-
Notifications
You must be signed in to change notification settings - Fork 3
/
sac_agent.py
330 lines (258 loc) · 12.6 KB
/
sac_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
'''
Soft Actor-Critic version 2
using target Q instead of V net: 2 Q net, 2 target Q net, 1 policy net
add alpha loss compared with version 1
paper: https://arxiv.org/pdf/1812.05905.pdf
Discrete version reference:
https://towardsdatascience.com/adapting-soft-actor-critic-for-discrete-action-spaces-a20614d4a50a
'''
import random
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Categorical
from IPython.display import clear_output
import matplotlib.pyplot as plt
import argparse
from rppo_faas_env import Environment as environment
np.random.seed(26)
GPU = False
device_idx = 0
if GPU:
device = torch.device("cuda:" + str(device_idx) if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
print(device)
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=False)
parser.add_argument('--test', dest='test', action='store_true', default=False)
args = parser.parse_args()
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = int((self.position + 1) % self.capacity) # as a ring buffer
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch)) # stack for each element
'''
the * serves as unpack: sum(a,b) <=> batch=(a,b), sum(*batch) ;
zip: a=[1,2], b=[2,3], zip(a,b) => [(1, 2), (2, 3)] ;
the map serves as mapping the function on each list element: map(square, [2,3]) => [4,9] ;
np.stack((1,2)) => array([1, 2])
'''
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
class SoftQNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3):
super(SoftQNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
# self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, num_actions)
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, state):
x = F.tanh(self.linear1(state))
x = F.tanh(self.linear2(x))
# x = F.tanh(self.linear3(x))
x = self.linear4(x)
return x
class PolicyNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3, log_std_min=-20, log_std_max=2):
super(PolicyNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.output = nn.Linear(hidden_size, num_actions)
self.num_actions = num_actions
def forward(self, state, softmax_dim=-1):
x = F.tanh(self.linear1(state))
x = F.tanh(self.linear2(x))
probs = F.softmax(self.output(x), dim=softmax_dim)
return probs
def evaluate(self, state, epsilon=1e-8):
'''
generate sampled action with state as input wrt the policy network;
'''
probs = self.forward(state, softmax_dim=-1)
log_probs = torch.log(probs)
# Avoid numerical instability. Ref: https://github.com/ku2482/sac-discrete.pytorch/blob/40c9d246621e658750e0a03001325006da57f2d4/sacd/model.py#L98
z = (probs == 0.0).float() * epsilon
log_probs = torch.log(probs + z)
return log_probs
def get_action(self, state, deterministic):
print('state: ', state)
state = torch.FloatTensor(state).unsqueeze(0).to(device)
probs = self.forward(state)
dist = Categorical(probs)
if deterministic:
action = np.argmax(probs.detach().cpu().numpy())
else:
action = dist.sample().squeeze().detach().cpu().numpy()
return action
class SAC_Trainer():
def __init__(self, replay_buffer, hidden_dim):
self.replay_buffer = replay_buffer
self.soft_q_net1 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.soft_q_net2 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.target_soft_q_net1 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.target_soft_q_net2 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(device)
self.policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim).to(device)
self.log_alpha = torch.zeros(1, dtype=torch.float32, requires_grad=True, device=device)
print('Soft Q Network (1,2): ', self.soft_q_net1)
print('Policy Network: ', self.policy_net)
for target_param, param in zip(self.target_soft_q_net1.parameters(), self.soft_q_net1.parameters()):
target_param.data.copy_(param.data)
for target_param, param in zip(self.target_soft_q_net2.parameters(), self.soft_q_net2.parameters()):
target_param.data.copy_(param.data)
self.soft_q_criterion1 = nn.MSELoss()
self.soft_q_criterion2 = nn.MSELoss()
soft_q_lr = 3e-4
policy_lr = 3e-4
alpha_lr = 3e-4
self.soft_q_optimizer1 = optim.Adam(self.soft_q_net1.parameters(), lr=soft_q_lr)
self.soft_q_optimizer2 = optim.Adam(self.soft_q_net2.parameters(), lr=soft_q_lr)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr)
self.alpha_optimizer = optim.Adam([self.log_alpha], lr=alpha_lr)
def update(self, batch_size, reward_scale=10., auto_entropy=True, target_entropy=-2, gamma=0.99, soft_tau=1e-2):
state, action, reward, next_state, done = self.replay_buffer.sample(batch_size)
# print('sample:', state, action, reward, done)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.Tensor(action).to(torch.int64).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(device) # reward is single value, unsqueeze() to add one dim to be [reward] at the sample dim;
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
