forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Math.cuh
468 lines (422 loc) · 15.7 KB
/
Math.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
#pragma once
#include <ATen/AccumulateType.h>
#include <c10/macros/Macros.h>
namespace at {
namespace native {
/*
* For licensing information, please refer to the the cpu implementation located in "ATen/native/Math.h".
*/
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t zeta(scalar_t _x, scalar_t _q) {
using accscalar_t = at::acc_type<scalar_t, true>;
static const accscalar_t MACHEP = 1.11022302462515654042E-16;
const accscalar_t A[] = {
12.0,
-720.0,
30240.0,
-1209600.0,
47900160.0,
-1.8924375803183791606e9, /*1.307674368e12/691*/
7.47242496e10,
-2.950130727918164224e12, /*1.067062284288e16/3617*/
1.1646782814350067249e14, /*5.109094217170944e18/43867*/
-4.5979787224074726105e15, /*8.028576626982912e20/174611*/
1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/
-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/
};
accscalar_t x = static_cast<accscalar_t>(_x);
accscalar_t q = static_cast<accscalar_t>(_q);
int i = 0;
accscalar_t a, b, k, s, t, w;
if( x == 1.0 ) {
return static_cast<scalar_t>(INFINITY);
}
if( x < 1.0 ){
std::numeric_limits<scalar_t>::quiet_NaN();
}
bool q_is_integer = q == ::floor(q);
if(q <= 0.0) {
if(q_is_integer) {
return static_cast<scalar_t>(INFINITY);
}
else {
std::numeric_limits<scalar_t>::quiet_NaN();
}
}
s = ::pow(q, -x);
a = q;
i = 0;
b = 0.0;
while ((i < 9) || (a <= 9.0)) {
i += 1;
a += 1.0;
b = ::pow( a, -x );
s += b;
if ((-MACHEP < (b / s)) && ((b / s) < MACHEP)) {
return static_cast<scalar_t>(s);
}
};
w = a;
s += b * w / (x - 1.0);
s -= 0.5 * b;
a = 1.0;
k = 0.0;
for (int i=0; i < 12; i++) {
a *= x + k;
b /= w;
t = a * b / A[i];
s = s + t;
t = t / s;
if (t < 0){
t = -t;
}
if ((-MACHEP <t) && (t < MACHEP)){
return static_cast<scalar_t>(s);
}
k += 1.0;
a *= x + k;
b /= w;
k += 1.0;
}
return static_cast<scalar_t>(s);
}
/*
* For licensing information, please refer to the the cpu implementation located in "ATen/native/Math.h".
*/
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_digamma(scalar_t in) {
// [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const double PI_f64 = 3.14159265358979323846;
const accscalar_t PSI_10 = 2.25175258906672110764;
const accscalar_t A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,
-4.16666666666666666667E-3,
3.96825396825396825397E-3,
-8.33333333333333333333E-3,
8.33333333333333333333E-2,
};
accscalar_t x = static_cast<accscalar_t>(in);
if (x == 0) {
// As per C++ standard for gamma related functions and SciPy,
// If the argument is ±0, ±∞ is returned
return std::copysign(static_cast<scalar_t>(INFINITY), -x);
}
bool x_is_integer = x == ::trunc(x);
accscalar_t result = 0;
if (x < 0) {
if (x_is_integer) {
// As per C++ standard for gamma related functions and SciPy,
// If the argument is a negative integer, NaN is returned
return static_cast<scalar_t>(NAN);
}
// Extracts the fractional part of x as r, since tan(pi * r) is more numerically
// accurate than tan(pi * x). While these operations are mathematically equivalent
// since both x and r are in radians and tan() has a periodicity of pi, in practice
// the computation of pi * x is a source of error (when |x| > 1).
