-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathfft.h
521 lines (458 loc) · 15.9 KB
/
fft.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#include "./common.h"
#ifndef SIGNALSMITH_FFT_V5
#define SIGNALSMITH_FFT_V5
#include "./perf.h"
#include <vector>
#include <complex>
#include <cmath>
namespace signalsmith { namespace fft {
/** @defgroup FFT FFT (complex and real)
@brief Fourier transforms (complex and real)
@{
@file
*/
namespace _fft_impl {
template <typename V>
SIGNALSMITH_INLINE V complexReal(const std::complex<V> &c) {
return ((V*)(&c))[0];
}
template <typename V>
SIGNALSMITH_INLINE V complexImag(const std::complex<V> &c) {
return ((V*)(&c))[1];
}
// Complex multiplication has edge-cases around Inf/NaN - handling those properly makes std::complex non-inlineable, so we use our own
template <bool conjugateSecond, typename V>
SIGNALSMITH_INLINE std::complex<V> complexMul(const std::complex<V> &a, const std::complex<V> &b) {
V aReal = complexReal(a), aImag = complexImag(a);
V bReal = complexReal(b), bImag = complexImag(b);
return conjugateSecond ? std::complex<V>{
bReal*aReal + bImag*aImag,
bReal*aImag - bImag*aReal
} : std::complex<V>{
aReal*bReal - aImag*bImag,
aReal*bImag + aImag*bReal
};
}
template<bool flipped, typename V>
SIGNALSMITH_INLINE std::complex<V> complexAddI(const std::complex<V> &a, const std::complex<V> &b) {
V aReal = complexReal(a), aImag = complexImag(a);
V bReal = complexReal(b), bImag = complexImag(b);
return flipped ? std::complex<V>{
aReal + bImag,
aImag - bReal
} : std::complex<V>{
aReal - bImag,
aImag + bReal
};
}
// Use SFINAE to get an iterator from std::begin(), if supported - otherwise assume the value itself is an iterator
template<typename T, typename=void>
struct GetIterator {
static T get(const T &t) {
return t;
}
};
template<typename T>
struct GetIterator<T, decltype((void)std::begin(std::declval<T>()))> {
static auto get(const T &t) -> decltype(std::begin(t)) {
return std::begin(t);
}
};
}
/** Floating-point FFT implementation.
It is fast for 2^a * 3^b.
Here are the peak and RMS errors for `float`/`double` computation:
\diagram{fft-errors.svg Simulated errors for pure-tone harmonic inputs\, compared to a theoretical upper bound from "Roundoff error analysis of the fast Fourier transform" (G. Ramos, 1971)}
*/
template<typename V=double>
class FFT {
using complex = std::complex<V>;
size_t _size;
std::vector<complex> workingVector;
enum class StepType {
generic, step2, step3, step4
};
struct Step {
StepType type;
size_t factor;
size_t startIndex;
size_t innerRepeats;
size_t outerRepeats;
size_t twiddleIndex;
};
std::vector<size_t> factors;
std::vector<Step> plan;
std::vector<complex> twiddleVector;
struct PermutationPair {size_t from, to;};
std::vector<PermutationPair> permutation;
void addPlanSteps(size_t factorIndex, size_t start, size_t length, size_t repeats) {
if (factorIndex >= factors.size()) return;
size_t factor = factors[factorIndex];
if (factorIndex + 1 < factors.size()) {
if (factors[factorIndex] == 2 && factors[factorIndex + 1] == 2) {
++factorIndex;
factor = 4;
}
}
size_t subLength = length/factor;
Step mainStep{StepType::generic, factor, start, subLength, repeats, twiddleVector.size()};
if (factor == 2) mainStep.type = StepType::step2;
if (factor == 3) mainStep.type = StepType::step3;
if (factor == 4) mainStep.type = StepType::step4;
// Twiddles
bool foundStep = false;
for (const Step &existingStep : plan) {
if (existingStep.factor == mainStep.factor && existingStep.innerRepeats == mainStep.innerRepeats) {
foundStep = true;
mainStep.twiddleIndex = existingStep.twiddleIndex;
break;
}
}
if (!foundStep) {
for (size_t i = 0; i < subLength; ++i) {
for (size_t f = 0; f < factor; ++f) {
