forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TensorGeometry.h
62 lines (52 loc) · 1.81 KB
/
TensorGeometry.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#pragma once
#include <ATen/WrapDimUtils.h>
#include <ATen/core/Tensor.h>
namespace at {
struct TORCH_API TensorGeometry {
TensorGeometry() : storage_offset_(0) {}
explicit TensorGeometry(IntArrayRef sizes)
: sizes_(sizes.vec())
, strides_(sizes.size())
, storage_offset_(0) {
int64_t dim = sizes.size();
int64_t expected_stride = 1;
for (int64_t i = dim - 1; i >= 0; i--) {
strides_[i] = expected_stride;
expected_stride *= sizes_[i];
}
numel_ = expected_stride;
}
explicit TensorGeometry(const Tensor& t)
: sizes_(t.sizes().vec())
, strides_(t.strides().vec())
, storage_offset_(t.storage_offset())
, numel_(t.numel()) {}
// true if the tensor is contiguous
bool is_contiguous() const;
int64_t dim() const { return sizes_.size(); }
int64_t size(int64_t dim) const {
dim = maybe_wrap_dim(dim, this->dim());
return sizes_.at(static_cast<size_t>(dim));
}
IntArrayRef sizes() const { return IntArrayRef{ sizes_ }; }
int64_t stride(int64_t dim) const {
dim = maybe_wrap_dim(dim, this->dim());
return strides_.at(static_cast<size_t>(dim));
}
IntArrayRef strides() const { return IntArrayRef{ strides_ }; }
int64_t storage_offset() const { return storage_offset_; }
int64_t numel() const { return numel_; }
TensorGeometry transpose(int64_t dim0, int64_t dim1) {
TensorGeometry r = *this; // copy
TORCH_CHECK(dim0 < dim(), "transpose: dim0=", dim0, " out of range (dim=", dim(), ")")
TORCH_CHECK(dim1 < dim(), "transpose: dim1=", dim1, " out of range (dim=", dim(), ")")
std::swap(r.sizes_[dim0], r.sizes_[dim1]);
std::swap(r.strides_[dim0], r.strides_[dim1]);
return r;
}
std::vector<int64_t> sizes_;
std::vector<int64_t> strides_;
int64_t storage_offset_;
int64_t numel_;
};
} // namespace at