forked from NVlabs/nvdiffrecmc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
699 lines (569 loc) · 34.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import time
import argparse
import json
import multiprocessing
import glob
import re
import numpy as np
import torch
import nvdiffrast.torch as dr
import xatlas
# Import data readers / generators
from dataset import DatasetMesh, DatasetNERF, DatasetLLFF
# Import topology / geometry trainers
from geometry.dmtet import DMTetGeometry
from geometry.dlmesh import DLMesh
import render.renderutils as ru
from render import obj
from render import material
from render import util
from render import mesh
from render import texture
from render import mlptexture
from render import light
from render import render
from render.mesh import Mesh
from denoiser.denoiser import BilateralDenoiser
RADIUS = 3.0
# Enable to debug back-prop anomalies
#torch.autograd.set_detect_anomaly(True)
###############################################################################
# Loss setup
###############################################################################
@torch.no_grad()
def createLoss(FLAGS):
if FLAGS.loss == "smape":
return lambda img, ref: ru.image_loss(img, ref, loss='smape', tonemapper='none')
elif FLAGS.loss == "mse":
return lambda img, ref: ru.image_loss(img, ref, loss='mse', tonemapper='none')
elif FLAGS.loss == "logl1":
return lambda img, ref: ru.image_loss(img, ref, loss='l1', tonemapper='log_srgb')
elif FLAGS.loss == "logl2":
return lambda img, ref: ru.image_loss(img, ref, loss='mse', tonemapper='log_srgb')
elif FLAGS.loss == "relativel2":
return lambda img, ref: ru.image_loss(img, ref, loss='relmse', tonemapper='none')
elif FLAGS.loss == "n2n":
return lambda img, ref: ru.image_loss(img, ref, loss='n2n', tonemapper='none')
else:
assert False
###############################################################################
# Mix background into a dataset image
###############################################################################
@torch.no_grad()
def prepare_batch(target, train_res, bg_type):
target['mv'] = target['mv'].cuda()
target['mvp'] = target['mvp'].cuda()
target['campos'] = target['campos'].cuda()
target['img'] = target['img'].cuda()
if train_res[0] != target['img'].shape[1] or train_res[1] != target['img'].shape[2]:
target['img'] = util.scale_img_nhwc(target['img'], train_res)
target['resolution'] = train_res
assert len(target['img'].shape) == 4, "Image shape should be [n, h, w, c]"
if bg_type == 'checker':
background = torch.tensor(util.checkerboard(target['img'].shape[1:3], 8), dtype=torch.float32, device='cuda')[None, ...]
elif bg_type == 'black':
background = torch.zeros(target['img'].shape[0:3] + (3,), dtype=torch.float32, device='cuda')
elif bg_type == 'white':
background = torch.ones(target['img'].shape[0:3] + (3,), dtype=torch.float32, device='cuda')
elif bg_type == 'reference':
background = target['img'][..., 0:3]
elif bg_type == 'random':
background = torch.rand(target['img'].shape[0:3] + (3,), dtype=torch.float32, device='cuda')
else:
assert False, "Unknown background type %s" % bg_type
target['background'] = background
target['img'] = torch.cat((torch.lerp(background, target['img'][..., 0:3], target['img'][..., 3:4]), target['img'][..., 3:4]), dim=-1)
return target
###############################################################################
# UV - map geometry & convert to a mesh
###############################################################################
@torch.no_grad()
def xatlas_uvmap(glctx, geometry, mat, FLAGS):
eval_mesh = geometry.getMesh(mat)
# Create uvs with xatlas
v_pos = eval_mesh.v_pos.detach().cpu().numpy()
t_pos_idx = eval_mesh.t_pos_idx.detach().cpu().numpy()
vmapping, indices, uvs = xatlas.parametrize(v_pos, t_pos_idx)
# Convert to tensors
indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64)
uvs = torch.tensor(uvs, dtype=torch.float32, device='cuda')
