forked from maksymovchynnikov/EventCalc-SHiP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtotal-plots.py
342 lines (306 loc) · 13.3 KB
/
total-plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# total-plots.py
import os
import sys
import pandas as pd
import matplotlib.pyplot as plt
import re
def scan_outputs_folders(outputs_dir):
"""
Scans the 'outputs' directory for non-empty folders and returns their names.
"""
try:
folders = [f for f in os.listdir(outputs_dir) if os.path.isdir(os.path.join(outputs_dir, f))]
non_empty_folders = []
for folder in folders:
folder_path = os.path.join(outputs_dir, folder)
if any(os.scandir(folder_path)):
non_empty_folders.append(folder)
return non_empty_folders
except FileNotFoundError:
print(f"Error: The directory '{outputs_dir}' does not exist.")
sys.exit(1)
def select_option(options, prompt):
"""
Displays a list of options to the user and prompts for a selection.
Returns the selected option.
"""
if not options:
print("No options available for selection.")
sys.exit(1)
print(prompt)
for idx, option in enumerate(options, start=1):
print(f"{idx}. {option}")
while True:
try:
choice = int(input("Enter the number corresponding to your choice: "))
if 1 <= choice <= len(options):
return options[choice - 1]
else:
print(f"Please enter a number between 1 and {len(options)}.")
except ValueError:
print("Invalid input. Please enter a valid number.")
def extract_files(total_dir, selected_llp):
"""
Extracts relevant files from the 'total' directory based on LLP type.
For HNL: HNL_mix1_mix2_mix3_total.txt
For Dark-photons: Dark-photons_uncertainty_total.txt
For Other LLPs: LLP_name_total.txt
Returns a list of tuples (filename, identifier)
"""
try:
files = os.listdir(total_dir)
except FileNotFoundError:
print(f"Error: The directory '{total_dir}' does not exist.")
sys.exit(1)
extracted_files = []
if selected_llp == "HNL":
# Pattern: HNL_mix1_mix2_mix3_total.txt
pattern = re.compile(r"HNL_([\d\.\+eE-]+)_([\d\.\+eE-]+)_([\d\.\+eE-]+)_total\.txt$")
for file in files:
match = pattern.match(file)
if match:
mix1 = float(match.group(1))
mix2 = float(match.group(2))
mix3 = float(match.group(3))
# Format mixing pattern without scientific notation, truncated to three decimals
identifier = f"[{mix1:.3f}, {mix2:.3f}, {mix3:.3f}]"
extracted_files.append((file, identifier))
elif selected_llp == "Dark-photons":
# Pattern: Dark-photons_uncertainty_total.txt
pattern = re.compile(r"Dark-photons_(lower|central|upper)_total\.txt$")
for file in files:
match = pattern.match(file)
if match:
uncertainty = match.group(1)
identifier = f"uncertainty={uncertainty}"
extracted_files.append((file, identifier))
else:
# For other LLPs, Pattern: LLP_name_total.txt
pattern = re.compile(rf"{re.escape(selected_llp)}_total\.txt$")
for file in files:
match = pattern.match(file)
if match:
identifier = "" # No additional identifier
extracted_files.append((file, identifier))
return extracted_files
def plot_acceptances(data, save_path, title, selected_lifetimes, selected_styles, selected_labels):
"""
Plots epsilon_polar, epsilon_geom, and ctau*epsilon_geom*P_decay for selected lifetimes.
"""
plt.figure(figsize=(10, 7))
# Define colors for each plot element
colors = {
'epsilon_polar': 'green',
'epsilon_geom': 'blue',
'epsilon_geom_P_decay': 'red'
}
for lifetime, style, label in zip(selected_lifetimes, selected_styles, selected_labels):
subset = data[data['c_tau'] == lifetime].sort_values(by='mass').reset_index(drop=True)
mass = subset['mass'].to_numpy()
epsilon_polar = subset['epsilon_polar'].to_numpy()
epsilon_geom = subset['epsilon_polar'].to_numpy() * subset['epsilon_azimuthal'].to_numpy()
epsilon_geom_P_decay = subset['c_tau'].to_numpy() * epsilon_geom * subset['P_decay_averaged'].to_numpy()
# Plot epsilon_polar
plt.plot(
mass,
epsilon_polar,
color=colors['epsilon_polar'],
linestyle=style,
label=f'ε_polar ({label})',
linewidth=2
)
# Plot epsilon_geom
plt.plot(
mass,
epsilon_geom,
color=colors['epsilon_geom'],
linestyle=style,
label=f'ε_geom ({label})',
linewidth=2
)
# Plot cτ⋅ε_geom⋅⟨P_decay⟩
plt.plot(
mass,
epsilon_geom_P_decay,
color=colors['epsilon_geom_P_decay'],
linestyle=style,
label=f'cτ⋅ε_geom⋅⟨P_decay⟩ ({label})',
linewidth=2
)
plt.xlabel(r'$m_{\mathrm{LLP}}$ [GeV]', fontsize=14)
plt.ylabel('Fraction', fontsize=14)
plt.yscale('log')
plt.title(title, fontsize=16)
plt.legend(fontsize=12)
plt.grid(True, which="both", ls="--", linewidth=0.5)
plt.tight_layout()
plt.savefig(save_path, dpi=300)
plt.show()
def plot_coupling_vs_events(data, save_path, title):
"""
Plots N_events vs coupling_squared for different masses.