double phase = 2*M_PI*i*f/length;
complex twiddle = {V(std::cos(phase)), V(-std::sin(phase))};
twiddleVector.push_back(twiddle);
}
}
}
if (repeats == 1 && sizeof(complex)*subLength > 65536) {
for (size_t i = 0; i < factor; ++i) {
addPlanSteps(factorIndex + 1, start + i*subLength, subLength, 1);
}
} else {
addPlanSteps(factorIndex + 1, start, subLength, repeats*factor);
}
plan.push_back(mainStep);
}
void setPlan() {
factors.resize(0);
size_t size = _size, factor = 2;
while (size > 1) {
if (size%factor == 0) {
factors.push_back(factor);
size /= factor;
} else if (factor > sqrt(size)) {
factor = size;
} else {
++factor;
}
}
plan.resize(0);
twiddleVector.resize(0);
addPlanSteps(0, 0, _size, 1);
permutation.resize(0);
permutation.push_back(PermutationPair{0, 0});
size_t indexLow = 0, indexHigh = factors.size();
size_t inputStepLow = _size, outputStepLow = 1;
size_t inputStepHigh = 1, outputStepHigh = _size;
while (outputStepLow*inputStepHigh < _size) {
size_t f, inputStep, outputStep;
if (outputStepLow <= inputStepHigh) {
f = factors[indexLow++];
inputStep = (inputStepLow /= f);
outputStep = outputStepLow;
outputStepLow *= f;
} else {
f = factors[--indexHigh];
inputStep = inputStepHigh;
inputStepHigh *= f;
outputStep = (outputStepHigh /= f);
}
size_t oldSize = permutation.size();
for (size_t i = 1; i < f; ++i) {
for (size_t j = 0; j < oldSize; ++j) {
PermutationPair pair = permutation[j];
pair.from += i*inputStep;
pair.to += i*outputStep;
permutation.push_back(pair);
}
}
}
}
template<bool inverse, typename RandomAccessIterator>
void fftStepGeneric(RandomAccessIterator &&origData, const Step &step) {
complex *working = workingVector.data();
const size_t stride = step.innerRepeats;
for (size_t outerRepeat = 0; outerRepeat < step.outerRepeats; ++outerRepeat) {
RandomAccessIterator data = origData;
const complex *twiddles = twiddleVector.data() + step.twiddleIndex;
const size_t factor = step.factor;
for (size_t repeat = 0; repeat < step.innerRepeats; ++repeat) {
for (size_t i = 0; i < step.factor; ++i) {
working[i] = _fft_impl::complexMul<inverse>(data[i*stride], twiddles[i]);
}
for (size_t f = 0; f < factor; ++f) {
complex sum = working[0];
for (size_t i = 1; i < factor; ++i) {
double phase = 2*M_PI*f*i/factor;
complex twiddle = {V(std::cos(phase)), V(-std::sin(phase))};
sum += _fft_impl::complexMul<inverse>(working[i], twiddle);
}
data[f*stride] = sum;
}
++data;
twiddles += factor;
}
origData += step.factor*step.innerRepeats;
}
}
template<bool inverse, typename RandomAccessIterator>
SIGNALSMITH_INLINE void fftStep2(RandomAccessIterator &&origData, const Step &step) {
const size_t stride = step.innerRepeats;
const complex *origTwiddles = twiddleVector.data() + step.twiddleIndex;
for (size_t outerRepeat = 0; outerRepeat < step.outerRepeats; ++outerRepeat) {
const complex* twiddles = origTwiddles;
for (RandomAccessIterator data = origData; data < origData + stride; ++data) {
complex A = data[0];
complex B = _fft_impl::complexMul<inverse>(data[stride], twiddles[1]);
data[0] = A + B;
data[stride] = A - B;
twiddles += 2;
}
origData += 2*stride;
}
}
template<bool inverse, typename RandomAccessIterator>
SIGNALSMITH_INLINE void fftStep3(RandomAccessIterator &&origData, const Step &step) {
constexpr complex factor3 = {-0.5, inverse ? 0.8660254037844386 : -0.8660254037844386};
const size_t stride = step.innerRepeats;
const complex *origTwiddles = twiddleVector.data() + step.twiddleIndex;
for (size_t outerRepeat = 0; outerRepeat < step.outerRepeats; ++outerRepeat) {
const complex* twiddles = origTwiddles;
for (RandomAccessIterator data = origData; data < origData + stride; ++data) {
complex A = data[0];
complex B = _fft_impl::complexMul<inverse>(data[stride], twiddles[1]);