faces = torch.tensor(indices_int64, dtype=torch.int64, device='cuda')
new_mesh = mesh.Mesh(v_tex=uvs, t_tex_idx=faces, base=eval_mesh)
mask, kd, ks = render.render_uv(glctx, new_mesh, FLAGS.texture_res, eval_mesh.material['kd_ks'])
# Dilate all textures & use average color for background
kd_avg = torch.sum(torch.sum(torch.sum(kd * mask, dim=0), dim=0), dim=0) / torch.sum(torch.sum(torch.sum(mask, dim=0), dim=0), dim=0)
kd = util.dilate(kd, kd_avg[None, None, None, :], mask, 7)
ks_avg = torch.sum(torch.sum(torch.sum(ks * mask, dim=0), dim=0), dim=0) / torch.sum(torch.sum(torch.sum(mask, dim=0), dim=0), dim=0)
ks = util.dilate(ks, ks_avg[None, None, None, :], mask, 7)
nrm_avg = torch.tensor([0, 0, 1], dtype=torch.float32, device="cuda")
normal = nrm_avg[None, None, None, :].repeat(kd.shape[0], kd.shape[1], kd.shape[2], 1)
new_mesh.material = mat.copy()
del new_mesh.material['kd_ks']
if FLAGS.transparency:
kd = torch.cat((kd, torch.rand_like(kd[...,0:1])), dim=-1)
print("kd shape", kd.shape)
kd_min, kd_max = torch.tensor(FLAGS.kd_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.kd_max, dtype=torch.float32, device='cuda')
ks_min, ks_max = torch.tensor(FLAGS.ks_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.ks_max, dtype=torch.float32, device='cuda')
nrm_min, nrm_max = torch.tensor(FLAGS.nrm_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.nrm_max, dtype=torch.float32, device='cuda')
new_mesh.material.update({
'kd' : texture.Texture2D(kd.clone().detach().requires_grad_(True), min_max=[kd_min, kd_max]),
'ks' : texture.Texture2D(ks.clone().detach().requires_grad_(True), min_max=[ks_min, ks_max]),
'normal' : texture.Texture2D(normal.clone().detach().requires_grad_(True), min_max=[nrm_min, nrm_max]),
})
return new_mesh
###############################################################################
# Utility functions for material
###############################################################################
def initial_guess_material(geometry, mlp, FLAGS, init_mat=None):
kd_min, kd_max = torch.tensor(FLAGS.kd_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.kd_max, dtype=torch.float32, device='cuda')
ks_min, ks_max = torch.tensor(FLAGS.ks_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.ks_max, dtype=torch.float32, device='cuda')
nrm_min, nrm_max = torch.tensor(FLAGS.nrm_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.nrm_max, dtype=torch.float32, device='cuda')
if mlp:
mlp_min = torch.cat((kd_min[0:3], ks_min), dim=0)
mlp_max = torch.cat((kd_max[0:3], ks_max), dim=0)
mlp_map_opt = mlptexture.MLPTexture3D(geometry.getAABB(), channels=6, min_max=[mlp_min, mlp_max])
mat = {'kd_ks' : mlp_map_opt}
else:
# Setup Kd, Ks albedo, and specular textures
if init_mat is None:
num_channels = 4 if FLAGS.layers > 1 else 3
kd_init = torch.ones(size=FLAGS.texture_res + [num_channels], device='cuda') * (kd_max - kd_min)[None, None, 0:num_channels] + kd_min[None, None, 0:num_channels]
kd_map_opt = texture.create_trainable(kd_init , FLAGS.texture_res, not FLAGS.custom_mip, [kd_min, kd_max])
ksR = np.random.uniform(size=FLAGS.texture_res + [1], low=0.0, high=0.01)
ksG = np.random.uniform(size=FLAGS.texture_res + [1], low=ks_min[1].cpu(), high=ks_max[1].cpu())
ksB = np.random.uniform(size=FLAGS.texture_res + [1], low=ks_min[2].cpu(), high=ks_max[2].cpu())
ks_map_opt = texture.create_trainable(np.concatenate((ksR, ksG, ksB), axis=2), FLAGS.texture_res, not FLAGS.custom_mip, [ks_min, ks_max])
else:
kd_map_opt = texture.create_trainable(init_mat['kd'], FLAGS.texture_res, not FLAGS.custom_mip, [kd_min, kd_max])
ks_map_opt = texture.create_trainable(init_mat['ks'], FLAGS.texture_res, not FLAGS.custom_mip, [ks_min, ks_max])
# Setup normal map
if init_mat is None or 'normal' not in init_mat:
normal_map_opt = texture.create_trainable(np.array([0, 0, 1]), FLAGS.texture_res, not FLAGS.custom_mip, [nrm_min, nrm_max])
else:
