This repository has been archived by the owner on Apr 21, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoperations.v
193 lines (156 loc) · 5.4 KB
/
operations.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
Require Import HoTT.
Require Export structures basics.
Open Scope path_scope.
Import Magma2_pr.
Section Product.
Definition law_prod : forall {G G'}, law G -> law G' -> law (G*G')
:= fun G G' f g x y => match x,y with
| (a,b) , (a',b') => (f a a', g b b')
end.
Canonical Structure mag_prod : forall (G G' : magma), magma
:= fun G G' => BuildMagma (G*G') (BuildClass (law_prod gop gop)).
Infix "*" := mag_prod.
Instance prod_comm : forall {G}, Commutative G ->
forall {H}, Commutative H -> Commutative (G * H).
Proof.
red;intros.
destruct x,y. unfold gop;simpl.
apply ap11;[apply ap|];auto.
Defined.
Instance prod_assoc : forall {G}, Associative G ->
forall {H}, Associative H -> Associative (G * H).
Proof.
red;intros.
destruct x,y,z. unfold gop;simpl.
apply ap11;[apply ap|];auto.
Defined.
Instance prod_is_sg : forall G {Hsg : IsSemigroup G}
H {Hsg' : IsSemigroup H}, IsSemigroup (G * H).
Proof.
intros.
apply BuildIsSemigroup.
apply prod_assoc. apply Hsg. apply Hsg'.
apply prod_comm. apply Hsg. apply Hsg'.
Defined.
Canonical Structure prod_sg : forall {G H : semigroup}, semigroup
:= fun G H => BuildSemigroup (G*H) (prod_is_sg _ _).
Instance prod_is_monoid : forall {G} {Hsg : IsMonoid G}
{H} {Hsg' : IsMonoid H}, IsMonoid (G * H).
Proof.
intros. apply BuildIsMonoid. apply _. apply BuildIdentity with (gidV, gidV).
apply left_id_id. red. intros [x x'].
unfold gop;simpl.
apply ap11;[apply ap|];apply gid_id.
Defined.
Canonical Structure prod_monoid : forall {G H : monoid}, monoid
:= fun G H => BuildMonoid (G*H) prod_is_monoid.
Lemma prod_Lcancel_pair : forall {G H : magma} (a : G) (b : H),
Lcancel a -> Lcancel b -> Lcancel (a, b).
Proof.
red;intros.
destruct b0;destruct c.
simpl in X1. apply equiv_path_prod in X1;simpl in X1.
apply path_prod;simpl;[apply X | apply X0];apply X1.
Defined.
Lemma prod_Rcancel_pair : forall {G H : magma} (a : G) (b : H),
Rcancel a -> Rcancel b -> Rcancel (a, b).
Proof.
red;intros.
destruct b0;destruct c.
simpl in X1. apply equiv_path_prod in X1;simpl in X1.
apply path_prod;simpl;[apply X | apply X0];apply X1.
Defined.
Lemma prod_Cancel_pair : forall {G H : magma} (a : G) (b : H),
Cancel a -> Cancel b -> Cancel (a, b).
Proof.
intros;split;
[apply prod_Lcancel_pair | apply prod_Rcancel_pair];
first [apply X | apply X0].
Defined.
Instance prod_is_cmonoid : forall {G} {Hsg : IsCMonoid G}
{H} {Hsg' : IsCMonoid H}, IsCMonoid (G * H).
Proof.
intros. apply BuildIsCMonoid. apply _.
intros; destruct a;apply prod_Cancel_pair;apply cmonoid_cancel.
Defined.
Canonical Structure prod_cmonoid : forall {G H : Cmonoid}, Cmonoid
:= fun G H => BuildCMonoid (G*H) _.
Definition prod_apart {A B : Type} (f : A -> B) {C D : Type} (g : C -> D)
: (A*C) -> (B*D) := fun p => let (a,c) := p in (f a, g c).
Instance prod_linverse : forall {G H : monoid},
forall x y : G, Linverse x y ->
forall x' y' : H, Linverse x' y' ->
Linverse (x,x') (y,y').
Proof.
intros;red. unfold gop;simpl.
apply ap11;[apply ap;apply X|apply X0].
Defined.
Instance prod_rinverse : forall {G H : monoid},
forall x y : G, Rinverse x y ->
forall x' y' : H, Rinverse x' y' ->
Rinverse (x,x') (y,y').
Proof.
intros. apply prod_linverse;assumption.
Defined.
Instance prod_inverse : forall {G H : monoid},
forall x y : G, IsInverse x y ->
forall x' y' : H, IsInverse x' y' ->
IsInverse (x,x') (y,y').
Proof.
intros;split;[apply prod_linverse | apply prod_rinverse];
first [apply X | apply X0].
Defined.
Instance prod_is_group : forall {G} {Hsg : IsGroup G}
{H} {Hsg' : IsGroup H}, IsGroup (G * H).
Proof.
intros. apply easyIsGroup with prod_is_monoid (prod_apart gopp gopp).
intros [a b]. simpl. apply prod_inverse;apply gopp_correct.
Defined.
Canonical Structure prod_group : forall {G H : group}, group
:= fun G H => BuildGroup (G*H) _.
Canonical Structure mag2_prod : forall (G G' : magma2), magma2
:= fun G G' => BuildMagma2 (G*G')
(BuildClass (law_prod radd radd)) (BuildClass (law_prod rmult rmult)).
Infix "*" := mag2_prod.
Instance prod_left_distrib : forall {G} (Hg : Ldistributes G)
{H} (Hh : Ldistributes H), Ldistributes (G*H).
Proof.
intros;red. intros [a1 a2] [b1 b2] [c1 c2].
unfold rmult;unfold radd;unfold gop;simpl;
apply ap11;[apply ap;apply Hg|apply Hh].
Defined.
Instance prod_right_distrib : forall {G} (Hg : Rdistributes G)
{H} (Hh : Rdistributes H), Rdistributes (G*H).
Proof.
intros;red. intros [a1 a2] [b1 b2] [c1 c2].
unfold radd;unfold rmult;unfold gop;simpl;
apply ap11;[apply ap;apply Hg|apply Hh].
Defined.
Instance prod_distrib : forall {G} (Hg : Distributes G)
{H} (Hh : Distributes H), Distributes (G*H).
Proof.
intros;split;[apply prod_left_distrib | apply prod_right_distrib];
first [apply Hg | apply Hh].
Defined.
Instance prod_is_semiring : forall {G} {Hg : IsSemiring G}
{H} {Hh : IsSemiring H}, IsSemiring (G*H).
Proof.
intros. apply BuildIsSemiring.
apply (@prod_is_cmonoid (mag2_add G) _ (mag2_add H) _).
apply (@prod_is_monoid (mag2_mult G) _ (mag2_mult H) _).
apply prod_distrib;apply semiring_distributes.
Defined.
Canonical Structure prod_semiring : forall {G H : semiring}, semiring
:= fun G H => BuildSemiring (G*H) prod_is_semiring.
Instance prod_is_ring : forall {G} {Hg : IsRing G}
{H} {Hh : IsRing H}, IsRing (G*H).
Proof.
intros.
apply easyIsRing. apply prod_is_group.
change (IsMonoid (mag_prod (mag2_mult G) (mag2_mult H))).
apply prod_is_monoid.
apply prod_distrib;apply _.
Defined.
Canonical Structure prod_ring : forall {G H : ring}, ring
:= fun G H => BuildRing (G*H) _.
End Product.