This repository has been archived by the owner on Apr 21, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdedekind.v
496 lines (415 loc) · 13.7 KB
/
dedekind.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
Require Import HoTT FunextAxiom UnivalenceAxiom.
Require Import basics syntax quotient minus1Trunc.
Module Dedekind.
Import Distributive.
Export Field_pr OrderedRing OrderedMagma_pr.
Section VarSec.
Context {T : Type}.
Variable L : PreringFull T.
Context {Hdec : @Decidable T paths} {HpropLt : RelationProp (<)}
{Hfield : IsDecField L}
{Hfo : FullPseudoSemiringOrder L} {Htri : Trichotomic (<)}.
Let Hset : IsHSet T := hset_decidable Hdec.
Class IsCut (L U : T -> Type) := BuildIsCut {
cut_prop_l :> forall x, IsHProp (L x);
cut_prop_u :> forall x, IsHProp (U x);
cut_inhab_l : minus1Trunc (sigT L);
cut_inhab_u : minus1Trunc (sigT U);
cut_round_l : forall q, L q <-> minus1Trunc (exists r, q < r /\ L r);
cut_round_u : forall r, U r <-> minus1Trunc (exists q, q < r /\ U q);
cut_disjoint : forall q, L q -> U q -> Empty;
cut_locat : forall q r, q < r -> minus1Trunc (L q \/ U r)
}.
Record Real := BuildReal {
real_l : T -> Type;
real_u : T -> Type;
real_cut : IsCut real_l real_u
}.
Existing Instance real_cut.
Coercion real_cut : Real >-> IsCut.
Global Instance IsCut_is_prop : forall L U, IsHProp (IsCut L U).
Admitted.
Global Instance Real_is_set : IsHSet Real.
Admitted.
Lemma cut_order : forall L U, IsCut L U ->
forall a b, L a -> U b -> a < b.
Proof.
intros.
destruct (Htri a b). assumption.
destruct s. destruct p.
edestruct cut_disjoint. apply X0. apply X1.
edestruct cut_disjoint. apply X0.
apply cut_round_u. apply min1.
exists b. split. assumption. assumption.
Defined.
Instance lt_compat : IsCompat (+ <).
Proof.
apply invariant_compat.
apply (@fullpseudo_is_fullposet _ L);try apply _.
split; apply Hfo.
apply linvariant_invariant. apply _.
red;apply _.
Defined.
Let Hfullpo : FullPoset L.
Proof.
apply fullpseudo_is_fullposet.
apply HpropLt. split.
apply Hfo. apply Hfo.
Defined.
Existing Instance Hfullpo.
Instance leq_compat : IsCompat (+ <=).
Proof.
admit. (** fuck it **)
Defined.
Lemma lt_plus_leq : forall a b : T, a < b -> forall c d : T, c <= d ->
a + c < b + d.
Proof.
intros.
apply (@lt_iff_le_apart _ _ Hfullpo).
split. apply leq_compat;unfold rrel;simpl.
apply (@lt_iff_le_apart T L _) in X. apply X.
assumption.
admit. (**arghwhy**)
Defined.
Lemma embed_justify : forall t : T, IsCut (fun t' => t' < t) (lt t).
Proof.
split.
- intros;apply HpropLt.
- apply HpropLt.
- apply min1. exists (t + roppV OneV).
apply transport with (t + ZeroV).
apply Zero.
apply Hfo. unfold rrel.
admit. (** roppV OneV < ZeroV **)
- apply min1. exists (t + OneV).
change ((fun t' => t' < t + OneV) t). apply transport with (t + ZeroV).
apply Zero.
apply Hfo. unfold rrel.
admit. (** ZeroV < OneV **)
- split.
intros H.
admit. (** q < t -> (q+t)/2 between q and t **)
apply minus1Trunc_rect_nondep;[|apply HpropLt].
intros [r [Hr Hr']].
apply @transitivity with r;try assumption.
admit. (** fullpseudo -> < trans, already proven **)
- split.
admit. (** q < t -> (q+t)/2 between q and t **)
apply minus1Trunc_rect_nondep;[|apply HpropLt].
intros [q [Hq Hq']].
apply @transitivity with q;try assumption.
admit. (** fullpseudo -> < trans, already proven **)
- intro. apply Hfo.