double q, r;
r = ::modf(static_cast<double>(x), &q);
result = static_cast<accscalar_t>(- PI_f64 / ::tan(PI_f64 * r));
x = 1 - x;
}
while (x < 10) {
result -= 1 / x;
x += 1;
}
if (x == 10) {
return static_cast<scalar_t>(result + PSI_10);
}
accscalar_t y = 0;
if (x < 1.0e17) {
accscalar_t z = 1 / (x * x);
accscalar_t polevl_result = 0;
for (int i = 0; i <= 6; i++) {
polevl_result = polevl_result * z + A[i];
}
y = z * polevl_result;
}
return static_cast<scalar_t>(::log(x) - (static_cast<accscalar_t>(0.5) / x) - y + result);
}
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_trigamma(scalar_t in) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
const accscalar_t PI = 3.14159265358979323846;
accscalar_t x = static_cast<accscalar_t>(in);
accscalar_t sign = +1;
accscalar_t result = 0;
if (x < 0.5f) {
sign = -1;
accscalar_t sin_pi_x = ::sin(PI * x);
result -= (PI * PI) / (sin_pi_x * sin_pi_x);
x = 1 - x;
}
for (int i = 0; i < 6; ++i) {
result += 1 / (x * x);
x += 1;
}
const accscalar_t one = static_cast<scalar_t>(1);
const accscalar_t ixx = 1 / (x*x);
result += (1 + 1 / (2*x) + ixx * (one/6 - ixx * (one/30 - ixx * (one/42)))) / x;
return static_cast<scalar_t>(sign * result);
}
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_polygamma(int n, scalar_t x) {
// already blocked if n <= 1
return ((n % 2) ? 1.0 : -1.0) * ::exp(::lgamma(static_cast<scalar_t>(n) + 1.0)) * zeta(static_cast<scalar_t>(n + 1), x);
}
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_gcd(scalar_t a_in, scalar_t b_in) {
scalar_t a = ::abs(a_in);
scalar_t b = ::abs(b_in);
while (a != 0) {
scalar_t c = a;
a = b % a;
b = c;
}
return b;
}
/*
* For licensing information and documentation, please refer to the the cpu implementation located in "ATen/native/Math.h".
*/
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t
chbevl(scalar_t _x, const scalar_t array[], size_t len) {
using accscalar_t = at::acc_type<scalar_t, true>;
accscalar_t x = static_cast<accscalar_t>(_x);
accscalar_t b0, b1, b2;
b0 = static_cast<accscalar_t>(array[0]);
b1 = 0;
for (size_t i = 1; i < len; ++i) {
b2 = b1;
b1 = b0;
b0 = x * b1 - b2 + static_cast<accscalar_t>(array[i]);
}
return static_cast<scalar_t>(0.5 * (b0 - b2));
}
/*
* For licensing information and documentation, please refer to the the cpu implementation located in "ATen/native/Math.h".
*/
template <typename T>
C10_HOST_DEVICE inline std::tuple<const T*, size_t> chebyshev_coefficients_i0e_A() {
/* Chebyshev coefficients for exp(-x) I0(x)
* in the interval [0,8].
*
* lim(x->0){ exp(-x) I0(x) } = 1.
*/
static const T coefficients[] = {
-4.41534164647933937950E-18, 3.33079451882223809783E-17,
-2.43127984654795469359E-16, 1.71539128555513303061E-15,
-1.16853328779934516808E-14, 7.67618549860493561688E-14,
-4.85644678311192946090E-13, 2.95505266312963983461E-12,
-1.72682629144155570723E-11, 9.67580903537323691224E-11,
-5.18979560163526290666E-10, 2.65982372468238665035E-9,
-1.30002500998624804212E-8, 6.04699502254191894932E-8,
-2.67079385394061173391E-7, 1.11738753912010371815E-6,
-4.41673835845875056359E-6, 1.64484480707288970893E-5,
-5.75419501008210370398E-5, 1.88502885095841655729E-4,
-5.76375574538582365885E-4, 1.63947561694133579842E-3,
-4.32430999505057594430E-3, 1.05464603945949983183E-2,
-2.37374148058994688156E-2, 4.93052842396707084878E-2,
-9.49010970480476444210E-2, 1.71620901522208775349E-1,
-3.04682672343198398683E-1, 6.76795274409476084995E-1};
return std::make_tuple(coefficients, 30);
}
template <typename T>
C10_HOST_DEVICE inline std::tuple<const T*, size_t> chebyshev_coefficients_i0e_B() {
/* Chebyshev coefficients for exp(-x) sqrt(x) I0(x)
* in the inverted interval [8,infinity].
*
* lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi).
