forked from liuyuan-pal/SyncDreamer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblender_script.py
282 lines (234 loc) · 9.88 KB
/
blender_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""Blender script to render images of 3D models.
This script is used to render images of 3D models. It takes in a list of paths
to .glb files and renders images of each model. The images are from rotating the
object around the origin. The images are saved to the output directory.
Example usage:
blender -b -P blender_script.py -- \
--object_path my_object.glb \
--output_dir ./views \
--engine CYCLES \
--scale 0.8 \
--num_images 12 \
--camera_dist 1.2
Here, input_model_paths.json is a json file containing a list of paths to .glb.
"""
import argparse
import json
import math
import os
import random
import sys
import time
import urllib.request
from pathlib import Path
from mathutils import Vector, Matrix
import numpy as np
import bpy
from mathutils import Vector
import pickle
def read_pickle(pkl_path):
with open(pkl_path, 'rb') as f:
return pickle.load(f)
def save_pickle(data, pkl_path):
# os.system('mkdir -p {}'.format(os.path.dirname(pkl_path)))
with open(pkl_path, 'wb') as f:
pickle.dump(data, f)
parser = argparse.ArgumentParser()
parser.add_argument("--object_path", type=str, required=True)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--engine", type=str, default="CYCLES", choices=["CYCLES", "BLENDER_EEVEE"])
parser.add_argument("--camera_type", type=str, default='even')
parser.add_argument("--num_images", type=int, default=16)
parser.add_argument("--elevation", type=float, default=30)
parser.add_argument("--elevation_start", type=float, default=-10)
parser.add_argument("--elevation_end", type=float, default=40)
parser.add_argument("--device", type=str, default='CUDA')
argv = sys.argv[sys.argv.index("--") + 1 :]
args = parser.parse_args(argv)
print('===================', args.engine, '===================')
context = bpy.context
scene = context.scene
render = scene.render
cam = scene.objects["Camera"]
cam.location = (0, 1.2, 0)
cam.data.lens = 35
cam.data.sensor_width = 32
cam_constraint = cam.constraints.new(type="TRACK_TO")
cam_constraint.track_axis = "TRACK_NEGATIVE_Z"
cam_constraint.up_axis = "UP_Y"
render.engine = args.engine
render.image_settings.file_format = "PNG"
render.image_settings.color_mode = "RGBA"
render.resolution_x = 256
render.resolution_y = 256
render.resolution_percentage = 100
scene.cycles.device = "GPU"
scene.cycles.samples = 128
scene.cycles.diffuse_bounces = 1
scene.cycles.glossy_bounces = 1
scene.cycles.transparent_max_bounces = 3
scene.cycles.transmission_bounces = 3
scene.cycles.filter_width = 0.01
scene.cycles.use_denoising = True
scene.render.film_transparent = True
bpy.context.preferences.addons["cycles"].preferences.get_devices()
# Set the device_type
bpy.context.preferences.addons["cycles"].preferences.compute_device_type = args.device # or "OPENCL"
bpy.context.scene.cycles.tile_size = 8192
def az_el_to_points(azimuths, elevations):
x = np.cos(azimuths)*np.cos(elevations)
y = np.sin(azimuths)*np.cos(elevations)
z = np.sin(elevations)
return np.stack([x,y,z],-1) #
def set_camera_location(cam_pt):
# from https://blender.stackexchange.com/questions/18530/
x, y, z = cam_pt # sample_spherical(radius_min=1.5, radius_max=2.2, maxz=2.2, minz=-2.2)
camera = bpy.data.objects["Camera"]
camera.location = x, y, z
return camera
def get_calibration_matrix_K_from_blender(camera):
f_in_mm = camera.data.lens
scene = bpy.context.scene
resolution_x_in_px = scene.render.resolution_x
resolution_y_in_px = scene.render.resolution_y
scale = scene.render.resolution_percentage / 100
sensor_width_in_mm = camera.data.sensor_width
sensor_height_in_mm = camera.data.sensor_height
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
if camera.data.sensor_fit == 'VERTICAL':
# the sensor height is fixed (sensor fit is horizontal),
# the sensor width is effectively changed with the pixel aspect ratio
s_u = resolution_x_in_px * scale / sensor_width_in_mm / pixel_aspect_ratio
s_v = resolution_y_in_px * scale / sensor_height_in_mm
else: # 'HORIZONTAL' and 'AUTO'
# the sensor width is fixed (sensor fit is horizontal),
# the sensor height is effectively changed with the pixel aspect ratio
s_u = resolution_x_in_px * scale / sensor_width_in_mm
s_v = resolution_y_in_px * scale * pixel_aspect_ratio / sensor_height_in_mm
# Parameters of intrinsic calibration matrix K
alpha_u = f_in_mm * s_u
alpha_v = f_in_mm * s_u
u_0 = resolution_x_in_px * scale / 2
v_0 = resolution_y_in_px * scale / 2
skew = 0 # only use rectangular pixels
K = np.asarray(((alpha_u, skew, u_0),
(0, alpha_v, v_0),
(0, 0, 1)),np.float32)
return K
def reset_scene() -> None:
"""Resets the scene to a clean state."""
