forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
serialization.py
890 lines (727 loc) · 35.7 KB
/
serialization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
import difflib
import os
import io
import shutil
import struct
import sys
import torch
import tarfile
import tempfile
import warnings
from contextlib import closing, contextmanager
from ._utils import _import_dotted_name
from ._six import string_classes as _string_classes
from torch._utils_internal import get_source_lines_and_file
from torch.types import Storage
from typing import Any, BinaryIO, cast, Dict, Optional, Type, Tuple, Union, IO
import copyreg
import pickle
import pathlib
DEFAULT_PROTOCOL = 2
LONG_SIZE = struct.Struct('=l').size
INT_SIZE = struct.Struct('=i').size
SHORT_SIZE = struct.Struct('=h').size
MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
PROTOCOL_VERSION = 1001
STORAGE_KEY_SEPARATOR = ','
class SourceChangeWarning(Warning):
pass
@contextmanager
def mkdtemp():
path = tempfile.mkdtemp()
yield path
shutil.rmtree(path)
_package_registry = []
def _is_zipfile(f) -> bool:
# This is a stricter implementation than zipfile.is_zipfile().
# zipfile.is_zipfile() is True if the magic number appears anywhere in the
# binary. Since we expect the files here to be generated by torch.save or
# torch.jit.save, it's safe to only check the start bytes and avoid
# collisions and assume the zip has only 1 file.
# See bugs.python.org/issue28494.
# Read the first 4 bytes of the file
read_bytes = []
start = f.tell()
byte = f.read(1)
while byte != "":
read_bytes.append(byte)
if len(read_bytes) == 4:
break
byte = f.read(1)
f.seek(start)
local_header_magic_number = [b'P', b'K', b'\x03', b'\x04']
return read_bytes == local_header_magic_number
def register_package(priority, tagger, deserializer):
queue_elem = (priority, tagger, deserializer)
_package_registry.append(queue_elem)
_package_registry.sort()
def check_module_version_greater_or_equal(module, req_version_tuple, error_if_malformed=True):
'''
Check if a module's version satisfies requirements
Usually, a module's version string will be like 'x.y.z', which would be represented
as a tuple (x, y, z), but sometimes it could be an unexpected format. If the version
string does not match the given tuple's format up to the length of the tuple, then
error and exit or emit a warning.
Args:
module: the module to check the version of
req_version_tuple: tuple (usually of ints) representing the required version
error_if_malformed: whether we should exit if module version string is malformed
Returns:
requirement_is_met: bool
'''
try:
version_strs = module.__version__.split('.')
# Cast module version fields to match the types of the required version
module_version = tuple(
type(req_field)(version_strs[idx]) for idx, req_field in enumerate(req_version_tuple)
)
requirement_is_met = module_version >= req_version_tuple
except Exception as e:
message = (
"'%s' module version string is malformed '%s' and cannot be compared"
" with tuple %s"
) % (
module.__name__, module.__version__, str(req_version_tuple)
)
if error_if_malformed:
raise RuntimeError(message) from e
else:
warnings.warn(message + ', but continuing assuming that requirement is met')
requirement_is_met = True
return requirement_is_met
def _cpu_tag(obj):
if type(obj).__module__ == 'torch':
return 'cpu'
def _cuda_tag(obj):
if type(obj).__module__ == 'torch.cuda':
return 'cuda:' + str(obj.get_device())
def _cpu_deserialize(obj, location):
if location == 'cpu':
return obj
def validate_cuda_device(location):
device = torch.cuda._utils._get_device_index(location, True)
if not torch.cuda.is_available():
raise RuntimeError('Attempting to deserialize object on a CUDA '
'device but torch.cuda.is_available() is False. '
'If you are running on a CPU-only machine, '
'please use torch.load with map_location=torch.device(\'cpu\') '
'to map your storages to the CPU.')
device_count = torch.cuda.device_count()
if device >= device_count:
raise RuntimeError('Attempting to deserialize object on CUDA device '
f'{device} but torch.cuda.device_count() is {device_count}. Please use '
'torch.load with map_location to map your storages '
'to an existing device.')