- intros.
admit. (** q < t -> (q+t)/2 between q and t **)
Qed.
Definition embed (t : T) : Real.
Proof.
apply (BuildReal (fun t' => t' < t) (lt t)).
apply embed_justify.
Defined.
Lemma rplus_justify : forall X Y : Real,
IsCut (fun q => minus1Trunc
(exists r s : T, real_l X r /\ real_l Y s /\ r+s = q))
(fun q => minus1Trunc
(exists r s : T, real_u X r /\ real_u Y s /\ r+s = q)).
Proof.
split;try apply _.
- generalize (@cut_inhab_l (real_l X) _ _).
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros Hx.
generalize (@cut_inhab_l (real_l Y) _ _).
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros Hy.
apply min1.
exists (Hx.1 + Hy.1).
apply min1. exists (Hx.1). exists (Hy.1).
split. apply (Hx.2).
split. apply (Hy.2).
reflexivity.
- generalize (@cut_inhab_u (real_l X) _ _).
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros Hx.
generalize (@cut_inhab_u (real_l Y) _ _).
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros Hy.
apply min1.
exists (Hx.1 + Hy.1).
apply min1. exists (Hx.1). exists (Hy.1).
split. apply (Hx.2).
split. apply (Hy.2).
reflexivity.
- split. apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros H.
destruct H as [r [s [H [H' H'']]]]. destruct H''.
apply cut_round_l in H. revert H.
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros [r' Hr'].
apply cut_round_l in H'. revert H'.
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros [s' Hs'].
apply min1. exists (r' + s'). destruct Hr',Hs'.
split.
apply lt_compat; assumption.
apply min1. exists r';exists s'.
repeat (split;auto).
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros [r [Hr Hr']]. revert Hr'.
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros [r' [s [Hr' [Hs He]]]]. destruct He.
(* q < r'+s, r' < X, s < Y -> exists r s', r < X, s' < Y, r + s' = q *)
(* let r := r', s' := q-r' < s < Y *)
apply min1. exists r'. exists (q + (roppV r')). split. assumption.
split. apply cut_round_l. apply min1. exists s.
split;[|assumption].
apply transport with ((r'+s)+(roppV r')).
path_via (s + ZeroV).
path_via (s + (r' + roppV r')).
ssrapply (@ast_use T (+) _). reflexivity.
apply ap. apply ropp_r.
apply Zero.
apply lt_plus_leq. assumption.
apply Hfullpo.
path_via (q + (r' + roppV r')).
ssrapply (@ast_use T (+) _). reflexivity.
apply roppP.
- admit. (* basically same as above *)
- intros q H. apply minus1Trunc_rect_nondep;[|intros []].
intro H'. revert H. apply minus1Trunc_rect_nondep;[|intros []].
intro H.
destruct H as [r [s [Hr [Hs He]]]].
destruct H' as [r' [s' [Hr' [Hs' He']]]].
destruct He'.
(* r' > X, s' > Y, r < X, s < Y, r+s = r'+s' -> Empty *)
(* r = r'+s'-s < X *)
(* r'+s'-s > X -> absurd *)
admit.
- intros.
(* goal: forall q < r, q < X+Y or X+Y < r *)
admit. (* dunno how to prove *)
Qed.
Definition rPlus : Plus Real.
Proof.
intros X Y.
apply (BuildReal
(fun q => minus1Trunc (exists r s : T, real_l X r /\ real_l Y s /\ r+s = q))
(fun q => minus1Trunc (exists r s : T, real_u X r /\ real_u Y s /\ r+s = q))).
apply rplus_justify.
Defined.
(*
forall q X, q < -X <-> X < -q and -X < q <-> -q < X
*)
Lemma ropp_justify : forall X : Real, IsCut
(fun q => real_u X (roppV q))
(fun q => real_l X (roppV q)).
Proof.
intros.
split;try apply _.
- generalize (@cut_inhab_u _ _ X).
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros H.
apply min1. destruct H as [x Hx].
exists (roppV x).
eapply transport;[|apply Hx].
apply inverse;apply gopp_gopp.
- generalize (@cut_inhab_l _ _ X).
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros H.
apply min1. destruct H as [x Hx].
exists (roppV x).
eapply transport;[|apply Hx].
apply inverse;apply gopp_gopp.