complex C = _fft_impl::complexMul<inverse>(data[stride*2], twiddles[2]);
complex realSum = A + (B + C)*factor3.real();
complex imagSum = (B - C)*factor3.imag();
data[0] = A + B + C;
data[stride] = _fft_impl::complexAddI<false>(realSum, imagSum);
data[stride*2] = _fft_impl::complexAddI<true>(realSum, imagSum);
twiddles += 3;
}
origData += 3*stride;
}
}
template<bool inverse, typename RandomAccessIterator>
SIGNALSMITH_INLINE void fftStep4(RandomAccessIterator &&origData, const Step &step) {
const size_t stride = step.innerRepeats;
const complex *origTwiddles = twiddleVector.data() + step.twiddleIndex;
for (size_t outerRepeat = 0; outerRepeat < step.outerRepeats; ++outerRepeat) {
const complex* twiddles = origTwiddles;
for (RandomAccessIterator data = origData; data < origData + stride; ++data) {
complex A = data[0];
complex C = _fft_impl::complexMul<inverse>(data[stride], twiddles[2]);
complex B = _fft_impl::complexMul<inverse>(data[stride*2], twiddles[1]);
complex D = _fft_impl::complexMul<inverse>(data[stride*3], twiddles[3]);
complex sumAC = A + C, sumBD = B + D;
complex diffAC = A - C, diffBD = B - D;
data[0] = sumAC + sumBD;
data[stride] = _fft_impl::complexAddI<!inverse>(diffAC, diffBD);
data[stride*2] = sumAC - sumBD;
data[stride*3] = _fft_impl::complexAddI<inverse>(diffAC, diffBD);
twiddles += 4;
}
origData += 4*stride;
}
}
template<typename InputIterator, typename OutputIterator>
void permute(InputIterator input, OutputIterator data) {
for (auto pair : permutation) {
data[pair.from] = input[pair.to];
}
}
template<bool inverse, typename InputIterator, typename OutputIterator>
void run(InputIterator &&input, OutputIterator &&data) {
permute(input, data);
for (const Step &step : plan) {
switch (step.type) {
case StepType::generic:
fftStepGeneric<inverse>(data + step.startIndex, step);
break;
case StepType::step2:
fftStep2<inverse>(data + step.startIndex, step);
break;
case StepType::step3:
fftStep3<inverse>(data + step.startIndex, step);
break;
case StepType::step4:
fftStep4<inverse>(data + step.startIndex, step);
break;
}
}
}
static bool validSize(size_t size) {
constexpr static bool filter[32] = {
1, 1, 1, 1, 1, 0, 1, 0, 1, 1, // 0-9
0, 0, 1, 0, 0, 0, 1, 0, 1, 0, // 10-19
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, // 20-29
0, 0
};
return filter[size];
}
public:
static size_t fastSizeAbove(size_t size) {
size_t power2 = 1;
while (size >= 32) {
size = (size - 1)/2 + 1;
power2 *= 2;
}
while (size < 32 && !validSize(size)) {
++size;
}
return power2*size;
}
static size_t fastSizeBelow(size_t size) {
size_t power2 = 1;
while (size >= 32) {
size /= 2;
power2 *= 2;
}
while (size > 1 && !validSize(size)) {
--size;
}
return power2*size;
}
FFT(size_t size, int fastDirection=0) : _size(0) {
if (fastDirection > 0) size = fastSizeAbove(size);
if (fastDirection < 0) size = fastSizeBelow(size);
this->setSize(size);
}
size_t setSize(size_t size) {
if (size != _size) {
_size = size;
workingVector.resize(size);
setPlan();
}
return _size;
}
size_t setFastSizeAbove(size_t size) {
return setSize(fastSizeAbove(size));
}
size_t setFastSizeBelow(size_t size) {
return setSize(fastSizeBelow(size));
}
const size_t & size() const {
return _size;
}
template<typename InputIterator, typename OutputIterator>
void fft(InputIterator &&input, OutputIterator &&output) {
auto inputIter = _fft_impl::GetIterator<InputIterator>::get(input);
auto outputIter = _fft_impl::GetIterator<OutputIterator>::get(output);
return run<false>(inputIter, outputIter);
}
template<typename InputIterator, typename OutputIterator>
void ifft(InputIterator &&input, OutputIterator &&output) {
auto inputIter = _fft_impl::GetIterator<InputIterator>::get(input);