*/
static const T coefficients[] = {
-7.23318048787475395456E-18, -4.83050448594418207126E-18,
4.46562142029675999901E-17, 3.46122286769746109310E-17,
-2.82762398051658348494E-16, -3.42548561967721913462E-16,
1.77256013305652638360E-15, 3.81168066935262242075E-15,
-9.55484669882830764870E-15, -4.15056934728722208663E-14,
1.54008621752140982691E-14, 3.85277838274214270114E-13,
7.18012445138366623367E-13, -1.79417853150680611778E-12,
-1.32158118404477131188E-11, -3.14991652796324136454E-11,
1.18891471078464383424E-11, 4.94060238822496958910E-10,
3.39623202570838634515E-9, 2.26666899049817806459E-8,
2.04891858946906374183E-7, 2.89137052083475648297E-6,
6.88975834691682398426E-5, 3.36911647825569408990E-3,
8.04490411014108831608E-1};
return std::make_tuple(coefficients, 25);
}
template <typename T>
C10_HOST_DEVICE inline
typename std::enable_if<std::is_same<double, T>::value, std::tuple<const T*, size_t>>::type
chebyshev_coefficients_i1e_A() {
/* Chebyshev coefficients for exp(-x) I1(x)
* in the interval [0,8].
*
* lim(x->0){ exp(-x) I1(x) / x } = 1/2.
*/
static const T coefficients[] = {
2.77791411276104639959E-18, -2.11142121435816608115E-17,
1.55363195773620046921E-16, -1.10559694773538630805E-15,
7.60068429473540693410E-15, -5.04218550472791168711E-14,
3.22379336594557470981E-13, -1.98397439776494371520E-12,
1.17361862988909016308E-11, -6.66348972350202774223E-11,
3.62559028155211703701E-10, -1.88724975172282928790E-9,
9.38153738649577178388E-9, -4.44505912879632808065E-8,
2.00329475355213526229E-7, -8.56872026469545474066E-7,
3.47025130813767847674E-6, -1.32731636560394358279E-5,
4.78156510755005422638E-5, -1.61760815825896745588E-4,
5.12285956168575772895E-4, -1.51357245063125314899E-3,
4.15642294431288815669E-3, -1.05640848946261981558E-2,
2.47264490306265168283E-2, -5.29459812080949914269E-2,
1.02643658689847095384E-1, -1.76416518357834055153E-1,
2.52587186443633654823E-1};
return std::make_tuple(coefficients, 29);
}
template <typename T>
C10_HOST_DEVICE inline
typename std::enable_if<std::is_same<float, T>::value, std::tuple<const T*, size_t>>::type
chebyshev_coefficients_i1e_A() {
/* Chebyshev coefficients for exp(-x) I1(x)
* in the interval [0,8].
*
* lim(x->0){ exp(-x) I1(x) / x } = 1/2.
*/
static const T coeff[] = {
9.38153738649577178388E-9f,
-4.44505912879632808065E-8f,
2.00329475355213526229E-7f,
-8.56872026469545474066E-7f,
3.47025130813767847674E-6f,
-1.32731636560394358279E-5f,
4.78156510755005422638E-5f,
-1.61760815825896745588E-4f,
5.12285956168575772895E-4f,
-1.51357245063125314899E-3f,
4.15642294431288815669E-3f,
-1.05640848946261981558E-2f,
2.47264490306265168283E-2f,
-5.29459812080949914269E-2f,
1.02643658689847095384E-1f,
-1.76416518357834055153E-1f,
2.52587186443633654823E-1f};
return std::make_tuple(coeff, 17);
};
template <typename T>
C10_HOST_DEVICE inline
typename std::enable_if<std::is_same<double, T>::value, std::tuple<const T*, size_t>>::type
chebyshev_coefficients_i1e_B() {
/* Chebyshev coefficients for exp(-x) sqrt(x) I1(x)
* in the inverted interval [8,infinity].
*
* lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi).
*/
static const T coefficients[] = {
7.51729631084210481353E-18, 4.41434832307170791151E-18,
-4.65030536848935832153E-17, -3.20952592199342395980E-17,
2.96262899764595013876E-16, 3.30820231092092828324E-16,
-1.88035477551078244854E-15, -3.81440307243700780478E-15,
1.04202769841288027642E-14, 4.27244001671195135429E-14,
-2.10154184277266431302E-14, -4.08355111109219731823E-13,
-7.19855177624590851209E-13, 2.03562854414708950722E-12,
1.41258074366137813316E-11, 3.25260358301548823856E-11,
-1.89749581235054123450E-11, -5.58974346219658380687E-10,
-3.83538038596423702205E-9, -2.63146884688951950684E-8,
-2.51223623787020892529E-7, -3.88256480887769039346E-6,
-1.10588938762623716291E-4, -9.76109749136146840777E-3,
7.78576235018280120474E-1};
return std::make_tuple(coefficients, 25);
}
template <typename T>
C10_HOST_DEVICE inline
typename std::enable_if<std::is_same<float, T>::value, std::tuple<const T*, size_t>>::type
chebyshev_coefficients_i1e_B() {
/* Chebyshev coefficients for exp(-x) sqrt(x) I1(x)
* in the inverted interval [8,infinity].