return device
def _cuda_deserialize(obj, location):
if location.startswith('cuda'):
device = validate_cuda_device(location)
if getattr(obj, "_torch_load_uninitialized", False):
storage_type = getattr(torch.cuda, type(obj).__name__)
with torch.cuda.device(device):
return storage_type(obj.size())
else:
return obj.cuda(device)
register_package(10, _cpu_tag, _cpu_deserialize)
register_package(20, _cuda_tag, _cuda_deserialize)
def location_tag(storage: Storage):
for _, tagger, _ in _package_registry:
location = tagger(storage)
if location:
return location
raise RuntimeError("don't know how to determine data location of "
+ torch.typename(storage))
def default_restore_location(storage, location):
for _, _, fn in _package_registry:
result = fn(storage, location)
if result is not None:
return result
raise RuntimeError("don't know how to restore data location of "
+ torch.typename(storage) + " (tagged with "
+ location + ")")
def normalize_storage_type(storage_type):
return getattr(torch, storage_type.__name__)
def storage_to_tensor_type(storage):
storage_type = type(storage)
module = _import_dotted_name(storage_type.__module__)
return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))
def _is_path(name_or_buffer):
return isinstance(name_or_buffer, str) or \
isinstance(name_or_buffer, pathlib.Path)
class _opener(object):
def __init__(self, file_like):
self.file_like = file_like
def __enter__(self):
return self.file_like
def __exit__(self, *args):
pass
class _open_file(_opener):
def __init__(self, name, mode):
super(_open_file, self).__init__(open(name, mode))
def __exit__(self, *args):
self.file_like.close()
class _open_buffer_reader(_opener):
def __init__(self, buffer):
super(_open_buffer_reader, self).__init__(buffer)
_check_seekable(buffer)
class _open_buffer_writer(_opener):
def __exit__(self, *args):
self.file_like.flush()
def _open_file_like(name_or_buffer, mode):
if _is_path(name_or_buffer):
return _open_file(name_or_buffer, mode)
else:
if 'w' in mode:
return _open_buffer_writer(name_or_buffer)
elif 'r' in mode:
return _open_buffer_reader(name_or_buffer)
else:
raise RuntimeError(f"Expected 'r' or 'w' in mode but got {mode}")
class _open_zipfile_reader(_opener):
def __init__(self, name_or_buffer) -> None:
super(_open_zipfile_reader, self).__init__(torch._C.PyTorchFileReader(name_or_buffer))
class _open_zipfile_writer_file(_opener):
def __init__(self, name) -> None:
super(_open_zipfile_writer_file, self).__init__(torch._C.PyTorchFileWriter(str(name)))
def __exit__(self, *args) -> None:
self.file_like.write_end_of_file()
class _open_zipfile_writer_buffer(_opener):
def __init__(self, buffer) -> None:
self.buffer = buffer
super(_open_zipfile_writer_buffer, self).__init__(torch._C.PyTorchFileWriter(buffer))
def __exit__(self, *args) -> None:
self.file_like.write_end_of_file()
self.buffer.flush()
def _open_zipfile_writer(name_or_buffer):
container: Type[_opener]
if _is_path(name_or_buffer):
container = _open_zipfile_writer_file
else:
container = _open_zipfile_writer_buffer
return container(name_or_buffer)
def _is_compressed_file(f) -> bool:
compress_modules = ['gzip']
try:
return f.__module__ in compress_modules
except AttributeError:
return False
def _should_read_directly(f):
"""
Checks if f is a file that should be read directly. It should be read
directly if it is backed by a real file (has a fileno) and is not a
a compressed file (e.g. gzip)
"""
if _is_compressed_file(f):
return False
try:
return f.fileno() >= 0
except io.UnsupportedOperation:
return False
except AttributeError:
return False
def _check_seekable(f) -> bool:
def raise_err_msg(patterns, e):
for p in patterns:
if p in str(e):
msg = (str(e) + ". You can only torch.load from a file that is seekable."
