Skip to content

Latest commit

 

History

History
44 lines (37 loc) · 1.43 KB

README.md

File metadata and controls

44 lines (37 loc) · 1.43 KB

Neural Network Graph

Library to build, differentiate, and optimize computational graphs. Supports differentially private optimization via mixins.

Install dependencies with:
pip install -r requirements.txt

Folder Name
Environments Classes for wrapping data
Neural_Network Node implementations for building a computational graph
Tests Example networks, compatible with pytest
  • Optimizers
    • Gradient Descent
    • Momentum
    • Nesterov Accelerated Gradient
    • Adagrad
    • RMSProp
    • Adam
    • Adamax
    • Nadam
    • Quickprop
  • Selectable functions
    • Basis / Activation
      • Regression (softplus, tanh, etc.)
      • Classification (use softmax on final layer)
    • Cost (sum squared and cross entropy)
  • Network Configuration
    • Construct flexible graphs of vector functions
    • Multiple layers
    • Set number of nodes for each layer
  • Optimizer Configuration
    • Batch size (set to one for stochastic descent)
    • Set hyperparameters for each layer, or broadcast one
      • Learning rate
      • Parameters specific to convergence algorithm
    • Multiprocessed graphing

This is a rewrite of a more rigid 'caterpillar' network: https://github.com/Shoeboxam/Neural_Network