normal_map_opt = texture.create_trainable(init_mat['normal'], FLAGS.texture_res, not FLAGS.custom_mip, [nrm_min, nrm_max])
mat = {
'kd' : kd_map_opt,
'ks' : ks_map_opt,
'normal' : normal_map_opt
}
mat['bsdf'] = FLAGS.bsdf
mat['no_perturbed_nrm'] = FLAGS.no_perturbed_nrm
return mat
###############################################################################
# Validation & testing
###############################################################################
def validate_itr(glctx, target, ref_mesh, geometry, opt_material, lgt, FLAGS, denoiser, iter=0):
result_dict = {}
with torch.no_grad():
opt_mesh = geometry.getMesh(opt_material)
buffers = render.render_mesh(FLAGS, glctx, opt_mesh, target['mvp'], target['campos'], target['light'] if lgt is None else lgt, target['resolution'],
spp=target['spp'], num_layers=FLAGS.layers, background=target['background'], optix_ctx=geometry.optix_ctx,
denoiser=denoiser)
result_dict['ref'] = util.rgb_to_srgb(target['img'][0, ...,0:3])
result_dict['opt'] = util.rgb_to_srgb(buffers['shaded'][0, ...,0:3])
result_image = torch.cat([result_dict['opt'], result_dict['ref']], axis=1)
if FLAGS.display is not None:
white_bg = torch.ones_like(target['background'])
for layer in FLAGS.display:
if 'latlong' in layer and layer['latlong']:
result_dict['light_image'] = lgt.generate_image(FLAGS.display_res)
result_dict['light_image'] = util.rgb_to_srgb(result_dict['light_image'] / (1 + result_dict['light_image']))
result_image = torch.cat([result_image, result_dict['light_image']], axis=1)
elif 'bsdf' in layer:
img = render.render_mesh(FLAGS, glctx, opt_mesh, target['mvp'], target['campos'], target['light'] if lgt is None else lgt, target['resolution'],
spp=target['spp'], num_layers=FLAGS.layers, background=white_bg, bsdf=layer['bsdf'], optix_ctx=geometry.optix_ctx)['shaded']
if layer['bsdf'] == 'kd':
result_dict[layer['bsdf']] = util.rgb_to_srgb(img[..., 0:3])[0]
else:
result_dict[layer['bsdf']] = img[0, ..., 0:3]
result_image = torch.cat([result_image, result_dict[layer['bsdf']]], axis=1)
if ref_mesh is not None:
img = render.render_mesh(FLAGS, glctx, ref_mesh, target['mvp'], target['campos'], target['light'], target['resolution'],
spp=target['spp'], num_layers=FLAGS.layers, background=white_bg, bsdf=layer['bsdf'], optix_ctx=geometry.optix_ctx)['shaded']
if layer['bsdf'] == 'kd':
result_dict[layer['bsdf'] + "_ref"] = util.rgb_to_srgb(img[..., 0:3])[0]
else:
result_dict[layer['bsdf'] + "_ref"] = img[0, ..., 0:3]
result_image = torch.cat([result_image, result_dict[layer['bsdf'] + "_ref"]], axis=1)
elif 'normals' in layer and not FLAGS.no_perturbed_nrm:
result_image = torch.cat([result_image, (buffers['perturbed_nrm'][0, ...,0:3] + 1.0) * 0.5], axis=1)
elif 'diffuse_light' in layer:
result_image = torch.cat([result_image, util.rgb_to_srgb(buffers['diffuse_light'][..., 0:3])[0]], axis=1)
elif 'specular_light' in layer:
result_image = torch.cat([result_image, util.rgb_to_srgb(buffers['specular_light'][..., 0:3])[0]], axis=1)
return result_image, result_dict
def validate(glctx, geometry, opt_material, lgt, dataset_validate, out_dir, FLAGS, denoiser):
# ==============================================================================================
# Validation loop
# ==============================================================================================
img_cnt = 0
mse_values = []
psnr_values = []
# Hack validation to use high sample count and no denoiser
_n_samples = FLAGS.n_samples
_denoiser = denoiser
FLAGS.n_samples = 32
denoiser = None
dataloader_validate = torch.utils.data.DataLoader(dataset_validate, batch_size=1, collate_fn=dataset_validate.collate)
os.makedirs(out_dir, exist_ok=True)
with open(os.path.join(out_dir, 'metrics.txt'), 'w') as fout:
fout.write('ID, MSE, PSNR\n')
print("Running validation")
for it, target in enumerate(dataloader_validate):
# Mix validation background
target = prepare_batch(target, FLAGS.train_res, FLAGS.background)