+ " Please pre-load the data into a buffer like io.BytesIO and"
+ " try to load from it instead.")
raise type(e)(msg)
raise e
try:
f.seek(f.tell())
return True
except (io.UnsupportedOperation, AttributeError) as e:
raise_err_msg(["seek", "tell"], e)
return False
def _check_dill_version(pickle_module) -> None:
'''Checks if using dill as the pickle module, and if so, checks if it is the correct version.
If dill version is lower than 0.3.1, a ValueError is raised.
Args:
pickle_module: module used for pickling metadata and objects
'''
if pickle_module.__name__ == 'dill':
required_dill_version = (0, 3, 1)
if not check_module_version_greater_or_equal(pickle_module, required_dill_version, False):
raise ValueError((
"'torch' supports dill >= %s, but you have dill %s."
" Please upgrade dill or switch to 'pickle'"
) % (
'.'.join([str(num) for num in required_dill_version]),
pickle_module.__version__
))
def save(obj, f: Union[str, os.PathLike, BinaryIO, IO[bytes]],
pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True) -> None:
# Reference: https://github.com/pytorch/pytorch/issues/54354
# The first line of this docstring overrides the one Sphinx generates for the
# documentation. We need it so that Sphinx doesn't leak `pickle`s path from
# the build environment (e.g. `<module 'pickle' from '/leaked/path').
"""save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True)
Saves an object to a disk file.
See also: :ref:`saving-loading-tensors`
Args:
obj: saved object
f: a file-like object (has to implement write and flush) or a string or
os.PathLike object containing a file name
pickle_module: module used for pickling metadata and objects
pickle_protocol: can be specified to override the default protocol
.. note::
A common PyTorch convention is to save tensors using .pt file extension.
.. note::
PyTorch preserves storage sharing across serialization. See
:ref:`preserve-storage-sharing` for more details.
.. note::
The 1.6 release of PyTorch switched ``torch.save`` to use a new
zipfile-based file format. ``torch.load`` still retains the ability to
load files in the old format. If for any reason you want ``torch.save``
to use the old format, pass the kwarg ``_use_new_zipfile_serialization=False``.
Example:
>>> # Save to file
>>> x = torch.tensor([0, 1, 2, 3, 4])
>>> torch.save(x, 'tensor.pt')
>>> # Save to io.BytesIO buffer
>>> buffer = io.BytesIO()
>>> torch.save(x, buffer)
"""
_check_dill_version(pickle_module)
with _open_file_like(f, 'wb') as opened_file:
if _use_new_zipfile_serialization:
with _open_zipfile_writer(opened_file) as opened_zipfile:
_save(obj, opened_zipfile, pickle_module, pickle_protocol)
return
_legacy_save(obj, opened_file, pickle_module, pickle_protocol)
def _legacy_save(obj, f, pickle_module, pickle_protocol) -> None:
import torch.nn as nn
serialized_container_types = {}
serialized_storages = {}
def persistent_id(obj: Any) -> Optional[Tuple]:
# FIXME: the docs say that persistent_id should only return a string
# but torch store returns tuples. This works only in the binary protocol
# see
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
if isinstance(obj, type) and issubclass(obj, nn.Module):
if obj in serialized_container_types:
return None
serialized_container_types[obj] = True
source_file = source = None
try:
source_lines, _, source_file = get_source_lines_and_file(obj)
source = ''.join(source_lines)
except Exception: # saving the source is optional, so we can ignore any errors
warnings.warn("Couldn't retrieve source code for container of "
"type " + obj.__name__ + ". It won't be checked "
"for correctness upon loading.")
