-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathhpx_distributed.cc
380 lines (328 loc) · 15.4 KB
/
hpx_distributed.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/* Copyright 2021 Nanmiao Wu, Nikunj Gupta, and Patrick Diehl
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstdlib>
#include "../core/core.h"
#include "hpx/hpx.hpp"
#include "hpx/hpx_init.hpp"
#include "mpi.h"
///////////////////////////////////////////////////////////////////////////////
int hpx_main(int argc, char *argv[])
{
int n_ranks, rank;
MPI_Comm_size(MPI_COMM_WORLD, &n_ranks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
App app(argc, argv);
if (rank == 0) app.display();
int chunk_size =
app.graphs[0].max_width / (n_ranks * hpx::get_os_thread_count());
hpx::execution::static_chunk_size cs(chunk_size);
using executor = hpx::execution::experimental::fork_join_executor;
executor exec(hpx::threads::thread_priority::normal,
hpx::threads::thread_stacksize::small_,
chunk_size == 1 ? executor::loop_schedule::static_
: executor::loop_schedule::dynamic,
std::chrono::microseconds(100));
auto policy = hpx::execution::par.on(exec).with(cs);
std::vector<std::vector<char> > scratch;
for (auto graph : app.graphs) {
long first_point = rank * graph.max_width / n_ranks;
long last_point = (rank + 1) * graph.max_width / n_ranks - 1;
long n_points = last_point - first_point + 1;
size_t scratch_bytes = graph.scratch_bytes_per_task;
scratch.emplace_back(scratch_bytes * n_points);
TaskGraph::prepare_scratch(scratch.back().data(), scratch.back().size());
}
double elapsed_time = 0.0;
for (int iter = 0; iter < 2; ++iter) {
MPI_Barrier(MPI_COMM_WORLD);
double start_time = MPI_Wtime();
for (auto graph : app.graphs) {
long first_point = rank * graph.max_width / n_ranks;
long last_point = (rank + 1) * graph.max_width / n_ranks - 1;
long n_points = last_point - first_point + 1;
size_t scratch_bytes = graph.scratch_bytes_per_task;
char *scratch_ptr = scratch[graph.graph_index].data();
std::vector<int> rank_by_point(graph.max_width);
std::vector<int> tag_bits_by_point(graph.max_width);
for (int r = 0; r < n_ranks; ++r) {
long r_first_point = r * graph.max_width / n_ranks;
long r_last_point = (r + 1) * graph.max_width / n_ranks - 1;
for (long p = r_first_point; p <= r_last_point; ++p) {
rank_by_point[p] = r;
tag_bits_by_point[p] = p - r_first_point;
assert((tag_bits_by_point[p] & ~0x7F) == 0);
}
}
long max_deps = 0;
for (long dset = 0; dset < graph.max_dependence_sets(); ++dset) {
for (long point = first_point; point <= last_point; ++point) {
long deps = 0;
for (auto interval : graph.dependencies(dset, point)) {
deps += interval.second - interval.first + 1;
}
max_deps = std::max(max_deps, deps);
}
}
// Create input and output buffers.
std::vector<std::vector<std::vector<char> > > inputs(n_points);
std::vector<std::vector<const char *> > input_ptr(n_points);
std::vector<std::vector<size_t> > input_bytes(n_points);
std::vector<long> n_inputs(n_points);
std::vector<std::vector<char> > outputs(n_points);
std::vector<std::vector<char> > outputs_new(n_points);
for (long point = first_point; point <= last_point; ++point) {
long point_index = point - first_point;
auto &point_inputs = inputs[point_index];
auto &point_input_ptr = input_ptr[point_index];
auto &point_input_bytes = input_bytes[point_index];
point_inputs.resize(max_deps);
point_input_ptr.resize(max_deps);
point_input_bytes.resize(max_deps);
for (long dep = 0; dep < max_deps; ++dep) {
point_inputs[dep].resize(graph.output_bytes_per_task);
point_input_ptr[dep] = point_inputs[dep].data();
point_input_bytes[dep] = point_inputs[dep].size();
}
auto &point_outputs = outputs[point_index];
point_outputs.resize(graph.output_bytes_per_task);
auto &point_outputs_new = outputs_new[point_index];
point_outputs_new.resize(graph.output_bytes_per_task);
}
// Cache dependencies.