result_image, result_dict = validate_itr(glctx, target, dataset_validate.getMesh(), geometry, opt_material, lgt, FLAGS, denoiser)
# Compute metrics
opt = torch.clamp(result_dict['opt'], 0.0, 1.0)
ref = torch.clamp(result_dict['ref'], 0.0, 1.0)
mse = torch.nn.functional.mse_loss(opt, ref, size_average=None, reduce=None, reduction='mean').item()
mse_values.append(float(mse))
psnr = util.mse_to_psnr(mse)
psnr_values.append(float(psnr))
line = "%d, %1.8f, %1.8f \n" % (it, mse, psnr)
fout.write(str(line))
for k in result_dict.keys():
np_img = result_dict[k].detach().cpu().numpy()
util.save_image(out_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
avg_mse = np.mean(np.array(mse_values))
avg_psnr = np.mean(np.array(psnr_values))
line = "AVERAGES: %1.4f, %2.3f\n" % (avg_mse, avg_psnr)
fout.write(str(line))
print("MSE, PSNR")
print("%1.8f, %2.3f" % (avg_mse, avg_psnr))
# Restore sample count and denoiser
FLAGS.n_samples = _n_samples
denoiser = _denoiser
return avg_psnr
###############################################################################
# Main shape fitter function / optimization loop
###############################################################################
def optimize_mesh(
denoiser,
glctx,
glctx_display,
geometry,
opt_material,
lgt,
dataset_train,
dataset_validate,
FLAGS,
warmup_iter=0,
log_interval=10,
pass_idx=0,
pass_name="",
optimize_light=True,
optimize_geometry=True
):
# ==============================================================================================
# Setup torch optimizer
# ==============================================================================================
learning_rate = FLAGS.learning_rate[pass_idx] if isinstance(FLAGS.learning_rate, list) or isinstance(FLAGS.learning_rate, tuple) else FLAGS.learning_rate
learning_rate_pos = learning_rate[0] if isinstance(learning_rate, list) or isinstance(learning_rate, tuple) else learning_rate
learning_rate_mat = learning_rate[1] if isinstance(learning_rate, list) or isinstance(learning_rate, tuple) else learning_rate
learning_rate_lgt = learning_rate[2] if isinstance(learning_rate, list) or isinstance(learning_rate, tuple) else learning_rate * 3.0
def lr_schedule(iter, fraction):
if iter < warmup_iter:
return iter / warmup_iter
return max(0.0, 10**(-(iter - warmup_iter)*0.0002)) # Exponential falloff from [1.0, 0.1] over 5k epochs
trainable_list = material.get_parameters(opt_material)
if optimize_light:
optimizer_light = torch.optim.Adam((lgt.parameters() if lgt is not None else []), lr=learning_rate_lgt)
scheduler_light = torch.optim.lr_scheduler.LambdaLR(optimizer_light, lr_lambda=lambda x: lr_schedule(x, 0.9))
if optimize_geometry:
optimizer_mesh = geometry.getOptimizer(learning_rate_pos)
scheduler_mesh = torch.optim.lr_scheduler.LambdaLR(optimizer_mesh, lr_lambda=lambda x: lr_schedule(x, 0.9))
optimizer = torch.optim.Adam(trainable_list, lr=learning_rate_mat)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: lr_schedule(x, 0.9))
# ==============================================================================================
# Image loss
# ==============================================================================================
image_loss_fn = createLoss(FLAGS)
# ==============================================================================================
# Training loop
# ==============================================================================================
img_cnt = 0
img_loss_vec = []
reg_loss_vec = []
iter_dur_vec = []
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=FLAGS.batch, collate_fn=dataset_train.collate, shuffle=True)
dataloader_validate = torch.utils.data.DataLoader(dataset_validate, batch_size=1, collate_fn=dataset_train.collate)
def cycle(iterable):
iterator = iter(iterable)
while True:
try:
yield next(iterator)
except StopIteration:
iterator = iter(iterable)
v_it = cycle(dataloader_validate)
