-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
226 lines (187 loc) · 6.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import cvxpy as cp
from scipy.linalg import block_diag
import control
import scipy as sp
#----------------------------------------
# Dynamics
#----------------------------------------
class PendulumSimulator:
def __init__(self, params_dic, Delta):
# Initialize parameters
self.m = params_dic['m']
self.g = params_dic['g']
self.l = params_dic['l']
self.b = params_dic['b']
self.Delta = Delta
def sim(self, x, u):
u = u[0] # Unpack the control input
# Integrate the dynamics with scipy solve_ivp
x_next = sp.integrate.solve_ivp(self.dynamics, [0, self.Delta], x, args=(u,))
return x_next.y[:, -1] # Return the final state
def dynamics(self, t, x, u):
# Unpack states
th = x[0]
th_dot = x[1]
# Compute the acceleration
th_ddot = (-self.b*th_dot - self.m*self.g*self.l*np.sin(th) + u)/(self.m*self.l**2)
return (th_dot, th_ddot)
def linearize_dyn(x_lin, u_lin, params_dic, Delta):
# Extract parameters.
m = params_dic['m']
g = params_dic['g']
l = params_dic['l']
b = params_dic['b']
theta_lin = x_lin[0]
A = np.array([[0, 1],
[-g/l*np.cos(theta_lin), -b/(m*l**2)]])
B = np.array([[0],
[1/(m*l**2)]])
return A, B
#----------------------------------------
# Pi-MPC, Periodic Disturbance Augmentation Functions
#----------------------------------------
def create_Sd(nd, Nperiod):
# Create a block diagonal matrix with Nperiod copies of the identity matrix of size nd
# The matrix should be of size (Nperiod*nd, Nperiod*nd)
assert isinstance(nd, int)
assert isinstance(Nperiod, int)
Sd = block_diag(*[np.eye(nd) for _ in range(Nperiod)])
# Roll the matrix by nd to the right
Sd = np.roll(Sd, nd, axis=1)
return Sd
def create_Ssel(nd, Nperiod):
# Create a selection matrix that selects the first nd elements of the state vector
Ssel = np.block([np.eye(nd), np.zeros((nd, (Nperiod-1)*nd))])
return Ssel
def periodic_augmented(A, B, C, Bd, Cd, Nperiod):
# Get dimensions
nx = A.shape[0]
nu = B.shape[1]
nd = Bd.shape[1]
Sd = create_Sd(nd, Nperiod)
Ssel = np.block([np.eye(nd), np.zeros((nd, (Nperiod-1)*nd))])
# Augmented state space model
A_aug = np.block([[A, Bd @ Ssel],
[np.zeros((Nperiod*nd, nx)), Sd]])
B_aug = np.block([[B],
[np.zeros((Nperiod*nd, nu))]])
C_aug = np.block([[C, Cd @ Ssel]])
return A_aug, B_aug, C_aug
#----------------------------------------
# MPC Functions
#----------------------------------------
def cp_block_diag(A, n):
Afull = []
dim1 = A.shape[0]
dim2 = A.shape[1]
for i in range(n):
cur = [np.zeros((dim1, dim2))] * n
cur[i] = A
Afull.append(cur)
return cp.bmat(Afull)
def MPC(simulator, dims_dic, MPC_dic, dyn_dic):
# Baseline MPC function
# Unpack dictionaries
# dims_dic = {'nx':nx,'nu':nu,'ny':ny,'nr':nr,'nd':nd}
nx = dims_dic['nx']
