-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathrun_seq2tree.py
131 lines (116 loc) · 5.58 KB
/
run_seq2tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# coding: utf-8
import os
from src.train_and_evaluate import *
from src.models import *
import time
import torch.optim
from src.expressions_transfer import *
batch_size = 64
embedding_size = 128
hidden_size = 512
n_epochs = 80
learning_rate = 1e-3
weight_decay = 1e-5
beam_size = 5
n_layers = 2
os.makedirs("models", exist_ok=True)
data = load_raw_data("data/Math_23K.json")
pairs, generate_nums, copy_nums = transfer_num(data)
temp_pairs = []
for p in pairs:
temp_pairs.append((p[0], from_infix_to_prefix(p[1]), p[2], p[3]))
pairs = temp_pairs
fold_size = int(len(pairs) * 0.2)
fold_pairs = []
for split_fold in range(4):
fold_start = fold_size * split_fold
fold_end = fold_size * (split_fold + 1)
fold_pairs.append(pairs[fold_start:fold_end])
fold_pairs.append(pairs[(fold_size * 4):])
best_acc_fold = []
for fold in range(5):
pairs_tested = []
pairs_trained = []
for fold_t in range(5):
if fold_t == fold:
pairs_tested += fold_pairs[fold_t]
else:
pairs_trained += fold_pairs[fold_t]
input_lang, output_lang, train_pairs, test_pairs = prepare_data(pairs_trained, pairs_tested, 5, generate_nums,
copy_nums, tree=True)
# Initialize models
encoder = EncoderSeq(input_size=input_lang.n_words, embedding_size=embedding_size, hidden_size=hidden_size,
n_layers=n_layers)
predict = Prediction(hidden_size=hidden_size, op_nums=output_lang.n_words - copy_nums - 1 - len(generate_nums),
input_size=len(generate_nums))
generate = GenerateNode(hidden_size=hidden_size, op_nums=output_lang.n_words - copy_nums - 1 - len(generate_nums),
embedding_size=embedding_size)
merge = Merge(hidden_size=hidden_size, embedding_size=embedding_size)
# the embedding layer is only for generated number embeddings, operators, and paddings
encoder_optimizer = torch.optim.Adam(encoder.parameters(), lr=learning_rate, weight_decay=weight_decay)
predict_optimizer = torch.optim.Adam(predict.parameters(), lr=learning_rate, weight_decay=weight_decay)
generate_optimizer = torch.optim.Adam(generate.parameters(), lr=learning_rate, weight_decay=weight_decay)
merge_optimizer = torch.optim.Adam(merge.parameters(), lr=learning_rate, weight_decay=weight_decay)
encoder_scheduler = torch.optim.lr_scheduler.StepLR(encoder_optimizer, step_size=20, gamma=0.5)
predict_scheduler = torch.optim.lr_scheduler.StepLR(predict_optimizer, step_size=20, gamma=0.5)
generate_scheduler = torch.optim.lr_scheduler.StepLR(generate_optimizer, step_size=20, gamma=0.5)
merge_scheduler = torch.optim.lr_scheduler.StepLR(merge_optimizer, step_size=20, gamma=0.5)
# Move models to GPU
if USE_CUDA:
encoder.cuda()
predict.cuda()
generate.cuda()
merge.cuda()
generate_num_ids = []
for num in generate_nums:
generate_num_ids.append(output_lang.word2index[num])
for epoch in range(n_epochs):
encoder_scheduler.step()
predict_scheduler.step()
generate_scheduler.step()
merge_scheduler.step()
loss_total = 0
input_batches, input_lengths, output_batches, output_lengths, nums_batches, num_stack_batches, num_pos_batches, num_size_batches = prepare_train_batch(train_pairs, batch_size)
print("fold:", fold + 1)
print("epoch:", epoch + 1)
start = time.time()
for idx in range(len(input_lengths)):
loss = train_tree(
input_batches[idx], input_lengths[idx], output_batches[idx], output_lengths[idx],
num_stack_batches[idx], num_size_batches[idx], generate_num_ids, encoder, predict, generate, merge,
encoder_optimizer, predict_optimizer, generate_optimizer, merge_optimizer, output_lang, num_pos_batches[idx])
loss_total += loss
print("loss:", loss_total / len(input_lengths))
print("training time", time_since(time.time() - start))
print("--------------------------------")
if epoch % 10 == 0 or epoch > n_epochs - 5:
value_ac = 0
equation_ac = 0
eval_total = 0
start = time.time()
for test_batch in test_pairs:
test_res = evaluate_tree(test_batch[0], test_batch[1], generate_num_ids, encoder, predict, generate,
merge, output_lang, test_batch[5], beam_size=beam_size)
val_ac, equ_ac, _, _ = compute_prefix_tree_result(test_res, test_batch[2], output_lang, test_batch[4], test_batch[6])
if val_ac:
value_ac += 1
if equ_ac:
equation_ac += 1
eval_total += 1
print(equation_ac, value_ac, eval_total)
print("test_answer_acc", float(equation_ac) / eval_total, float(value_ac) / eval_total)
print("testing time", time_since(time.time() - start))
print("------------------------------------------------------")
torch.save(encoder.state_dict(), "models/encoder")
torch.save(predict.state_dict(), "models/predict")
torch.save(generate.state_dict(), "models/generate")
torch.save(merge.state_dict(), "models/merge")
if epoch == n_epochs - 1:
best_acc_fold.append((equation_ac, value_ac, eval_total))
a, b, c = 0, 0, 0
for bl in range(len(best_acc_fold)):
a += best_acc_fold[bl][0]
b += best_acc_fold[bl][1]
c += best_acc_fold[bl][2]
print(best_acc_fold[bl])
print(a / float(c), b / float(c))