forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimum-incompatibility.py
375 lines (338 loc) · 14.1 KB
/
minimum-incompatibility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Time: O(sum(i*d * nCr(i*d, d) * nCr(n, i*d) for i in xrange(1, k+1))) < O(sum(n * 2^m * nCr(n, m) for m in xrange(n+1))) = O(n * 3^n)
# Space: O(n * k)
import itertools
class Solution(object):
def minimumIncompatibility(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
inf = (len(nums)-1)*(len(nums)//k)+1
def backtracking(nums, d, lookup):
if not nums:
return 0
if nums not in lookup:
ret = inf
for new_nums in itertools.combinations(nums, d):
new_nums_set = set(new_nums)
if len(new_nums_set) < d:
continue
left = []
for num in nums:
if num in new_nums_set:
new_nums_set.remove(num)
continue
left.append(num)
ret = min(ret, max(new_nums)-min(new_nums) + backtracking(tuple(left), d, lookup))
lookup[nums] = ret
return lookup[nums]
result = backtracking(tuple(nums), len(nums)//k, {})
return result if result != inf else -1
# Time: O(max(n * 2^n, 3^n))
# Space: O(2^n)
class Solution_TLE(object):
def minimumIncompatibility(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
inf = (len(nums)-1)*(len(nums)//k)+1
POW = [1]
for i in xrange(len(nums)):
POW.append(POW[-1]<<1)
def popcount(n):
result = 0
while n:
n &= n - 1
result += 1
return result
def find_candidates(nums, k):
total = POW[len(nums)]-1
m = len(nums)//k
result = [inf]*(total+1)
for mask in xrange(total+1):
if popcount(mask) != m:
continue
lookup = 0
mx, mn = 0, inf
for i in xrange(len(nums)):
if mask&POW[i] == 0:
continue
if lookup&POW[nums[i]]:
break
lookup |= POW[nums[i]]
mx = max(mx, nums[i])
mn = min(mn, nums[i])
else:
result[mask] = mx-mn
return result
candidates = find_candidates(nums, k)
m = len(nums)//k
total = POW[len(nums)]-1
dp = [inf]*(total+1)
dp[0] = 0
for mask in xrange(total+1):
if popcount(mask) % m != 0:
continue
# submask enumeration:
# => sum(nCr(n, k) * 2^k for k in xrange(n+1)) = (1 + 2)^n = 3^n
# => Time: O(3^n), see https://cp-algorithms.com/algebra/all-submasks.html
submask = mask
while submask:
dp[mask] = min(dp[mask], dp[mask-submask] + candidates[submask])
submask = (submask-1)&mask
return dp[-1] if dp[-1] != inf else -1
# Time: O(nlogn)
# Space: O(n)
import collections
import sortedcontainers
# wrong with greedy solution
# nums = [15, 9, 7, 10, 15, 14, 12, 2, 10, 8, 10, 13, 4, 11, 2]
# k = 5
# greedy => [[2, 4, 7], [2, 8, 9], [10, 11, 12], [10, 13, 15], [10, 14, 15]] => 24
# correct => [[2, 4, 7], [2, 8, 10], [9, 10, 11], [10, 12, 15], [13, 14, 15]] => 22
# optimized from Solution_Greedy, using SortedList (which is not supported in GoogleCodeJam / GoogleKickStart)
class Solution_Wrong_Greedy_SortedList(object):
def minimumIncompatibility(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
def greedy(nums, k, is_reversed):
count = collections.Counter(nums)
if max(count.itervalues()) > k:
return -1
ordered_set = sortedcontainers.SortedList(count.iterkeys())
freq_to_nodes = collections.defaultdict(collections.OrderedDict)
for x in ordered_set:
freq_to_nodes[count[x]][x] = count[x]
stks = [[] for _ in xrange(k)]
curr = 0
while ordered_set: # the while loop runs O(k) times
if len(stks)-curr in freq_to_nodes: # fill the deterministic elements into the remaining subsets
for x in freq_to_nodes[len(stks)-curr].iterkeys(): # total time = O(n)
for i in xrange(curr, len(stks)):
stks[i].append(x)
count.pop(x)
ordered_set.remove(x)
freq_to_nodes.pop(len(stks)-curr)
