-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProyecto8_TSNE y Kmeans.py
634 lines (428 loc) · 14.4 KB
/
Proyecto8_TSNE y Kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
#!/usr/bin/env python
# coding: utf-8
# In[1]:
from sklearn.preprocessing import StandardScaler
import numpy as np
import seaborn as sns
from sklearn.datasets import fetch_mldata
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from matplotlib import offsetbox
from sklearn import (manifold, datasets, decomposition, ensemble,
discriminant_analysis, random_projection)
# In[2]:
import pandas as pd
get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib.pyplot as plt
detections = pd.read_pickle('C:/Users/sebas/Desktop/Ingenieria/8 semestre/Inteligencia Computacional/proyecto/data_representativity/detections_664k.pkl')
features = pd.read_pickle('C:/Users/sebas/Desktop/Ingenieria/8 semestre/Inteligencia Computacional/proyecto/data_representativity/features_664k.pkl')
labels = pd.read_pickle('C:/Users/sebas/Desktop/Ingenieria/8 semestre/Inteligencia Computacional/proyecto/data_representativity/labels.pkl')
print(detections.head())
print(labels.head())
# How are the classes distributed?
print(labels[['classALeRCE', 'ra']].groupby('classALeRCE').count())
# Plot an object
first_object_oid = detections.index.values[0]#20760278
first_object_detections = detections.loc[first_object_oid]
print(f'Object {first_object_oid} has {len(first_object_detections)} detections')
plt.figure()
plt.subplot(1, 2, 1)
plt.scatter(
first_object_detections.mjd,
first_object_detections.magpsf_corr,
c=first_object_detections.fid)
# In astronomy we plot the magnitude axis inverted (higher magnitude, dimmer objects)
plt.gca().invert_yaxis()
plt.xlabel('Time [mjd]')
plt.ylabel('Magnitude')
plt.title(f'{first_object_oid} light curve')
# Let's do a simple scatter of two features
#means = features[['Mean_1', 'Mean_2']].copy()
#means.dropna(inplace=True)
#plt.subplot(1, 2, 2)
#plt.scatter(
# means.values[:, 0] - means.values[:, 1],
#means.values[:, 0],
#alpha=0.005
#)
#plt.ylabel('Mean_1')
#plt.xlabel('Mean_1 - Mean_2')
#plt.title('g mean magnitude vs "color" for ALeRCE - ZTF dataset')
#plt.show()
# ### Creación del nuevo dataframe
# In[3]:
DFclas=features.loc[labels.index]
DFclas=DFclas.dropna()
#para visualizar las columnas y filas de los dataframes usar los siguientes:
#DFclas.head()
#labels.dropna()
#labels.head()
# In[4]:
a=[]
for i in range(len(DFclas.index)):
a.append(labels.loc[DFclas.index[i]][0])
#Se añade una nueva columna con la clase
DFclas['clase']=a
#DFclas.head()
# In[5]:
#Visualizacion de ejemplos por clase para el nuevo dataframe
DFclas.groupby('clase').count()
# ### Conjunto de supernovas
# In[6]:
S1=DFclas['clase']=='SLSN'
S2=DFclas['clase']=='SNII'
S3=DFclas['clase']=='SNIIb'
S4=DFclas['clase']=='SNIIn'
S5=DFclas['clase']=='SNIa'
S6=DFclas['clase']=='SNIbc'
#Hay que añadir CV/nova??
dfS1=DFclas[S1]
dfS2=DFclas[S2]
dfS3=DFclas[S3]
dfS4=DFclas[S4]
dfS5=DFclas[S5]
dfS6=DFclas[S6]
SN=pd.concat([dfS1,dfS2,dfS3,dfS4,dfS5,dfS6])
SN['clase']='SN'
#SN
# In[7]:
import random
n=500
aleatorios = [random.randint(1,512) for _ in range(n)]
SN=SN.dropna()
dfSN=SN.iloc[aleatorios]