# Creates a GradScaler once at the beginning of training
for it, target in enumerate(dataloader_train):
# Mix randomized background into dataset image
target = prepare_batch(target, FLAGS.train_res, 'random')
# ==============================================================================================
# Display / save outputs. Do it before training so we get initial meshes
# ==============================================================================================
# Show/save image before training step (want to get correct rendering of input)
display_image = FLAGS.display_interval and (it % FLAGS.display_interval == 0)
save_image = FLAGS.save_interval and (it % FLAGS.save_interval == 0)
if display_image or save_image:
result_image, result_dict = validate_itr(glctx_display, prepare_batch(next(v_it), FLAGS.train_res, FLAGS.background),
dataset_validate.getMesh(), geometry, opt_material, lgt, FLAGS, denoiser, it)
np_result_image = result_image.detach().cpu().numpy()
if display_image:
util.display_image(np_result_image, title='%d / %d' % (it, FLAGS.iter))
if save_image:
util.save_image(FLAGS.out_dir + '/' + ('img_%s_%06d.png' % (pass_name, img_cnt)), np_result_image)
img_cnt = img_cnt+1
optimizer.zero_grad()
if optimize_geometry:
optimizer_mesh.zero_grad()
if optimize_light:
optimizer_light.zero_grad()
# ==============================================================================================
# Initialize training
# ==============================================================================================
iter_start_time = time.time()
# ==============================================================================================
# Geometry-specific training
# ==============================================================================================
if optimize_light:
lgt.update_pdf()
img_loss, reg_loss = geometry.tick(glctx, target, lgt, opt_material, image_loss_fn, it, FLAGS, denoiser)
# ==============================================================================================
# Final loss
# ==============================================================================================
total_loss = img_loss + reg_loss
img_loss_vec.append(img_loss.item())
reg_loss_vec.append(reg_loss.item())
# ==============================================================================================
# Backpropagate
# ==============================================================================================
total_loss.backward()
if FLAGS.learn_lighting and hasattr(lgt, 'base') and lgt.base.grad is not None and optimize_light:
lgt.base.grad *= 64
if 'kd_ks' in opt_material:
opt_material['kd_ks'].encoder.params.grad /= 8.0
# Optionally clip gradients
if FLAGS.clip_max_norm > 0.0:
if optimize_geometry:
torch.nn.utils.clip_grad_norm_(geometry.parameters() + trainable_list, FLAGS.clip_max_norm)
else:
torch.nn.utils.clip_grad_norm_(trainable_list, FLAGS.clip_max_norm)
optimizer.step()
scheduler.step()
if optimize_geometry:
optimizer_mesh.step()
scheduler_mesh.step()
if optimize_light:
optimizer_light.step()
scheduler_light.step()
# ==============================================================================================
# Clamp trainables to reasonable range
# ==============================================================================================
with torch.no_grad():
if 'kd' in opt_material:
opt_material['kd'].clamp_()
if 'ks' in opt_material:
opt_material['ks'].clamp_()
if 'normal' in opt_material:
opt_material['normal'].clamp_()
opt_material['normal'].normalize_()
if lgt is not None:
lgt.clamp_(min=0.01) # For some reason gradient dissapears if light becomes 0
# ==============================================================================================
# Log & save outputs
# ==============================================================================================
torch.cuda.synchronize()
iter_dur_vec.append(time.time() - iter_start_time)