# greedily fill the contiguous ordered elements into the first vacant subset until it is full,
# otherwise, the result sum would get larger => in fact, this is wrong
to_remove = []
direction = (lambda x:x) if not is_reversed else reversed
for x in direction(ordered_set):
stks[curr].append(x)
freq_to_nodes[count[x]].pop(x)
if not freq_to_nodes[count[x]]:
freq_to_nodes.pop(count[x])
count[x] -= 1 # total time = O(n)
if not count[x]:
count.pop(x)
to_remove.append(x)
else:
freq_to_nodes[count[x]][x] = count[x]
if len(stks[curr]) == len(nums)//k:
curr += 1
break
for x in to_remove:
ordered_set.remove(x) # total time = O(nlogn)
return sum([max(stk)-min(stk) for stk in stks])
return min(greedy(nums, k, False), greedy(nums, k, True)) # two possible minimas
# Time: O(nlogn)
# Space: O(n)
import collections
from random import randint, seed
# Template modified from:
# https://github.com/kamyu104/LeetCode-Solutions/blob/master/Python/design-skiplist.py
class SkipNode(object):
def __init__(self, level=0, val=None):
self.val = val
self.nexts = [None]*level
self.prevs = [None]*level
class SkipList(object):
P_NUMERATOR, P_DENOMINATOR = 1, 2 # P = 1/4 in redis implementation
MAX_LEVEL = 32 # enough for 2^32 elements
def __init__(self, end=float("inf"), can_duplicated=False, cmp=lambda x, y: x < y):
seed(0)
self.__head = SkipNode()
self.__len = 0
self.__can_duplicated = can_duplicated
self.__cmp = cmp
self.add(end)
self.__end = self.find(end)
def begin(self):
return self.__head.nexts[0]
def end(self):
return self.__end
def lower_bound(self, target):
return self.__lower_bound(target, self.__find_prev_nodes(target))
def find(self, target):
return self.__find(target, self.__find_prev_nodes(target))
def add(self, val):
if not self.__can_duplicated and self.find(val):
return self.find(val), False
node = SkipNode(self.__random_level(), val)
if len(self.__head.nexts) < len(node.nexts):
self.__head.nexts.extend([None]*(len(node.nexts)-len(self.__head.nexts)))
prevs = self.__find_prev_nodes(val)
for i in xrange(len(node.nexts)):
node.nexts[i] = prevs[i].nexts[i]
if prevs[i].nexts[i]:
prevs[i].nexts[i].prevs[i] = node
prevs[i].nexts[i] = node
node.prevs[i] = prevs[i]
self.__len += 1
return node if self.__can_duplicated else (node, True)
def remove(self, it):
prevs = it.prevs
curr = self.__find(it.val, prevs)
if not curr:
return self.__end
self.__len -= 1
for i in reversed(xrange(len(curr.nexts))):
prevs[i].nexts[i] = curr.nexts[i]
if curr.nexts[i]:
curr.nexts[i].prevs[i] = prevs[i]
if not self.__head.nexts[i]:
self.__head.nexts.pop()
return curr.nexts[0]
def __lower_bound(self, val, prevs):
if prevs:
candidate = prevs[0].nexts[0]
if candidate:
return candidate
return None
def __find(self, val, prevs):
candidate = self.__lower_bound(val, prevs)
if candidate and candidate.val == val:
return candidate
return None
def __find_prev_nodes(self, val):
prevs = [None]*len(self.__head.nexts)
curr = self.__head
for i in reversed(xrange(len(self.__head.nexts))):
while curr.nexts[i] and self.__cmp(curr.nexts[i].val, val):
curr = curr.nexts[i]
prevs[i] = curr
return prevs
def __random_level(self):
level = 1
while randint(1, SkipList.P_DENOMINATOR) <= SkipList.P_NUMERATOR and \
level < SkipList.MAX_LEVEL:
level += 1
return level
def __iter__(self):
it = self.begin()
while it != self.end():
yield it.val
it = it.nexts[0]
def __len__(self):
return self.__len-1 # excluding end node
def __str__(self):
result = []
for i in reversed(xrange(len(self.__head.nexts))):
result.append([])
curr = self.__head.nexts[i]
while curr:
result[-1].append(str(curr.val))
curr = curr.nexts[i]
return "\n".join(map(lambda x: "->".join(x), result))
# wrong with greedy solution
# nums = [15, 9, 7, 10, 15, 14, 12, 2, 10, 8, 10, 13, 4, 11, 2]
# k = 5
# greedy => [[2, 4, 7], [2, 8, 9], [10, 11, 12], [10, 13, 15], [10, 14, 15]] => 24
# correct => [[2, 4, 7], [2, 8, 10], [9, 10, 11], [10, 12, 15], [13, 14, 15]] => 22
# optimized from Solution_Wrong_Greedy, using SkipList
class Solution_Wrong_Greedy_SkipList(object):
def minimumIncompatibility(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
def greedy(nums, k, is_reversed):
count = collections.Counter(nums)
if max(count.itervalues()) > k:
return -1
ordered_set = SkipList() if not is_reversed else SkipList(end=float("-inf"), cmp=lambda x, y: x > y)
freq_to_nodes = collections.defaultdict(collections.OrderedDict)
for x in sorted(count.keys(), reverse=is_reversed):
ordered_set.add(x)
freq_to_nodes[count[x]][x] = count[x]
stks = [[] for _ in xrange(k)]
curr = 0
while ordered_set: # the while loop runs O(k) times
if len(stks)-curr in freq_to_nodes: # fill the deterministic elements into the remaining subsets
for x in freq_to_nodes[len(stks)-curr].iterkeys(): # total time = O(n)
for i in xrange(curr, len(stks)):
stks[i].append(x)
count.pop(x)
ordered_set.remove(ordered_set.find(x))
freq_to_nodes.pop(len(stks)-curr)
# greedily fill the contiguous ordered elements into the first vacant subset until it is full,
# otherwise, the result sum would get larger => in fact, this is wrong
it = ordered_set.begin()
while it != ordered_set.end():
x = it.val
stks[curr].append(x)
freq_to_nodes[count[x]].pop(x)
if not freq_to_nodes[count[x]]:
freq_to_nodes.pop(count[x])
count[x] -= 1 # total time = O(n)
if not count[x]:
count.pop(x)
it = ordered_set.remove(it) # total time = O(nlogn)
else:
freq_to_nodes[count[x]][x] = count[x]
it = it.nexts[0]
if len(stks[curr]) == len(nums)//k:
curr += 1
break
return sum([max(stk)-min(stk) for stk in stks])
return min(greedy(nums, k, False), greedy(nums, k, True)) # two possible minimas
# Time: O(nlogn + k * n), could be improved to O(nlogn) by skiplist or orderedlist
# Space: O(n)
import collections
# wrong with greedy solution
# nums = [15, 9, 7, 10, 15, 14, 12, 2, 10, 8, 10, 13, 4, 11, 2]
# k = 5
# greedy => [[2, 4, 7], [2, 8, 9], [10, 11, 12], [10, 13, 15], [10, 14, 15]] => 24
# correct => [[2, 4, 7], [2, 8, 10], [9, 10, 11], [10, 12, 15], [13, 14, 15]] => 22
class Solution_Wrong_Greedy(object):
def minimumIncompatibility(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
def greedy(nums, k, is_reversed):
count = collections.Counter(nums)
if max(count.itervalues()) > k:
return -1
sorted_keys = sorted(count.keys(), reverse=is_reversed)
stks = [[] for _ in xrange(k)]
curr, remain = 0, len(nums)
while remain: # the while loop runs O(k) times, and the inner loops runs O(n) times
for x in sorted_keys: # fill the deterministic elements into the remaining subsets
if count[x] != len(stks)-curr:
continue
for i in xrange(curr, len(stks)):
stks[i].append(x)
remain -= count[x]
count[x] = 0
# greedily fill the contiguous ordered elements into the first vacant subset until it is full,
# otherwise, the result sum would get larger => in fact, this is wrong
for x in sorted_keys:
if not count[x]:
continue
stks[curr].append(x)
remain -= 1
count[x] -= 1
if len(stks[curr]) == len(nums)//k:
curr += 1
break
return sum([max(stk)-min(stk) for stk in stks])
return min(greedy(nums, k, False), greedy(nums, k, True)) # two possible minimas