#dfSN
# In[8]:
# Se creara el dataframe que contenga 100 ejemplos de cada clase y otro con 500 ejemplos
# Las clases con menos ejemplos que los indicados no se tomaran en cuenta.
AGNI=DFclas['clase']=='AGN-I'
dfAGNI=DFclas[AGNI]
Blazar=DFclas['clase']=='Blazar'
dfBlazar=DFclas[Blazar]
CVNova=DFclas['clase']=='CV/Nova'
dfCVNova=DFclas[CVNova]
Ceph=DFclas['clase']=='Ceph' #menos de 500
dfCeph=DFclas[Ceph]
DSCT=DFclas['clase']=='DSCT' #menos de 500
dfDSCT=DFclas[DSCT]
EBC=DFclas['clase']=='EBC'
dfEBC=DFclas[EBC]
EBSDD=DFclas['clase']=='EBSD/D'
dfEBSDD=DFclas[EBSDD]
LPV=DFclas['clase']=='LPV'
dfLPV=DFclas[LPV]
PeriodicOther=DFclas['clase']=='Periodic-Other'
dfPO=DFclas[PeriodicOther]
RRL1000=DFclas['clase']=='RRL'
dfRRL=DFclas[RRL1000]
#SNIa=DFclas['clase']=='SNIa' #menos de 500
#dfSNIa=DFclas[SNIa]
# Estos son los dos conjuntos finales
DF5=pd.concat([dfRRL[0:500],dfAGNI[0:500],dfBlazar[0:500],dfCVNova[0:500],dfEBC[0:500],dfEBSDD[0:500],dfLPV[0:500],dfPO[0:500],dfSN[0:500]])
DF1=pd.concat([dfAGNI[0:100],dfBlazar[0:100],dfCVNova[0:100],dfEBC[0:100],dfEBSDD[0:100],dfLPV[0:100],dfPO[0:100],dfRRL[0:100],
dfCeph[0:100],dfDSCT[0:100],dfSN[0:100]])
#Si es que se desea visualizar usar los siguientes:
#DF5.groupby('clase').count()
#DF1.groupby('clase').count()
# ## Comparación de caracteristicas
# ### Para 100 ejemplos
# # Analisis t-SNE
# ### Utilizando la base de datos equilibrada
# In[9]:
tsne = TSNE(n_components=2, random_state=0, perplexity=40)
y=DF1.iloc[:,96]
#data_X = digits.data[:600]
tsne_obj= tsne.fit_transform(DF1.iloc[:,0:95])
tsne_df = pd.DataFrame({'X':tsne_obj[:,0],
'Y':tsne_obj[:,1],
'clases':y})
import seaborn as sns
sns.set(rc={'figure.figsize':(11.7,8.27)})
sns.scatterplot(x="X", y="Y",
hue="clases",
palette=['purple','red','orange','brown','blue',
'dodgerblue','green','lightgreen','black','aqua','pink',],
legend='full',
data=tsne_df);
plt.title('t-SNE')
# ## Encontrar las caracteristicas mas representativas
#
# Se usara random forest para eliminar las caracteristicas que tengan poca relevancia, para esto se espera tener una importancia de las caracteristicas del 80% y 90%.
# In[11]:
#muestra el conjunto de datos sin los target
#X = DF5.drop(['clase'],axis='columns')
X = DFalldata.drop(['clase'],axis='columns')
#muestra el vector de los target de DFclas
#Y=DF5.iloc[:,-1]
Y=DFalldata.iloc[:,-1]
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.5, stratify=Y)
classifier = RandomForestClassifier(n_estimators=40,max_depth=30)
classifier.fit(X_train, Y_train)
feature_importances = classifier.feature_importances_
importance_order = np.argsort(-feature_importances)
feature_names = DFalldata.columns.values
# In[20]:
#Numero de caracteristicas para llegar al 80%
suma=0
indice=0
algo=np.sort(feature_importances)[::-1]
for i in range(len(algo)):
if suma<=0.8:
suma = suma+algo[i]
indice=i
print(indice)
print(suma)
# In[21]:
print('\nCaracteristicas ordenadas por importancia (RF)')
for index in importance_order:
print('\t%.3f %s' % (feature_importances[index], feature_names[index]))
# ## Agregar elementos no etiquetados
# In[10]:
import random
n=1199
aleatorios = [random.randint(0,256983) for _ in range(n)]
dfsinetiq = features.drop(labels.index)
dfsinetiq=dfsinetiq.dropna()
df=dfsinetiq.iloc[aleatorios]
df['clase']='sin-clase'
DFalldata=pd.concat([DF1,df]) # Toda la data
dff=DFalldata.iloc[:,0:96]
data_norm=(dff-dff.min())/(dff.max()-dff.min())
data_norm2=data_norm
data_norm2['clase']=DFalldata['clase']
# In[13]:
#NuevaData = DFalldata[DFalldata.columns.values[importance_order[0:53]]]
NuevaData1 = DFalldata[DFalldata.columns.values[importance_order[0:59]]]
dff=NuevaData1
tsne = TSNE(n_components=2, random_state=0, perplexity=70)
y=DFalldata.iloc[:,96]
#data_X = digits.data[:600]
data_norm=(dff-dff.min())/(dff.max()-dff.min())
tsne_obj= tsne.fit_transform(data_norm)
tsne_df = pd.DataFrame({'X':tsne_obj[:,0],
'Y':tsne_obj[:,1],
'clases':y})
import seaborn as sns
sns.set(rc={'figure.figsize':(11.7,8.27)})
sns.scatterplot(x="X", y="Y",
hue="clases",
palette=['purple','red','orange','brown','blue',
'dodgerblue','green','lightgreen','black','aqua','pink','darkkhaki',],
legend='full',
data=tsne_df,alpha=0.7);
plt.title('t-SNE')
#El grafico obtenido difiere del mostrado en el informe debido a que el t SNE se corrio de nuevo, pero el analisis es el mismo.