return ('module', obj, source_file, source)
elif torch.is_storage(obj):
view_metadata: Optional[Tuple[str, int, int]]
obj = cast(Storage, obj)
storage_type = normalize_storage_type(type(obj))
# Offset is always 0, but we keep it for backwards compatibility
# with the old serialization format (which supported storage views)
offset = 0
obj_key = str(obj._cdata)
location = location_tag(obj)
serialized_storages[obj_key] = obj
is_view = obj._cdata != obj._cdata
if is_view:
view_metadata = (str(obj._cdata), offset, obj.size())
else:
view_metadata = None
return ('storage',
storage_type,
obj_key,
location,
obj.size(),
view_metadata)
return None
sys_info = dict(
protocol_version=PROTOCOL_VERSION,
little_endian=sys.byteorder == 'little',
type_sizes=dict(
short=SHORT_SIZE,
int=INT_SIZE,
long=LONG_SIZE,
),
)
pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
pickle_module.dump(sys_info, f, protocol=pickle_protocol)
pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
pickler.persistent_id = persistent_id
pickler.dump(obj)
serialized_storage_keys = sorted(serialized_storages.keys())
pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
f.flush()
for key in serialized_storage_keys:
serialized_storages[key]._write_file(f, _should_read_directly(f), True)
def _save(obj, zip_file, pickle_module, pickle_protocol):
serialized_storages = {}
id_map: Dict[int, str] = {}
def persistent_id(obj):
# FIXME: the docs say that persistent_id should only return a string
# but torch store returns tuples. This works only in the binary protocol
# see
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
if torch.is_storage(obj):
storage_type = normalize_storage_type(type(obj))
obj_key = id_map.setdefault(obj._cdata, str(len(id_map)))
location = location_tag(obj)
serialized_storages[obj_key] = obj
return ('storage',
storage_type,
obj_key,
location,
obj.size())
return None
# Write the pickle data for `obj`
data_buf = io.BytesIO()
pickler = pickle_module.Pickler(data_buf, protocol=pickle_protocol)
pickler.persistent_id = persistent_id
pickler.dump(obj)
data_value = data_buf.getvalue()
zip_file.write_record('data.pkl', data_value, len(data_value))
# Write each tensor to a file named tensor/the_tensor_key in the zip archive
for key in sorted(serialized_storages.keys()):
name = f'data/{key}'
storage = serialized_storages[key]
# given that we copy things around anyway, we might use storage.cpu()
# this means to that to get tensors serialized, you need to implement
# .cpu() on the underlying Storage
if storage.device.type != 'cpu':
storage = storage.cpu()
# Now that it is on the CPU we can directly copy it into the zip file
num_bytes = storage.size() * storage.element_size()
zip_file.write_record(name, storage.data_ptr(), num_bytes)
def load(f, map_location=None, pickle_module=pickle, **pickle_load_args):
# Reference: https://github.com/pytorch/pytorch/issues/54354
# The first line of this docstring overrides the one Sphinx generates for the
# documentation. We need it so that Sphinx doesn't leak `pickle`s path from
# the build environment (e.g. `<module 'pickle' from '/leaked/path').
"""load(f, map_location=None, pickle_module=pickle, **pickle_load_args)
Loads an object saved with :func:`torch.save` from a file.
:func:`torch.load` uses Python's unpickling facilities but treats storages,
which underlie tensors, specially. They are first deserialized on the
CPU and are then moved to the device they were saved from. If this fails
(e.g. because the run time system doesn't have certain devices), an exception
is raised. However, storages can be dynamically remapped to an alternative
set of devices using the :attr:`map_location` argument.
If :attr:`map_location` is a callable, it will be called once for each serialized
storage with two arguments: storage and location. The storage argument
will be the initial deserialization of the storage, residing on the CPU.
Each serialized storage has a location tag associated with it which
identifies the device it was saved from, and this tag is the second
argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'``
for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors.
:attr:`map_location` should return either ``None`` or a storage. If
:attr:`map_location` returns a storage, it will be used as the final deserialized
object, already moved to the right device. Otherwise, :func:`torch.load` will
fall back to the default behavior, as if :attr:`map_location` wasn't specified.
If :attr:`map_location` is a :class:`torch.device` object or a string containing
a device tag, it indicates the location where all tensors should be loaded.
Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags
appearing in the file (keys), to ones that specify where to put the
storages (values).
User extensions can register their own location tags and tagging and
deserialization methods using :func:`torch.serialization.register_package`.