"""
unique_masses = sorted(data['mass'].unique())
plt.figure(figsize=(10, 7))
for mass in unique_masses:
subset = data[data['mass'] == mass].sort_values(by='coupling_squared').reset_index(drop=True)
plt.loglog(
subset['coupling_squared'],
subset['N_ev_tot'],
marker='o',
label=rf'$m_{{\mathrm{{LLP}}}} = {mass:.3f}$ GeV'
)
plt.xlabel(r'$\mathrm{coupling}^{2}$', fontsize=14)
plt.ylabel(r'$N_{\mathrm{events}}$', fontsize=14)
plt.title(title, fontsize=16)
plt.legend(fontsize=12)
plt.grid(True, which="both", ls="--", linewidth=0.5)
plt.tight_layout()
plt.savefig(save_path, format='pdf')
plt.show()
def plot_lifetime_vs_events(data, save_path, title):
"""
Plots N_events vs c_tau for different masses.
"""
unique_masses = sorted(data['mass'].unique())
plt.figure(figsize=(10, 7))
for mass in unique_masses:
subset = data[data['mass'] == mass].sort_values(by='c_tau').reset_index(drop=True)
plt.loglog(
subset['c_tau'],
subset['N_ev_tot'],
marker='o',
label=rf'$m_{{\mathrm{{LLP}}}} = {mass:.3f}$ GeV'
)
plt.xlabel(r'$c\tau_{\mathrm{LLP}}$ [m]', fontsize=14)
plt.ylabel(r'$N_{\mathrm{events}}$', fontsize=14)
plt.title(title, fontsize=16)
plt.legend(fontsize=12)
plt.grid(True, which="both", ls="--", linewidth=0.5)
plt.tight_layout()
plt.savefig(save_path, format='pdf')
plt.show()
def main():
basedir = os.getcwd()
outputs_dir = os.path.join(basedir, 'outputs')
llp_folders = scan_outputs_folders(outputs_dir)
selected_llp = select_option(llp_folders, "Select the LLP:")
total_dir = os.path.join(outputs_dir, selected_llp, 'total')
extracted_files = extract_files(total_dir, selected_llp)
if selected_llp == "HNL":
if not extracted_files:
print("No mixing pattern files found for HNL.")
sys.exit(1)
print(f"Available HNL files:")
for i, (_, identifier) in enumerate(extracted_files, start=1):
print(f"{i}. Mixing pattern={identifier}")
# Ask user to choose a file
while True:
try:
choice = int(input("Choose a file by typing the number: "))
if 1 <= choice <= len(extracted_files):
break
else:
print(f"Please enter a number between 1 and {len(extracted_files)}.")
except ValueError:
print("Invalid input. Please enter a valid number.")
selected_file, identifier = extracted_files[choice - 1]
selected_filepath = os.path.join(total_dir, selected_file)
mix_label = identifier # Contains mixing pattern
elif selected_llp == "Dark-photons":
if not extracted_files:
print("No uncertainty choice files found for Dark-photons.")
sys.exit(1)
print(f"Available Dark-photons files:")
for i, (_, identifier) in enumerate(extracted_files, start=1):
print(f"{i}. {identifier}")
# Ask user to choose a file
while True:
try:
choice = int(input("Choose an uncertainty choice file by typing the number: "))
if 1 <= choice <= len(extracted_files):
break
else:
print(f"Please enter a number between 1 and {len(extracted_files)}.")
except ValueError:
print("Invalid input. Please enter a valid number.")