# ## Reconocer cluster de elementos sin clase
# ### Curva de luz de un elemento del cluster 1
# In[14]:
#Para el cluster de la izq
#Las ubicaciones dependen de como resulto el t-SNE y cuales elementos sin clase salieron del random
arreglosx=[]
arreglosy=[]
for i in range(len(tsne_obj)):
if tsne_obj[i][0]<10 and tsne_obj[i][0]>0 and tsne_obj[i][1]<-15 and tsne_obj[i][1]>-30:
arreglosx.append(tsne_obj[i][0])
arreglosy.append(tsne_obj[i][1])
nelem=[]
for j in range(len(arreglosx)):
for i in range(len(tsne_obj)):
if tsne_obj[i][0]== arreglosx[j]:
nelem.append(i)
sinclas=[]
for k in range(len(nelem)):
if nelem[k]>1198:
sinclas.append(nelem[k])
Cjto1=dff.index[sinclas]
Cjto1
# In[3]:
#curvas de luz de los elementos obtenidos en el primer cluster
object_oid='ZTF18aajswmq'
#object_oid='ZTF18aazmvhd'
object_detections = detections.loc[object_oid]
object_features = features.loc[object_oid]
mjd = object_detections.mjd #tabla
periodo = float(object_features.PeriodLS_v2_1) #numero fijo
len(mjd)
fase = []
for i in mjd:
fase.append((i%periodo)/periodo)
#Curva de Luz doblada
plt.figure(figsize=(15,4))
plt.subplot()
plt.scatter(
fase,
object_detections.magpsf_corr,
c=object_detections.fid)
plt.gca().invert_yaxis()
plt.xlabel('Phase')
plt.ylabel('Magnitude')
plt.title(f'{object_oid} light curve')
#Curva de luz no doblada
plt.figure(figsize=(15,4))
plt.subplot()
plt.scatter(
object_detections.mjd,
object_detections.magpsf_corr,
c=object_detections.fid)
plt.gca().invert_yaxis()
plt.xlabel('Time [mjd]')
plt.ylabel('Magnitude')
plt.title(f'{object_oid} light curve')
# ### Curva de luz del cluster 2
# In[15]:
#Para el cluster de abajo a la der
arreglosx=[]
arreglosy=[]
for i in range(len(tsne_obj)):
if tsne_obj[i][0]<24 and tsne_obj[i][0]>17 and tsne_obj[i][1]<-17 and tsne_obj[i][1]>-27:
arreglosx.append(tsne_obj[i][0])
arreglosy.append(tsne_obj[i][1])
nelem=[]
for j in range(len(arreglosx)):
for i in range(len(tsne_obj)):
if tsne_obj[i][0]== arreglosx[j]:
nelem.append(i)
sinclas=[]
for k in range(len(nelem)):
if nelem[k]>1198:
sinclas.append(nelem[k])
Cjto1=dff.index[sinclas]
Cjto1
# In[4]:
#curvas de luz de los elementos obtenidos en el segundo cluster
object_oid='ZTF18abokskf'
#object_oid='ZTF18abmfwyv'
object_detections = detections.loc[object_oid]
object_features = features.loc[object_oid]
mjd = object_detections.mjd #tabla
periodo = float(object_features.PeriodLS_v2_1) #numero fijo
len(mjd)
fase = []
for i in mjd:
fase.append((i%periodo)/periodo)
#Curva de Luz doblada
plt.figure(figsize=(15,4))
plt.subplot()
plt.scatter(
fase,
object_detections.magpsf_corr,
c=object_detections.fid)
plt.gca().invert_yaxis()
plt.xlabel('Phase')
plt.ylabel('Magnitude')
plt.title(f'{object_oid} light curve')
#Curva de luz no doblada
plt.figure(figsize=(15,4))
plt.subplot()
plt.scatter(
object_detections.mjd,
object_detections.magpsf_corr,
c=object_detections.fid)
plt.gca().invert_yaxis()
plt.xlabel('Time [mjd]')
plt.ylabel('Magnitude')
plt.title(f'{object_oid} light curve')
# ### Curvas de luz del cluster 3
# In[16]:
#Para el cluster de centro izquierda
arreglosx=[]