Args:
f: a file-like object (has to implement :meth:`read`, :meth:`readline`, :meth:`tell`, and :meth:`seek`),
or a string or os.PathLike object containing a file name
map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage
locations
pickle_module: module used for unpickling metadata and objects (has to
match the :attr:`pickle_module` used to serialize file)
pickle_load_args: (Python 3 only) optional keyword arguments passed over to
:func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g.,
:attr:`errors=...`.
.. warning::
:func:`torch.load()` uses ``pickle`` module implicitly, which is known to be insecure.
It is possible to construct malicious pickle data which will execute arbitrary code
during unpickling. Never load data that could have come from an untrusted
source, or that could have been tampered with. **Only load data you trust**.
.. note::
When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors
will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')``
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
.. note::
By default, we decode byte strings as ``utf-8``. This is to avoid a common error
case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``
when loading files saved by Python 2 in Python 3. If this default
is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how
these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them
to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them
as byte arrays which can be decoded later with ``byte_array.decode(...)``.
Example:
>>> torch.load('tensors.pt')
# Load all tensors onto the CPU
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
# Load all tensors onto the CPU, using a function
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
# Load all tensors onto GPU 1
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
# Map tensors from GPU 1 to GPU 0
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
# Load tensor from io.BytesIO object
>>> with open('tensor.pt', 'rb') as f:
... buffer = io.BytesIO(f.read())
>>> torch.load(buffer)
# Load a module with 'ascii' encoding for unpickling
>>> torch.load('module.pt', encoding='ascii')
"""
_check_dill_version(pickle_module)
if 'encoding' not in pickle_load_args.keys():
pickle_load_args['encoding'] = 'utf-8'
with _open_file_like(f, 'rb') as opened_file:
if _is_zipfile(opened_file):
# The zipfile reader is going to advance the current file position.
# If we want to actually tail call to torch.jit.load, we need to
# reset back to the original position.
orig_position = opened_file.tell()
with _open_zipfile_reader(opened_file) as opened_zipfile:
if _is_torchscript_zip(opened_zipfile):
warnings.warn("'torch.load' received a zip file that looks like a TorchScript archive"
" dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to"
" silence this warning)", UserWarning)
opened_file.seek(orig_position)
return torch.jit.load(opened_file)
return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args)
return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
# Register pickling support for layout instances such as
# torch.sparse_coo, etc
def _get_layout(name):
"""Get layout extension object from its string representation.
"""
cache = _get_layout.cache # type: ignore[attr-defined]
if not cache:
for v in torch.__dict__.values():
if isinstance(v, torch.layout):
cache[str(v)] = v
return cache[name]
# There are yet not good way to type annotate function attributes https://github.com/python/mypy/issues/2087
_get_layout.cache = {} # type: ignore[attr-defined]
copyreg.pickle(torch.layout, lambda obj: (_get_layout, (str(obj),)))
def _legacy_load(f, map_location, pickle_module, **pickle_load_args):
deserialized_objects: Dict[int, Any] = {}
restore_location = _get_restore_location(map_location)
def _check_container_source(container_type, source_file, original_source):
try:
current_source = ''.join(get_source_lines_and_file(container_type)[0])
except Exception: # saving the source is optional, so we can ignore any errors
warnings.warn("Couldn't retrieve source code for container of "
"type " + container_type.__name__ + ". It won't be checked "
"for correctness upon loading.")
return
if original_source != current_source:
if container_type.dump_patches:
file_name = container_type.__name__ + '.patch'
diff = difflib.unified_diff(current_source.split('\n'),
original_source.split('\n'),
source_file,
source_file, lineterm="")
lines = '\n'.join(diff)
try:
with open(file_name, 'a+') as f:
file_size = f.seek(0, 2)
f.seek(0)
if file_size == 0:
f.write(lines)
elif file_size != len(lines) or f.read() != lines:
raise IOError
msg = ("Saved a reverse patch to " + file_name + ". "
"Run `patch -p0 < " + file_name + "` to revert your "
"changes.")
