-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathslam.py
107 lines (88 loc) · 3.29 KB
/
slam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""
3D pose estimation of an RGB-D camera using least squares technique
Created on Aug 2016
Updated on May 2019
By Sina M.Baharlou ([email protected])
Web page: www.sinabaharlou.com
"""
# -- Plot Libraries --
import matplotlib.colors as colors
import matplotlib.pyplot as plt
import pylab
# -- Other classes and libraries --
from depth_frame import *
from flann_matcher import *
from io_handler import *
from plot_frame import PlotFrame
from solver import PositSolver
def main():
# -- Init IO Handler --
print("Loading RGB-D images ...")
rgb_files = IoHandler(RGBD_PATH)
depth_files = IoHandler(RGBD_PATH)
rgb_files.load_files(RGB_FMT, True)
depth_files.load_files(DEPTH_FMT, True)
# -- Open IMG_A --
rgb = cv2.imread(rgb_files.file_at(IMG_A_SEQ))
depth = cv2.imread(depth_files.file_at(IMG_A_SEQ), cv2.IMREAD_UNCHANGED)
# -- Create DepthFrame from IMG_A --
print("Creating depth frame from input images...")
frame_a = DepthFrame(rgb, depth)
frame_a.pre_process()
frame_a.get_features()
frame_a.update_depth()
# -- Open IMG_B --
rgb = cv2.imread(rgb_files.file_at(IMG_B_SEQ))
depth = cv2.imread(depth_files.file_at(IMG_B_SEQ), cv2.IMREAD_UNCHANGED)
# -- Create DepthFrame from IMG_A --
frame_b = DepthFrame(rgb, depth)
frame_b.pre_process()
frame_b.get_features() # -- get interesting points
frame_b.update_depth() # -- get interesting points' depth
# -- Init Flann Matcher --
print("Find the correspondences...")
flann = FlannMatcher()
matches = flann.get_matches(frame_a, frame_b) # -- get correspondences
# -- Show the correspondences --
img_matches = frame_a.get_image()
img_matches = cv2.drawMatches(frame_a.get_image(), frame_a.get_keypoints(),
frame_b.get_image(), frame_b.get_keypoints(),
matches[1], img_matches, -1, -1)
# -- Disable here if you are using a virtual env
''' cv2.namedWindow("Correspondences")
cv2.imshow("Correspondences", img_matches)
cv2.waitKey()'''
# -- Init The Solver --
print("Init the solver...")
solver = PositSolver()
solver.init_solver(frame_a, frame_b, matches[1])
# -- Run the solver
t_err = []
for i in range(ITERATION_COUNT):
suppress = (i > SUPPRESS_COUNT)
stat = solver.solve(suppress)
frame_b.set_extrinsic_mat(stat.extrinsic_mat)
print("*** Iteration : ", i)
print("Total error: ", stat.total_err)
print("Inlier error: ", stat.inlier_err)
print("Outlier error: ", stat.outlier_err)
print("Inlier count: ", stat.inlier_count)
print("Outlier count: ", stat.outlier_count)
print("Damping used: ", stat.damping_used)
print("\n")
t_err.append(stat.total_err)
# -- Plot The results --
plt_frame = PlotFrame()
fig, ax = plt.subplots()
plt_frame.init_plotter()
plt_frame.clear()
plt_frame.add_frame(frame_a, colors.rgb2hex([1, 0, 0, 0.0]), colors.rgb2hex([1, 0, 0, 0.0]))
plt_frame.add_frame(frame_b, colors.rgb2hex([0, 1, 0, 0.0]), colors.rgb2hex([0, 1, 0, 0.0]))
ax.plot(t_err, c='r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Error')
ax.legend()
pylab.show()
if __name__ == "__main__":
os.system('reset')
main()