/6+8XT9Pwp9bXyxyNjWVQw8+Gt9Pno7gZUNWC1lYmJCihdDhMp1M84Lw8XZN1dfwMgrwdhIBcsrM1ipOZKUjLzk4yKIolDIVkfitpuI2AJCSQFRU2zGlCtKMm9B8KsaZG101amsyzujoyNlaRoYdZX88o45Dmby3ZqUJDXS6SgQCDzz573D27ysqgDb8ey7uy8q/n2c2bN48XXHAB33rrLb711lu84IILuGDBgv/28/v37+fcuXPZ0dHBrVu3cv369bz44ov57W9/+wufu/zyy1lcXMzdu3fb9/79+//i9n2pjd3QUJD0eGQD8XhkAbW0yMSbP182o5QUCaMo1ZLBB2dkaFgrPV02kZaWKO1Va6uspNJSmfADA3LNSEQMZ0uLbLLFxQarTOblyQZfXi6roatLwo4tLRKG8XplgaiCAevq5Brx8WRXlykLtOHPtjaSoZAkxBU0096u4IeqKmZlySI9ogbGJqO0lkzR1GKkc3NFUNNv9wTZiDo7OTKiVEcGlNDQID/n5soGkZUV3fg1X8P0dGl3UZF8p65OwC5KRWZrIRoaLHFvRHNKDASigBGtqXO7GS1oqquTRjY3yxjU1xNwSogxJ+cLYVzLIp2ZSVZX25qw3l6SkYjkY1JSosZOKcxEkXxC+mt0VEJ+TqdsikZNIRiUMGphodCljY3JXFCttd5e7bNQyIbEhoc196ria4biLDdXf9/aKkYyI0PaVl7O3l6dh3l5DAa11jE2VjZtrUiwXQ8AAQAASURBVOG0/VpWRgMvDYelbUsACxZhMEj29ETp1pqbZYOvraXbrZv4/PlkdTU/AvgbwOagmZ/PigoLNpVDVVKSGG1zcnI66feLcfP7aQURIxFK25Rc2zD1mfsPDOjPfX1y/+RkWa/KgN3ZqfdMSIgCv6qrZY7V1sq88PnESOfmkn19rKiIRrQLCig37ewkk5JkneXnyzMEAmR1tRizvj6Gtb/CUJCM0b7LzWV7Oy36NhgkGRcnY9/SIqmLnh4x7PX1zMlRsJjWqdbUkKyoECOblcVIhJwz5/jThTmdQVZV8ZjfTudfx9i9//77BMDe3l77u/Xr1xMAt27d+mdfZ8OGDQTAQCBgf3f55ZfzZz/72f+4jV9qY/fRR0GGQkZk008mJTFkcgvGeHV0KBR8udRWacF3c3MUpcXqalmdfj+ZnW0XfVwcSYeDRUU8SvxTNsdp0yiL12DZtSCZY2NkXZ0sOK9XEGIqRJmfL20tLCRZXi6bsIpwaTkS6fOxuVmMXW+vlgxUVMiGmJrKrKyoBhwrK5mTIye2nh5aEU5WVJApKeKVpqfLgnc6rYr64KBu9jk5svk0NxtgoT08uN20uS2GQrIZqZROZaUa3fR0trSIgbFF1i0tYoD6+6MqEZmZ9HrFi2JpqbRJN4alSxk99dfX29q7QIBkVxeXLpXzgcMhY1VWJs9qc61FRfbUmpdnZQJNXbPVvguFpC1jY1I/NTxMq97g88mjuly0m7/Ho/k0l0s2MM1fsayMrKuTjdfplL7u6GBdneyvxcUKiIhE5BlMxXskQgaF15CVlQLoUM5Fp5MWQev10vKzjo1J95sartmzTQlDo8y9SIRjY+LhfaQ5szcBAneRXV3MyDBCC+P8HUA6HDztNLEJaWnybLXqobO/X9fJWgJ30uOJKpEL+/8+sqJC+s3pJBBUb+cgWVdndQCNrA5HR2WsVS4gLU3nrMvFmBjNm2t5UEqKgldGRxkXp15TdTULCow2pWg3AqPi5efnq8TPEOfM0bkRDJJFRUZLmPR62dwsNrqmRtdqfb0Vwx0clH5wOKQtFRWypnNzZR7V1Oi4qIqH0XMcHpa/m1Rqe7vuKT4f8/K07c3NZHY2Gxr+9xq7oaEhBoNB+z506ND/qH3Nzc089dRT/9PvTz31VD7xxBN/9nVeffVVxsTEfKHPLr/8ck6dOpVnnHEGzz//fP785z/ngQMH/uI2fqmNXfDcc7U2bAd7e8mnFd3FvDx6IajLgIYo2tooCzo9nX4NfQKj7AHoARiJiGFxAdZjMYbUFJMfzaDA0dEo3D41lSwqkk2jtlZ2CYVPtrdTNnefj8AoIxGxB93dSnKblqabxw6Gw7rJ6+4GvM7GRgnvBAKUlTg2xrw82fj2QGsKMzLItDRuMZ5eaSlZVUVggq9D4P9vm+fq6mJW1lFEyF1dUlqlYVimpFCho/wIguKcN08ecWCAslOMjkpDMzIs4KO/X9teWyu/6+8ni4oEbGHYYFJTycJCi16zxtblIsvKBJLucMj/09Pl0FJWZtlpOH++9FlZGY0Ib1gBDU1NckkhBthlmUu6u0kWFTEmRkidDfaAyckCz09MVO/xcJQlpLCQwBDb2+VxZ8zQ76Sk8FMd85ISBVOoKregGH+l9XKbbN1nSoqOf0qKFiXv4zaA06apHl1pqZWxiYvTQ4uSetfXU8Ocm6UDpKAwCvBRgoOPAC6BoCl9EORgczNJl0ueJxSSvu7qknFxuSSkXlrKMaiGoULtpY1DUiqRkkJmZzMUioqds7nZkOawuVnXQ0sLGxspaNvWVgse6Tah9a4umezJydwDRW6mp5N1dSK2axhkmppsSNin4yrrYBNjYsToVlZSQuFh9Qb7+9nTIzVxL6nB1+JPiUqoxdyjEYk9QJSguqjIIlbZ1BT1Ut1usqBAWIU0auP16rOmpZEVFfZwxK4uuUdurhj5jg7pt+Jinnvu8Td2994btBH8Y3nfe69c5//7XrJkyf+ofUuXLmVKSsp/+n1KSgofeuihP+sa4+Pj/Pa3v82bbrrpC79fsWIFX331VW7ZsoXPPvssk5OTOXfu3L+4jV9uY3fRRaTbLZMwM5ORiOpvZWeToZAN74TDlAWQlma9L1Os3NQkp7iEBNmLBwcpP3R2kqWlVoGaVVXizagygg1lqqYYQyEuXcooTZGWG3BwkAkJUTHNlhaS5eWy4INBnnaabnBjY6ys1FxaRQWZnS3f8XjkO+GweIRa28eUFKsLR5dLjptud5T1PhJhJKILcmyMgYCcwisqSPp8HBwUj8wU4Le3U77f2ipvQ2WlIqeGusyoVtPnEy/EhDFVxcCkhxgIkP39Njzb2xtl1A+FaPNsdLmkvU1N0qcdHWQkwuHhaLkhCwrIhAQZm6wscmzMnswNmzudTgNeJePjOW+efDcnh9GcVl4ei4q0ZKSyUgxiVhaZnS1929pKFhdbj5CFhZw3T8cuO1sOTOEwPR69p8vFcFjshEVlOp2yeXZ2kgkJMkatrWQwKP3V2Um3Wz321lb516hSQOi+iotpadSMGrcp+xoeJun1SnuLishg0OaglmhYki4X6fdzZETyaxwcZHc3rYp2UxPJuDgrPcjBQbt5j4xQ1khRkYyrCYd6vSwri6b/2Noqfa3hZxO5Zk6OrLOeHjqdOreV78ugRxkOi0HQKAbT02WclZFkZETz26pKz7ExMhSS+3Z1WUfZ1JSaA4phPTK5UI6OkhkZdh7b/jOnCqPPZxDFzc1RtZG0NBYUyLzt79d+qa6OIqVzcsTzMzn+3Fxr6GfPVmHmtLTjbuzuvjtIp5PH/L777r/Ms1uyZMl/aRyPfr/99ttcunQpzzvvvP/0/ZkzZ/KXv/zl//H5Dh8+zO9///ucPXv2/7G/Nm7cSAD0+Xx/Xufp68tt7L72NaUe8nFsTJgLTP6oH1Ioat6VlSQ7OrhNT4BCJ7SVoxCQhdMpuRPLolJZGQVDKAcie3psqqG7W4p790DAFwPqBYXNaV8ZWJqaJLcmYZh1EgrTer26OtnMJIe0gxwelhCYx0OOjckptbaWR4xnNzbGkRHZX9rbSSYmynNlZJDx8XRpOyLqYQLr6VbPzgtIDs3l0vDTkJx+MzKivIjqHZow6B71jC1xZkGBeCNNTWRVlZzKU1JkFRUWipeWkyP3Sky0iu8f6Lj0AGRyMl/SvmJmJpmfL5tYcTHfhoAP6HZHYedaBOxyRWviDIFNRQXJlBQrRgtUE1jDGTOswyxjV14uHqHDwaVL1Xvz+eh0infc3i6ecihEsq+PnZ1q3Pv62NurYcm6Otk0U1IYhhT474ECREIhpYlaSWA1gRWykTY0yEErL082S4+HaWnihQCbBJBRWUlgG7dAZKFycynj5PHQ6RTjVFcnYx4Omzo6l7SvoIDs6eGbAH1q6JYABJaT4TDdblopK6+O9chINAXNsjK+C1GN3wNoOmCIhkjBnAhNGQETEsQ4pKQwKcmEGPdxt87vbbp2BgdJ5uZywEQUqqpYURE9SOblUeZUXBzHtd0JCSQLC8WIh8NWTktq7bZp/y5mKCRsLMLOs4sMhcRD1zrPggINqasx6+3V/8fHC+ApJ8eGIQMBzZeq4HJZmQxnWZmMQUFB9DkkNT9hS41saL+iQkBvKSlyiKisJLu6+CnA5547/p7dnXcGbdj1WN533vmXtWnPnj384IMP/n++x8fH/0dhzMOHD/Oaa67hrFmzuHfv3v9jmz7//HPGxsayvb39z3oG85r0l2E3/3e9dvf/EY4ZU8BNG4BvnIxbphGJrcA7j1+BTe+JCOvevcJuPm9RDJCfj2eqiN27AcbdC9x1Fx58nJg5E3jomj8BDgeuHCBeS+8GTjsNuPlm/GjPWnzg7AXWrcNlW1dg7bZpwOzZ+N7u3XjFTSAZ+HinQLzHx4Fz8z/H/Q+cgHsmCZx64Q0HcPdW4o47gEf2NgG9VwAHD2K74yrcfcU7qK0hyq4B2Pw68PgneMm1CNg4Cdi0CfctmApMvx11vBe/KPkeSr+5Gr+Juxd3AsC821F6zW785o3LBMe/YAGevP10pKfLM49sBJg+G/MTiaVLgZdfBB71CLz7g6a1wC9+gQfnE1u3AtdtB2bdeiswbx4+PHgVLtjdCDz/PP44aRYmJoD4ZGDKmlVYW/IMtl7xDFLX/ACYORP3zSbmtb4vNPKLFuHDSedjZAS4fWdU8PW994CLXwfGM9/CdzGBJueJWLxYoN/3JT4BTJqEU26+FkhOxitLiYtu3QX87nfA7bfjmb1X4caXb8EvLugGmptxZxnx2P4Hga3zcPfMEeCieCzc/yFW/MtsIC8PTHocWDAMTHbLjVNvwOZDt2DW7bfjgknAI0vHcd/kFVLv8MlB3Hzzhej5B+L6aWtx/bIJ6ffp03HtyCogORVwJGJ0E/BS0e+xevLdmAfg3ms+RGoqMH5WNxa6iEsvBS7YClzy8v1gwXbp4E8+wcdpq3HOnH144w3gqscfx1kTf8To31+Gze3v475Wgt9oxL0BonoxwOkrcOMbxDN/txS4IQOrJ36K7+1fJeoFE5fi7v2twMUX48DXFqACT6MW30dmJvH+9GcQHw9k4S6cdtqvsO/gKnwXy7EEJbjl9h/jqf1XA1OnYsdNv8M/4kZkOdrQnhiD81wunNf6JGovXolFOBupqYvg9QINDwBuJGE/AMQHBfs/MYHz06fg/CNH8KBzHPcvfxDXXvAhdr4QgxPOSMdhbMI9ZcQDv4rBo5XEDXnA+Ttfw+cvrsKTi2WdnnId8PBdVwHb78FjpR9g+c9igO82YPO6AxgfB65cejX+eIUDHf/8ezx0QwxQ4sV/VO7GT964EQvDI0DcRmDdYoyiGqfM8+CeHOKVT27EYjwL3JCLDVvfwI5NB/Dv/w4803wSMO9xvDb9Flw5+gQu9j8sZTptn2L/fmDmDcDKkoXAoWpM2fI2frV8ATC9Gjj5ZDz28nmionEoHoi/HM8k34cPb12F3uuAV+45E4ewB479wzjl9tvxeddqXN17H3DPPXgy8WHMnAks3PowsHgx1vaehGW5ROvXX/r/xzb4V31NnToVU6dO/T9+bs6cOQgGg9iwYQO+853vAAD6+voQDAZxySWX/LffO3LkCH7wgx9g27ZteP3113HGGWf8H+/l9/tx5MgRTJs27c9/EHzJJX5++9sgTjhhCm578Wo8c8MqOBzAtdM34KrF38E114jydTgsNTbt7SLz8cknorpz/ehjwN69eGrmg9i5U2Q9Tti5A6u3nos1a4Bf/Wo7gGlgRRXudzyMJ58EPo6fhZgt6wHsBQA4nd/Eu++KHFdystQRpaYCt+19WAp2zjoLANBx8J9x/fAjwN69uH/SQ3A4gPvuOABs2oRHNl6Guxd8CDzwAO6d/gweTnwEHd+4W+R7pv8e78z8AdrbpY7tPscjWJ16N7ZuBe6evAJvXbAQkyfLc735piiFf/e7wMUtP8Fr1/0HUlNFnmXePCkNfPjUpUAohBXJD2HhBW+JQfjNb7Cj811cd52U+bW1yXeMLBIgtvS996R2qOOFk9DUJGVX7e2ixpKRIZIutyxQ/bRLDwCTJ+OSS0Vj7pQ1q7AKVyM+Xuodv/516a9vfUuea/9+4NNPj8DlisW6dcA110it01WZB3DhFVPwTtcu/Cle5IE2bZLxvOEGqW/bl3g+WluljSdsekeKBl9+Ge9n3obJk0WBfcqt1+LAPQ/KhWfOBBYvxiPTH8HdN+zCF+S4p08X/b5N5+PG6Wvl/08+KYWEvb1YOf1OXJv6PnbFn4+zJ/1ROikxEUhMxMcjJ0mdn7nWdddh16RzcPbzj+HG3jvx/e8D16e9D3zyCd6afBUugaihX11ytpH+w5Q/tKFv5k24OPB7TLn9Bziw/3OguhqHF92PN96QObph+Tu48PYLcd11wH2XrpXOePVVPDH6z7gt831g5kzccvtJOPfpGBwoJx5JfwpXP38LVk29DauvewK33gr8y78AvynagM8v+g5OeHElnjp4LXbuBO5bEoNnWijK9Z+8hVV7L8H4OHDDDX9Ebu6ZuOsuqVG97NAruKz6KsTHy+OuuOt9PPj8+di/H3jk9dl4puJd3HjBZtz//CyRT1p0Gf7jhrWIj5ezwN690kULFois3dSpojx18skylxMTZfwnTZI1nJ8vPxv5uYdrPsc5ySdg7lyZny++KMMUHy+fe/55Gbo77pB3ZqYM84IF0XrSqVNlThvZy95e+e7NN8v+UFkJDA0BXq/M7fZ2+fzcufK5M86QOdzZKd8ZH5fa0ORkKfPcuxe4wPEOTv32t49rnd1PfhLE17527NcKhw/gP/7jr1NnN3/+fOzatQtNTU0AgIULF+Kb3/wm/vCHP9jPpKam4pe//CXy8vIwMTGBf/mXf8E777yDrq4unKX7JQCcfvrpOOmkkzA4OIi2tjZ873vfw9SpU/H+++/j5z//OU4++WS8/fbbOPHEE//8Bv5FfuD/kpcNY65cyZISRXKVlUUlik1JQFKSxCU6OgTuXFQkIbueHrpcShWUlmaT0KysJIuLJSxRXEympLCkRMImzMoisFNCc+npEq5MTLQwao+HZGEhBwakKS4XbbiPo6MC3AiHTR5c8kVVVRIyTU+3ucOREUposKGBwDYJs5SXSwgoFBI4dn8/AZ/83NEh8aSiIqvgbcrk2NwsObXsbFuTV1KiiLGGBtbVSQQ0KUn5CiGku69Da+bi48mcHGZkmJDV5mj5gIJC6HRamsCYmCghtWFXSU0VOqf6eisyTfr9FvDBxERa2GBLC61eTnU1gcNkZaXkfXp6bPWHF0b9e59FVNbVad6stpbAPvb304bm6PNJf1RXs7FRc45Op/RtKGTzXkKwvYPDEJUBYIhpadJfs2eTTE6WPu7qknF3OoV9xOViXJw8RjAoYS5giC5XVAZHkLwHJYTa2ipxQSUvNvoxwN4oI9DYmBFwZ2ysjk8gIN+vrjYkN2Rzs4TxXC6OjGj4NTeX5eVahzc6Sra0MC9PQ3ZxcWwEpCMrKpidHU1DGVALm5pYUkK+BOE9ZU4OmZ9vnyUvTyjPWFxsOUmHh0k6HGxp0b/l53McMNUwdENoyXYDpN9vc5EsKiLnz5fv1NUxHBZE6Uf6fhvgyIiul4YG9vTIXLQlDPn5ZGYmQ0C0L+PjLb/qgHmGtDT6fJJSiGh4/jnAshSxo0MWQkKC7Af5+QL20tIJP8BRvd6bEFJuw5na2KilFsqc8ykMEfT24x7G/PGPgywr4zG/f/zjv16d3djYGG+66SbGxcUxLi6ON910Ez/99NMvfAYAf/e735EkP/roo/82D/j666+TJD/++GNedtllPP3003nSSSfx7/7u73jnnXdybGzsL27fl9qzC959N6YcOYIVFzyG238cg4kwkZwM7Er/HvDTn4ra54sv4p0F9+PCH82Wk3hVFXDDDbjxrjORmhoVXF28WAVO79ohMbapU4H163HJaR/grbn3A9u3Y8UVz2Dhmh9II5KTgX/4B6C/X47lkyYJlcpR1C0xR8bBYAgHMAXj48BZkV1C2/Dzn2Nt/bu49NIoY8mVyTuA+Hg82HA67i/5o6hHxsUBJ56ItXH/jMuevA3nrHkCHz/5Gia++11Mam7G4Ztvw0l/PwPIzZVjp1GqXLYMl1x6Arq65IR5XtcjwO234+SzpqCiQjy2s19vw445N8HhkNNveztwUs2D4maZ5zvxRCAUEplut1vcqY0b5d0roV3cfLMcgQFgzhzsqn4CZ+98y6qrY9IkoUR5/HE8lLlKWFCee06Ov6+/DvT14ZWbn8JVzy+U67/8snhgDoeER884A08l/Stu+GEMTiookL42qtIOR1S9e8kSvNP5EV5+Gbjvjauwr/0VLFsmhCa9vcBl1VcB3/8+1qb9FJcdegW44gq88sZJuOrxH8CqxW7fDixahNp/2YBfTCyVsX3ySWnPpEn4weTV+PWvgbMG1uLuFy/DI/EPArffjpW9Z+Pa98RzfOvgLFxywQERXHU4gPR0vD/zatxxB/Dagkfw4YK7cd7WVVjYdTVWTL4bHRc/Aq8XeOzvG4HqanQ8uhvX54iHvH07cOf0lcDBgyhdfwt+M/YD9P3897i47U48NvMx3PizGExNSMB58X/EzTcD31sSgw/biBvX3CZ9Pm8eHjjrLDyQk4MrJ17B7bcDN76xEG/dugKb/zEGJRUVOPf5h/H448CV7z2GO7fficcW7QIaGvD5L3+JEzIyrLLr51u2YOcg0doK3L/mMulYQMIBY2NAYiIWblyIFc+dBjQ1AXv2oPbgT/GL6W1AURGwaJEozA91Ay0tMigNDXhk+9W4e+ON6Pj+M7i+eIpc95prUPvcufjF8J0yvr/8JXDaadjXuhonnBGD+K4uvHXaP+OST7uBxkYJ73/rMbxz6Z24sPpaIDMTu26+F2e/3iYKx3PniqJsZqasv0mTZH5fcAFQU4O9L7yAzwGc6fPhrUMX4pKJtcA//ZO4dRs3Siji5JNlMV16qbifl16KtROX4LIX75bQSXy8de3+Y+8PMG8eMHXlMpxaUXFcPbsf/ziIk0469msdPnwATU1fibd+aV5HA1REYmRciG5VsmWPeikGOs28PHbqqYxJSWRSEjMyxFNhbS1ZVMQ5c9QbqqsTxGNGBncDBH5F1tVxFCqLAoXHz58vqK7YWO7WUygTEizZLPv67KmWTicdDvHcPgNsIt3rJVldzbw8rcmFsFiwrk6O2mNj0haXix8AksRvaZHTt5EaSkujx3hiGRny+bIy5ubqvfPy5NSclKR1NnJKHh6mPIPHIzWDOTkc1pP3EX2HoDVYVVW2Lz8D+DSUPzEvz8qwfAQF55SWkkVFHNbvMyFBCp2htVx1dQLAUEaUYf3O2zpefRAy6w8g4I/fQQAkLCgQL72zU7xcl0u8llDIqh5UVmrxttdLer1salLUXnKyZeowWnmmMJ8ZGQwEaMVdmZQkHlNLC5mWFpXkcbvlMwqXjI2luFGdneIRxcezsVE8wMJCSj/k5IgXmZgo362uFo83I0O8VvViExIoHo5hzA8EBCVqUBQFBayvF9HZQEAiDb29lO/X1hIYFw9VUZWDEIYTtrSQOTkKWnmdvb3kb/UajI0lBwelBKWrS73lfRLVgBROs6HBemFMTibLyuTvpjBxdFQ6uKhIwEfKNuz30zIYfQbIpOvrs8jTL+gipqWRRUWWdeQl9WA5Oko2NMj4DQ+TWVl0u7Xco6DACgtbZGVZGRkOMwRERWO1vtXUR4YAMjfXcnIOD0v5xxEz32pryf5+Qd8mJwtgqbJS0Lt1daTXa4v5zXMzM1P2GKdT2q2co+zrY/D3vz/unt2PfhRkaSmP+f2jH/3tcmN+uY3d0BAjEWrJwYRM7oICWTh+vyzIwUFFvLXL5lZXRzqd8pnRUdmABwcZCERVytvbJaQ1YwbJ1FSrTs7MTMbEyL6fkCDfN8gsI9kcDJIsL5eQmhFRVbHUpqaoiKJB+rGvj4GA7B+GncnUtx+thpydTYsqLCnRtnu9Fubs9VI2P9VTY0qKGGdVTKDLJSGf/HwODmpRfF2dFVwzBd70ellSYsuObMmEy0WB8PX1MSNDw5Tz57O9XdZ+T4/2uQnxBQLyXYH4RcNbtbWy6pSxxESf8/JINjfT65Vmud0kOzrk94GAlBA0N7OkJFpQ3t8v/ZeUJH2qFSKsr5drGvVsU9rBzk4bxhwepsyNrq4oa0ggwMFBuZYtRPf7pSi5qUmMpMdjFS3Y0UEGAhwbk/4yJDbz5sn3jBL8yAijyhKDg6TbbRWzrYJ8cTHr66Nh3pYWuebwsAyp6NptUy2/660cgttNKRjPyWF3twnx3kgWFRlBDwKvizwQBAXa3a1h2UhEvpuSIm3Ny1M0abOV2pP7BiWE73SK8S8vJ7BPyzF36P+3WfSmYX9ha6vMB7+fM2bQigMDfpnDumZycrTPAgECPkF+9vVx9mxZa8q+R2CvzNv587Wo/CAzMiRMHonI/ADGLWLXEB7k5WkJS0sLOztlbpi+BvZaoeKkpGhReWOjRG+NXI8U1o+yrk7LWcbG6HQySinmcrGkROdMKERmZXH37uOPxvzhD4OWt/pY3j/84d+usTvh/55PeRxeLhdOmHsl3n4b6O8/EaipwdqSZ3B14gZg+nTscpwrWe39+5GTcz3WvvG5hMlGRvDee8Aoz8TqT2bh40nn4vbbJRpxoPCnmDMHWLhgFzZuBOD3w+EAnmn9HCguxvr1wIcbD2DNGgCTJ+PsxM8lI754MTBpEqZU3yshRQDvT/4O9u4FcNppmDpVwCs/mbQCP9n7IDB9OmJjASQmIjlZ/vZQ+u9RUiJRlvMnfYgTbr0FmDkTHW+fi+XLgf+Y+QhmzgTq6wHccw+e2n4J5s4F7rkHuCRxR5QJ2uEArrsOF18MYOpUnIDPgcREjP769xJek9tKVn36dGDuXGzdKhFJLF+OpCT5++mOP2HyZAB33YWr37gb+NGPgOefx4ZH38Kq1gOAw4Hrc/bhqZtfwZWbHhEk286d+HjnTuDiizHl5d8D11+PAwBuObQC8UlJ0sZrrgG2bsUvct/HPfdIdKm1FcCkSbhk8mbcfcdhAR/84hdYuWgD8OabuO46AC+/jN8s3YfqakE/zupdgcd6v4PeXuAn3+zGt74lw3vnFZuxeLGQgGPyZFx50QHgjTfw4QXXYu5ciYCe3f6I9BMkonbRRQC+/32cW30bqquBU677Hk655ip8nno+0tIAdHXh5puB1yYuw/uHZL6snvwDfIxzcMcdwMI1P8DPfiaR0GnTAFxxBU5pXQEMDeGsvlXS7ddfL+OTno4nnwR2XfoDYMsWrFsHYO9e3Jm5AZmZAJKTccsNh3HqqfLx2zb+BCUlAMPn4AoAOTntEotevhzr1gG3OhzAz36GzEzgkowMZGW1YfV1T+Css6QPenuvwH0AHgLg9f4Dtm8XDueHak7ANQBw5AhOuecnWHvXShQWzkdc3G04afqZ2L9fIs5e7xSUlHwT+N3vpE8/+QTAiTKHAGD7dgwMzJSbDQ3B7QZ27J2CffNvkhh9by8++ugI/vVfj+CdiVmoqTkfSUkAFi3Cx/unYNEi4OWXDwE7d8LtvhCLFgFPvPcdvPtuBNu2fYTHHwfuHl+K0047A7t6PwbefRcTE8C0aV/Hk0/K2G3aBGy+6DY4nQ4bmn/5Zbn9Cy+E8PLLANaswcaNMv5PPilRyZqaM/DUo/vw/PMSHZ80SabopZdKBLO9HUBPD44ciQCI4IEHJBKKjRtxxx0y5aU/BMB9ynsbcEvJKUBmJk4p+9H/bH/76nV8X/+3re2xvKxn98MfWmHUMSBaUB0ba8OFTEwk8/L4OlSYtLKSTE9nVpZqaKWmclyT4B4P5dgnHEsaIl1LlpVxHBAgDCBHzYwMhjRU95H+OwhI7dToKAcGomTDTE7mvHlaq6SAjLIyBVTEx9PjUZBNQoKceJW3qreX4qqUlzMIYc4wqq+GoYMJCVEduLw8uZACMgIBufen2g9H1wqHQiQrKrTYfJQhDR8yIYF+fZaA/svqagl5dnRwDKJP97aGhMb1+SNAlHqtpUWK/AH5XjAobRgYkNO/8iy+a66fkmLDogMakg1oKO1pQMKCzc1y7NaaKIbDVsjWp21ZulQ8cKM6beipmJMTpT9rahLPWqnIWF5u9fEEieAnOzutXJMJXfb3q/eggrlOJy1HZzBIsriYxcUSVauspK0AD4VI1tWJB+B2S8gxPl7otXJzyaYmYVkpLLSMc6yvt+Kplt2jv5+/hejRDULYUlhVRc6fL3ybWsA/MiLh8IQESmOKi1V5fRO9XgWt5OdbzsykJJJ9fZZVaFy9RA4MyDrIyJCxi48X1zUxUdyZzk5LPsDWVgFxqRxTJEJbmE2HQ2pUnU7xZKuqrFAvS0vlHh0d1vN611wnPz/qqqub1t2tKYqGBnJU2IiYmWm1B9nQwHEIGxLHxuQZW1qkLRqOCUHFYTs7yepqqz+5B5C50t8vf8/NFbcwMTHKLqQh+CBEfJnNzVK81tNDqxdl5MG8Xi5bdvw9u5tuChpe92N633TT365n96U2dqtWBW0Ia2SEEk8rKrJ8dszPl7CZFnJzYIBFRbTUYCMjJNPTOW5yR7GxMnlzcqzGFoNBMXAG9ZafL5t6eno0ED42JoassJAtLVGbw/JyuZ7LJT8HAly61BJSREmX4+PZ06PhycFBaXtPD4FxCReaomi3mwZ2CKyQHERfn8RAPR7DrmSildIXVVWW7aW/X3kC9TplZbIfzJtHqzLe2EhLrcT8fLK6mhUVsvaBTRwYoGXCaG8n6ffbaCiwlZ2dEiJzOOQzKSkSMq2qkj27u1uesaiItOKCqlhhmFf8fpKhkGzig4OsqZEhtCxsEAWCjAzSJOZmz6bE/AoKCHTJpmvyS8GghKHD4ShrSDhMRiKCFHRHUzDAct341xJYboCSEiZX1hEODgqqsLlZQt21tYyJkTCR0SkE1jMhQe5VUkIyOZmxsVrQ3t8fNdyJiWRFhXJsPyPzraPDsn4sXSr9160Grr5e+jwS0Z+VAJsuF5uadGz0MNQI0OuVQ49hr2F+Ppfo7w392uCgTBFDoG1Shj4olZgSK5rQsNPJKB1XXBwLCzUMnJ4uB5OEBOlUgHV1siwHEBUWHhkhmZsrIeqWFml0XBxZX8/ubtKjh0ZDczcyogKtnZ2sr1c0phGv9HhkDRYUiKEeHCRzcjgEIS0IQugAmZ3N+nqlxUtO5jY9tA0OWj5qWY9KrsDBQblGQoIlkAhDRJqHIGhMo1c5Z44yvmRns7xcWGt6e0ng+eNu7K6/PsjCQh7z+/rrvzJ2X6qX9exWr46e2hMT6fFobq2qKnrqbGiQU3BKSlTRYHSUlZXqAYTDlpGjrY1ycm9uFoOmsHuOjlovyIo7dnbK7tvUJKsvO1sukp0tv0tPl/zC8LAVk+XYmLQtOztKm2RkSTR/5PHophMK2SS/zyccfbNnKwuFPkcwSPaZzaiiQgxfXZ1l8g+FdPOtriYHB5mfL00LBhklrx4dlWc0ScWyMjkgtLbK/2trhcUdsKCLI8aTdLtlBSUkCBDB8K01NcnPZWVWePNTs8EabRWvV3bI6mrxqCsrpa9ULZxOpyRR8vIkR5KfT0teOToq9zU8nenp3KLXLyuj9G9zs+RolUWDSUny4Jo/dbl0gzOlDQ0N8swpKXJwycuTQ4/bLZ5NWRmzsvSQ0tQkberoIP1+2egTE6MgFiUlpsdDFhaqEvdeMj1dDFNtrbStvp6Vlbp519aSiYkyJ10uuU8oJPMkI4N5eUepDRhGloQEfgQwLU0327g4uX5eniWK/o0e4mbP1oNGQkLUwyso4OzZysaTnS0HpNpamd/JyTIWqhrPlBSyrk5ynUlJ0ndGjUGltIqLSRYWSn8Y1YeCAst/2twsfTOoBwV2dkr5itLMMT9fDpx+vxwKMjJkjuXlkamp7O9XlhYtm/H7ZSwKCuS6TU0iDNvbqwwxR1He0emUdVBdLb/r62M4LJ83oCxDhu71Mno6q62V76p6B4eHbYlEMEjrxYXDlGcaHZXnD4X+KhI/Xxm7Y399uY3d7t1kOCwhoXBY3AmjQZaSQjocEt40R7eODstnCUwwN1e8mBAgC7u2Vk7s1dUyucvLZaG0tpJut2wwWofEzk6bPTeGYBCQzyrapb2dZEeHBWY0N2sozHBA+XxyeqysZGdnNIoWiURP4kYyxJy4KyqoifgdUifU0SH3NFT/FRWMRBjdmJOSxDhmZdk6rN5eWnCOYbVnbKx8qakpisBxOOTd0UH6fPI8Jk6XnR1FSHo8ZF2dHAaMCsTgoIyDglqYlyeGenRUkJoheQ7Onx/dXFpbpfYsSOkMl4vs6iLwc/ldRoZ0UEEBW1rkFnt0vHp65HJOp3iqbW1aT6gqD0YuaGREHjEpScdybMwqACQl6Sapm3BBAa1Kw+Cgtsls3ma+jY6SlZV2vICDDAalbVVVJCsrWVQkfxsbE7AHk5LEKM6fT46OioHLyZGx7etjBEKh1dsrTTQG0hxQurujsjy/MeG30lLx6srKWFOj88xwRA0ORiWPamvlvgUFYvAM+3hlpbVrOTny6zETZjYSPwZ8kpAg46dk5xZIpVJC9HiskWZysgCJqqvJ4mIZr74+O0/pcnFgIHo/Dg9Lv8bHS2NqaxmJyOWrqmg9QaPLyHDY9jNTU+XeXq9cq69PBjsrS9CigYCkGQYGJFxaUGDRtczN5ciIHoCGh207XjeHutpaMhAQRHdTE7Oz9SDZ2UmvV4FFpaVsaxPEtXjqO4+7sbvuuqDB4R3T+7rrvjJ2X6qXGfg9e4JHoTH9skrj4mRRG5GssTEtCG+WPEZ9vYUfMxyWDba5OWoQnU5WVMjXgSCZnMyiItn/pTB4BxMSNKw1MGA3cHo8sruqZospuO7tJdnQYKXajCilQYYZ1QEjp0Kfj263rNFAgLIYPR4xenp6Bg5bOHxRkYQmm5spxsrlEg/I4RDvQ4mTWVsrG0BiogIkt4o3kpREVlezrU03k54eFherkQ2H5dmUZ5FVVaTLxYoKfYaMDFZWMqok4PHIZzSvMzJCMU4ZGcKar+EklpWR2dlsbJSziUnHsbbWGnzjhTU1Sf8C42RdHXNyZAi7u2mJldvaonSaJiW4dGkU2WhIpQ3y1eOh/GJgwOq/eTwkIxETEWYgoBuf3y9tMLFOJc6sqqI0vLWVHBtjWxutUcvIoNWds4z+kQg5PGy13aqqSHZ0MBTSA0xVFZ1ODQd6PBa4OTAgnld3t4TLROKnmQwEGAjIvKmFFFDX1xvezV+SnZ3MzhZEcUyMIDY/BaxBnz1bxncJtCSnv58sLtYNusrmD6XQfh+BTVEB4/p6AkMqe7OVrK4WT7W0lHS5xKPr75e5UFlJdnZy2jQloA4EOGOGHiQ0pjxjhizdwUFZZ+3tJF0u5uVJRBHYwbIy8Y5nzCCZl6co052aXp+Q9et0Rr3ccJhtbXLGKSnRlEV5uRU8aGuLnusKCmQ+x8XJcpkzR9ZUdraGhaurdc3vY2enzFWtyZe0gMKHp03Tz/f1kcnJ7Ok5/jm7a64J2jTFsbyvueYrY/elepmB36TJdGAfGQhI4jsSIVNT+S4U5JCaavMdrK+nD2AHoHDqITItjRHAMol8anIR1dVkUJLBdDrJri5GIrRMJsPDElKJaFzfaMUxJYVMS7N6aSZEZfLt7OoivV7m5mo9lmqjpaaS7OyUTT87mxwdlb+XlYk10eQ5Gxrk92NjZHm5GJm4ODI5mc9qXsSQUQNb+bZuhO+qd8mODt1AGuVzGRnyULW1ZEaGnHwLCsjMTIbV6+3pUQh2WZk0VAVyg1BQTGGh7BxFRWRionjHGRniLba2yvMEAvTphntE8yVMSJC+9fnIggL+QXM6zM0Vb9vjkUExHkVqKtvbpRsyMjQv2NcnY+V2E9hkUj8E9nFsLKr7N2+ejNecOfL9IEDgsMyRnh4Cm8WDdbujRNDV1Zw9W9k79OTPsjKF6O+UtrW0WGNkSKiB5ea0JKHB2FjS5TJVMHpo2iqh3+xsAjsZ0jBsZSXF2mtZCf0C029uJtnTw34gqnrvcjEQkDn7guar+gA7ROGwjltXl8zL5GSyr4+Dg2pQ1FNZoqHO7m4ZythYLetobrbR9spKiqdeXU12dZnzihh2ZSfZYtaAipx+puPNvLyo0oOZsxUVPAKtT/X5JK/p8cg6jUTI4mL29sp9gQ1aerBe/p6QwKYm7YP+flujegSIpiJcLquWbu77AaTmz+ejFZ41xO6srubwcFRDmPPnywHL5eI4RNKpvJzSGapx5PGQbG3lkD7rvHkyTxgO84gexo+3sVuwIMi8PB7ze8GCr4zdl+plBn4HwDaAwHNWQbutjRwCrNZcAJJQZno6RwG+DqN68JxsSqmpZGwsHQ7x5I5AkWLK2g9skMXjcFjhSublkR6PVTpoBPhLSCL8l2YTHxxkRYXsjQMAgTUEgtyj7aqvl4W8B1LMa1j0gSHZ5EdHSbdbNgOlZZo2TRem0kkZ5KNXjdxLALdAaJM8Hnmefggjfh8kGd/fL5tZSormP9LSZMMqLuYgwGb93Zhe6001nrv1/78C+FtIIfmzakQ79N2txr8TYIv2xx/0/n8whw/9d/1RY8TOTvZDCntf0I1jQNvcAojX0NMjzP3hsHgORlaooUGMdny8juliq60HjMrulZws/VVaSgYCktcbGBDMEKQAu7GRtvA4K0t+NoCUwUGS2dniKSsdFfCMhAO19mxcxwdYRmCtzKPCQvl8YiJnzBB17Li4qPf1GSQMDTRaUoR582QsWFREv1+NTk4O4+IYPQwMD0vtnpmrqh1owromNdzfT7K+nl5o2Li0lH5IzSOzs21okrGxWnh+UA4lPv27HvCYk0O2tkr/p6QwBDkc1tTIOatfx5UZGWRRURQclZrKesjhsaREBXrdbjlMut2CwI2LI0Mh8RArKsi4ODEinZ30+aJelhzeXBwA6AIUTHSQLC4Wz9jk0evqWFKi+feODlZV6fdTU9mmhwuHQ4y9CR9/qvPN4MhmzyaZlyd/LyhgM0C3W9rS1sao1+52k2lpskazsqTfcnMl4hAby+Arr3xl7P4Xvf5Hxu6hhx4igC9Ipn/++edcsmQJp02bRofDwcsvv5zvvffeF7536NAh3nHHHTzjjDN4yimnMDc3l0NDQ3/2fc3Ap6QECWzlOEBgr0yytDQCe1leTovcamyUNWUKy/PzVdMsOTlacpCbS6aksKeHGp7ZQWAZg4CGDtu1KLeRwGMEVqvsx2ECuwjsYk6O2DmzFgyQZOnSqEp3QQEJ+GShdHXJiVZzjXl5YoBKSkiGw+ocHKTfLxvFMIRNRDVc2d1NBT8cJjDOggLZ5Px+2lNteXlUQZupqbIJu93k8LAY72CQdDpZWCjtiomRRQ0cZna2fDcnRwzk0qWmH9cTWMmqKilYBtoJbGJamvR1QQH18LCTSUnmdB5kTw9trkVEVtcQ2KyhKOE5jYmx2AUVEh21CtSG7jQcju5tRuTU6aRsoomJ8vw9PWRVFQcH5Tr9/erNKAI2GCQ5OCgeU3Ex2d/P8nINpxYVmeoIW+ZQWUnxWkpLpYMrKuTf8nIyI0PKB1TpngUFzMkRZzcc1r6vrrZacC6X3HN4OMr5mJqq7dM8anY2pSPLyyXkV1dHYIg+n2xa9fXyXbvRa+G/4WY9AlicFbCPzMvTA9AEe3ujIV8WF6tXepBLABu9yMqSy8rflhEYFWMVCrGmRmx4VZWEknNzZX4aDgdGIlZzMCcnSrjClha6XDIfcnMFZTo8rAXllZWG4lU+rAadgQArKjSvXFdHQKIl9fVU2Z+hKLgsFGJnp3jzvb0yHn4/yYEBVlRIONMI4rpc8gwiFbSNwOvidUeimBhTeqJKSuztjebUTSh9zpwora7fH5Vocrn4Vyk9mDcvyNxcHvN73ryvjN1f/NqwYQOTk5M5a9asLxi7mpoaxsXFsbOzk1u2bOH111/PadOmfUFGvaSkhN/4xjf46quv8p133mF2djb/4R/+gRMTE3/Wvc3AezxB2U0aGsjCQiYkyOQNBml1rMrLZVL7IeGSxkatd8vOJoNBu7Gauqj8/CjGgj6fJcql12s1zgzbihGsNIwe3d3ynbY2TV77fAyF5GTZ30/ZKPv6yEBAruV2yyZqVo+hdTDCsypc2dgooS+PR77DsTHS5WJurhpRDU01Nsqz1NdrjqqsjGVl8rNRla6ro3zI47G6nAb1NzKiYS+lTLJaYGaH9vvlGSsqSLebS5fqJqYJx0iEZFDQYholYiRCWx/Y1kYLI7d5ObO79PVJWwIBG171euUZWF/PwUHZdCyzSWcn2dXFujr1cBSEYyWZ4+JIt9vWyxlGKebmWsBNW5tuii0tUaoSv1/+7vWSPT1yWtdQpbmOScGVlUXTciwtlfvqv8PD8vn+fnkmQzhthXIHBlhTo3PP5xODWFdHRiLSx/394jm63XJNLaUAxvkmhODakHoDazl7ttH0G6LbeG8uFzk8zDGAwGoWFuohLxIha2u1XGSnhMUDAUYigtJ8AVECZ4+HtEnPSIR0OMQgGXaU5mbm5ko0padHDHZzs/RJW5t0p8mdMhhkWpoQPbtctOHE4WGSHR2cNi0qNtvSQvGMDTAnEJAxbm6WvlKRvZERmY8m7+tTI19cLHMkEJC+NtFys3wMkfY29YSDQR0nl8uQ7ZAeD10uRtG8ublW+zEYpD0Ieb36LIr0dbul64MrVx53Yzd3bpDz5/OY33Pn/u0au2NiUDl48CBuuukm/Pa3v8Vpp512dIE6Hn30Ufzrv/4rrr32WlxwwQVoaWnBn/70JzzzzDMAgGAwiObmZtTV1WHu3LmYPXs2WltbsWXLFqxZs+Yvakf6N/bID7GxOPj009iz5wj+/d/HMGXTWvh8wlO8f78QHOwCgNZWK8WDqVOBvXvx4ovCktDxwkl4bevZ6O0FTnl5pfAhd3Vh/XrgpCdXAC++iGXLADQ04Jyda3H2ut9j/37hf/3gA2FVaG8HDsy8EA4HcPr6buxLvhCTJgHNzaIsg+2qd/bkk8KoER+PF18EDhw8QWgdzjhDaEyefx6nr1slVA4TE3jjDeCEvDw0NECoIWpqgHXrsG0bMDknB9i6Fec6dlkO6vFxYP16AHv3or1dnnfTJvnqzp0QAtzWVjzwgPweAEb3nICz4v4k/9m/H1Mmf46dO6XvNm8/BZg5Ex9PPl+YKC66CDhyBF1dwLmTPpYPxcdjzx7g/U+m4L335FeTJ1syGSAzE48+CnR3A59+ekja8ckn0nGqAWdeJxUVAT/7mXwmPV2eb9EP8MknwCkb1+KUSYeBr30NmDEDzz8PTCktFdqSSSrP2N4O/OIXwHvvYeNGYN8kIf1etEjGzzzY0JCynWzfjgOTz7ZsH1iwQOg1PvgAvb3yvHl5wPt7z8Qbbwgzxwm9b+HIEeEE3rgRQiy8fbv8Z+dOnD35ALBuHbZvh7Tr0CEcdkwBGhrg8wF44w3ExgprD954AxMTAJ5+Gti+Xb4zc6YQe4+MCL1OYiJOmD8fwCgmQRhACgpMtz2Pd9/9BGd1PwHgfeyH8EBjZARoaMDpAIDdePFFwJGTg48/kfl28CAAtKC9HXhn7znYuRNIB7AJwsmdni7yN2hvB5YvxyOPngA4ncIK1NYGDA4CXV1ITgamJyTg5ZdFtum2uR9j5kzpp8cfF5IePP88MDGBxETgIgBXJ29Gejqwet0UnL34NmDNGlx3HXABgANTRWZL6EkALFsGrFmDA5s2Afv3y/17e4GaGpy1pg14+WVkZsrjXhgbi9vS35F2792Lc7a+Ahw8iE8/BbZtkyV1+otPYOpUGbJkAKdP/BFTRj4UVprWVpze9RSunb4BSEzEpk3CB46LLgK2bsXIiIznFByQ51+3DpMny5LCpk046Y1X8PzzIjsElwtfvf4XvY7FQt5yyy286667SJKXX3659ewGBwcJgO+8884XPn/11VfzlltuIUn29PQQAPft2/eFz8yaNYv333//f3m/Q4cOfUFCfmhoSE4nS5dySE9yzMqy1QCsqLAnS/b0yGnM65X8XFoa2d/POXPEITHhqpgYEhiXU1wwKH/MymJVlZ7yNFTEqiqJW7S0ROvVcnIkbjcwIN5Fbi5ZWkrAL0c+PbX6fLTq0OEw5fTe0yOfCwaVw3OvtNftZlDzbzU1Jge1jmNjejrX521upjRQQTTs6LASML29UVXlSCSKdOvsZJRkuL6e7e3q9XR2WsJdS/I7KuwqH5j8SmoqmZQkwByVUvpMc4aDEFRfGApMKC3lBxBplN3QEhDjQalXwOpq8XSqquTIrQjFnh7JbbGpSTydrCyBo9fWct48kWo5AlgOT1ZWakhqSD4bDhNYLTlNr+SyDMIyGKQtDmdpqYCDWlrIlBTNr661TC50OqWmESL7Y0C3pgqCkYig9gAbiotEVJKnuZmMi1O0sE9+p4jd3FzaAvqCAorXkpgonkhHBz0enb/BIEf13qbu0rjkneoFeTwadisqkjENBi3HaQQg6+tlviUkkAMDkpNUuSJDRMDsbGZlRYEtS9TjcTop87m4mJw/n8XF5G4IKbrhA2V8POnxyNrLyWFZWTS8yepqMjFRFcdH6fMdFeY3TDLNzYyL0/YNDxPYa1GWwBAZH8+XADY2aj87HMzP1yhFVhYrKqSv5s2LhjBnzIiWYsbEyDixspK9vdLf5pECAVqQGQMBG/plfT2bmxWoVFysqY0JOhwyvejxyHoxdYk9PdJx1dUEJhgMCnAIx9mzy84WLtFjfWdn/+16dn+xsXv22Wd5wQUXcHx8nOQXjZ3X6yUADg8Pf+E7xcXFvOqqq0iSbW1tPOmkk/7TdXNycrhw4cL/8p5Lliwh8J81j4JZWWoENpC5ubI5BgL8DFEtrPW6CbGwMKr/Nn++5tkOWvCGSXi8C9HdOlqdoE/ze8CErasb02u/DoHzs6lJwAPKVMLOTksiy+JisrqaZWVRwmSnk7KSkpPJ7GympEgYsrmZshorKgisY0mJGLdAQEOTpaWau/AJMKCnJ8oAo/mjkRGxvb29tHRe1KR+cbFuUF1d9HolFAbsogeK2CwvZxtALwScsgWCKCwsVBaLyspoXd/AgGwUWuBeWRmNOJnatro6WjouE976VA3fZ3p9NjRIWURCglwvECCrqwX9VlAggAfDtuJycT2geZadskn191sqNAnr7RVof16eHDA6OiS3lZTEvLxo0XBenrSRwaBFF2ZlkYyLI+Dj7NmyWfr9WpZhEllJSaTHw22AJf4WouBtnDcvWg/PoIAJGAySublMSpKNN6JhvGEI4MPlkvYorskyVZeVGQKfXQIA6ekRyz46KqALvVFPD23Rt6lZcblEj44ZGWRDQ/RglJIiRreigmPmoKiHD5Pn9njkNksA/hoC/mFcXJTyLhSSBzTgn+Fhut1CfMCeHnsw2mbWVU8P34SworRon/0BWlOXliYHqIICBjQU+qquyWF9m1I4j0fWTn8/o2wnaiB7oEwpAwMc1TU8qnO4G6pp5/HwaV3XPRAgVSgk4xcGJM5XWcmIfpfJyXwVkINZUpJVGOnHUWFYRV/S55Pv+3wMAjoPPzruxi4rK2g5LI7lnZX1t2vs/qIw5tDQEH72s5+htbUVDiXR/a9eMTEx/1/v8T/97r/wMP/bzzidTgSDQfseMvppv/sdli0DkpIygMWLMR0AFi3C5IoKJDscSARwDiAEtRdfDFRWYvXkHwCLFiE/fxry8r6OwwAmAULS+/3v43QAs5KSMDkxEY6cHDzwADBLr5GdfSJwxRU4ITsbpyckYBb0b7m5+Pz2hTgJwOg3v4PHHweQmSmkvn6/xFcefxwXXCCRro4t50tIbedOYP9+7Hr9daSmSkTvtvR3JN546aUAjmD58gg0uIhztnSL1t5FFwFYi4MAsH49HKWlODsnR/62eDGefFI+f3Hc+3CkpSE5MRHIzcV110lI6dZbAfT0YOdOkewCvo7PzbMsW4ZztN/OAzATR6uJ75Z+nDMHmDsXo6eehxPKyvBhxk148cVohHDZMuDf/x3ArbfijTeE5HnnTglpbt8OxCcn45Hlp2ByYSEuAID9+3F6djZQU4MTnE4cTjwHSE+X8OA11whR8h13AJdfLuFUSJtjY7+J/Xv2APv3Y9MmefwL978G4H3cv+gwsHEjLkz/HEhORnw8gOpq3HWXtAF33YVf/AJATQ0+nzwF99wDvP76GN58cwAbP/sMwADeffdt3HADcP7UP2LJkkM48OabEmrWfjodyiX9+OM4cuSPcDhmYs4caerQUC/uq5mCiy4CVq6ZAhw8iKGhCMgDOCElBVdfcQBnJyUB11yDBQvk+fbs6Rdy5b17gcmT8cADouQNAG8BQHo6Xtt0OrB3r4QpFy3C4aEheTYjza2y3OPjwAQgenTZ2ZbUGfHx0n8zZ2I/JEz5+a234fP5/4y5c6Ohy2XLgKkA9gJAdjbwjW8gEpG5sGv/KTKn33gDh3buxDNvnI3Jk4FT4uLwluNKWYc33CDrKjMTbzmuxCEAOwFMBjBl/8e4CMAj7WdLuxcvBtavxzmxsUhMBD4EsA/AdgDvQzIOb74JXJZ+AAemny/ze3BQOr+kBNi6Fd8BcAoAbNqEMxMTcVD/fwqAPwJwANgcfxkm6c/7ARwGcMrBPwKZmRI6nzsXOHgQJyQm4sziYryzcycOADic88/YMTSEiS1b8LF+d/t2CYni1lvxYM1JWLnzQuDTT7Hqkwvxjg4h0IOvXv+LXn+JZXzhhRcIgCeeeKJ9A2BMTAxPPPFEbt++/a8Sxvz/viyDihb6ALvklNzczDlzJMxCp9MSJXNggLuhysSq0xUToxI+LS1kQ4NVxjFQdi8Ehg8cJpOT+TZEHbsF4G8AkUbJyLDhNKamClqvsFDCagMDjIujBXSUlChHYm0thwBbCM3cXFZVKYijulrQh1VVZFmZJN+rqiRU0tIiIR3V12pvl2txdJTjgOVqZHU1vV5F6ZlMu3JkSnHwYQm/NTRw6VIJ2Rho9puADUsOGK8gI0O8hcJCq4G323i0gQDfNB6hYVoxrl1trYxJXZ1Fpvb2Uk7Ayif6rl4naE7e1dXiRWj4lK2t/BSiUzem7Rk3n/P5LL+loZ9RoXkODIjzMTJC+UxOjmW/sRI8Xq+czFtbo6FQDaMOD+v3/H62t9MyuvT26mne7xfvcGDAhjXZ1GRRfO3tFHCR12u184zH5vGQrK8XWHtHB5mXJ+FKp5MMh8VrUY7PpUt1Tnq9ZCTCEASkdES9FKanky0tjI2lZaTx+6me6ajErdLS+BmkrtTrZVSfUEPxwD4JcebkEFhm6bCYm2tZTJZAyk0YCtl6v08h5MkR9RLZ1CRuaSAg883rlTbW14trnJMj/8/NJd1uCXmXl5PDw9Im1aKziC+fzzLqRHR9hcPCi8rWVquV+Af9l8XF0ufGWzQ6UTk5Ml+SkiwdHAsLo0w4XV18HVLOwIQEaaP2mWFfMaryzMuTaxko8MCAXLejQ9qs6NlgUOZI0KRbjqNnN2dOkFlZPOb3nDlfeXZ/1uu73/0utmzZgk2bNtn3RRddhJtuugmbNm3Cueeei8TERLz66qv2O4cPH4bH48Ell1wCAPj2t7+N2NjYL3xm9+7deO+99+xn/uzXbbcBP/whMjKm4ezYWGDmTHz/+0BiWhrsMTUxEau2noczAWQC+PyOO3Gg8KdYsEDEiHHoEJCUhBtukIMx4uJw0vz5mA7xdAoLY4GsLKQCiIn5JqYDOBOQpP+CBTgzJQWTcnIEWDJjBnD99ZKcXrcO3/iGOgKHDqGxEZg/H0BiIqan/7/s/X94nGd9JorfCVYQwQpyiIgMFpVzrDDQKMg008oU0YiNONYSUdSiBS1oQQWx9p7MXmiLuugUNdGpXKQDWtBBXqKGKVEjN9ZJJmGInETEwlHiwVKSSTyxh0jY43iijC1hj+2JPbHG9uQ+f9yf95mwbfdbTPLd5iJzXRM50sz743mf5/n8uj/3XYN//6mX5cWXluLrX7e/rV6N5uZ3Odn0XA546at/BZw/D7zlLVi7VmHZZbCi+alTwJkzKG5oQHlVFV646c+A6mrMzQEPPACFip/6lMbh5psBXAG/vwjvfCfwyi23YGZGDnoqpfuuAYBbbsHK8nJcayrb8Pmk1LxmjaKMP/xDlJeX4wMAnj31Xvw+gJrSUqClRaiIFSvwk7n3Ahs34t3FxcCNN2JiAsD73y9pohUrgNJS/N2PrkSNz4drAFxRX48PA0BHB7B5Mx7bfSl+cepdwPvfj1K/X9EgABQX4xVAXv3ysi5+507g7Fm8VH4tvvpV3ebyMnD5zh/j6uwhzZObbsLVS88CN92ENWuAfB54pfbD+FDpIbzc/DlUVgJXPrQN449cCVx3Hd595hdYOnkZ4PPhMxtewBWP/hjPLl+LP/C/oijq4EF82HcCWLECH/kI8KGjO4DrrsNHPiJcyWfW/wLnan4f5274MK5Z+Uvgi18UYKK8XD+Li+HzQQiJL31J4IZNm3AOl+F63zmFTzU1LhOA8nLgRz/C5VVVuPtui9hOnRIa5OBBnD9/UtGvzycA0fnzaGp6F1Bailf27cPKykoAJ3HXXUBpaanGxAuz8QL6+gB84QsA2hTWHT+uc+bzwHPPYQ2AFwE8+OjlAmgcP45FAIv2e2+OPHvmGl37mTP6/g03aA6Vlio0e/RRPbPz53EpAHz5yzhR/G5FZD/6EV4CBDx66ildx/w88PDDeMqW+2Vjf4eVAFBfj3MAXjl2TOvw1Cmda8UKXfvyslBaZ84Ap08Dk5PAsWNAU5NSDHNzuo7lZSCfxwVvPb/lLcC+fcDp01hZXAzceqs+e+ON+rl/v+be8eO6JwCoqcFLG/8dXr7pkzrmxo0Cu6xYgYO/fO2VwC9c+M3fv7Wv39RavrpmR6r14B3veAfvu+8+7tu3j62trf9k68GaNWu4c+dOPv300/zYxz52Ua0Hmf37mYBACkynubhohe/5+QKb+tSUY5VnKCRvuL6eHR10fTVMpdjdbV700pKjK+L0NLdvtwgwmSTr653Uy5YtdCqrJ6HGadbWcg/UhD0zI6d2+3ZaH+Ckjm8AD0Yiqn/4fAT2Ksrz+9nSotrdjh2q6TyDAku8x7qSz5McHlYNb2yMjuLEqL881cn2dro2AVdQs5piVZW1LVRUMJUyeLg1GIdClJc+O0uOjXHcIq9Ji3ifN4/eq4fmLUKL2Bjs8qK9ujreYbWRh6zWQb9f11hWVijiebylk5N0D6KrywmL1tVpHD2y3ooKRXopFGpmIgC4QGCnnkswSGCroiBTGQiFSNbVsanJBDiHhkzpe07ee2UlCfVsHgOcijZDIevfPKLodGqKwBFFg8mkOAYs8gGW2NKiZxePC5Iv0MV2B+kXeCnjqOGAw/rcxITAMhUVDsjT20vLKsTJ8nIuwepsPT0qKHZ3O5LyQIBkWRl7ezUdPF5uBgIFeZ7ubtVABwc1Lps3k8PDjEA1XebzmpeNjdy40cYpm+WOHUYePTRk0ldPGFPNJD3UhkcuAvytxjqf1zOfn6d6Kncp4xAIiP2mpobptNeT+U2F0M3NXL1aU0O9n4dUkywuJrCbtHnm96v3NRQq9Lpt2kTjUp1gSYnXQ7eTwBNcXFRUGw6L4UY11hOKcmtryVCIwIJlP+7hli0a4vl5SSrpXo+wqEgBXCzGQjtJW5tLMHjcqywuZua7333NIzu/P8MNG3jRb7//tzeye82NnddUXl5ezre+9a386Ec/yn379v3Kd86ePctbbrmFV155Jd/2trfx5ptv5gsvvPAvPqczdtZfNzNDcmysQEibSGildHbKyJWWkp2djiXdI+Lr6aGKz0bEHA6TjEaZTGpznZpyWRdyaorptCb/zIwZB+uJ8xqYGQqRlZWu/86x2BubysyMNunpaWVLduwo1LZ37NCiYjRK5vOuidUzuictfSNeyxNO0oc9PUrH5PPawMbGSAPubN1KbdbNzfpprBhNTUbQDpBNTfqcl4Yy6g1PEYCBgAxKKiVD5TU0WWf34qLG3sEKa2s1Ll7aampKzyUS0cbqpWcbG8mREdfDyFhMu1NLC5dgrDfptBCgs7OuFc64rsn5eSEq02mltDo6mMm8ahMKh8lkUhtPUZE2Qk9Pz/ivenrolBYGB+3vporBZJLs7OTgoGu50z0uKc1sUnZkIEBPJbu3V4+vvd3uqaNDKWJ7rtmspTg7O/V7Ixz2ZHa4tEROTGjuQMAdjzg1lbJ+wmyWbGtjIiH7FY8b4tbrP7Prm54uAGvSAHt77XPl5W4snaJ4X5+8n2xWlqe3lx0dGmtPJX3LFpJDQ7wV4JYtBQWtjRu1hg4AToWip4dyXry5mUgwEinQjmUBpfdbWrgAQybn8wROcB6mR2c0OJOTBR5Pp/g+POx8ovl5FhjUUymyttbxrXrahZkMC8on6TQ3bdK4bNqkMfXGw1NX7+rStW7fbr/3+8n5ecdFymhUjmBtreaJAcqam0l2dyvFPTDwujCofOhDGVdduJj3hz70prF7Q72csTOG+I4OaqEaKa+DtU9NOfHQeJxagLW1Vr86Jw83FCJjMW7darWrri557J2d5MgIMxnbXGMx0Ull6Wo1HB8nh4Z4FAa799CExcVkOMz162VwEoATB2Bvrzz3YJBDQ4quNmywxvWBAa5dq0XoscuzpkYLPBTi+vXGrNHV5fgDFxepjbWzU/fm95Pd3Z6TrI1sfJwcHGQs5kpRYpIIBMhAoKCEMDVFlpc7tgtPvMyry7lorqKCOVg7wubNZH0998AQbC0tTMJaD6qqOAmh5B7xNkOjm3J1ncFBbY5ek/LwsMYineY4QAYCQl3mctwBOCkXLwrj2JjGY2jIBHnv0aaVzRKYYNY251kznrmc9ia/38YxEFBk19qq+y0pUdRVVka2tTn6ODV0L2j3Gx4uIFPN6TgPkPE4gQc5M6NNdH6e3GM1R+B27oH03djUpHN2dtrfdmv+hMNsb9d3N22SXd6yhWRpqc7X10fafM9kFPHlofp0Lmd1u6oqPffJSf2sq9Pm7FHpRCJC41ZU0AnuTWic+vv1WJqa6FpFUimbF+PjTNpY3gpRiwWD1upTVUVOTyuaCwbp8xVaPA7Y9RUV6XQMh8lsVgahs5Ojo56O4GMifjAu0FhMj6SkhOTIiI3/Eo9BtUKfTyTUcv4Oe5wHTCR0PE9G0iFsPTHZ8XGuWkVXo89kzOnz+7l2LS3iO+PRX2p8SkpMz/EIu7vlZMzPsyDbNTbmOOA9Am/W1jKzd+9rbuyuvz7D9et50e/rr3/T2L2hXs7YnTzJDRtschmDqwf3T6Wo2ReNanNsaiIDAa5fb9B7T4vLiyo8vSsDNLC2lqyvZzxeoPoCDjFtaconbWEyGOTWrVpQsZij2iSXlmSk0mkZ0dpaMpNhd3eBVd9j5GBVFaenbWObndVKbGlhSYnB/QcG9Pl0mp7L3dJCbWLRqE48OcmWFlqa5pzuua3NCTpMT+u2OjpIDg8baOEJAs8WqM0CAf29slI7gSlbrlpF21x20eeTf6DescNOokXUaYeNBmySwBlTK4gTuIfr1wt2v2WL9s6yMsoIb96sjdcIetPpgooDsFdjODFBbt4sp6OqiqchMuT160kmk66Fgps3k16aL5XiM1A/GAcGtCmnUgV2meFhx/rFhgbOzyvNU1VVIImuq3NMYiwrU8vA4qIZlZISZjKFPqySEjqtOaVQl5hK2VyYnzcWE0UfU1M6Zyyma2NlJdeuNQfE2P7Z3c14XM9t9WqlRSURdFhGPp1mU5POCWS0MY+NsaJC11lXZ2CUqSkykbD0XMYRVHvGEVhgICDjPzqqY7CxUddQUUEWFfGkOTaF1KWoxR6AeGE3bbKN33To9gBaW/PzrKqS8XkA6sVkUxNzORnBpiaSiQTPwgBR09POUWBfnxTBAbK+nlu2FNhfgAv8IawtoqhIYKn2dq3fZJJP2hpld3ehpWZwUD197e28B2odcsTxoRDZ26vxqq6Wk+WpmwcC9PsVHf/QDC0BMhTS87ZIMJWyNWSST6Oj5F/8xWtPF/amsbv410UxqPxreXX/5aVYswa45qqX8Mot/xkvFF+LG28EjtR/DvfeC/x07t2AzyeWiU9/GrjuOjzzTF51+cVF4MknVVz3+QR0iEQw+8xlwHe/i5dnZoA1a/CB449h5dgY8PWvY3R0La6sqcFlZWXwAZg9/QHgU5/CjTcCn/gEcP11r6CxURD8n+5/Fw4fBp598Ur81+ZfAL29wJkz+OAHgfe9D3jv9v8b/7DzXfhY6dPA17+OmhrhFVBcjAfL/wzw+bB/P/C1rwH4yEfw3qtexglciRe+8bfAhQsiCyktBV58EbNnr8crN30cx48LAwC8pO6ENWuwezdw++2C/193nTE9DA9DjSPvA3ANLn3qCdG8fPazglP39AC/93v4+fI1+Nney3Fi7wuIx4H1629EV5dAIJc+tAPr1/8O4PPh2spz6O8HNmz4HQEY8FHU1b0dKC1FT88HsHbtp3HvvWLlWLNGRfLTpyFQwQ034OWFBeB3fxfDw2Ke2LZNP/v7P4grVr6CX1R9AvjEJwSkALCysRF33gk8PXEE0JAJil9cDDQ26h7+9E9R09mJ+275KfDFL+LrXwf+z+F34z/f8DN8+cvAP6z6P/CB28TKcuTOn+Dar/8J1qwRnuKKujp0dhahuBj42y8/geuXn8DGjcClPT2Ix+3ab7oJp05ZwX/FCtx7L/CB53cIqLRzJ3y+d+Hmm4FzZ87h72euxZWTkxgZ+QBeLn23vvORj+D4ceCx2r8AurvxqU8JT/E3+z+J++58CfjiF/GBgz/Gf/yPYgJ6t9+PK8+8gJKS3wEqKoC+PtTWAh9Y8xJ8vivwox8Br7R+DuvWAZfW1KC0FCjt6LABW4mKilXw+68QcKOuDpftfQKXF7+CVavWYP9+4E//1Nh1SkuBjRvF7PK1rwE334wLEChmaMiP3buBYPDtuAHAU1Brit+vjocHD38AFy4AtW1t+Mned+HpM9fi058WVuXmmhqs27wZ+N//d1x25gTWtbfjgQeyGH/yGhQnk7h2fByYm8P73w9c0dQENDfjCp9PrSm7d+Pmm4Hi7m5g0ya0tLwFywA+DgCbNuGjAA594++Azk68sua9uKG5GZcFAsAtt+CjtbWoaWgA1q3De94D4LOfxacBXNnYCF91NV5evlQTE0BpOo2f3f4s/l1xsfpY3vIW4Kqr8Hu/JwDLRwBc1dgoIFVlJf70T4FDG7TXfP7zAPJ5/Puvvgs4dQqf/SyQyVzkxvY/eb0JUPkNXv+rre3FvDwv5447MmJHyGTk4mazSuuZcKpHJFtdTbnow8MEzgpwYsKgLsKrqSFraxXlmOYd29oU3VRXk5GIjlNVRfr9jl2ekQh7exWBqZH0jKKWdFp1gqkpecxFRS762rGDOq/H7lJU5DglOTysHElvr0nxLJFjY6onplK65pYWpeGMy3F+XvdZVaWADNgtOLvPx/Z2/gr5bksLyaYmi14mCdyn+w8EyNFRpxfGnh4uLupS1q+npQgnWVFhtcBslkCUnJ/njh20NM9jds1/S+BZIx6OE7jdeBh3e4T3BA4UlNubmsixMXZ3K7rwmtiBuAM6eKrerK1lFmp0DwT0HGMxqx2VlDANOIDRktVjmM87gn8vlav81ZIjaebsLIGzXLVKKbxLLlE2OpEgGY+zpISu4T2VsrRlOi3vvrpazzwWc6rewCGneuQphAMLzGZf1dwdpS6mspJFRQZsGBvT35eWXPq9ulrqDErZPagIZ2lJKdF0msAZp3AAnGDOUp15r+6Xz1PE5oeUySgpcVkNYI5+v34Vidicam5W9qOykmctVZq0+bJxo5bAVgiwpJTmBUYimis9PdLcm5/XEJeUKOqe9aK3lhbm86rbAWd13Y2NSuOOjDAet4h0eFi1PYAsLWV3t6VWUykCO/mQRVpsalIacnTUKYnHAaco8QwMGNXZqftvb+cDdi3PW6TOcFgFyvJysr1dzfijoxrnhgYCC8xDIKsDgGuk376dZDTq+utzMP5aW5+vpXact+dde22G738/L/p97bW/vZHdG9rYHYTqQcAJpQmtN4mlpZqQloo4bYvEQ0vGAQLPEjiuNM/YGIE5Ak/IKHZ26r15swyc9e54GwpbWwvsJz6fSHAt3TJr+X+GQuzttbRhSwuBObFqVFeTpaXs7TUgQ2cngQNCvdXWEnhWi3Z6mgwGxX5i/25uZoF23ep227cbc4XPx7Qt8ig81NlxsrhYG3NRkdJ38TiBQzJYxcVMAQWm+ZqagjKz15tUVOTkq3Ow2mRREen3a+GXlPB5SPfuEduYwrYRLth7FyDkHeC0/573jtPQ4MZ3ydJLHB4mOzoEXoDYY1hTo80ukdD1Dg6S8/PMZAy0MDJC4E4Cyttu2iRjlc2yoKzd1MRgkE5Bvr+fjnIsECDp9xvF03GypYU5G8e2NpJFRUqF5vPWn3ZE6a9IRM/O6LbEzCOqNw/YcN6Mj1Nk8PmU0qyvt+d/RvWqUEjp2HSarK8XgCLDQv9lUxNjgCMPz8PAHIODDn18FNC9eCw93kTzJB3GxnQ/Q0P6bl+f5ralFS3brzWUSslp6uqSESwudtp4nsYecIG3wkAmo6NcsjGjz0eOjTFhz7qry1DNS0tK/Q4Naa309pLd3bq/wUGnlJBIaHguucTqySUlWp8+H79jTszGjXouwSBVhjBA0tSUpWQjEfb3G6J0fFzpyelp5yi1tppDbAZ9cVFDuWWLUqlr1+px3w2hP6uqCioO7O7WvG1sdGnTzk6tqeZm1QEzN9/8mhu7a67JsKqKF/2+5po3jd0b6uVqdseOkTU12gwbG9nZaV6zsegzldImZ0AWDg3J+zaG/lCITurFQ+9HoywobPf10eezY/b1ucZdh1z0oMde8X94WK5sLufqdSMjdMzwjMcL9YVoVDUaDzCQSHAXRI00OmrFceP3ikblGTc3W1S1tCR9twhlMLq75ZZ7iummlOAMoym2e+oHmQz1+/b2Qk0xndYxRkYKVfZwmB7haNoMG5uatDFXVelCw2EZxZIS/ezt1fiXl2vnKC0lEwnVOqzFYHqa+t7wsJMb4uCg7rm3V0aisZFsaGDGNvdcjvQ4r3p7qXPV1HB+XhyaaTPSoZAdo6pKBsZr+B0ddRGV1/HAZJK5nKFw+/p0/MZGRWKevtHEhKJ+Y873+FYdfdX0NCMRo/7yorJUShYylXKacT4fSb9ffx8bY0+P/uxJHnFpSbRVOTrnhm1tmgsQL2QYQlUegNoUPNCUJ63k6bH9CvpyZIRTEL3a/Dwd1RXLy8lk0uFXaE7PgjkkHvAmEtExPJTvATMYO3YUpozHpTk9rblVVaW15GnxMZnk9LSuMRAgt3nRt0FdEwmNw+go+dcWFf4Kr20oJOM5P69oa3qaQ0M6XiqluTwyYoATgA0NiibTadlp7xrZ00MuLbG1tZDteMBbj729TqWjrc0MrLemuro0PzxgTSajPae1lV5Im0iQXji7fbvmQOaHP3zT2P0rer2hjd0CYOmnMDk+zrsBcmBAisUQ68M+GIJwbEy7SmUld1kKBXiQYYB3QRx58bgm/1lAMz4YZEODpaw6O+Xxen0Dk5Pc5h3borrnLO3BVEqLZXBQG0ltrfUfLbjzrF1rKbLycvPcdzq7xKoqU96+k1NTJnviQcTb2tjcLI83Y1HPPMRCEoOhII3vsaREG8sjMPaY4WEyl2NJiYE7mpqc1tcuKLXjIS6fgdI2j7zKqw2FKCMwNlZgo6isJMfHubhom9vgIB0G3+938kmRCLVhecwqUJ/cWdtszls0+IyN4QIgI1BczGTSNt2hIQFKqqsJTBC4U9GGpXmBQ9Zb9Zh04hob5WyUlBB4jCmLeiIRurQii4osUtvDLVss2q6uJrCb/f1q8wDOKmNQVKQIGWLAmfccqL4+SlPwz1hWRgJhoWZ7ehQBFhczCxiZ8BKjEIAkavff3ExTPz/iwD/s6HCGE4gW5H6Ki7lli6bZ/Lz+zo4O3gMBcw6Yc+BFGU46aGREB25qImtq9PuBAXLzZvGT+v1MJFxbqjoRPAcnkSikf1ta9ExN7ml+nuToKKenrQ8vnyf9fqYADphTlE6TbGsTxyugeVJaSra18ftQutGLkmdmBAi7B1BaZGDAnvVZlpUZR+noKJlI6NzmuXhiwskkHRNPEgKc5GHAktJSrdGpKZf1SSTMaRkY0DWMjWmdWA/gaVjacmJCN1tdzRwk5spMRqCohgY3fuzu1pzs7uZb3/rapzF/53cyXLuWF/3+nd9509i9oV4usnvvex1Sy6s59fRQE9fY6hkOKw1nndNnoZRae7ulp0xo0iEfQ6FC/1w+r00hkdBEt16bfN6Qdz09Wmy9va6fiO3tSqkODTGZVHCQybyqEXVoiBwcZFubLtlL23gIQW9zSqcpr9JD7Y2MyICOj+uzTU0FwuWmJm1mzc1kSwvTFiH6/XSUVBwZ0T1NTLC42Ah9jX5r+3ZL7U1PO5V113PX06PvJRK6mYEBHXN2Vv8Oh3UDAwPawMJhHaOkhE5V1cv9jI3pxIODciCGhwveezisTcX67xw61gvX6+vJ5mZ3WZ7e3tQUtQsPDTlmd46OsrOzIMTNbFYbY3OzjJ+pZVdXU+nUWEyRd0cHWVurf4+Pu0hsZIQkTFTXot7iYrreyk2bdMytWzV1NmywY1VVaZ50djrdvHxex66qou4pmeTq1dSc6e52jd3JpG3s1tDnlBlMwby/n2RZWaHva2zMUWPF4yRrapTKKy0tNJBPTJCplOZ9W5s27HBY5zal8+3bXxWRedkDU1LI5WxOWnTtSQcuAS5b4Bm8jPe7jg5ugQiejRFNc7avTxPU5lFzs+4jk1Eacds2XbaLssbG9JnhYbKykt3d5nxt3qzWgrY2MpnkzEwhKeFRuAWDWsM5qM7q9dQODpoB7+sTEXVS4xoOq27omvKrq9ncrDU8OEinvzc9TY1pURFZWSlHrKVF4xsMMvOZz7zmxu4978mwooIX/X7Pe940dm+olzN2N93EjRsNdDE0RBYXKwVVXV1gmGhp0Y5ojTWeqOrWrZYSbGnRLE6ltBG1tKguZfLeoZDSR+rHOuSUqM+b18jKSsZiOh2zWTY3WwvB5KSOF49rY6qocPgFjyLQMbiXlnLLFtUgYjHKUFRXE9guA9zergUUi8nbHh3V9zdv1kbsYcfTaRf9RCK6Ho6Pu025paUgbstg0AtUtDmWlpJ+PzMZFthDmputphQkcB+B+9jaqqGZnjZpGmtgXrtWEPjubkUFa9fS6oM7CWQIHCmkYYNBbbRew5snB93eTo6MeF0kBCa1sdizDIVI9vXxGECpo99Ojo6yt1fwfGaz5ObNbG+XvY0D6tMaHSVw1nq1DmuulJbKGbC+gtWrZaSqq2mR4C5rpzjDDRs0hB6cndPTutbGRj2v3l4Cd8mAhcOcmZFclKeszdFRPg4Q+Ft9fn6eTkumuprs7mYoZNHY2JjGdXpaNd7BQQL/D89CfXBDQ5q/nvp6NGr1qaYmsrraielu22ZAj/FxxuMyYu3tFjWWlckYTE/L6Zma0hrK552AbiAgoMlpL83X0kLgb9nTowB9j2UQnrO0aFUV9Sw9g1dTQzY0ONWhx6F2naMAN25UHWzHDpJtbXzey9IEAvT57LrLyki//1XAnAvk8DA7OwWWOu9lVUwx4XGoz7O3lxyA6vIsLeV3UGD2GR3VvX8PApo8DhTqdj09yjjU1xdaDCIRsrlZ63lkhEft+vNAQWzYI1YYGtI42c+hIfJzn3vtI7s3jd3Fv97Qxu55gAyHCWTI9nYes3Qkq6sd2oqlpVqwgYA8uKIipgCuX2/SQCbZ09+vzSbvpSX7+sipKS1ia74dGWEhyksklBIBFI20tGgV1tTI/ZueJmdnZegmJ5lI2EaVSFiP2h5t/KOjZDyuzSaV0ucNGldSQhmwzk55wJOTZFkZR0YM4dfby1SKDiF2HiCLi5k3T/qSS+i05k4CroEeOKQUod9f8ESrq8nycuZhxNYlJUzZJuShI2dmSOdSRyKuKZ0DA9pEp6b0N2+sOzpcU7JHusyhIdLnE4LOq/MFg6TPx6i36bW1MQNDtnkE001NZFeXi0qA4wQO6HwmfVNUpICqvb0Q4Q0OkhwcZFGR6mpNTRpnacQtaOz6+gRKmZ/XfUxOKpJKp81QZwrsKp2dzos/avOPS0vWGP2EoUiXVHPy+2WwamvJlhb29pqDUFzMtWtljNnSIkPd0uLIabyacXs7yZERHcNTUG9ttd663eTQkByVpSXNW6P8cQwkXh1582Yyk5Eh9MBV8/OyfLGYvmv1W+/XkYjNw44O/U8iIWdjfNxFeN5h6PNJwR1wqvG3enOuq6tAFh0IkA0NhV66piaNoTGvMBTSM+/qKqQOIxFu2FBAE3vOz+IiHb3Y5KSM6XmIpo89PWQ4LLRmfb2+2Nio/aCkRM/RdCZTKWqtek2q1ue6wzIe7O5mFkJeZ7Ma1+ctcxKP25yvrydraxWJd3VpzEdH+e1vv/bG7uqrM1y9mhf9vvrqN43dG+r1K2nM+XkCd5FTUwwCTkh1G9R0OuUZvVDIrZhnbKMDJrgV4KC3USSTWiAlJZrAvb2q05WXkz098vAmJnSs8XFug5CGHgPDDvMgmc9rswiFmM0aY38ySSBO5nKOWctrrtXmHXY0YZ4YJHAXt25VHTGbpRaRQfSBXXzGFp3HWJKEUJHs7WUkorrcKFR3u98iwsVFuhYFj2hz/XryfhhEu7SUuyCU6z323rSpkCllSYkMWU+PosGyMnJiorBBjo7K2MfjZG2tNp9sVhtkaysZDIpHtKGBR72xa2/nWaheNw/VR7Ow5vCiIvb0mKFtaRGfKSRmCjym8QsGrb7mGZ2tMuaBgDZ4n08Gq6iIo6MWXW7erOizspJcWnKPvK6OxrP5IJua9DufT3vhWajG9qRtqhFYpFdfb+K//wcF8Y/LSZqfV220uZmsqLC2jElOQqw50wBZXq5zNjYSmFTEFYk4odFUyto0Kiu1SZeXc3DQaouWUuTmzdwB1Tjn7WdPD100yKEhcmxMWQ1dhEtjs7dXzqDP54AibW163ge8tTM97dL67OlxKhDRqGUJxsYYiymiymRINjTwJNSWwNJSnbexkSlbL65m19vLuyxK4vg42dnJWEzn/Q7wqszCIZaUaLMOhego3SYn6dBcj0M1+kSCmn9FRbp2c6z2QPXDHd75RK7JeNxSmZ2duk+PyaehgRwbE2K0vNz49ZbI4mIHGGI2q+/19uptdG/PAxaR/+w1N3bvfGeGZWW86Pc73/mmsXtDvbwHfwxe68GDZFubNvp8Xv0uUCpjn+dtDgyQVVWM2OYP3EXgb3kWStWsXy8j8Jy3gdXUkK2tXLXKFkNzc4EceWREQBMIin+HGdZJCBjDsjIyEnHtensA2wzPaOFUVDCZFGLseTt3RQXJkhKlLdPpAldiebl24JISryzJdNq8/6oqcmKCSSi9cj+UmskABoh5lrOQEOY0oJ0zn2dJiSkfQRFhRwddNHW3GaKsjd00FC2yqIgLAIfsHM9AwB6PrHrKjEAa6o3aYRvM42ZEHzdDlrLPzpphzgGu72qffY4lJVx41f97ys87AC9TW6Chqa9XHbax0YAMvdyxQ5FvURG1CbW0yJNvaGAup808m1V95hjg2WA925KSQlq8utoh7Dy0L5ubrUdxuzbsujpFrfX1Rmj8V8oYlJUpkhkcJBsbZfwqKgicNXRkt9Jm8/ME/m+NczqtyLWhwdWbpqfp2D+eR0E4NB4nHQdXIOBEXJ80YxeJFBhRTgOOio3FxTJ0ra0yoD09PGnPtaFBx+3spBwai1o9RdeYjfMBgFVVWiYlJcbp2tCg+djRUSAgLy2VwWtuZnu7pfcHBxVpTk0xAaUEYzFjhmlullFMkRwYcMpAgQCNwegunrX1q77NOTIUcil9dneT4+OOTo3T0w5BexomI1VezpISrZ+eHnps0UwBrvKxfr3mjcdvez/U6lBdre95VGgeX+wCFEFGoyQ7OpjPK+rPnDz5prH7V/R6Qxu7jBVZurvpJrqXtnLEzGNjsjiZjAACgCs4d3TQVczXrrW6TyikNE8ySabTWvj5PD2o2vw8yWxWm01fn3bJjg6thKmpQipzbIwzMwYySCRYX2+RT1sb2d3NLVvsb5kMq6utEN7ZqY12YkLXZdpasRjJ8XGHgsvlSLa3M5WyTa+1VWGX1R+zUBqzoYEF+vixMd3H9DTXrrXoxufjeYjvMBikzldaWiBC9mB909MaF7/fwbQZDuu+DcjBzZtV05qc5HkYytI2elZVFRiFh4b0/ZISOSCTk7/KW9rcrHN5TMMexr+xkayuZiplm3EiIVb9GH8FoLJ+vcZvdFSPIp+n48RkT482JGP77+igIwcYHKQ2TL9fSMqhIbK2lrGYRRNFRXo2RjpcVKTjMRTS9QwOcts27Z0bN1JzrrlZY9nXp/Hu7NRzHh6Wc2MXWFJCh1Rta9O9LS4a/N4ax1avtjluzz0cLvBvMhLRnGluJnt7NZ51dXIKvNYUo7bj7KzO4dUbQyF9z4z26KiBfsrLCwAVj2TZ0vcekKa7u+CwMZlkOk1ugRCReRtXTw/PU5J3OoPBoJ53PE6OjalWOj1N5nLs6lKNsafnVajT3l5FwIEAWVTE9nYD6WzerLExII+nLzg6WpgH/f26hwxALi1xaEhj61pajBB0ZkaHHxpSVLxhg11raSlNOpO9vbbmJiYKAJ+yMrK+XuPd2SnAUjDIzJe+9Jobu9LSDFet4kW/S0vfNHZvqJczdj/5CevqbKPevLmAvjDZE9bXk4GAQy+yp4dDQ1qvqZTxGtbVFTppjZXfIdgMAHIAIDs6CBzS32pqVMBuaSEbG12Uxqkpby1qtVnz9/btKrpHo1osIyN0+f3FRUVYnZ0F3koGAgZ6eFApLJ9PaUwPOTc5KTRgR4c+29ND9vWpjpfNMhDQ3smeHkUrHR3k2JhrmE0mSVZXewGjPHpzAkIhi/jq62VgNm+mGvBPELiPXV0F3dSyMpLBoGeTCSwY9aLqCqp5PcsCs8oFx/a/aRM1EK2trrGYkYg231SKnJ4msEuqBlmS3d0as2DQIvMDSgt3dpL5vFOsoN/vykyeFAzHxoSQ7OuTUUskyNZWB56gz+e15hE4yxhAYDfXrrVxzOcJnHGtLuzpkUPT26vNsL6ewLMF2aBMhkDU7l/k0UnLQIyMUPfY10dnkTs62NFh6OC+Ps2DcFiG0Y4Vg5qe164l2drKcNg28WBQhiIUIkdGHNfn1q3kJODmgABE58jubj3fcJjs6+Pq1VoHmzYV2GLY28uNG1UHe8SL2oqLCexkJKL5/QBUm5uFGsanp0m2tXFqSt9jVxfZ2Mj2dq3PW6GU+DEbw1lYTayri0uWFeHoKJNJpdRpvxuF0qgNDXSKDSUl+ncchVq1E5Lt7uYBwBEShCGxZVZUsLdXfYSPWNbhfgjA45ESHEABuOJIDFAgEr8HBSmrSMTW48CA9p9MRvtILEZWVLCr67Wtj3l73sqVaim62PfKlb+9xu4NzY350vv/AI8/nsWxY8CJvv8OfPe7wB/9kcgbX3xRpIJ792LlSgBf/jJeue3/wsyMKBRLS4GTJ4G5xx/HiQcewPL3vodz3/8+8L3vAYGASBy/9jV85aZDWFdWBnz722huXisOycFBXNXeLtHIFSuwYgWQTgP40Y9MmzIr0dR77wVWrsRn3v8sDgKYmZEG5De+IapOFBfj6h1/h6cgXcjjxyESy89/XiSN+AmA+zE3N4c774TUZb/xDcy+4+NYXh7HuTvu0MFuuAF4//uxZg3wSrEENltbod9PTAArVwKJBP7Lpw7hxhvFVYjaWtTUiI+xthY4AwDXXYf9+03I8uhRiVu++CKAowB+BiCLd74TePhhcXDedBOAm27Cd78L7Nt3EsCM+BVxEkePvojZA1cCmAdwHAcOAFVVb0EuB+Dee7G0hIKw54ULula7hiN4t4ljHsKR5Stx+DBw5Ja/QWUl8MJNf4ZzAIAogINY/M53gAsX8OUvQ2Kkp07hjjt+jhtu0D1ddx2At70NTz0FoKpKw2okmNddp/tHURHKy4EDB8YBTOBnAIC78fzzj6OxEbjvR5cCuBcPA3o2t98uxdvhYVy97b/hiV27ADyMxx+HnvupUwDC+OneKwG8DVi5EpKRfRr9/RAPa2mpfn7mM8C6dZibA+66ax/wtrfpGktLcQ0O4ZWVVwDYhacBzM7aMH32szh8WNqmuO463HEHgD//c/zixq9g0yYAX/saSkuBcgDPfvr/wtLv/L7GBxrzSwH83fFPAskkbrsN+OAHgVwOuGb332tsbrkFDz/8S1wJaKy/8Q2guxvAW3DDDbp0HwBs2IBSPU7s3w8s33UXdu6EeFeXl3HkoYewbp2W4XUA9kNir78o/X34AIyPA/jud/Guzk4sQ+thzx7gCIAHAawBcAWAn634KB555Glgwwb84AfA6dMvAmVl+AAADAxgRXU1LgcwA62RKwGcAPAydC0vATi1sICDB4FfAngvgMsAXA7gFzX/Dt//PoBPfxrrKivxLgDXAEB7O5YB/BzAwoKEnD8MzakV9jvceCNw882YmQF+/uIVwLp1+EXx9ZhZWMDyMrC09CDefP0rev2vtrYX83KR3V/8BSMRQ1XG4/LUTMpjwby3KQjwwFSKrqO4oYGidbrAe6DmaXZ2ksPD8lhLS4VIbGxUCgWq+QUCVJTU0EBWV/MZmPpBSQk5PKyaRjKpNEc2K085FnON08A5BoOKJqan6Tx+lpcTiHPLFgNizM8bynSS69cLyLB1KxVVmKYacCd3wdBn1dU6R3Mz6fdzcVG3OjJSQMidtNrI9u2WHrOmXK+B+HEI4MK+Ps5ClGPPWI2oq0tRx+rV1PjG44rEgkEH8Eil6OitPJUFtrdzcNCBJZ3+3JMwmquKCoF3enqUNquqImtq5DUb1RP7+hSVxWKKprJZ7gMoerclNaHncty4UenD0VESuE/1IQ9rPzUl77umhm1tpnRg8HxP2FffW9I9AgR2sqxMtT/XZmE1sgWo1haxyMCT/wEeI3CB3d366Py81anyebK52aKrA3ze6kOeRFJ3N615em8htZjPs7dXzwrYyyzgIpDR0QKrDxsbyXBYEVM+T/p8HBpS0HEUVqsz1GU0SiF4ATKT0XdMt4+TAsdUVxfaIkch4V02NZF+P7u6rM4VDut3w8MOSRkICCiVy9l5GxrEFjQ4yGxW6eJnINBKb6+YXHI5qh5s/ZQRCAz1OCBqr6oqsrjYKXZs2eLaYpUCn5rSekynuQ/giEWL56EaHCsqmLBIbBtAxuMCoPl8TEJ15d5eO1Z1tbI5oZBOVlNDlperud3rtB8cVFQMkQqEQiz0xGazZE8Ps1ndm6L6idc8sisuzvBtb+NFv4uLX7/I7sSJE/z85z/PK664gldccQU///nP8+TJk//T73zhC18ggF95/8Ef/MGvfGZ5eZm33HIL3/nOd/Lyyy9nU1MTFxYWfu3re0Mbu2PHMoXUZV2d4+tjNKqZOD3tNt9jgGMQYS5Hzs8X2CoMcu1pvTGTUU4nGOTq1bZJDw7qb6OjMpiZjFZdJiOr4u0wltZkJMJcrtDUvG0btWt6GjnpNNPpQieD0weamODMjLUWBIPk5CTn58kQxOEYieh6OTnJyUkKzeahH+26MxlLk0YirqeOiQQTCTpGEy/dm8vZ5u8VO6amdD/z89ooJya0GXqQxMFB1T7q6wt8Uc3NLmXsGqc9hW8TGmVZmYN5b9tGp5rOeNw1WqfTJPv6mAIKTedlZezvL9BCcXpa/w4EnPbg4+bYcHJS99vWRvr9GqtUSueZmNC9+/1Mp7XHx+M2Fka/xokJGXHbuBgIkPk8z0P1px07bPxCIXZ3G83W7KwcjrIy5QNzObqiWizmiMbb20kODCh1NzHBoaECXdjoqNWGWlr0M5vVsbz/NwmoKMSx+bwZ22iUZGUlL7nEnncu53gZg0HqBltanNJ5f78M7OKigUosveml83t6NJZnAa+PXAM1OamxCQQEAvPQtek083n9eZs5U4mEnI6ZGZv7mzfrHmZnPX5z3uqlAWdnyViM8bim2+AgOQSlWEMhyskMBnUgq++yutorv3NmpvAMIxEd+w6ojy8Y1JrasYOOVNsjft+2TXMpGhWClMPDZDCodbi0xK1brW7pKfdOTKiNor1dF+o17nd16R6Mis/L73sE35np6dfc2K1YkXH9sRfzXrHi9TN2Gzdu5HXXXcef/exn/NnPfsbrrruON9988//0O1/4whe4ceNGHj161L3T6fSvfGbTpk18z3vew0ceeYRPP/006+vr+cEPfpAXLlz4ta7vDW3sorZggV1MQzDpTZtUq0lDCMXnoHobS0tVe2ttJWtqCBxWDa6oiCwuZn+/9jZPQ+soPKb3c7zHPEVg0uX1Zy2qmzIv1oExolEtGlOpjsfp1AqM5IEcHKTPZxvcxAQ5MsK1a/W3ujrr9fP7CezVwqysdA2/5+1+AgE6SqO4XQ+bmgQSyeVcod0jqmZxMSsqCmIOnJpyqt+trarT7YJqFTtsbJ+zMfVg+T4fZRTDYbKlhdmsbbxNTWQ2q2gum9U9ZrNkURG7ulRbmpqi4wykRUSuPtLby5iN+VEv2jCWGa+VI2dRp8HwCCwReExGKZ1mOKy9aHJSm15ZGcnqatWz6uu5fr1qr8AhMpfjeUiA1KuZARe4ZYs5Hj09LCnxLvUMOzpYMLCdnY7JhcXFrvhbUaGa5eCgxqq/n6Z+cFj3UFbmiYCTfj+3bLEm9aIibfweI0cmo7piVxeBsza/FxwZcy5HcmREIJiBAXJ6Ws5KTY0ioUjEKXmftuiGbW3ctMmizJYWOqn6ri5FrF1d5OQkm5qMeSQWYz6vupwnTPw8wOJiGfxIxOrY7e0yfkNDeralpWRfH++GIaBLSx2hwywKlHaRiFGL9faS5eWq1xnR+I4dNv/Ly4UIKS4ml5YcFyfHx+X0GF/rHig69pDBySR5D9TSctoi0+dgLS3Dw4xapLdg69jj1Y3afbK1lbu8yDIa1f2FQjKIRUXMwvoHJya4uGgae54z2NWl8TYGpttvf+1rdv9ajd3Pf/5zAuDMzIz73Z49ewiAc3Nz/+z3vvCFL/CP//iP/9m/nzp1ikVFRdy+fbv7XSqV4qWXXsqHH37417rGN7SxG4dkPoBDMmpdXVy7ltwHK4SbKsFpW0zHILFJwdn3ENitlTs2RuA7BL4tS+DzyZusriZwHxkM8gCMw9AIijkywtNQEfx5WCG/uVkQcos6ursN5RcKETgiY1FSwgTUihCNkpyYILDA+nqvf+wxJyHCZLIAijCBUKfY2dBA5nKMxehUwmehdos9AFMpZVe9pvKYbSRio5hgVZUM53nAoVmPwdI9gYB2bNswGAo5lKfXaH7WzukZrBTUppCE0sIPmME8aePjFBSskfwhz7CVlDCV0nV6bSHH7Ni0Dcjr02JVFZnPywiGQozFLF3a02POwT0EbndN5K2tZvDLy8lcjqftGWaztN67I1yA0oPAEs/bOHkGKgrB8Xt79WzWrqUihGBQqXO7gOJikn6/CdxeIHCPew7hsKKprVuplo4sLW0dJZuaeN6ciQUobc6lJTlIDQ1qV5icNEWHBbKkhEeh1PX27ZTTkM3SwUmjUbKkhLGYpvXMDMlw2Kmos6mJ3LxZ8zgUUkRtqgx7AK5erUPk83SqB4OD1GYej8ugtrSQnZ0m6XSGwFk5Wh63l9+vaKqpieztlQGpreX27fJTcjlqPvf2yuDZPAsE7F4HB7lxoyJEneO4U/aoqtJxdwGsri6klrNZjT+TSTKZZDRKl/bfupWOEHwScrIMqyaQ1OAgOTwsA9vcTI6OCslZXMyyMg1vBIoWN2zQOaNRXatXHrjL5n5nJ/mIOQWsr2fmrW99zY0dIFmzi32LJAFcWFhgJpNx7+Xl5d/o+oLBIN/xjnf8o9+/4x3v4N/93d/9s9/7whe+wHe84x0sKytjVVUVv/zlL3Npacn9fWpqigB44sSJX/ne9ddfz7/6q7/6ta7xDW3sFgDT8HqMHBxUlGW0YffYJEyYEWBvr7wzn4+PA46wdxKK5LzU4SOA8vfWC7R+PV2zT08PtYtMTYn53TZ7Fhe7OiGrqrw1R27erM22oYGLiya5MzLiZGMmJ6kNbnhYm19fn75npJnAfZycFKu/R9rLyUlPfMDYerP6e1ERE4CTllFUkuH9UG3ifs+IpVIETmihFxeTo6NsaxPabMmMd8IMzqQZrro6paayWSoS8lhUjBKKQ0PaxBIJXWNfn8a7vt4TYSggYjs7ndrzSbtudnaSJSV8BEYEXV7OZwAODakh3yPPZm+vopOBAarmulPRkaX7yspoDfcXFEG1tLClRYYEeIKnAZeZUnR4XI5FczOBA+zosPRVXR2BE8xktEGUlRWIlfNmEAMBq02ZlNSGDSTQbRHeLn3eMggewbb+lmHEDNw85IQ1NJAcG3P7dSikc01O0unVsbvb9aFlMtrAZ2bo2i4eglKXZ20u9/bS1UxZXV1g6je1ipERKowbGnLMIqkUyUyGO3YYbVp1teZnKsV0Ws9xAaYRmEgUeDR7e8lIRKjH2VmyrY1Hbf3lPUPb1eWyKIzF5IDU18vgDQ25OiWnpsiSEq3Zzk5zRKP0+zXVPHkgZjKuvMBolBFYliWRUPRXX6+6XUuLJJ7MQUtAEZsjRpiedpkYjo7q2OPjZGUlEwmLvouLdV8eP6ynB2j3yvJysrhY42Icruzs5M03v/aRHXCSQP43eJ/k/1gjA8Bbb731N7q+LVu2sKqq6h/9vqqqin/zN3/zz35v+/btnJiY4L59+/jjH/+YH/zgB/m7v/u7zvhu27aNl1122T/6XkNDA7/yla/8Wtf4hjZ2eyFww4YNqmdoYWS0eLu7ZSC6urSQSkoULRhpsXEmOxFP65smp6YE1BgfZw4CHsw7j/9vGbMFE/W80ooKTfpo1JE39/eTbGpif39BSccjoGU0ag3QF8hYzFu32pymp1ldbdyATU1KVdkGkM/Lq0wAWmBTU8zlZKBPewtyctLRQXV12XcnJpRGCwS4alWhJZDBILdsUWQ0OEjS55OhtJSvG6D2dpaVFUh/YzG6aGPrVjpNOq+G4ykgMBola2o4OCgv2+PLZiZTqI+VlOi6p6d1nOpqjWcoRE5M6B66u8neXs4DDubPsTH296tvKBxWEGwBl+tJvOQSGhDpAFldza4uWuryCDk2ZgZwSQ6Q30/ghGvQSqUKmziwoKgjkSCTSWYyGtZsVu/5+QLoZ9MmOl5JxuOWBj+gVFdtrSLS8XEyHte9RCKO8o75vB5EXZ2IBfx+enyQ7e3UyUIhGePNm51UkCkw6UJqavT3piY9m8ZGxzlqvM46//w8GYtxft5aGaJRMpvlxo2WrvX6BUyT7qQ5QcXFsq3t7Za+SyZ1ju5upXXHx8mBAd1TSws5O6txHBvT2uvsdPWuSXN4ODTkmFYYDOr80WgB0WTH5OCgvh+JOOmkY+aoehkHBoPMZJTZ8dqPHHBreFhzrqNDqcnOzoIM09QUWVTErea8HoAi3WSSbqy4tKS5NzrqWn1YVqa16mk1RqOMWoQXj5OZ//SfXgdjd5xS2LjY9/FfK7K79dZb/0nj+Or3k08+yS1btvDaa6/9R99ft24dv/nNb/6L7/PIkSMsKipiKBQi+c8bu5tuuon/8T/+x3/xcck3uLG77z4RDDuvMJcjx8a8vl9yaYnz85bGmJjgjh1a3A0NdNRVjuDP79fizmbJaJSDg9Z3NDvrSPnKyuhEMhkIOCYTRYl7OTSkug1wnxbRwADZ3q6GcijP39Gha4hE6Go300ABKFJdrQWeTBJ4gsBdZF+fDEVDgyOe3bCB5OSkJH7mtV6rqgpNzUNDJCsrnVycJ20XjVIbSUUFV6+WvYnHqZtYWpKR6OsjMxmH0xHbzCRFCH2I1dVe9mmP63vS3//B+uzuIrDTVNP/b3qsIsCz7OhwbE4Mhy2tFY+71NzICN09Ab0yIEYbAxwXtgZgUZFFytaUXlFBV5d14A/boJlIKHWXycj7HhoiAwEGg3QSTqGQ9xwPm2NzgEVFCobFRfmYos5EgszlOA84SUNWVhJ4TGNbVmY1wCeYzWo+5PM0pp8gmUwyHFZaLhQi2dlpRjHKjg5FixUVdA3WjEYJPMspCJwCHCA7Oz2aVK98KmRv0mqVLS2cmZHTtH27PrNxo3oIk0mSJSXs6NDhPe03YE6b+Ph4IWXusayYDiHwTes5fExR6fg4E+Y0bNtGMhRic7OlZJeW7DuHWV1Nl0FhZ6ciqYYGOQWhkGNasYSJIv+GBtLn03kmJrhhA/kQPCYiNdA/Zw6uV8LwACRnAfccPIoy1T4zopCzSPakZQ08gY5ZKI1/wAz5WTOgQIasquLzgKuDxmKUE5lOF8ikR0fpSZ1UVb0+SuWvlbH7l17TsWPH+Nxzz/1P32fPnr3oNOY/9Vq3bh37+/tJvpnGLLQefOMblsY8Qo6MqDZhxWs2NZF1dVoItml4HJfirdvtNkjW1zOTkQN3FoX63lkYasy8wG3bqNSdSXqwvJzHYPVBT+DUkF0cGmJREQvcmCatkkySrKtjPq8F4sHA29r+B507Y6/wFLZ37NCGlU6TLCvj+vVC3W3bRrKtraBjZ/phW7cal6UnU9DczPr6VzUPz897mqaq2TU3K2XT2Ej6fLqn8nKNj3nWMzMGHggEFAW2t2vxt7VpXLxUj6ecXVqq8e7uJqurde+hkKDZS0tkXZ08fq/AaGgZT5GGHR2mYn2W7OpSNN3XRzY1ORYvT1jVU5IoKtI9ekpN7OlRRFNfT3Z1sblZn4tG6ZyW5ma6+g6TSSaTShEmk9SztEg0GqXO39Ag/wpwzCSeyjXwrJwHYxRhby+3bbOodnJS0XpZmaKx0lJyft5xdHqGiQ0Njq2sp8eudWmJHiuBBxKJe5v60pIe9vg42dZWSC8ODmpcvbz69HQhVfcqKShOT5NdXayvV3tJIKBrTAIOlHHU5ilwQuedntY5R0bIwUGnDM5oVAfwZBw8mY/RUXJ8nBEoleyx7TCfJ4NBTk0JtLJ1KzXfPPYZj0jWi3BLSnROD8Xb2CinwYBnQ0P2rL3WhNZWsqdHLUKTkzLEwaCO7/Oxp0cgKy+9GYnYeFjpIgWQIyPOAfNIpuNxa+ExnaBkUn/L5aj5PjvL//JfXg9jt0RpcV7se+k1u6ZXvzyAyuzsrPvdzMwM/38BVP7H1/Hjx/nWt76Vo6OjJAsAlfHxcfeZI0eO/PYBVDILC2RtrTYVE6QcGqIWkUVsHofdMVjdKxZzfIdOETyddv1UHjsIk0lyYICrVlkbgJeqMTJmlzvzcpDt7VrQFRU6p7UmDA3RKVtzdlaeqtXOtm+noy9iPO56j5xCdFcX2d3NaFS8kO3tthlmMmQ4zOlp86Jfnd6ZnnbwabchjI251oPR0VfB+K1HyaNTcgrZU1Ou14+hEFlXJyegooJsb5cD4clRezp0ZWXanTs7NcZVVdoIfD7BsO3eODqq8fSs0eSk7sf6sdjVpY2wvNzxdfb30ynOMxTSvdXUSDU9zgLZ98SES/PR79e4zs7qGsfGNN61ta6OmE5rHBIJFqjljJWfjY16x+O6l6UlbtliwJCpKba327yYmuLUlEUjHqJyaUnXYOAnzs6Kgqy5Wd8Ph9ndTdcK0ttL3WBLi2uL8WjoIhE5YKOjQkd2dlqabnbW5RRLSgpCG21tmhNbttg8HhzkQxY5evXfHTsoryCVYlWVGdOSEra3i1vzrDkgU1MW9QeDuo/mZs1fi8QzGf09kZDCuPc7n0/XEovZOJox2L5djsiQdw3WhOlN261bZfC8vkcODOi5e6n46WmlPhMJbt2qsVtcpFtLgYDKGfX1dDR/vb2OWU7nSya5aVMhfR8EnHZiLkfH7hOJsEAbODjo0rIey0wySRlEu9F0Wt9lIqFrX1pi5vbbXwdjd4QCBl3s+8jrYuxItR5cf/313LNnD/fs2cPq6up/1Hrwvve9j/fddx9J8vTp0/zzP/9z/uxnP+Pzzz/PXbt2ccOGDXzPe97Dl156yX1n06ZNXLNmDXfu3Mmnn36aH/vYx377Wg/m5kRLtWmTtc95m/DkJFleLq/MUGVer1kgQDKV8ojlGYHqcccgwETai1Ta2hybP8vLyWRSacbRUW2egYA2+MrKQoNyWRm3b1eKMZejFmlvLzkwwGMoyAitX29RyfAw2d7uQCDNzXSCnkq7bCXwoIxLPq8Fn0oZce7t8rY9sVNPiTKRYHu7IdVmZ3XQ2lonbrljB3XygQGGw3Q6btMAWVfHHTusKda8epaXG8HxWQJ7XWqT2azb+Pv7adpvcW7dqmNWVNDSeGcILLCzU89pdJRkIKBo0tOxs4ZdTkxoU7UNBjhExmLctIlOAWBxUdBy6eQdcNRX/f2UkWlrI/AEmUhwwYvMp6ZEGxYOe/3VZDzOUMiMaG+vadDtJDDBIGCp18dkWJeWCEyKfKC+XjWfpiZFt6GQtTRMEjjHZJJGwv1t9vcrOx6Lqa6qzxyRU2BoX4bDZCLBkRGlwpnN6poSCXJiwlKoOxk2Z8GTjAqFLCKvqZGx8vm08edyZCTCYNBou6zW6KWO2dSkZx2Pk8XFeob5vIy0ifYKnXqcj0DoZYbDZE8PV6/WNNy0qSDRcxJw/JWnzcietLTiAQgV3NUlCjAPCc1wmHkI4ciSEjIadc5oNiuDdz9EFRY0Qw/sJScm2N9PJ4nkCA6GhpSF8Ry/mho+Y2v6SUjVJA4BeCYhEJdTArFSACMR7RGtrdozxsf5DATQCofpiMx/aL8zTA45P8/2dnOCmpo4MiL9S5EBDPxWGbt0Os3Pfe5zLCkpYUlJCT/3uc/9o6ZyAPzhD39Iknz55Zf58Y9/nGVlZSwqKuJ73/tefuELX+ALL7zwK985e/Ysb7nlFl555ZV829vexptvvvkffeZf8npDG7vM3Xdbnewwk0m6YjU7OxmHUIj7bINiIkGnSVJTQ79fSLutKHDnsaFBC8ADZ3hgC7+fjEa1UUejLi0Tg7GO1NSQk5Pq+Zma4uioIepGR9XYbgb0kksUDXR3W1QQi3HeDCzwrBZMPC4jNT1N4NssLtZGsW0bdU3JpN1zN3dBEiWsrXXadGxvZzardbttmzz5NAy5OjrqdPUWF+kAMn7/q8YuFOIzUG/SM+YINDRog1m7ljLyXkqst5cMBBzU27Q7mUgY9HtsjG1tsmM7dtDVu7yUGGtqBFBpbRXK0+fTvVhkVF9Pp2EXDpMcGmJ/P02iaZJAVJtnLMaqKgXXQqH+Z2cA8nkdY9Uqkps3MxYrGIzBQcpRyGTY26t6GBDlHoBAL4FnuXWrV9Na4qxFPXGgIP8yMMCj8FpZgiwr0+0Auzk6avW0aNTAMScITHDeNtDnAbK1VWCTqSkCfXIkvMxENsupKRm7Z2Dp+OFhbt+unrnFRSqt2tfnGs5ZXs6tW/WMnzcHy0MOBoOaQ3HbrJ2yfEeH4yQdHXXZcM7axs5otPD9WEzOQl+f5urwsJMGusebp+YEfsfGx2uT2AG1C4VCus5EQudgOi1vqbmZo6Oa77fCUrRFRdbSscD+ft2300Y0w87ZWSbNmM7MkGxrYwoCrWQhlOa0rc17ALKnh6dtjm/bZunqcFhz2saTAwNkebkkgTwjODrKeaim19VF96xsWpOjo4zHRQAhB6nvdTB2LxJ46Td4v/i6Gbt/7a83tLHbvz/DpqZXpRw8xFUkohVrRY9MhirUTE4WGoQNYs3KSn3OQwIGAvqupSXDYWoTjkQUFfb1Oe0tRxy9ZAV6qw+1tVErMpkkh4bkqVdVOUPj0WpxfJzMZrkAsaN0dFAGwAyzemLOucZn9vW5RqiyMpKdnVrElm5MJknm89y40SK7sTGlGjs7yXCY8/MWWRmBracw3dIiwAS7uws0U57BDwTc8VavNri7hXddXSRnZxmJ0Hncg4P62dKij0k2LMNt2zRUHmnu4CC1uQwPO701Tw/MI+EuKaGLUhYXzXuORvkMwFWrDKRTV+fUBxiJkPX1uq7xcdKMCmdnBXTxHB5jOXFpsLY2JpOOnYqzEArX57PoqaeHwFmN0fR0oSbU0qLJVFfHqipDYxo7DrCXU1MaRi+dB5yRAfee48CANvrZWfb26jHNzxciBk9Kyuezuu/UlKKhlhZGo5YJKC3Vs56cJMfGXJ1261YzpoEAOTxsYsUXSJ9Pz9fvJ5ub2dysZxqNFsZCUfUF1zvJsTGyp0fzOplka6tFdj4fs1Da0KPucjp5psIQj+vxTHpOgti2Sb9f7TPeTft8ev4DAyJ/LivjrRAF2MyMngtHRlxd29H2GQKY9fVkTY2cT6/NwfoSH7HzBoN0LQjzniNcUqKJ6tUwrD2Js7M8ZlHg9u3k9y0SnIYAL+GwtUHE4+zuNmesqcn1BG7f7oHVXmtjl6TaBy72nfytNXZvaCLoRx8FHnjgIGprIVbi0lIglcIrtR8GvvpVkez+wR9gYgJi0K2pwR13ZHH77QAeeAD/9oZfAlVVwHXX4fi+fTi+sAD8wR+IKbm4GHjnO/HJG44Ai4uAzyeS40wGOHZM7Laf+ATwkY/g7x9+F77+dQCf/jS++lVxL79S8yERE1+4gH37gCMHDuCa4iN46CER+l6x8hXg/HmcW3E5DgPw+SAi4WxW597v0eY+pvv67neBRELEzMeP49ixJHDhAj5aWYlXbv4kcOON6OsD/mH7pXj44ZMie96xA0d8HwNuuQVHbvgkjh8XtzMefRT4wQ+waRNw4MDPcfPNIsXF7/4u+vqAqwBg3Trgj/8Y+OxnMTkJ3H33eRw9ei9uuw34f+68Aj9bvAbf+lYeL1/3+/jBD4AtW4CjR+/H7t3A0aM/xj337MOjjwJPPhkBcD/6+4E77oAjzb3tNogIevVq4KmngPe/Hz/d/y4cev8n8OxN/wWvDP93nD79E/y89MO46SagrEyXjRdfxCKAkyd/ibk5iLj4q1/F35/5E+D227G4a5c+t7yMp2CczOvWIRYDXqm8Bq/UfAgvX7gMWF7GH/4hMDIC4MwZvPeql3HgQBrLyz/BCwCAGczNxTSON90EYB8OAnoWN9+MC//1vwIf/CBeuPBuvPL44zhwIIb16yGW7O9/H8AuPPwwcPgwsHcv8NJDDwF4TIdqbwduuw3YuFEX+O1v4847gR/9CLi2/CUsLgK46irgPe/B3BwwN3cUMwCeLv0YHn74JeDMGRQXa9jQ3a3Pl5cDVVW4/34Ai4s4fRo4Dl37K5v/DxFe4wWgtRUvAkBfH1Bbi4MHgR07xDF+de4FMWdfuACRfxsRdCoF7N6Nu+56Hj+Zey8mJoBHARyam8OjNp2evepjwLp12LsXeOHJJ4FVq4DKSnz1q3rmiwB+AYhBORgE9u3DAw+kgd/7PWDvXvxibg44fhwv3/IXuAA9uHdDpNB/UPJzLC8fBb7zHezeDTz//JNYvOMO/OKRR8Ss/s1varyWl/Hetja88q1vYfH8eaC4GHO2ilBZif5+4PKiIjwB4JRGA/jBD3Cu+ArNxR/9CJidxcG5OeDMGfwSIqIeHARKIRLpMwAutWlw+DDwcuUHcPvtNjcPHEAspnGPx2FX/+brX83rf7W1vZiX5+Vs3JhxMjpKA11wJTXlp89Zym+3vD9DwwGHFGK0tDiZG8ZiZDTK6moDucRi7rgjI3RclPT7FQ1WVbn+s3BYUUd/f6EdiOGw9LdSKccNqO7tWYULbW1Otywep6KE6WlPfUbFpKoqZjJ2vFzOtfnkoFrM5KQc254emid5nE1NQm329JAsK3MRSlGRIqH+fpKdnY7+KRAgmU5zdFSObUuLUkWGS5H3bQjNeNy82akpcnCQfr+lb0z0zaMdbWujUyjn7Kwist5eAhnHjwicVarToiyvTrRxo66huJjk6KjDzLCtTRFAZSVzOdWHvCZx5nKuBYDT04rK/X5dw8QEBwf1+YoKktEo+/stCistpc+nMVkCdL2ebqBXiCovJ8vKPJFubthgfZM9PVy7lk5WiQ0NQvRNTbmUsUcZ1txs7S7t7WRbmyKy4WGuXm1zbWBAEWRnpyZQNusQmM3Nuq9slhbtH1f60aOom5+3DMBeiygPiKUnYZGa1XmLiiyqz2T0++Zm5vNaC8AT7O+31heP67S0lImEgp48RMwwNWV6gSMjiqSKisjSUo1zKERAvK7z87Qm+0MMBAzFOD3NSMQYb6xvTXPWItyJCU1806Dz+WwOxeO81VKHGYvKPAQy6+o0WWprWVFh63hpiYzFuH17Ia29uKhrqKuzFOjUFJnPa0zjcX3RyKi9bIjHSerku2Ixx5+5Y4eehdfX5wGe2dfHmZkCTW5m4PWo2T1PtQ9c7Pv539rI7g1t7DI/+QlnYc3G1dVcv94W4/i4Q2e59JfHEN/WxlxO6zWR0KL0+wvkDk6bK5NxvUCtrST9fkfj5AltbttmG4rXiJ3PKxVq6ZBVq8w4TE4qhZTLMeulc6ypV0wpu8npaZ40A+RJukWt7tDRQdOV26Pj1dSQpaWOA5tTU4X0nOWNRkfpGtlTKb07OrRQt2+nbtIg5zMz1lhutGQ9PTpMJKL7i1kKx0t/eUwrHqvLktX2ZgGXDk7aZ/cAjoaLyaQeSi6na45EyMlJpflGRvTTdsTFRao/ykuN1dW5dG5RETkONfa3tFDWsK6Ok5MyojnAaNjijpA5Cbia08iIbfyjo2QuVxAFtRQVcB9Dlupie7vS1WVlBNTvtXWrQ64zk1Fa7W6odtvVpbkTNoOXt5oXMKH6j2kYbtrk9EZl9Lu6lKqcnnYwTctk8gEITcnSUo1hXx/Z2qq2j2iUnZ2qPzObVQp0YIDJpKV5GxvJujqNoWnorVpFMf8nC2LqrK4WgCWZJINBPmTzzufTZ+nz0esqz0NAlFjM0rwlJUa/dtaIHS6wp8eMz+bNZG+vAZiiMvoDA9yxQ+k+v5/k4KCudXiYrK0lsJfAggGjjvCAV8PL5/m41eH6+23crB5fV6faPWdn2d6ueSCDe4GAuDUZCHBkREtU2dQLZCAg9KmXejUFDSaTjMWMT7SpiZs20VGkVVdrvrq2HCN5iMdpAKm95MgI9wKvg7E7SLUPXOz74JvG7o30erVqL3CWC4A1Px9iLufViQ5RCMITzpioyXkPgTsZM0NSXS0mDjY3G71Tht3dMprbtpHs6+PiorzM/n6S0ahj6VdO/hyBMNVwfYDALgI7XXuACH0XnFe6fbvV9CYmyKYmbRAVFWRlpYxsSYlDHiaTJHCuwLA/Pq6NcHaWzOcds4dXawJuJzDHoiIZzGcgEVJd42HG43QLUsTWx1X/mJpiMukhKrezv59W49H4eYIG2jj+gXV13t8l/qlm7BMEjnDrVq+RfC9XrfJAH1u5erWazbVh7Caw09GepdO0zWovgSXXKA0sqDbZ22tRy255D17/RDbr8UBzZETAhikDIDAQ4GmgoISRShWkgix6koxS1An7jo5a3dRqTVu26Hvs7hYCsLOTHR0yIkJgnpHjEAxydJSOY/JJgG1tegaeIjbb2rTRV1cTWGAUAiXNz3sN51vJSIQpSCE7k6EDz8zPk6yosD6+v3A9ahUVtMzFkuvpBL4hZyRHcnjYE8ggcLzQRmO8ooqwj9uaCGtcamqYgfrdPKcvl6M1V+822rslGYjubgPnPEHOz7OsjC5qbWqie+Z1dVSE3NysMZ2cZDotg9PQoHF9CGqt4fS0Q11yZKTA7JPPO3kg4B/IQEA1yUyGC/ac29upARkcJJeWZPhHRlw0DdynLI2Hgh0bI0MhNjVpCuQ8B8fvF4CnrMzG/D6ysVE1WyOVyOdJ1tZy2zY5Gl6D/MyMHMRLLiEzB187w/KmsfvNX29oY5fZsoX7zGCdhWDOGzawMJnjcTVL5zSR456nPjbGVassCsxmnTRKXR0dRdFJi0ZWrTK0VmkpIxEdJwUV5zk6SjY28oBX7K6u1t86Oy2tY9Rh5eUEjmuhlZUJtZlIuIgFWFJ/WEkJgTOFVI9x+uXzNJaOSW1WttlxaYkOTlleLs+9u5ucn2dvr21WyaQD7qxdKyPiJIWMlqm/38bBOP4YDOqYfX1kRwefhLFfFBXxgEV5dwFkQwOPvur/E4A2F7+fz0OtHI9D4IBtgE48NCRvf2yMLC1VdDI4qKgxEtF5JyfJ6WnOQmhXn0/PNGEb0datAmyc9camttY1CAOHtdn19BA4QGd1amsVOYbDbGqyqCASIbu7ZVCt/eEojHAYKJAQdHYa9dgFF32WlJAeE8HWrSLjlvE8y0TCyAm8NOjsLIEnOG/Ojgd4YTjMyUmLynw+srlZKetAgJycdEpDByAu1ykI5ceyMqEgIfj/hg1mUCcmHH+pZeB50ubm6tWaC8cghpkDtnGvXatpMA8hXBkMFnTb4nFmMoX2HEKk2U47z0N7+Xw8a4aIw8NOPjIUsnEIBJwoez7PAktQU5MyFZGIxkBUPA51GY9rOp21eeTJA7GsjJyfd9JR2aycUU8X0AMKG/ubrisQUJQ7NsbBQX1+dJRkQwPvgHhg02l9zNM55NKS5lJVlQihI6+SYzK0LFtbC0CjkREyHHYtSpn//J9fB2M3T7UPXOx7/k1j90Z6OT07wHquzsqIdXZqAvt8TtqEfr88Q6urTAHmVe8lcMK1ESgC2asFPDamCdzd7XUdyAVdWtLnPeLjmhqytpbPwNQCKioEOy4pIWMxdnebt1leTuBBbarGSLFtm/2tro7ATtXGSksVacRibiFFLFXFri76/dYXls9rA85kVNcoLiZrahi3MXkGMC//hKKAkhJtOsYXBlyg369N63lLSXnjswNwDfX0+913T0Npykdg6cyiIrVpFBfzORvTbVCbw/cA3g1Bu3cAvMO+87gZwLP2eZaVke3tzmBl7PvcvJlsbOQOqE4TDJIcGuJzZtyqq+15eI3A0aiJ424l0O0awIEnFEF7BrSry9lbZjJC0EH9XiMjGv/nvUilpMSRUAeDQh8Cr45y9jhC8KoqpeTUcvAYgQdlHIy9g5WVLCoSOnJqypsPOx1nI7BXiMGxMUWWo6OOxDmRoGUcdpPV1dwBRY1MpxVpzM7Kgxkbk+2FWkWYzwsl6dXCGhtleIeH9fvhYRnj5mayrIxhCFXZ0WHRWXExYzGrFxuJQgQgh4d5DCBwwaLvnWox8FhSKivlNPb0kGNjuq+iIrNjC04Ckvm80tTG7QZMuNqCp74gsdsnuG2bxhf4B4fSVO39MBkIaDxMuzIS0XAYX4K1LZwjJyfloCWTBE5wwwbr1/Och8pKjoxoqFatItnWxtWrtSzuAOxaFrh6tUX8RhbA1lal78vKVNvz+bhxo5QuMjfd9DoYu+eo9oGLfT/3prF7I72cnl00I3LkBLWCPG9vfp47dliLQSqlCGdsjBwc5Pr1ttlFInIdUylN+K4ucnhYXptpV7G9vaA1EgppEZeVkaWlXPCiikjEMUPE4wKHtLUVgAvbtlkkNTHBTIau1sH5eY6M0KWbTParwC7c0sJNmww0EAzKqC0tKWKdmtImtLTEWIxOqqWzU8cALui+Rke5dSsdLZjXu+0VY5TqPaEIzqifOjupjWpgQFp5ls7z6kItLXSNyB6H4+Kiju3ptQHHZdiXliyVqefkKW97AZxHH3IMIPv6ODUlj3v9+oIyeiaj+2coVKhXNjZyyxbbdHI5btli6bChIbKmxgGE8l4k1dvLVasKHKLd3dRuGospIjL9sdZWywxUVdHn0zG3bdOYbdyocycSdLyI8/NWk+3uZlOTefy9veTkpAOEtLbSRekeQGb7dj2D6WmNn6fO4DF3DA7qmJkMC+m50lIH/PD06IwBzRGveFgttrbqXI2NjES06RtjnKNpGxzUvdXX69G3t9Mx+TAYVC10eJjs7HQabn6/xs7nI38I9ac+BDgGMiYS7O5WOndxkQ5g4zl8rK5Wa8Goxri62tZtT48uLi5SAs94s6NDjlVbm7IPhnbZuFER3gMAWVcnx8l0FoNBA3D5/eTsrCgEq6vJ2Vk5lJFIQU6ptFRrrrdXg9DTQyYSInHwiBrGxzUWjY2Kdhsb5Yx1d+v3ySR7egxM09paYFnK5/ntb78edGFvGruLfb2hWw/WveMYXnwRuObCL4Af/ADPLl8rSPuBA5ibEzT72ePvxr33AgiHgTNnsHIl8NBD0B/n5vCT/e/GfbvfBXz2s0B9PcJhAJEIcOutwIoV+PnyNTj3wAPA3r14/PGkoOIVFQDUWQCfD4ODQlP/+Z8DDz+8jIkJ4N+W/gwvHL8c//6mX8LnAxAM4oof/b2+A+CnL16Lr9z4C7VNzM7iY9cZlP7FF4HbbweWlzE/L9j2K1/8MywtAa9c9S7gv/5XYGICt9wCPPjUu+DzAZfiFWDFCszMqCsCOI9fnHk3cO+9eOAB4MwZdTI8/LB1NKxZIzg55gD8Enj/+9Xu8J734LnnIOh5bS327hVs/i//8ih+8AOAfBr33DOPqSngp49eioWFnwBr1iCR0LGXl3+JvXsBIIJjx07i2cV34eTJxwE8hLvvXsatt/4S27cDd94JHD+uscOaNbiqpQWoqsLysjovbr5ZSPqjRyNqG/nWt4Dbb8ctt9iDP3oUc3M65/j9lwEQYh5jYzixdy/+29d/iZdu/CQOAmhrA1BTg6uvBq696gR+9CPgb264D+jvxz/svx5XXQXgllvw452Xo7YW+OAHAbz97SgrA/7NvwGGh3Utq1YBKC7G4cM2fxIJ7N+vx4U//EPMzQFXZw/h5VtvBXbvRmkp8B98T+Duu38JnDqFI8eOYWHhIHDnndi2DcADD2guLCzgzD334J57lrF1K/Dhg3+PP//zPFBZiUcfBb7f+Qu1GJSU4PBhYM+eGF554AEsfeLPsGaNumLuuedFPPwwcOnGj+Nb3zqKl+6+Wy0Ozz2HD5/cgdJS4J57sppLV70LqKzExo2aC7t2JfHUU8APf5jFDTdAg/r1r2teJhJAcTEuLyvDFQCefHIcy8vA3Nw8zgD4GNRScPfdwIoVwC8uXIMbbgCeAnD1217CT/a+C/ffP4/3vQ/4+eIisG8fcMMNeN/7gBMHDuC664BfLF6B43/915i7/3684vuAWj1WrABaWoDDh/ESABw+jJIS4PD3vodDK67Fww8ncQN0Hhw4gEsBYf9vuAGf/jTwBPSsMDeHZwFc2LcP52p+Hw8/DKC8HD8DgOPHce7UKXzkIwC+8Q3gqqvwwl//NfCJT+i4jz4KrFwJfOpTuOeeZeDCBRyCrY2DB4HlZfT1AZiZQXk58AerXwAuXMA1+38MbN6Mf/fZS/GlL/0am9m/+JV/Dd6/pa//1db2Yl6el5M0rw044mQ9Nmygft/UJLe6rIwMBpmH0Qn5/WRrKy+5xNBiY2POS167lmRPj9JDpaXGfr+klA4EKHjcvNlJS10c8zxHz81ubxcIxNTIubREzs9zaMiij0iELClRlDg5SYbD3LrVUnOTk3SAlbY2ecsWkuXz5tVXVjpNM05Nib4Pxn7S2+t4/urrLbrs7JRXXVvrYParV5McHtZ1mrQLy8uVjqmo4HlLNXpk17EYyVRK6VxTlz4L1Y8S3nPo7NS1Wt3CjWMiocjTqK+81A9DIT4Pq3VWVck7r6rSd0ZGFCp4lPT5vGqh3d3yqsfHXQtDLqd7SKf1CNrbFWENDdEhFVlcrLpNayubmy3Srq7WeG7eTC4tOaYTDg0VYPuW8gsESCaTSiGn02QkohTo/Lwj8eDSEtvaFBy0tOjZ0O9XZAeQ4+NMJgvRX28vyb4+5mGsH55UQyymaMNaFjyBXo//NZ+n5nYmQ9bWFlCXHuIkmyWbmhRNtbQoEikpod/PAtuOR+Kcy6k+GYuZUsOCrm9sTAU26615wNZOKKSxm58nnSSEsW+nUlQEvnmzqz86KqHNmzWXTFEhHrcaZ1EROTioevDYGNnYqPN7UGAba7a06OFmMrqmQEDXV16uGp73DgY1PmVlrm7Lhgb99CZHTU2hztbdrflTVMQ9sLqktVQ8AhT6elpbtY77+gpUgXav5yEULsvLyViMpwFF+/PzzNx33+sQ2cUsI3Ox79hvbWT3hjZ2J09mNLFyOZcGi8VIzs46BLdHfuzVR7q7WUB6GaGr48abndXxpqe1oru6lGrq7TUGjAUBKoqKuAABYphOO0qpcNgTDz2gDWF+ntmsbbxWU0mnWRAjjUZ1/JGRAp3W0pIWfjjMQICOQ9JLU3kMwqEQHTs/YzHm80r99fe/iim/pYXbt+tzqZTSVoa2J8vLC2i4+Xltgp6U0MiII+j1JJL6+wt7WC6nMS8qsnHL59nZqX2C0SgvucT686JRq3UcccQ08/NKP7a0sFDnqaoiR0Y4NUVX05mfN7madFrjMTqq75iWWDxOJ8RqgEnHlu9xX6asDsXaWtbX0yl4h8P6bDRaQANaFkyp0ZYW9vdrvLq79bOsjGR9veOups/HujozdOEwR0asnmoE0Js26dodxVpRkRycvj4BIBobdT81NSQEitmxQ9daXU2dMJcTWXGQMhaWFmZZGdnXx6oq7cPFxbKtvb2WHi4p0edqa3UdU1NctepVztbmzS6tDFxgIPCqFHdXl9P/c1pvRtu1YQOtr+8wd0HCrEteTTWfJ+fndY+trU541kNlunRiOq0JtHmz6x3MWn03FLJzDg3JKRofd3Vxj+s0m9U8isKEfmFtCV5ToJez7evTsdrbnapJR4fWCuvqNMc3b9Y8Sem+noFAbF5LB9vayHRaDlNjo+rJfX2FRjqrgTrAl8fqbeTiJ0++HmnMpyl8wcW+n37T2L2RXt6DvxewaOgfyOJihm3BPA4wZO8nAZejz9tEFkAlSuAeJ8waCGiNROx7rK42YMCSA2IAJ7RjNDWRfj+DMDLZiooCgWxvrya+kdrGYtR/4vGCfM/sLIFD8tZHRw2kcJzz868SaO3oICDpkxxg3b15LTiv7aC0VC1r5nm7SCkQ4OSkItUohKR83OpX0ps7K4MfiTCblQGL2mfSEH/hrH3vEYh89pJLrLnWk04ZHHRgBXZ0MJMxp2F6WpvU9DRZWsotWwok/p5UzpKNZ9w2OYZCTEKgll0QYjYH66ErLy8ooHtKt+XlBO4k8A0NWDRqrSfiuFQLxbNkdbUMR20tgQUDMx0iZ2f5HEDgLs2NhgYCQcc45rWLCGa/0xEgs7lZRqeoiIODAiFwcpKMxajWi17r8drDnh4PVPEg84ADuNTVCRjkaRwuQUoGbGlxY7V9Ox1ll5CbExr3yUmXOQDO6GEa3+szgCO1TCToNPM87T6nZeixhHu1smzWIYi3bdNz8uRrpryNv6ODHBlRpBmPy1lob9dcNo2okREpc7CtjY/bXHocBjYyodWszc9IhAKL+P2MwNDNJu+0fbvQl0kvymppYUWF7JNHCO56RGWtyUSCt0IZl3SaDgm8zwxiCoYUrqqS1I8Z6oznsCYS6oc0SfqzUOYmGjUj3dysse/sJIuKmIbq9fk8HVl62jO4xcWvs8TPm8buYl9vaGOXuflm6yHay3xeqCkvpegZrWfwKoj6xAQZDDILWF9ahj+EmNU5MECOjwtV6enhTU46+RNOT6t4Ho3qOMPD3OUZF7+fHBvTgorH1Ts1TR3TmFCky3aC4bDW6OCgFou3yIAnFIHmco5AGuhldbVEK7dvp1JSJhfkkQNPTlKL1Jg+WFVFTk9zaqpgvF1rhJHnOmLlUIjRqMAX07b42dnJKApqzXsAA5mcUdTgaXbNz7vmZk8/r6ODTvZoZoZOEX779kJakbGYjITJIbG8XJFPfb2MYGmpotv2dkUJ3d0MBg1s1N3NrVs9BYEggTu1yVsE4ffTiJPvlKE08Vp2dbGoSJtoWxsdA8fGjdRzHh011J7Ea0XMvZVr1xbYMerr5YR4BMLM5ZTq6u42RfsJAn/Fqiqvv+w4OT+vVPnAgBm7OQJz3AdoPzQnrLub1oy9S1GCRVRbt3q9ln/LDOAIDHp6XjXWoZBTzojHdY+ehE3GNmzmcmQwKMdreJhnIS5Wj/zzvDkczGbdOHpz4kkY4jMalbOTSikr0denuW0qFZ2d1lifTHIJIhK4w8aHmYwrI4xALQQp++wUlH70UoyBgObsVlh60OczJOdhtre7wxUk6oNBMpPhQ1CE54FfvNT+MXPcpqH0eBgqcXiG91cItUdHC6iimhqyr08GOxh0IKkFM5SGExMYxUsLm2r0PsAcoIdeB2P3lJtHF/d+6k1j90Z6eQ/+6NGMDE88TjY1savLUkzJpBah9R3t2GH9PqEQ0+lCdBWJ0MHYslmS8/OKThIJ/f/0tDZ42ywmJ6lFtrQkS7W05CixGI8rghseVjrKYwQZG9PG7xV3EgkynVZUZ0KbXuTH+Xl52/m8ExLN5ZSZeQ4o6HIlk05o8vveRmWRXzarSwoEdK3ZrK6F0ahTcM9m6ZgyTBJNi9ZonDgw4GSGnCDnwEAhkqitdTB+t+F4OUVrWObEhI4XDis91dHh0ovbtlHXazeXTJKMRjUmwSD32CbFVIrcvJmjo45YxaW+ODGhX+TzfM6Ms8tdb97s6iyplN1rJKLn19lJTk0xn3cgTB3LIwOemNAkMscoHqeyBuFCCYkTE4UoMJnUfPIkzaemCunoSESOQT4v5yIWc2ln72MeIDgSoa7bdAcdg3I0WnAwzJDRxmb7dpIVFSwrs/Tr7KxqhEVFOt7oKNncbBHmWXZ32zpIJNSQPT3N6uqCCGkopAifRUW6Tus59WqJnq5cIqH7zuf1/EdGZFi9tHpvr34mEixo/HV3u2u+wz7LZNJJCnl17ag5XDMzVntva3OqDRwaIgcGnBqPTXm3nkZHhdIMBCyjYkhhRyOUyRQkfWZnyUxGzq09K+bz5NgYYzHbRzZvpsfJNw/IObAm9elpauFEIoXGe1s/6bSd7vnXjpqrYOyeIPDz3+D9xJvG7o30cpFdXR17e63+EwiQtbXyeIuLZZSGhlzenQMDZF2dAxl4tRgOD5MjI4UNp69PG6ff75jSdwDWDxdVlFdRofRXc7NLGxnZBdvaLIoZHtYmn0goZdjQwGTSmn89bTwP9GG1te5uq5tUVZFFRQQWFH0MD3uMRPLC/X4dZ2BANbbublfjYV8fGxosZeVRpoRCZDxO4IzqLokE2ddHIE7gsGtE9gAQ5wFn0KQE/wTVkBp1NFfZrBlJi+w6OpQ27e7WoRoaaE3WR7hqlVNQcvXL0VEqqqqocGoF7Osjx8a4aRNN321Jm5X1/MViNjYlJRQbxLNkNMqeHv2aqZSjcVu7VvdRVkZydFTXU1VFx4taU6PrN1q4jRt1Px5036O8Wr1adnPHDtKRk2az+qDViXWf4oH0eBU3bqSN8QI5Pm5MI3sLtVerQ7K2lgwEODVl5+jr03yemFBNdGRE86621kn7MBzWtRuHZm8vnSr59LTut7OTjs7KK4ONjNi5PYHaSETrZWnJpQiDQZLRKGdmjC/UaxmoqiIw4alIKeJrbmYc6h1saNC1JxLkAKBJMjjIjg7NxQNQivw81CN3jxd1jo9zn2VfWF+vGmtNjRZSV5cyH7GY7ndw0OvUYA6WJi0rI1taZLyrqhgIyOAtQenw78PSpE1Nmnt1ddxqf49DvZFev+E8QLa08C6LCr26fW+vxuQ0DAhj8yAUomp5aT0n1tQ4BY7+fvKuu16PNOabxu5iX29sY3f33Y74OJ02aRoPkWh9NCwpIRMJeV7T0/LUp6edUcp5E7u9nezt1aIrL9fENWXjY5Z28/upTa6jQ7Wbigrl7GdntekFAp64OJ1KaDis1e7zMRJhAXTihSpDQ2RJidMRYyrlSIiBSaXBfD4ZQU92eWmJwCFp1aUpj7u72+nMeS1CmQy1mTY3k4EAYzGlFONxkmNj3LJF9qa31xTPa2uZyShNyKoq3WNTE4uKaMblCa8Ny2vjc8rjqpOdZTBIxyMoiq9zv2LowmE6miUODWnj8FKiPT1OmNQTfo3HC3SaySTJYNC04XYT2EtWVzMSUeOwJ8Tq9QPmYOCJgQEnC9PSYhGHEWl7NVWVfw4TOGMpx10E1Jw+MyPf56xFHa5Ru6VFRqOpicAuVlUVpP6AM0wmNUWYyVhq9DE5KZ6hGxjQ8+nuZjptzczDw7rPsTH293tpzEkuQEQEnnIUs9lCT5oGQHPOlNMHB8We4qmAe44Y02kuQLXttKVjGQ5z2zbdZ0eHlsLatWpQjwA6WF8fS0r07Lu6rI5slGyjowVi7XCYYioKh8miImYyutUFwFH0BYMypI7b0nPWBgbY2UlXZ2NREY/Ck8s5Sy4tsbfXUrh+v7wqu7aTUJ0vFtOxbzWDO49C3d47bwoiPnjOfpdOU/PP8qR7PGPd0sIkLOXb0kIWFSmTUlfn8CgMBBzYjE1NZCrFJcDmwL7XwdjtseNe7HvPm8bujfR6dWS3uGibRHu7vECjCEt5qa3SUk3C8nJtrsEgWVtrm9sCj5rH6XEtOkbonh4yGJQgKYTCamuj0jqzs+TEhAxEaalWfzisNEcgoNTZq0mOw2HHpm+ZFAJHtOkODZF1dWxtVe0gl6MsQzhMIC5PvrZWxzCtrVDI4OamubfkRWJe+m5oiJs2GftFebmcgOJicnaW6bQ2snyeOt7SEtevZ0HVvbOTB8wBWLJ3dbX2lvZ2uqZ2zs4WIIDz85ya0n3l84UMpWdQTW5Pm4qXNw0ENF4lJRo/Fc0UVba18TSMKaSiogC3jMXY1aWNUzDquI41PMxcTvfr6dJNTZGsqdH49fYSOEdWVMj4JZNkZaUoqkz11UNDbtlCY7KJG+/kOa5fbw5KVRUZCOgas1mNayhE9vQYsfABjozI+Vq1iuToqJyVnh6yooI+n0WgpaUcHDTnrKtLBjAaZXPzq5C0U1P6GQ7r2mtrZTWc1uFep5QbDFIbv6cHaOnpNKxO29paaHAvK9OxDH3snI7x8UIWYGRE2UMYQGVykgyFFPWOjMhhsbQkx8fJSITptKUdjSD5h4BLlXJigjkINMKKCgfR5+xsAZzS0eHUCI55xq6khCwrY3u75ruXUU+nqfk3OqoBS6W4z3NaPdWLnh7eCtWhnwfkuNXVac22tuqcdXU6Zyql44yMOJ3KA97YefV703ZkeztHAC97KUfNnFqvPEKfz9o6Xo/ITk7exb93v2ns3kgvZ+y+9KWCfEpvr+OvZGWlFk9NjVIwHn6+tVVpnkSCQ0OWUqyqKjCeGxb9gLc4/H7HOs+WFgJzWqx+vxaucUnm88a1ODHBnh7zcoeG5PFZLxxLShiJ6DIiEftMNMpcTh64hwbNZilvt6KCwD0ELpD19dqUUiltAL296pVrbdXKb2/XtaTT5NAQN2x4FSBkZEQLOxjk+vV0rA9KsV0gMMdgkO5+vPogASfwCeyk0Ks7uWWL7jWXs3vo6ODMjBfZZbhpk/ZTn49kJELgWQJLXL1aRmDLFpIjI9qgrQeMQ0MuwuHAgMYrnyewh47J2FJ93LyZEcCuaYLs6XHSRB6wZeNG3fIBGM/l4KCMjt+vcTMKMTcWlZVOxaCsjJZyvMcM2Am32WYAOQiDg46KLpGgMd1PunsWWnLOQEZRcnKS+wAC2/VcJib0bm/XRjo0VDBG0agil/FxRxgO3MMFwGONI4eH2dBQ4D7t6bG54MkaDQywo0N8lx5vY2enMaiMjjIDA2yZUfMipnjcosbJSba0CNUcBfRwa2sJ7OTWrZqe0+ZgPQMU5IGqqzk5SdGH1deTPh+7u2WTwhDCMQFwxw6peXuR6VnPuLW2srdXKdIsRDG3y6JT4AI5MuLkf86/+tra2/kMVOddXFQde94M3a0wxHRZmZvnWyHg2j0w+rZMpqB+UF/PEARC8XpUR0ZI1tQwCqU+Y+ZUj4xo35mcpAxeQ4MWd00N+/vJ669/09j9a3q9oRlUcNtt2LlTRBz41KeA5WV8+M6vAN3dwNwclkXnIcaQ0lLgq18VI0dlJW68EXj724GDBw7gyJNPAs3Nosx45BGs8/v1/1/+Mm66CfgwAHz+81i79n2i99i4EaXV1WJpqKzEpWdMcDMYxIoVQCgE4ItfxAcO/hh46il8/Kqncfj0aSwvi42jvx9oagLw6KO4bPi/YQYiZikvBy6/7S+ATZskromDAH6ME7t2oaYGwNe/DvT14dzX/wpHj96Nl+6+W3QelZXA5s04dOpK4Oab4fNJQBaHD4vtYe9e4OBBPPSQLv/EyvcCsRg6O9+CoqL3YWwM2AsA5eV45BFgGdC9HTgAUaqsAfB2AL/EdddJ53J52Z7BZz+LRx81Zhbsw403AseOncT8PCAajvMA9mHdOhFyVFYCOHMGTz4Jid/ecINoSBoa9PnKSnz8xnMS0sRLwOIifrz8ceC221BcDODb35YYJ14C8HZc+Ou/xofOPKbr2b8fOHwYDz/8PG67TeweX/wigOuuQ2mprnV4GDix4RPAH/8xfu/3gBfwXmDDBnz608DcXAzHjv0EP4Xu5cCBpxEIrEJfH7BnT0TMHNEo8L3vidrmwAFcs/xzHLnrLgAnRUpzww34wFW/BDCFn174KC655EM4ccPHsQIAkMV3vwtgfBzI5fTQfT7gne/E/v3A3XcngcOH8fnP65rvvBNYuuETAPJ4TNMW+/ZpsnzkI8CePQDuugtvfzuAxUW8MvMEcjkAy8uorTWx1JtuAhYXcfgwcP/9WeDhh7EXxrozNoa3vx1Y4rvw1rcCH1jxC7x3+RfAVVfh3ns1ws8CwB/9EVBUBOAKfP7zIhG5AgBKSnApgKkpLb9X9u3Diy8Cvw8AK1fil3NzuO464OhRyZjuhZ7Jv73hl/gANC3x6KMobm7Wta5bh89/HngMwAyA/QAOA3jLWwAgDezejcOHgbm581hRXY3rYXPs8GG8C8AhAFdH7sMnbXacAFBj533x2DGcOiXWlVpIiPUCgI9d90u8cOoK4MYbUVxejgu7duF6AJe2teHn3/kOnl5cBAD8wvaSZyEx2P/+6AfwlS+/Atx4I+6/H5g9ez2wciV+XvphzOzdi6Ii4NlnH8Rr/3qTQeWiX7+OZbz11lvNuyi8r776avf3V155hbfeeitXr17N4uJi/tEf/RH379//K8dYXl7mLbfcwne+8528/PLL2dTUxIWFhV/LQrvI7qabTF0gSPb2qj+ut5enzSMMmRfHgQFFfh77Qnk5ge0EJngHjNF/dpZMJPT5sjKlO0pKVJz2+10flAsBamv5ENSTtsc+u81LkeRy5NiY0zaLAUY2vaTUk6EImcup0G/sFZmMgWbicevFW2AgQEHcl5YKQq/j4wT2cBwqojuNPCOZZjLJtjZdiqczF7XUy9AQHbiBs7MMhawpGQbPrqjgLhuTB2wMPdTgyAhdyvS0edUOMdfbq7ROLKbUVjisqM1DwXV1uZrSXQA5McHzMJDBxARTEEghDSgi7ejQNVZWKmU3Pa20XyxGFhXR5xOH5gNQfSUcVnpWGmYSBnVQR4v+PJBHZyfJfN4BFgxEWvhefT2LihSF5nIsKENYe8QeqH72iI0Fi4uNBFrRb0uLpT2XlhRpmXafyKnv4STU+hKxeeHxWHpJCA4NkdPTDIeVWq2qosYjECB7e7m4aGjBujpFRLOzBSWC0lLu2MGClM3mzWQgwGTSfldV5epkUxYJsbOT9PlcvXnTJo3PA1CfJSsqyOJiLi5airW1VdFtOKzvjo8zlzM1hERCY9LYyD2wNGg8TlZU8CSMMD2TUdQ5Pq75OjxMzs7ySYs4495cNNYDTzC1uZlOEYKzs3o21jCe8L6TSpFNTVq/lZVuLd9q8+RbUEki7kVvuRzp86ldIBQqiPSZQPM3YfX8wUEXobO42JE6sKJC4+DVcaen3Rx+LRUGCpHdTymQycW+f/pbG9n92sbud3/3d3n06FH3/uUvf+n+3t/fz5KSEoZCIe7bt4+f+cxnuHr1ar700kvuM5s2beJ73vMePvLII3z66adZX1/PD37wg7xw4cK/+Dq8Bx+B9MuAPVoY5eWOIX3W0iD0FmxvL1ldzXGAP4TXVP4PrlFY4IS9qlsZQk7NxQe0WVVXK2U1NaXFmctx3tItEVvEJ6E+IhYXk7EY43G+CgUYZ3W1NfpWVLCiwkAcdXW85BLZU/VrLejcs7Pk0pIW7diYSwlxdFQbXSjkYNF77DrCthFPwVM9iDpj96RnKExuBjjDJ6Gifns7yYEB5mE9hy0tpM/H572UzebNZHMzl+zYB8ywPgCJuO6D0lC7ICDA3XYtUShttceewx6ofnLazpP0NtLZWeagNNcOM3oxM3xecy9HR/k81FcYDJJcWpLhz2SUDq2uplQPtjIel231+/U51tSonggBMzxGHZ9PzsCOHUbXVlnp2Ew4MsI84MpJLCnRs4xGjWxgUg/XY3ZpbqZAPLsIfMfVm/J5PdfubpJ+Pzdt8rTw/lbGob2dwF3aqBMJXfP4ONnV5fwDT5LqtI2hM9hlZQVIfk0NczmlLrdtM/FfGzenw9bWRpaVycj39Wm37uzkczZ/N23SdzwZIk5Pu/YZZjJKdVdVuWZ9KQ8cktPV0yOSAwiw8rx99gEondjbawCZeNz1qU7as1aq1orZg4OOgCAY1Ok8cV1PV+4uwGMpI9vb9XyMhYeZjCvNs67OdcV4NTx2djpJpM5OOkkqT+Vh61YrJ3jzIBLhN+35rV9vLT2Tk4XWnPZ2Pm734anKj47qGWduv/1NY/ev6PVrG7sPfvCD/+TfXnnlFZaXl7O/v9/9bnl5me94xzt4++23kyRPnTrFoqIibt++3X0mlUrx0ksv5cMPP/wvvg4X2W3caM2b28lAgA9BCLEcjI0dprvmFcSqq7XIy8stf/0gt3qfGRvTArON+axtxB7jPOvrNZnr67WwbCGHvc2/tpb3AIUeHNMqYzIpg9XTQ+CcdqF02tGDPWebAnCAzOUKkcDUFIGdbGhQU7mrzBuHF3CfWiImJ3kUhSJ8Hor2/H5FJlEzQrOA11rnlJg5PW1ItwX+0D7H2lqGoKjuHtsEg0FFnK7Hq75eYxIIqI5l4nnT05QRTiQc31ciYawX4+Ou52nKrvusXZenI3fWc1BMtHNqitaCcUbRsCllJyCJGeCcjERLCycntSlKZHavrqWnR2CGQED1oZoaRwHGcFj309zsojzgrDYzgMABtrcroshmbcxMb20X4ERX2dLCPGBitg8SmGNzswGIlkzP0JgEPAHRhyCNvlmbm17zPHBB0bEBQqandf5LLqGTQ+LEBJlM6rhdXcxB0dAxGBtIQwPzedMvBXSzTU0MhfTPLOAAV3Eo2md3N1lfz6Ehd2rOzIjl5G7PwBUVCZiSTssYt7c7RhdOT5NLS5rL6bSutaRE87O83DltUcjR5Oys6m3j444tiIGA1kkyyUmbe1lzqrzS88gIXRO761mtqSFjsYLmok2EJXO8TkLO7rfM0N1qDsa852wZV+sxwEXB7Oggi4t5FlD90WMV6O52lGJbt1Jz3OOMm552DkICXmT32tXHCsZuisDMb/CeetPY/Utet956Ky+//HKuXr2alZWV/MxnPsNEIkGSTCQSBMCnn376V77zyU9+kv/hP/wHkuTUlAb6xIkTv/KZ66+/nn/1V3/1z553eXmZmUzGvRcWFvTAfvxjrlpFBwTh0JDSgAMDSk/MzpLT01rQxoKwaZOlCr3ua0uJuEgpFtOm2tJC9vRwcVFQaFF6ndDktqI6QyFycJCdndoPtm/XxtTQQHJiQhvt1BTr6613LRp12mnhMMnZWXnvUAuBI/Rtb7e+vgUCZ8mJCS2u2VkZ7J4egRI8THkiQQ4PO8mgSy6h49yMxUjmcozHdemdnTY+TU0W3T6rLxmK04F2BgdddAlM0qNXu+QSHWd01ODgsZjX4kVgzoAqcQLHDTYftmjnCIuKZDAXFy2qnZpyzDUcHyfTaZfxlOL5hJ6VueGBAMmGBmsNWCBwyImnNjeTJkXPqSkZ+ucg9hfOzmpsu7vVgjA4SLa2Mhi052D0X36/RXgQRdrGjfr/HTssKrGIPZulNtmJCTktPT0E9uhYdXVGYXfGADqHyHTaorntZDotI97c7ABFrKryvkYODCi683rgxscJPMGzEBBk1Srdpydx5FFBegTjzc0kOzrY3W0o4p4ezszoM3V1lpatrHSyUF5PZnExRUeX1lppbbVWC3Pg6PcTuJ2bNuka7rG/PQDRurW26nmGQuT3POdxdtbhjx4BXGP2tm1K4Xr8qVkYnZetz4xd91lYanJqSqne6mpTDj/BBaiEwNZWT+aebGpiMkluRQHwstWMLPv6HIL5VruWWYgJxUMOnzbDNgIUWo+Mg5T19dzhHbe4mAyFVNawnjrHRG4M5Zs2kd3drwdA5ScEIr/B+ydvGrt/yevBBx/kvffey2effZaPPPII/+iP/ohXX301jx8/zkgkQgBMpVK/8p2Ojg5+/OMfJ0lu27aNl1122T86bkNDA7/yla/8s+f9p2qFAJjZv58bN9I1xrpGIC9nUlVFVlQooohECo3e2Sy7uszoeQu6oUE7QnGx0lnV1TpwPq/FNzKiTai5WTt1SYkTN+X0tDa9tjZ2d5tBSaW0iDyjUVLCxUVtUNu3U78bGyOHhnjWPOz2dvu9yUwLyXhOml1RFtg5hocJxJWatIiUnZ2OxcHTRuPkpLx24zb0JLuYyZB9fWxv1+Vv2mQweL9fZS5A3nlNDdnSwvXrlW0E4gU9t/l5pYcGBxmNenbmrGudq68nmUxy9eqCzl1zc4Gqq7ubsvoeQ3N3t1Mo95hSiou1h1RXk0yntUF3dXHJGbtzqp8aXRjjcbKzk+vXGzq2pMQpLXgtCF6roicbODVFMpGwVrUDBM6aOOkcgSNyGqamtFEWFelGjJmEjY0ai4YGAofY3m6w+EyGwAVOTtKRASjNOiejGQw6TlR2dDilhQ0bqAe0tEQmk05lADjEBYsme3t1P9msjFQOqqmyoYGcmlJkuLSkFlEzIJmMDM769SRDIWUiZmclOrxN17t9uwz/yIh8uKYm1XFDnkGxOmZvry4/DTiNt0DAnIbWVobDpoIejZJ+PxcX9cz3mNFJQrXFBUBzsa9Pk6ekhGxu5vS0DOPpVxkk5vMyOOEwZ2ZsnBobtf4GBlzK2ROzXYL66NjVJUo9i8Z6epTmnYdqeLOA1ozXzGnF1ufMOObtmrds0bNPAarhlZQwHDbnpKeHW7ca5VhpqeQxASNFeD367N40dhf7+rXQmI2NjfjTP/1TVFdX46abbsKOHTsAAKOjo+4zl1xyyf8IgPlHv/snQDL/0890d3cjk8m498LCgv5w4QIOHxY6DIuLgldefbWggitXOrTk1dlDElDLZnH4sL5XU6OPCOIHYGFB3/P78crhw/rdiy/ihRcvFfrvxRelK/bMM8DCAk6dPg2cPy+U57p10iYrLcXJkwIXvlz6bly2/JIubs0a4J3vRCQiwGBREXDfi78P5IWMOgPgtttMH2/NGuB3fkd6e0jjkkuKgAMHhFwrLhZKs6oKwC9xQ2kpUF2tL546JURiaSlefNEOffiwvrNmDbBiBQ4fNr27p54C8nns3g2cPn0UuRzwMgCcOoXFReAUAJw+rTEoLsb+/Rpe4HkcPGgabuXl0qSz02jIDmBxUZfz1FMAVqzA0aMnsbx8Evv3S6ZscRHAjTfi5EkI0Xjhgu7pxRf1gdOnceaMfr28/CKuXPES7rwTwPHj0vvz+bAbgPB0S8CGDXjhzJVYsQKCK545g2eeOYrrrgOOnD6t71x1lcbvne/EqVN6zJd/Zwv27xeyFHv3YnERqKhYB+BJCH/3NIDj6OsDfl7+MezfD5w5f15w1lOn9CAvXMDMDGwiHcdTTwFXFr+Mc8VXAHgUx48Du3frtk7t2wfgJSEnV67U+KZSGqziYhw7BuzZcxT42tfwwvK7gPJynD/voV6P4yAKQ4TlZczN6TIuCwZ1b2vWAGfP4tQpAE8+if37Tdftuutw5oym6ec/D+C55/AsgHM1v4+a1lacOaP1kEgUwKE33CBk8CkA52xeAMD58ydx9Khu/Ze2Ji7To9HzfuopHDwoxCUOHgSefBJbtwJzc/rdcQhh+fTeS7EMm4u5HHD8uNbTc8/hqae0Hl60cx8H8PLypThwIA+cPo35eZtre/bg3JNP6tr27sUZCI0Jnw/HAdwEza+DECrTB+k6FkP39W8BPGjLGZWVwEc+oj1gbg6XAUA2i3MArtVw48j58zgDITkXT5/GypX2bD79aezdC8RiAPx+HDyo69Zzy+G1f72Jxrzo129qLW+66SZu2rTpdU1j/o8vV7OLRl3NhZWVDASsGG2NtZycdHI0aUBeYCKhulcqxdFRawzN5z1GLaHhkkl51yMjLC42r62tTUXvnp5CA67HgehVwaenycZGRW6hEJnLcfv2gryOuelkOOx4Fh2LRzqtUCYS4eKisTMYR+PiopShR0d1LV5D+LZtVCqnq6vAa2kUG52dpCPT7O11kj1OBimVkkedSikK9LRrQiFFHMmk/j0+LnffU3sIBsWe4fX4TUzII25pURjT16ffNzdrXAIBjbGh5jg1VRif6WkyFnNpJC+HuQABXxgMOtCRuxe7D3Z0kMPDTKUEhpiFkHipFJ2atCPk7usrgC06OpwGXijEgvp7LudqUdksNabNzYqoy8qYybhMOTkxwS1b6OSgwmEqwrT5kEyyELnl82QopIjM49o0SSBPXmp62oiurTF8xw47f1eXG7twWIjDLVsszTc/r3urrXWRs0f7dfbVNaXmZlN4OM7+fkXwiYQBSBIJjzecbGhwvYnnofpuNstCo7rVHTOAWzPZrObj4qJQsYlEISOeSll5oatL4/0qDcIBO75bM6kUs1njcYDqbtu2UdGet9YCAc2ZhgZyaYnBoG7Pi8xSKWVNtkEUYB7IZWrK7iGX0zyenXWPe2ZG1GIMh+moVEIht86cBEQwqDH3bqy31ym+O+SxRzo7Pq7aYirFzHe/+zpEdhNWFrjY98RvbWT3Gxm75eVlvuc972Fvb68DqAwMDLi/53K5fxKgMj4+7j5z5MiRiweobNlClpaq3uDzkeGw0mPV1VpIHrP+7CzZ0FAQAO3tJXBWTcBjY+TYmOu95vAwuXkzZyHgSVMT9X2/XxufV18oKnKilAmYjFBxsWpz9fXk1JRL+2QhFpKtW0k2NOizJvZJCNwwOkprXM9okxgZ0eKqrtZC6uggcFjXUFoqozw87ERCWVysTb252Rm7kREWqMTGx+nzaUNJJuk2+Hze7jsWE+ikrEyGpKJCRqO2ls979ZaeHofQnLIayUlL9Txp6R2Oj8soAo6aiX5/AQ3a3a30qPU8nISAA8cgwIInSMp0mimoUXj1apI1NTpGVZWMfXu7ri8Wo4eZb2sTTVc2q+fqNZK7bmzTOysrK1CdcWBAABAPAVtXp7S4cV+yr08D2dJCv78g6rphA7UZ5vMyoiYyCywIkNPcLANWVcVcTg33HrpTz/kC2dlp/k9G8ykSUbqutpZcWuL0tNV/q6vll1iajh0d5OSkawPp6jIQ0OysxqOvT0bZ2EjOA44qLAchdY9CwJDWVu3RJyFQTjpNcmmp0FQ9Ps5dgGuzGB014EsopGsOh+XAtbc7x2JxkeT0tCOvZns7MxnTkRwY0LxtbCxowU1NsaTEDHB3d0Fj0iNYLinhWVuLd3gpdtONc8KxiYTOa2LJ6TRd20syafuDCTe71GU2S4bDvBVCAcfjWrr5vH0+EtF6Kitz5O+O8DmTkWPd10dGIkol9/YymzUD3NbGzLFjr4OxC1OEChf7Dr9p7P4lrz//8z/no48+ykOHDnFmZoY333wzS0pKePjwYZJqPXjHO97B++67j/v27WNra+s/2XqwZs0a7ty5k08//TQ/9rGPXXTrwZNmeICtKkKXlLC6Wl7mkuXwp2yTPgohy05CaDTgOwTulDGprTWAxRmnpfUIxLwA7CErKvgkRCocg9B4B6wO8IDVBB6HkITHIHShoOgZLfCqKm7caKwimzfzeQg+PjpKsrra2TTB0Pdqox0Y0AbW3k6PfRc4LuNVVqYF3tQkAVi7VqcDNjLC9naD3peVCQYN8JJLVO+or6c2/nicuZxBu8vLeT8Ebfd6luKAA+ewtdWh56KwWk5dHcft33FAxnJ4mPT7mbYxYXU12dmp4v/8PDkwoM82NHAahs4bGeHd9swe98bP6kRRCABxFiat4zWjGQky+/pcTfKSS1RX9FSS+vuNB7O6WgawtpadnRb9j46qJRJqPRgcpHY5j1IskXBRejpNsqenQK3V0CADWVtLBoM6x8CAQfHjes5Gh5ZIkPT5FM2OjTngBxBV9Do0pGOZsR8ZoWOCaWigUxjYssUYUUZGyI4OJSfM4fBovNjervEYHBRgZHycSzZuTU10vXC5nAGmmpoEaOnr4zzEB+oosMrKdH3t7U4PkaGQ5p3fL2NjWlV5wEK2AT03T669s9NdI0dGCgXYYJBRW4fs6CCLijg0ZDqOZjwYDhcAWH19pN8v1S1ANXUrLu6xeZV/9XebmwtcqxYRev1xx2B17kBAzlUwyB2wPrxAQAYzEGDUxukszLH1uG49TIA5OgfsuPT5dE6vTjwywszs7JvG7l/R69cydl7fXFFREd/97nfzT/7kTxiPx93fvaby8vJyvvWtb+VHP/pR7tu371eOcfbsWd5yyy288sor+ba3vY0333wzX3jhhV/rol1k96EPORj2WZv0zc0U3NmTaQmHtYCrqjQhJyfJTIbhsAFFzNvv7zcqq0SiQL3l87G6Wv1N8nwl9pkFClRMtvFEIgWFl4oKFmivQiF51YOD8mItPbp+PclAQBvr+LgMXzyuTde4OT1FEYbDjEQUGZ6EINKpFJ28CuvrybY2B8TxEI0cGdH9DAyQwSDr67XGAwGSXV1sbnZMYk6EkomENrOuLhmu0VECZ1znxuAgXRNXczO1qYVC3LbNItfpafb0GIP/wADr6jT0Xt+bl42cn6fSnh4/YUODzmdk0IzHFeVMT+sCvf6w7m6yu9txBMzMFCQAnVRLIqGIqKiIwFKBEKCtTVHi6ChzANeutTR2Q4MT0c5mSU5OakzSaRYXy755hi6TsahjZISTkwoas1k6WiyPIzGRoLWULOgei4tlBD3ZpfFxKcibMRgZITk/zwVzqtjYqHaH8XGNs/F5tbToeU9NkcxmuX27lBmYTpPBoJ5tVVWBV9TkmSoq7PkYx2o0qijV6/sPhwuKHGxsLPwcHHR6icACmclw7Vqbh+k0WV7OxUVzCEKhwj2Zserp0TNyFHy2DhKAjNLoKLfC0tBGn8dgUM/d5I088u0chFoeGSHZ0yPiZ88h88L1fF5rs72dHBkpELt70lObNzvUJWtryXRaxikQ4K3mED/nOW7WZD49bfPQ59O19PSQsVihT3RsTM94YoKnAdeFkHnwwdfB2N1PgUwu9n3/b62x+7UAKtu3b8eRI0dw7tw5pFIphEIhfOADH3B/v+SSS3Dbbbfh6NGjWF5exvT0NK677rpfOUZxcTG+973vIZ1O4+WXX8YDDzyAioqKiyk3At/6Fn4y9150dgLFgQBeKr8W9429DGzbpqLz294GfOQjYp7auBGYmsIvKj+OB3dfgU+WP4HGRsBDuPzX1hfwf978rCr5W7fi//z2lcC2bfj614GVmzejtKUFwL/BmqYmXN7Xh2sbGwVW+NrXMDEBbN8uUMX+/cDCwpPAVVfh4+sOAY8+KlDCt76Fa9e9ghMr3oUH13wFN90E4OGHhY/52tewZg0Anw//5X07gI4OnPjq/4V0Gvj2t3WNK1cC/+m6x1Da1AQMD2PnTgDLyzrOl74E3H47xseBp4s/jCtWvuIAA1ixAli3zlFAffGLwtVgbg6f+hTwe78nnMiZ8+eBri6MP3kN8Md/rA/6/cB11wEQIEJUTcCh5Xfjp6c+JEDND36AH6/4E9x+O3RNp09j927g0UeBlzb9BfbuBQ4cWMa+ffr+4qJooh5+GMDwsJA5N96of7e1AV/+sgbx4EEcOLCMpfd9VIiJr30Nd94JnPja3wAzM1ixQiCKP6h+GZed+qWAFo8+CkxM4ETpNfjSlwQqAK4AfD6UlwPYtAlf+xqA4mJc1tSEG28ExsYAnDqFm28WmOQHP9B1zcwAP959Jdav1xB86UsA7r4bx48D7y0/B4yN4fhxTbPL79+Ggwd1Pdi3D9eseAG3367zAVcDN9+Mc8vLSKcBXHWVAFW7d2PvXuDdxcXAzAzuvBP4+YVrYXgRoLwcAwMA1q3TvX3/+zhS+gGBg264AVddBQx873JUVWl4Xim9Eo+t+zNhSWpqBEZZXsbPlj8EbNyImhp7PpWVQCKB/fuBVasE0Ln3Xg3dbbdBD2flSvzdzvcWqNzuvRf4xjcAvB144AG8+CJQWl2Nn81dCTQ2Yts2LRucPYu77wbeXV+vwVhYwNycliMAvHT4MFBZiWtLf4lrWlvFMXbqFD4OEeP9bPlDuOz4EV3o44+LD+3wYU3ShgYchq7x0UcBfPGLeK/Ph+vr6wUo+fzndZK778a1LS06/9wciuvrcWFxEVi3Drt3A1ixAitbWrQmVq8GHn0Ut9wCLP3l/wMfgDkAvvJyYGREvH4GBsK99wIlJQ6c9Ivi6zEHrV20tACf/zxeafwEVjY24qPlvxBQ6+o//JfsYr/m602AysW+3tjcmDt24DvfkaHB1Vfjim//Ff7b7ZfbjgXg7Fng3nu1X5eWAv39mJvTOni2+PeFJjx+XDt4cbF2tbk5vPynf4q/2ftvgb4+lJcDM9//vqE2jwKPPAKMjODQQw9px+7vx4oVOsziIvDd7wItLX5g5Uq8sOIa4KabkEgAqKgAFhfxxS/qUL/3ewD6+oQsq6xEZSXwyU9dinMNnwC+9z1c+Y3/hGPHXhQv4Jo1uPde/cTevUBfnza1vXu1MRYVAf39WLcO+FDNK/iTT1+KL38ZMljl5XrfeCM++1lt7t8fEEr0C184idZW4K//Gljp8wEzM1i1CjI8t9+ujWbFCgD7sG/fz3H69N3YuVP3+Pa3A/v2nQR+9COsW6d7v//+LL4S/gR27VrGvfcCV6x8BadPPwrg53j44ZewvAzcdRfwoXUvadO+804dbGxM55uZAZaX8fdX/Rf8pPiTACKIx6HNb/du1NQAV276d8D+/fjLv3wR+/bFgOVl/M0P3qXxAYCJCRw4AITD4kcE3gK89a340pfywJ134i//Err45WVcdZXZ8vPn8eKLuoyZGQBzc7jjjix27hRa79FHgdZWAKkUrsEh/PzgZUBpKf79R17QebNZ3HPPQT3L+Xlg5UohSFesAPAEUFqKnwM4duzHAIwT8swZfPKml+VQnD8Pn08ATV9vrwyHzyf7sryMRx6JAdksHn8cDj155gyQzeqWV6wALt35E3z09n+v75aW4v77gZePHcOHLzyGlyqvx4oV+u453/XAzp1Ytw647PgRXLggP/DRRzXMJz7ySeDmm7F3L/DKX/81cPfdwC23mNc1hb+IfQ7nz2fx/+7bhw//m7fh4R/+EMvLxkF66hTe/37gzl275LCUluLgQdmVRQhlidtvx3+/91149O678ff4D+YhiE/zwxcew+a/frf4XqF5ePCuu4DVq9H4x5fhWr8ftbVadnP/2/+Gsbk5YPduvBfA8ne+Azz8MJ6t/hzG7rkHM9/8JrC8jPt27cJhANi+XUZyeRl/e889mPvmN3Ho/vvx92f+BDt3Aldv+c+oAXBbeTluW1yU0/X1rwOPPiqHaHkZP3vySRz54Q+Bgwdx7Ys/xZo4gZkZHHrxMuD8eVz6qU8Cf/iH2iMA7Nr1P9++3nz9//n1vzq0vJiXF9JPWAoIeMyhyOrq6Kimzlr60QNePG//nwYoerDd9GQTVq1SzY6VlQJCFBUZfVfc1byAc45dJWd1que8VEZVVSEtZzWBoSFLbRnys62NStG1thI4oDRqJOIwJmLJv6Brbm1VLW18XDkRU2o4bSmifJ7k6CijUfUlHbB0TR4gfT6PGYqsrOS8jY3XygYccshGjo4KbGH8gCmr+x2znwsAOzuV8p2ZYUGOpaGBDAZdbZTBoNKlJnjJlhaNu6fQblygjMeVVior4z6IaoyBAONWC3wG0KA1NXFx0dLT09P6nNe0ZulR4ByZSDi1aq+hPxaz1N70tNJ+fj/XrxfnYlERyUTCzYEFq5sBS7q2wUGmUnQ9hJ5iAwcHdf0GYNq0iRrg+XlHsQVk2NFh8yiTYQZgSYlpv/X0cGTE5kNNDf1+A3r4fKqvmRbayIil17u6BLwaHi5o8FlqjpOTSvFWVxeAH17hd3iYHBtTmvtVfaNbtxoKt6lJB+vtJVMpfbexkWxuZnOzoYCNgmzJamqnrS7lcYXmcnY+k9nJAJobNTU8aXNnh9VlnUZkTY2jNZuaMhSxXdseQGnThgYRQIyPay6ZjNTiIslkUojTri7NAwNwPWLpz0k7x+SkUfL19PCAVxdsayMrK/X74mJdS18f2d2tY/t8qvmXlurcJSW8FaaF2Nnp+uccB2ZJCRkKFcgFjCYtkVAj/+IiyXicmYMHX4c05v9LISov9v3//tamMd/Qxg44IkaM+XnViPJ55iCmicVFOt251atJxuPWOHxEG4XHmFJfT3Z1cRcMzGK6c4zFXJOyMXRpwo+Py5j19DgRzVzO6mCbNxvZ71knj+cJwR0DyNz/1973x0VZ5mtfuQ5NJT9SsbFlXPSIkSuGFbtQUk0bBa3skVbayNhtdqO0IyVtlOy7HJfP4snphEULb0s2JZukbNFGZ9ikjS3KScgmxUSdlBQNZUpcRp0UA6/zx/d+nrG39+yW1tmw+/p8RmGYeZ77ee77ub+/r++A2cCVeXkiaB0OboVkgtXVkbTb6XDIqUtKhPqK6elybsUwIULxWRGwRUWsrZUYmd0uh504UfEGRkbS72eYQDoQkM2kooJ9SojZ7apIV23c48dTNgKPRy66s5NDQ3IMYDCc5dbZyYICuU1GyQdwTAnTIxw/niZF1RlnyH0CDkjcKBgksFE2db+fbGhgb6+ERIz+d0Y9vM9HAvvDfcxCIW4HwuUTqit9RQXNvmN2O+V9VbDd1ERy5UpRKLKyWFysshwdDk6cKOOUpKU9BHZxK6Da620UQRAbS6BZjhkIkEVFsoF7vWRPD7sBM97V1yfnls7u20i3W4RWVxcrKlRyUHMzWVxslp8YAs1iodlbzucjmZhIh0PmdoNaP2bmaEWFfDcykiUlcpy8PMVkUlLCtrYwa08oJNdrsK/sgUp0sVrpcMh8LVki64OtraTfLxt9fLwIgZoa0mZjaSnDCTsqBn5ExT6NnnZGmyMjIcftlvVlUtrZbLJYfD7Gxorc7e5WSo0ied6gPveRUiiZkCDzrbIiTeXDSHrJzw8nK82fL2sqN1ee06Ii8xgJCeo8KqnmiKGkeb0iwBsa5HltaKDbHe54XlREUbZiYyWLNSZGFNGVK9nSIsxBwF4yPZ3jx4tSJc9u81cg7FapJJOTfa3Swm444cRO5ZLu/Rbp9UrGWHIymZ7OrZCMygZANpfKStkJ/H6V2biXwC4+BtXvKi+PnD9feDKdTqmrcTgkOF1Y+OmmlaqurBOSvditAt7PqgeprY2k328y729QDzJwzMiHkd2pu1usSLudwAHR3vv6zFRqYBsTEqQXGLu7yY4O2YQ6OwmskPPV15PJybKxKSu1s5NmrZGR/h+ApJzX1irror2d9PtZWiqboEnwXFrK9ZDsu3b1v98vwy0upuzIubmy8ZSUiABQLC51dTTLGTg0ROblsbdX1XEZ/f0CAbaqsTAlRTbAyko5bkaGbKJdXWRJiXw+K4vAWjmmxUIGAvwbYBDiy3wpgV9URMVxuVE0jYYGuc6KChlDRQU5NMT8fBGiPh9Jl4s+nySqGB0LDinBl5Ii80iv1+yh9pG6J729qmtBUhJ3AsrSFAozt1s2/ZYWlYgTDJKNjXQ6SeBxegFmZqrsys5OKW9xuwkcEQXKsGoCAVZWivJi3m+fL1zLV1Eha091vjC6pvv9yjKNjaVBm9PSopiGlFVNl8vk+GRjo9ngVZXTsbmZ4ecnPZ2MjQ0rfJWVZgcGg4uTgQAPKeuGOTlkSYkknagEFirB9axSEkJqDQyo8dPtlsSW7m6+pCzDIEBCavKWLAlb20aCDwcGxOvR1xfuoKEUiW4l4Giz0QfFfOL1CtdleTl9OKEjQ06OCD5FlE6XiywqCnc8d7tFS3G52Kq+V1kZTrIKBpVim5EhnSEApdA9r4Xd1wjDWti9D6Prweuikdnt7OiQTalDbfCHEObGY2IiX0W4pAB4VjKyYmLM0gOTFzM/X9VDHZDNNz5eNhjDrdjTYzL4vwRJofdDEccmJ5NdXWYHFHGBbjOZ6xkby+xs+dsQxNVlt8u4gb1yjuZm0u8XV1JZGZmeLnRiHR2yoQQCIrUCAW6AuBJb1XW/Cygrdj834ISMte5usqeHwC4mJAh35CFALDtlrdQbQtNmYxdU/VxqKpmYyIDarNarjWiV+v5WJShblWCtV5tVuzrvG0pIrIeUZxjdE7oBcQk1N/OQGuer6r1uSAnEX9TGwvp6vqs29JYWmlm1Zqp5djal68FDrKuTTTs2liJp7XaZO4fDbEptWMn7gDDFW3q6aVnT7SaTkoxG5GRGhrhEOztVl4xOsfpqa0UJSE0lcJjAMwRWyIQ6nTK+2FizS3hGhmj+wNOyFgoLCTzLVkixtsNBUzEz6MJYXs6kJCkbaMcJnRssFvmhspLMyWFHhwjQ2lrZt/1+kitXyka+ciXpdHIIUmph+rTLy3kE0oUiL09c1TU1FMno8YQp73w+yaBUFHkpKUIzB+wRsujiYpNmb8kS5UpU5SyMieGSJYrCrqVFvAYNDaIsKL5RICgnrqgQpdLt5urVNM8j8/s8mZDA5ZByFOAImZcnc2eQGPT1saxMXYPKcq2pIel0isDLzWVCgghPYx0wNpa0WNjaKp9NTycZEyPHdbu5GFKkn5SkSMTr6+X5a2kh8/MllJGYaK4TI/s02PLlkS6HhV0dJaPyZF91WtgNJxgT73IFRStWLA+9vSRbWkTLMlrx9PTI5uhwkD6fUeYj/4RCosWVl8tDB8ixqqrMV0sLZdNqaAjHVgyiR5+PbG83SRXY2Gi2izHdqFVV8nNurjkWZWDIBhQKcQgwM+yZlWXGt1Tz6XCxuEG3MjAgrrrGRtkwVNyqtFRcoenpyk2Xm2uSURvp/kuXUgaQlcXKyjAFKCMjwz34DI5Rt5v0+bh6tZzablclBR0dZFeXpMSHQvR6ZZMw/g4MMjNTZKsUegfp88nPdXWyP5tdwo0iadWBgaGQ3HvVcZ1eL6ur5aMlJXItfkjLGJOJpaRExlpVRSYmiksuL4+MiTGLpN1uJSQrK+n1yvwMDDDclaCjg2VlIj+6IW7MhAQVw8rKIjBoxptYWys3uKdHNubycukwoSxFrlxJYD/nzZNhVVaSLCtjZibDzCZlZeHiZpeLRUViLPX2Kuupu5ssLDQt8T6AbGgQV2RCAtmp6vlSUnjuuTSvKSODZGwsS0pEqBpk5RaLzAttNrEoc3JIl4uxsSJMmpvV/bHbyZwcOY/dLgLO5SKdTrkOv5/Z2Wo8kJiYuUY9HlkTNTUmoXRtrTx67VBuw+JiiUlXVUlphbJgmZAgCklurlhoeXl8TClU7OgQgZeVxVBIWbpZWSabCrOyaPR+8kNctyarT3KyvFdRIevHIG5VXJdB45k3+kyqrgc9Pcp16XCwulpcmg1KmfMr4cdAwFRQCgpkzZWWyv1vaiLHjPkqiKD/QOC5U3j9QQu74QRj4jdvDpoxO0OotLYyXK/j95ssQUbiyMSJSouvrDQ3bXZ3i6/f6ZQHLitLNFXl/gkp6wo4IFpgVpY8uKrerLhYHsDmZqpWL4PhxqFer2xAdjvp8bCsTDbYnh6SXi8LC8WiC4WUm9CgPqmsNHpmyoFra2VHmz8/zBQTCsnurFr/5OUZTUiPiMsnK0sE6MAAW1rkOS4qUuew25Ul8r5Yiikp4Zqu+HgRAN3d5ikkhrWJsbEiZDo6VKJLXx8bGoymqXu4dKnR6kbilhLPeIYzZsitW7KEZm8wdnfLDquIr1talJIwNKTc0z7zPrGlRQrvMzIYgLgN09PVPVB0U8zONumwDPdxRgbJ+nr5PxgUV19npxlvKSig6REoKJB5DEBq3bKzVWuf5mbZ/GNiTJJq2u3s6lIWVlUVJ05Uc2q1kjU1BKTZrsVCs4gb6AzTgaWmSh1mfT0ZE2MKLDY2ylhrasx48IwZYtUNDUnR+pD58zFFGL5fYlrl5QQGTbaRAFS8zeul9NrbS1ZUiOtQtcoBDrCoSObPcINKfeAgmZQUdo8nJBDYqzpZ7OVTypp/Carvm2LWzssTa9mgGktKkqX1rBIUrKgQ5dFiEWWmq4t0OISlx0+yvV2EU20t/wTVH9LtZna2PIfisdhDvzo3y8tF8BYVyeJPTBSL2WIxi8N9EPfmjBkkS0rM7gV+JVTNgnHFsuIFwq4Bl4tJSWQDxKW5XXkp6Peba9OIXTM1Veo2S0pYXU3ec883S9gdOHCAt9xyC6OiohgVFcVbbrmFf/vb3/7ud+SaPvt68MEHzc9ceeWVn/n7T37yky88vmEt7D76KGgWLA8MUBZ4fr5sIFlZZraXGSPzekWTHxqi2y2bdgAqY9NqJWNj5eE2eCArK4VtHyBbW0UQGO2cU1JM1yl9PtMqKypSG+TAQDjrzeMxM9aKimgmmbCigiwt5VbAZAcz6al6epTQ2ERaLCKES0rMTQXwiIuxrIxGC/JgkGRPD3NyVBKMxyPCMS+PdLno9yvLoq+PLC8343VOp7ICHA42NVESGIwM0+xs2u1UlsFb9PvVphgMigXV2Mi6OqpebdvpdstXJ06UewAcI7CXxcUyjNWrGc5mbGwU7duIqXq9ZHu7zFdXF4H9DAZls+/ooOlGFjfgRgL7Zb7a22VulEsTGGRbm1gfRtcDp5PCltEksm5gQI7Z1CRz0dZGSv+xTVwHg4PQJ9ZOSwuBw+J2NTqGZ2SQqalioUdGEljHjAwlCPv6CPhYU6O6B7RQFbi/LlaQ0TnB5RJzvKqKTU0qQaWiQuZH0V+JUuETZpsupRApKq7KSnGD9/RQTPSBATl/T4/ElACTJcdow8SqKnFp9/TQr1yiHBhgXZ3cl44OmQ6rVfr1Pa0ECp1OWixyLSUlqit5Vha3K4XC66XZgsfsKK+6m5eVka9C2Ib8CMcY8/Io819bKwKqtJRdXTRDAq0Qd7hQqh0ma2tZW6sybQ3LrrFRxmexhBNvAD4Gib13KuvwXUh3hg1K0D0A5TI3upO43fJwOp0ilD0e7lNjKCmRQvntSuCFIK71tjaStbVmKJUJCfR6JWbndpNfTczuKQL1p/B66isTdpmZmZw2bRrffPNNvvnmm5w2bRpnzZr1d79zYiPwffv28cknn+QZZ5xhto4jRdgVFBR86nP9/f1feHzDus4u4k/1WLRIaqMiFt0DfPe7Usj7yivAK69gv1CPY/Rrz0v9ywsvICcHwKpVsNmA0tITDlZYCNx9N0YmJADr18t7Gzfi5gWjhfnd45E6qt5es5vC4Pr1UqG9bh1+futxYOdOLLvqRaSlwawzwsyZwFlnIWr+fASDUkebkQFctugKKaYeOxbxkILmWbMApKXJOR56CMB5SEtLAmw2TNj4olQA33STFC4hHZfm5EhN0k03AWvWIGrzm8DatVi4ENi+HXKi/n75zNq1iI4Wwv0X144GkpKwcKHUR739NjAIAOvW4frJ72EvgP49ezC4fTvwX/+FsWOB1FRg/PgUTLHuxveDLwNr1kgdb1sbbp5zDLNnA7m5k/Hd78pw7r0XwGuvISfHgvT08UhNBa65RmqakZyM6mrINapaRVRVScHk3Xdj9CP/DmRmIiFhDKJuuh4vvABMf/tJqY9MvFHqphAHwIKR2dnAa6/hueeA9m9dBvziF4iM/Ba+H7kFoy0WKST+y1+kHm7fPlxyidy+iIV34te/Bq7fWQ089xxeew0oKrocEycmYRQAwIIZMy7GbbcBT+66GlbrORgNyI1Yvhz413/F8bY2jNi2BZg5E+PHp+KVV6QGu/4vowFYcMstsgyuHvUWMGYMLJZ0qS/0eLD3mp/K9Z95Jt7L+DdMnixllM/Y7sE7u0YDmzfjvND7mB5/EBbLxZgMYNIrj0uXBlU7eumlwIjKSixYACmW27ZN6i9vuw0jR6rOBB4PIm77KdaskeV4cMECjAWA1asxpaZG6gEB3DxzNxITgekr7sG1r9yHlBQgBsAEAOjrAwYHMWcOcHXMOwAgx4iLw+T4eCxdClw27SCOvfsubroJGAdg10UX4cDRozj3XGDOHCAC8v4UAHj2WRyDWiNr1gA7dmCU3Q5ceikmHd0CG6QA+DiAUZAGCklJ5wCpqbjuOin7k4UEedYjI3Hgk09wPtSD5HBgXno6Hn/qKQwCiAIwzWrFo7NeRgSkkH9RZCQSAeCJJxCxbZNM3KhRQH8/zk9KAvLyYIuJwcUA/iP5jzgMuR/3AXgQ0h0iIUF+mDVLfseiRUhOlg4LyckAkIIvH1/PovKtW7dizZo1eOKJJ5CWloa0tDQsX74cHo8Hfr//f/yezWb71KuxsREOhwOTJk361OfOPvvsT30uOjr6iw/yC4vHrwHMbEzVhbmriyZNVl4eyZUr6fMpl6ZhYRnJDMEgGQgYDcNZXS1ab1qaGGqdnRR/VFUV2dAgrpW+PjIjQ9xLBQWiARo1OkNDptvMKMVKS6PpSj0xGD4wQFHHFcO+0UKvsJAyrpISrl4dtmAGBkjW1pouKsPj2t1NMj6eeXmq/kqVCHBoiPT55O/NzWxpkbeVoRAO1vf1kS0tbG1VbkODh1PVwbW1yed9vnDPt54ekvPns6nphM4J6nzmScrLJf4RCombTFFnGf3S2NxMdneHszUNjjUjdtfeTgaDZoduM5Zi1I91d5MOh8RH8/PJUIh1dTJ/J7o/WVIi5+jpIbCNQcBkv8/Lo4xPZc0alll1NeWinU4zbZ4OB0tKVFyvq8usv3O7aXoHjDgtOzrMOKzBvcmEBBYVqRKAxkZZSzabuMZDqgecilFWVFAWgtdL4HWzvtGoIayoOGEtq+Qkn0+Mm2CQ4Z52oRCHhsSCLixkuMaxr49sbmZjo7w/MHAC6XFfn9mtPRhUa1F1c6iooLgHW1pkztvb5ToaGmTue3pM8mbTLdvezq4uebaCQZIeD71eGZNhQdLjkS8EAmR5uVnp090tlmBxcZge02hVPjSk1tDKlTSzilQH3qGhEz6vnhmvV57L6moVe+3ulnluaGBjI8MdEYJBOU5Hh0lMzYYGpqereGsgYMZajW7ui401VVws7k+rlbW1BqH2LtLl4g7lcvtyLbsnKElQJ/t6ggC4Z8+eTzXEPnr06CmNz+12Mzo6+jPvR0dH88knn/xcx+jt7eXIkSNZV1f3qfevvPJKjh07lmPGjOHUqVP5y1/+8lN8y58Xw9qyw9SpwKhRQsLwy19ixQqlLcbE4GK8gysm78WBwxF4b3CSqIOHDwO/+x1gtcJmE4KQq64SpXjWLPnIqFHSi+57tf8GxMVh0SJg9+HRAFTbsrFjhf7k8stxXuTHwNGjmDRyN3D0KBYuBCJWPomxYwHs34/Dh4H3FtfhBz8QmqPeXoiqv3w5XDtvxMsjr8fSpULUsOWDKODttzFjBjDh7efxzOCNiBh5HLjmGky3fQhceCHWrwcmvPYHTIg5CNTV4Te/UQruCy8AcXE4jhHA5MmY8Juf41evXYur99Vh6uAmjH7hSUxatQS33/IxbrkFmJI6GoiLwxV76nBe8x9w3/778P3qnwqFyP79+H7CAcTFARfHvI8p/W/hu98Fzt/2V+C223D95Pdw9RM3Y/quF3Hw8Aihjmlrk5sZHy+UJDt2SJ+y/n5M2v8WDiIKPzn3Zbw56lpg40ahGdu8WdgzrFa8+cEEsZZtNuC553DFNRG4fuXNMscrVmDL6k1AQgL+vHkC3nnor2IBJycDg4OIiwPu+eAenNf+IgIfjcCLnhHh/nX796Os7AJElZfj6iNNwKhRwoaxaxcwdiwaG1UPwbffFuYRjwdITBQWma4u4NJLkZkJ3J+9Be/0T8LRo6LB33QTcBwj4PFAFhAArFmDETiOj3PmYvZsCE3KNddg9mxgZFERjs/6Eab0vwXU1+Pqybthtaq+gJdfDsTHY84cABdcgA8uvxwVFemIKyzEsqXHMOKD3cArr8jfly5F+0eTxAKeORMXxx/AmjXSDnDzZuBXl76MF185GyN+/SvExwOP3voOXh+8DLjtNvzqodHYO+1a/Gj/k5g3T/qtPfecrL3XN482WVWifrcEWLgQ2L8fcXFiPWLaNCAuDtMnfwzcfTd27AC2JN6AC+dejPo3zgcWLMCERTfj2tSDeN12I57c/D0cPQrceevHiDq8Fy9bfojL9r+In2QdhNUKTF1xHwKX/hAHr7tO5qKyEtPvSMPGjcCE267FNdeIg8ZqFXIjbNwI3H8/RlyeJp6ShATcuOM/8N68ZeKWuOMO8/m8YsXP8fyon2LHDhn242un4s55x+U6entx5zXv4T+23QCrVbHRzJmDZU9EAbfeit0XXYRdF5yBLbar8XHmDXj9jjpkZspavXPOh9g7agq+/325J1e0EK//QPXgzM4G5s/H2LFAjM2G0tLv4L3Z9yH2vvtOfY/7DI7j1Ky64wAAu92O6Oho8/XAAw+c0qh6e3sxbty4z7w/btw49EozzH+I2tpaREZG4oYbbvjU+3PnzsWqVavw2muvobS0FA0NDZ/5zOfCFxaPXwMYWo4XMAP/XZB6oMhIVZdmsZB2u8TjVD3YBvV5Sc5YSyBgqpGSrBEkExPFZ+90ciekZGAIkkIP7DLZJIxjv2ucKzJSrI2sLNFACwqYkUEzUWbJEpUpV1vLT5RPn4EA2dHB0lJlkbrdErdxOMjsbMnsqqkRDba5WQqK588XTbKz00yBDqh7wdhYiYkEg+zqUlpuerok2ERGEjhCq1WG2dkp1lB1tbIw4uO5FcIuE1RxiUPq/+ZmZQF0doop6nCYGZut6jPMzhar1yDuTU2Vuj2PJ9xfsLFRtHKr1axj2qmSDnaq83VDpbEXFYml53CEW7SUlJBZWaYlU1xMOaZKBDr3XNU9oquLaWlyfWlpYlnV1MgxMjJUnWN5udxPhyNcTB8Mkk6nWCihEJmfz/x8mkw3Q0M0WWcKC2W+2N4u97mvzyTRsVhIulz8BKDTqfrPtbezt1dZYOnpkkWck0NaLGLp5OfLvWltlWPb7fKZri62tqpYa06O3F+/XyzZE7NYPR75vbiYDATk3ng85lx4vTT79IVCND0XS5dSzpuUJB6JgQGTpYbZ2WIS2e3ys8GC3ddHrlwp1+LzSfzMSJ4yztnSIv+npMgcuVwmQw3b28PsRvn5YVJpo7+d32+SgYdCyjp0uaSO06ic7+4m6+vlea6qkpteVSXjyMoS89VooKfKT+h0SlaTUU/S0SHPUHm5rFW7PVyPa2Te5uebtXT0esVib283+w0uhpTMtKq95SXAzPANlpV9BZbd7wnUnsLr91/Islu8ePH/mERivNavX88lS5ZwypQpn/n+5MmT+cADD3yua7zgggu4YMGCf/i5t99+mwDo8/k+13ENDGth97QKegMBWewOB5OSGM6YstnCwqu0lIyM5CoVmAY2EfCZmxfwEIGHRSIlJpqbB7CNrKhgEKonWFmZuOva23kIkno9oIQhy8okSF5RQbpcZv6FuNP2SzaYynZzOESOSa+zA/K51FQC+8X36fezq0vV5bW2huuJFKML7Xb29cmG3qUE1KuQzLM9gJn+HlK/b1eBfsmQfJ/AMbPTQW8vZTAWi9RFGYXzsbFm5h9bWyUDNSZG6u6ysoSF3jhfZCQ71X33QerB3oXUZR1S96YbMI/xkvFzSopsmpGRfAlSizegrsdIETcLFlNSODCglIbublZUMOx2ysmhFM2+rui/BllZKckth5Sw2wfpjRcKkYyJCStJK1cSWEcmJbEbilKsuJgbIOwgmZkkY2MlczMQUJ/3ybhqaiTpxOUiMKiKyx/iIbU2CwqkLU0wSLOUQzIbfSII4uNlXUCyHhVpD2mzyThaWlTCS4DMy+NWSNq7sfG3tVGEVV6emZlYUSH7eHU1wyxBFRWmEDJKOgw2nT1K6cjJkf28o0PWGQcGxGVcXy/jz8+X86gSlYkTRT6shyoMz8ggLRZZTw5H+HmIjaXbLbK4r4/yT1GRJL/YbGRysih7KmvI6TR5BXjuuUoRzM8X5cTlYjuEsaa6mlJaoNzDRkugvj7lKu3oYHMzzWSoNwAzSa26WmXiNjbKRRvkCAMDsh5jYsQFHpR6VKO8wGCrYWIiWVzMDkjSysPqvrshtIJDMGgJv2xhV03gyVN4VX+hMX300UfcunXr330dOXLklN2Yr7/+OgFw48aN//Czx48fp8Vi4erVqz/XNRgY1m7M4wAuBnDGGcp8HhxEf7+8HwVIRH78eIxTf0NMDCZBBd2RAOA74iuJiYGE3MeLL2TXLiFujomRI73wAkZAvFzCHg1g82ZEABhhsSAiLw/JNhswezbisrKEgf3wYcTHi7et/o3zkZ09RjobzJkDzJqF/n7goouECzkj41xxkebmIiFhDI5t3w5s345HHgFG5eVJksk112DmTABr1wr58znnoL8fCAQkiG8FMAmSBBAXGwtYLLDbx+Bsmw2jAIyGuM327AGAc5CSYpHslLw8nBd7XK7ZapWg/QcfmG7FEfHxuPVW4JkProC1uBhwuYCiImDuXESUlCAGQJzdDpSXY2pCAsYmJ+Nimw3fs1olGWHFCowqKcHe2/4dE5KTYc3JAWbMwBRIBwy5cAA2G6xqFiLi4xEVEyNu1TlzxN+2axewaBEiDh/AzJnAy9sm4JFHZJjHZl6tsntSkJCQrlbHTtw1Zy82bHgHhyGev8MA9u37EGe3/RUf9vcD2CGJFi4XgC3ArFmYEBsrpMa33ooJAHbu3ImODpm3hQshvuiJExEbe7GcfORIXHKJdHgAQuJGx/kYlZODfgDLl+/DQQBRS3+FNxN/DmzdCqSmYuLEi4G4OAzu2iXdBoqLgVGjMBVb8MgjwGBvLz755Ciwdi0eXTka6enjgNmzkRgZibg4tQznzBFy4wsvFJ9ceztGJyRg8mThQL/qKvUMpKZKVs5VVwGpqZg2DTh26WXiwp02DTEA4tPTMW2aXFJiIuR+bt4sRNlWK0aOBI6v+AMQF4d3LpyLhQvFa33vvcB0AO+PnCLr9Nvfxnn1j8oAAMQ5HMC0afj5nINYuBAYbf1YwgIvvSTPYX8/DmzciIcfBnb3RuBA3HRcd50k66SmyhIdHJT5WLAAwG234XuxsfjhD4E7Z+0Gensx5egmHOjtBbZtwzFrFEY/9zimHn0H2LUL19o2yXx+61u4VO0D9xccwI9/LEsLkyfjfdtlcjE1NcCKFZj0UjWO9fcDiMLIkUBiYiImT5Ywx5w5KvlEdUvphySu9EPePwDAarVghNOJkWeeieGOsWPHIjEx8e++rFYr0tLSEAwG8dZbb5nfbW9vRzAYxGWXXfYPz+N2u3HJJZfgoosu+oef7ezsxCeffILx48d/sYv5QqLxa4IT6+yMgDHd7nAAev580URVj6+lS+U9ZmWxooLhgLVRSGoUoKsgNQsKxIKLj5eU4oyMsMunoCDcMNTokt3ZKZ9raTEagJN9faI5FhSImqrojRobadaVsbY27OYbGmJ1tSjIQ0M005jdbpJeLxsaVG2az0e/0sKNix8aIpmbK4kSXi+BV0WzjY9nU5NYc1J/t53AAdG6S0spZNhuM2GG5eXikktNNRk02NnJ3l6xIDMzlVXU1UWWlsr9yM0Vl1IoxHnzRIvOz1fsFCoJpqREvuN0hn+eMYMmYbbfT7K0VNxxQ0NmQo/hoTSSJAYG5JpYWMiWFnWfa2rY1aWSDVpbwwkjfr/4v1RixcCAcut2dIQL1P1+trTQdOUVFqr3i4tZXa2s8oYGsqZG5qGqKpwI5HKRXq/MZ329nL+vT+5PWRmXLlWWg6JkYzDIlhZZe0ND4fXKzk45rrE21JiNzuN+v7K0XC6yq0tcnMqVaaw/1RaOXLlS3LUuV3huXC6yu5vz5qlrM6iv3G5y/nyOHy/zauQZ0eOR9T0wYHaqNxrpNjSIJ7Wnh8ISlJTEAUgijeGJKC4m6XSKRRgI0OdTSR4GZVBpqdk5vqhIjdvnkx8UMxGzs00ycKMpamdneC7mzaOMKTdX7kFDg6xJ454kJ4cT1zIyZNB5efLMlJbK9cfEmAk9prfG45G5Mb6r2BlKS9X5UlPF66KK5ZuaxEVeUSHrbzFUqUtJCUtLv6o6u0cJLD+F16Nf2pj+X2RmZnL69Olct24d161bx6SkpM+UHlxwwQV8/vnnP3NtZ599Nh977LHPHHPHjh0sKyvj+vXruXPnTjY1NTExMZEzZsz4Qg2/yWHuxqyHUFVFRqrasLIyAkF2QOh7TLJl9dAOKHcelasKGJTNpaeHwOMEVsjCt1rlyU9OJrCJTE2lT7k+TTdeTo74cGJjZVdLSJAHNSfH9PUbmYJGDV1hIWXHSU+nwyEfr6w0ZQ+ZlydF5BYL2dAgm4RB5OhySa1YcrI80AkJbGuTP+0zXIJWa9j9FwyaNEtD6m9FRXJ5wGHZFOvryfp62bwKCjgEofOi0ykvVUtWVETzITYZ6VW3ZjOGWVpq0kUxI4OMjJS/dXSE/bVG52inU75jsUhXBj/JyEhuN86vusfT75f7XFQkx1bF9UuXkgwGmZurBJjiwYyNVQrB/PkEjqii6VfYBWFcOWS4vBU9GbBW1klyMoFmsqiInwBml+996vMZGSTLytjaGlZksrOV0PJ45PN+P2fMkPEAm8iUFNYBBI6Ia7iyUjbQ0lLS5ZKN1+1mCDDZRpiSQpaUENirzn2EdLno9SpXanm5rIehIRHobjerq1WNV329CAeV9rt69QnE5Tk5IoTb28nOThFOgQDr6pQbODubzM42u5kbNGL0+UQAq5hxb6+sgY4Ompmtra2UuVTZxMzNlUVdXByOIxYVmZmOoRDlJHa7dCxQ3ejZ3S3n7upiTY2st9Wr5ZBtbfIctLVRNCCjA3xjo+kiN5/ZQCAsNNvbSa9X1m5rq6whFRPs6VFjr6+XMRnrNSuLLC/nkHJ59/bSFHhGQncopJrX2mx8CUK19p9K0C2G8KrS5eL7X4kb82EVdzvZ18NfmbDr6+vj3LlzGRkZycjISM6dO/czReUA+NRTT33qvZqaGp511ln/39q53bt384orruDo0aMZERHBf/mXf+Fdd93Fvr6+Lzy+YS3s5s4NEthLt1vFcSDEzE1NlIfMZpMHua/PYBOSTWZoyOwuvh4SYH4JwuH4CcLBcr+fsjF7PCI4VMqymXY/f748WC0tbGgQLa+pSTafwkKKpDMyFiBJKU6nKopVVGIBFe+bN08xgjgcZuo/sJ/ANvZBCmIZGcnVq6kKVgskThgIyGY5NMRgUMZWWamsoe7usJZsjKWjwyS8HRiQzSQvjyZ/YkUFRaBmZZldBAwlG9hO+nxmpcHAQJhg3igqNwgyxo+XzcpM6bYzAAAKiklEQVRgIWlqoqkN0+kUCyAYDCc0KKtIcSaTgQDT0uT3c89VcZeeHhYUCI0T0GnyTNLvl8SUQEDF6x6UgyjOzKYm2Q8NoWLGe9zucPKH203gdQK/V3yrj8txPB5F6rtNFKXkZEnOycmRxJzubnYABN4PKy2trQSeJrCHAwNqXlWXdGBtuA9RRoZZTdDXRwIPiqKUlCSKTnGx2UXjL5BUd8MC8/nUfUpPlwWRkCCC3uMxczz+puJ7TU0kQyGJOVdVcT3AxkYVD25vN7txsKqKzc1UbYoGzThwMEjS7zfIWMJCu7CQzM1lTo5K4rFa5RxOJ1lVxZ0q3jtvHkm7nevUs+bzkaytFcUuJ0eEb24uWVIiZNQQaq4QJGHJIPfu7RUZmpkpY+XQkHh1VLnJu4bi0NBgtk9icjLXqfhZba3qkF5WxgAk1mzoYZ2dSvidwMZktJ1qa6NJxO1T4wJ2sbSUijHomFxLSQmBPVwMqO4f132jhN3XHcNa2AXvuIOMj2dBgdIY588PEyRnZcnvSkvz+2laayFIllxODsWVVlZmtmljcbGs+qoqU0j29jJcH6f6spjnq6wUK8Rgb4mJIWtqzJ5WZ5xBMiODDodKKsjOJleuZF+fGIOcPz+c8ZeezsxMpV0HArIRpafLA5iSws5O2WjcbsoPBlFvWZmMF5LcYfQny81lmLgvK8usH6qtVVmLSpjR4wm7WmNjRSv2eMKS0KBkiY2V6yspIauqZLOsqjKzJJmQIFaMss5MC9tiIZ3OMP1TTo5818i+M1xRyclyroqKsOWcnGyy3h8CzNo6ejxkT49Z/8faWkZGimCsq5NLaGqiSIXSUpmPsjJWVCgKNoNLtaHB9GQbLYGcTsq9KCw0uT9ZUGD29WNNjQiwnh6zVyErK5mbK3MK7Je10NxsMnxUV1PudTCoEpGCsvYqKoSKLDaWHR0iJ9jcTFZVsbCQpgCrrJS1uk+tXQ4MhGsW1RwvWSICLjvbJNURwWSso+Ji0uuVzTsUkjUcHy8KnsXCxkYZrtMpw/T5VIigs1PWoNUqVn1qKmtrZQhmXz5Vb0e3W8aqFKx9AOl2s7hYKYCGlhQKybiLitjZqZ4FxZNZVyfrf/XqsDubNTXyLNXWCvHy0JCsb+U+ZXs72dHBnh4RQEaN7dKlSvHz+URZ8fk4b57JyCfjVv3xSktlCRQUyDWXlJAMBrldKbHV1eEcI4ORiI2N4jlxOkXRcbnMOrzg818Fg8pDlCSTk3099I0VdmeQ5BeL8v3zEQwGERMTgz033ojBP/4Ro6uqgIYGRL/6AoA/I/jHb6FozXVoagJmzAAeewwYvaEF2LsXWLMGx5+uw4jAPmD3bkRfexCS3rEdksaRjZ07v4VnngEWZO7AncsmY/Zs4No19+DFq5bhRyP/DEyYgONTp+GXv5Syu5kzgSv7nke0MxvBP/4VOO884JlnUDXhQWzaBDQ0SJA9WPU08MYbwKuv4u1V27FhA3DvvbsBvI/gL14EtmzBrJFr4PnN28CYMTiYnIxDAKbCj+Ady/DtugfR87vngVAIv1+wAPejEdu3X4VxIw/geMxojDh8ENi9W1gkBgex78cLsHChsLYEg8A77wB33SX38OhR4NLpx4AHHpD78NyjWL78HNz4YRXS6xdg3DjpgG21ArWZq4AXXsC+NWsQaA0i2boNGDdOkkt275ZW54OD2OfxYPySJcCWLcKM8dBDQH291NzNnw8cOACMHo07G6/D/x1TioPFv0Vbm3R0Li6W5AUMDgJr1+LDS6/HuLwfAH/6kxRMzZmDfcXLMP6BuxBdexM2Iwt2hwPRry7Cxo2pmHhzGj5sXIfnnwds90cjYlUQdXVyuPqfN0vL8dtvx9NNo5G/ewkQG4unz7od+ZO8QGcnnj7rdlyyIBofAMjF43gOtyME4Oxng0hNBQ7ZozEVrZg+PRnvvy+5Hh7PQWzeHIVp097Ae5iF89LTgbQ0eK/6Pxi8PhrTAIz56CPgRz/C7RPW4PFXE7Dtww+xyBFEeTnw618DL/zxGNDTA0RH44WJEzH7xReRtuhKrPvZ71HaMw+/jfpPHCsvRyweQ/DFbwPR0TIpR48Ce/ci89HrMXcusGwZsOGcmXj539fi2nO8wHnnIfqSaAT/80/Ad76Dj9Ovw9mFv8DyVDfuvfcvCK76BNF5aWhpORfTpwMRG9qxfNP3UTCpBWhsxPHaWpyLnQBaENxzHXZ8GIXJbzwlta3jxmHJMxMRDEqCVO3gXODHP8a4eTfgw9m3486Rj2PGDODeezsR/NuFwL33YopnGQKBPwOIRLA1Equ2JiPv7nGYm/Eh6iaU4Gd7H8CkScDiKasQPS8I4BMAPwOwF0HXa9h5//2YuGMH8OijwJYtWJ7ZgF/8AhjxaguOO36A3/4WWLbsTQR3JuLFtaORn78bCQkTcNZZwKZNfwZwMYK/fxXR86ahpCQJDzywG8AAgo+sBebOBd5/H+jrw47zLserrwIFsz9C9OQuACEEW6Ix6cZL8bOfAcuWtQBIwQ7YpY7unHMwuHgxRp55Jsr+7UMsWBaNSbgOwefvwG9uuAEPA+jv7z85xo8TcPDgQXWMBwGcdQpHOgLgPgSDQURFRZ3SmIYbhqWw++CDD2C32//Zw9DQ0ND4h9izZw/i4uJO6Rha2J06Rv6zB3AyOP/887FlyxZMnToVe/bsOa0m7eDBg7Db7fq6hgn0dQ0//G9dG0kcOnQI559//pd4VINB5VS+/83EsBR2I0aMwLe//W0AQFRU1Gn3MAL6uoYb9HUNP/xvXNupui8/i1Mlc/5qiKCHA4Z1UbmGhoaGhsbnwbC07DQ0NDS+mdCW3cli2Aq7M888E4sXL8aZpwElz4nQ1zW8oK9r+GF4X5sWdieLYZmNqaGhofFNQjgb89eQUqmTxVEA5d/IbEwds9PQ0NDQOO0xbN2YGhoaGt88HMeplQ/o0gMNDQ0Nja89dJ3dyUK7MTU0NDQ0Tntoy05DQ0Nj2EBnY54stLDT0NDQGDbQwu5kod2YGhoaGhqnPbRlp6GhoTFsoLMxTxZa2GloaGgMG2g35slCuzE1NDQ0NE57aMtOQ0NDY9hAW3YnCy3sNDQ0NIYNtLA7WWg3poaGhobGaQ9t2WloaGgMG2i6sJOFFnYaGhoawwa69OBkoYWdhoaGxrCBjtmdLHTMTkNDQ0PjtIe27DQ0NDSGDbRld7LQwk5DQ0Nj2EALu5OFdmNqaGhoaJz20JadhoaGxrCBtuxOFlrYaWhoaAwb6Dq7k4V2Y2poaGhonPbQlp2GhobGsIEuKj9ZaGGnoaGhMWwwhFNzyH1zY3bajamhoaGhcdpDW3YaGhoawwbasjtZaGGnoaGhMWyghd3JQrsxNTQ0NDROe2jLTkNDQ2PY4BhOLaNy8MsayLCDFnYaGhoaX3NERETAZrOht/eVUz6WzWZDRETElzCq4YUzSPKfPQgNDQ0Njb+Po0eP4tixY6d8nIiICFit1i9hRMMLWthpaGhoaJz20AkqGhoaGhqnPbSw09DQ0NA47aGFnYaGhobGaQ8t7DQ0NDQ0TntoYaehoaGhcdpDCzsNDQ0NjdMeWthpaGhoaJz2+G/tdhzbPwbBCwAAAABJRU5ErkJggg==", + "text/plain": [ + "\n", + " | No. | \n", + "AMW | \n", + "Sp | \n", + "Mv | \n", + "Me | \n", + "Ms | \n", + "nBM | \n", + "ARR | \n", + "RBN | \n", + "RBF | \n", + "... | \n", + "PCWTe | \n", + "LDI | \n", + "Hy | \n", + "AMR | \n", + "MLOGP | \n", + "MLOGP2 | \n", + "ALOGP | \n", + "GVWAI-80 | \n", + "Infective-80 | \n", + "BLTD48 | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "1 | \n", + "6.510 | \n", + "8.284 | \n", + "0.649 | \n", + "0.971 | \n", + "2.000 | \n", + "6 | \n", + "1.000 | \n", + "0 | \n", + "0.000 | \n", + "... | \n", + "10.100 | \n", + "0.062 | \n", + "-0.921 | \n", + "26.058 | \n", + "2.255 | \n", + "5.085 | \n", + "2.047 | \n", + "0 | \n", + "0 | \n", + "-3.46 | \n", + "
1 | \n", + "2 | \n", + "6.143 | \n", + "10.045 | \n", + "0.626 | \n", + "0.969 | \n", + "1.952 | \n", + "6 | \n", + "0.857 | \n", + "1 | \n", + "0.067 | \n", + "... | \n", + "11.371 | \n", + "0.057 | \n", + "-0.936 | \n", + "31.099 | \n", + "2.608 | \n", + "6.802 | \n", + "2.514 | \n", + "0 | \n", + "0 | \n", + "-3.80 | \n", + "
2 | \n", + "3 | \n", + "8.794 | \n", + "9.438 | \n", + "0.658 | \n", + "1.037 | \n", + "3.074 | \n", + "8 | \n", + "0.889 | \n", + "1 | \n", + "0.071 | \n", + "... | \n", + "2.209 | \n", + "0.144 | \n", + "-0.636 | \n", + "33.383 | \n", + "1.797 | \n", + "3.229 | \n", + "2.000 | \n", + "0 | \n", + "0 | \n", + "-3.03 | \n", + "
3 | \n", + "4 | \n", + "8.068 | \n", + "11.199 | \n", + "0.636 | \n", + "1.024 | \n", + "2.933 | \n", + "8 | \n", + "0.800 | \n", + "2 | \n", + "0.118 | \n", + "... | \n", + "2.441 | \n", + "0.130 | \n", + "-0.672 | \n", + "38.424 | \n", + "2.150 | \n", + "4.623 | \n", + "2.467 | \n", + "0 | \n", + "0 | \n", + "-3.36 | \n", + "
4 | \n", + "5 | \n", + "8.068 | \n", + "11.199 | \n", + "0.636 | \n", + "1.024 | \n", + "2.933 | \n", + "8 | \n", + "0.800 | \n", + "2 | \n", + "0.118 | \n", + "... | \n", + "2.313 | \n", + "0.123 | \n", + "-0.672 | \n", + "38.424 | \n", + "2.150 | \n", + "4.623 | \n", + "2.467 | \n", + "0 | \n", + "0 | \n", + "-3.36 | \n", + "
5 rows × 676 columns
\n", + "