# delete everything that isn't part of a camera or a light
for obj in bpy.data.objects:
if obj.type not in {"CAMERA", "LIGHT"}:
bpy.data.objects.remove(obj, do_unlink=True)
# delete all the materials
for material in bpy.data.materials:
bpy.data.materials.remove(material, do_unlink=True)
# delete all the textures
for texture in bpy.data.textures:
bpy.data.textures.remove(texture, do_unlink=True)
# delete all the images
for image in bpy.data.images:
bpy.data.images.remove(image, do_unlink=True)
# load the glb model
def load_object(object_path: str) -> None:
"""Loads a glb model into the scene."""
if object_path.endswith(".glb"):
bpy.ops.import_scene.gltf(filepath=object_path, merge_vertices=True)
elif object_path.endswith(".fbx"):
bpy.ops.import_scene.fbx(filepath=object_path)
else:
raise ValueError(f"Unsupported file type: {object_path}")
def scene_bbox(single_obj=None, ignore_matrix=False):
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
for obj in scene_meshes() if single_obj is None else [single_obj]:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
if not ignore_matrix:
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def scene_root_objects():
for obj in bpy.context.scene.objects.values():
if not obj.parent:
yield obj
def scene_meshes():
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
# function from https://github.com/panmari/stanford-shapenet-renderer/blob/master/render_blender.py
def get_3x4_RT_matrix_from_blender(cam):
bpy.context.view_layer.update()
location, rotation = cam.matrix_world.decompose()[0:2]
R = np.asarray(rotation.to_matrix())
t = np.asarray(location)
cam_rec = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32)
R = R.T
t = -R @ t
R_world2cv = cam_rec @ R
t_world2cv = cam_rec @ t
RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1)
return RT
def normalize_scene():
bbox_min, bbox_max = scene_bbox()
scale = 1 / max(bbox_max - bbox_min)
for obj in scene_root_objects():
obj.scale = obj.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
for obj in scene_root_objects():
obj.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
def save_images(object_file: str) -> None:
object_uid = os.path.basename(object_file).split(".")[0]
os.makedirs(args.output_dir, exist_ok=True)
reset_scene()
# load the object
load_object(object_file)
# object_uid = os.path.basename(object_file).split(".")[0]
normalize_scene()
# create an empty object to track
empty = bpy.data.objects.new("Empty", None)
scene.collection.objects.link(empty)
cam_constraint.target = empty
world_tree = bpy.context.scene.world.node_tree
back_node = world_tree.nodes['Background']
env_light = 0.5
back_node.inputs['Color'].default_value = Vector([env_light, env_light, env_light, 1.0])
back_node.inputs['Strength'].default_value = 1.0
distances = np.asarray([1.5 for _ in range(args.num_images)])
if args.camera_type=='fixed':
azimuths = (np.arange(args.num_images)/args.num_images*np.pi*2).astype(np.float32)
elevations = np.deg2rad(np.asarray([args.elevation] * args.num_images).astype(np.float32))
elif args.camera_type=='random':
azimuths = (np.arange(args.num_images) / args.num_images * np.pi * 2).astype(np.float32)
elevations = np.random.uniform(args.elevation_start, args.elevation_end, args.num_images)
elevations = np.deg2rad(elevations)
else:
raise NotImplementedError
cam_pts = az_el_to_points(azimuths, elevations) * distances[:,None]
cam_poses = []
(Path(args.output_dir) / object_uid).mkdir(exist_ok=True, parents=True)
for i in range(args.num_images):
# set camera
camera = set_camera_location(cam_pts[i])
RT = get_3x4_RT_matrix_from_blender(camera)
cam_poses.append(RT)
render_path = os.path.join(args.output_dir, object_uid, f"{i:03d}.png")
if os.path.exists(render_path): continue
scene.render.filepath = os.path.abspath(render_path)
bpy.ops.render.render(write_still=True)
if args.camera_type=='random':
K = get_calibration_matrix_K_from_blender(camera)
cam_poses = np.stack(cam_poses, 0)
save_pickle([K, azimuths, elevations, distances, cam_poses], os.path.join(args.output_dir, object_uid, "meta.pkl"))
if __name__ == "__main__":
save_images(args.object_path)