selected_file, identifier = extracted_files[choice - 1]
selected_filepath = os.path.join(total_dir, selected_file)
mix_label = identifier # Contains uncertainty
else:
# For other LLPs, select the first file
if not extracted_files:
print(f"No total files found for LLP '{selected_llp}'.")
sys.exit(1)
selected_file, identifier = extracted_files[0]
selected_filepath = os.path.join(total_dir, selected_file)
mix_label = "" # No additional identifier
print(f"\nSelected file: {selected_filepath}\n")
# Read the selected data file
try:
data = pd.read_csv(selected_filepath, delim_whitespace=True, header=0)
except Exception as e:
print(f"Error reading file {selected_filepath}: {e}")
sys.exit(1)
required_columns = ['mass', 'coupling_squared', 'c_tau', 'N_LLP_tot',
'epsilon_polar', 'epsilon_azimuthal',
'P_decay_averaged', 'Br_visible', 'N_ev_tot']
if not all(col in data.columns for col in required_columns):
print("Error: Missing columns in data file.")
sys.exit(1)
# For acceptances plot, ask user to select up to 2 different lifetimes
unique_lifetimes = sorted(data['c_tau'].unique())
print("Plotting averaged quantities as a function of mass for fixed lifetimes.")
print("Select up to 2 lifetimes by typing their numbers separated by space (e.g., 1 2):")
for i, lifetime in enumerate(unique_lifetimes, start=1):
print(f"{i}. {lifetime:.3f} m")
selected_lifetimes = []
selected_styles = []
selected_labels = []
max_selection = min(2, len(unique_lifetimes))
if max_selection == 0:
print("No lifetimes available for plotting.")
sys.exit(1)
while True:
try:
selection = input("Select up to 2 lifetimes by typing their numbers separated by space (e.g., 1 2): ")
choices = list(map(int, selection.strip().split()))
if 1 <= len(choices) <= max_selection and all(1 <= choice <= len(unique_lifetimes) for choice in choices):
selected_lifetimes = [unique_lifetimes[choice - 1] for choice in choices]
break
else:
print(f"Please enter between 1 and {max_selection} valid numbers.")
except ValueError:
print("Invalid input. Please enter valid numbers separated by space.")
# Assign styles and labels
styles = ['solid', 'dashed']
for idx, lifetime in enumerate(selected_lifetimes):
selected_styles.append(styles[idx % len(styles)])
# Label with the selected lifetime
selected_labels.append(f"cτ = {lifetime:.3f} m")
# Prepare plot directory
plot_dir = os.path.join(basedir, 'plots', selected_llp)
os.makedirs(plot_dir, exist_ok=True)
# Plot acceptances
acceptance_plot_path = os.path.join(plot_dir, 'acceptance_plot.png')
if selected_llp in ["HNL", "Dark-photons"]:
plot_title = f"{selected_llp} Acceptances ({mix_label})"
else:
plot_title = f"{selected_llp} Acceptances"
plot_acceptances(data, acceptance_plot_path, plot_title, selected_lifetimes, selected_styles, selected_labels)
# Plot coupling vs events
coupling_vs_events_plot_path = os.path.join(plot_dir, 'coupling_vs_events.pdf')
if selected_llp in ["HNL", "Dark-photons"]:
coupling_plot_title = rf"$N_{{\mathrm{{events}}}}$ for {selected_llp} ({mix_label}) as a function of $\mathrm{{coupling}}^{{2}}$"
else:
coupling_plot_title = rf"$N_{{\mathrm{{events}}}}$ for {selected_llp} as a function of $\mathrm{{coupling}}^{{2}}$"
plot_coupling_vs_events(data, coupling_vs_events_plot_path, coupling_plot_title)
# Plot lifetime vs events
lifetime_vs_events_plot_path = os.path.join(plot_dir, 'lifetime_vs_events.pdf')
if selected_llp in ["HNL", "Dark-photons"]:
lifetime_plot_title = rf"$N_{{\mathrm{{events}}}}$ for {selected_llp} ({mix_label}) as a function of $c\tau_{{\mathrm{{LLP}}}}$"
else:
lifetime_plot_title = rf"$N_{{\mathrm{{events}}}}$ for {selected_llp} as a function of $c\tau_{{\mathrm{{LLP}}}}$"
plot_lifetime_vs_events(data, lifetime_vs_events_plot_path, lifetime_plot_title)
if __name__ == "__main__":
main()