# Print/save log.
if log_interval and (it % log_interval == 0):
img_loss_avg = np.mean(np.asarray(img_loss_vec[-log_interval:]))
reg_loss_avg = np.mean(np.asarray(reg_loss_vec[-log_interval:]))
iter_dur_avg = np.mean(np.asarray(iter_dur_vec[-log_interval:]))
remaining_time = (FLAGS.iter-it)*iter_dur_avg
print("iter=%5d, img_loss=%.6f, reg_loss=%.6f, lr=%.5f, time=%.1f ms, rem=%s" %
(it, img_loss_avg, reg_loss_avg, 0.0, iter_dur_avg*1000, util.time_to_text(remaining_time)))
return geometry, opt_material
#----------------------------------------------------------------------------
# Main function.
#----------------------------------------------------------------------------
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='nvdiffrecmc')
parser.add_argument('-i', '--iter', type=int, default=5000)
parser.add_argument('-b', '--batch', type=int, default=1)
parser.add_argument('-s', '--spp', type=int, default=1)
parser.add_argument('-l', '--layers', type=int, default=1)
parser.add_argument('-r', '--train-res', type=int, default=[512, 512])
parser.add_argument('-dr', '--display-res', type=int, default=None)
parser.add_argument('-tr', '--texture-res', nargs=2, type=int, default=[1024, 1024])
parser.add_argument('-di', '--display-interval', type=int, default=0)
parser.add_argument('-si', '--save-interval', type=int, default=1000)
parser.add_argument('-lr', '--learning-rate', type=float, default=0.01)
parser.add_argument('-mip', '--custom-mip', action='store_true', default=False)
parser.add_argument('-bg', '--background', default='checker', choices=['black', 'white', 'checker', 'reference'])
parser.add_argument('--loss', default='logl1', choices=['logl1', 'logl2', 'mse', 'smape', 'relativel2'])
parser.add_argument('-o', '--out-dir', type=str, default=None)
parser.add_argument('--config', type=str, default=None, help='Config file')
parser.add_argument('-rm', '--ref_mesh', type=str)
parser.add_argument('-bm', '--base-mesh', type=str, default=None)
parser.add_argument('--validate', type=bool, default=True)
# Render specific arguments
parser.add_argument('--n_samples', type=int, default=4)
parser.add_argument('--bsdf', type=str, default='pbr', choices=['pbr', 'diffuse', 'white'])
# Denoiser specific arguments
parser.add_argument('--denoiser', default='bilateral', choices=['none', 'bilateral'])
parser.add_argument('--denoiser_demodulate', type=bool, default=True)
FLAGS = parser.parse_args()
FLAGS.mtl_override = None # Override material of model
FLAGS.dmtet_grid = 64 # Resolution of initial tet grid. We provide 64 and 128 resolution grids.
# Other resolutions can be generated with https://github.com/crawforddoran/quartet
# We include examples in data/tets/generate_tets.py
FLAGS.mesh_scale = 2.1 # Scale of tet grid box. Adjust to cover the model
FLAGS.envlight = None # HDR environment probe
FLAGS.env_scale = 1.0 # Env map intensity multiplier
FLAGS.probe_res = 256 # Env map probe resolution
FLAGS.learn_lighting = True # Enable optimization of env lighting
FLAGS.display = None # Configure validation window/display. E.g. [{"bsdf" : "kd"}, {"bsdf" : "ks"}]
FLAGS.transparency = False # Enabled transparency through depth peeling
FLAGS.lock_light = False # Disable light optimization in the second pass
FLAGS.lock_pos = False # Disable vertex position optimization in the second pass
FLAGS.sdf_regularizer = 0.2 # Weight for sdf regularizer.