except IOError:
msg = ("Tried to save a patch, but couldn't create a "
"writable file " + file_name + ". Make sure it "
"doesn't exist and your working directory is "
"writable.")
else:
msg = ("you can retrieve the original source code by "
"accessing the object's source attribute or set "
"`torch.nn.Module.dump_patches = True` and use the "
"patch tool to revert the changes.")
msg = f"source code of class '{torch.typename(container_type)}' has changed. {msg}"
warnings.warn(msg, SourceChangeWarning)
def legacy_load(f):
deserialized_objects: Dict[int, Any] = {}
def persistent_load(saved_id):
if isinstance(saved_id, tuple):
# Ignore containers that don't have any sources saved
if all(saved_id[1:]):
_check_container_source(*saved_id)
return saved_id[0]
return deserialized_objects[int(saved_id)]
with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
mkdtemp() as tmpdir:
tar.extract('storages', path=tmpdir)
with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
num_storages = pickle_module.load(f, **pickle_load_args)
for i in range(num_storages):
args = pickle_module.load(f, **pickle_load_args)
key, location, storage_type = args
obj = storage_type._new_with_file(f)
obj = restore_location(obj, location)
deserialized_objects[key] = obj
storage_views = pickle_module.load(f, **pickle_load_args)
for target_cdata, root_cdata, offset, size in storage_views:
root = deserialized_objects[root_cdata]
deserialized_objects[target_cdata] = root[offset:offset + size]
tar.extract('tensors', path=tmpdir)
with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
num_tensors = pickle_module.load(f, **pickle_load_args)
for _ in range(num_tensors):
args = pickle_module.load(f, **pickle_load_args)
key, storage_id, original_tensor_type = args
storage = deserialized_objects[storage_id]
tensor_type = storage_to_tensor_type(storage)
ndim, = struct.unpack('<i', f.read(4))
# skip next 4 bytes; legacy encoding treated ndim as 8 bytes
f.read(4)
size = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
stride = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
storage_offset, = struct.unpack('<q', f.read(8))
tensor = tensor_type().set_(storage, storage_offset, size, stride)
deserialized_objects[key] = tensor
pickle_file = tar.extractfile('pickle')
unpickler = pickle_module.Unpickler(pickle_file, **pickle_load_args)
unpickler.persistent_load = persistent_load
result = unpickler.load()
return result
deserialized_objects = {}
def persistent_load(saved_id):
assert isinstance(saved_id, tuple)
typename = _maybe_decode_ascii(saved_id[0])
data = saved_id[1:]
if typename == 'module':
# Ignore containers that don't have any sources saved
if all(data[1:]):
_check_container_source(*data)
return data[0]
elif typename == 'storage':
data_type, root_key, location, size, view_metadata = data
location = _maybe_decode_ascii(location)
if root_key not in deserialized_objects:
obj = data_type(size)
obj._torch_load_uninitialized = True
deserialized_objects[root_key] = restore_location(obj, location)
storage = deserialized_objects[root_key]
if view_metadata is not None:
view_key, offset, view_size = view_metadata
if view_key not in deserialized_objects:
deserialized_objects[view_key] = storage[offset:offset + view_size]
return deserialized_objects[view_key]
else:
return storage
else:
raise RuntimeError("Unknown saved id type: %s" % saved_id[0])
_check_seekable(f)
f_should_read_directly = _should_read_directly(f)
if f_should_read_directly and f.tell() == 0:
# legacy_load requires that f has fileno()
# only if offset is zero we can attempt the legacy tar file loader
try:
return legacy_load(f)
except tarfile.TarError:
if _is_zipfile(f):
# .zip is used for torch.jit.save and will throw an un-pickling error here
raise RuntimeError(
f"{f.name} is a zip archive (did you mean to use torch.jit.load()?)") from None
# if not a tarfile, reset file offset and proceed
f.seek(0)
if not hasattr(f, 'readinto') and (3, 8, 0) <= sys.version_info < (3, 8, 2):
raise RuntimeError(
"torch.load does not work with file-like objects that do not implement readinto on Python 3.8.0 and 3.8.1. "
f"Received object of type \"{type(f)}\". Please update to Python 3.8.2 or newer to restore this "
"functionality.")