std::vector<std::vector<std::vector<std::pair<long, long> > > >
dependencies(graph.max_dependence_sets());
std::vector<std::vector<std::vector<std::pair<long, long> > > >
reverse_dependencies(graph.max_dependence_sets());
for (long dset = 0; dset < graph.max_dependence_sets(); ++dset) {
dependencies[dset].resize(n_points);
reverse_dependencies[dset].resize(n_points);
for (long point = first_point; point <= last_point; ++point) {
long point_index = point - first_point;
dependencies[dset][point_index] = graph.dependencies(dset, point);
reverse_dependencies[dset][point_index] =
graph.reverse_dependencies(dset, point);
}
}
// optimization for certain types, wherein only the boundary cores of a
// node need to communicate with cores from another nodes, which means the
// inner cores only use on-node sharing.
if (graph.dependence == (RANDOM_NEAREST || NEAREST || STENCIL_1D ||
STENCIL_1D_PERIODIC || FFT || NO_COMM || TRIVIAL)) {
for (long timestep = 0; timestep < graph.timesteps; ++timestep) {
long offset = graph.offset_at_timestep(timestep);
long width = graph.width_at_timestep(timestep);
long last_offset = graph.offset_at_timestep(timestep - 1);
long last_width = graph.width_at_timestep(timestep - 1);
long dset = graph.dependence_set_at_timestep(timestep);
auto &deps = dependencies[dset];
auto &rev_deps = reverse_dependencies[dset];
hpx::for_loop(policy, first_point, last_point+1, [&](int point) {
std::vector<MPI_Request> requests;
long point_index = point - first_point;
auto &point_inputs = inputs[point_index];
auto &point_n_inputs = n_inputs[point_index];
auto &point_output = outputs[point_index];
auto &point_output_new = outputs_new[point_index];
auto &point_input_ptr = input_ptr[point_index];
auto &point_input_bytes = input_bytes[point_index];
auto &point_deps = deps[point_index];
auto &point_rev_deps = rev_deps[point_index];
// Receive
point_n_inputs = 0;
if (point >= offset && point < offset + width) {
for (auto interval : point_deps) {
for (long dep = interval.first; dep <= interval.second; ++dep) {
if (dep < last_offset || dep >= last_offset + last_width) {
continue;
}
// Use shared memory for on-node data.
if (first_point <= dep && dep <= last_point) {
auto output = outputs[dep - first_point];
if (timestep % 2 == 0) {
point_inputs[point_n_inputs].assign(output.begin(),
output.end());
} else {
auto output_new = outputs_new[dep - first_point];
point_inputs[point_n_inputs].assign(output_new.begin(),
output_new.end());
}
} else {
int from = tag_bits_by_point[dep];
int to = tag_bits_by_point[point];
int tag = (from << 8) | to;
MPI_Request req;
MPI_Irecv(point_inputs[point_n_inputs].data(),
point_inputs[point_n_inputs].size(), MPI_BYTE,
rank_by_point[dep], tag, MPI_COMM_WORLD, &req);
requests.push_back(req);
}
point_n_inputs++;
}
}
} // receive
// Send
if (point >= last_offset && point < last_offset + last_width) {
for (auto interval : point_rev_deps) {
for (long dep = interval.first; dep <= interval.second; dep++) {
if (dep < offset || dep >= offset + width ||
(first_point <= dep && dep <= last_point)) {
continue;
}
int from = tag_bits_by_point[point];
int to = tag_bits_by_point[dep];
int tag = (from << 8) | to;
MPI_Request req;
if (timestep % 2 == 0) {
MPI_Isend(point_output.data(), point_output.size(), MPI_BYTE,
rank_by_point[dep], tag, MPI_COMM_WORLD, &req);
} else {
MPI_Isend(point_output_new.data(), point_output_new.size(), MPI_BYTE,
rank_by_point[dep], tag, MPI_COMM_WORLD, &req);
}
requests.push_back(req);
}
}
} // send
MPI_Waitall(requests.size(), requests.data(), MPI_STATUSES_IGNORE);
if (timestep % 2 == 0) {
graph.execute_point(timestep, point, point_output_new.data(),
point_output_new.size(), point_input_ptr.data(),
point_input_bytes.data(), point_n_inputs,
scratch_ptr + scratch_bytes * point_index,
scratch_bytes);
} else {
graph.execute_point(timestep, point, point_output.data(),
point_output.size(), point_input_ptr.data(),
point_input_bytes.data(), point_n_inputs,
scratch_ptr + scratch_bytes * point_index,
scratch_bytes);
}
}); // one hpx for loop
}
} else {
for (long timestep = 0; timestep < graph.timesteps; ++timestep) {
long offset = graph.offset_at_timestep(timestep);
long width = graph.width_at_timestep(timestep);
long last_offset = graph.offset_at_timestep(timestep - 1);
long last_width = graph.width_at_timestep(timestep - 1);
long dset = graph.dependence_set_at_timestep(timestep);
auto &deps = dependencies[dset];
auto &rev_deps = reverse_dependencies[dset];
std::vector<MPI_Request> requests;
for (long point = first_point; point <= last_point; ++point) {
long point_index = point - first_point;
auto &point_inputs = inputs[point_index];
auto &point_n_inputs = n_inputs[point_index];
auto &point_output = outputs[point_index];
auto &point_deps = deps[point_index];
auto &point_rev_deps = rev_deps[point_index];
// Receive
point_n_inputs = 0;
if (point >= offset && point < offset + width) {
for (auto interval : point_deps) {
for (long dep = interval.first; dep <= interval.second; ++dep) {
if (dep < last_offset || dep >= last_offset + last_width) {
continue;
}
// Use shared memory for on-node data.
