forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstring-matching-in-an-array.py
147 lines (126 loc) · 4.63 KB
/
string-matching-in-an-array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Time: O(n + m + z) = O(n), n is the total size of patterns
# , m is the total size of query string
# , z is the number of all matched strings
# , O(n) = O(m) = O(z) in this problem
# Space: O(t), t is the total size of ac automata trie
import collections
class AhoNode(object):
def __init__(self):
self.children = collections.defaultdict(AhoNode)
self.indices = []
self.suffix = None
self.output = None
class AhoTrie(object):
def step(self, letter):
while self.__node and letter not in self.__node.children:
self.__node = self.__node.suffix
self.__node = self.__node.children[letter] if self.__node else self.__root
return self.__get_ac_node_outputs(self.__node)
def reset(self):
self.__node = self.__root
def __init__(self, patterns):
self.__root = self.__create_ac_trie(patterns)
self.__node = self.__create_ac_suffix_and_output_links(self.__root)
def __create_ac_trie(self, patterns): # Time: O(n), Space: O(t)
root = AhoNode()
for i, pattern in enumerate(patterns):
node = root
for c in pattern:
node = node.children[c]
node.indices.append(i)
return root
def __create_ac_suffix_and_output_links(self, root): # Time: O(n), Space: O(t)
queue = collections.deque()
for node in root.children.itervalues():
queue.append(node)
node.suffix = root
while queue:
node = queue.popleft()
for c, child in node.children.iteritems():
queue.append(child)
suffix = node.suffix
while suffix and c not in suffix.children:
suffix = suffix.suffix
child.suffix = suffix.children[c] if suffix else root
child.output = child.suffix if child.suffix.indices else child.suffix.output
return root
def __get_ac_node_outputs(self, node): # Time: O(z)
result = []
for i in node.indices:
result.append(i)
output = node.output
while output:
for i in output.indices:
result.append(i)
output = output.output
return result
class Solution(object):
def stringMatching(self, words):
"""
:type words: List[str]
:rtype: List[str]
"""
trie = AhoTrie(words)
lookup = set()
for i in xrange(len(words)):
trie.reset()
for c in words[i]:
for j in trie.step(c):
if j != i:
lookup.add(j)
return [words[i] for i in lookup]
# Time: O(n^2 * l), n is the number of strings
# Space: O(l) , l is the max length of strings
class Solution2(object):
def stringMatching(self, words):
"""
:type words: List[str]
:rtype: List[str]
"""
def getPrefix(pattern):
prefix = [-1]*len(pattern)
j = -1
for i in xrange(1, len(pattern)):
while j != -1 and pattern[j+1] != pattern[i]:
j = prefix[j]
if pattern[j+1] == pattern[i]:
j += 1
prefix[i] = j
return prefix
def kmp(text, pattern, prefix):
if not pattern:
return 0
if len(text) < len(pattern):
return -1
j = -1
for i in xrange(len(text)):
while j != -1 and pattern[j+1] != text[i]:
j = prefix[j]
if pattern[j+1] == text[i]:
j += 1
if j+1 == len(pattern):
return i-j
return -1
result = []
for i, pattern in enumerate(words):
prefix = getPrefix(pattern)
for j, text in enumerate(words):
if i != j and kmp(text, pattern, prefix) != -1:
result.append(pattern)
break
return result
# Time: O(n^2 * l^2), n is the number of strings
# Space: O(1) , l is the max length of strings
class Solution3(object):
def stringMatching(self, words):
"""
:type words: List[str]
:rtype: List[str]
"""
result = []
for i, pattern in enumerate(words):
for j, text in enumerate(words):
if i != j and pattern in text:
result.append(pattern)
break
return result