magic_number = pickle_module.load(f, **pickle_load_args)
if magic_number != MAGIC_NUMBER:
raise RuntimeError("Invalid magic number; corrupt file?")
protocol_version = pickle_module.load(f, **pickle_load_args)
if protocol_version != PROTOCOL_VERSION:
raise RuntimeError("Invalid protocol version: %s" % protocol_version)
_sys_info = pickle_module.load(f, **pickle_load_args)
unpickler = pickle_module.Unpickler(f, **pickle_load_args)
unpickler.persistent_load = persistent_load
result = unpickler.load()
deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)
offset = f.tell() if f_should_read_directly else None
for key in deserialized_storage_keys:
assert key in deserialized_objects
deserialized_objects[key]._set_from_file(f, offset, f_should_read_directly)
if offset is not None:
offset = f.tell()
torch._utils._validate_loaded_sparse_tensors()
return result
def _maybe_decode_ascii(bytes_str: Union[bytes, str]) -> str:
# When using encoding='bytes' in Py3, some **internal** keys stored as
# strings in Py2 are loaded as bytes. This function decodes them with
# ascii encoding, one that Py3 uses by default.
#
# NOTE: This should only be used on internal keys (e.g., `typename` and
# `location` in `persistent_load` below!
if isinstance(bytes_str, bytes):
return bytes_str.decode('ascii')
return bytes_str
def _get_restore_location(map_location):
if map_location is None:
restore_location = default_restore_location
elif isinstance(map_location, dict):
def restore_location(storage, location):
location = map_location.get(location, location)
return default_restore_location(storage, location)
elif isinstance(map_location, _string_classes):
def restore_location(storage, location):
return default_restore_location(storage, map_location)
elif isinstance(map_location, torch.device):
def restore_location(storage, location):
return default_restore_location(storage, str(map_location))
else:
def restore_location(storage, location):
result = map_location(storage, location)
if result is None:
result = default_restore_location(storage, location)
return result
return restore_location
def _load(zip_file, map_location, pickle_module, pickle_file='data.pkl', **pickle_load_args):
restore_location = _get_restore_location(map_location)
loaded_storages = {}
def load_tensor(data_type, size, key, location):
name = f'data/{key}'
dtype = data_type(0).dtype
storage = zip_file.get_storage_from_record(name, size, dtype).storage()
loaded_storages[key] = restore_location(storage, location)
def persistent_load(saved_id):
assert isinstance(saved_id, tuple)
typename = _maybe_decode_ascii(saved_id[0])
data = saved_id[1:]
assert typename == 'storage', \
f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'"
data_type, key, location, size = data
if key not in loaded_storages:
load_tensor(data_type, size, key, _maybe_decode_ascii(location))
storage = loaded_storages[key]
return storage
load_module_mapping: Dict[str, str] = {
# See https://github.com/pytorch/pytorch/pull/51633
'torch.tensor': 'torch._tensor'
}
# Need to subclass Unpickler instead of directly monkey-patching the find_class method
# because it's marked readonly in pickle.
# The type: ignore is because mypy can't statically determine the type of this class.
class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
# from https://stackoverflow.com/questions/13398462/unpickling-python-objects-with-a-changed-module-path/13405732
# Lets us override the imports that pickle uses when unpickling an object.
# This is useful for maintaining BC if we change a module path that tensor instantiation relies on.
def find_class(self, mod_name, name):
mod_name = load_module_mapping.get(mod_name, mod_name)
return super().find_class(mod_name, name)
# Load the data (which may in turn use `persistent_load` to load tensors)
data_file = io.BytesIO(zip_file.get_record(pickle_file))
unpickler = UnpicklerWrapper(data_file, **pickle_load_args)
unpickler.persistent_load = persistent_load
result = unpickler.load()
torch._utils._validate_loaded_sparse_tensors()
return result
def _is_torchscript_zip(zip_file):
return 'constants.pkl' in zip_file.get_all_records()