FLAGS.laplace = "relative" # Mesh Laplacian ["absolute", "relative"]
FLAGS.laplace_scale = 3000.0 # Weight for Laplace regularizer. Default is relative with large weight
FLAGS.pre_load = True # Pre-load entire dataset into memory for faster training
FLAGS.no_perturbed_nrm = False # Disable normal map
FLAGS.decorrelated = False # Use decorrelated sampling in forward and backward passes
FLAGS.kd_min = [ 0.0, 0.0, 0.0, 0.0]
FLAGS.kd_max = [ 1.0, 1.0, 1.0, 1.0]
FLAGS.ks_min = [ 0.0, 0.08, 0.0]
FLAGS.ks_max = [ 0.0, 1.0, 1.0]
FLAGS.nrm_min = [-1.0, -1.0, 0.0]
FLAGS.nrm_max = [ 1.0, 1.0, 1.0]
FLAGS.clip_max_norm = 0.0
FLAGS.cam_near_far = [0.1, 1000.0]
FLAGS.lambda_kd = 0.1
FLAGS.lambda_ks = 0.05
FLAGS.lambda_nrm = 0.025
FLAGS.lambda_nrm2 = 0.25
FLAGS.lambda_chroma = 0.0
FLAGS.lambda_diffuse = 0.15
FLAGS.lambda_specular = 0.0025
if FLAGS.config is not None:
data = json.load(open(FLAGS.config, 'r'))
for key in data:
FLAGS.__dict__[key] = data[key]
if FLAGS.display_res is None:
FLAGS.display_res = FLAGS.train_res
if FLAGS.out_dir is None:
FLAGS.out_dir = 'out/cube_%d' % (FLAGS.train_res)
else:
FLAGS.out_dir = 'out/' + FLAGS.out_dir
print("Config / Flags:")
print("---------")
for key in FLAGS.__dict__.keys():
print(key, FLAGS.__dict__[key])
print("---------")
os.makedirs(FLAGS.out_dir, exist_ok=True)
glctx = dr.RasterizeGLContext() # Context for training
glctx_display = glctx if FLAGS.batch < 16 else dr.RasterizeGLContext() # Context for display
# ==============================================================================================
# Create data pipeline
# ==============================================================================================
if os.path.splitext(FLAGS.ref_mesh)[1] == '.obj':
ref_mesh = mesh.load_mesh(FLAGS.ref_mesh, FLAGS.mtl_override)
dataset_train = DatasetMesh(ref_mesh, glctx, RADIUS, FLAGS, validate=False)
dataset_validate = DatasetMesh(ref_mesh, glctx_display, RADIUS, FLAGS, validate=True)
elif os.path.isdir(FLAGS.ref_mesh):
if os.path.isfile(os.path.join(FLAGS.ref_mesh, 'poses_bounds.npy')):
dataset_train = DatasetLLFF(FLAGS.ref_mesh, FLAGS, examples=(FLAGS.iter+1)*FLAGS.batch)
dataset_validate = DatasetLLFF(FLAGS.ref_mesh, FLAGS)
elif os.path.isfile(os.path.join(FLAGS.ref_mesh, 'transforms_train.json')) and not os.path.isfile(os.path.join(FLAGS.ref_mesh, 'intrinsics.txt')):
dataset_train = DatasetNERF(os.path.join(FLAGS.ref_mesh, 'transforms_train.json'), FLAGS, examples=(FLAGS.iter+1)*FLAGS.batch)
dataset_validate = DatasetNERF(os.path.join(FLAGS.ref_mesh, 'transforms_test.json'), FLAGS)
else:
assert False, "Invalid dataset format"
else:
print("Invalid dataset format", FLAGS.ref_mesh)
assert False, "Invalid dataset format"
# ==============================================================================================
# Create trainable light
# ==============================================================================================
lgt = None
if FLAGS.learn_lighting:
lgt = light.create_trainable_env_rnd(FLAGS.probe_res, scale=0.0, bias=0.5)
else:
lgt = light.load_env(FLAGS.envlight, scale=FLAGS.env_scale, res=[FLAGS.probe_res, FLAGS.probe_res])
# ==============================================================================================
# Setup denoiser
# ==============================================================================================
denoiser = None
if FLAGS.denoiser == 'bilateral':
denoiser = BilateralDenoiser().cuda()
else:
assert FLAGS.denoiser == 'none', "Invalid denoiser %s" % FLAGS.denoiser
if FLAGS.base_mesh is None:
# ==============================================================================================
# If no initial guess, use DMTet to create geometry
# ==============================================================================================
# Setup geometry for optimization
geometry = DMTetGeometry(FLAGS.dmtet_grid, FLAGS.mesh_scale, FLAGS)
# Setup textures, make initial guess from reference if possible
mat = initial_guess_material(geometry, True, FLAGS)
# Run optimization
mat['no_perturbed_nrm'] = True
geometry, mat = optimize_mesh(denoiser, glctx, glctx_display, geometry, mat, lgt, dataset_train, dataset_validate, FLAGS, pass_idx=0, pass_name="dmtet_pass1",
optimize_light=FLAGS.learn_lighting)
pass_idx = 1
if FLAGS.validate:
validate(glctx_display, geometry, mat, lgt, dataset_validate, os.path.join(FLAGS.out_dir, "dmtet_validate"), FLAGS, denoiser)
# Create initial guess mesh from result
base_mesh = xatlas_uvmap(glctx_display, geometry, mat, FLAGS).clone()
base_mesh.v_pos = base_mesh.v_pos.clone().detach().requires_grad_(True)
mat = material.create_trainable(base_mesh.material.copy())
geometry = DLMesh(base_mesh, FLAGS)
# Dump mesh for debugging
os.makedirs(os.path.join(FLAGS.out_dir, "dmtet_mesh"), exist_ok=True)
obj.write_obj(os.path.join(FLAGS.out_dir, "dmtet_mesh/"), base_mesh)
if FLAGS.learn_lighting:
light.save_env_map(os.path.join(FLAGS.out_dir, "dmtet_mesh/probe.hdr"), lgt)
# ==============================================================================================
# Pass 2: Train with fixed topology (mesh)
# ==============================================================================================
if FLAGS.transparency:
FLAGS.layers = 8
mat['no_perturbed_nrm'] = False
geometry, mat = optimize_mesh(denoiser, glctx, glctx_display, geometry, mat, lgt, dataset_train, dataset_validate, FLAGS,
pass_idx=pass_idx, pass_name="mesh_pass", warmup_iter=100,
optimize_light=not FLAGS.lock_light, optimize_geometry=not FLAGS.lock_pos) # Use warmup to avoid nasty Adam spikes
else:
# ==============================================================================================
# Train with fixed topology (mesh)
# ==============================================================================================
# Load initial guess mesh from file
base_mesh = mesh.load_mesh(FLAGS.base_mesh)
geometry = DLMesh(base_mesh, FLAGS)
base_mesh.v_pos = base_mesh.v_pos.clone().detach().requires_grad_(True)
mat = initial_guess_material(geometry, False, FLAGS, init_mat=base_mesh.material)
geometry, mat = optimize_mesh(denoiser, glctx, glctx_display, geometry, mat, lgt, dataset_train, dataset_validate, FLAGS,
pass_idx=0, pass_name="mesh_pass", warmup_iter=0, optimize_light=not FLAGS.lock_light, optimize_geometry=not FLAGS.lock_pos)
# ==============================================================================================
# Validate
# ==============================================================================================
if FLAGS.validate:
validate(glctx_display, geometry, mat, lgt, dataset_validate, os.path.join(FLAGS.out_dir, "validate"), FLAGS, denoiser)
# ==============================================================================================
# Dump output
# ==============================================================================================
final_mesh = geometry.getMesh(mat)
os.makedirs(os.path.join(FLAGS.out_dir, "mesh"), exist_ok=True)
obj.write_obj(os.path.join(FLAGS.out_dir, "mesh/"), final_mesh)
light.save_env_map(os.path.join(FLAGS.out_dir, "mesh/probe.hdr"), lgt)