*
* lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi).
*/
static const T coeff[] = {
-3.83538038596423702205E-9f,
-2.63146884688951950684E-8f,
-2.51223623787020892529E-7f,
-3.88256480887769039346E-6f,
-1.10588938762623716291E-4f,
-9.76109749136146840777E-3f,
7.78576235018280120474E-1f};
return std::make_tuple(coeff, 7);
};
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_i0(scalar_t _x) {
using accscalar_t = at::acc_type<scalar_t, true>;
// Upcast input for numerical accuracy purposes
// Needed for accurate results if input is bfloat16 or float16
accscalar_t x = ::abs(static_cast<accscalar_t>(_x));
if (x <= 8.0) {
auto coeff_pair = chebyshev_coefficients_i0e_A<accscalar_t>();
auto A = std::get<0>(coeff_pair);
auto len = std::get<1>(coeff_pair);
accscalar_t y = static_cast<accscalar_t>((x / 2.0) - 2.0);
return static_cast<scalar_t>(::exp(x) * chbevl(y, A, len));
}
auto coeff_pair = chebyshev_coefficients_i0e_B<accscalar_t>();
auto B = std::get<0>(coeff_pair);
auto len = std::get<1>(coeff_pair);
return static_cast<scalar_t>(::exp(x) * chbevl(static_cast<accscalar_t>(32.0 / x - 2.0), B, len) / ::sqrt(x));
}
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_i0e(scalar_t _x) {
using accscalar_t = at::acc_type<scalar_t, true>;
// Upcast input for numerical accuracy purposes
// Needed for accurate results if input is bfloat16 or float16
accscalar_t x = ::abs(static_cast<accscalar_t>(_x));
if (x <= 8.0) {
auto coeff_pair = chebyshev_coefficients_i0e_A<accscalar_t>();
auto A = std::get<0>(coeff_pair);
auto len = std::get<1>(coeff_pair);
accscalar_t y = static_cast<accscalar_t>((x / 2.0) - 2.0);
return static_cast<scalar_t>(chbevl(y, A, len));
}
auto coeff_pair = chebyshev_coefficients_i0e_B<accscalar_t>();
auto B = std::get<0>(coeff_pair);
auto len = std::get<1>(coeff_pair);
return static_cast<scalar_t>(chbevl(static_cast<accscalar_t>(32.0 / x - 2.0), B, len) / ::sqrt(x));
}
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_i1(scalar_t _x) {
const auto x = ::abs(_x);
if (x <= 8.0) {
auto coeff_pair = chebyshev_coefficients_i1e_A<scalar_t>();
auto A = std::get<0>(coeff_pair);
auto len = std::get<1>(coeff_pair);
auto y = static_cast<scalar_t>((x / 2.0) - 2.0);
const auto out = static_cast<scalar_t>(::exp(x) * x * chbevl(y, A, len));
return (_x < 0.0) ? -out : out;
}
auto coeff_pair = chebyshev_coefficients_i1e_B<scalar_t>();
auto B = std::get<0>(coeff_pair);
auto len = std::get<1>(coeff_pair);
const auto out = static_cast<scalar_t>(
(::exp(x) * chbevl(static_cast<scalar_t>(32.0 / x - 2.0), B, len)) / ::sqrt(x));
return (_x < 0.0) ? -out : out;
}
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_i1e(scalar_t _x) {
const auto x = ::abs(_x);
if (x <= 8.0) {
auto coeff_pair = chebyshev_coefficients_i1e_A<scalar_t>();
auto A = std::get<0>(coeff_pair);
auto len = std::get<1>(coeff_pair);
const auto y = static_cast<scalar_t>((x / 2.0) - 2.0);
const auto out = static_cast<scalar_t>(chbevl(y, A, len) * x);
return (_x < 0.0) ? -out : out;
}
auto coeff_pair = chebyshev_coefficients_i1e_B<scalar_t>();
auto B = std::get<0>(coeff_pair);
auto len = std::get<1>(coeff_pair);
const auto out = static_cast<scalar_t>(
chbevl(static_cast<scalar_t>(32.0 / x - 2.0), B, len) / ::sqrt(x));
return (_x < 0.0) ? -out : out;
}
} // namespace native
} // namespace at