- intros. eapply iff_trans.
apply cut_round_u.
split;(apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop]);
intros H;apply min1;
destruct H as [r [Hr Hr']];
exists (roppV r); (split;[admit|]). (* forall a < b -> -b < -a *)
eapply transport;[|apply Hr'].
apply inverse;apply gopp_gopp.
assumption.
- intros. eapply iff_trans.
apply cut_round_l.
split;(apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop]);
intros H;apply min1;
destruct H as [q [Hq Hq']];
exists (roppV q); (split;[admit|]). (* forall a < b -> -b < -a *)
eapply transport;[|apply Hq'].
apply inverse;apply gopp_gopp.
assumption.
- intros q H H';revert H;revert H'. apply cut_disjoint.
- intros.
assert (H:roppV r < roppV q). admit. clear X0.
apply (@cut_locat _ _ X) in H. revert H.
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros H;apply min1;destruct H as [H|H];[right|left];assumption.
Qed.
Definition rOpp : forall X : Real, Real.
Proof.
intros. econstructor.
apply (ropp_justify X).
Defined.
Definition r0 : Real := embed ZeroV.
Definition mult_lower (X Y : Real) : T -> Type
:= fun q => minus1Trunc (exists a b c d : T, real_l X a /\ real_u X b
/\ real_l Y c /\ real_u Y d /\ q < a°c /\ q < a°d /\ q < b°c /\ q < b°d).
Definition mult_upper (X Y : Real) : T -> Type
:= fun q => minus1Trunc (exists a b c d : T, real_l X a /\ real_u X b
/\ real_l Y c /\ real_u Y d /\ a°c < q /\ a°d < q /\ b°c < q /\ b°d < q).
Lemma mult_justify : forall X Y : Real, IsCut (mult_lower X Y) (mult_upper X Y).
Proof.
intros;split;try apply _;
admit. (* later *)
Qed.
Definition rMult : Mult Real.
Proof.
intros X Y. econstructor.
exact (mult_justify X Y).
Defined.
Definition r1 : Real := embed OneV.
Definition rLeq : Leq Real := fun X Y =>
forall q : T, real_l X q -> real_l Y q.
Definition rLt : Lt Real := fun X Y =>
minus1Trunc (exists q : T, real_u X q /\ real_l Y q).
Definition rApart : Apart Real := fun X Y =>
rLt X Y \/ rLt Y X.
Instance rFull : PreringFull Real
:= BuildLLRRR_Class Real rPlus rMult rApart rLeq rLt.
Lemma real_eq : forall X Y : Real,
(forall q, real_l X q <-> real_l Y q) ->
(forall q, real_u X q <-> real_u Y q) ->
X=Y.
Proof.
admit. (* etc *)
Defined.
Instance rplus_comm : @Commutative Real (+).
Proof.
red;unfold gop.
assert (Hl : forall X Y : Real, forall q, real_l (X+Y) q -> real_l (Y+X) q).
simpl. intros X Y q.
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intro H;apply min1;destruct H as [r [s [H [H0 H1]]]].
exists s;exists r;repeat (split;try assumption).
path_via (r+s).
apply commutative. apply Hfield.
assert (Hu : forall X Y : Real, forall q, real_u (X+Y) q -> real_u (Y+X) q).
simpl. intros X Y q.
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intro H;apply min1;destruct H as [r [s [H [H0 H1]]]].
exists s;exists r;repeat (split;try assumption).
path_via (r+s).
apply commutative. apply Hfield.
intros. apply real_eq;
intros;split;auto.
Defined.
Instance rplus_assoc : @Associative Real (+).
Proof.
red;unfold gop.
intros X Y Z.
apply real_eq;simpl;intros q;(split;
(apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop]);intro H;
[destruct H as [r [s [H [H' H0]]]]|destruct H as [r[s[H' [H H0]]]]]);
revert H';(apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop]);
intro H';destruct H' as [r'[s' [H1 [H2 H3]]]];apply min1;
destruct H0;destruct H3;repeat first
[econstructor | apply min1 | apply H1 | apply H2 | apply H];
first [apply associative | apply inverse;apply associative];apply Hfield.
Defined.
Instance rplus_sg : @IsSemigroup Real (+). split;apply _. Defined.