if (first_point <= dep && dep <= last_point) {
auto &output = outputs[dep - first_point];
point_inputs[point_n_inputs].assign(output.begin(),
output.end());
} else {
int from = tag_bits_by_point[dep];
int to = tag_bits_by_point[point];
int tag = (from << 8) | to;
MPI_Request req;
MPI_Irecv(point_inputs[point_n_inputs].data(),
point_inputs[point_n_inputs].size(), MPI_BYTE,
rank_by_point[dep], tag, MPI_COMM_WORLD, &req);
requests.push_back(req);
}
point_n_inputs++;
}
}
} // receive
// Send
if (point >= last_offset && point < last_offset + last_width) {
for (auto interval : point_rev_deps) {
for (long dep = interval.first; dep <= interval.second; dep++) {
if (dep < offset || dep >= offset + width ||
(first_point <= dep && dep <= last_point)) {
continue;
}
int from = tag_bits_by_point[point];
int to = tag_bits_by_point[dep];
int tag = (from << 8) | to;
MPI_Request req;
MPI_Isend(point_output.data(), point_output.size(), MPI_BYTE,
rank_by_point[dep], tag, MPI_COMM_WORLD, &req);
requests.push_back(req);
}
}
} // send
}
MPI_Waitall(requests.size(), requests.data(), MPI_STATUSES_IGNORE);
long start = std::max(first_point, offset);
long end = std::min(last_point + 1, offset + width);
if (start < end) {
hpx::for_loop(policy, start, end, [&](int point) {
long point_index = point - first_point;
auto &point_input_ptr = input_ptr[point_index];
auto &point_input_bytes = input_bytes[point_index];
auto &point_n_inputs = n_inputs[point_index];
auto &point_output = outputs[point_index];
graph.execute_point(timestep, point, point_output.data(),
point_output.size(), point_input_ptr.data(),
point_input_bytes.data(), point_n_inputs,
scratch_ptr + scratch_bytes * point_index,
scratch_bytes);
});
}
}
}
} // for graphs loop
double stop_time = MPI_Wtime();
elapsed_time = stop_time - start_time;
} // for 2-time iter
if (rank == 0) {
app.report_timing(elapsed_time);
}
return hpx::finalize();
}
///////////////////////////////////////////////////////////////////////////////
int main(int argc, char *argv[])
{
// all ranks run their main function
std::vector<std::string> const cfg = {
"hpx.run_hpx_main!=1", "--hpx:ini=hpx.commandline.allow_unknown!=1",
"--hpx:ini=hpx.commandline.aliasing!=0",
//"--hpx:ini=hpx.stacks.small_size!=0x20000"
};
// Init MPI
int provided = MPI_THREAD_MULTIPLE;
MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
if (provided != MPI_THREAD_MULTIPLE) {
std::cout << "Provided MPI is not : MPI_THREAD_MULTIPLE " << provided
<< std::endl;
}
// Initialize and run HPX.
hpx::init_params init_args;
init_args.cfg = cfg;
auto result = hpx::init(argc, argv, init_args);
// Finalize MPI
MPI_Finalize();
return result;
}