arreglosy=[]
for i in range(len(tsne_obj)):
if tsne_obj[i][0]<31 and tsne_obj[i][0]>17 and tsne_obj[i][1]<-7 and tsne_obj[i][1]>-15:
arreglosx.append(tsne_obj[i][0])
arreglosy.append(tsne_obj[i][1])
nelem=[]
for j in range(len(arreglosx)):
for i in range(len(tsne_obj)):
if tsne_obj[i][0]== arreglosx[j]:
nelem.append(i)
sinclas=[]
for k in range(len(nelem)):
if nelem[k]>1198:
sinclas.append(nelem[k])
Cjto1=dff.index[sinclas]
Cjto1
# In[5]:
#curvas de luz de los elementos obtenidos en el tercer cluster
object_oid='ZTF18abbsnps'
object_detections = detections.loc[object_oid]
object_features = features.loc[object_oid]
mjd = object_detections.mjd #tabla
periodo = float(object_features.PeriodLS_v2_1) #numero fijo
len(mjd)
fase = []
for i in mjd:
fase.append((i%periodo)/periodo)
#Curva de Luz doblada
plt.figure(figsize=(15,4))
plt.subplot()
plt.scatter(
fase,
object_detections.magpsf_corr,
c=object_detections.fid)
plt.gca().invert_yaxis()
plt.xlabel('Phase')
plt.ylabel('Magnitude')
plt.title(f'{object_oid} light curve')
#Curva de luz no doblada
plt.figure(figsize=(15,4))
plt.subplot()
plt.scatter(
object_detections.mjd,
object_detections.magpsf_corr,
c=object_detections.fid)
plt.gca().invert_yaxis()
plt.xlabel('Time [mjd]')
plt.ylabel('Magnitude')
plt.title(f'{object_oid} light curve')
# # Aplicacion de Kmeans
# In[33]:
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cluster import KMeans
from matplotlib import colors as mcolors
import math
# In[34]:
clusters = 15
model = KMeans(n_clusters = clusters)
model.fit(data_norm2.iloc[:,0:96])
md_k = pd.Series(model.labels_)
# In[35]:
data_norm2['Clust'] = model.labels_
data_norm2.tail()
# In[36]:
tres=data_norm2['Clust']==0
data3=data_norm2[tres]
v3=data3['clase']=='sin-clase'
print('La cantidad de elementos sin-clase en este cluster es de '+ str(len(data3[v3]))+', con un total de '+str(len(v3))+' elementos' )
tres=data_norm2['Clust']==1
data3=data_norm2[tres]
v3=data3['clase']=='sin-clase'
print('La cantidad de elementos sin-clase en este cluster es de '+ str(len(data3[v3]))+', con un total de '+str(len(v3))+' elementos' )
# In[37]:
for i in range(0,15):
tres=data_norm2['Clust']==i
data3=data_norm2[tres]
v3=data3['clase']=='sin-clase'
print('La cantidad de elementos sin-clase en este cluster ' + str(i) +' es de '+ str(len(data3[v3]))+', con un total de '+str(len(v3))+
' elementos, con un ' + str("{0:.4f}".format(len(data3[v3])*100/len(v3)))+'%' )
# In[38]:
NuevaData1 = DFalldata[DFalldata.columns.values[importance_order[0:59]]]
dff=NuevaData1
y=data_norm2.iloc[:,97]
#y=data_norm.iloc[:,95]
#data_norm2=(dff-dff.min())/(dff.max()-dff.min())
tsne_obj= tsne.fit_transform(data_norm2.iloc[:,0:96])
tsne_df = pd.DataFrame({'X':tsne_obj[:,0],
'Y':tsne_obj[:,1],
'clases':y})
import seaborn as sns
sns.set(rc={'figure.figsize':(11.7,8.27)})
sns.scatterplot(x="X", y="Y",
hue="clases",
palette=['purple','red','orange','brown','blue',
'dodgerblue','green','lightgreen','gray','black','aqua','pink','darkkhaki','salmon','fuchsia',],#'crimson',],
legend='full',
data=tsne_df);
plt.title('t-SNE')