Instance r0_is_id : IsId (+) r0.
Proof.
apply left_id_id.
red. unfold gop.
intro X.
unfold r0. apply real_eq; simpl;
(split;[apply minus1Trunc_rect_nondep;[|
first [apply cut_prop_l | apply cut_prop_u]];
intros H;destruct H as [r [s [H [H0 H1]]]];destruct H1 |]).
apply cut_round_l. apply min1. exists s. split;auto.
apply transport with (ZeroV + s). apply Zero.
admit. (* plus_lt_leq_lt *)
intros H.
apply cut_round_l in H. revert H.
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros H;apply min1. destruct H as [r [H H']].
exists (q + roppV r). exists r.
split. admit. (* q < r -> q - r < 0 *)
split. assumption. path_via (q + (roppV r + r)).
apply inverse;apply associative;apply Hfield.
apply (roppP r). (* bit slow, change for other? *)
apply cut_round_u. apply min1. exists s. split;auto.
change ((fun k => k < r + s) s). apply transport with (ZeroV + s).
apply Zero.
admit. (* plus_lt_leq_lt *)
intros H. apply cut_round_u in H. revert H.
apply minus1Trunc_rect_nondep;[|apply minus1Trunc_is_prop].
intros H;apply min1. destruct H as [r [H H']].
exists (q + roppV r). exists r.
split. admit. (* r < q -> 0 < q - r *)
split. assumption. path_via (q + (roppV r + r)).
apply inverse;apply associative;apply Hfield.
apply (roppP r). (* bit slow, change for other? *)
Defined.
Instance rplus_monoid : @IsMonoid Real (+).
Proof. split;try apply _;econstructor;apply _. Defined.
Instance rLeq_poset : @Poset Real (<=).
Proof.
split.
- red. unfold leq. simpl. unfold rLeq.
intros;eauto.
- intro. hnf. auto.
- hnf. intros. hnf in X,X0.
apply real_eq. split;auto.
split;intro H.
pose (H' := H);clearbody H'.
apply cut_round_u in H'.
revert H';apply minus1Trunc_rect_nondep;[|apply cut_prop_u].
intros H'. destruct H' as [q' [H' Hq']].
apply (@cut_locat _ _ y) in H'. revert H'.
apply minus1Trunc_rect_nondep;[|apply cut_prop_u].
intros H'. destruct H' as [H'|H'];try assumption.
apply X0 in H'.
destruct (@cut_disjoint _ _ x _ H' Hq').
pose (H' := H);clearbody H'.
apply cut_round_u in H'.
revert H';apply minus1Trunc_rect_nondep;[|apply cut_prop_u].
intros H'. destruct H' as [q' [H' Hq']].
apply (@cut_locat _ _ x) in H'. revert H'.
apply minus1Trunc_rect_nondep;[|apply cut_prop_u].
intros H'. destruct H' as [H'|H'];try assumption.
apply X in H'.
destruct (@cut_disjoint _ _ y _ H' Hq').
Defined.
Lemma rlt_embed_l : forall X q, real_l X q <-> embed q < X.
Proof.
intros X. apply cut_round_l.
Defined.
Lemma prod_comm_rw : prod = fun A B => B*A.
Proof.
repeat (apply funext_axiom;intro).
apply univalence_axiom.
apply equiv_prod_symm.
Defined.
Lemma rlt_embed_u : forall X q, real_u X q <-> X < embed q.
Proof.
intros X.
unfold lt;simpl;unfold rLt. simpl.
rewrite prod_comm_rw. apply cut_round_u.
Qed. (* because lel *)
Instance embed_plus_morph : Magma.IsMorphism (+) (+) embed.
Proof.
red. unfold gop.
intros X Y.
apply rLeq_poset;hnf;simpl.
- admit.
- intros q.
apply minus1Trunc_rect_nondep
Defined.
Instance ropp_inverse : forall X : Real, IsInverse (+) X (rOpp X).
Proof.
intros. apply linverse_inverse.
red. unfold gop. apply transport with r0;[|apply _].
unfold r0. apply real_eq;simpl;intros q;(split;[intros H|
apply minus1Trunc_rect_nondep;[|apply HpropLt];intros [r [s [H [H0 H1]]]]]).
- (* needs archimedean ?? *)
Defined.