forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimum-cost-to-make-at-least-one-valid-path-in-a-grid.cpp
91 lines (87 loc) · 3.38 KB
/
minimum-cost-to-make-at-least-one-valid-path-in-a-grid.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
// Time: O(m * n)
// Space: O(m * n)
// A* Search Algorithm without heap
class Solution {
public:
int minCost(vector<vector<int>>& grid) {
const pair<int, int> b = {0, 0}, t = {grid.size() - 1, grid[0].size() - 1};
return a_star(grid, b, t);
}
private:
int a_star(const vector<vector<int>>& grid,
const pair<int, int>& b,
const pair<int, int>& t) {
static const vector<tuple<int, int, int>> directions = {{1, 0, 1}, {2, 0, -1},
{3, 1, 0}, {4, -1, 0}};
int f = 0, dh = 1;
vector<pair<int, int>> closer = {b}, detour;
unordered_set<int> lookup;
while (!closer.empty() || !detour.empty()) {
if (closer.empty()) {
f += dh;
swap(closer, detour);
}
const auto b = closer.back(); closer.pop_back();
if (b == t) {
return f;
}
if (lookup.count(b.first * grid[0].size() + b.second)) {
continue;
}
lookup.emplace(b.first * grid[0].size() + b.second);
for (const auto& [nd, dr, dc] : directions) {
const pair<int, int>& nb = {b.first + dr, b.second + dc};
if (!(0 <= nb.first && nb.first < grid.size() &&
0 <= nb.second && nb.second < grid[0].size() &&
!lookup.count(nb.first * grid[0].size() + nb.second))) {
continue;
}
if (nd == grid[b.first][b.second]) {
closer.emplace_back(nb);
} else {
detour.emplace_back(nb);
}
}
}
return -1;
}
};
// Time: O(m * n)
// Space: O(m * n)
// 0-1 bfs solution
class Solution2 {
public:
int minCost(vector<vector<int>>& grid) {
static const vector<tuple<int, int, int>> directions = {{1, 0, 1}, {2, 0, -1},
{3, 1, 0}, {4, -1, 0}};
const pair<int, int> b = {0, 0}, t = {grid.size() - 1, grid[0].size() - 1};
deque<pair<pair<int, int>, int>> dq = {{b, 0}};
unordered_map<int, int> lookup = {{b.first * grid[0].size() + b.second, 0}};
while (!dq.empty()) {
const auto [b, d] = dq.front(); dq.pop_front();
if (b == t) {
return d;
}
if (lookup[b.first * grid[0].size() + b.second] < d) {
continue;
}
for (const auto& [nd, dr, dc] : directions) {
const auto& nb = make_pair(b.first + dr, b.second + dc);
const auto& cost = nd != grid[b.first][b.second] ? 1 : 0;
if (!(0 <= nb.first && nb.first < grid.size() &&
0 <= nb.second && nb.second < grid[0].size() &&
(!lookup.count(nb.first * grid[0].size() + nb.second) ||
lookup[nb.first * grid[0].size() + nb.second] > d + cost))) {
continue;
}
lookup[nb.first * grid[0].size() + nb.second] = d + cost;
if (!cost) {
dq.emplace_front(nb, d);
} else {
dq.emplace_back(nb, d + cost);
}
}
}
return -1; // never reach here
}
};