nu = dims_dic['nu']
ny = dims_dic['ny']
nr = dims_dic['nr']
nd = dims_dic['nd']
# MPC_dic = {'Nsim':Nsim,'Nhor':Nhor,'Q':Q,'R':R,'x0':x0,'u0':u0,'ref_z':ref_z}
Nsim = MPC_dic['Nsim']
Nhor = MPC_dic['Nhor']
Q = MPC_dic['Q']
R = MPC_dic['R']
x0 = MPC_dic['x0']
u0 = MPC_dic['u0']
ref_z = MPC_dic['ref_z']
u_max = MPC_dic['u_max']
# dyn_dic = {'A':A,'B':B,'C':C,'H':H,'Delta':Delta}
A = dyn_dic['A']
B = dyn_dic['B']
C = dyn_dic['C']
H = dyn_dic['H']
Delta = dyn_dic['Delta']
# Design observer
Q_kalman = block_diag(np.eye(nx))
R_kalman = np.eye(ny)
K, S, E = control.dlqr(A.T, C.T, Q_kalman, R_kalman)
Lx = -K.T
# Construct the cvxpy problem
cvx_usp = cp.Parameter((Nhor * nu))
cvx_usp.value = np.zeros((Nhor * nu))
cvx_zsp = cp.Parameter(((Nhor+1) * nr))
cvx_zsp.value = np.zeros(((Nhor+1) * nr))
cvx_x0 = cp.Parameter(nx)
cvx_x0.value = x0
cvx_u = cp.Variable((Nhor * nu))
cvx_x = cp.Variable(((Nhor+1) * nx))
# Define cost function and constraints
Qfull = block_diag(*[Q]*(Nhor+1))
Rfull = block_diag(*[R]*(Nhor))
HCfull = cp_block_diag(H@C, Nhor+1)
obj = cp.Minimize(cp.quad_form(HCfull @ cvx_x- cvx_zsp, Qfull) + cp.quad_form(cvx_u - cvx_usp, Rfull))
# Constraints
Afull = cp_block_diag(A, Nhor)
Bfull = cp_block_diag(B, Nhor)
constr = [cvx_x[0:nx] == cvx_x0] # Initial condition
constr += [cvx_x[nx:] == Afull @ cvx_x[:-nx] + Bfull @ cvx_u] # Dynamics
constr += [cvx_u >= -u_max, cvx_u <= u_max] # Input constraints
# Build problem
prob = cp.Problem(obj, constr)
# Functions to generate reference trajectory for the next Nhor steps
def set_zsp(k):
for i in range(Nhor+1):
t = (k + i)*Delta
cvx_zsp.value[i*nr:(i+1)*nr] = ref_z(t)
def set_usp(k):
for i in range(Nhor):
cvx_usp.value[i*nu:(i+1)*nu] = 0
# Initialize
x = np.zeros((Nsim, nx))
x[0,:] = x0
u = np.zeros((Nsim, nu))
u[0,:] = u0
y = np.zeros((Nsim, ny))
y[0,:] = C @ x0
z = np.zeros((Nsim, nr))
z[0,:] = H @ y[0,:]
ref = np.zeros((Nsim, nr))
# Observer variables
xhat = np.zeros((Nsim, nx))
xhat[0,:] = x0
innov = np.zeros((Nsim, nx))
x_planned = np.zeros((Nsim, nx))
# Solve the problem
for k in range(Nsim-1):
# Set parameters
cvx_x0.value = xhat[k,:]
set_zsp(k)
ref[k,:] = cvx_zsp.value[:nr]
set_usp(k)
# Solve the problem
try:
prob.solve(solver=cp.OSQP, warm_start=True)
except:
print("***Error during optimization!")
break
# Store the solution
if k < Nsim-Nhor and k % Nhor == 0:
for i in range(Nhor):
x_planned[k+i, :] = cvx_x.value[(i)*nx:(i+1)*nx]
u[k,:] = cvx_u.value[:nu]
# Simulate with nonlinear model.
try:
x[k+1,:] = simulator.sim(x[k,:], u[k,:])
except:
print("***Error during simulation!")
break
y[k+1,:] = C @ x[k+1,:]
z[k+1,:] = H @ y[k+1,:]
# Simulate observer
innov[k,:] = Lx @ ( C @ xhat[k,:] - y[k,:] )
xhat[k+1,:] = A @ xhat[k,:] + B @ u[k,:] + innov[k,:nx]
print("MPC: Done")
return x, u, y, z, xhat, ref, x_planned, innov