predicted_q_value1 = self.soft_q_net1(state)
predicted_q_value1 = predicted_q_value1.gather(1, action.unsqueeze(-1))
predicted_q_value2 = self.soft_q_net2(state)
predicted_q_value2 = predicted_q_value2.gather(1, action.unsqueeze(-1))
log_prob = self.policy_net.evaluate(state)
with torch.no_grad():
next_log_prob = self.policy_net.evaluate(next_state)
# reward = reward_scale * (reward - reward.mean(dim=0)) / (reward.std(dim=0) + 1e-6) # normalize with batch mean and std; plus a small number to prevent numerical problem
# Training Q Function
self.alpha = self.log_alpha.exp()
target_q_min = (next_log_prob.exp() * (torch.min(self.target_soft_q_net1(next_state),self.target_soft_q_net2(next_state)) - self.alpha * next_log_prob)).sum(dim=-1).unsqueeze(-1)
target_q_value = reward + (1 - done) * gamma * target_q_min # if done==1, only reward
q_value_loss1 = self.soft_q_criterion1(predicted_q_value1, target_q_value.detach()) # detach: no gradients for the variable
q_value_loss2 = self.soft_q_criterion2(predicted_q_value2, target_q_value.detach())
self.soft_q_optimizer1.zero_grad()
q_value_loss1.backward()
self.soft_q_optimizer1.step()
self.soft_q_optimizer2.zero_grad()
q_value_loss2.backward()
self.soft_q_optimizer2.step()
# Training Policy Function
with torch.no_grad():
predicted_new_q_value = torch.min(self.soft_q_net1(state),self.soft_q_net2(state))
policy_loss = (log_prob.exp()*(self.alpha * log_prob - predicted_new_q_value)).sum(dim=-1).mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
# Updating alpha wrt entropy
# alpha = 0.0 # trade-off between exploration (max entropy) and exploitation (max Q)
if auto_entropy is True:
alpha_loss = -(self.log_alpha * (log_prob + target_entropy).detach()).mean()
# print('alpha loss: ',alpha_loss)
self.alpha_optimizer.zero_grad()
alpha_loss.backward()
self.alpha_optimizer.step()
else:
self.alpha = 1.
alpha_loss = 0
# Soft update the target value net
for target_param, param in zip(self.target_soft_q_net1.parameters(), self.soft_q_net1.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
for target_param, param in zip(self.target_soft_q_net2.parameters(), self.soft_q_net2.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
return predicted_new_q_value.mean()
def save_model(self, path):
torch.save(self.soft_q_net1.state_dict(), path+'_q1')
torch.save(self.soft_q_net2.state_dict(), path+'_q2')
torch.save(self.policy_net.state_dict(), path+'_policy')
def load_model(self, path):
self.soft_q_net1.load_state_dict(torch.load(path+'_q1'))
self.soft_q_net2.load_state_dict(torch.load(path+'_q2'))
self.policy_net.load_state_dict(torch.load(path+'_policy'))
self.soft_q_net1.eval()
self.soft_q_net2.eval()
self.policy_net.eval()
def plot(rewards):
clear_output(True)
plt.figure(figsize=(20,5))
plt.plot(rewards)
plt.savefig('sac_v2.png')
# plt.show()
replay_buffer_size = 1e6
replay_buffer = ReplayBuffer(replay_buffer_size)
)
env = environment()
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n # discrete
# hyper-parameters for RL training
max_episodes = 1000000
batch_size = 128
update_itr = 10
AUTO_ENTROPY=True
DETERMINISTIC=False
hidden_dim = 64
rewards = []
model_path = './model/{MODEL_NAME}'
target_entropy = -1.*action_dim
# target_entropy = 0.98 * -np.log(1 / action_dim)
sac_trainer=SAC_Trainer(replay_buffer, hidden_dim=hidden_dim)
if __name__ == '__main__':
if args.train:
# training loop
for eps in range(max_episodes):
state, info = env.reset()
episode_reward = 0
step = 0
# for step in range(max_steps):
while True:
action = sac_trainer.policy_net.get_action(state, deterministic = DETERMINISTIC)
action = action.item()
next_state, reward, done, _, info = env.step(action)
# env.render()
replay_buffer.push(state, action, reward, next_state, done)
state = next_state
episode_reward += reward
step += 1
if len(replay_buffer) > batch_size:
for i in range(update_itr):
_=sac_trainer.update(batch_size, reward_scale=1., auto_entropy=AUTO_ENTROPY, target_entropy=target_entropy)
if done:
break
if eps % 20 == 0 and eps>0: # plot and model saving interval
plot(rewards)
np.save('rewards', rewards)
sac_trainer.save_model(model_path)
print('Episode: ', eps, '| Episode Reward: ', episode_reward, '| Episode Length: ', step)
rewards.append(episode_reward)
sac_trainer.save_model(model_path)
if args.test:
sac_trainer.load_model(model_path)
for eps in range(200):
state, info = env.reset()
episode_reward = 0
done = False
while not done:
action = sac_trainer.policy_net.get_action(state, deterministic = DETERMINISTIC)
next_state, reward, done, _, info = env.step(action)
# env.render()
episode_reward += reward
state=next_state
print('Episode: ', eps, '| Episode Reward: ', episode_reward)