auto outputIter = _fft_impl::GetIterator<OutputIterator>::get(output);
return run<true>(inputIter, outputIter);
}
};
struct FFTOptions {
static constexpr int halfFreqShift = 1;
};
template<typename V, int optionFlags=0>
class RealFFT {
static constexpr bool modified = (optionFlags&FFTOptions::halfFreqShift);
using complex = std::complex<V>;
std::vector<complex> complexBuffer1, complexBuffer2;
std::vector<complex> twiddlesMinusI;
std::vector<complex> modifiedRotations;
FFT<V> complexFft;
public:
static size_t fastSizeAbove(size_t size) {
return FFT<V>::fastSizeAbove((size + 1)/2)*2;
}
static size_t fastSizeBelow(size_t size) {
return FFT<V>::fastSizeBelow(size/2)*2;
}
RealFFT(size_t size=0, int fastDirection=0) : complexFft(0) {
if (fastDirection > 0) size = fastSizeAbove(size);
if (fastDirection < 0) size = fastSizeBelow(size);
this->setSize(std::max<size_t>(size, 2));
}
size_t setSize(size_t size) {
complexBuffer1.resize(size/2);
complexBuffer2.resize(size/2);
size_t hhSize = size/4 + 1;
twiddlesMinusI.resize(hhSize);
for (size_t i = 0; i < hhSize; ++i) {
V rotPhase = -2*M_PI*(modified ? i + 0.5 : i)/size;
twiddlesMinusI[i] = {std::sin(rotPhase), -std::cos(rotPhase)};
}
if (modified) {
modifiedRotations.resize(size/2);
for (size_t i = 0; i < size/2; ++i) {
V rotPhase = -2*M_PI*i/size;
modifiedRotations[i] = {std::cos(rotPhase), std::sin(rotPhase)};
}
}
return complexFft.setSize(size/2);
}
size_t setFastSizeAbove(size_t size) {
return setSize(fastSizeAbove(size));
}
size_t setFastSizeBelow(size_t size) {
return setSize(fastSizeBelow(size));
}
size_t size() const {
return complexFft.size()*2;
}
template<typename InputIterator, typename OutputIterator>
void fft(InputIterator &&input, OutputIterator &&output) {
size_t hSize = complexFft.size();
for (size_t i = 0; i < hSize; ++i) {
if (modified) {
complexBuffer1[i] = _fft_impl::complexMul<false>({input[2*i], input[2*i + 1]}, modifiedRotations[i]);
} else {
complexBuffer1[i] = {input[2*i], input[2*i + 1]};
}
}
complexFft.fft(complexBuffer1.data(), complexBuffer2.data());
if (!modified) output[0] = {
complexBuffer2[0].real() + complexBuffer2[0].imag(),
complexBuffer2[0].real() - complexBuffer2[0].imag()
};
for (size_t i = modified ? 0 : 1; i <= hSize/2; ++i) {
size_t conjI = modified ? (hSize - 1 - i) : (hSize - i);
complex odd = (complexBuffer2[i] + conj(complexBuffer2[conjI]))*(V)0.5;
complex evenI = (complexBuffer2[i] - conj(complexBuffer2[conjI]))*(V)0.5;
complex evenRotMinusI = _fft_impl::complexMul<false>(evenI, twiddlesMinusI[i]);
output[i] = odd + evenRotMinusI;
output[conjI] = conj(odd - evenRotMinusI);
}
}
template<typename InputIterator, typename OutputIterator>
void ifft(InputIterator &&input, OutputIterator &&output) {
size_t hSize = complexFft.size();
if (!modified) complexBuffer1[0] = {
input[0].real() + input[0].imag(),
input[0].real() - input[0].imag()
};
for (size_t i = modified ? 0 : 1; i <= hSize/2; ++i) {
size_t conjI = modified ? (hSize - 1 - i) : (hSize - i);
complex v = input[i], v2 = input[conjI];
complex odd = v + conj(v2);
complex evenRotMinusI = v - conj(v2);
complex evenI = _fft_impl::complexMul<true>(evenRotMinusI, twiddlesMinusI[i]);
complexBuffer1[i] = odd + evenI;
complexBuffer1[conjI] = conj(odd - evenI);
}
complexFft.ifft(complexBuffer1.data(), complexBuffer2.data());
for (size_t i = 0; i < hSize; ++i) {
complex v = complexBuffer2[i];
if (modified) v = _fft_impl::complexMul<true>(v, modifiedRotations[i]);
output[2*i] = v.real();
output[2*i + 1] = v.imag();
}
}
};
template<typename V>
struct ModifiedRealFFT : public RealFFT<V, FFTOptions::halfFreqShift> {
using RealFFT<V, FFTOptions::halfFreqShift>::RealFFT;
};
/// @}
}} // namespace
#endif // include guard