-
Notifications
You must be signed in to change notification settings - Fork 0
/
Project_CNN_with_softmax_layer_visualisation.py
244 lines (152 loc) · 5.43 KB
/
Project_CNN_with_softmax_layer_visualisation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# coding: utf-8
# In[20]:
import torch
import torchvision
import torchvision.transforms as transforms
########################################################################
# The output of torchvision datasets are PILImage images of range [0, 1].
# We transform them to Tensors of normalized range [-1, 1].
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
########################################################################
# Let us show some of the training images, for fun.
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
########################################################################
# 2. Define a Convolution Neural Network
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Copy the neural network from the Neural Networks section before and modify it to
# take 3-channel images (instead of 1-channel images as it was defined).
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 3)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x1=x
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x,x1
net = Net()
########################################################################
# 3. Define a Loss function and optimizer
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Let's use a Classification Cross-Entropy loss and SGD with momentum.
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
########################################################################
# 4. Train the network
# ^^^^^^^^^^^^^^^^^^^^
#
# This is when things start to get interesting.
# We simply have to loop over our data iterator, and feed the inputs to the
# network and optimize.
for epoch in range(2): # loop over the dataset multiple times
layer1=[]
l=[]
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data
l.append(labels[0])
l.append(labels[1])
l.append(labels[2])
l.append(labels[3])
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs,outputs1 = net(inputs)
layer1.append(outputs1[0,1,:,:].detach().numpy())
layer1.append(outputs1[1,1,:,:].detach().numpy())
layer1.append(outputs1[2,1,:,:].detach().numpy())
layer1.append(outputs1[3,1,:,:].detach().numpy())
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
#running_loss += loss.item()
#if i % 2000 == 1999: # print every 2000 mini-batches
#print('[%d, %5d] loss: %.3f' %
#(epoch + 1, i + 1, running_loss / 2000))
#running_loss = 0.0
#print('Finished Training')
# In[22]:
train_svm=np.reshape(layer1,(50000,25))
# In[13]:
#np.shape(outputs1)
#outputs1[1,4,:,:]
outputs
# In[29]:
labels
# In[23]:
from sklearn import svm
clf=svm.SVC()
#Train_SVM=[]
#for i in range (0,4):
#A=outputs1[i].detach().numpy()
#Train_SVM.append(A)
clf.fit(train_svm,l)
# In[30]:
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset,
shuffle=False, num_workers=2)
# In[31]:
test_svm=[]
l=[]
with torch.no_grad():
for data in testloader:
images, labels = data
outputs,outputs1 = net(images)
test_svm.append(outputs1[0,1,:,:].detach().numpy())
l.append(labels)
# In[33]:
test_svm=np.reshape(test_svm,(10000,25))
# In[34]:
clf.score(test_svm, l)
# In[37]:
pred_svm=clf.predict(test_svm);
np.shape(pred_svm)
# In[36]:
from sklearn.metrics import confusion_matrix
confusion_matrix(l, pred_svm)
# In[5]:
np.shape(outputs1)
# In[8]:
A=outputs1[1,1]
# In[9]:
np.shape(A)